hammer2 - update documentation, cleanup
[dragonfly.git] / sys / vfs / hammer2 / hammer2_freemap.c
1 /*
2  * Copyright (c) 2011-2014 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@dragonflybsd.org>
6  * by Venkatesh Srinivas <vsrinivas@dragonflybsd.org>
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  *
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in
16  *    the documentation and/or other materials provided with the
17  *    distribution.
18  * 3. Neither the name of The DragonFly Project nor the names of its
19  *    contributors may be used to endorse or promote products derived
20  *    from this software without specific, prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
25  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
26  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
28  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
29  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
30  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
31  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
32  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  */
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/kernel.h>
38 #include <sys/fcntl.h>
39 #include <sys/buf.h>
40 #include <sys/proc.h>
41 #include <sys/namei.h>
42 #include <sys/mount.h>
43 #include <sys/vnode.h>
44 #include <sys/mountctl.h>
45
46 #include "hammer2.h"
47
48 #define FREEMAP_DEBUG   0
49
50 struct hammer2_fiterate {
51         hammer2_off_t   bpref;
52         hammer2_off_t   bnext;
53         int             loops;
54 };
55
56 typedef struct hammer2_fiterate hammer2_fiterate_t;
57
58 static int hammer2_freemap_try_alloc(hammer2_trans_t *trans,
59                         hammer2_chain_t **parentp, hammer2_blockref_t *bref,
60                         int radix, hammer2_fiterate_t *iter);
61 static void hammer2_freemap_init(hammer2_trans_t *trans, hammer2_dev_t *hmp,
62                         hammer2_key_t key, hammer2_chain_t *chain);
63 static int hammer2_bmap_alloc(hammer2_trans_t *trans, hammer2_dev_t *hmp,
64                         hammer2_bmap_data_t *bmap, uint16_t class,
65                         int n, int radix, hammer2_key_t *basep);
66 static int hammer2_freemap_iterate(hammer2_trans_t *trans,
67                         hammer2_chain_t **parentp, hammer2_chain_t **chainp,
68                         hammer2_fiterate_t *iter);
69
70 static __inline
71 int
72 hammer2_freemapradix(int radix)
73 {
74         return(radix);
75 }
76
77 /*
78  * Calculate the device offset for the specified FREEMAP_NODE or FREEMAP_LEAF
79  * bref.  Return a combined media offset and physical size radix.  Freemap
80  * chains use fixed storage offsets in the 4MB reserved area at the
81  * beginning of each 2GB zone
82  *
83  * Rotate between four possibilities.  Theoretically this means we have three
84  * good freemaps in case of a crash which we can use as a base for the fixup
85  * scan at mount-time.
86  */
87 #define H2FMBASE(key, radix)    ((key) & ~(((hammer2_off_t)1 << (radix)) - 1))
88 #define H2FMSHIFT(radix)        ((hammer2_off_t)1 << (radix))
89
90 static
91 int
92 hammer2_freemap_reserve(hammer2_trans_t *trans, hammer2_chain_t *chain,
93                         int radix)
94 {
95         hammer2_blockref_t *bref = &chain->bref;
96         hammer2_off_t off;
97         int index;
98         size_t bytes;
99
100         /*
101          * Physical allocation size -> radix.  Typically either 256 for
102          * a level 0 freemap leaf or 65536 for a level N freemap node.
103          *
104          * NOTE: A 256 byte bitmap represents 256 x 8 x 1024 = 2MB of storage.
105          *       Do not use hammer2_allocsize() here as it has a min cap.
106          */
107         bytes = 1 << radix;
108
109         /*
110          * Calculate block selection index 0..7 of current block.  If this
111          * is the first allocation of the block (verses a modification of an
112          * existing block), we use index 0, otherwise we use the next rotating
113          * index.
114          */
115         if ((bref->data_off & ~HAMMER2_OFF_MASK_RADIX) == 0) {
116                 index = 0;
117         } else {
118                 off = bref->data_off & ~HAMMER2_OFF_MASK_RADIX &
119                       (((hammer2_off_t)1 <<
120                         HAMMER2_FREEMAP_LEVEL1_RADIX) - 1);
121                 off = off / HAMMER2_PBUFSIZE;
122                 KKASSERT(off >= HAMMER2_ZONE_FREEMAP_00 &&
123                          off < HAMMER2_ZONE_FREEMAP_END);
124                 index = (int)(off - HAMMER2_ZONE_FREEMAP_00) / 4;
125                 KKASSERT(index >= 0 && index < HAMMER2_NFREEMAPS);
126                 if (++index == HAMMER2_NFREEMAPS)
127                         index = 0;
128         }
129
130         /*
131          * Calculate the block offset of the reserved block.  This will
132          * point into the 4MB reserved area at the base of the appropriate
133          * 2GB zone, once added to the FREEMAP_x selection above.
134          */
135         switch(bref->keybits) {
136         /* case HAMMER2_FREEMAP_LEVEL5_RADIX: not applicable */
137         case HAMMER2_FREEMAP_LEVEL4_RADIX:      /* 2EB */
138                 KKASSERT(bref->type == HAMMER2_BREF_TYPE_FREEMAP_NODE);
139                 KKASSERT(bytes == HAMMER2_FREEMAP_LEVELN_PSIZE);
140                 off = H2FMBASE(bref->key, HAMMER2_FREEMAP_LEVEL4_RADIX) +
141                       (index * 4 + HAMMER2_ZONE_FREEMAP_00 +
142                        HAMMER2_ZONEFM_LEVEL4) * HAMMER2_PBUFSIZE;
143                 break;
144         case HAMMER2_FREEMAP_LEVEL3_RADIX:      /* 2PB */
145                 KKASSERT(bref->type == HAMMER2_BREF_TYPE_FREEMAP_NODE);
146                 KKASSERT(bytes == HAMMER2_FREEMAP_LEVELN_PSIZE);
147                 off = H2FMBASE(bref->key, HAMMER2_FREEMAP_LEVEL3_RADIX) +
148                       (index * 4 + HAMMER2_ZONE_FREEMAP_00 +
149                        HAMMER2_ZONEFM_LEVEL3) * HAMMER2_PBUFSIZE;
150                 break;
151         case HAMMER2_FREEMAP_LEVEL2_RADIX:      /* 2TB */
152                 KKASSERT(bref->type == HAMMER2_BREF_TYPE_FREEMAP_NODE);
153                 KKASSERT(bytes == HAMMER2_FREEMAP_LEVELN_PSIZE);
154                 off = H2FMBASE(bref->key, HAMMER2_FREEMAP_LEVEL2_RADIX) +
155                       (index * 4 + HAMMER2_ZONE_FREEMAP_00 +
156                        HAMMER2_ZONEFM_LEVEL2) * HAMMER2_PBUFSIZE;
157                 break;
158         case HAMMER2_FREEMAP_LEVEL1_RADIX:      /* 2GB */
159                 KKASSERT(bref->type == HAMMER2_BREF_TYPE_FREEMAP_LEAF);
160                 KKASSERT(bytes == HAMMER2_FREEMAP_LEVELN_PSIZE);
161                 off = H2FMBASE(bref->key, HAMMER2_FREEMAP_LEVEL1_RADIX) +
162                       (index * 4 + HAMMER2_ZONE_FREEMAP_00 +
163                        HAMMER2_ZONEFM_LEVEL1) * HAMMER2_PBUFSIZE;
164                 break;
165         default:
166                 panic("freemap: bad radix(2) %p %d\n", bref, bref->keybits);
167                 /* NOT REACHED */
168                 off = (hammer2_off_t)-1;
169                 break;
170         }
171         bref->data_off = off | radix;
172 #if FREEMAP_DEBUG
173         kprintf("FREEMAP BLOCK TYPE %d %016jx/%d DATA_OFF=%016jx\n",
174                 bref->type, bref->key, bref->keybits, bref->data_off);
175 #endif
176         return (0);
177 }
178
179 /*
180  * Normal freemap allocator
181  *
182  * Use available hints to allocate space using the freemap.  Create missing
183  * freemap infrastructure on-the-fly as needed (including marking initial
184  * allocations using the iterator as allocated, instantiating new 2GB zones,
185  * and dealing with the end-of-media edge case).
186  *
187  * ip and bpref are only used as a heuristic to determine locality of
188  * reference.  bref->key may also be used heuristically.
189  */
190 int
191 hammer2_freemap_alloc(hammer2_trans_t *trans, hammer2_chain_t *chain,
192                       size_t bytes)
193 {
194         hammer2_dev_t *hmp = chain->hmp;
195         hammer2_blockref_t *bref = &chain->bref;
196         hammer2_chain_t *parent;
197         int radix;
198         int error;
199         unsigned int hindex;
200         hammer2_fiterate_t iter;
201
202         /*
203          * Validate the allocation size.  It must be a power of 2.
204          *
205          * For now require that the caller be aware of the minimum
206          * allocation (1K).
207          */
208         radix = hammer2_getradix(bytes);
209         KKASSERT((size_t)1 << radix == bytes);
210
211         if (bref->type == HAMMER2_BREF_TYPE_FREEMAP_NODE ||
212             bref->type == HAMMER2_BREF_TYPE_FREEMAP_LEAF) {
213                 /*
214                  * Freemap blocks themselves are assigned from the reserve
215                  * area, not allocated from the freemap.
216                  */
217                 error = hammer2_freemap_reserve(trans, chain, radix);
218                 return error;
219         }
220
221         KKASSERT(bytes >= HAMMER2_ALLOC_MIN && bytes <= HAMMER2_ALLOC_MAX);
222
223         if (trans->flags & (HAMMER2_TRANS_ISFLUSH | HAMMER2_TRANS_PREFLUSH))
224                 ++trans->sync_xid;
225
226         /*
227          * Calculate the starting point for our allocation search.
228          *
229          * Each freemap leaf is dedicated to a specific freemap_radix.
230          * The freemap_radix can be more fine-grained than the device buffer
231          * radix which results in inodes being grouped together in their
232          * own segment, terminal-data (16K or less) and initial indirect
233          * block being grouped together, and then full-indirect and full-data
234          * blocks (64K) being grouped together.
235          *
236          * The single most important aspect of this is the inode grouping
237          * because that is what allows 'find' and 'ls' and other filesystem
238          * topology operations to run fast.
239          */
240 #if 0
241         if (bref->data_off & ~HAMMER2_OFF_MASK_RADIX)
242                 bpref = bref->data_off & ~HAMMER2_OFF_MASK_RADIX;
243         else if (trans->tmp_bpref)
244                 bpref = trans->tmp_bpref;
245         else if (trans->tmp_ip)
246                 bpref = trans->tmp_ip->chain->bref.data_off;
247         else
248 #endif
249         /*
250          * Heuristic tracking index.  We would like one for each distinct
251          * bref type if possible.  heur_freemap[] has room for two classes
252          * for each type.  At a minimum we have to break-up our heuristic
253          * by device block sizes.
254          */
255         hindex = hammer2_devblkradix(radix) - HAMMER2_MINIORADIX;
256         KKASSERT(hindex < HAMMER2_FREEMAP_HEUR_NRADIX);
257         hindex += bref->type * HAMMER2_FREEMAP_HEUR_NRADIX;
258         hindex &= HAMMER2_FREEMAP_HEUR_TYPES * HAMMER2_FREEMAP_HEUR_NRADIX - 1;
259         KKASSERT(hindex < HAMMER2_FREEMAP_HEUR);
260
261         iter.bpref = hmp->heur_freemap[hindex];
262
263         /*
264          * Make sure bpref is in-bounds.  It's ok if bpref covers a zone's
265          * reserved area, the try code will iterate past it.
266          */
267         if (iter.bpref > hmp->voldata.volu_size)
268                 iter.bpref = hmp->voldata.volu_size - 1;
269
270         /*
271          * Iterate the freemap looking for free space before and after.
272          */
273         parent = &hmp->fchain;
274         hammer2_chain_lock(parent, HAMMER2_RESOLVE_ALWAYS);
275         error = EAGAIN;
276         iter.bnext = iter.bpref;
277         iter.loops = 0;
278
279         while (error == EAGAIN) {
280                 error = hammer2_freemap_try_alloc(trans, &parent, bref,
281                                                   radix, &iter);
282         }
283         hmp->heur_freemap[hindex] = iter.bnext;
284         hammer2_chain_unlock(parent);
285
286         if (trans->flags & (HAMMER2_TRANS_ISFLUSH | HAMMER2_TRANS_PREFLUSH))
287                 --trans->sync_xid;
288
289         return (error);
290 }
291
292 static int
293 hammer2_freemap_try_alloc(hammer2_trans_t *trans, hammer2_chain_t **parentp,
294                           hammer2_blockref_t *bref, int radix,
295                           hammer2_fiterate_t *iter)
296 {
297         hammer2_dev_t *hmp = (*parentp)->hmp;
298         hammer2_off_t l0size;
299         hammer2_off_t l1size;
300         hammer2_off_t l1mask;
301         hammer2_key_t key_dummy;
302         hammer2_chain_t *chain;
303         hammer2_off_t key;
304         size_t bytes;
305         uint16_t class;
306         int error = 0;
307         int cache_index = -1;
308
309         /*
310          * Calculate the number of bytes being allocated, the number
311          * of contiguous bits of bitmap being allocated, and the bitmap
312          * mask.
313          *
314          * WARNING! cpu hardware may mask bits == 64 -> 0 and blow up the
315          *          mask calculation.
316          */
317         bytes = (size_t)1 << radix;
318         class = (bref->type << 8) | hammer2_devblkradix(radix);
319
320         /*
321          * Lookup the level1 freemap chain, creating and initializing one
322          * if necessary.  Intermediate levels will be created automatically
323          * when necessary by hammer2_chain_create().
324          */
325         key = H2FMBASE(iter->bnext, HAMMER2_FREEMAP_LEVEL1_RADIX);
326         l0size = H2FMSHIFT(HAMMER2_FREEMAP_LEVEL0_RADIX);
327         l1size = H2FMSHIFT(HAMMER2_FREEMAP_LEVEL1_RADIX);
328         l1mask = l1size - 1;
329
330         chain = hammer2_chain_lookup(parentp, &key_dummy, key, key + l1mask,
331                                      &cache_index,
332                                      HAMMER2_LOOKUP_ALWAYS |
333                                      HAMMER2_LOOKUP_MATCHIND);
334
335         if (chain == NULL) {
336                 /*
337                  * Create the missing leaf, be sure to initialize
338                  * the auxillary freemap tracking information in
339                  * the bref.check.freemap structure.
340                  */
341 #if 0
342                 kprintf("freemap create L1 @ %016jx bpref %016jx\n",
343                         key, iter->bpref);
344 #endif
345                 error = hammer2_chain_create(trans, parentp, &chain, hmp->spmp,
346                                      key, HAMMER2_FREEMAP_LEVEL1_RADIX,
347                                      HAMMER2_BREF_TYPE_FREEMAP_LEAF,
348                                      HAMMER2_FREEMAP_LEVELN_PSIZE,
349                                      0);
350                 KKASSERT(error == 0);
351                 if (error == 0) {
352                         hammer2_chain_modify(trans, chain, 0);
353                         bzero(&chain->data->bmdata[0],
354                               HAMMER2_FREEMAP_LEVELN_PSIZE);
355                         chain->bref.check.freemap.bigmask = (uint32_t)-1;
356                         chain->bref.check.freemap.avail = l1size;
357                         /* bref.methods should already be inherited */
358
359                         hammer2_freemap_init(trans, hmp, key, chain);
360                 }
361         } else if (chain->error) {
362                 /*
363                  * Error during lookup.
364                  */
365                 kprintf("hammer2_freemap_try_alloc: %016jx: error %s\n",
366                         (intmax_t)bref->data_off,
367                         hammer2_error_str(chain->error));
368                 error = EIO;
369         } else if ((chain->bref.check.freemap.bigmask & (1 << radix)) == 0) {
370                 /*
371                  * Already flagged as not having enough space
372                  */
373                 error = ENOSPC;
374         } else {
375                 /*
376                  * Modify existing chain to setup for adjustment.
377                  */
378                 hammer2_chain_modify(trans, chain, 0);
379         }
380
381         /*
382          * Scan 2MB entries.
383          */
384         if (error == 0) {
385                 hammer2_bmap_data_t *bmap;
386                 hammer2_key_t base_key;
387                 int count;
388                 int start;
389                 int n;
390
391                 KKASSERT(chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP_LEAF);
392                 start = (int)((iter->bnext - key) >>
393                               HAMMER2_FREEMAP_LEVEL0_RADIX);
394                 KKASSERT(start >= 0 && start < HAMMER2_FREEMAP_COUNT);
395                 hammer2_chain_modify(trans, chain, 0);
396
397                 error = ENOSPC;
398                 for (count = 0; count < HAMMER2_FREEMAP_COUNT; ++count) {
399                         int availchk;
400
401                         if (start + count >= HAMMER2_FREEMAP_COUNT &&
402                             start - count < 0) {
403                                 break;
404                         }
405
406                         /*
407                          * Calculate bmap pointer
408                          *
409                          * NOTE: bmap pointer is invalid if n >= FREEMAP_COUNT.
410                          */
411                         n = start + count;
412                         bmap = &chain->data->bmdata[n];
413
414                         if (n >= HAMMER2_FREEMAP_COUNT) {
415                                 availchk = 0;
416                         } else if (bmap->avail) {
417                                 availchk = 1;
418                         } else if (radix < HAMMER2_FREEMAP_BLOCK_RADIX &&
419                                   (bmap->linear & HAMMER2_FREEMAP_BLOCK_MASK)) {
420                                 availchk = 1;
421                         } else {
422                                 availchk = 0;
423                         }
424
425                         if (availchk &&
426                             (bmap->class == 0 || bmap->class == class)) {
427                                 base_key = key + n * l0size;
428                                 error = hammer2_bmap_alloc(trans, hmp, bmap,
429                                                            class, n, radix,
430                                                            &base_key);
431                                 if (error != ENOSPC) {
432                                         key = base_key;
433                                         break;
434                                 }
435                         }
436
437                         /*
438                          * Must recalculate after potentially having called
439                          * hammer2_bmap_alloc() above in case chain was
440                          * reallocated.
441                          *
442                          * NOTE: bmap pointer is invalid if n < 0.
443                          */
444                         n = start - count;
445                         bmap = &chain->data->bmdata[n];
446                         if (n < 0) {
447                                 availchk = 0;
448                         } else if (bmap->avail) {
449                                 availchk = 1;
450                         } else if (radix < HAMMER2_FREEMAP_BLOCK_RADIX &&
451                                   (bmap->linear & HAMMER2_FREEMAP_BLOCK_MASK)) {
452                                 availchk = 1;
453                         } else {
454                                 availchk = 0;
455                         }
456
457                         if (availchk &&
458                             (bmap->class == 0 || bmap->class == class)) {
459                                 base_key = key + n * l0size;
460                                 error = hammer2_bmap_alloc(trans, hmp, bmap,
461                                                            class, n, radix,
462                                                            &base_key);
463                                 if (error != ENOSPC) {
464                                         key = base_key;
465                                         break;
466                                 }
467                         }
468                 }
469                 if (error == ENOSPC)
470                         chain->bref.check.freemap.bigmask &= ~(1 << radix);
471                 /* XXX also scan down from original count */
472         }
473
474         if (error == 0) {
475                 /*
476                  * Assert validity.  Must be beyond the static allocator used
477                  * by newfs_hammer2 (and thus also beyond the aux area),
478                  * not go past the volume size, and must not be in the
479                  * reserved segment area for a zone.
480                  */
481                 KKASSERT(key >= hmp->voldata.allocator_beg &&
482                          key + bytes <= hmp->voldata.volu_size);
483                 KKASSERT((key & HAMMER2_ZONE_MASK64) >= HAMMER2_ZONE_SEG);
484                 bref->data_off = key | radix;
485
486 #if 0
487                 kprintf("alloc cp=%p %016jx %016jx using %016jx\n",
488                         chain,
489                         bref->key, bref->data_off, chain->bref.data_off);
490 #endif
491         } else if (error == ENOSPC) {
492                 /*
493                  * Return EAGAIN with next iteration in iter->bnext, or
494                  * return ENOSPC if the allocation map has been exhausted.
495                  */
496                 error = hammer2_freemap_iterate(trans, parentp, &chain, iter);
497         }
498
499         /*
500          * Cleanup
501          */
502         if (chain)
503                 hammer2_chain_unlock(chain);
504         return (error);
505 }
506
507 /*
508  * Allocate (1<<radix) bytes from the bmap whos base data offset is (*basep).
509  *
510  * If the linear iterator is mid-block we use it directly (the bitmap should
511  * already be marked allocated), otherwise we search for a block in the bitmap
512  * that fits the allocation request.
513  *
514  * A partial bitmap allocation sets the minimum bitmap granularity (16KB)
515  * to fully allocated and adjusts the linear allocator to allow the
516  * remaining space to be allocated.
517  */
518 static
519 int
520 hammer2_bmap_alloc(hammer2_trans_t *trans, hammer2_dev_t *hmp,
521                    hammer2_bmap_data_t *bmap,
522                    uint16_t class, int n, int radix, hammer2_key_t *basep)
523 {
524         hammer2_io_t *dio;
525         size_t size;
526         size_t bgsize;
527         int bmradix;
528         uint32_t bmmask;
529         int offset;
530         int error;
531         int i;
532         int j;
533
534         /*
535          * Take into account 2-bits per block when calculating bmradix.
536          */
537         size = (size_t)1 << radix;
538
539         if (radix <= HAMMER2_FREEMAP_BLOCK_RADIX) {
540                 bmradix = 2;
541                 /* (16K) 2 bits per allocation block */
542         } else {
543                 bmradix = 2 << (radix - HAMMER2_FREEMAP_BLOCK_RADIX);
544                 /* (32K-256K) 4, 8, 16, 32 bits per allocation block */
545         }
546
547         /*
548          * Use the linear iterator to pack small allocations, otherwise
549          * fall-back to finding a free 16KB chunk.  The linear iterator
550          * is only valid when *NOT* on a freemap chunking boundary (16KB).
551          * If it is the bitmap must be scanned.  It can become invalid
552          * once we pack to the boundary.  We adjust it after a bitmap
553          * allocation only for sub-16KB allocations (so the perfectly good
554          * previous value can still be used for fragments when 16KB+
555          * allocations are made).
556          *
557          * Beware of hardware artifacts when bmradix == 32 (intermediate
558          * result can wind up being '1' instead of '0' if hardware masks
559          * bit-count & 31).
560          *
561          * NOTE: j needs to be even in the j= calculation.  As an artifact
562          *       of the /2 division, our bitmask has to clear bit 0.
563          *
564          * NOTE: TODO this can leave little unallocatable fragments lying
565          *       around.
566          */
567         if (((uint32_t)bmap->linear & HAMMER2_FREEMAP_BLOCK_MASK) + size <=
568             HAMMER2_FREEMAP_BLOCK_SIZE &&
569             (bmap->linear & HAMMER2_FREEMAP_BLOCK_MASK) &&
570             bmap->linear < HAMMER2_SEGSIZE) {
571                 KKASSERT(bmap->linear >= 0 &&
572                          bmap->linear + size <= HAMMER2_SEGSIZE &&
573                          (bmap->linear & (HAMMER2_ALLOC_MIN - 1)) == 0);
574                 offset = bmap->linear;
575                 i = offset / (HAMMER2_SEGSIZE / 8);
576                 j = (offset / (HAMMER2_FREEMAP_BLOCK_SIZE / 2)) & 30;
577                 bmmask = (bmradix == 32) ?
578                          0xFFFFFFFFU : (1 << bmradix) - 1;
579                 bmmask <<= j;
580                 bmap->linear = offset + size;
581         } else {
582                 for (i = 0; i < 8; ++i) {
583                         bmmask = (bmradix == 32) ?
584                                  0xFFFFFFFFU : (1 << bmradix) - 1;
585                         for (j = 0; j < 32; j += bmradix) {
586                                 if ((bmap->bitmap[i] & bmmask) == 0)
587                                         goto success;
588                                 bmmask <<= bmradix;
589                         }
590                 }
591                 /*fragments might remain*/
592                 /*KKASSERT(bmap->avail == 0);*/
593                 return (ENOSPC);
594 success:
595                 offset = i * (HAMMER2_SEGSIZE / 8) +
596                          (j * (HAMMER2_FREEMAP_BLOCK_SIZE / 2));
597                 if (size & HAMMER2_FREEMAP_BLOCK_MASK)
598                         bmap->linear = offset + size;
599         }
600
601         KKASSERT(i >= 0 && i < 8);      /* 8 x 16 -> 128 x 16K -> 2MB */
602
603         /*
604          * Optimize the buffer cache to avoid unnecessary read-before-write
605          * operations.
606          *
607          * The device block size could be larger than the allocation size
608          * so the actual bitmap test is somewhat more involved.  We have
609          * to use a compatible buffer size for this operation.
610          */
611         if ((bmap->bitmap[i] & bmmask) == 0 &&
612             hammer2_devblksize(size) != size) {
613                 size_t psize = hammer2_devblksize(size);
614                 hammer2_off_t pmask = (hammer2_off_t)psize - 1;
615                 int pbmradix = 2 << (hammer2_devblkradix(radix) -
616                                      HAMMER2_FREEMAP_BLOCK_RADIX);
617                 uint32_t pbmmask;
618                 int pradix = hammer2_getradix(psize);
619
620                 pbmmask = (pbmradix == 32) ? 0xFFFFFFFFU : (1 << pbmradix) - 1;
621                 while ((pbmmask & bmmask) == 0)
622                         pbmmask <<= pbmradix;
623
624 #if 0
625                 kprintf("%016jx mask %08x %08x %08x (%zd/%zd)\n",
626                         *basep + offset, bmap->bitmap[i],
627                         pbmmask, bmmask, size, psize);
628 #endif
629
630                 if ((bmap->bitmap[i] & pbmmask) == 0) {
631                         error = hammer2_io_newq(hmp,
632                                                 (*basep + (offset & ~pmask)) |
633                                                  pradix,
634                                                 psize, &dio);
635                         hammer2_io_bqrelse(&dio);
636                 }
637         }
638
639 #if 0
640         /*
641          * When initializing a new inode segment also attempt to initialize
642          * an adjacent segment.  Be careful not to index beyond the array
643          * bounds.
644          *
645          * We do this to try to localize inode accesses to improve
646          * directory scan rates.  XXX doesn't improve scan rates.
647          */
648         if (size == HAMMER2_INODE_BYTES) {
649                 if (n & 1) {
650                         if (bmap[-1].radix == 0 && bmap[-1].avail)
651                                 bmap[-1].radix = radix;
652                 } else {
653                         if (bmap[1].radix == 0 && bmap[1].avail)
654                                 bmap[1].radix = radix;
655                 }
656         }
657 #endif
658         /*
659          * Calculate the bitmap-granular change in bgsize for the volume
660          * header.  We cannot use the fine-grained change here because
661          * the bulkfree code can't undo it.  If the bitmap element is already
662          * marked allocated it has already been accounted for.
663          */
664         if (radix < HAMMER2_FREEMAP_BLOCK_RADIX) {
665                 if (bmap->bitmap[i] & bmmask)
666                         bgsize = 0;
667                 else
668                         bgsize = HAMMER2_FREEMAP_BLOCK_SIZE;
669         } else {
670                 bgsize = size;
671         }
672
673         /*
674          * Adjust the bitmap, set the class (it might have been 0),
675          * and available bytes, update the allocation offset (*basep)
676          * from the L0 base to the actual offset.
677          *
678          * avail must reflect the bitmap-granular availability.  The allocator
679          * tests will also check the linear iterator.
680          */
681         bmap->bitmap[i] |= bmmask;
682         bmap->class = class;
683         bmap->avail -= bgsize;
684         *basep += offset;
685
686         /*
687          * Adjust the volume header's allocator_free parameter.  This
688          * parameter has to be fixed up by bulkfree which has no way to
689          * figure out sub-16K chunking, so it must be adjusted by the
690          * bitmap-granular size.
691          */
692         if (bgsize) {
693                 hammer2_voldata_lock(hmp);
694                 hammer2_voldata_modify(hmp);
695                 hmp->voldata.allocator_free -= bgsize;
696                 hammer2_voldata_unlock(hmp);
697         }
698
699         return(0);
700 }
701
702 static
703 void
704 hammer2_freemap_init(hammer2_trans_t *trans, hammer2_dev_t *hmp,
705                      hammer2_key_t key, hammer2_chain_t *chain)
706 {
707         hammer2_off_t l1size;
708         hammer2_off_t lokey;
709         hammer2_off_t hikey;
710         hammer2_bmap_data_t *bmap;
711         int count;
712
713         l1size = H2FMSHIFT(HAMMER2_FREEMAP_LEVEL1_RADIX);
714
715         /*
716          * Calculate the portion of the 2GB map that should be initialized
717          * as free.  Portions below or after will be initialized as allocated.
718          * SEGMASK-align the areas so we don't have to worry about sub-scans
719          * or endianess when using memset.
720          *
721          * (1) Ensure that all statically allocated space from newfs_hammer2
722          *     is marked allocated.
723          *
724          * (2) Ensure that the reserved area is marked allocated (typically
725          *     the first 4MB of the 2GB area being represented).
726          *
727          * (3) Ensure that any trailing space at the end-of-volume is marked
728          *     allocated.
729          *
730          * WARNING! It is possible for lokey to be larger than hikey if the
731          *          entire 2GB segment is within the static allocation.
732          */
733         lokey = (hmp->voldata.allocator_beg + HAMMER2_SEGMASK64) &
734                 ~HAMMER2_SEGMASK64;
735
736         if (lokey < H2FMBASE(key, HAMMER2_FREEMAP_LEVEL1_RADIX) +
737                   HAMMER2_ZONE_SEG64) {
738                 lokey = H2FMBASE(key, HAMMER2_FREEMAP_LEVEL1_RADIX) +
739                         HAMMER2_ZONE_SEG64;
740         }
741
742         hikey = key + H2FMSHIFT(HAMMER2_FREEMAP_LEVEL1_RADIX);
743         if (hikey > hmp->voldata.volu_size) {
744                 hikey = hmp->voldata.volu_size & ~HAMMER2_SEGMASK64;
745         }
746
747         chain->bref.check.freemap.avail =
748                 H2FMSHIFT(HAMMER2_FREEMAP_LEVEL1_RADIX);
749         bmap = &chain->data->bmdata[0];
750
751         for (count = 0; count < HAMMER2_FREEMAP_COUNT; ++count) {
752                 if (key < lokey || key >= hikey) {
753                         memset(bmap->bitmap, -1,
754                                sizeof(bmap->bitmap));
755                         bmap->avail = 0;
756                         bmap->linear = HAMMER2_SEGSIZE;
757                         chain->bref.check.freemap.avail -=
758                                 H2FMSHIFT(HAMMER2_FREEMAP_LEVEL0_RADIX);
759                 } else {
760                         bmap->avail = H2FMSHIFT(HAMMER2_FREEMAP_LEVEL0_RADIX);
761                 }
762                 key += H2FMSHIFT(HAMMER2_FREEMAP_LEVEL0_RADIX);
763                 ++bmap;
764         }
765 }
766
767 /*
768  * The current Level 1 freemap has been exhausted, iterate to the next
769  * one, return ENOSPC if no freemaps remain.
770  *
771  * XXX this should rotate back to the beginning to handle freed-up space
772  * XXX or use intermediate entries to locate free space. TODO
773  */
774 static int
775 hammer2_freemap_iterate(hammer2_trans_t *trans, hammer2_chain_t **parentp,
776                         hammer2_chain_t **chainp, hammer2_fiterate_t *iter)
777 {
778         hammer2_dev_t *hmp = (*parentp)->hmp;
779
780         iter->bnext &= ~(H2FMSHIFT(HAMMER2_FREEMAP_LEVEL1_RADIX) - 1);
781         iter->bnext += H2FMSHIFT(HAMMER2_FREEMAP_LEVEL1_RADIX);
782         if (iter->bnext >= hmp->voldata.volu_size) {
783                 iter->bnext = 0;
784                 if (++iter->loops == 2)
785                         return (ENOSPC);
786         }
787         return(EAGAIN);
788 }
789
790 /*
791  * Adjust the bit-pattern for data in the freemap bitmap according to
792  * (how).  This code is called from on-mount recovery to fixup (mark
793  * as allocated) blocks whos freemap upates might not have been committed
794  * in the last crash and is used by the bulk freemap scan to stage frees.
795  *
796  * XXX currently disabled when how == 0 (the normal real-time case).  At
797  * the moment we depend on the bulk freescan to actually free blocks.  It
798  * will still call this routine with a non-zero how to stage possible frees
799  * and to do the actual free.
800  */
801 void
802 hammer2_freemap_adjust(hammer2_trans_t *trans, hammer2_dev_t *hmp,
803                        hammer2_blockref_t *bref, int how)
804 {
805         hammer2_off_t data_off = bref->data_off;
806         hammer2_chain_t *chain;
807         hammer2_chain_t *parent;
808         hammer2_bmap_data_t *bmap;
809         hammer2_key_t key;
810         hammer2_key_t key_dummy;
811         hammer2_off_t l0size;
812         hammer2_off_t l1size;
813         hammer2_off_t l1mask;
814         uint32_t *bitmap;
815         const uint32_t bmmask00 = 0;
816         uint32_t bmmask01;
817         uint32_t bmmask10;
818         uint32_t bmmask11;
819         size_t bytes;
820         uint16_t class;
821         int radix;
822         int start;
823         int count;
824         int modified = 0;
825         int cache_index = -1;
826         int error;
827
828         KKASSERT(how == HAMMER2_FREEMAP_DORECOVER);
829
830         radix = (int)data_off & HAMMER2_OFF_MASK_RADIX;
831         data_off &= ~HAMMER2_OFF_MASK_RADIX;
832         KKASSERT(radix <= HAMMER2_RADIX_MAX);
833
834         bytes = (size_t)1 << radix;
835         class = (bref->type << 8) | hammer2_devblkradix(radix);
836
837         /*
838          * We can't adjust thre freemap for data allocations made by
839          * newfs_hammer2.
840          */
841         if (data_off < hmp->voldata.allocator_beg)
842                 return;
843
844         KKASSERT((data_off & HAMMER2_ZONE_MASK64) >= HAMMER2_ZONE_SEG);
845
846         /*
847          * Lookup the level1 freemap chain.  The chain must exist.
848          */
849         key = H2FMBASE(data_off, HAMMER2_FREEMAP_LEVEL1_RADIX);
850         l0size = H2FMSHIFT(HAMMER2_FREEMAP_LEVEL0_RADIX);
851         l1size = H2FMSHIFT(HAMMER2_FREEMAP_LEVEL1_RADIX);
852         l1mask = l1size - 1;
853
854         parent = &hmp->fchain;
855         hammer2_chain_lock(parent, HAMMER2_RESOLVE_ALWAYS);
856
857         chain = hammer2_chain_lookup(&parent, &key_dummy, key, key + l1mask,
858                                      &cache_index,
859                                      HAMMER2_LOOKUP_ALWAYS |
860                                      HAMMER2_LOOKUP_MATCHIND);
861
862         /*
863          * Stop early if we are trying to free something but no leaf exists.
864          */
865         if (chain == NULL && how != HAMMER2_FREEMAP_DORECOVER) {
866                 kprintf("hammer2_freemap_adjust: %016jx: no chain\n",
867                         (intmax_t)bref->data_off);
868                 goto done;
869         }
870         if (chain->error) {
871                 kprintf("hammer2_freemap_adjust: %016jx: error %s\n",
872                         (intmax_t)bref->data_off,
873                         hammer2_error_str(chain->error));
874                 hammer2_chain_unlock(chain);
875                 chain = NULL;
876                 goto done;
877         }
878
879         /*
880          * Create any missing leaf(s) if we are doing a recovery (marking
881          * the block(s) as being allocated instead of being freed).  Be sure
882          * to initialize the auxillary freemap tracking info in the
883          * bref.check.freemap structure.
884          */
885         if (chain == NULL && how == HAMMER2_FREEMAP_DORECOVER) {
886                 error = hammer2_chain_create(trans, &parent, &chain, hmp->spmp,
887                                      key, HAMMER2_FREEMAP_LEVEL1_RADIX,
888                                      HAMMER2_BREF_TYPE_FREEMAP_LEAF,
889                                      HAMMER2_FREEMAP_LEVELN_PSIZE,
890                                      0);
891
892                 if (hammer2_debug & 0x0040) {
893                         kprintf("fixup create chain %p %016jx:%d\n",
894                                 chain, chain->bref.key, chain->bref.keybits);
895                 }
896
897                 if (error == 0) {
898                         hammer2_chain_modify(trans, chain, 0);
899                         bzero(&chain->data->bmdata[0],
900                               HAMMER2_FREEMAP_LEVELN_PSIZE);
901                         chain->bref.check.freemap.bigmask = (uint32_t)-1;
902                         chain->bref.check.freemap.avail = l1size;
903                         /* bref.methods should already be inherited */
904
905                         hammer2_freemap_init(trans, hmp, key, chain);
906                 }
907                 /* XXX handle error */
908         }
909
910 #if FREEMAP_DEBUG
911         kprintf("FREEMAP ADJUST TYPE %d %016jx/%d DATA_OFF=%016jx\n",
912                 chain->bref.type, chain->bref.key,
913                 chain->bref.keybits, chain->bref.data_off);
914 #endif
915
916         /*
917          * Calculate the bitmask (runs in 2-bit pairs).
918          */
919         start = ((int)(data_off >> HAMMER2_FREEMAP_BLOCK_RADIX) & 15) * 2;
920         bmmask01 = 1 << start;
921         bmmask10 = 2 << start;
922         bmmask11 = 3 << start;
923
924         /*
925          * Fixup the bitmap.  Partial blocks cannot be fully freed unless
926          * a bulk scan is able to roll them up.
927          */
928         if (radix < HAMMER2_FREEMAP_BLOCK_RADIX) {
929                 count = 1;
930                 if (how == HAMMER2_FREEMAP_DOREALFREE)
931                         how = HAMMER2_FREEMAP_DOMAYFREE;
932         } else {
933                 count = 1 << (radix - HAMMER2_FREEMAP_BLOCK_RADIX);
934         }
935
936         /*
937          * [re]load the bmap and bitmap pointers.  Each bmap entry covers
938          * a 2MB swath.  The bmap itself (LEVEL1) covers 2GB.
939          *
940          * Be sure to reset the linear iterator to ensure that the adjustment
941          * is not ignored.
942          */
943 again:
944         bmap = &chain->data->bmdata[(int)(data_off >> HAMMER2_SEGRADIX) &
945                                     (HAMMER2_FREEMAP_COUNT - 1)];
946         bitmap = &bmap->bitmap[(int)(data_off >> (HAMMER2_SEGRADIX - 3)) & 7];
947
948         if (modified)
949                 bmap->linear = 0;
950
951         while (count) {
952                 KKASSERT(bmmask11);
953                 if (how == HAMMER2_FREEMAP_DORECOVER) {
954                         /*
955                          * Recovery request, mark as allocated.
956                          */
957                         if ((*bitmap & bmmask11) != bmmask11) {
958                                 if (modified == 0) {
959                                         hammer2_chain_modify(trans, chain, 0);
960                                         modified = 1;
961                                         goto again;
962                                 }
963                                 if ((*bitmap & bmmask11) == bmmask00) {
964                                         bmap->avail -=
965                                                 HAMMER2_FREEMAP_BLOCK_SIZE;
966                                 }
967                                 if (bmap->class == 0)
968                                         bmap->class = class;
969                                 *bitmap |= bmmask11;
970                                 if (hammer2_debug & 0x0040) {
971                                         kprintf("hammer2_freemap_recover: "
972                                                 "fixup type=%02x "
973                                                 "block=%016jx/%zd\n",
974                                                 bref->type, data_off, bytes);
975                                 }
976                         } else {
977                                 /*
978                                 kprintf("hammer2_freemap_recover:  good "
979                                         "type=%02x block=%016jx/%zd\n",
980                                         bref->type, data_off, bytes);
981                                 */
982                         }
983                 }
984 #if 0
985                 /*
986                  * XXX this stuff doesn't work, avail is miscalculated and
987                  * code 10 means something else now.
988                  */
989                 else if ((*bitmap & bmmask11) == bmmask11) {
990                         /*
991                          * Mayfree/Realfree request and bitmap is currently
992                          * marked as being fully allocated.
993                          */
994                         if (!modified) {
995                                 hammer2_chain_modify(trans, chain, 0);
996                                 modified = 1;
997                                 goto again;
998                         }
999                         if (how == HAMMER2_FREEMAP_DOREALFREE)
1000                                 *bitmap &= ~bmmask11;
1001                         else
1002                                 *bitmap = (*bitmap & ~bmmask11) | bmmask10;
1003                 } else if ((*bitmap & bmmask11) == bmmask10) {
1004                         /*
1005                          * Mayfree/Realfree request and bitmap is currently
1006                          * marked as being possibly freeable.
1007                          */
1008                         if (how == HAMMER2_FREEMAP_DOREALFREE) {
1009                                 if (!modified) {
1010                                         hammer2_chain_modify(trans, chain, 0);
1011                                         modified = 1;
1012                                         goto again;
1013                                 }
1014                                 *bitmap &= ~bmmask11;
1015                         }
1016                 } else {
1017                         /*
1018                          * 01 - Not implemented, currently illegal state
1019                          * 00 - Not allocated at all, illegal free.
1020                          */
1021                         panic("hammer2_freemap_adjust: "
1022                               "Illegal state %08x(%08x)",
1023                               *bitmap, *bitmap & bmmask11);
1024                 }
1025 #endif
1026                 --count;
1027                 bmmask01 <<= 2;
1028                 bmmask10 <<= 2;
1029                 bmmask11 <<= 2;
1030         }
1031         if (how == HAMMER2_FREEMAP_DOREALFREE && modified) {
1032                 bmap->avail += 1 << radix;
1033                 KKASSERT(bmap->avail <= HAMMER2_SEGSIZE);
1034                 if (bmap->avail == HAMMER2_SEGSIZE &&
1035                     bmap->bitmap[0] == 0 &&
1036                     bmap->bitmap[1] == 0 &&
1037                     bmap->bitmap[2] == 0 &&
1038                     bmap->bitmap[3] == 0 &&
1039                     bmap->bitmap[4] == 0 &&
1040                     bmap->bitmap[5] == 0 &&
1041                     bmap->bitmap[6] == 0 &&
1042                     bmap->bitmap[7] == 0) {
1043                         key = H2FMBASE(data_off, HAMMER2_FREEMAP_LEVEL0_RADIX);
1044                         kprintf("Freeseg %016jx\n", (intmax_t)key);
1045                         bmap->class = 0;
1046                 }
1047         }
1048
1049         /*
1050          * chain->bref.check.freemap.bigmask (XXX)
1051          *
1052          * Setting bigmask is a hint to the allocation code that there might
1053          * be something allocatable.  We also set this in recovery... it
1054          * doesn't hurt and we might want to use the hint for other validation
1055          * operations later on.
1056          */
1057         if (modified)
1058                 chain->bref.check.freemap.bigmask |= 1 << radix;
1059
1060         hammer2_chain_unlock(chain);
1061 done:
1062         hammer2_chain_unlock(parent);
1063 }
1064
1065 /*
1066  * Validate the freemap, in three stages.
1067  *
1068  * stage-1      ALLOCATED     -> POSSIBLY FREE
1069  *              POSSIBLY FREE -> POSSIBLY FREE (type corrected)
1070  *
1071  *      This transitions bitmap entries from ALLOCATED to POSSIBLY FREE.
1072  *      The POSSIBLY FREE state does not mean that a block is actually free
1073  *      and may be transitioned back to ALLOCATED in stage-2.
1074  *
1075  *      This is typically done during normal filesystem operations when
1076  *      something is deleted or a block is replaced.
1077  *
1078  *      This is done by bulkfree in-bulk after a memory-bounded meta-data
1079  *      scan to try to determine what might be freeable.
1080  *
1081  *      This can be done unconditionally through a freemap scan when the
1082  *      intention is to brute-force recover the proper state of the freemap.
1083  *
1084  * stage-2      POSSIBLY FREE -> ALLOCATED      (scan metadata topology)
1085  *
1086  *      This is done by bulkfree during a meta-data scan to ensure that
1087  *      all blocks still actually allocated by the filesystem are marked
1088  *      as such.
1089  *
1090  *      NOTE! Live filesystem transitions to POSSIBLY FREE can occur while
1091  *            the bulkfree stage-2 and stage-3 is running.  The live filesystem
1092  *            will use the alternative POSSIBLY FREE type (2) to prevent
1093  *            stage-3 from improperly transitioning unvetted possibly-free
1094  *            blocks to FREE.
1095  *
1096  * stage-3      POSSIBLY FREE (type 1) -> FREE  (scan freemap)
1097  *
1098  *      This is done by bulkfree to finalize POSSIBLY FREE states.
1099  *
1100  */