- Merge bge_release_resources() into bge_detach(). This funcion is only used
[dragonfly.git] / sys / dev / netif / bge / if_bge.c
1 /*
2  * Copyright (c) 2001 Wind River Systems
3  * Copyright (c) 1997, 1998, 1999, 2001
4  *      Bill Paul <wpaul@windriver.com>.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. All advertising materials mentioning features or use of this software
15  *    must display the following acknowledgement:
16  *      This product includes software developed by Bill Paul.
17  * 4. Neither the name of the author nor the names of any co-contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31  * THE POSSIBILITY OF SUCH DAMAGE.
32  *
33  * $FreeBSD: src/sys/dev/bge/if_bge.c,v 1.3.2.39 2005/07/03 03:41:18 silby Exp $
34  * $DragonFly: src/sys/dev/netif/bge/if_bge.c,v 1.76 2007/05/12 04:05:35 sephe Exp $
35  *
36  */
37
38 /*
39  * Broadcom BCM570x family gigabit ethernet driver for FreeBSD.
40  * 
41  * Written by Bill Paul <wpaul@windriver.com>
42  * Senior Engineer, Wind River Systems
43  */
44
45 /*
46  * The Broadcom BCM5700 is based on technology originally developed by
47  * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
48  * MAC chips. The BCM5700, sometimes refered to as the Tigon III, has
49  * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
50  * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
51  * frames, highly configurable RX filtering, and 16 RX and TX queues
52  * (which, along with RX filter rules, can be used for QOS applications).
53  * Other features, such as TCP segmentation, may be available as part
54  * of value-added firmware updates. Unlike the Tigon I and Tigon II,
55  * firmware images can be stored in hardware and need not be compiled
56  * into the driver.
57  *
58  * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
59  * function in a 32-bit/64-bit 33/66Mhz bus, or a 64-bit/133Mhz bus.
60  * 
61  * The BCM5701 is a single-chip solution incorporating both the BCM5700
62  * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
63  * does not support external SSRAM.
64  *
65  * Broadcom also produces a variation of the BCM5700 under the "Altima"
66  * brand name, which is functionally similar but lacks PCI-X support.
67  *
68  * Without external SSRAM, you can only have at most 4 TX rings,
69  * and the use of the mini RX ring is disabled. This seems to imply
70  * that these features are simply not available on the BCM5701. As a
71  * result, this driver does not implement any support for the mini RX
72  * ring.
73  */
74
75 #include <sys/param.h>
76 #include <sys/bus.h>
77 #include <sys/endian.h>
78 #include <sys/kernel.h>
79 #include <sys/mbuf.h>
80 #include <sys/malloc.h>
81 #include <sys/queue.h>
82 #include <sys/rman.h>
83 #include <sys/serialize.h>
84 #include <sys/socket.h>
85 #include <sys/sockio.h>
86
87 #include <net/bpf.h>
88 #include <net/ethernet.h>
89 #include <net/if.h>
90 #include <net/if_arp.h>
91 #include <net/if_dl.h>
92 #include <net/if_media.h>
93 #include <net/if_types.h>
94 #include <net/ifq_var.h>
95 #include <net/vlan/if_vlan_var.h>
96
97 #include <dev/netif/mii_layer/mii.h>
98 #include <dev/netif/mii_layer/miivar.h>
99 #include <dev/netif/mii_layer/brgphyreg.h>
100
101 #include <bus/pci/pcidevs.h>
102 #include <bus/pci/pcireg.h>
103 #include <bus/pci/pcivar.h>
104
105 #include <dev/netif/bge/if_bgereg.h>
106
107 /* "device miibus" required.  See GENERIC if you get errors here. */
108 #include "miibus_if.h"
109
110 #define BGE_CSUM_FEATURES       (CSUM_IP | CSUM_TCP | CSUM_UDP)
111 #define BGE_MIN_FRAME           60
112
113 /*
114  * Various supported device vendors/types and their names. Note: the
115  * spec seems to indicate that the hardware still has Alteon's vendor
116  * ID burned into it, though it will always be overriden by the vendor
117  * ID in the EEPROM. Just to be safe, we cover all possibilities.
118  */
119 #define BGE_DEVDESC_MAX         64      /* Maximum device description length */
120
121 static struct bge_type bge_devs[] = {
122         { PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C996,
123                 "3COM 3C996 Gigabit Ethernet" },
124
125         { PCI_VENDOR_ALTEON, PCI_PRODUCT_ALTEON_BCM5700,
126                 "Alteon BCM5700 Gigabit Ethernet" },
127         { PCI_VENDOR_ALTEON, PCI_PRODUCT_ALTEON_BCM5701,
128                 "Alteon BCM5701 Gigabit Ethernet" },
129
130         { PCI_VENDOR_ALTIMA, PCI_PRODUCT_ALTIMA_AC1000,
131                 "Altima AC1000 Gigabit Ethernet" },
132         { PCI_VENDOR_ALTIMA, PCI_PRODUCT_ALTIMA_AC1001,
133                 "Altima AC1002 Gigabit Ethernet" },
134         { PCI_VENDOR_ALTIMA, PCI_PRODUCT_ALTIMA_AC9100,
135                 "Altima AC9100 Gigabit Ethernet" },
136
137         { PCI_VENDOR_APPLE, PCI_PRODUCT_APPLE_BCM5701,
138                 "Apple BCM5701 Gigabit Ethernet" },
139
140         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5700,
141                 "Broadcom BCM5700 Gigabit Ethernet" },
142         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5701,
143                 "Broadcom BCM5701 Gigabit Ethernet" },
144         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5702,
145                 "Broadcom BCM5702 Gigabit Ethernet" },
146         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5702X,
147                 "Broadcom BCM5702X Gigabit Ethernet" },
148         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5702_ALT,
149                 "Broadcom BCM5702 Gigabit Ethernet" },
150         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5703,
151                 "Broadcom BCM5703 Gigabit Ethernet" },
152         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5703X,
153                 "Broadcom BCM5703X Gigabit Ethernet" },
154         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5703A3,
155                 "Broadcom BCM5703 Gigabit Ethernet" },
156         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5704C,
157                 "Broadcom BCM5704C Dual Gigabit Ethernet" },
158         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5704S,
159                 "Broadcom BCM5704S Dual Gigabit Ethernet" },
160         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5704S_ALT,
161                 "Broadcom BCM5704S Dual Gigabit Ethernet" },
162         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705,
163                 "Broadcom BCM5705 Gigabit Ethernet" },
164         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705F,
165                 "Broadcom BCM5705F Gigabit Ethernet" },
166         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705K,
167                 "Broadcom BCM5705K Gigabit Ethernet" },
168         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705M,
169                 "Broadcom BCM5705M Gigabit Ethernet" },
170         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705M_ALT,
171                 "Broadcom BCM5705M Gigabit Ethernet" },
172         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5714,
173                 "Broadcom BCM5714C Gigabit Ethernet" },
174         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5714S,
175                 "Broadcom BCM5714S Gigabit Ethernet" },
176         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5715,
177                 "Broadcom BCM5715 Gigabit Ethernet" },
178         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5715S,
179                 "Broadcom BCM5715S Gigabit Ethernet" },
180         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5720,
181                 "Broadcom BCM5720 Gigabit Ethernet" },
182         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5721,
183                 "Broadcom BCM5721 Gigabit Ethernet" },
184         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5722,
185                 "Broadcom BCM5722 Gigabit Ethernet" },
186         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5750,
187                 "Broadcom BCM5750 Gigabit Ethernet" },
188         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5750M,
189                 "Broadcom BCM5750M Gigabit Ethernet" },
190         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5751,
191                 "Broadcom BCM5751 Gigabit Ethernet" },
192         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5751F,
193                 "Broadcom BCM5751F Gigabit Ethernet" },
194         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5751M,
195                 "Broadcom BCM5751M Gigabit Ethernet" },
196         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5752,
197                 "Broadcom BCM5752 Gigabit Ethernet" },
198         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5752M,
199                 "Broadcom BCM5752M Gigabit Ethernet" },
200         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5753,
201                 "Broadcom BCM5753 Gigabit Ethernet" },
202         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5753F,
203                 "Broadcom BCM5753F Gigabit Ethernet" },
204         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5753M,
205                 "Broadcom BCM5753M Gigabit Ethernet" },
206         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5754,
207                 "Broadcom BCM5754 Gigabit Ethernet" },
208         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5754M,
209                 "Broadcom BCM5754M Gigabit Ethernet" },
210         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5755,
211                 "Broadcom BCM5755 Gigabit Ethernet" },
212         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5755M,
213                 "Broadcom BCM5755M Gigabit Ethernet" },
214         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5756,
215                 "Broadcom BCM5756 Gigabit Ethernet" },
216         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5780,
217                 "Broadcom BCM5780 Gigabit Ethernet" },
218         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5780S,
219                 "Broadcom BCM5780S Gigabit Ethernet" },
220         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5781,
221                 "Broadcom BCM5781 Gigabit Ethernet" },
222         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5782,
223                 "Broadcom BCM5782 Gigabit Ethernet" },
224         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5786,
225                 "Broadcom BCM5786 Gigabit Ethernet" },
226         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5787,
227                 "Broadcom BCM5787 Gigabit Ethernet" },
228         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5787F,
229                 "Broadcom BCM5787F Gigabit Ethernet" },
230         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5787M,
231                 "Broadcom BCM5787M Gigabit Ethernet" },
232         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5788,
233                 "Broadcom BCM5788 Gigabit Ethernet" },
234         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5789,
235                 "Broadcom BCM5789 Gigabit Ethernet" },
236         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5901,
237                 "Broadcom BCM5901 Fast Ethernet" },
238         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5901A2,
239                 "Broadcom BCM5901A2 Fast Ethernet" },
240         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5903M,
241                 "Broadcom BCM5903M Fast Ethernet" },
242
243         { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
244                 "SysKonnect Gigabit Ethernet" },
245
246         { 0, 0, NULL }
247 };
248
249 #define BGE_IS_JUMBO_CAPABLE(sc)        ((sc)->bge_flags & BGE_FLAG_JUMBO)
250 #define BGE_IS_5700_FAMILY(sc)          ((sc)->bge_flags & BGE_FLAG_5700_FAMILY)
251 #define BGE_IS_5705_PLUS(sc)            ((sc)->bge_flags & BGE_FLAG_5705_PLUS)
252 #define BGE_IS_5714_FAMILY(sc)          ((sc)->bge_flags & BGE_FLAG_5714_FAMILY)
253 #define BGE_IS_575X_PLUS(sc)            ((sc)->bge_flags & BGE_FLAG_575X_PLUS)
254
255 static int      bge_probe(device_t);
256 static int      bge_attach(device_t);
257 static int      bge_detach(device_t);
258 static void     bge_txeof(struct bge_softc *);
259 static void     bge_rxeof(struct bge_softc *);
260
261 static void     bge_tick(void *);
262 static void     bge_stats_update(struct bge_softc *);
263 static void     bge_stats_update_regs(struct bge_softc *);
264 static int      bge_encap(struct bge_softc *, struct mbuf *, uint32_t *);
265
266 static void     bge_intr(void *);
267 static void     bge_start(struct ifnet *);
268 static int      bge_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
269 static void     bge_init(void *);
270 static void     bge_stop(struct bge_softc *);
271 static void     bge_watchdog(struct ifnet *);
272 static void     bge_shutdown(device_t);
273 static int      bge_suspend(device_t);
274 static int      bge_resume(device_t);
275 static int      bge_ifmedia_upd(struct ifnet *);
276 static void     bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
277
278 static uint8_t  bge_eeprom_getbyte(struct bge_softc *, uint32_t, uint8_t *);
279 static int      bge_read_eeprom(struct bge_softc *, caddr_t, uint32_t, size_t);
280
281 static void     bge_setmulti(struct bge_softc *);
282 static void     bge_setpromisc(struct bge_softc *);
283
284 static int      bge_alloc_jumbo_mem(struct bge_softc *);
285 static void     bge_free_jumbo_mem(struct bge_softc *);
286 static struct bge_jslot
287                 *bge_jalloc(struct bge_softc *);
288 static void     bge_jfree(void *);
289 static void     bge_jref(void *);
290 static int      bge_newbuf_std(struct bge_softc *, int, struct mbuf *);
291 static int      bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
292 static int      bge_init_rx_ring_std(struct bge_softc *);
293 static void     bge_free_rx_ring_std(struct bge_softc *);
294 static int      bge_init_rx_ring_jumbo(struct bge_softc *);
295 static void     bge_free_rx_ring_jumbo(struct bge_softc *);
296 static void     bge_free_tx_ring(struct bge_softc *);
297 static int      bge_init_tx_ring(struct bge_softc *);
298
299 static int      bge_chipinit(struct bge_softc *);
300 static int      bge_blockinit(struct bge_softc *);
301
302 static uint32_t bge_readmem_ind(struct bge_softc *, uint32_t);
303 static void     bge_writemem_ind(struct bge_softc *, uint32_t, uint32_t);
304 #ifdef notdef
305 static uint32_t bge_readreg_ind(struct bge_softc *, uint32_t);
306 #endif
307 static void     bge_writereg_ind(struct bge_softc *, uint32_t, uint32_t);
308 static void     bge_writemem_direct(struct bge_softc *, uint32_t, uint32_t);
309
310 static int      bge_miibus_readreg(device_t, int, int);
311 static int      bge_miibus_writereg(device_t, int, int, int);
312 static void     bge_miibus_statchg(device_t);
313 static void     bge_bcm5700_link_upd(struct bge_softc *, uint32_t);
314 static void     bge_tbi_link_upd(struct bge_softc *, uint32_t);
315 static void     bge_copper_link_upd(struct bge_softc *, uint32_t);
316
317 static void     bge_reset(struct bge_softc *);
318
319 static void     bge_dma_map_addr(void *, bus_dma_segment_t *, int, int);
320 static void     bge_dma_map_mbuf(void *, bus_dma_segment_t *, int,
321                                  bus_size_t, int);
322 static int      bge_dma_alloc(struct bge_softc *);
323 static void     bge_dma_free(struct bge_softc *);
324 static int      bge_dma_block_alloc(struct bge_softc *, bus_size_t,
325                                     bus_dma_tag_t *, bus_dmamap_t *,
326                                     void **, bus_addr_t *);
327 static void     bge_dma_block_free(bus_dma_tag_t, bus_dmamap_t, void *);
328
329 /*
330  * Set following tunable to 1 for some IBM blade servers with the DNLK
331  * switch module. Auto negotiation is broken for those configurations.
332  */
333 static int      bge_fake_autoneg = 0;
334 TUNABLE_INT("hw.bge.fake_autoneg", &bge_fake_autoneg);
335
336 static device_method_t bge_methods[] = {
337         /* Device interface */
338         DEVMETHOD(device_probe,         bge_probe),
339         DEVMETHOD(device_attach,        bge_attach),
340         DEVMETHOD(device_detach,        bge_detach),
341         DEVMETHOD(device_shutdown,      bge_shutdown),
342         DEVMETHOD(device_suspend,       bge_suspend),
343         DEVMETHOD(device_resume,        bge_resume),
344
345         /* bus interface */
346         DEVMETHOD(bus_print_child,      bus_generic_print_child),
347         DEVMETHOD(bus_driver_added,     bus_generic_driver_added),
348
349         /* MII interface */
350         DEVMETHOD(miibus_readreg,       bge_miibus_readreg),
351         DEVMETHOD(miibus_writereg,      bge_miibus_writereg),
352         DEVMETHOD(miibus_statchg,       bge_miibus_statchg),
353
354         { 0, 0 }
355 };
356
357 static DEFINE_CLASS_0(bge, bge_driver, bge_methods, sizeof(struct bge_softc));
358 static devclass_t bge_devclass;
359
360 DECLARE_DUMMY_MODULE(if_bge);
361 DRIVER_MODULE(if_bge, pci, bge_driver, bge_devclass, 0, 0);
362 DRIVER_MODULE(miibus, bge, miibus_driver, miibus_devclass, 0, 0);
363
364 static uint32_t
365 bge_readmem_ind(struct bge_softc *sc, uint32_t off)
366 {
367         device_t dev = sc->bge_dev;
368         uint32_t val;
369
370         pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
371         val = pci_read_config(dev, BGE_PCI_MEMWIN_DATA, 4);
372         pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
373         return (val);
374 }
375
376 static void
377 bge_writemem_ind(struct bge_softc *sc, uint32_t off, uint32_t val)
378 {
379         device_t dev = sc->bge_dev;
380
381         pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
382         pci_write_config(dev, BGE_PCI_MEMWIN_DATA, val, 4);
383         pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
384 }
385
386 #ifdef notdef
387 static uint32_t
388 bge_readreg_ind(struct bge_softc *sc, uin32_t off)
389 {
390         device_t dev = sc->bge_dev;
391
392         pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
393         return(pci_read_config(dev, BGE_PCI_REG_DATA, 4));
394 }
395 #endif
396
397 static void
398 bge_writereg_ind(struct bge_softc *sc, uint32_t off, uint32_t val)
399 {
400         device_t dev = sc->bge_dev;
401
402         pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
403         pci_write_config(dev, BGE_PCI_REG_DATA, val, 4);
404 }
405
406 static void
407 bge_writemem_direct(struct bge_softc *sc, uint32_t off, uint32_t val)
408 {
409         CSR_WRITE_4(sc, off, val);
410 }
411
412 /*
413  * Read a byte of data stored in the EEPROM at address 'addr.' The
414  * BCM570x supports both the traditional bitbang interface and an
415  * auto access interface for reading the EEPROM. We use the auto
416  * access method.
417  */
418 static uint8_t
419 bge_eeprom_getbyte(struct bge_softc *sc, uint32_t addr, uint8_t *dest)
420 {
421         int i;
422         uint32_t byte = 0;
423
424         /*
425          * Enable use of auto EEPROM access so we can avoid
426          * having to use the bitbang method.
427          */
428         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
429
430         /* Reset the EEPROM, load the clock period. */
431         CSR_WRITE_4(sc, BGE_EE_ADDR,
432             BGE_EEADDR_RESET|BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
433         DELAY(20);
434
435         /* Issue the read EEPROM command. */
436         CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
437
438         /* Wait for completion */
439         for(i = 0; i < BGE_TIMEOUT * 10; i++) {
440                 DELAY(10);
441                 if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
442                         break;
443         }
444
445         if (i == BGE_TIMEOUT) {
446                 if_printf(&sc->arpcom.ac_if, "eeprom read timed out\n");
447                 return(1);
448         }
449
450         /* Get result. */
451         byte = CSR_READ_4(sc, BGE_EE_DATA);
452
453         *dest = (byte >> ((addr % 4) * 8)) & 0xFF;
454
455         return(0);
456 }
457
458 /*
459  * Read a sequence of bytes from the EEPROM.
460  */
461 static int
462 bge_read_eeprom(struct bge_softc *sc, caddr_t dest, uint32_t off, size_t len)
463 {
464         size_t i;
465         int err;
466         uint8_t byte;
467
468         for (byte = 0, err = 0, i = 0; i < len; i++) {
469                 err = bge_eeprom_getbyte(sc, off + i, &byte);
470                 if (err)
471                         break;
472                 *(dest + i) = byte;
473         }
474
475         return(err ? 1 : 0);
476 }
477
478 static int
479 bge_miibus_readreg(device_t dev, int phy, int reg)
480 {
481         struct bge_softc *sc;
482         struct ifnet *ifp;
483         uint32_t val, autopoll;
484         int i;
485
486         sc = device_get_softc(dev);
487         ifp = &sc->arpcom.ac_if;
488
489         /*
490          * Broadcom's own driver always assumes the internal
491          * PHY is at GMII address 1. On some chips, the PHY responds
492          * to accesses at all addresses, which could cause us to
493          * bogusly attach the PHY 32 times at probe type. Always
494          * restricting the lookup to address 1 is simpler than
495          * trying to figure out which chips revisions should be
496          * special-cased.
497          */
498         if (phy != 1)
499                 return(0);
500
501         /* Reading with autopolling on may trigger PCI errors */
502         autopoll = CSR_READ_4(sc, BGE_MI_MODE);
503         if (autopoll & BGE_MIMODE_AUTOPOLL) {
504                 BGE_CLRBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
505                 DELAY(40);
506         }
507
508         CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ|BGE_MICOMM_BUSY|
509             BGE_MIPHY(phy)|BGE_MIREG(reg));
510
511         for (i = 0; i < BGE_TIMEOUT; i++) {
512                 val = CSR_READ_4(sc, BGE_MI_COMM);
513                 if (!(val & BGE_MICOMM_BUSY))
514                         break;
515         }
516
517         if (i == BGE_TIMEOUT) {
518                 if_printf(ifp, "PHY read timed out\n");
519                 val = 0;
520                 goto done;
521         }
522
523         val = CSR_READ_4(sc, BGE_MI_COMM);
524
525 done:
526         if (autopoll & BGE_MIMODE_AUTOPOLL) {
527                 BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
528                 DELAY(40);
529         }
530
531         if (val & BGE_MICOMM_READFAIL)
532                 return(0);
533
534         return(val & 0xFFFF);
535 }
536
537 static int
538 bge_miibus_writereg(device_t dev, int phy, int reg, int val)
539 {
540         struct bge_softc *sc;
541         uint32_t autopoll;
542         int i;
543
544         sc = device_get_softc(dev);
545
546         /* Reading with autopolling on may trigger PCI errors */
547         autopoll = CSR_READ_4(sc, BGE_MI_MODE);
548         if (autopoll & BGE_MIMODE_AUTOPOLL) {
549                 BGE_CLRBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
550                 DELAY(40);
551         }
552
553         CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE|BGE_MICOMM_BUSY|
554             BGE_MIPHY(phy)|BGE_MIREG(reg)|val);
555
556         for (i = 0; i < BGE_TIMEOUT; i++) {
557                 if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY))
558                         break;
559         }
560
561         if (autopoll & BGE_MIMODE_AUTOPOLL) {
562                 BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
563                 DELAY(40);
564         }
565
566         if (i == BGE_TIMEOUT) {
567                 if_printf(&sc->arpcom.ac_if, "PHY read timed out\n");
568                 return(0);
569         }
570
571         return(0);
572 }
573
574 static void
575 bge_miibus_statchg(device_t dev)
576 {
577         struct bge_softc *sc;
578         struct mii_data *mii;
579
580         sc = device_get_softc(dev);
581         mii = device_get_softc(sc->bge_miibus);
582
583         BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE);
584         if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) {
585                 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII);
586         } else {
587                 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII);
588         }
589
590         if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
591                 BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
592         } else {
593                 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
594         }
595 }
596
597 /*
598  * Memory management for jumbo frames.
599  */
600 static int
601 bge_alloc_jumbo_mem(struct bge_softc *sc)
602 {
603         struct ifnet *ifp = &sc->arpcom.ac_if;
604         struct bge_jslot *entry;
605         uint8_t *ptr;
606         bus_addr_t paddr;
607         int i, error;
608
609         /*
610          * Create tag for jumbo mbufs.
611          * This is really a bit of a kludge. We allocate a special
612          * jumbo buffer pool which (thanks to the way our DMA
613          * memory allocation works) will consist of contiguous
614          * pages. This means that even though a jumbo buffer might
615          * be larger than a page size, we don't really need to
616          * map it into more than one DMA segment. However, the
617          * default mbuf tag will result in multi-segment mappings,
618          * so we have to create a special jumbo mbuf tag that
619          * lets us get away with mapping the jumbo buffers as
620          * a single segment. I think eventually the driver should
621          * be changed so that it uses ordinary mbufs and cluster
622          * buffers, i.e. jumbo frames can span multiple DMA
623          * descriptors. But that's a project for another day.
624          */
625
626         /*
627          * Create DMA stuffs for jumbo RX ring.
628          */
629         error = bge_dma_block_alloc(sc, BGE_JUMBO_RX_RING_SZ,
630                                     &sc->bge_cdata.bge_rx_jumbo_ring_tag,
631                                     &sc->bge_cdata.bge_rx_jumbo_ring_map,
632                                     (void **)&sc->bge_ldata.bge_rx_jumbo_ring,
633                                     &sc->bge_ldata.bge_rx_jumbo_ring_paddr);
634         if (error) {
635                 if_printf(ifp, "could not create jumbo RX ring\n");
636                 return error;
637         }
638
639         /*
640          * Create DMA stuffs for jumbo buffer block.
641          */
642         error = bge_dma_block_alloc(sc, BGE_JMEM,
643                                     &sc->bge_cdata.bge_jumbo_tag,
644                                     &sc->bge_cdata.bge_jumbo_map,
645                                     (void **)&sc->bge_ldata.bge_jumbo_buf,
646                                     &paddr);
647         if (error) {
648                 if_printf(ifp, "could not create jumbo buffer\n");
649                 return error;
650         }
651
652         SLIST_INIT(&sc->bge_jfree_listhead);
653
654         /*
655          * Now divide it up into 9K pieces and save the addresses
656          * in an array. Note that we play an evil trick here by using
657          * the first few bytes in the buffer to hold the the address
658          * of the softc structure for this interface. This is because
659          * bge_jfree() needs it, but it is called by the mbuf management
660          * code which will not pass it to us explicitly.
661          */
662         for (i = 0, ptr = sc->bge_ldata.bge_jumbo_buf; i < BGE_JSLOTS; i++) {
663                 entry = &sc->bge_cdata.bge_jslots[i];
664                 entry->bge_sc = sc;
665                 entry->bge_buf = ptr;
666                 entry->bge_paddr = paddr;
667                 entry->bge_inuse = 0;
668                 entry->bge_slot = i;
669                 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jslot_link);
670
671                 ptr += BGE_JLEN;
672                 paddr += BGE_JLEN;
673         }
674         return 0;
675 }
676
677 static void
678 bge_free_jumbo_mem(struct bge_softc *sc)
679 {
680         /* Destroy jumbo RX ring. */
681         bge_dma_block_free(sc->bge_cdata.bge_rx_jumbo_ring_tag,
682                            sc->bge_cdata.bge_rx_jumbo_ring_map,
683                            sc->bge_ldata.bge_rx_jumbo_ring);
684
685         /* Destroy jumbo buffer block. */
686         bge_dma_block_free(sc->bge_cdata.bge_jumbo_tag,
687                            sc->bge_cdata.bge_jumbo_map,
688                            sc->bge_ldata.bge_jumbo_buf);
689 }
690
691 /*
692  * Allocate a jumbo buffer.
693  */
694 static struct bge_jslot *
695 bge_jalloc(struct bge_softc *sc)
696 {
697         struct bge_jslot *entry;
698
699         lwkt_serialize_enter(&sc->bge_jslot_serializer);
700         entry = SLIST_FIRST(&sc->bge_jfree_listhead);
701         if (entry) {
702                 SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jslot_link);
703                 entry->bge_inuse = 1;
704         } else {
705                 if_printf(&sc->arpcom.ac_if, "no free jumbo buffers\n");
706         }
707         lwkt_serialize_exit(&sc->bge_jslot_serializer);
708         return(entry);
709 }
710
711 /*
712  * Adjust usage count on a jumbo buffer.
713  */
714 static void
715 bge_jref(void *arg)
716 {
717         struct bge_jslot *entry = (struct bge_jslot *)arg;
718         struct bge_softc *sc = entry->bge_sc;
719
720         if (sc == NULL)
721                 panic("bge_jref: can't find softc pointer!");
722
723         if (&sc->bge_cdata.bge_jslots[entry->bge_slot] != entry) {
724                 panic("bge_jref: asked to reference buffer "
725                     "that we don't manage!");
726         } else if (entry->bge_inuse == 0) {
727                 panic("bge_jref: buffer already free!");
728         } else {
729                 atomic_add_int(&entry->bge_inuse, 1);
730         }
731 }
732
733 /*
734  * Release a jumbo buffer.
735  */
736 static void
737 bge_jfree(void *arg)
738 {
739         struct bge_jslot *entry = (struct bge_jslot *)arg;
740         struct bge_softc *sc = entry->bge_sc;
741
742         if (sc == NULL)
743                 panic("bge_jfree: can't find softc pointer!");
744
745         if (&sc->bge_cdata.bge_jslots[entry->bge_slot] != entry) {
746                 panic("bge_jfree: asked to free buffer that we don't manage!");
747         } else if (entry->bge_inuse == 0) {
748                 panic("bge_jfree: buffer already free!");
749         } else {
750                 /*
751                  * Possible MP race to 0, use the serializer.  The atomic insn
752                  * is still needed for races against bge_jref().
753                  */
754                 lwkt_serialize_enter(&sc->bge_jslot_serializer);
755                 atomic_subtract_int(&entry->bge_inuse, 1);
756                 if (entry->bge_inuse == 0) {
757                         SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, 
758                                           entry, jslot_link);
759                 }
760                 lwkt_serialize_exit(&sc->bge_jslot_serializer);
761         }
762 }
763
764
765 /*
766  * Intialize a standard receive ring descriptor.
767  */
768 static int
769 bge_newbuf_std(struct bge_softc *sc, int i, struct mbuf *m)
770 {
771         struct mbuf *m_new = NULL;
772         struct bge_dmamap_arg ctx;
773         bus_dma_segment_t seg;
774         struct bge_rx_bd *r;
775         int error;
776
777         if (m == NULL) {
778                 m_new = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR);
779                 if (m_new == NULL)
780                         return ENOBUFS;
781         } else {
782                 m_new = m;
783                 m_new->m_data = m_new->m_ext.ext_buf;
784         }
785         m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
786
787         if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0)
788                 m_adj(m_new, ETHER_ALIGN);
789
790         ctx.bge_maxsegs = 1;
791         ctx.bge_segs = &seg;
792         error = bus_dmamap_load_mbuf(sc->bge_cdata.bge_mtag,
793                                      sc->bge_cdata.bge_rx_std_dmamap[i],
794                                      m_new, bge_dma_map_mbuf, &ctx,
795                                      BUS_DMA_NOWAIT);
796         if (error || ctx.bge_maxsegs == 0) {
797                 if (m == NULL)
798                         m_freem(m_new);
799                 return ENOMEM;
800         }
801
802         sc->bge_cdata.bge_rx_std_chain[i] = m_new;
803
804         r = &sc->bge_ldata.bge_rx_std_ring[i];
805         r->bge_addr.bge_addr_lo = BGE_ADDR_LO(ctx.bge_segs[0].ds_addr);
806         r->bge_addr.bge_addr_hi = BGE_ADDR_HI(ctx.bge_segs[0].ds_addr);
807         r->bge_flags = BGE_RXBDFLAG_END;
808         r->bge_len = m_new->m_len;
809         r->bge_idx = i;
810
811         bus_dmamap_sync(sc->bge_cdata.bge_mtag,
812                         sc->bge_cdata.bge_rx_std_dmamap[i],
813                         BUS_DMASYNC_PREREAD);
814         return 0;
815 }
816
817 /*
818  * Initialize a jumbo receive ring descriptor. This allocates
819  * a jumbo buffer from the pool managed internally by the driver.
820  */
821 static int
822 bge_newbuf_jumbo(struct bge_softc *sc, int i, struct mbuf *m)
823 {
824         struct mbuf *m_new = NULL;
825         struct bge_jslot *buf;
826         struct bge_rx_bd *r;
827         bus_addr_t paddr;
828
829         if (m == NULL) {
830                 /* Allocate the mbuf. */
831                 MGETHDR(m_new, MB_DONTWAIT, MT_DATA);
832                 if (m_new == NULL)
833                         return(ENOBUFS);
834
835                 /* Allocate the jumbo buffer */
836                 buf = bge_jalloc(sc);
837                 if (buf == NULL) {
838                         m_freem(m_new);
839                         if_printf(&sc->arpcom.ac_if, "jumbo allocation failed "
840                             "-- packet dropped!\n");
841                         return ENOBUFS;
842                 }
843
844                 /* Attach the buffer to the mbuf. */
845                 m_new->m_ext.ext_arg = buf;
846                 m_new->m_ext.ext_buf = buf->bge_buf;
847                 m_new->m_ext.ext_free = bge_jfree;
848                 m_new->m_ext.ext_ref = bge_jref;
849                 m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
850
851                 m_new->m_flags |= M_EXT;
852         } else {
853                 KKASSERT(m->m_flags & M_EXT);
854                 m_new = m;
855                 buf = m_new->m_ext.ext_arg;
856         }
857         m_new->m_data = m_new->m_ext.ext_buf;
858         m_new->m_len = m_new->m_pkthdr.len = m_new->m_ext.ext_size;
859
860         paddr = buf->bge_paddr;
861         if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0) {
862                 m_adj(m_new, ETHER_ALIGN);
863                 paddr += ETHER_ALIGN;
864         }
865
866         /* Set up the descriptor. */
867         sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
868
869         r = &sc->bge_ldata.bge_rx_jumbo_ring[i];
870         r->bge_addr.bge_addr_lo = BGE_ADDR_LO(paddr);
871         r->bge_addr.bge_addr_hi = BGE_ADDR_HI(paddr);
872         r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
873         r->bge_len = m_new->m_len;
874         r->bge_idx = i;
875
876         return 0;
877 }
878
879 /*
880  * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
881  * that's 1MB or memory, which is a lot. For now, we fill only the first
882  * 256 ring entries and hope that our CPU is fast enough to keep up with
883  * the NIC.
884  */
885 static int
886 bge_init_rx_ring_std(struct bge_softc *sc)
887 {
888         int i;
889
890         for (i = 0; i < BGE_SSLOTS; i++) {
891                 if (bge_newbuf_std(sc, i, NULL) == ENOBUFS)
892                         return(ENOBUFS);
893         };
894
895         bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
896                         sc->bge_cdata.bge_rx_std_ring_map,
897                         BUS_DMASYNC_PREWRITE);
898
899         sc->bge_std = i - 1;
900         CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
901
902         return(0);
903 }
904
905 static void
906 bge_free_rx_ring_std(struct bge_softc *sc)
907 {
908         int i;
909
910         for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
911                 if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
912                         bus_dmamap_unload(sc->bge_cdata.bge_mtag,
913                                           sc->bge_cdata.bge_rx_std_dmamap[i]);
914                         m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
915                         sc->bge_cdata.bge_rx_std_chain[i] = NULL;
916                 }
917                 bzero(&sc->bge_ldata.bge_rx_std_ring[i],
918                     sizeof(struct bge_rx_bd));
919         }
920 }
921
922 static int
923 bge_init_rx_ring_jumbo(struct bge_softc *sc)
924 {
925         int i;
926         struct bge_rcb *rcb;
927
928         for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
929                 if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
930                         return(ENOBUFS);
931         };
932
933         bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
934                         sc->bge_cdata.bge_rx_jumbo_ring_map,
935                         BUS_DMASYNC_PREWRITE);
936
937         sc->bge_jumbo = i - 1;
938
939         rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb;
940         rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0, 0);
941         CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
942
943         CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
944
945         return(0);
946 }
947
948 static void
949 bge_free_rx_ring_jumbo(struct bge_softc *sc)
950 {
951         int i;
952
953         for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
954                 if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
955                         m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
956                         sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
957                 }
958                 bzero(&sc->bge_ldata.bge_rx_jumbo_ring[i],
959                     sizeof(struct bge_rx_bd));
960         }
961 }
962
963 static void
964 bge_free_tx_ring(struct bge_softc *sc)
965 {
966         int i;
967
968         for (i = 0; i < BGE_TX_RING_CNT; i++) {
969                 if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
970                         bus_dmamap_unload(sc->bge_cdata.bge_mtag,
971                                           sc->bge_cdata.bge_tx_dmamap[i]);
972                         m_freem(sc->bge_cdata.bge_tx_chain[i]);
973                         sc->bge_cdata.bge_tx_chain[i] = NULL;
974                 }
975                 bzero(&sc->bge_ldata.bge_tx_ring[i],
976                     sizeof(struct bge_tx_bd));
977         }
978 }
979
980 static int
981 bge_init_tx_ring(struct bge_softc *sc)
982 {
983         sc->bge_txcnt = 0;
984         sc->bge_tx_saved_considx = 0;
985         sc->bge_tx_prodidx = 0;
986
987         /* Initialize transmit producer index for host-memory send ring. */
988         CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
989
990         /* 5700 b2 errata */
991         if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
992                 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0);
993
994         CSR_WRITE_4(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
995         /* 5700 b2 errata */
996         if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
997                 CSR_WRITE_4(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
998
999         return(0);
1000 }
1001
1002 static void
1003 bge_setmulti(struct bge_softc *sc)
1004 {
1005         struct ifnet *ifp;
1006         struct ifmultiaddr *ifma;
1007         uint32_t hashes[4] = { 0, 0, 0, 0 };
1008         int h, i;
1009
1010         ifp = &sc->arpcom.ac_if;
1011
1012         if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
1013                 for (i = 0; i < 4; i++)
1014                         CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0xFFFFFFFF);
1015                 return;
1016         }
1017
1018         /* First, zot all the existing filters. */
1019         for (i = 0; i < 4; i++)
1020                 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0);
1021
1022         /* Now program new ones. */
1023         LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1024                 if (ifma->ifma_addr->sa_family != AF_LINK)
1025                         continue;
1026                 h = ether_crc32_le(
1027                     LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1028                     ETHER_ADDR_LEN) & 0x7f;
1029                 hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
1030         }
1031
1032         for (i = 0; i < 4; i++)
1033                 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
1034 }
1035
1036 /*
1037  * Do endian, PCI and DMA initialization. Also check the on-board ROM
1038  * self-test results.
1039  */
1040 static int
1041 bge_chipinit(struct bge_softc *sc)
1042 {
1043         int i;
1044         uint32_t dma_rw_ctl;
1045
1046         /* Set endian type before we access any non-PCI registers. */
1047         pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, BGE_INIT, 4);
1048
1049         /*
1050          * Check the 'ROM failed' bit on the RX CPU to see if
1051          * self-tests passed.
1052          */
1053         if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL) {
1054                 if_printf(&sc->arpcom.ac_if,
1055                           "RX CPU self-diagnostics failed!\n");
1056                 return(ENODEV);
1057         }
1058
1059         /* Clear the MAC control register */
1060         CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
1061
1062         /*
1063          * Clear the MAC statistics block in the NIC's
1064          * internal memory.
1065          */
1066         for (i = BGE_STATS_BLOCK;
1067             i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
1068                 BGE_MEMWIN_WRITE(sc, i, 0);
1069
1070         for (i = BGE_STATUS_BLOCK;
1071             i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
1072                 BGE_MEMWIN_WRITE(sc, i, 0);
1073
1074         /* Set up the PCI DMA control register. */
1075         if (sc->bge_flags & BGE_FLAG_PCIE) {
1076                 /* PCI Express */
1077                 dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1078                     (0xf << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1079                     (0x2 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1080         } else if (sc->bge_flags & BGE_FLAG_PCIX) {
1081                 /* PCI-X bus */
1082                 if (BGE_IS_5714_FAMILY(sc)) {
1083                         dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD;
1084                         dma_rw_ctl &= ~BGE_PCIDMARWCTL_ONEDMA_ATONCE; /* XXX */
1085                         /* XXX magic values, Broadcom-supplied Linux driver */
1086                         if (sc->bge_asicrev == BGE_ASICREV_BCM5780) {
1087                                 dma_rw_ctl |= (1 << 20) | (1 << 18) | 
1088                                     BGE_PCIDMARWCTL_ONEDMA_ATONCE;
1089                         } else {
1090                                 dma_rw_ctl |= (1 << 20) | (1 << 18) | (1 << 15);
1091                         }
1092                 } else if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1093                         /*
1094                          * The 5704 uses a different encoding of read/write
1095                          * watermarks.
1096                          */
1097                         dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1098                             (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1099                             (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1100                 } else {
1101                         dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1102                             (0x3 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1103                             (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) |
1104                             (0x0F);
1105                 }
1106
1107                 /*
1108                  * 5703 and 5704 need ONEDMA_AT_ONCE as a workaround
1109                  * for hardware bugs.
1110                  */
1111                 if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1112                     sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1113                         uint32_t tmp;
1114
1115                         tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1f;
1116                         if (tmp == 0x6 || tmp == 0x7)
1117                                 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE;
1118                 }
1119         } else {
1120                 /* Conventional PCI bus */
1121                 dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1122                     (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1123                     (0x7 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) |
1124                     (0x0F);
1125         }
1126
1127         if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1128             sc->bge_asicrev == BGE_ASICREV_BCM5704 ||
1129             sc->bge_asicrev == BGE_ASICREV_BCM5705)
1130                 dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
1131         pci_write_config(sc->bge_dev, BGE_PCI_DMA_RW_CTL, dma_rw_ctl, 4);
1132
1133         /*
1134          * Set up general mode register.
1135          */
1136         CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS|
1137             BGE_MODECTL_MAC_ATTN_INTR|BGE_MODECTL_HOST_SEND_BDS|
1138             BGE_MODECTL_TX_NO_PHDR_CSUM);
1139
1140         /*
1141          * Disable memory write invalidate.  Apparently it is not supported
1142          * properly by these devices.
1143          */
1144         PCI_CLRBIT(sc->bge_dev, BGE_PCI_CMD, PCIM_CMD_MWIEN, 4);
1145
1146         /* Set the timer prescaler (always 66Mhz) */
1147         CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/);
1148
1149         return(0);
1150 }
1151
1152 static int
1153 bge_blockinit(struct bge_softc *sc)
1154 {
1155         struct bge_rcb *rcb;
1156         bus_size_t vrcb;
1157         bge_hostaddr taddr;
1158         uint32_t val;
1159         int i;
1160
1161         /*
1162          * Initialize the memory window pointer register so that
1163          * we can access the first 32K of internal NIC RAM. This will
1164          * allow us to set up the TX send ring RCBs and the RX return
1165          * ring RCBs, plus other things which live in NIC memory.
1166          */
1167         CSR_WRITE_4(sc, BGE_PCI_MEMWIN_BASEADDR, 0);
1168
1169         /* Note: the BCM5704 has a smaller mbuf space than other chips. */
1170
1171         if (!BGE_IS_5705_PLUS(sc)) {
1172                 /* Configure mbuf memory pool */
1173                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_BUFFPOOL_1);
1174                 if (sc->bge_asicrev == BGE_ASICREV_BCM5704)
1175                         CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
1176                 else
1177                         CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1178
1179                 /* Configure DMA resource pool */
1180                 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
1181                     BGE_DMA_DESCRIPTORS);
1182                 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
1183         }
1184
1185         /* Configure mbuf pool watermarks */
1186         if (BGE_IS_5705_PLUS(sc)) {
1187                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1188                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
1189         } else {
1190                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
1191                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
1192         }
1193         CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1194
1195         /* Configure DMA resource watermarks */
1196         CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
1197         CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
1198
1199         /* Enable buffer manager */
1200         if (!BGE_IS_5705_PLUS(sc)) {
1201                 CSR_WRITE_4(sc, BGE_BMAN_MODE,
1202                     BGE_BMANMODE_ENABLE|BGE_BMANMODE_LOMBUF_ATTN);
1203
1204                 /* Poll for buffer manager start indication */
1205                 for (i = 0; i < BGE_TIMEOUT; i++) {
1206                         if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
1207                                 break;
1208                         DELAY(10);
1209                 }
1210
1211                 if (i == BGE_TIMEOUT) {
1212                         if_printf(&sc->arpcom.ac_if,
1213                                   "buffer manager failed to start\n");
1214                         return(ENXIO);
1215                 }
1216         }
1217
1218         /* Enable flow-through queues */
1219         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
1220         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
1221
1222         /* Wait until queue initialization is complete */
1223         for (i = 0; i < BGE_TIMEOUT; i++) {
1224                 if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
1225                         break;
1226                 DELAY(10);
1227         }
1228
1229         if (i == BGE_TIMEOUT) {
1230                 if_printf(&sc->arpcom.ac_if,
1231                           "flow-through queue init failed\n");
1232                 return(ENXIO);
1233         }
1234
1235         /* Initialize the standard RX ring control block */
1236         rcb = &sc->bge_ldata.bge_info.bge_std_rx_rcb;
1237         rcb->bge_hostaddr.bge_addr_lo =
1238             BGE_ADDR_LO(sc->bge_ldata.bge_rx_std_ring_paddr);
1239         rcb->bge_hostaddr.bge_addr_hi =
1240             BGE_ADDR_HI(sc->bge_ldata.bge_rx_std_ring_paddr);
1241         bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
1242             sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREREAD);
1243         if (BGE_IS_5705_PLUS(sc))
1244                 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
1245         else
1246                 rcb->bge_maxlen_flags =
1247                     BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
1248         rcb->bge_nicaddr = BGE_STD_RX_RINGS;
1249         CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
1250         CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
1251         CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1252         CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
1253
1254         /*
1255          * Initialize the jumbo RX ring control block
1256          * We set the 'ring disabled' bit in the flags
1257          * field until we're actually ready to start
1258          * using this ring (i.e. once we set the MTU
1259          * high enough to require it).
1260          */
1261         if (BGE_IS_JUMBO_CAPABLE(sc)) {
1262                 rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb;
1263
1264                 rcb->bge_hostaddr.bge_addr_lo =
1265                     BGE_ADDR_LO(sc->bge_ldata.bge_rx_jumbo_ring_paddr);
1266                 rcb->bge_hostaddr.bge_addr_hi =
1267                     BGE_ADDR_HI(sc->bge_ldata.bge_rx_jumbo_ring_paddr);
1268                 bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
1269                     sc->bge_cdata.bge_rx_jumbo_ring_map,
1270                     BUS_DMASYNC_PREREAD);
1271                 rcb->bge_maxlen_flags =
1272                     BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN,
1273                     BGE_RCB_FLAG_RING_DISABLED);
1274                 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
1275                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
1276                     rcb->bge_hostaddr.bge_addr_hi);
1277                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
1278                     rcb->bge_hostaddr.bge_addr_lo);
1279                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
1280                     rcb->bge_maxlen_flags);
1281                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
1282
1283                 /* Set up dummy disabled mini ring RCB */
1284                 rcb = &sc->bge_ldata.bge_info.bge_mini_rx_rcb;
1285                 rcb->bge_maxlen_flags =
1286                     BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
1287                 CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
1288                     rcb->bge_maxlen_flags);
1289         }
1290
1291         /*
1292          * Set the BD ring replentish thresholds. The recommended
1293          * values are 1/8th the number of descriptors allocated to
1294          * each ring.
1295          */
1296         if (BGE_IS_5705_PLUS(sc))
1297                 val = 8;
1298         else
1299                 val = BGE_STD_RX_RING_CNT / 8;
1300         CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, val);
1301         CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, BGE_JUMBO_RX_RING_CNT/8);
1302
1303         /*
1304          * Disable all unused send rings by setting the 'ring disabled'
1305          * bit in the flags field of all the TX send ring control blocks.
1306          * These are located in NIC memory.
1307          */
1308         vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1309         for (i = 0; i < BGE_TX_RINGS_EXTSSRAM_MAX; i++) {
1310                 RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1311                     BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
1312                 RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
1313                 vrcb += sizeof(struct bge_rcb);
1314         }
1315
1316         /* Configure TX RCB 0 (we use only the first ring) */
1317         vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1318         BGE_HOSTADDR(taddr, sc->bge_ldata.bge_tx_ring_paddr);
1319         RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1320         RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1321         RCB_WRITE_4(sc, vrcb, bge_nicaddr,
1322             BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
1323         if (!BGE_IS_5705_PLUS(sc)) {
1324                 RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1325                     BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
1326         }
1327
1328         /* Disable all unused RX return rings */
1329         vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1330         for (i = 0; i < BGE_RX_RINGS_MAX; i++) {
1331                 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, 0);
1332                 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, 0);
1333                 RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1334                     BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
1335                     BGE_RCB_FLAG_RING_DISABLED));
1336                 RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
1337                 CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO +
1338                     (i * (sizeof(uint64_t))), 0);
1339                 vrcb += sizeof(struct bge_rcb);
1340         }
1341
1342         /* Initialize RX ring indexes */
1343         CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, 0);
1344         CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
1345         CSR_WRITE_4(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
1346
1347         /*
1348          * Set up RX return ring 0
1349          * Note that the NIC address for RX return rings is 0x00000000.
1350          * The return rings live entirely within the host, so the
1351          * nicaddr field in the RCB isn't used.
1352          */
1353         vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1354         BGE_HOSTADDR(taddr, sc->bge_ldata.bge_rx_return_ring_paddr);
1355         RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1356         RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1357         RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0x00000000);
1358         RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1359             BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
1360
1361         /* Set random backoff seed for TX */
1362         CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
1363             sc->arpcom.ac_enaddr[0] + sc->arpcom.ac_enaddr[1] +
1364             sc->arpcom.ac_enaddr[2] + sc->arpcom.ac_enaddr[3] +
1365             sc->arpcom.ac_enaddr[4] + sc->arpcom.ac_enaddr[5] +
1366             BGE_TX_BACKOFF_SEED_MASK);
1367
1368         /* Set inter-packet gap */
1369         CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
1370
1371         /*
1372          * Specify which ring to use for packets that don't match
1373          * any RX rules.
1374          */
1375         CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
1376
1377         /*
1378          * Configure number of RX lists. One interrupt distribution
1379          * list, sixteen active lists, one bad frames class.
1380          */
1381         CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
1382
1383         /* Inialize RX list placement stats mask. */
1384         CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
1385         CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
1386
1387         /* Disable host coalescing until we get it set up */
1388         CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
1389
1390         /* Poll to make sure it's shut down. */
1391         for (i = 0; i < BGE_TIMEOUT; i++) {
1392                 if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
1393                         break;
1394                 DELAY(10);
1395         }
1396
1397         if (i == BGE_TIMEOUT) {
1398                 if_printf(&sc->arpcom.ac_if,
1399                           "host coalescing engine failed to idle\n");
1400                 return(ENXIO);
1401         }
1402
1403         /* Set up host coalescing defaults */
1404         CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
1405         CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
1406         CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
1407         CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
1408         if (!BGE_IS_5705_PLUS(sc)) {
1409                 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
1410                 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
1411         }
1412         CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
1413         CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
1414
1415         /* Set up address of statistics block */
1416         if (!BGE_IS_5705_PLUS(sc)) {
1417                 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI,
1418                     BGE_ADDR_HI(sc->bge_ldata.bge_stats_paddr));
1419                 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO,
1420                     BGE_ADDR_LO(sc->bge_ldata.bge_stats_paddr));
1421
1422                 CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
1423                 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
1424                 CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
1425         }
1426
1427         /* Set up address of status block */
1428         CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI,
1429             BGE_ADDR_HI(sc->bge_ldata.bge_status_block_paddr));
1430         CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO,
1431             BGE_ADDR_LO(sc->bge_ldata.bge_status_block_paddr));
1432         sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx = 0;
1433         sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx = 0;
1434
1435         /* Turn on host coalescing state machine */
1436         CSR_WRITE_4(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
1437
1438         /* Turn on RX BD completion state machine and enable attentions */
1439         CSR_WRITE_4(sc, BGE_RBDC_MODE,
1440             BGE_RBDCMODE_ENABLE|BGE_RBDCMODE_ATTN);
1441
1442         /* Turn on RX list placement state machine */
1443         CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
1444
1445         /* Turn on RX list selector state machine. */
1446         if (!BGE_IS_5705_PLUS(sc))
1447                 CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
1448
1449         /* Turn on DMA, clear stats */
1450         CSR_WRITE_4(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB|
1451             BGE_MACMODE_RXDMA_ENB|BGE_MACMODE_RX_STATS_CLEAR|
1452             BGE_MACMODE_TX_STATS_CLEAR|BGE_MACMODE_RX_STATS_ENB|
1453             BGE_MACMODE_TX_STATS_ENB|BGE_MACMODE_FRMHDR_DMA_ENB|
1454             ((sc->bge_flags & BGE_FLAG_TBI) ?
1455              BGE_PORTMODE_TBI : BGE_PORTMODE_MII));
1456
1457         /* Set misc. local control, enable interrupts on attentions */
1458         CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
1459
1460 #ifdef notdef
1461         /* Assert GPIO pins for PHY reset */
1462         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0|
1463             BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2);
1464         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0|
1465             BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2);
1466 #endif
1467
1468         /* Turn on DMA completion state machine */
1469         if (!BGE_IS_5705_PLUS(sc))
1470                 CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
1471
1472         /* Turn on write DMA state machine */
1473         val = BGE_WDMAMODE_ENABLE|BGE_WDMAMODE_ALL_ATTNS;
1474         if (sc->bge_asicrev == BGE_ASICREV_BCM5755 ||
1475             sc->bge_asicrev == BGE_ASICREV_BCM5787)
1476                 val |= (1 << 29);       /* Enable host coalescing bug fix. */
1477         CSR_WRITE_4(sc, BGE_WDMA_MODE, val);
1478         
1479         /* Turn on read DMA state machine */
1480         CSR_WRITE_4(sc, BGE_RDMA_MODE,
1481             BGE_RDMAMODE_ENABLE|BGE_RDMAMODE_ALL_ATTNS);
1482
1483         /* Turn on RX data completion state machine */
1484         CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
1485
1486         /* Turn on RX BD initiator state machine */
1487         CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
1488
1489         /* Turn on RX data and RX BD initiator state machine */
1490         CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
1491
1492         /* Turn on Mbuf cluster free state machine */
1493         if (!BGE_IS_5705_PLUS(sc))
1494                 CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
1495
1496         /* Turn on send BD completion state machine */
1497         CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
1498
1499         /* Turn on send data completion state machine */
1500         CSR_WRITE_4(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
1501
1502         /* Turn on send data initiator state machine */
1503         CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
1504
1505         /* Turn on send BD initiator state machine */
1506         CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
1507
1508         /* Turn on send BD selector state machine */
1509         CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
1510
1511         CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
1512         CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
1513             BGE_SDISTATSCTL_ENABLE|BGE_SDISTATSCTL_FASTER);
1514
1515         /* ack/clear link change events */
1516         CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
1517             BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
1518             BGE_MACSTAT_LINK_CHANGED);
1519         CSR_WRITE_4(sc, BGE_MI_STS, 0);
1520
1521         /* Enable PHY auto polling (for MII/GMII only) */
1522         if (sc->bge_flags & BGE_FLAG_TBI) {
1523                 CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
1524         } else {
1525                 BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL|10<<16);
1526                 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
1527                     sc->bge_chipid != BGE_CHIPID_BCM5700_B2) {
1528                         CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
1529                             BGE_EVTENB_MI_INTERRUPT);
1530                 }
1531         }
1532
1533         /*
1534          * Clear any pending link state attention.
1535          * Otherwise some link state change events may be lost until attention
1536          * is cleared by bge_intr() -> bge_softc.bge_link_upd() sequence.
1537          * It's not necessary on newer BCM chips - perhaps enabling link
1538          * state change attentions implies clearing pending attention.
1539          */
1540         CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
1541             BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
1542             BGE_MACSTAT_LINK_CHANGED);
1543
1544         /* Enable link state change attentions. */
1545         BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
1546
1547         return(0);
1548 }
1549
1550 /*
1551  * Probe for a Broadcom chip. Check the PCI vendor and device IDs
1552  * against our list and return its name if we find a match. Note
1553  * that since the Broadcom controller contains VPD support, we
1554  * can get the device name string from the controller itself instead
1555  * of the compiled-in string. This is a little slow, but it guarantees
1556  * we'll always announce the right product name.
1557  */
1558 static int
1559 bge_probe(device_t dev)
1560 {
1561         struct bge_softc *sc;
1562         struct bge_type *t;
1563         char *descbuf;
1564         uint16_t product, vendor;
1565
1566         product = pci_get_device(dev);
1567         vendor = pci_get_vendor(dev);
1568
1569         for (t = bge_devs; t->bge_name != NULL; t++) {
1570                 if (vendor == t->bge_vid && product == t->bge_did)
1571                         break;
1572         }
1573
1574         if (t->bge_name == NULL)
1575                 return(ENXIO);
1576
1577         sc = device_get_softc(dev);
1578         descbuf = kmalloc(BGE_DEVDESC_MAX, M_TEMP, M_WAITOK);
1579         ksnprintf(descbuf, BGE_DEVDESC_MAX, "%s, ASIC rev. %#04x", t->bge_name,
1580             pci_read_config(dev, BGE_PCI_MISC_CTL, 4) >> 16);
1581         device_set_desc_copy(dev, descbuf);
1582         if (pci_get_subvendor(dev) == PCI_VENDOR_DELL)
1583                 sc->bge_flags |= BGE_FLAG_NO_3LED;
1584         kfree(descbuf, M_TEMP);
1585         return(0);
1586 }
1587
1588 static int
1589 bge_attach(device_t dev)
1590 {
1591         struct ifnet *ifp;
1592         struct bge_softc *sc;
1593         uint32_t hwcfg = 0;
1594         uint32_t mac_addr = 0;
1595         int error = 0, rid;
1596         uint8_t ether_addr[ETHER_ADDR_LEN];
1597
1598         sc = device_get_softc(dev);
1599         sc->bge_dev = dev;
1600         callout_init(&sc->bge_stat_timer);
1601         lwkt_serialize_init(&sc->bge_jslot_serializer);
1602
1603         /*
1604          * Map control/status registers.
1605          */
1606         pci_enable_busmaster(dev);
1607
1608         rid = BGE_PCI_BAR0;
1609         sc->bge_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
1610             RF_ACTIVE);
1611
1612         if (sc->bge_res == NULL) {
1613                 device_printf(dev, "couldn't map memory\n");
1614                 return ENXIO;
1615         }
1616
1617         sc->bge_btag = rman_get_bustag(sc->bge_res);
1618         sc->bge_bhandle = rman_get_bushandle(sc->bge_res);
1619
1620         /* Save ASIC rev. */
1621         sc->bge_chipid =
1622             pci_read_config(dev, BGE_PCI_MISC_CTL, 4) &
1623             BGE_PCIMISCCTL_ASICREV;
1624         sc->bge_asicrev = BGE_ASICREV(sc->bge_chipid);
1625         sc->bge_chiprev = BGE_CHIPREV(sc->bge_chipid);
1626
1627         /* Save chipset family. */
1628         switch (sc->bge_asicrev) {
1629         case BGE_ASICREV_BCM5700:
1630         case BGE_ASICREV_BCM5701:
1631         case BGE_ASICREV_BCM5703:
1632         case BGE_ASICREV_BCM5704:
1633                 sc->bge_flags |= BGE_FLAG_5700_FAMILY | BGE_FLAG_JUMBO;
1634                 break;
1635
1636         case BGE_ASICREV_BCM5714_A0:
1637         case BGE_ASICREV_BCM5780:
1638         case BGE_ASICREV_BCM5714:
1639                 sc->bge_flags |= BGE_FLAG_5714_FAMILY;
1640                 /* Fall through */
1641
1642         case BGE_ASICREV_BCM5750:
1643         case BGE_ASICREV_BCM5752:
1644         case BGE_ASICREV_BCM5755:
1645         case BGE_ASICREV_BCM5787:
1646                 sc->bge_flags |= BGE_FLAG_575X_PLUS;
1647                 /* Fall through */
1648
1649         case BGE_ASICREV_BCM5705:
1650                 sc->bge_flags |= BGE_FLAG_5705_PLUS;
1651                 break;
1652         }
1653
1654         /*
1655          * Set various quirk flags.
1656          */
1657
1658         sc->bge_flags |= BGE_FLAG_ETH_WIRESPEED;
1659         if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
1660             (sc->bge_asicrev == BGE_ASICREV_BCM5705 &&
1661              (sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
1662               sc->bge_chipid != BGE_CHIPID_BCM5705_A1)) ||
1663             sc->bge_asicrev == BGE_ASICREV_BCM5906)
1664                 sc->bge_flags &= ~BGE_FLAG_ETH_WIRESPEED;
1665
1666         if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
1667             sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
1668                 sc->bge_flags |= BGE_FLAG_CRC_BUG;
1669
1670         if (sc->bge_chiprev == BGE_CHIPREV_5703_AX ||
1671             sc->bge_chiprev == BGE_CHIPREV_5704_AX)
1672                 sc->bge_flags |= BGE_FLAG_ADC_BUG;
1673
1674         if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
1675                 sc->bge_flags |= BGE_FLAG_5704_A0_BUG;
1676
1677         if (BGE_IS_5705_PLUS(sc)) {
1678                 if (sc->bge_asicrev == BGE_ASICREV_BCM5755 ||
1679                     sc->bge_asicrev == BGE_ASICREV_BCM5787) {
1680                         uint32_t product = pci_get_device(dev);
1681
1682                         if (product != PCI_PRODUCT_BROADCOM_BCM5722 &&
1683                             product != PCI_PRODUCT_BROADCOM_BCM5756)
1684                                 sc->bge_flags |= BGE_FLAG_JITTER_BUG;
1685                         if (product == PCI_PRODUCT_BROADCOM_BCM5755M)
1686                                 sc->bge_flags |= BGE_FLAG_ADJUST_TRIM;
1687                 } else if (sc->bge_asicrev != BGE_ASICREV_BCM5906) {
1688                         sc->bge_flags |= BGE_FLAG_BER_BUG;
1689                 }
1690         }
1691
1692         /* Allocate interrupt */
1693         rid = 0;
1694
1695         sc->bge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1696             RF_SHAREABLE | RF_ACTIVE);
1697
1698         if (sc->bge_irq == NULL) {
1699                 device_printf(dev, "couldn't map interrupt\n");
1700                 error = ENXIO;
1701                 goto fail;
1702         }
1703
1704         /*
1705          * Check if this is a PCI-X or PCI Express device.
1706          */
1707         if (BGE_IS_5705_PLUS(sc)) {
1708                 uint32_t reg;
1709
1710                 reg = pci_read_config(dev, BGE_PCIE_CAPID_REG, 4);
1711                 if ((reg & 0xff) == BGE_PCIE_CAPID)
1712                         sc->bge_flags |= BGE_FLAG_PCIE;
1713         } else {
1714                 /*
1715                  * Check if the device is in PCI-X Mode.
1716                  * (This bit is not valid on PCI Express controllers.)
1717                  */
1718                 if ((pci_read_config(sc->bge_dev, BGE_PCI_PCISTATE, 4) &
1719                     BGE_PCISTATE_PCI_BUSMODE) == 0)
1720                         sc->bge_flags |= BGE_FLAG_PCIX;
1721         }
1722
1723         ifp = &sc->arpcom.ac_if;
1724         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1725
1726         /* Try to reset the chip. */
1727         bge_reset(sc);
1728
1729         if (bge_chipinit(sc)) {
1730                 device_printf(dev, "chip initialization failed\n");
1731                 error = ENXIO;
1732                 goto fail;
1733         }
1734
1735         /*
1736          * Get station address from the EEPROM.
1737          */
1738         mac_addr = bge_readmem_ind(sc, 0x0c14);
1739         if ((mac_addr >> 16) == 0x484b) {
1740                 ether_addr[0] = (uint8_t)(mac_addr >> 8);
1741                 ether_addr[1] = (uint8_t)mac_addr;
1742                 mac_addr = bge_readmem_ind(sc, 0x0c18);
1743                 ether_addr[2] = (uint8_t)(mac_addr >> 24);
1744                 ether_addr[3] = (uint8_t)(mac_addr >> 16);
1745                 ether_addr[4] = (uint8_t)(mac_addr >> 8);
1746                 ether_addr[5] = (uint8_t)mac_addr;
1747         } else if (bge_read_eeprom(sc, ether_addr,
1748             BGE_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
1749                 device_printf(dev, "failed to read station address\n");
1750                 error = ENXIO;
1751                 goto fail;
1752         }
1753
1754         /* 5705/5750 limits RX return ring to 512 entries. */
1755         if (BGE_IS_5705_PLUS(sc))
1756                 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
1757         else
1758                 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
1759
1760         error = bge_dma_alloc(sc);
1761         if (error)
1762                 goto fail;
1763
1764         /* Set default tuneable values. */
1765         sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
1766         sc->bge_rx_coal_ticks = 150;
1767         sc->bge_tx_coal_ticks = 150;
1768         sc->bge_rx_max_coal_bds = 10;
1769         sc->bge_tx_max_coal_bds = 10;
1770
1771         /* Set up ifnet structure */
1772         ifp->if_softc = sc;
1773         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1774         ifp->if_ioctl = bge_ioctl;
1775         ifp->if_start = bge_start;
1776         ifp->if_watchdog = bge_watchdog;
1777         ifp->if_init = bge_init;
1778         ifp->if_mtu = ETHERMTU;
1779         ifp->if_capabilities = IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU;
1780         ifq_set_maxlen(&ifp->if_snd, BGE_TX_RING_CNT - 1);
1781         ifq_set_ready(&ifp->if_snd);
1782
1783         /*
1784          * 5700 B0 chips do not support checksumming correctly due
1785          * to hardware bugs.
1786          */
1787         if (sc->bge_chipid != BGE_CHIPID_BCM5700_B0) {
1788                 ifp->if_capabilities |= IFCAP_HWCSUM;
1789                 ifp->if_hwassist = BGE_CSUM_FEATURES;
1790         }
1791         ifp->if_capenable = ifp->if_capabilities;
1792
1793         /*
1794          * Figure out what sort of media we have by checking the
1795          * hardware config word in the first 32k of NIC internal memory,
1796          * or fall back to examining the EEPROM if necessary.
1797          * Note: on some BCM5700 cards, this value appears to be unset.
1798          * If that's the case, we have to rely on identifying the NIC
1799          * by its PCI subsystem ID, as we do below for the SysKonnect
1800          * SK-9D41.
1801          */
1802         if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG) == BGE_MAGIC_NUMBER)
1803                 hwcfg = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG);
1804         else {
1805                 if (bge_read_eeprom(sc, (caddr_t)&hwcfg, BGE_EE_HWCFG_OFFSET,
1806                                     sizeof(hwcfg))) {
1807                         device_printf(dev, "failed to read EEPROM\n");
1808                         error = ENXIO;
1809                         goto fail;
1810                 }
1811                 hwcfg = ntohl(hwcfg);
1812         }
1813
1814         if ((hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER)
1815                 sc->bge_flags |= BGE_FLAG_TBI;
1816
1817         /* The SysKonnect SK-9D41 is a 1000baseSX card. */
1818         if (pci_get_subvendor(dev) == PCI_PRODUCT_SCHNEIDERKOCH_SK_9D41)
1819                 sc->bge_flags |= BGE_FLAG_TBI;
1820
1821         if (sc->bge_flags & BGE_FLAG_TBI) {
1822                 ifmedia_init(&sc->bge_ifmedia, IFM_IMASK,
1823                     bge_ifmedia_upd, bge_ifmedia_sts);
1824                 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
1825                 ifmedia_add(&sc->bge_ifmedia,
1826                     IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
1827                 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
1828                 ifmedia_set(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO);
1829                 sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
1830         } else {
1831                 /*
1832                  * Do transceiver setup.
1833                  */
1834                 if (mii_phy_probe(dev, &sc->bge_miibus,
1835                     bge_ifmedia_upd, bge_ifmedia_sts)) {
1836                         device_printf(dev, "MII without any PHY!\n");
1837                         error = ENXIO;
1838                         goto fail;
1839                 }
1840         }
1841
1842         /*
1843          * When using the BCM5701 in PCI-X mode, data corruption has
1844          * been observed in the first few bytes of some received packets.
1845          * Aligning the packet buffer in memory eliminates the corruption.
1846          * Unfortunately, this misaligns the packet payloads.  On platforms
1847          * which do not support unaligned accesses, we will realign the
1848          * payloads by copying the received packets.
1849          */
1850         if (sc->bge_asicrev == BGE_ASICREV_BCM5701 &&
1851             (sc->bge_flags & BGE_FLAG_PCIX))
1852                 sc->bge_flags |= BGE_FLAG_RX_ALIGNBUG;
1853
1854         if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
1855             sc->bge_chipid != BGE_CHIPID_BCM5700_B2) {
1856                 sc->bge_link_upd = bge_bcm5700_link_upd;
1857                 sc->bge_link_chg = BGE_MACSTAT_MI_INTERRUPT;
1858         } else if (sc->bge_flags & BGE_FLAG_TBI) {
1859                 sc->bge_link_upd = bge_tbi_link_upd;
1860                 sc->bge_link_chg = BGE_MACSTAT_LINK_CHANGED;
1861         } else {
1862                 sc->bge_link_upd = bge_copper_link_upd;
1863                 sc->bge_link_chg = BGE_MACSTAT_LINK_CHANGED;
1864         }
1865
1866         /*
1867          * Call MI attach routine.
1868          */
1869         ether_ifattach(ifp, ether_addr, NULL);
1870
1871         error = bus_setup_intr(dev, sc->bge_irq, INTR_NETSAFE,
1872                                bge_intr, sc, &sc->bge_intrhand, 
1873                                ifp->if_serializer);
1874         if (error) {
1875                 ether_ifdetach(ifp);
1876                 device_printf(dev, "couldn't set up irq\n");
1877                 goto fail;
1878         }
1879         return(0);
1880 fail:
1881         bge_detach(dev);
1882         return(error);
1883 }
1884
1885 static int
1886 bge_detach(device_t dev)
1887 {
1888         struct bge_softc *sc = device_get_softc(dev);
1889
1890         if (device_is_attached(dev)) {
1891                 struct ifnet *ifp = &sc->arpcom.ac_if;
1892
1893                 lwkt_serialize_enter(ifp->if_serializer);
1894                 bge_stop(sc);
1895                 bge_reset(sc);
1896                 bus_teardown_intr(dev, sc->bge_irq, sc->bge_intrhand);
1897                 lwkt_serialize_exit(ifp->if_serializer);
1898
1899                 ether_ifdetach(ifp);
1900         }
1901
1902         if (sc->bge_flags & BGE_FLAG_TBI)
1903                 ifmedia_removeall(&sc->bge_ifmedia);
1904         if (sc->bge_miibus)
1905                 device_delete_child(dev, sc->bge_miibus);
1906         bus_generic_detach(dev);
1907
1908         if (sc->bge_irq != NULL)
1909                 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->bge_irq);
1910
1911         if (sc->bge_res != NULL)
1912                 bus_release_resource(dev, SYS_RES_MEMORY,
1913                     BGE_PCI_BAR0, sc->bge_res);
1914
1915         bge_dma_free(sc);
1916
1917         return 0;
1918 }
1919
1920 static void
1921 bge_reset(struct bge_softc *sc)
1922 {
1923         device_t dev;
1924         uint32_t cachesize, command, pcistate, reset;
1925         void (*write_op)(struct bge_softc *, uint32_t, uint32_t);
1926         int i, val = 0;
1927
1928         dev = sc->bge_dev;
1929
1930         if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc)) {
1931                 if (sc->bge_flags & BGE_FLAG_PCIE)
1932                         write_op = bge_writemem_direct;
1933                 else
1934                         write_op = bge_writemem_ind;
1935         } else {
1936                 write_op = bge_writereg_ind;
1937         }
1938
1939         /* Save some important PCI state. */
1940         cachesize = pci_read_config(dev, BGE_PCI_CACHESZ, 4);
1941         command = pci_read_config(dev, BGE_PCI_CMD, 4);
1942         pcistate = pci_read_config(dev, BGE_PCI_PCISTATE, 4);
1943
1944         pci_write_config(dev, BGE_PCI_MISC_CTL,
1945             BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
1946             BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW, 4);
1947
1948         /* Disable fastboot on controllers that support it. */
1949         if (sc->bge_asicrev == BGE_ASICREV_BCM5752 ||
1950             sc->bge_asicrev == BGE_ASICREV_BCM5755 ||
1951             sc->bge_asicrev == BGE_ASICREV_BCM5787) {
1952                 if (bootverbose)
1953                         if_printf(&sc->arpcom.ac_if, "Disabling fastboot\n");
1954                 CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0x0);
1955         }
1956
1957         /*
1958          * Write the magic number to SRAM at offset 0xB50.
1959          * When firmware finishes its initialization it will
1960          * write ~BGE_MAGIC_NUMBER to the same location.
1961          */
1962         bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
1963
1964         reset = BGE_MISCCFG_RESET_CORE_CLOCKS|(65<<1);
1965
1966         /* XXX: Broadcom Linux driver. */
1967         if (sc->bge_flags & BGE_FLAG_PCIE) {
1968                 if (CSR_READ_4(sc, 0x7e2c) == 0x60)     /* PCIE 1.0 */
1969                         CSR_WRITE_4(sc, 0x7e2c, 0x20);
1970                 if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
1971                         /* Prevent PCIE link training during global reset */
1972                         CSR_WRITE_4(sc, BGE_MISC_CFG, (1<<29));
1973                         reset |= (1<<29);
1974                 }
1975         }
1976
1977         /* 
1978          * Set GPHY Power Down Override to leave GPHY
1979          * powered up in D0 uninitialized.
1980          */
1981         if (BGE_IS_5705_PLUS(sc))
1982                 reset |= 0x04000000;
1983
1984         /* Issue global reset */
1985         write_op(sc, BGE_MISC_CFG, reset);
1986
1987         DELAY(1000);
1988
1989         /* XXX: Broadcom Linux driver. */
1990         if (sc->bge_flags & BGE_FLAG_PCIE) {
1991                 if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
1992                         uint32_t v;
1993
1994                         DELAY(500000); /* wait for link training to complete */
1995                         v = pci_read_config(dev, 0xc4, 4);
1996                         pci_write_config(dev, 0xc4, v | (1<<15), 4);
1997                 }
1998                 /*
1999                  * Set PCIE max payload size to 128 bytes and
2000                  * clear error status.
2001                  */
2002                 pci_write_config(dev, 0xd8, 0xf5000, 4);
2003         }
2004
2005         /* Reset some of the PCI state that got zapped by reset */
2006         pci_write_config(dev, BGE_PCI_MISC_CTL,
2007             BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
2008             BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW, 4);
2009         pci_write_config(dev, BGE_PCI_CACHESZ, cachesize, 4);
2010         pci_write_config(dev, BGE_PCI_CMD, command, 4);
2011         write_op(sc, BGE_MISC_CFG, (65 << 1));
2012
2013         /* Enable memory arbiter. */
2014         if (BGE_IS_5714_FAMILY(sc)) {
2015                 uint32_t val;
2016
2017                 val = CSR_READ_4(sc, BGE_MARB_MODE);
2018                 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | val);
2019         } else {
2020                 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
2021         }
2022
2023         /*
2024          * Poll until we see the 1's complement of the magic number.
2025          * This indicates that the firmware initialization
2026          * is complete.
2027          */
2028         for (i = 0; i < BGE_TIMEOUT; i++) {
2029                 val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM);
2030                 if (val == ~BGE_MAGIC_NUMBER)
2031                         break;
2032                 DELAY(10);
2033         }
2034         
2035         if (i == BGE_TIMEOUT) {
2036                 if_printf(&sc->arpcom.ac_if, "firmware handshake timed out,"
2037                           "found 0x%08x\n", val);
2038                 return;
2039         }
2040
2041         /*
2042          * XXX Wait for the value of the PCISTATE register to
2043          * return to its original pre-reset state. This is a
2044          * fairly good indicator of reset completion. If we don't
2045          * wait for the reset to fully complete, trying to read
2046          * from the device's non-PCI registers may yield garbage
2047          * results.
2048          */
2049         for (i = 0; i < BGE_TIMEOUT; i++) {
2050                 if (pci_read_config(dev, BGE_PCI_PCISTATE, 4) == pcistate)
2051                         break;
2052                 DELAY(10);
2053         }
2054
2055         if (sc->bge_flags & BGE_FLAG_PCIE) {
2056                 reset = bge_readmem_ind(sc, 0x7c00);
2057                 bge_writemem_ind(sc, 0x7c00, reset | (1 << 25));
2058         }
2059
2060         /* Fix up byte swapping */
2061         CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS |
2062             BGE_MODECTL_BYTESWAP_DATA);
2063
2064         CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
2065
2066         /*
2067          * The 5704 in TBI mode apparently needs some special
2068          * adjustment to insure the SERDES drive level is set
2069          * to 1.2V.
2070          */
2071         if (sc->bge_asicrev == BGE_ASICREV_BCM5704 &&
2072             (sc->bge_flags & BGE_FLAG_TBI)) {
2073                 uint32_t serdescfg;
2074
2075                 serdescfg = CSR_READ_4(sc, BGE_SERDES_CFG);
2076                 serdescfg = (serdescfg & ~0xFFF) | 0x880;
2077                 CSR_WRITE_4(sc, BGE_SERDES_CFG, serdescfg);
2078         }
2079
2080         /* XXX: Broadcom Linux driver. */
2081         if ((sc->bge_flags & BGE_FLAG_PCIE) &&
2082             sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
2083                 uint32_t v;
2084
2085                 v = CSR_READ_4(sc, 0x7c00);
2086                 CSR_WRITE_4(sc, 0x7c00, v | (1<<25));
2087         }
2088
2089         DELAY(10000);
2090 }
2091
2092 /*
2093  * Frame reception handling. This is called if there's a frame
2094  * on the receive return list.
2095  *
2096  * Note: we have to be able to handle two possibilities here:
2097  * 1) the frame is from the jumbo recieve ring
2098  * 2) the frame is from the standard receive ring
2099  */
2100
2101 static void
2102 bge_rxeof(struct bge_softc *sc)
2103 {
2104         struct ifnet *ifp;
2105         int stdcnt = 0, jumbocnt = 0;
2106
2107         if (sc->bge_rx_saved_considx ==
2108             sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx)
2109                 return;
2110
2111         ifp = &sc->arpcom.ac_if;
2112
2113         bus_dmamap_sync(sc->bge_cdata.bge_rx_return_ring_tag,
2114                         sc->bge_cdata.bge_rx_return_ring_map,
2115                         BUS_DMASYNC_POSTREAD);
2116         bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
2117                         sc->bge_cdata.bge_rx_std_ring_map,
2118                         BUS_DMASYNC_POSTREAD);
2119         if (BGE_IS_JUMBO_CAPABLE(sc)) {
2120                 bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
2121                                 sc->bge_cdata.bge_rx_jumbo_ring_map,
2122                                 BUS_DMASYNC_POSTREAD);
2123         }
2124
2125         while (sc->bge_rx_saved_considx !=
2126                sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx) {
2127                 struct bge_rx_bd        *cur_rx;
2128                 uint32_t                rxidx;
2129                 struct mbuf             *m = NULL;
2130                 uint16_t                vlan_tag = 0;
2131                 int                     have_tag = 0;
2132
2133                 cur_rx =
2134             &sc->bge_ldata.bge_rx_return_ring[sc->bge_rx_saved_considx];
2135
2136                 rxidx = cur_rx->bge_idx;
2137                 BGE_INC(sc->bge_rx_saved_considx, sc->bge_return_ring_cnt);
2138
2139                 if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
2140                         have_tag = 1;
2141                         vlan_tag = cur_rx->bge_vlan_tag;
2142                 }
2143
2144                 if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
2145                         BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
2146                         m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
2147                         sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
2148                         jumbocnt++;
2149                         if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
2150                                 ifp->if_ierrors++;
2151                                 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
2152                                 continue;
2153                         }
2154                         if (bge_newbuf_jumbo(sc,
2155                             sc->bge_jumbo, NULL) == ENOBUFS) {
2156                                 ifp->if_ierrors++;
2157                                 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
2158                                 continue;
2159                         }
2160                 } else {
2161                         BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
2162                         bus_dmamap_sync(sc->bge_cdata.bge_mtag,
2163                                         sc->bge_cdata.bge_rx_std_dmamap[rxidx],
2164                                         BUS_DMASYNC_POSTREAD);
2165                         bus_dmamap_unload(sc->bge_cdata.bge_mtag,
2166                                 sc->bge_cdata.bge_rx_std_dmamap[rxidx]);
2167                         m = sc->bge_cdata.bge_rx_std_chain[rxidx];
2168                         sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
2169                         stdcnt++;
2170                         if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
2171                                 ifp->if_ierrors++;
2172                                 bge_newbuf_std(sc, sc->bge_std, m);
2173                                 continue;
2174                         }
2175                         if (bge_newbuf_std(sc, sc->bge_std,
2176                             NULL) == ENOBUFS) {
2177                                 ifp->if_ierrors++;
2178                                 bge_newbuf_std(sc, sc->bge_std, m);
2179                                 continue;
2180                         }
2181                 }
2182
2183                 ifp->if_ipackets++;
2184 #ifndef __i386__
2185                 /*
2186                  * The i386 allows unaligned accesses, but for other
2187                  * platforms we must make sure the payload is aligned.
2188                  */
2189                 if (sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) {
2190                         bcopy(m->m_data, m->m_data + ETHER_ALIGN,
2191                             cur_rx->bge_len);
2192                         m->m_data += ETHER_ALIGN;
2193                 }
2194 #endif
2195                 m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
2196                 m->m_pkthdr.rcvif = ifp;
2197
2198                 if (ifp->if_capenable & IFCAP_RXCSUM) {
2199                         if (cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) {
2200                                 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
2201                                 if ((cur_rx->bge_ip_csum ^ 0xffff) == 0)
2202                                         m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2203                         }
2204                         if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
2205                             m->m_pkthdr.len >= BGE_MIN_FRAME) {
2206                                 m->m_pkthdr.csum_data =
2207                                     cur_rx->bge_tcp_udp_csum;
2208                                 m->m_pkthdr.csum_flags |=
2209                                         CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2210                         }
2211                 }
2212
2213                 /*
2214                  * If we received a packet with a vlan tag, pass it
2215                  * to vlan_input() instead of ether_input().
2216                  */
2217                 if (have_tag) {
2218                         VLAN_INPUT_TAG(m, vlan_tag);
2219                         have_tag = vlan_tag = 0;
2220                 } else {
2221                         ifp->if_input(ifp, m);
2222                 }
2223         }
2224
2225         if (stdcnt > 0) {
2226                 bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
2227                                 sc->bge_cdata.bge_rx_std_ring_map,
2228                                 BUS_DMASYNC_PREWRITE);
2229         }
2230
2231         if (BGE_IS_JUMBO_CAPABLE(sc) && jumbocnt > 0) {
2232                 bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
2233                                 sc->bge_cdata.bge_rx_jumbo_ring_map,
2234                                 BUS_DMASYNC_PREWRITE);
2235         }
2236
2237         CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
2238         if (stdcnt)
2239                 CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
2240         if (jumbocnt)
2241                 CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
2242 }
2243
2244 static void
2245 bge_txeof(struct bge_softc *sc)
2246 {
2247         struct bge_tx_bd *cur_tx = NULL;
2248         struct ifnet *ifp;
2249
2250         if (sc->bge_tx_saved_considx ==
2251             sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx)
2252                 return;
2253
2254         ifp = &sc->arpcom.ac_if;
2255
2256         bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag,
2257                         sc->bge_cdata.bge_tx_ring_map,
2258                         BUS_DMASYNC_POSTREAD);
2259
2260         /*
2261          * Go through our tx ring and free mbufs for those
2262          * frames that have been sent.
2263          */
2264         while (sc->bge_tx_saved_considx !=
2265                sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx) {
2266                 uint32_t idx = 0;
2267
2268                 idx = sc->bge_tx_saved_considx;
2269                 cur_tx = &sc->bge_ldata.bge_tx_ring[idx];
2270                 if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
2271                         ifp->if_opackets++;
2272                 if (sc->bge_cdata.bge_tx_chain[idx] != NULL) {
2273                         bus_dmamap_sync(sc->bge_cdata.bge_mtag,
2274                                         sc->bge_cdata.bge_tx_dmamap[idx],
2275                                         BUS_DMASYNC_POSTWRITE);
2276                         bus_dmamap_unload(sc->bge_cdata.bge_mtag,
2277                             sc->bge_cdata.bge_tx_dmamap[idx]);
2278                         m_freem(sc->bge_cdata.bge_tx_chain[idx]);
2279                         sc->bge_cdata.bge_tx_chain[idx] = NULL;
2280                 }
2281                 sc->bge_txcnt--;
2282                 BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
2283         }
2284
2285         if (cur_tx != NULL &&
2286             (BGE_TX_RING_CNT - sc->bge_txcnt) >=
2287             (BGE_NSEG_RSVD + BGE_NSEG_SPARE))
2288                 ifp->if_flags &= ~IFF_OACTIVE;
2289
2290         if (sc->bge_txcnt == 0)
2291                 ifp->if_timer = 0;
2292
2293         if (!ifq_is_empty(&ifp->if_snd))
2294                 ifp->if_start(ifp);
2295 }
2296
2297 static void
2298 bge_intr(void *xsc)
2299 {
2300         struct bge_softc *sc = xsc;
2301         struct ifnet *ifp = &sc->arpcom.ac_if;
2302         uint32_t status;
2303
2304         /*
2305          * Ack the interrupt by writing something to BGE_MBX_IRQ0_LO.  Don't
2306          * disable interrupts by writing nonzero like we used to, since with
2307          * our current organization this just gives complications and
2308          * pessimizations for re-enabling interrupts.  We used to have races
2309          * instead of the necessary complications.  Disabling interrupts
2310          * would just reduce the chance of a status update while we are
2311          * running (by switching to the interrupt-mode coalescence
2312          * parameters), but this chance is already very low so it is more
2313          * efficient to get another interrupt than prevent it.
2314          *
2315          * We do the ack first to ensure another interrupt if there is a
2316          * status update after the ack.  We don't check for the status
2317          * changing later because it is more efficient to get another
2318          * interrupt than prevent it, not quite as above (not checking is
2319          * a smaller optimization than not toggling the interrupt enable,
2320          * since checking doesn't involve PCI accesses and toggling require
2321          * the status check).  So toggling would probably be a pessimization
2322          * even with MSI.  It would only be needed for using a task queue.
2323          */
2324         CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
2325
2326         bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
2327                         sc->bge_cdata.bge_status_map,
2328                         BUS_DMASYNC_POSTREAD);
2329
2330         /*
2331          * Process link state changes.
2332          */
2333         status = CSR_READ_4(sc, BGE_MAC_STS);
2334         if ((status & sc->bge_link_chg) || sc->bge_link_evt) {
2335                 sc->bge_link_evt = 0;
2336                 sc->bge_link_upd(sc, status);
2337         }
2338
2339         if (ifp->if_flags & IFF_RUNNING) {
2340                 /* Check RX return ring producer/consumer */
2341                 bge_rxeof(sc);
2342
2343                 /* Check TX ring producer/consumer */
2344                 bge_txeof(sc);
2345         }
2346 }
2347
2348 static void
2349 bge_tick(void *xsc)
2350 {
2351         struct bge_softc *sc = xsc;
2352         struct ifnet *ifp = &sc->arpcom.ac_if;
2353
2354         lwkt_serialize_enter(ifp->if_serializer);
2355
2356         if (BGE_IS_5705_PLUS(sc))
2357                 bge_stats_update_regs(sc);
2358         else
2359                 bge_stats_update(sc);
2360
2361         if (sc->bge_flags & BGE_FLAG_TBI) {
2362                 /*
2363                  * Since in TBI mode auto-polling can't be used we should poll
2364                  * link status manually. Here we register pending link event
2365                  * and trigger interrupt.
2366                  */
2367                 sc->bge_link_evt++;
2368                 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
2369         } else if (!sc->bge_link) {
2370                 mii_tick(device_get_softc(sc->bge_miibus));
2371         }
2372
2373         callout_reset(&sc->bge_stat_timer, hz, bge_tick, sc);
2374
2375         lwkt_serialize_exit(ifp->if_serializer);
2376 }
2377
2378 static void
2379 bge_stats_update_regs(struct bge_softc *sc)
2380 {
2381         struct ifnet *ifp = &sc->arpcom.ac_if;
2382         struct bge_mac_stats_regs stats;
2383         uint32_t *s;
2384         int i;
2385
2386         s = (uint32_t *)&stats;
2387         for (i = 0; i < sizeof(struct bge_mac_stats_regs); i += 4) {
2388                 *s = CSR_READ_4(sc, BGE_RX_STATS + i);
2389                 s++;
2390         }
2391
2392         ifp->if_collisions +=
2393            (stats.dot3StatsSingleCollisionFrames +
2394            stats.dot3StatsMultipleCollisionFrames +
2395            stats.dot3StatsExcessiveCollisions +
2396            stats.dot3StatsLateCollisions) -
2397            ifp->if_collisions;
2398 }
2399
2400 static void
2401 bge_stats_update(struct bge_softc *sc)
2402 {
2403         struct ifnet *ifp = &sc->arpcom.ac_if;
2404         bus_size_t stats;
2405
2406         stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
2407
2408 #define READ_STAT(sc, stats, stat)      \
2409         CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
2410
2411         ifp->if_collisions +=
2412            (READ_STAT(sc, stats,
2413                 txstats.dot3StatsSingleCollisionFrames.bge_addr_lo) +
2414             READ_STAT(sc, stats,
2415                 txstats.dot3StatsMultipleCollisionFrames.bge_addr_lo) +
2416             READ_STAT(sc, stats,
2417                 txstats.dot3StatsExcessiveCollisions.bge_addr_lo) +
2418             READ_STAT(sc, stats,
2419                 txstats.dot3StatsLateCollisions.bge_addr_lo)) -
2420            ifp->if_collisions;
2421
2422 #undef READ_STAT
2423
2424 #ifdef notdef
2425         ifp->if_collisions +=
2426            (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
2427            sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
2428            sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
2429            sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
2430            ifp->if_collisions;
2431 #endif
2432 }
2433
2434 /*
2435  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
2436  * pointers to descriptors.
2437  */
2438 static int
2439 bge_encap(struct bge_softc *sc, struct mbuf *m_head, uint32_t *txidx)
2440 {
2441         struct bge_tx_bd *d = NULL;
2442         uint16_t csum_flags = 0;
2443         struct ifvlan *ifv = NULL;
2444         struct bge_dmamap_arg ctx;
2445         bus_dma_segment_t segs[BGE_NSEG_NEW];
2446         bus_dmamap_t map;
2447         int error, maxsegs, idx, i;
2448
2449         if ((m_head->m_flags & (M_PROTO1|M_PKTHDR)) == (M_PROTO1|M_PKTHDR) &&
2450             m_head->m_pkthdr.rcvif != NULL &&
2451             m_head->m_pkthdr.rcvif->if_type == IFT_L2VLAN)
2452                 ifv = m_head->m_pkthdr.rcvif->if_softc;
2453
2454         if (m_head->m_pkthdr.csum_flags) {
2455                 if (m_head->m_pkthdr.csum_flags & CSUM_IP)
2456                         csum_flags |= BGE_TXBDFLAG_IP_CSUM;
2457                 if (m_head->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))
2458                         csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
2459                 if (m_head->m_flags & M_LASTFRAG)
2460                         csum_flags |= BGE_TXBDFLAG_IP_FRAG_END;
2461                 else if (m_head->m_flags & M_FRAG)
2462                         csum_flags |= BGE_TXBDFLAG_IP_FRAG;
2463         }
2464
2465         idx = *txidx;
2466         map = sc->bge_cdata.bge_tx_dmamap[idx];
2467
2468         maxsegs = (BGE_TX_RING_CNT - sc->bge_txcnt) - BGE_NSEG_RSVD;
2469         KASSERT(maxsegs >= BGE_NSEG_SPARE,
2470                 ("not enough segments %d\n", maxsegs));
2471
2472         if (maxsegs > BGE_NSEG_NEW)
2473                 maxsegs = BGE_NSEG_NEW;
2474
2475         /*
2476          * Pad outbound frame to BGE_MIN_FRAME for an unusual reason.
2477          * The bge hardware will pad out Tx runts to BGE_MIN_FRAME,
2478          * but when such padded frames employ the bge IP/TCP checksum
2479          * offload, the hardware checksum assist gives incorrect results
2480          * (possibly from incorporating its own padding into the UDP/TCP
2481          * checksum; who knows).  If we pad such runts with zeros, the
2482          * onboard checksum comes out correct.  We do this by pretending
2483          * the mbuf chain has too many fragments so the coalescing code
2484          * below can assemble the packet into a single buffer that's
2485          * padded out to the mininum frame size.
2486          */
2487         if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) &&
2488             m_head->m_pkthdr.len < BGE_MIN_FRAME) {
2489                 error = E2BIG;
2490         } else {
2491                 ctx.bge_segs = segs;
2492                 ctx.bge_maxsegs = maxsegs;
2493                 error = bus_dmamap_load_mbuf(sc->bge_cdata.bge_mtag, map,
2494                                              m_head, bge_dma_map_mbuf, &ctx,
2495                                              BUS_DMA_NOWAIT);
2496         }
2497         if (error == E2BIG || ctx.bge_maxsegs == 0) {
2498                 struct mbuf *m_new;
2499
2500                 m_new = m_defrag(m_head, MB_DONTWAIT);
2501                 if (m_new == NULL) {
2502                         if_printf(&sc->arpcom.ac_if,
2503                                   "could not defrag TX mbuf\n");
2504                         error = ENOBUFS;
2505                         goto back;
2506                 } else {
2507                         m_head = m_new;
2508                 }
2509
2510                 /*
2511                  * Manually pad short frames, and zero the pad space
2512                  * to avoid leaking data.
2513                  */
2514                 if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) &&
2515                     m_head->m_pkthdr.len < BGE_MIN_FRAME) {
2516                         int pad_len = BGE_MIN_FRAME - m_head->m_pkthdr.len;
2517
2518                         bzero(mtod(m_head, char *) + m_head->m_pkthdr.len,
2519                               pad_len);
2520                         m_head->m_pkthdr.len += pad_len;
2521                         m_head->m_len = m_head->m_pkthdr.len;
2522                 }
2523
2524                 ctx.bge_segs = segs;
2525                 ctx.bge_maxsegs = maxsegs;
2526                 error = bus_dmamap_load_mbuf(sc->bge_cdata.bge_mtag, map,
2527                                              m_head, bge_dma_map_mbuf, &ctx,
2528                                              BUS_DMA_NOWAIT);
2529                 if (error || ctx.bge_maxsegs == 0) {
2530                         if_printf(&sc->arpcom.ac_if,
2531                                   "could not defrag TX mbuf\n");
2532                         if (error == 0)
2533                                 error = E2BIG;
2534                         goto back;
2535                 }
2536         } else if (error) {
2537                 if_printf(&sc->arpcom.ac_if, "could not map TX mbuf\n");
2538                 goto back;
2539         }
2540
2541         bus_dmamap_sync(sc->bge_cdata.bge_mtag, map, BUS_DMASYNC_PREWRITE);
2542
2543         for (i = 0; ; i++) {
2544                 d = &sc->bge_ldata.bge_tx_ring[idx];
2545
2546                 d->bge_addr.bge_addr_lo = BGE_ADDR_LO(ctx.bge_segs[i].ds_addr);
2547                 d->bge_addr.bge_addr_hi = BGE_ADDR_HI(ctx.bge_segs[i].ds_addr);
2548                 d->bge_len = segs[i].ds_len;
2549                 d->bge_flags = csum_flags;
2550
2551                 if (i == ctx.bge_maxsegs - 1)
2552                         break;
2553                 BGE_INC(idx, BGE_TX_RING_CNT);
2554         }
2555         /* Mark the last segment as end of packet... */
2556         d->bge_flags |= BGE_TXBDFLAG_END;
2557
2558         /* Set vlan tag to the first segment of the packet. */
2559         d = &sc->bge_ldata.bge_tx_ring[*txidx];
2560         if (ifv != NULL) {
2561                 d->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
2562                 d->bge_vlan_tag = ifv->ifv_tag;
2563         } else {
2564                 d->bge_vlan_tag = 0;
2565         }
2566
2567         /*
2568          * Insure that the map for this transmission is placed at
2569          * the array index of the last descriptor in this chain.
2570          */
2571         sc->bge_cdata.bge_tx_dmamap[*txidx] = sc->bge_cdata.bge_tx_dmamap[idx];
2572         sc->bge_cdata.bge_tx_dmamap[idx] = map;
2573         sc->bge_cdata.bge_tx_chain[idx] = m_head;
2574         sc->bge_txcnt += ctx.bge_maxsegs;
2575
2576         BGE_INC(idx, BGE_TX_RING_CNT);
2577         *txidx = idx;
2578 back:
2579         if (error)
2580                 m_freem(m_head);
2581         return error;
2582 }
2583
2584 /*
2585  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
2586  * to the mbuf data regions directly in the transmit descriptors.
2587  */
2588 static void
2589 bge_start(struct ifnet *ifp)
2590 {
2591         struct bge_softc *sc = ifp->if_softc;
2592         struct mbuf *m_head = NULL;
2593         uint32_t prodidx;
2594         int need_trans;
2595
2596         if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING ||
2597             !sc->bge_link)
2598                 return;
2599
2600         prodidx = sc->bge_tx_prodidx;
2601
2602         need_trans = 0;
2603         while (sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
2604                 m_head = ifq_poll(&ifp->if_snd);
2605                 if (m_head == NULL)
2606                         break;
2607
2608                 /*
2609                  * XXX
2610                  * The code inside the if() block is never reached since we
2611                  * must mark CSUM_IP_FRAGS in our if_hwassist to start getting
2612                  * requests to checksum TCP/UDP in a fragmented packet.
2613                  * 
2614                  * XXX
2615                  * safety overkill.  If this is a fragmented packet chain
2616                  * with delayed TCP/UDP checksums, then only encapsulate
2617                  * it if we have enough descriptors to handle the entire
2618                  * chain at once.
2619                  * (paranoia -- may not actually be needed)
2620                  */
2621                 if (m_head->m_flags & M_FIRSTFRAG &&
2622                     m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
2623                         if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
2624                             m_head->m_pkthdr.csum_data + 16) {
2625                                 ifp->if_flags |= IFF_OACTIVE;
2626                                 break;
2627                         }
2628                 }
2629
2630                 /*
2631                  * Sanity check: avoid coming within BGE_NSEG_RSVD
2632                  * descriptors of the end of the ring.  Also make
2633                  * sure there are BGE_NSEG_SPARE descriptors for
2634                  * jumbo buffers' defragmentation.
2635                  */
2636                 if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
2637                     (BGE_NSEG_RSVD + BGE_NSEG_SPARE)) {
2638                         ifp->if_flags |= IFF_OACTIVE;
2639                         break;
2640                 }
2641
2642                 /*
2643                  * Dequeue the packet before encapsulation, since
2644                  * bge_encap() may free the packet if error happens.
2645                  */
2646                 ifq_dequeue(&ifp->if_snd, m_head);
2647
2648                 /*
2649                  * Pack the data into the transmit ring. If we
2650                  * don't have room, set the OACTIVE flag and wait
2651                  * for the NIC to drain the ring.
2652                  */
2653                 if (bge_encap(sc, m_head, &prodidx)) {
2654                         ifp->if_flags |= IFF_OACTIVE;
2655                         break;
2656                 }
2657                 need_trans = 1;
2658
2659                 BPF_MTAP(ifp, m_head);
2660         }
2661
2662         if (!need_trans)
2663                 return;
2664
2665         /* Transmit */
2666         CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
2667         /* 5700 b2 errata */
2668         if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
2669                 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
2670
2671         sc->bge_tx_prodidx = prodidx;
2672
2673         /*
2674          * Set a timeout in case the chip goes out to lunch.
2675          */
2676         ifp->if_timer = 5;
2677 }
2678
2679 static void
2680 bge_init(void *xsc)
2681 {
2682         struct bge_softc *sc = xsc;
2683         struct ifnet *ifp = &sc->arpcom.ac_if;
2684         uint16_t *m;
2685
2686         ASSERT_SERIALIZED(ifp->if_serializer);
2687
2688         if (ifp->if_flags & IFF_RUNNING)
2689                 return;
2690
2691         /* Cancel pending I/O and flush buffers. */
2692         bge_stop(sc);
2693         bge_reset(sc);
2694         bge_chipinit(sc);
2695
2696         /*
2697          * Init the various state machines, ring
2698          * control blocks and firmware.
2699          */
2700         if (bge_blockinit(sc)) {
2701                 if_printf(ifp, "initialization failure\n");
2702                 return;
2703         }
2704
2705         /* Specify MTU. */
2706         CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
2707             ETHER_HDR_LEN + ETHER_CRC_LEN + EVL_ENCAPLEN);
2708
2709         /* Load our MAC address. */
2710         m = (uint16_t *)&sc->arpcom.ac_enaddr[0];
2711         CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
2712         CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
2713
2714         /* Enable or disable promiscuous mode as needed. */
2715         bge_setpromisc(sc);
2716
2717         /* Program multicast filter. */
2718         bge_setmulti(sc);
2719
2720         /* Init RX ring. */
2721         bge_init_rx_ring_std(sc);
2722
2723         /*
2724          * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
2725          * memory to insure that the chip has in fact read the first
2726          * entry of the ring.
2727          */
2728         if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
2729                 uint32_t                v, i;
2730                 for (i = 0; i < 10; i++) {
2731                         DELAY(20);
2732                         v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
2733                         if (v == (MCLBYTES - ETHER_ALIGN))
2734                                 break;
2735                 }
2736                 if (i == 10)
2737                         if_printf(ifp, "5705 A0 chip failed to load RX ring\n");
2738         }
2739
2740         /* Init jumbo RX ring. */
2741         if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2742                 bge_init_rx_ring_jumbo(sc);
2743
2744         /* Init our RX return ring index */
2745         sc->bge_rx_saved_considx = 0;
2746
2747         /* Init TX ring. */
2748         bge_init_tx_ring(sc);
2749
2750         /* Turn on transmitter */
2751         BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
2752
2753         /* Turn on receiver */
2754         BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
2755
2756         /* Tell firmware we're alive. */
2757         BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
2758
2759         /* Enable host interrupts. */
2760         BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
2761         BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
2762         CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
2763
2764         bge_ifmedia_upd(ifp);
2765
2766         ifp->if_flags |= IFF_RUNNING;
2767         ifp->if_flags &= ~IFF_OACTIVE;
2768
2769         callout_reset(&sc->bge_stat_timer, hz, bge_tick, sc);
2770 }
2771
2772 /*
2773  * Set media options.
2774  */
2775 static int
2776 bge_ifmedia_upd(struct ifnet *ifp)
2777 {
2778         struct bge_softc *sc = ifp->if_softc;
2779
2780         /* If this is a 1000baseX NIC, enable the TBI port. */
2781         if (sc->bge_flags & BGE_FLAG_TBI) {
2782                 struct ifmedia *ifm = &sc->bge_ifmedia;
2783
2784                 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
2785                         return(EINVAL);
2786
2787                 switch(IFM_SUBTYPE(ifm->ifm_media)) {
2788                 case IFM_AUTO:
2789                         /*
2790                          * The BCM5704 ASIC appears to have a special
2791                          * mechanism for programming the autoneg
2792                          * advertisement registers in TBI mode.
2793                          */
2794                         if (!bge_fake_autoneg &&
2795                             sc->bge_asicrev == BGE_ASICREV_BCM5704) {
2796                                 uint32_t sgdig;
2797
2798                                 CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
2799                                 sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
2800                                 sgdig |= BGE_SGDIGCFG_AUTO |
2801                                          BGE_SGDIGCFG_PAUSE_CAP |
2802                                          BGE_SGDIGCFG_ASYM_PAUSE;
2803                                 CSR_WRITE_4(sc, BGE_SGDIG_CFG,
2804                                             sgdig | BGE_SGDIGCFG_SEND);
2805                                 DELAY(5);
2806                                 CSR_WRITE_4(sc, BGE_SGDIG_CFG, sgdig);
2807                         }
2808                         break;
2809                 case IFM_1000_SX:
2810                         if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
2811                                 BGE_CLRBIT(sc, BGE_MAC_MODE,
2812                                     BGE_MACMODE_HALF_DUPLEX);
2813                         } else {
2814                                 BGE_SETBIT(sc, BGE_MAC_MODE,
2815                                     BGE_MACMODE_HALF_DUPLEX);
2816                         }
2817                         break;
2818                 default:
2819                         return(EINVAL);
2820                 }
2821         } else {
2822                 struct mii_data *mii = device_get_softc(sc->bge_miibus);
2823
2824                 sc->bge_link_evt++;
2825                 sc->bge_link = 0;
2826                 if (mii->mii_instance) {
2827                         struct mii_softc *miisc;
2828
2829                         LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
2830                                 mii_phy_reset(miisc);
2831                 }
2832                 mii_mediachg(mii);
2833         }
2834         return(0);
2835 }
2836
2837 /*
2838  * Report current media status.
2839  */
2840 static void
2841 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2842 {
2843         struct bge_softc *sc = ifp->if_softc;
2844
2845         if (sc->bge_flags & BGE_FLAG_TBI) {
2846                 ifmr->ifm_status = IFM_AVALID;
2847                 ifmr->ifm_active = IFM_ETHER;
2848                 if (CSR_READ_4(sc, BGE_MAC_STS) &
2849                     BGE_MACSTAT_TBI_PCS_SYNCHED) {
2850                         ifmr->ifm_status |= IFM_ACTIVE;
2851                 } else {
2852                         ifmr->ifm_active |= IFM_NONE;
2853                         return;
2854                 }
2855
2856                 ifmr->ifm_active |= IFM_1000_SX;
2857                 if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
2858                         ifmr->ifm_active |= IFM_HDX;    
2859                 else
2860                         ifmr->ifm_active |= IFM_FDX;
2861         } else {
2862                 struct mii_data *mii = device_get_softc(sc->bge_miibus);
2863
2864                 mii_pollstat(mii);
2865                 ifmr->ifm_active = mii->mii_media_active;
2866                 ifmr->ifm_status = mii->mii_media_status;
2867         }
2868 }
2869
2870 static int
2871 bge_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
2872 {
2873         struct bge_softc *sc = ifp->if_softc;
2874         struct ifreq *ifr = (struct ifreq *) data;
2875         int mask, error = 0;
2876         struct mii_data *mii;
2877
2878         ASSERT_SERIALIZED(ifp->if_serializer);
2879
2880         switch(command) {
2881         case SIOCSIFMTU:
2882                 if ((!BGE_IS_JUMBO_CAPABLE(sc) && ifr->ifr_mtu > ETHERMTU) ||
2883                     (BGE_IS_JUMBO_CAPABLE(sc) &&
2884                      ifr->ifr_mtu > BGE_JUMBO_MTU)) {
2885                         error = EINVAL;
2886                 } else if (ifp->if_mtu != ifr->ifr_mtu) {
2887                         ifp->if_mtu = ifr->ifr_mtu;
2888                         ifp->if_flags &= ~IFF_RUNNING;
2889                         bge_init(sc);
2890                 }
2891                 break;
2892         case SIOCSIFFLAGS:
2893                 if (ifp->if_flags & IFF_UP) {
2894                         if (ifp->if_flags & IFF_RUNNING) {
2895                                 int flags = ifp->if_flags & sc->bge_if_flags;
2896
2897                                 /*
2898                                  * If only the state of the PROMISC flag
2899                                  * changed, then just use the 'set promisc
2900                                  * mode' command instead of reinitializing
2901                                  * the entire NIC. Doing a full re-init
2902                                  * means reloading the firmware and waiting
2903                                  * for it to start up, which may take a
2904                                  * second or two.  Similarly for ALLMULTI.
2905                                  */
2906                                 if (flags & IFF_PROMISC)
2907                                         bge_setpromisc(sc);
2908                                 if (flags & IFF_ALLMULTI)
2909                                         bge_setmulti(sc);
2910                         } else {
2911                                 bge_init(sc);
2912                         }
2913                 } else {
2914                         if (ifp->if_flags & IFF_RUNNING)
2915                                 bge_stop(sc);
2916                 }
2917                 sc->bge_if_flags = ifp->if_flags;
2918                 error = 0;
2919                 break;
2920         case SIOCADDMULTI:
2921         case SIOCDELMULTI:
2922                 if (ifp->if_flags & IFF_RUNNING) {
2923                         bge_setmulti(sc);
2924                         error = 0;
2925                 }
2926                 break;
2927         case SIOCSIFMEDIA:
2928         case SIOCGIFMEDIA:
2929                 if (sc->bge_flags & BGE_FLAG_TBI) {
2930                         error = ifmedia_ioctl(ifp, ifr,
2931                             &sc->bge_ifmedia, command);
2932                 } else {
2933                         mii = device_get_softc(sc->bge_miibus);
2934                         error = ifmedia_ioctl(ifp, ifr,
2935                             &mii->mii_media, command);
2936                 }
2937                 break;
2938         case SIOCSIFCAP:
2939                 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2940                 if (mask & IFCAP_HWCSUM) {
2941                         ifp->if_capenable ^= IFCAP_HWCSUM;
2942                         if (IFCAP_HWCSUM & ifp->if_capenable)
2943                                 ifp->if_hwassist = BGE_CSUM_FEATURES;
2944                         else
2945                                 ifp->if_hwassist = 0;
2946                 }
2947                 error = 0;
2948                 break;
2949         default:
2950                 error = ether_ioctl(ifp, command, data);
2951                 break;
2952         }
2953         return(error);
2954 }
2955
2956 static void
2957 bge_watchdog(struct ifnet *ifp)
2958 {
2959         struct bge_softc *sc = ifp->if_softc;
2960
2961         if_printf(ifp, "watchdog timeout -- resetting\n");
2962
2963         ifp->if_flags &= ~IFF_RUNNING;
2964         bge_init(sc);
2965
2966         ifp->if_oerrors++;
2967
2968         if (!ifq_is_empty(&ifp->if_snd))
2969                 ifp->if_start(ifp);
2970 }
2971
2972 /*
2973  * Stop the adapter and free any mbufs allocated to the
2974  * RX and TX lists.
2975  */
2976 static void
2977 bge_stop(struct bge_softc *sc)
2978 {
2979         struct ifnet *ifp = &sc->arpcom.ac_if;
2980         struct ifmedia_entry *ifm;
2981         struct mii_data *mii = NULL;
2982         int mtmp, itmp;
2983
2984         ASSERT_SERIALIZED(ifp->if_serializer);
2985
2986         if ((sc->bge_flags & BGE_FLAG_TBI) == 0)
2987                 mii = device_get_softc(sc->bge_miibus);
2988
2989         callout_stop(&sc->bge_stat_timer);
2990
2991         /*
2992          * Disable all of the receiver blocks
2993          */
2994         BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
2995         BGE_CLRBIT(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
2996         BGE_CLRBIT(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
2997         if (!BGE_IS_5705_PLUS(sc))
2998                 BGE_CLRBIT(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
2999         BGE_CLRBIT(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
3000         BGE_CLRBIT(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
3001         BGE_CLRBIT(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
3002
3003         /*
3004          * Disable all of the transmit blocks
3005          */
3006         BGE_CLRBIT(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
3007         BGE_CLRBIT(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
3008         BGE_CLRBIT(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
3009         BGE_CLRBIT(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
3010         BGE_CLRBIT(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
3011         if (!BGE_IS_5705_PLUS(sc))
3012                 BGE_CLRBIT(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
3013         BGE_CLRBIT(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
3014
3015         /*
3016          * Shut down all of the memory managers and related
3017          * state machines.
3018          */
3019         BGE_CLRBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
3020         BGE_CLRBIT(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
3021         if (!BGE_IS_5705_PLUS(sc))
3022                 BGE_CLRBIT(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
3023         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
3024         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
3025         if (!BGE_IS_5705_PLUS(sc)) {
3026                 BGE_CLRBIT(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
3027                 BGE_CLRBIT(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
3028         }
3029
3030         /* Disable host interrupts. */
3031         BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
3032         CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
3033
3034         /*
3035          * Tell firmware we're shutting down.
3036          */
3037         BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3038
3039         /* Free the RX lists. */
3040         bge_free_rx_ring_std(sc);
3041
3042         /* Free jumbo RX list. */
3043         if (BGE_IS_JUMBO_CAPABLE(sc))
3044                 bge_free_rx_ring_jumbo(sc);
3045
3046         /* Free TX buffers. */
3047         bge_free_tx_ring(sc);
3048
3049         /*
3050          * Isolate/power down the PHY, but leave the media selection
3051          * unchanged so that things will be put back to normal when
3052          * we bring the interface back up.
3053          */
3054         if ((sc->bge_flags & BGE_FLAG_TBI) == 0) {
3055                 itmp = ifp->if_flags;
3056                 ifp->if_flags |= IFF_UP;
3057                 ifm = mii->mii_media.ifm_cur;
3058                 mtmp = ifm->ifm_media;
3059                 ifm->ifm_media = IFM_ETHER|IFM_NONE;
3060                 mii_mediachg(mii);
3061                 ifm->ifm_media = mtmp;
3062                 ifp->if_flags = itmp;
3063         }
3064
3065         sc->bge_link = 0;
3066
3067         sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
3068
3069         ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3070 }
3071
3072 /*
3073  * Stop all chip I/O so that the kernel's probe routines don't
3074  * get confused by errant DMAs when rebooting.
3075  */
3076 static void
3077 bge_shutdown(device_t dev)
3078 {
3079         struct bge_softc *sc = device_get_softc(dev);
3080         struct ifnet *ifp = &sc->arpcom.ac_if;
3081
3082         lwkt_serialize_enter(ifp->if_serializer);
3083         bge_stop(sc);
3084         bge_reset(sc);
3085         lwkt_serialize_exit(ifp->if_serializer);
3086 }
3087
3088 static int
3089 bge_suspend(device_t dev)
3090 {
3091         struct bge_softc *sc = device_get_softc(dev);
3092         struct ifnet *ifp = &sc->arpcom.ac_if;
3093
3094         lwkt_serialize_enter(ifp->if_serializer);
3095         bge_stop(sc);
3096         lwkt_serialize_exit(ifp->if_serializer);
3097
3098         return 0;
3099 }
3100
3101 static int
3102 bge_resume(device_t dev)
3103 {
3104         struct bge_softc *sc = device_get_softc(dev);
3105         struct ifnet *ifp = &sc->arpcom.ac_if;
3106
3107         lwkt_serialize_enter(ifp->if_serializer);
3108
3109         if (ifp->if_flags & IFF_UP) {
3110                 bge_init(sc);
3111
3112                 if (!ifq_is_empty(&ifp->if_snd))
3113                         ifp->if_start(ifp);
3114         }
3115
3116         lwkt_serialize_exit(ifp->if_serializer);
3117
3118         return 0;
3119 }
3120
3121 static void
3122 bge_setpromisc(struct bge_softc *sc)
3123 {
3124         struct ifnet *ifp = &sc->arpcom.ac_if;
3125
3126         if (ifp->if_flags & IFF_PROMISC)
3127                 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
3128         else
3129                 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
3130 }
3131
3132 static void
3133 bge_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
3134 {
3135         struct bge_dmamap_arg *ctx = arg;
3136
3137         if (error)
3138                 return;
3139
3140         KASSERT(nsegs == 1 && ctx->bge_maxsegs == 1,
3141                 ("only one segment is allowed\n"));
3142
3143         ctx->bge_segs[0] = *segs;
3144 }
3145
3146 static void
3147 bge_dma_map_mbuf(void *arg, bus_dma_segment_t *segs, int nsegs,
3148                  bus_size_t mapsz __unused, int error)
3149 {
3150         struct bge_dmamap_arg *ctx = arg;
3151         int i;
3152
3153         if (error)
3154                 return;
3155
3156         if (nsegs > ctx->bge_maxsegs) {
3157                 ctx->bge_maxsegs = 0;
3158                 return;
3159         }
3160
3161         ctx->bge_maxsegs = nsegs;
3162         for (i = 0; i < nsegs; ++i)
3163                 ctx->bge_segs[i] = segs[i];
3164 }
3165
3166 static void
3167 bge_dma_free(struct bge_softc *sc)
3168 {
3169         int i;
3170
3171         /* Destroy RX/TX mbuf DMA stuffs. */
3172         if (sc->bge_cdata.bge_mtag != NULL) {
3173                 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
3174                         if (sc->bge_cdata.bge_rx_std_dmamap[i]) {
3175                                 bus_dmamap_destroy(sc->bge_cdata.bge_mtag,
3176                                     sc->bge_cdata.bge_rx_std_dmamap[i]);
3177                         }
3178                 }
3179
3180                 for (i = 0; i < BGE_TX_RING_CNT; i++) {
3181                         if (sc->bge_cdata.bge_tx_dmamap[i]) {
3182                                 bus_dmamap_destroy(sc->bge_cdata.bge_mtag,
3183                                     sc->bge_cdata.bge_tx_dmamap[i]);
3184                         }
3185                 }
3186                 bus_dma_tag_destroy(sc->bge_cdata.bge_mtag);
3187         }
3188
3189         /* Destroy standard RX ring */
3190         bge_dma_block_free(sc->bge_cdata.bge_rx_std_ring_tag,
3191                            sc->bge_cdata.bge_rx_std_ring_map,
3192                            sc->bge_ldata.bge_rx_std_ring);
3193
3194         if (BGE_IS_JUMBO_CAPABLE(sc))
3195                 bge_free_jumbo_mem(sc);
3196
3197         /* Destroy RX return ring */
3198         bge_dma_block_free(sc->bge_cdata.bge_rx_return_ring_tag,
3199                            sc->bge_cdata.bge_rx_return_ring_map,
3200                            sc->bge_ldata.bge_rx_return_ring);
3201
3202         /* Destroy TX ring */
3203         bge_dma_block_free(sc->bge_cdata.bge_tx_ring_tag,
3204                            sc->bge_cdata.bge_tx_ring_map,
3205                            sc->bge_ldata.bge_tx_ring);
3206
3207         /* Destroy status block */
3208         bge_dma_block_free(sc->bge_cdata.bge_status_tag,
3209                            sc->bge_cdata.bge_status_map,
3210                            sc->bge_ldata.bge_status_block);
3211
3212         /* Destroy statistics block */
3213         bge_dma_block_free(sc->bge_cdata.bge_stats_tag,
3214                            sc->bge_cdata.bge_stats_map,
3215                            sc->bge_ldata.bge_stats);
3216
3217         /* Destroy the parent tag */
3218         if (sc->bge_cdata.bge_parent_tag != NULL)
3219                 bus_dma_tag_destroy(sc->bge_cdata.bge_parent_tag);
3220 }
3221
3222 static int
3223 bge_dma_alloc(struct bge_softc *sc)
3224 {
3225         struct ifnet *ifp = &sc->arpcom.ac_if;
3226         int nseg, i, error;
3227
3228         /*
3229          * Allocate the parent bus DMA tag appropriate for PCI.
3230          */
3231         error = bus_dma_tag_create(NULL, 1, 0,
3232                                    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
3233                                    NULL, NULL,
3234                                    MAXBSIZE, BGE_NSEG_NEW,
3235                                    BUS_SPACE_MAXSIZE_32BIT,
3236                                    0, &sc->bge_cdata.bge_parent_tag);
3237         if (error) {
3238                 if_printf(ifp, "could not allocate parent dma tag\n");
3239                 return error;
3240         }
3241
3242         /*
3243          * Create DMA tag for mbufs.
3244          */
3245         nseg = BGE_NSEG_NEW;
3246         error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag, 1, 0,
3247                                    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
3248                                    NULL, NULL,
3249                                    MCLBYTES * nseg, nseg, MCLBYTES,
3250                                    BUS_DMA_ALLOCNOW, &sc->bge_cdata.bge_mtag);
3251         if (error) {
3252                 if_printf(ifp, "could not allocate mbuf dma tag\n");
3253                 return error;
3254         }
3255
3256         /*
3257          * Create DMA maps for TX/RX mbufs.
3258          */
3259         for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
3260                 error = bus_dmamap_create(sc->bge_cdata.bge_mtag, 0,
3261                                           &sc->bge_cdata.bge_rx_std_dmamap[i]);
3262                 if (error) {
3263                         int j;
3264
3265                         for (j = 0; j < i; ++j) {
3266                                 bus_dmamap_destroy(sc->bge_cdata.bge_mtag,
3267                                         sc->bge_cdata.bge_rx_std_dmamap[j]);
3268                         }
3269                         bus_dma_tag_destroy(sc->bge_cdata.bge_mtag);
3270                         sc->bge_cdata.bge_mtag = NULL;
3271
3272                         if_printf(ifp, "could not create DMA map for RX\n");
3273                         return error;
3274                 }
3275         }
3276
3277         for (i = 0; i < BGE_TX_RING_CNT; i++) {
3278                 error = bus_dmamap_create(sc->bge_cdata.bge_mtag, 0,
3279                                           &sc->bge_cdata.bge_tx_dmamap[i]);
3280                 if (error) {
3281                         int j;
3282
3283                         for (j = 0; j < BGE_STD_RX_RING_CNT; ++j) {
3284                                 bus_dmamap_destroy(sc->bge_cdata.bge_mtag,
3285                                         sc->bge_cdata.bge_rx_std_dmamap[j]);
3286                         }
3287                         for (j = 0; j < i; ++j) {
3288                                 bus_dmamap_destroy(sc->bge_cdata.bge_mtag,
3289                                         sc->bge_cdata.bge_tx_dmamap[j]);
3290                         }
3291                         bus_dma_tag_destroy(sc->bge_cdata.bge_mtag);
3292                         sc->bge_cdata.bge_mtag = NULL;
3293
3294                         if_printf(ifp, "could not create DMA map for TX\n");
3295                         return error;
3296                 }
3297         }
3298
3299         /*
3300          * Create DMA stuffs for standard RX ring.
3301          */
3302         error = bge_dma_block_alloc(sc, BGE_STD_RX_RING_SZ,
3303                                     &sc->bge_cdata.bge_rx_std_ring_tag,
3304                                     &sc->bge_cdata.bge_rx_std_ring_map,
3305                                     (void **)&sc->bge_ldata.bge_rx_std_ring,
3306                                     &sc->bge_ldata.bge_rx_std_ring_paddr);
3307         if (error) {
3308                 if_printf(ifp, "could not create std RX ring\n");
3309                 return error;
3310         }
3311
3312         /*
3313          * Create jumbo buffer pool.
3314          */
3315         if (BGE_IS_JUMBO_CAPABLE(sc)) {
3316                 error = bge_alloc_jumbo_mem(sc);
3317                 if (error) {
3318                         if_printf(ifp, "could not create jumbo buffer pool\n");
3319                         return error;
3320                 }
3321         }
3322
3323         /*
3324          * Create DMA stuffs for RX return ring.
3325          */
3326         error = bge_dma_block_alloc(sc, BGE_RX_RTN_RING_SZ(sc),
3327                                     &sc->bge_cdata.bge_rx_return_ring_tag,
3328                                     &sc->bge_cdata.bge_rx_return_ring_map,
3329                                     (void **)&sc->bge_ldata.bge_rx_return_ring,
3330                                     &sc->bge_ldata.bge_rx_return_ring_paddr);
3331         if (error) {
3332                 if_printf(ifp, "could not create RX ret ring\n");
3333                 return error;
3334         }
3335
3336         /*
3337          * Create DMA stuffs for TX ring.
3338          */
3339         error = bge_dma_block_alloc(sc, BGE_TX_RING_SZ,
3340                                     &sc->bge_cdata.bge_tx_ring_tag,
3341                                     &sc->bge_cdata.bge_tx_ring_map,
3342                                     (void **)&sc->bge_ldata.bge_tx_ring,
3343                                     &sc->bge_ldata.bge_tx_ring_paddr);
3344         if (error) {
3345                 if_printf(ifp, "could not create TX ring\n");
3346                 return error;
3347         }
3348
3349         /*
3350          * Create DMA stuffs for status block.
3351          */
3352         error = bge_dma_block_alloc(sc, BGE_STATUS_BLK_SZ,
3353                                     &sc->bge_cdata.bge_status_tag,
3354                                     &sc->bge_cdata.bge_status_map,
3355                                     (void **)&sc->bge_ldata.bge_status_block,
3356                                     &sc->bge_ldata.bge_status_block_paddr);
3357         if (error) {
3358                 if_printf(ifp, "could not create status block\n");
3359                 return error;
3360         }
3361
3362         /*
3363          * Create DMA stuffs for statistics block.
3364          */
3365         error = bge_dma_block_alloc(sc, BGE_STATS_SZ,
3366                                     &sc->bge_cdata.bge_stats_tag,
3367                                     &sc->bge_cdata.bge_stats_map,
3368                                     (void **)&sc->bge_ldata.bge_stats,
3369                                     &sc->bge_ldata.bge_stats_paddr);
3370         if (error) {
3371                 if_printf(ifp, "could not create stats block\n");
3372                 return error;
3373         }
3374         return 0;
3375 }
3376
3377 static int
3378 bge_dma_block_alloc(struct bge_softc *sc, bus_size_t size, bus_dma_tag_t *tag,
3379                     bus_dmamap_t *map, void **addr, bus_addr_t *paddr)
3380 {
3381         struct ifnet *ifp = &sc->arpcom.ac_if;
3382         struct bge_dmamap_arg ctx;
3383         bus_dma_segment_t seg;
3384         int error;
3385
3386         /*
3387          * Create DMA tag
3388          */
3389         error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag, PAGE_SIZE, 0,
3390                                    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
3391                                    NULL, NULL, size, 1, size, 0, tag);
3392         if (error) {
3393                 if_printf(ifp, "could not allocate dma tag\n");
3394                 return error;
3395         }
3396
3397         /*
3398          * Allocate DMA'able memory
3399          */
3400         error = bus_dmamem_alloc(*tag, addr, BUS_DMA_WAITOK | BUS_DMA_ZERO,
3401                                  map);
3402         if (error) {
3403                 if_printf(ifp, "could not allocate dma memory\n");
3404                 bus_dma_tag_destroy(*tag);
3405                 *tag = NULL;
3406                 return error;
3407         }
3408
3409         /*
3410          * Load the DMA'able memory
3411          */
3412         ctx.bge_maxsegs = 1;
3413         ctx.bge_segs = &seg;
3414         error = bus_dmamap_load(*tag, *map, *addr, size, bge_dma_map_addr, &ctx,
3415                                 BUS_DMA_WAITOK);
3416         if (error) {
3417                 if_printf(ifp, "could not load dma memory\n");
3418                 bus_dmamem_free(*tag, *addr, *map);
3419                 bus_dma_tag_destroy(*tag);
3420                 *tag = NULL;
3421                 return error;
3422         }
3423         *paddr = ctx.bge_segs[0].ds_addr;
3424
3425         return 0;
3426 }
3427
3428 static void
3429 bge_dma_block_free(bus_dma_tag_t tag, bus_dmamap_t map, void *addr)
3430 {
3431         if (tag != NULL) {
3432                 bus_dmamap_unload(tag, map);
3433                 bus_dmamem_free(tag, addr, map);
3434                 bus_dma_tag_destroy(tag);
3435         }
3436 }
3437
3438 /*
3439  * Grrr. The link status word in the status block does
3440  * not work correctly on the BCM5700 rev AX and BX chips,
3441  * according to all available information. Hence, we have
3442  * to enable MII interrupts in order to properly obtain
3443  * async link changes. Unfortunately, this also means that
3444  * we have to read the MAC status register to detect link
3445  * changes, thereby adding an additional register access to
3446  * the interrupt handler.
3447  *
3448  * XXX: perhaps link state detection procedure used for
3449  * BGE_CHIPID_BCM5700_B2 can be used for others BCM5700 revisions.
3450  */
3451 static void
3452 bge_bcm5700_link_upd(struct bge_softc *sc, uint32_t status __unused)
3453 {
3454         struct ifnet *ifp = &sc->arpcom.ac_if;
3455         struct mii_data *mii = device_get_softc(sc->bge_miibus);
3456
3457         mii_pollstat(mii);
3458
3459         if (!sc->bge_link &&
3460             (mii->mii_media_status & IFM_ACTIVE) &&
3461             IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
3462                 sc->bge_link++;
3463                 if (bootverbose)
3464                         if_printf(ifp, "link UP\n");
3465         } else if (sc->bge_link &&
3466             (!(mii->mii_media_status & IFM_ACTIVE) ||
3467             IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) {
3468                 sc->bge_link = 0;
3469                 if (bootverbose)
3470                         if_printf(ifp, "link DOWN\n");
3471         }
3472
3473         /* Clear the interrupt. */
3474         CSR_WRITE_4(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_MI_INTERRUPT);
3475         bge_miibus_readreg(sc->bge_dev, 1, BRGPHY_MII_ISR);
3476         bge_miibus_writereg(sc->bge_dev, 1, BRGPHY_MII_IMR, BRGPHY_INTRS);
3477 }
3478
3479 static void
3480 bge_tbi_link_upd(struct bge_softc *sc, uint32_t status)
3481 {
3482         struct ifnet *ifp = &sc->arpcom.ac_if;
3483
3484 #define PCS_ENCODE_ERR  (BGE_MACSTAT_PORT_DECODE_ERROR|BGE_MACSTAT_MI_COMPLETE)
3485
3486         /*
3487          * Sometimes PCS encoding errors are detected in
3488          * TBI mode (on fiber NICs), and for some reason
3489          * the chip will signal them as link changes.
3490          * If we get a link change event, but the 'PCS
3491          * encoding error' bit in the MAC status register
3492          * is set, don't bother doing a link check.
3493          * This avoids spurious "gigabit link up" messages
3494          * that sometimes appear on fiber NICs during
3495          * periods of heavy traffic.
3496          */
3497         if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
3498                 if (!sc->bge_link) {
3499                         sc->bge_link++;
3500                         if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
3501                                 BGE_CLRBIT(sc, BGE_MAC_MODE,
3502                                     BGE_MACMODE_TBI_SEND_CFGS);
3503                         }
3504                         CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
3505
3506                         if (bootverbose)
3507                                 if_printf(ifp, "link UP\n");
3508
3509                         ifp->if_link_state = LINK_STATE_UP;
3510                         if_link_state_change(ifp);
3511                 }
3512         } else if ((status & PCS_ENCODE_ERR) != PCS_ENCODE_ERR) {
3513                 if (sc->bge_link) {
3514                         sc->bge_link = 0;
3515
3516                         if (bootverbose)
3517                                 if_printf(ifp, "link DOWN\n");
3518
3519                         ifp->if_link_state = LINK_STATE_DOWN;
3520                         if_link_state_change(ifp);
3521                 }
3522         }
3523
3524 #undef PCS_ENCODE_ERR
3525
3526         /* Clear the attention. */
3527         CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
3528             BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
3529             BGE_MACSTAT_LINK_CHANGED);
3530 }
3531
3532 static void
3533 bge_copper_link_upd(struct bge_softc *sc, uint32_t status __unused)
3534 {
3535         /*
3536          * Check that the AUTOPOLL bit is set before
3537          * processing the event as a real link change.
3538          * Turning AUTOPOLL on and off in the MII read/write
3539          * functions will often trigger a link status
3540          * interrupt for no reason.
3541          */
3542         if (CSR_READ_4(sc, BGE_MI_MODE) & BGE_MIMODE_AUTOPOLL) {
3543                 struct ifnet *ifp = &sc->arpcom.ac_if;
3544                 struct mii_data *mii = device_get_softc(sc->bge_miibus);
3545
3546                 mii_pollstat(mii);
3547
3548                 if (!sc->bge_link &&
3549                     (mii->mii_media_status & IFM_ACTIVE) &&
3550                     IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
3551                         sc->bge_link++;
3552                         if (bootverbose)
3553                                 if_printf(ifp, "link UP\n");
3554                 } else if (sc->bge_link &&
3555                     (!(mii->mii_media_status & IFM_ACTIVE) ||
3556                     IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) {
3557                         sc->bge_link = 0;
3558                         if (bootverbose)
3559                                 if_printf(ifp, "link DOWN\n");
3560                 }
3561         }
3562
3563         /* Clear the attention. */
3564         CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
3565             BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
3566             BGE_MACSTAT_LINK_CHANGED);
3567 }