drm/i915: Remove duplicated code in i915_gem_fault (2/3)
[dragonfly.git] / sys / dev / drm / i915 / intel_ringbuffer.c
1 /*
2  * Copyright © 2008-2010 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Zou Nan hai <nanhai.zou@intel.com>
26  *    Xiang Hai hao<haihao.xiang@intel.com>
27  *
28  */
29
30 #include <drm/drmP.h>
31 #include "i915_drv.h"
32 #include <drm/i915_drm.h>
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35
36 bool
37 intel_ring_initialized(struct intel_engine_cs *ring)
38 {
39         struct drm_device *dev = ring->dev;
40
41         if (!dev)
42                 return false;
43
44         if (i915.enable_execlists) {
45                 struct intel_context *dctx = ring->default_context;
46                 struct intel_ringbuffer *ringbuf = dctx->engine[ring->id].ringbuf;
47
48                 return ringbuf->obj;
49         } else
50                 return ring->buffer && ring->buffer->obj;
51 }
52
53 int __intel_ring_space(int head, int tail, int size)
54 {
55         int space = head - (tail + I915_RING_FREE_SPACE);
56         if (space < 0)
57                 space += size;
58         return space;
59 }
60
61 int intel_ring_space(struct intel_ringbuffer *ringbuf)
62 {
63         return __intel_ring_space(ringbuf->head & HEAD_ADDR,
64                                   ringbuf->tail, ringbuf->size);
65 }
66
67 bool intel_ring_stopped(struct intel_engine_cs *ring)
68 {
69         struct drm_i915_private *dev_priv = ring->dev->dev_private;
70         return dev_priv->gpu_error.stop_rings & intel_ring_flag(ring);
71 }
72
73 void __intel_ring_advance(struct intel_engine_cs *ring)
74 {
75         struct intel_ringbuffer *ringbuf = ring->buffer;
76         ringbuf->tail &= ringbuf->size - 1;
77         if (intel_ring_stopped(ring))
78                 return;
79         ring->write_tail(ring, ringbuf->tail);
80 }
81
82 static int
83 gen2_render_ring_flush(struct intel_engine_cs *ring,
84                        u32      invalidate_domains,
85                        u32      flush_domains)
86 {
87         u32 cmd;
88         int ret;
89
90         cmd = MI_FLUSH;
91         if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
92                 cmd |= MI_NO_WRITE_FLUSH;
93
94         if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
95                 cmd |= MI_READ_FLUSH;
96
97         ret = intel_ring_begin(ring, 2);
98         if (ret)
99                 return ret;
100
101         intel_ring_emit(ring, cmd);
102         intel_ring_emit(ring, MI_NOOP);
103         intel_ring_advance(ring);
104
105         return 0;
106 }
107
108 static int
109 gen4_render_ring_flush(struct intel_engine_cs *ring,
110                        u32      invalidate_domains,
111                        u32      flush_domains)
112 {
113         struct drm_device *dev = ring->dev;
114         u32 cmd;
115         int ret;
116
117         /*
118          * read/write caches:
119          *
120          * I915_GEM_DOMAIN_RENDER is always invalidated, but is
121          * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
122          * also flushed at 2d versus 3d pipeline switches.
123          *
124          * read-only caches:
125          *
126          * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
127          * MI_READ_FLUSH is set, and is always flushed on 965.
128          *
129          * I915_GEM_DOMAIN_COMMAND may not exist?
130          *
131          * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
132          * invalidated when MI_EXE_FLUSH is set.
133          *
134          * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
135          * invalidated with every MI_FLUSH.
136          *
137          * TLBs:
138          *
139          * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
140          * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
141          * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
142          * are flushed at any MI_FLUSH.
143          */
144
145         cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
146         if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
147                 cmd &= ~MI_NO_WRITE_FLUSH;
148         if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
149                 cmd |= MI_EXE_FLUSH;
150
151         if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
152             (IS_G4X(dev) || IS_GEN5(dev)))
153                 cmd |= MI_INVALIDATE_ISP;
154
155         ret = intel_ring_begin(ring, 2);
156         if (ret)
157                 return ret;
158
159         intel_ring_emit(ring, cmd);
160         intel_ring_emit(ring, MI_NOOP);
161         intel_ring_advance(ring);
162
163         return 0;
164 }
165
166 /**
167  * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
168  * implementing two workarounds on gen6.  From section 1.4.7.1
169  * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
170  *
171  * [DevSNB-C+{W/A}] Before any depth stall flush (including those
172  * produced by non-pipelined state commands), software needs to first
173  * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
174  * 0.
175  *
176  * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
177  * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
178  *
179  * And the workaround for these two requires this workaround first:
180  *
181  * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
182  * BEFORE the pipe-control with a post-sync op and no write-cache
183  * flushes.
184  *
185  * And this last workaround is tricky because of the requirements on
186  * that bit.  From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
187  * volume 2 part 1:
188  *
189  *     "1 of the following must also be set:
190  *      - Render Target Cache Flush Enable ([12] of DW1)
191  *      - Depth Cache Flush Enable ([0] of DW1)
192  *      - Stall at Pixel Scoreboard ([1] of DW1)
193  *      - Depth Stall ([13] of DW1)
194  *      - Post-Sync Operation ([13] of DW1)
195  *      - Notify Enable ([8] of DW1)"
196  *
197  * The cache flushes require the workaround flush that triggered this
198  * one, so we can't use it.  Depth stall would trigger the same.
199  * Post-sync nonzero is what triggered this second workaround, so we
200  * can't use that one either.  Notify enable is IRQs, which aren't
201  * really our business.  That leaves only stall at scoreboard.
202  */
203 static int
204 intel_emit_post_sync_nonzero_flush(struct intel_engine_cs *ring)
205 {
206         u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
207         int ret;
208
209
210         ret = intel_ring_begin(ring, 6);
211         if (ret)
212                 return ret;
213
214         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
215         intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
216                         PIPE_CONTROL_STALL_AT_SCOREBOARD);
217         intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
218         intel_ring_emit(ring, 0); /* low dword */
219         intel_ring_emit(ring, 0); /* high dword */
220         intel_ring_emit(ring, MI_NOOP);
221         intel_ring_advance(ring);
222
223         ret = intel_ring_begin(ring, 6);
224         if (ret)
225                 return ret;
226
227         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
228         intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
229         intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
230         intel_ring_emit(ring, 0);
231         intel_ring_emit(ring, 0);
232         intel_ring_emit(ring, MI_NOOP);
233         intel_ring_advance(ring);
234
235         return 0;
236 }
237
238 static int
239 gen6_render_ring_flush(struct intel_engine_cs *ring,
240                          u32 invalidate_domains, u32 flush_domains)
241 {
242         u32 flags = 0;
243         u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
244         int ret;
245
246         /* Force SNB workarounds for PIPE_CONTROL flushes */
247         ret = intel_emit_post_sync_nonzero_flush(ring);
248         if (ret)
249                 return ret;
250
251         /* Just flush everything.  Experiments have shown that reducing the
252          * number of bits based on the write domains has little performance
253          * impact.
254          */
255         if (flush_domains) {
256                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
257                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
258                 /*
259                  * Ensure that any following seqno writes only happen
260                  * when the render cache is indeed flushed.
261                  */
262                 flags |= PIPE_CONTROL_CS_STALL;
263         }
264         if (invalidate_domains) {
265                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
266                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
267                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
268                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
269                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
270                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
271                 /*
272                  * TLB invalidate requires a post-sync write.
273                  */
274                 flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
275         }
276
277         ret = intel_ring_begin(ring, 4);
278         if (ret)
279                 return ret;
280
281         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
282         intel_ring_emit(ring, flags);
283         intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
284         intel_ring_emit(ring, 0);
285         intel_ring_advance(ring);
286
287         return 0;
288 }
289
290 static int
291 gen7_render_ring_cs_stall_wa(struct intel_engine_cs *ring)
292 {
293         int ret;
294
295         ret = intel_ring_begin(ring, 4);
296         if (ret)
297                 return ret;
298
299         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
300         intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
301                               PIPE_CONTROL_STALL_AT_SCOREBOARD);
302         intel_ring_emit(ring, 0);
303         intel_ring_emit(ring, 0);
304         intel_ring_advance(ring);
305
306         return 0;
307 }
308
309 static int gen7_ring_fbc_flush(struct intel_engine_cs *ring, u32 value)
310 {
311         int ret;
312
313         if (!ring->fbc_dirty)
314                 return 0;
315
316         ret = intel_ring_begin(ring, 6);
317         if (ret)
318                 return ret;
319         /* WaFbcNukeOn3DBlt:ivb/hsw */
320         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
321         intel_ring_emit(ring, MSG_FBC_REND_STATE);
322         intel_ring_emit(ring, value);
323         intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) | MI_SRM_LRM_GLOBAL_GTT);
324         intel_ring_emit(ring, MSG_FBC_REND_STATE);
325         intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
326         intel_ring_advance(ring);
327
328         ring->fbc_dirty = false;
329         return 0;
330 }
331
332 static int
333 gen7_render_ring_flush(struct intel_engine_cs *ring,
334                        u32 invalidate_domains, u32 flush_domains)
335 {
336         u32 flags = 0;
337         u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
338         int ret;
339
340         /*
341          * Ensure that any following seqno writes only happen when the render
342          * cache is indeed flushed.
343          *
344          * Workaround: 4th PIPE_CONTROL command (except the ones with only
345          * read-cache invalidate bits set) must have the CS_STALL bit set. We
346          * don't try to be clever and just set it unconditionally.
347          */
348         flags |= PIPE_CONTROL_CS_STALL;
349
350         /* Just flush everything.  Experiments have shown that reducing the
351          * number of bits based on the write domains has little performance
352          * impact.
353          */
354         if (flush_domains) {
355                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
356                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
357         }
358         if (invalidate_domains) {
359                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
360                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
361                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
362                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
363                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
364                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
365                 /*
366                  * TLB invalidate requires a post-sync write.
367                  */
368                 flags |= PIPE_CONTROL_QW_WRITE;
369                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
370
371                 flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
372
373                 /* Workaround: we must issue a pipe_control with CS-stall bit
374                  * set before a pipe_control command that has the state cache
375                  * invalidate bit set. */
376                 gen7_render_ring_cs_stall_wa(ring);
377         }
378
379         ret = intel_ring_begin(ring, 4);
380         if (ret)
381                 return ret;
382
383         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
384         intel_ring_emit(ring, flags);
385         intel_ring_emit(ring, scratch_addr);
386         intel_ring_emit(ring, 0);
387         intel_ring_advance(ring);
388
389         if (!invalidate_domains && flush_domains)
390                 return gen7_ring_fbc_flush(ring, FBC_REND_NUKE);
391
392         return 0;
393 }
394
395 static int
396 gen8_emit_pipe_control(struct intel_engine_cs *ring,
397                        u32 flags, u32 scratch_addr)
398 {
399         int ret;
400
401         ret = intel_ring_begin(ring, 6);
402         if (ret)
403                 return ret;
404
405         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
406         intel_ring_emit(ring, flags);
407         intel_ring_emit(ring, scratch_addr);
408         intel_ring_emit(ring, 0);
409         intel_ring_emit(ring, 0);
410         intel_ring_emit(ring, 0);
411         intel_ring_advance(ring);
412
413         return 0;
414 }
415
416 static int
417 gen8_render_ring_flush(struct intel_engine_cs *ring,
418                        u32 invalidate_domains, u32 flush_domains)
419 {
420         u32 flags = 0;
421         u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
422         int ret;
423
424         flags |= PIPE_CONTROL_CS_STALL;
425
426         if (flush_domains) {
427                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
428                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
429         }
430         if (invalidate_domains) {
431                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
432                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
433                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
434                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
435                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
436                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
437                 flags |= PIPE_CONTROL_QW_WRITE;
438                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
439
440                 /* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
441                 ret = gen8_emit_pipe_control(ring,
442                                              PIPE_CONTROL_CS_STALL |
443                                              PIPE_CONTROL_STALL_AT_SCOREBOARD,
444                                              0);
445                 if (ret)
446                         return ret;
447         }
448
449         ret = gen8_emit_pipe_control(ring, flags, scratch_addr);
450         if (ret)
451                 return ret;
452
453         if (!invalidate_domains && flush_domains)
454                 return gen7_ring_fbc_flush(ring, FBC_REND_NUKE);
455
456         return 0;
457 }
458
459 static void ring_write_tail(struct intel_engine_cs *ring,
460                             u32 value)
461 {
462         struct drm_i915_private *dev_priv = ring->dev->dev_private;
463         I915_WRITE_TAIL(ring, value);
464 }
465
466 u64 intel_ring_get_active_head(struct intel_engine_cs *ring)
467 {
468         struct drm_i915_private *dev_priv = ring->dev->dev_private;
469         u64 acthd;
470
471         if (INTEL_INFO(ring->dev)->gen >= 8)
472                 acthd = I915_READ64_2x32(RING_ACTHD(ring->mmio_base),
473                                          RING_ACTHD_UDW(ring->mmio_base));
474         else if (INTEL_INFO(ring->dev)->gen >= 4)
475                 acthd = I915_READ(RING_ACTHD(ring->mmio_base));
476         else
477                 acthd = I915_READ(ACTHD);
478
479         return acthd;
480 }
481
482 static void ring_setup_phys_status_page(struct intel_engine_cs *ring)
483 {
484         struct drm_i915_private *dev_priv = ring->dev->dev_private;
485         u32 addr;
486
487         addr = dev_priv->status_page_dmah->busaddr;
488         if (INTEL_INFO(ring->dev)->gen >= 4)
489                 addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
490         I915_WRITE(HWS_PGA, addr);
491 }
492
493 static bool stop_ring(struct intel_engine_cs *ring)
494 {
495         struct drm_i915_private *dev_priv = to_i915(ring->dev);
496
497         if (!IS_GEN2(ring->dev)) {
498                 I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
499                 if (wait_for((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
500                         DRM_ERROR("%s : timed out trying to stop ring\n", ring->name);
501                         /* Sometimes we observe that the idle flag is not
502                          * set even though the ring is empty. So double
503                          * check before giving up.
504                          */
505                         if (I915_READ_HEAD(ring) != I915_READ_TAIL(ring))
506                                 return false;
507                 }
508         }
509
510         I915_WRITE_CTL(ring, 0);
511         I915_WRITE_HEAD(ring, 0);
512         ring->write_tail(ring, 0);
513
514         if (!IS_GEN2(ring->dev)) {
515                 (void)I915_READ_CTL(ring);
516                 I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
517         }
518
519         return (I915_READ_HEAD(ring) & HEAD_ADDR) == 0;
520 }
521
522 static int init_ring_common(struct intel_engine_cs *ring)
523 {
524         struct drm_device *dev = ring->dev;
525         struct drm_i915_private *dev_priv = dev->dev_private;
526         struct intel_ringbuffer *ringbuf = ring->buffer;
527         struct drm_i915_gem_object *obj = ringbuf->obj;
528         int ret = 0;
529
530         gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
531
532         if (!stop_ring(ring)) {
533                 /* G45 ring initialization often fails to reset head to zero */
534                 DRM_DEBUG_KMS("%s head not reset to zero "
535                               "ctl %08x head %08x tail %08x start %08x\n",
536                               ring->name,
537                               I915_READ_CTL(ring),
538                               I915_READ_HEAD(ring),
539                               I915_READ_TAIL(ring),
540                               I915_READ_START(ring));
541
542                 if (!stop_ring(ring)) {
543                         DRM_ERROR("failed to set %s head to zero "
544                                   "ctl %08x head %08x tail %08x start %08x\n",
545                                   ring->name,
546                                   I915_READ_CTL(ring),
547                                   I915_READ_HEAD(ring),
548                                   I915_READ_TAIL(ring),
549                                   I915_READ_START(ring));
550                         ret = -EIO;
551                         goto out;
552                 }
553         }
554
555         if (I915_NEED_GFX_HWS(dev))
556                 intel_ring_setup_status_page(ring);
557         else
558                 ring_setup_phys_status_page(ring);
559
560         /* Enforce ordering by reading HEAD register back */
561         I915_READ_HEAD(ring);
562
563         /* Initialize the ring. This must happen _after_ we've cleared the ring
564          * registers with the above sequence (the readback of the HEAD registers
565          * also enforces ordering), otherwise the hw might lose the new ring
566          * register values. */
567         I915_WRITE_START(ring, i915_gem_obj_ggtt_offset(obj));
568
569         /* WaClearRingBufHeadRegAtInit:ctg,elk */
570         if (I915_READ_HEAD(ring))
571                 DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
572                           ring->name, I915_READ_HEAD(ring));
573         I915_WRITE_HEAD(ring, 0);
574         (void)I915_READ_HEAD(ring);
575
576         I915_WRITE_CTL(ring,
577                         ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES)
578                         | RING_VALID);
579
580         /* If the head is still not zero, the ring is dead */
581         if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 &&
582                      I915_READ_START(ring) == i915_gem_obj_ggtt_offset(obj) &&
583                      (I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) {
584                 DRM_ERROR("%s initialization failed "
585                           "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
586                           ring->name,
587                           I915_READ_CTL(ring), I915_READ_CTL(ring) & RING_VALID,
588                           I915_READ_HEAD(ring), I915_READ_TAIL(ring),
589                           I915_READ_START(ring), (unsigned long)i915_gem_obj_ggtt_offset(obj));
590                 ret = -EIO;
591                 goto out;
592         }
593
594         if (!drm_core_check_feature(ring->dev, DRIVER_MODESET))
595                 i915_kernel_lost_context(ring->dev);
596         else {
597                 ringbuf->head = I915_READ_HEAD(ring);
598                 ringbuf->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
599                 ringbuf->space = intel_ring_space(ringbuf);
600                 ringbuf->last_retired_head = -1;
601         }
602
603         memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
604
605 out:
606         gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
607
608         return ret;
609 }
610
611 void
612 intel_fini_pipe_control(struct intel_engine_cs *ring)
613 {
614         struct drm_device *dev = ring->dev;
615
616         if (ring->scratch.obj == NULL)
617                 return;
618
619         if (INTEL_INFO(dev)->gen >= 5) {
620                 kunmap(ring->scratch.obj->pages[0]);
621                 i915_gem_object_ggtt_unpin(ring->scratch.obj);
622         }
623
624         drm_gem_object_unreference(&ring->scratch.obj->base);
625         ring->scratch.obj = NULL;
626 }
627
628 int
629 intel_init_pipe_control(struct intel_engine_cs *ring)
630 {
631         int ret;
632
633         if (ring->scratch.obj)
634                 return 0;
635
636         ring->scratch.obj = i915_gem_alloc_object(ring->dev, 4096);
637         if (ring->scratch.obj == NULL) {
638                 DRM_ERROR("Failed to allocate seqno page\n");
639                 ret = -ENOMEM;
640                 goto err;
641         }
642
643         ret = i915_gem_object_set_cache_level(ring->scratch.obj, I915_CACHE_LLC);
644         if (ret)
645                 goto err_unref;
646
647         ret = i915_gem_obj_ggtt_pin(ring->scratch.obj, 4096, 0);
648         if (ret)
649                 goto err_unref;
650
651         ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(ring->scratch.obj);
652         ring->scratch.cpu_page = kmap(ring->scratch.obj->pages[0]);
653         if (ring->scratch.cpu_page == NULL) {
654                 ret = -ENOMEM;
655                 goto err_unpin;
656         }
657
658         DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
659                          ring->name, ring->scratch.gtt_offset);
660         return 0;
661
662 err_unpin:
663         i915_gem_object_ggtt_unpin(ring->scratch.obj);
664 err_unref:
665         drm_gem_object_unreference(&ring->scratch.obj->base);
666 err:
667         return ret;
668 }
669
670 static inline void intel_ring_emit_wa(struct intel_engine_cs *ring,
671                                        u32 addr, u32 value)
672 {
673         struct drm_device *dev = ring->dev;
674         struct drm_i915_private *dev_priv = dev->dev_private;
675
676         if (WARN_ON(dev_priv->num_wa_regs >= I915_MAX_WA_REGS))
677                 return;
678
679         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
680         intel_ring_emit(ring, addr);
681         intel_ring_emit(ring, value);
682
683         dev_priv->intel_wa_regs[dev_priv->num_wa_regs].addr = addr;
684         dev_priv->intel_wa_regs[dev_priv->num_wa_regs].mask = value & 0xFFFF;
685         /* value is updated with the status of remaining bits of this
686          * register when it is read from debugfs file
687          */
688         dev_priv->intel_wa_regs[dev_priv->num_wa_regs].value = value;
689         dev_priv->num_wa_regs++;
690
691         return;
692 }
693
694 static int bdw_init_workarounds(struct intel_engine_cs *ring)
695 {
696         int ret;
697         struct drm_device *dev = ring->dev;
698         struct drm_i915_private *dev_priv = dev->dev_private;
699
700         /*
701          * workarounds applied in this fn are part of register state context,
702          * they need to be re-initialized followed by gpu reset, suspend/resume,
703          * module reload.
704          */
705         dev_priv->num_wa_regs = 0;
706         memset(dev_priv->intel_wa_regs, 0, sizeof(dev_priv->intel_wa_regs));
707
708         /*
709          * update the number of dwords required based on the
710          * actual number of workarounds applied
711          */
712         ret = intel_ring_begin(ring, 18);
713         if (ret)
714                 return ret;
715
716         /* WaDisablePartialInstShootdown:bdw */
717         /* WaDisableThreadStallDopClockGating:bdw */
718         /* FIXME: Unclear whether we really need this on production bdw. */
719         intel_ring_emit_wa(ring, GEN8_ROW_CHICKEN,
720                            _MASKED_BIT_ENABLE(PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE
721                                              | STALL_DOP_GATING_DISABLE));
722
723         /* WaDisableDopClockGating:bdw May not be needed for production */
724         intel_ring_emit_wa(ring, GEN7_ROW_CHICKEN2,
725                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
726
727         intel_ring_emit_wa(ring, HALF_SLICE_CHICKEN3,
728                            _MASKED_BIT_ENABLE(GEN8_SAMPLER_POWER_BYPASS_DIS));
729
730         /* Use Force Non-Coherent whenever executing a 3D context. This is a
731          * workaround for for a possible hang in the unlikely event a TLB
732          * invalidation occurs during a PSD flush.
733          */
734         intel_ring_emit_wa(ring, HDC_CHICKEN0,
735                            _MASKED_BIT_ENABLE(HDC_FORCE_NON_COHERENT));
736
737         /* Wa4x4STCOptimizationDisable:bdw */
738         intel_ring_emit_wa(ring, CACHE_MODE_1,
739                            _MASKED_BIT_ENABLE(GEN8_4x4_STC_OPTIMIZATION_DISABLE));
740
741         /*
742          * BSpec recommends 8x4 when MSAA is used,
743          * however in practice 16x4 seems fastest.
744          *
745          * Note that PS/WM thread counts depend on the WIZ hashing
746          * disable bit, which we don't touch here, but it's good
747          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
748          */
749         intel_ring_emit_wa(ring, GEN7_GT_MODE,
750                            GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);
751
752         intel_ring_advance(ring);
753
754         DRM_DEBUG_DRIVER("Number of Workarounds applied: %d\n",
755                          dev_priv->num_wa_regs);
756
757         return 0;
758 }
759
760 static int chv_init_workarounds(struct intel_engine_cs *ring)
761 {
762         int ret;
763         struct drm_device *dev = ring->dev;
764         struct drm_i915_private *dev_priv = dev->dev_private;
765
766         /*
767          * workarounds applied in this fn are part of register state context,
768          * they need to be re-initialized followed by gpu reset, suspend/resume,
769          * module reload.
770          */
771         dev_priv->num_wa_regs = 0;
772         memset(dev_priv->intel_wa_regs, 0, sizeof(dev_priv->intel_wa_regs));
773
774         ret = intel_ring_begin(ring, 12);
775         if (ret)
776                 return ret;
777
778         /* WaDisablePartialInstShootdown:chv */
779         intel_ring_emit_wa(ring, GEN8_ROW_CHICKEN,
780                            _MASKED_BIT_ENABLE(PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE));
781
782         /* WaDisableThreadStallDopClockGating:chv */
783         intel_ring_emit_wa(ring, GEN8_ROW_CHICKEN,
784                            _MASKED_BIT_ENABLE(STALL_DOP_GATING_DISABLE));
785
786         /* WaDisableDopClockGating:chv (pre-production hw) */
787         intel_ring_emit_wa(ring, GEN7_ROW_CHICKEN2,
788                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
789
790         /* WaDisableSamplerPowerBypass:chv (pre-production hw) */
791         intel_ring_emit_wa(ring, HALF_SLICE_CHICKEN3,
792                            _MASKED_BIT_ENABLE(GEN8_SAMPLER_POWER_BYPASS_DIS));
793
794         intel_ring_advance(ring);
795
796         return 0;
797 }
798
799 static int init_render_ring(struct intel_engine_cs *ring)
800 {
801         struct drm_device *dev = ring->dev;
802         struct drm_i915_private *dev_priv = dev->dev_private;
803         int ret = init_ring_common(ring);
804         if (ret)
805                 return ret;
806
807         /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
808         if (INTEL_INFO(dev)->gen >= 4 && INTEL_INFO(dev)->gen < 7)
809                 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
810
811         /* We need to disable the AsyncFlip performance optimisations in order
812          * to use MI_WAIT_FOR_EVENT within the CS. It should already be
813          * programmed to '1' on all products.
814          *
815          * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
816          */
817         if (INTEL_INFO(dev)->gen >= 6)
818                 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
819
820         /* Required for the hardware to program scanline values for waiting */
821         /* WaEnableFlushTlbInvalidationMode:snb */
822         if (INTEL_INFO(dev)->gen == 6)
823                 I915_WRITE(GFX_MODE,
824                            _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
825
826         /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
827         if (IS_GEN7(dev))
828                 I915_WRITE(GFX_MODE_GEN7,
829                            _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
830                            _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
831
832         if (INTEL_INFO(dev)->gen >= 5) {
833                 ret = intel_init_pipe_control(ring);
834                 if (ret)
835                         return ret;
836         }
837
838         if (IS_GEN6(dev)) {
839                 /* From the Sandybridge PRM, volume 1 part 3, page 24:
840                  * "If this bit is set, STCunit will have LRA as replacement
841                  *  policy. [...] This bit must be reset.  LRA replacement
842                  *  policy is not supported."
843                  */
844                 I915_WRITE(CACHE_MODE_0,
845                            _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
846         }
847
848         if (INTEL_INFO(dev)->gen >= 6)
849                 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
850
851         if (HAS_L3_DPF(dev))
852                 I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
853
854         return ret;
855 }
856
857 static void render_ring_cleanup(struct intel_engine_cs *ring)
858 {
859         struct drm_device *dev = ring->dev;
860         struct drm_i915_private *dev_priv = dev->dev_private;
861
862         if (dev_priv->semaphore_obj) {
863                 i915_gem_object_ggtt_unpin(dev_priv->semaphore_obj);
864                 drm_gem_object_unreference(&dev_priv->semaphore_obj->base);
865                 dev_priv->semaphore_obj = NULL;
866         }
867
868         intel_fini_pipe_control(ring);
869 }
870
871 static int gen8_rcs_signal(struct intel_engine_cs *signaller,
872                            unsigned int num_dwords)
873 {
874 #define MBOX_UPDATE_DWORDS 8
875         struct drm_device *dev = signaller->dev;
876         struct drm_i915_private *dev_priv = dev->dev_private;
877         struct intel_engine_cs *waiter;
878         int i, ret, num_rings;
879
880         num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
881         num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
882 #undef MBOX_UPDATE_DWORDS
883
884         ret = intel_ring_begin(signaller, num_dwords);
885         if (ret)
886                 return ret;
887
888         for_each_ring(waiter, dev_priv, i) {
889                 u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
890                 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
891                         continue;
892
893                 intel_ring_emit(signaller, GFX_OP_PIPE_CONTROL(6));
894                 intel_ring_emit(signaller, PIPE_CONTROL_GLOBAL_GTT_IVB |
895                                            PIPE_CONTROL_QW_WRITE |
896                                            PIPE_CONTROL_FLUSH_ENABLE);
897                 intel_ring_emit(signaller, lower_32_bits(gtt_offset));
898                 intel_ring_emit(signaller, upper_32_bits(gtt_offset));
899                 intel_ring_emit(signaller, signaller->outstanding_lazy_seqno);
900                 intel_ring_emit(signaller, 0);
901                 intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
902                                            MI_SEMAPHORE_TARGET(waiter->id));
903                 intel_ring_emit(signaller, 0);
904         }
905
906         return 0;
907 }
908
909 static int gen8_xcs_signal(struct intel_engine_cs *signaller,
910                            unsigned int num_dwords)
911 {
912 #define MBOX_UPDATE_DWORDS 6
913         struct drm_device *dev = signaller->dev;
914         struct drm_i915_private *dev_priv = dev->dev_private;
915         struct intel_engine_cs *waiter;
916         int i, ret, num_rings;
917
918         num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
919         num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
920 #undef MBOX_UPDATE_DWORDS
921
922         ret = intel_ring_begin(signaller, num_dwords);
923         if (ret)
924                 return ret;
925
926         for_each_ring(waiter, dev_priv, i) {
927                 u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
928                 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
929                         continue;
930
931                 intel_ring_emit(signaller, (MI_FLUSH_DW + 1) |
932                                            MI_FLUSH_DW_OP_STOREDW);
933                 intel_ring_emit(signaller, lower_32_bits(gtt_offset) |
934                                            MI_FLUSH_DW_USE_GTT);
935                 intel_ring_emit(signaller, upper_32_bits(gtt_offset));
936                 intel_ring_emit(signaller, signaller->outstanding_lazy_seqno);
937                 intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
938                                            MI_SEMAPHORE_TARGET(waiter->id));
939                 intel_ring_emit(signaller, 0);
940         }
941
942         return 0;
943 }
944
945 static int gen6_signal(struct intel_engine_cs *signaller,
946                        unsigned int num_dwords)
947 {
948         struct drm_device *dev = signaller->dev;
949         struct drm_i915_private *dev_priv = dev->dev_private;
950         struct intel_engine_cs *useless;
951         int i, ret, num_rings;
952
953 #define MBOX_UPDATE_DWORDS 3
954         num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
955         num_dwords += round_up((num_rings-1) * MBOX_UPDATE_DWORDS, 2);
956 #undef MBOX_UPDATE_DWORDS
957
958         ret = intel_ring_begin(signaller, num_dwords);
959         if (ret)
960                 return ret;
961
962         for_each_ring(useless, dev_priv, i) {
963                 u32 mbox_reg = signaller->semaphore.mbox.signal[i];
964                 if (mbox_reg != GEN6_NOSYNC) {
965                         intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
966                         intel_ring_emit(signaller, mbox_reg);
967                         intel_ring_emit(signaller, signaller->outstanding_lazy_seqno);
968                 }
969         }
970
971         /* If num_dwords was rounded, make sure the tail pointer is correct */
972         if (num_rings % 2 == 0)
973                 intel_ring_emit(signaller, MI_NOOP);
974
975         return 0;
976 }
977
978 /**
979  * gen6_add_request - Update the semaphore mailbox registers
980  * 
981  * @ring - ring that is adding a request
982  * @seqno - return seqno stuck into the ring
983  *
984  * Update the mailbox registers in the *other* rings with the current seqno.
985  * This acts like a signal in the canonical semaphore.
986  */
987 static int
988 gen6_add_request(struct intel_engine_cs *ring)
989 {
990         int ret;
991
992         if (ring->semaphore.signal)
993                 ret = ring->semaphore.signal(ring, 4);
994         else
995                 ret = intel_ring_begin(ring, 4);
996
997         if (ret)
998                 return ret;
999
1000         intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1001         intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1002         intel_ring_emit(ring, ring->outstanding_lazy_seqno);
1003         intel_ring_emit(ring, MI_USER_INTERRUPT);
1004         __intel_ring_advance(ring);
1005
1006         return 0;
1007 }
1008
1009 static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
1010                                               u32 seqno)
1011 {
1012         struct drm_i915_private *dev_priv = dev->dev_private;
1013         return dev_priv->last_seqno < seqno;
1014 }
1015
1016 /**
1017  * intel_ring_sync - sync the waiter to the signaller on seqno
1018  *
1019  * @waiter - ring that is waiting
1020  * @signaller - ring which has, or will signal
1021  * @seqno - seqno which the waiter will block on
1022  */
1023
1024 static int
1025 gen8_ring_sync(struct intel_engine_cs *waiter,
1026                struct intel_engine_cs *signaller,
1027                u32 seqno)
1028 {
1029         struct drm_i915_private *dev_priv = waiter->dev->dev_private;
1030         int ret;
1031
1032         ret = intel_ring_begin(waiter, 4);
1033         if (ret)
1034                 return ret;
1035
1036         intel_ring_emit(waiter, MI_SEMAPHORE_WAIT |
1037                                 MI_SEMAPHORE_GLOBAL_GTT |
1038                                 MI_SEMAPHORE_POLL |
1039                                 MI_SEMAPHORE_SAD_GTE_SDD);
1040         intel_ring_emit(waiter, seqno);
1041         intel_ring_emit(waiter,
1042                         lower_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
1043         intel_ring_emit(waiter,
1044                         upper_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
1045         intel_ring_advance(waiter);
1046         return 0;
1047 }
1048
1049 static int
1050 gen6_ring_sync(struct intel_engine_cs *waiter,
1051                struct intel_engine_cs *signaller,
1052                u32 seqno)
1053 {
1054         u32 dw1 = MI_SEMAPHORE_MBOX |
1055                   MI_SEMAPHORE_COMPARE |
1056                   MI_SEMAPHORE_REGISTER;
1057         u32 wait_mbox = signaller->semaphore.mbox.wait[waiter->id];
1058         int ret;
1059
1060         /* Throughout all of the GEM code, seqno passed implies our current
1061          * seqno is >= the last seqno executed. However for hardware the
1062          * comparison is strictly greater than.
1063          */
1064         seqno -= 1;
1065
1066         WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
1067
1068         ret = intel_ring_begin(waiter, 4);
1069         if (ret)
1070                 return ret;
1071
1072         /* If seqno wrap happened, omit the wait with no-ops */
1073         if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
1074                 intel_ring_emit(waiter, dw1 | wait_mbox);
1075                 intel_ring_emit(waiter, seqno);
1076                 intel_ring_emit(waiter, 0);
1077                 intel_ring_emit(waiter, MI_NOOP);
1078         } else {
1079                 intel_ring_emit(waiter, MI_NOOP);
1080                 intel_ring_emit(waiter, MI_NOOP);
1081                 intel_ring_emit(waiter, MI_NOOP);
1082                 intel_ring_emit(waiter, MI_NOOP);
1083         }
1084         intel_ring_advance(waiter);
1085
1086         return 0;
1087 }
1088
1089 #define PIPE_CONTROL_FLUSH(ring__, addr__)                                      \
1090 do {                                                                    \
1091         intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |                \
1092                  PIPE_CONTROL_DEPTH_STALL);                             \
1093         intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT);                    \
1094         intel_ring_emit(ring__, 0);                                                     \
1095         intel_ring_emit(ring__, 0);                                                     \
1096 } while (0)
1097
1098 static int
1099 pc_render_add_request(struct intel_engine_cs *ring)
1100 {
1101         u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1102         int ret;
1103
1104         /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
1105          * incoherent with writes to memory, i.e. completely fubar,
1106          * so we need to use PIPE_NOTIFY instead.
1107          *
1108          * However, we also need to workaround the qword write
1109          * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
1110          * memory before requesting an interrupt.
1111          */
1112         ret = intel_ring_begin(ring, 32);
1113         if (ret)
1114                 return ret;
1115
1116         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1117                         PIPE_CONTROL_WRITE_FLUSH |
1118                         PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
1119         intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
1120         intel_ring_emit(ring, ring->outstanding_lazy_seqno);
1121         intel_ring_emit(ring, 0);
1122         PIPE_CONTROL_FLUSH(ring, scratch_addr);
1123         scratch_addr += 2 * CACHELINE_BYTES; /* write to separate cachelines */
1124         PIPE_CONTROL_FLUSH(ring, scratch_addr);
1125         scratch_addr += 2 * CACHELINE_BYTES;
1126         PIPE_CONTROL_FLUSH(ring, scratch_addr);
1127         scratch_addr += 2 * CACHELINE_BYTES;
1128         PIPE_CONTROL_FLUSH(ring, scratch_addr);
1129         scratch_addr += 2 * CACHELINE_BYTES;
1130         PIPE_CONTROL_FLUSH(ring, scratch_addr);
1131         scratch_addr += 2 * CACHELINE_BYTES;
1132         PIPE_CONTROL_FLUSH(ring, scratch_addr);
1133
1134         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1135                         PIPE_CONTROL_WRITE_FLUSH |
1136                         PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
1137                         PIPE_CONTROL_NOTIFY);
1138         intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
1139         intel_ring_emit(ring, ring->outstanding_lazy_seqno);
1140         intel_ring_emit(ring, 0);
1141         __intel_ring_advance(ring);
1142
1143         return 0;
1144 }
1145
1146 static u32
1147 gen6_ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1148 {
1149         /* Workaround to force correct ordering between irq and seqno writes on
1150          * ivb (and maybe also on snb) by reading from a CS register (like
1151          * ACTHD) before reading the status page. */
1152         if (!lazy_coherency) {
1153                 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1154                 POSTING_READ(RING_ACTHD(ring->mmio_base));
1155         }
1156
1157         return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1158 }
1159
1160 static u32
1161 ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1162 {
1163         return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1164 }
1165
1166 static void
1167 ring_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1168 {
1169         intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1170 }
1171
1172 static u32
1173 pc_render_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1174 {
1175         return ring->scratch.cpu_page[0];
1176 }
1177
1178 static void
1179 pc_render_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1180 {
1181         ring->scratch.cpu_page[0] = seqno;
1182 }
1183
1184 static bool
1185 gen5_ring_get_irq(struct intel_engine_cs *ring)
1186 {
1187         struct drm_device *dev = ring->dev;
1188         struct drm_i915_private *dev_priv = dev->dev_private;
1189
1190         if (!dev->irq_enabled)
1191                 return false;
1192
1193         lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1194         if (ring->irq_refcount++ == 0)
1195                 gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
1196         lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1197
1198         return true;
1199 }
1200
1201 static void
1202 gen5_ring_put_irq(struct intel_engine_cs *ring)
1203 {
1204         struct drm_device *dev = ring->dev;
1205         struct drm_i915_private *dev_priv = dev->dev_private;
1206
1207         lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1208         if (--ring->irq_refcount == 0)
1209                 gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
1210         lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1211 }
1212
1213 static bool
1214 i9xx_ring_get_irq(struct intel_engine_cs *ring)
1215 {
1216         struct drm_device *dev = ring->dev;
1217         struct drm_i915_private *dev_priv = dev->dev_private;
1218
1219         if (!dev->irq_enabled)
1220                 return false;
1221
1222         lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1223         if (ring->irq_refcount++ == 0) {
1224                 dev_priv->irq_mask &= ~ring->irq_enable_mask;
1225                 I915_WRITE(IMR, dev_priv->irq_mask);
1226                 POSTING_READ(IMR);
1227         }
1228         lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1229
1230         return true;
1231 }
1232
1233 static void
1234 i9xx_ring_put_irq(struct intel_engine_cs *ring)
1235 {
1236         struct drm_device *dev = ring->dev;
1237         struct drm_i915_private *dev_priv = dev->dev_private;
1238
1239         lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1240         if (--ring->irq_refcount == 0) {
1241                 dev_priv->irq_mask |= ring->irq_enable_mask;
1242                 I915_WRITE(IMR, dev_priv->irq_mask);
1243                 POSTING_READ(IMR);
1244         }
1245         lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1246 }
1247
1248 static bool
1249 i8xx_ring_get_irq(struct intel_engine_cs *ring)
1250 {
1251         struct drm_device *dev = ring->dev;
1252         struct drm_i915_private *dev_priv = dev->dev_private;
1253
1254         if (!dev->irq_enabled)
1255                 return false;
1256
1257         lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1258         if (ring->irq_refcount++ == 0) {
1259                 dev_priv->irq_mask &= ~ring->irq_enable_mask;
1260                 I915_WRITE16(IMR, dev_priv->irq_mask);
1261                 POSTING_READ16(IMR);
1262         }
1263         lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1264
1265         return true;
1266 }
1267
1268 static void
1269 i8xx_ring_put_irq(struct intel_engine_cs *ring)
1270 {
1271         struct drm_device *dev = ring->dev;
1272         struct drm_i915_private *dev_priv = dev->dev_private;
1273
1274         lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1275         if (--ring->irq_refcount == 0) {
1276                 dev_priv->irq_mask |= ring->irq_enable_mask;
1277                 I915_WRITE16(IMR, dev_priv->irq_mask);
1278                 POSTING_READ16(IMR);
1279         }
1280         lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1281 }
1282
1283 void intel_ring_setup_status_page(struct intel_engine_cs *ring)
1284 {
1285         struct drm_device *dev = ring->dev;
1286         struct drm_i915_private *dev_priv = ring->dev->dev_private;
1287         u32 mmio = 0;
1288
1289         /* The ring status page addresses are no longer next to the rest of
1290          * the ring registers as of gen7.
1291          */
1292         if (IS_GEN7(dev)) {
1293                 switch (ring->id) {
1294                 case RCS:
1295                         mmio = RENDER_HWS_PGA_GEN7;
1296                         break;
1297                 case BCS:
1298                         mmio = BLT_HWS_PGA_GEN7;
1299                         break;
1300                 /*
1301                  * VCS2 actually doesn't exist on Gen7. Only shut up
1302                  * gcc switch check warning
1303                  */
1304                 case VCS2:
1305                 case VCS:
1306                         mmio = BSD_HWS_PGA_GEN7;
1307                         break;
1308                 case VECS:
1309                         mmio = VEBOX_HWS_PGA_GEN7;
1310                         break;
1311                 }
1312         } else if (IS_GEN6(ring->dev)) {
1313                 mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
1314         } else {
1315                 /* XXX: gen8 returns to sanity */
1316                 mmio = RING_HWS_PGA(ring->mmio_base);
1317         }
1318
1319         I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
1320         POSTING_READ(mmio);
1321
1322         /*
1323          * Flush the TLB for this page
1324          *
1325          * FIXME: These two bits have disappeared on gen8, so a question
1326          * arises: do we still need this and if so how should we go about
1327          * invalidating the TLB?
1328          */
1329         if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8) {
1330                 u32 reg = RING_INSTPM(ring->mmio_base);
1331
1332                 /* ring should be idle before issuing a sync flush*/
1333                 WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
1334
1335                 I915_WRITE(reg,
1336                            _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
1337                                               INSTPM_SYNC_FLUSH));
1338                 if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
1339                              1000))
1340                         DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
1341                                   ring->name);
1342         }
1343 }
1344
1345 static int
1346 bsd_ring_flush(struct intel_engine_cs *ring,
1347                u32     invalidate_domains,
1348                u32     flush_domains)
1349 {
1350         int ret;
1351
1352         ret = intel_ring_begin(ring, 2);
1353         if (ret)
1354                 return ret;
1355
1356         intel_ring_emit(ring, MI_FLUSH);
1357         intel_ring_emit(ring, MI_NOOP);
1358         intel_ring_advance(ring);
1359         return 0;
1360 }
1361
1362 static int
1363 i9xx_add_request(struct intel_engine_cs *ring)
1364 {
1365         int ret;
1366
1367         ret = intel_ring_begin(ring, 4);
1368         if (ret)
1369                 return ret;
1370
1371         intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1372         intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1373         intel_ring_emit(ring, ring->outstanding_lazy_seqno);
1374         intel_ring_emit(ring, MI_USER_INTERRUPT);
1375         __intel_ring_advance(ring);
1376
1377         return 0;
1378 }
1379
1380 static bool
1381 gen6_ring_get_irq(struct intel_engine_cs *ring)
1382 {
1383         struct drm_device *dev = ring->dev;
1384         struct drm_i915_private *dev_priv = dev->dev_private;
1385
1386         if (!dev->irq_enabled)
1387                return false;
1388
1389         lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1390         if (ring->irq_refcount++ == 0) {
1391                 if (HAS_L3_DPF(dev) && ring->id == RCS)
1392                         I915_WRITE_IMR(ring,
1393                                        ~(ring->irq_enable_mask |
1394                                          GT_PARITY_ERROR(dev)));
1395                 else
1396                         I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1397                 gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
1398         }
1399         lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1400
1401         return true;
1402 }
1403
1404 static void
1405 gen6_ring_put_irq(struct intel_engine_cs *ring)
1406 {
1407         struct drm_device *dev = ring->dev;
1408         struct drm_i915_private *dev_priv = dev->dev_private;
1409
1410         lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1411         if (--ring->irq_refcount == 0) {
1412                 if (HAS_L3_DPF(dev) && ring->id == RCS)
1413                         I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
1414                 else
1415                         I915_WRITE_IMR(ring, ~0);
1416                 gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
1417         }
1418         lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1419 }
1420
1421 static bool
1422 hsw_vebox_get_irq(struct intel_engine_cs *ring)
1423 {
1424         struct drm_device *dev = ring->dev;
1425         struct drm_i915_private *dev_priv = dev->dev_private;
1426
1427         if (!dev->irq_enabled)
1428                 return false;
1429
1430         lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1431         if (ring->irq_refcount++ == 0) {
1432                 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1433                 gen6_enable_pm_irq(dev_priv, ring->irq_enable_mask);
1434         }
1435         lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1436
1437         return true;
1438 }
1439
1440 static void
1441 hsw_vebox_put_irq(struct intel_engine_cs *ring)
1442 {
1443         struct drm_device *dev = ring->dev;
1444         struct drm_i915_private *dev_priv = dev->dev_private;
1445
1446         if (!dev->irq_enabled)
1447                 return;
1448
1449         lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1450         if (--ring->irq_refcount == 0) {
1451                 I915_WRITE_IMR(ring, ~0);
1452                 gen6_disable_pm_irq(dev_priv, ring->irq_enable_mask);
1453         }
1454         lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1455 }
1456
1457 static bool
1458 gen8_ring_get_irq(struct intel_engine_cs *ring)
1459 {
1460         struct drm_device *dev = ring->dev;
1461         struct drm_i915_private *dev_priv = dev->dev_private;
1462
1463         if (!dev->irq_enabled)
1464                 return false;
1465
1466         lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1467         if (ring->irq_refcount++ == 0) {
1468                 if (HAS_L3_DPF(dev) && ring->id == RCS) {
1469                         I915_WRITE_IMR(ring,
1470                                        ~(ring->irq_enable_mask |
1471                                          GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
1472                 } else {
1473                         I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1474                 }
1475                 POSTING_READ(RING_IMR(ring->mmio_base));
1476         }
1477         lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1478
1479         return true;
1480 }
1481
1482 static void
1483 gen8_ring_put_irq(struct intel_engine_cs *ring)
1484 {
1485         struct drm_device *dev = ring->dev;
1486         struct drm_i915_private *dev_priv = dev->dev_private;
1487
1488         lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1489         if (--ring->irq_refcount == 0) {
1490                 if (HAS_L3_DPF(dev) && ring->id == RCS) {
1491                         I915_WRITE_IMR(ring,
1492                                        ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
1493                 } else {
1494                         I915_WRITE_IMR(ring, ~0);
1495                 }
1496                 POSTING_READ(RING_IMR(ring->mmio_base));
1497         }
1498         lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1499 }
1500
1501 static int
1502 i965_dispatch_execbuffer(struct intel_engine_cs *ring,
1503                          u64 offset, u32 length,
1504                          unsigned flags)
1505 {
1506         int ret;
1507
1508         ret = intel_ring_begin(ring, 2);
1509         if (ret)
1510                 return ret;
1511
1512         intel_ring_emit(ring,
1513                         MI_BATCH_BUFFER_START |
1514                         MI_BATCH_GTT |
1515                         (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
1516         intel_ring_emit(ring, offset);
1517         intel_ring_advance(ring);
1518
1519         return 0;
1520 }
1521
1522 /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1523 #define I830_BATCH_LIMIT (256*1024)
1524 #define I830_TLB_ENTRIES (2)
1525 #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
1526 static int
1527 i830_dispatch_execbuffer(struct intel_engine_cs *ring,
1528                                 u64 offset, u32 len,
1529                                 unsigned flags)
1530 {
1531         u32 cs_offset = ring->scratch.gtt_offset;
1532         int ret;
1533
1534         ret = intel_ring_begin(ring, 6);
1535         if (ret)
1536                 return ret;
1537
1538         /* Evict the invalid PTE TLBs */
1539         intel_ring_emit(ring, COLOR_BLT_CMD | BLT_WRITE_RGBA);
1540         intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
1541         intel_ring_emit(ring, I830_TLB_ENTRIES << 16 | 4); /* load each page */
1542         intel_ring_emit(ring, cs_offset);
1543         intel_ring_emit(ring, 0xdeadbeef);
1544         intel_ring_emit(ring, MI_NOOP);
1545         intel_ring_advance(ring);
1546
1547         if ((flags & I915_DISPATCH_PINNED) == 0) {
1548                 if (len > I830_BATCH_LIMIT)
1549                         return -ENOSPC;
1550
1551                 ret = intel_ring_begin(ring, 6 + 2);
1552                 if (ret)
1553                         return ret;
1554
1555                 /* Blit the batch (which has now all relocs applied) to the
1556                  * stable batch scratch bo area (so that the CS never
1557                  * stumbles over its tlb invalidation bug) ...
1558                  */
1559                 intel_ring_emit(ring, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
1560                 intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
1561                 intel_ring_emit(ring, DIV_ROUND_UP(len, 4096) << 16 | 4096);
1562                 intel_ring_emit(ring, cs_offset);
1563                 intel_ring_emit(ring, 4096);
1564                 intel_ring_emit(ring, offset);
1565
1566                 intel_ring_emit(ring, MI_FLUSH);
1567                 intel_ring_emit(ring, MI_NOOP);
1568                 intel_ring_advance(ring);
1569
1570                 /* ... and execute it. */
1571                 offset = cs_offset;
1572         }
1573
1574         ret = intel_ring_begin(ring, 4);
1575         if (ret)
1576                 return ret;
1577
1578         intel_ring_emit(ring, MI_BATCH_BUFFER);
1579         intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1580         intel_ring_emit(ring, offset + len - 8);
1581         intel_ring_emit(ring, MI_NOOP);
1582         intel_ring_advance(ring);
1583
1584         return 0;
1585 }
1586
1587 static int
1588 i915_dispatch_execbuffer(struct intel_engine_cs *ring,
1589                          u64 offset, u32 len,
1590                          unsigned flags)
1591 {
1592         int ret;
1593
1594         ret = intel_ring_begin(ring, 2);
1595         if (ret)
1596                 return ret;
1597
1598         intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
1599         intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1600         intel_ring_advance(ring);
1601
1602         return 0;
1603 }
1604
1605 static void cleanup_status_page(struct intel_engine_cs *ring)
1606 {
1607         struct drm_i915_gem_object *obj;
1608
1609         obj = ring->status_page.obj;
1610         if (obj == NULL)
1611                 return;
1612
1613         kunmap(obj->pages[0]);
1614         i915_gem_object_ggtt_unpin(obj);
1615         drm_gem_object_unreference(&obj->base);
1616         ring->status_page.obj = NULL;
1617 }
1618
1619 static int init_status_page(struct intel_engine_cs *ring)
1620 {
1621         struct drm_i915_gem_object *obj;
1622
1623         if ((obj = ring->status_page.obj) == NULL) {
1624                 unsigned flags;
1625                 int ret;
1626
1627                 obj = i915_gem_alloc_object(ring->dev, 4096);
1628                 if (obj == NULL) {
1629                         DRM_ERROR("Failed to allocate status page\n");
1630                         return -ENOMEM;
1631                 }
1632
1633                 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
1634                 if (ret)
1635                         goto err_unref;
1636
1637                 flags = 0;
1638                 if (!HAS_LLC(ring->dev))
1639                         /* On g33, we cannot place HWS above 256MiB, so
1640                          * restrict its pinning to the low mappable arena.
1641                          * Though this restriction is not documented for
1642                          * gen4, gen5, or byt, they also behave similarly
1643                          * and hang if the HWS is placed at the top of the
1644                          * GTT. To generalise, it appears that all !llc
1645                          * platforms have issues with us placing the HWS
1646                          * above the mappable region (even though we never
1647                          * actualy map it).
1648                          */
1649                         flags |= PIN_MAPPABLE;
1650                 ret = i915_gem_obj_ggtt_pin(obj, 4096, flags);
1651                 if (ret) {
1652 err_unref:
1653                         drm_gem_object_unreference(&obj->base);
1654                         return ret;
1655                 }
1656
1657                 ring->status_page.obj = obj;
1658         }
1659
1660         ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
1661         ring->status_page.page_addr = kmap(obj->pages[0]);
1662         memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1663
1664         DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
1665                         ring->name, ring->status_page.gfx_addr);
1666
1667         return 0;
1668 }
1669
1670 static int init_phys_status_page(struct intel_engine_cs *ring)
1671 {
1672         struct drm_i915_private *dev_priv = ring->dev->dev_private;
1673
1674         if (!dev_priv->status_page_dmah) {
1675                 dev_priv->status_page_dmah =
1676                         drm_pci_alloc(ring->dev, PAGE_SIZE, PAGE_SIZE);
1677                 if (!dev_priv->status_page_dmah)
1678                         return -ENOMEM;
1679         }
1680
1681         ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
1682         memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1683
1684         return 0;
1685 }
1686
1687 void intel_destroy_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
1688 {
1689         if (!ringbuf->obj)
1690                 return;
1691
1692         iounmap(ringbuf->virtual_start, ringbuf->size);
1693         i915_gem_object_ggtt_unpin(ringbuf->obj);
1694         drm_gem_object_unreference(&ringbuf->obj->base);
1695         ringbuf->obj = NULL;
1696 }
1697
1698 int intel_alloc_ringbuffer_obj(struct drm_device *dev,
1699                                struct intel_ringbuffer *ringbuf)
1700 {
1701         struct drm_i915_private *dev_priv = to_i915(dev);
1702         struct drm_i915_gem_object *obj;
1703         int ret;
1704
1705         if (ringbuf->obj)
1706                 return 0;
1707
1708         obj = NULL;
1709         if (!HAS_LLC(dev))
1710                 obj = i915_gem_object_create_stolen(dev, ringbuf->size);
1711         if (obj == NULL)
1712                 obj = i915_gem_alloc_object(dev, ringbuf->size);
1713         if (obj == NULL)
1714                 return -ENOMEM;
1715
1716         /* mark ring buffers as read-only from GPU side by default */
1717         obj->gt_ro = 1;
1718
1719         ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, PIN_MAPPABLE);
1720         if (ret)
1721                 goto err_unref;
1722
1723         ret = i915_gem_object_set_to_gtt_domain(obj, true);
1724         if (ret)
1725                 goto err_unpin;
1726
1727         ringbuf->virtual_start =
1728                 ioremap_wc(dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj),
1729                                 ringbuf->size);
1730         if (ringbuf->virtual_start == NULL) {
1731                 ret = -EINVAL;
1732                 goto err_unpin;
1733         }
1734
1735         ringbuf->obj = obj;
1736         return 0;
1737
1738 err_unpin:
1739         i915_gem_object_ggtt_unpin(obj);
1740 err_unref:
1741         drm_gem_object_unreference(&obj->base);
1742         return ret;
1743 }
1744
1745 static int intel_init_ring_buffer(struct drm_device *dev,
1746                                   struct intel_engine_cs *ring)
1747 {
1748         struct intel_ringbuffer *ringbuf = ring->buffer;
1749         int ret;
1750
1751         if (ringbuf == NULL) {
1752                 ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
1753                 if (!ringbuf)
1754                         return -ENOMEM;
1755                 ring->buffer = ringbuf;
1756         }
1757
1758         ring->dev = dev;
1759         INIT_LIST_HEAD(&ring->active_list);
1760         INIT_LIST_HEAD(&ring->request_list);
1761         INIT_LIST_HEAD(&ring->execlist_queue);
1762         ringbuf->size = 32 * PAGE_SIZE;
1763         ringbuf->ring = ring;
1764         memset(ring->semaphore.sync_seqno, 0, sizeof(ring->semaphore.sync_seqno));
1765
1766         init_waitqueue_head(&ring->irq_queue);
1767
1768         if (I915_NEED_GFX_HWS(dev)) {
1769                 ret = init_status_page(ring);
1770                 if (ret)
1771                         goto error;
1772         } else {
1773                 BUG_ON(ring->id != RCS);
1774                 ret = init_phys_status_page(ring);
1775                 if (ret)
1776                         goto error;
1777         }
1778
1779         ret = intel_alloc_ringbuffer_obj(dev, ringbuf);
1780         if (ret) {
1781                 DRM_ERROR("Failed to allocate ringbuffer %s: %d\n", ring->name, ret);
1782                 goto error;
1783         }
1784
1785         /* Workaround an erratum on the i830 which causes a hang if
1786          * the TAIL pointer points to within the last 2 cachelines
1787          * of the buffer.
1788          */
1789         ringbuf->effective_size = ringbuf->size;
1790         if (IS_I830(dev) || IS_845G(dev))
1791                 ringbuf->effective_size -= 2 * CACHELINE_BYTES;
1792
1793         ret = i915_cmd_parser_init_ring(ring);
1794         if (ret)
1795                 goto error;
1796
1797         ret = ring->init(ring);
1798         if (ret)
1799                 goto error;
1800
1801         return 0;
1802
1803 error:
1804         kfree(ringbuf);
1805         ring->buffer = NULL;
1806         return ret;
1807 }
1808
1809 void intel_cleanup_ring_buffer(struct intel_engine_cs *ring)
1810 {
1811         struct drm_i915_private *dev_priv = to_i915(ring->dev);
1812         struct intel_ringbuffer *ringbuf = ring->buffer;
1813
1814         if (!intel_ring_initialized(ring))
1815                 return;
1816
1817         intel_stop_ring_buffer(ring);
1818         WARN_ON(!IS_GEN2(ring->dev) && (I915_READ_MODE(ring) & MODE_IDLE) == 0);
1819
1820         intel_destroy_ringbuffer_obj(ringbuf);
1821         ring->preallocated_lazy_request = NULL;
1822         ring->outstanding_lazy_seqno = 0;
1823
1824         if (ring->cleanup)
1825                 ring->cleanup(ring);
1826
1827         cleanup_status_page(ring);
1828
1829         i915_cmd_parser_fini_ring(ring);
1830
1831         kfree(ringbuf);
1832         ring->buffer = NULL;
1833 }
1834
1835 static int intel_ring_wait_request(struct intel_engine_cs *ring, int n)
1836 {
1837         struct intel_ringbuffer *ringbuf = ring->buffer;
1838         struct drm_i915_gem_request *request;
1839         u32 seqno = 0;
1840         int ret;
1841
1842         if (ringbuf->last_retired_head != -1) {
1843                 ringbuf->head = ringbuf->last_retired_head;
1844                 ringbuf->last_retired_head = -1;
1845
1846                 ringbuf->space = intel_ring_space(ringbuf);
1847                 if (ringbuf->space >= n)
1848                         return 0;
1849         }
1850
1851         list_for_each_entry(request, &ring->request_list, list) {
1852                 if (__intel_ring_space(request->tail, ringbuf->tail,
1853                                        ringbuf->size) >= n) {
1854                         seqno = request->seqno;
1855                         break;
1856                 }
1857         }
1858
1859         if (seqno == 0)
1860                 return -ENOSPC;
1861
1862         ret = i915_wait_seqno(ring, seqno);
1863         if (ret)
1864                 return ret;
1865
1866         i915_gem_retire_requests_ring(ring);
1867         ringbuf->head = ringbuf->last_retired_head;
1868         ringbuf->last_retired_head = -1;
1869
1870         ringbuf->space = intel_ring_space(ringbuf);
1871         return 0;
1872 }
1873
1874 static int ring_wait_for_space(struct intel_engine_cs *ring, int n)
1875 {
1876         struct drm_device *dev = ring->dev;
1877         struct drm_i915_private *dev_priv = dev->dev_private;
1878         struct intel_ringbuffer *ringbuf = ring->buffer;
1879         unsigned long end;
1880         int ret;
1881
1882         ret = intel_ring_wait_request(ring, n);
1883         if (ret != -ENOSPC)
1884                 return ret;
1885
1886         /* force the tail write in case we have been skipping them */
1887         __intel_ring_advance(ring);
1888
1889         /* With GEM the hangcheck timer should kick us out of the loop,
1890          * leaving it early runs the risk of corrupting GEM state (due
1891          * to running on almost untested codepaths). But on resume
1892          * timers don't work yet, so prevent a complete hang in that
1893          * case by choosing an insanely large timeout. */
1894         end = jiffies + 60 * HZ;
1895
1896         trace_i915_ring_wait_begin(ring);
1897         do {
1898                 ringbuf->head = I915_READ_HEAD(ring);
1899                 ringbuf->space = intel_ring_space(ringbuf);
1900                 if (ringbuf->space >= n) {
1901                         ret = 0;
1902                         break;
1903                 }
1904
1905 #if 0
1906                 if (!drm_core_check_feature(dev, DRIVER_MODESET) &&
1907                     dev->primary->master) {
1908                         struct drm_i915_master_private *master_priv = dev->primary->master->driver_priv;
1909                         if (master_priv->sarea_priv)
1910                                 master_priv->sarea_priv->perf_boxes |= I915_BOX_WAIT;
1911                 }
1912 #else
1913                 if (dev_priv->sarea_priv)
1914                         dev_priv->sarea_priv->perf_boxes |= I915_BOX_WAIT;
1915 #endif
1916
1917
1918                 msleep(1);
1919
1920                 if (dev_priv->mm.interruptible && signal_pending(curthread->td_lwp)) {
1921                         ret = -ERESTARTSYS;
1922                         break;
1923                 }
1924
1925                 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
1926                                            dev_priv->mm.interruptible);
1927                 if (ret)
1928                         break;
1929
1930                 if (time_after(jiffies, end)) {
1931                         ret = -EBUSY;
1932                         break;
1933                 }
1934         } while (1);
1935         trace_i915_ring_wait_end(ring);
1936         return ret;
1937 }
1938
1939 static int intel_wrap_ring_buffer(struct intel_engine_cs *ring)
1940 {
1941         uint32_t __iomem *virt;
1942         struct intel_ringbuffer *ringbuf = ring->buffer;
1943         int rem = ringbuf->size - ringbuf->tail;
1944
1945         if (ringbuf->space < rem) {
1946                 int ret = ring_wait_for_space(ring, rem);
1947                 if (ret)
1948                         return ret;
1949         }
1950
1951         virt = (unsigned int *)((char *)ringbuf->virtual_start + ringbuf->tail);
1952         rem /= 4;
1953         while (rem--)
1954                 iowrite32(MI_NOOP, virt++);
1955
1956         ringbuf->tail = 0;
1957         ringbuf->space = intel_ring_space(ringbuf);
1958
1959         return 0;
1960 }
1961
1962 int intel_ring_idle(struct intel_engine_cs *ring)
1963 {
1964         u32 seqno;
1965         int ret;
1966
1967         /* We need to add any requests required to flush the objects and ring */
1968         if (ring->outstanding_lazy_seqno) {
1969                 ret = i915_add_request(ring, NULL);
1970                 if (ret)
1971                         return ret;
1972         }
1973
1974         /* Wait upon the last request to be completed */
1975         if (list_empty(&ring->request_list))
1976                 return 0;
1977
1978         seqno = list_entry(ring->request_list.prev,
1979                            struct drm_i915_gem_request,
1980                            list)->seqno;
1981
1982         return i915_wait_seqno(ring, seqno);
1983 }
1984
1985 static int
1986 intel_ring_alloc_seqno(struct intel_engine_cs *ring)
1987 {
1988         if (ring->outstanding_lazy_seqno)
1989                 return 0;
1990
1991         if (ring->preallocated_lazy_request == NULL) {
1992                 struct drm_i915_gem_request *request;
1993
1994                 request = kmalloc(sizeof(*request), M_DRM, M_WAITOK);
1995                 if (request == NULL)
1996                         return -ENOMEM;
1997
1998                 ring->preallocated_lazy_request = request;
1999         }
2000
2001         return i915_gem_get_seqno(ring->dev, &ring->outstanding_lazy_seqno);
2002 }
2003
2004 static int __intel_ring_prepare(struct intel_engine_cs *ring,
2005                                 int bytes)
2006 {
2007         struct intel_ringbuffer *ringbuf = ring->buffer;
2008         int ret;
2009
2010         if (unlikely(ringbuf->tail + bytes > ringbuf->effective_size)) {
2011                 ret = intel_wrap_ring_buffer(ring);
2012                 if (unlikely(ret))
2013                         return ret;
2014         }
2015
2016         if (unlikely(ringbuf->space < bytes)) {
2017                 ret = ring_wait_for_space(ring, bytes);
2018                 if (unlikely(ret))
2019                         return ret;
2020         }
2021
2022         return 0;
2023 }
2024
2025 int intel_ring_begin(struct intel_engine_cs *ring,
2026                      int num_dwords)
2027 {
2028         struct drm_i915_private *dev_priv = ring->dev->dev_private;
2029         int ret;
2030
2031         ret = i915_gem_check_wedge(&dev_priv->gpu_error,
2032                                    dev_priv->mm.interruptible);
2033         if (ret)
2034                 return ret;
2035
2036         ret = __intel_ring_prepare(ring, num_dwords * sizeof(uint32_t));
2037         if (ret)
2038                 return ret;
2039
2040         /* Preallocate the olr before touching the ring */
2041         ret = intel_ring_alloc_seqno(ring);
2042         if (ret)
2043                 return ret;
2044
2045         ring->buffer->space -= num_dwords * sizeof(uint32_t);
2046         return 0;
2047 }
2048
2049 /* Align the ring tail to a cacheline boundary */
2050 int intel_ring_cacheline_align(struct intel_engine_cs *ring)
2051 {
2052         int num_dwords = (ring->buffer->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
2053         int ret;
2054
2055         if (num_dwords == 0)
2056                 return 0;
2057
2058         num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
2059         ret = intel_ring_begin(ring, num_dwords);
2060         if (ret)
2061                 return ret;
2062
2063         while (num_dwords--)
2064                 intel_ring_emit(ring, MI_NOOP);
2065
2066         intel_ring_advance(ring);
2067
2068         return 0;
2069 }
2070
2071 void intel_ring_init_seqno(struct intel_engine_cs *ring, u32 seqno)
2072 {
2073         struct drm_device *dev = ring->dev;
2074         struct drm_i915_private *dev_priv = dev->dev_private;
2075
2076         BUG_ON(ring->outstanding_lazy_seqno);
2077
2078         if (INTEL_INFO(dev)->gen == 6 || INTEL_INFO(dev)->gen == 7) {
2079                 I915_WRITE(RING_SYNC_0(ring->mmio_base), 0);
2080                 I915_WRITE(RING_SYNC_1(ring->mmio_base), 0);
2081                 if (HAS_VEBOX(dev))
2082                         I915_WRITE(RING_SYNC_2(ring->mmio_base), 0);
2083         }
2084
2085         ring->set_seqno(ring, seqno);
2086         ring->hangcheck.seqno = seqno;
2087 }
2088
2089 static void gen6_bsd_ring_write_tail(struct intel_engine_cs *ring,
2090                                      u32 value)
2091 {
2092         struct drm_i915_private *dev_priv = ring->dev->dev_private;
2093
2094        /* Every tail move must follow the sequence below */
2095
2096         /* Disable notification that the ring is IDLE. The GT
2097          * will then assume that it is busy and bring it out of rc6.
2098          */
2099         I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
2100                    _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2101
2102         /* Clear the context id. Here be magic! */
2103         I915_WRITE64(GEN6_BSD_RNCID, 0x0);
2104
2105         /* Wait for the ring not to be idle, i.e. for it to wake up. */
2106         if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
2107                       GEN6_BSD_SLEEP_INDICATOR) == 0,
2108                      50))
2109                 DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
2110
2111         /* Now that the ring is fully powered up, update the tail */
2112         I915_WRITE_TAIL(ring, value);
2113         POSTING_READ(RING_TAIL(ring->mmio_base));
2114
2115         /* Let the ring send IDLE messages to the GT again,
2116          * and so let it sleep to conserve power when idle.
2117          */
2118         I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
2119                    _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2120 }
2121
2122 static int gen6_bsd_ring_flush(struct intel_engine_cs *ring,
2123                                u32 invalidate, u32 flush)
2124 {
2125         uint32_t cmd;
2126         int ret;
2127
2128         ret = intel_ring_begin(ring, 4);
2129         if (ret)
2130                 return ret;
2131
2132         cmd = MI_FLUSH_DW;
2133         if (INTEL_INFO(ring->dev)->gen >= 8)
2134                 cmd += 1;
2135         /*
2136          * Bspec vol 1c.5 - video engine command streamer:
2137          * "If ENABLED, all TLBs will be invalidated once the flush
2138          * operation is complete. This bit is only valid when the
2139          * Post-Sync Operation field is a value of 1h or 3h."
2140          */
2141         if (invalidate & I915_GEM_GPU_DOMAINS)
2142                 cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD |
2143                         MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2144         intel_ring_emit(ring, cmd);
2145         intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2146         if (INTEL_INFO(ring->dev)->gen >= 8) {
2147                 intel_ring_emit(ring, 0); /* upper addr */
2148                 intel_ring_emit(ring, 0); /* value */
2149         } else  {
2150                 intel_ring_emit(ring, 0);
2151                 intel_ring_emit(ring, MI_NOOP);
2152         }
2153         intel_ring_advance(ring);
2154         return 0;
2155 }
2156
2157 static int
2158 gen8_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
2159                               u64 offset, u32 len,
2160                               unsigned flags)
2161 {
2162         bool ppgtt = USES_PPGTT(ring->dev) && !(flags & I915_DISPATCH_SECURE);
2163         int ret;
2164
2165         ret = intel_ring_begin(ring, 4);
2166         if (ret)
2167                 return ret;
2168
2169         /* FIXME(BDW): Address space and security selectors. */
2170         intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8));
2171         intel_ring_emit(ring, lower_32_bits(offset));
2172         intel_ring_emit(ring, upper_32_bits(offset));
2173         intel_ring_emit(ring, MI_NOOP);
2174         intel_ring_advance(ring);
2175
2176         return 0;
2177 }
2178
2179 static int
2180 hsw_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
2181                               u64 offset, u32 len,
2182                               unsigned flags)
2183 {
2184         int ret;
2185
2186         ret = intel_ring_begin(ring, 2);
2187         if (ret)
2188                 return ret;
2189
2190         intel_ring_emit(ring,
2191                         MI_BATCH_BUFFER_START |
2192                         (flags & I915_DISPATCH_SECURE ?
2193                          0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW));
2194         /* bit0-7 is the length on GEN6+ */
2195         intel_ring_emit(ring, offset);
2196         intel_ring_advance(ring);
2197
2198         return 0;
2199 }
2200
2201 static int
2202 gen6_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
2203                               u64 offset, u32 len,
2204                               unsigned flags)
2205 {
2206         int ret;
2207
2208         ret = intel_ring_begin(ring, 2);
2209         if (ret)
2210                 return ret;
2211
2212         intel_ring_emit(ring,
2213                         MI_BATCH_BUFFER_START |
2214                         (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
2215         /* bit0-7 is the length on GEN6+ */
2216         intel_ring_emit(ring, offset);
2217         intel_ring_advance(ring);
2218
2219         return 0;
2220 }
2221
2222 /* Blitter support (SandyBridge+) */
2223
2224 static int gen6_ring_flush(struct intel_engine_cs *ring,
2225                            u32 invalidate, u32 flush)
2226 {
2227         struct drm_device *dev = ring->dev;
2228         uint32_t cmd;
2229         int ret;
2230
2231         ret = intel_ring_begin(ring, 4);
2232         if (ret)
2233                 return ret;
2234
2235         cmd = MI_FLUSH_DW;
2236         if (INTEL_INFO(ring->dev)->gen >= 8)
2237                 cmd += 1;
2238         /*
2239          * Bspec vol 1c.3 - blitter engine command streamer:
2240          * "If ENABLED, all TLBs will be invalidated once the flush
2241          * operation is complete. This bit is only valid when the
2242          * Post-Sync Operation field is a value of 1h or 3h."
2243          */
2244         if (invalidate & I915_GEM_DOMAIN_RENDER)
2245                 cmd |= MI_INVALIDATE_TLB | MI_FLUSH_DW_STORE_INDEX |
2246                         MI_FLUSH_DW_OP_STOREDW;
2247         intel_ring_emit(ring, cmd);
2248         intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2249         if (INTEL_INFO(ring->dev)->gen >= 8) {
2250                 intel_ring_emit(ring, 0); /* upper addr */
2251                 intel_ring_emit(ring, 0); /* value */
2252         } else  {
2253                 intel_ring_emit(ring, 0);
2254                 intel_ring_emit(ring, MI_NOOP);
2255         }
2256         intel_ring_advance(ring);
2257
2258         if (IS_GEN7(dev) && !invalidate && flush)
2259                 return gen7_ring_fbc_flush(ring, FBC_REND_CACHE_CLEAN);
2260
2261         return 0;
2262 }
2263
2264 int intel_init_render_ring_buffer(struct drm_device *dev)
2265 {
2266         struct drm_i915_private *dev_priv = dev->dev_private;
2267         struct intel_engine_cs *ring = &dev_priv->ring[RCS];
2268         struct drm_i915_gem_object *obj;
2269         int ret;
2270
2271         ring->name = "render ring";
2272         ring->id = RCS;
2273         ring->mmio_base = RENDER_RING_BASE;
2274
2275         if (INTEL_INFO(dev)->gen >= 8) {
2276                 if (i915_semaphore_is_enabled(dev)) {
2277                         obj = i915_gem_alloc_object(dev, 4096);
2278                         if (obj == NULL) {
2279                                 DRM_ERROR("Failed to allocate semaphore bo. Disabling semaphores\n");
2280                                 i915.semaphores = 0;
2281                         } else {
2282                                 i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
2283                                 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_NONBLOCK);
2284                                 if (ret != 0) {
2285                                         drm_gem_object_unreference(&obj->base);
2286                                         DRM_ERROR("Failed to pin semaphore bo. Disabling semaphores\n");
2287                                         i915.semaphores = 0;
2288                                 } else
2289                                         dev_priv->semaphore_obj = obj;
2290                         }
2291                 }
2292                 if (IS_CHERRYVIEW(dev))
2293                         ring->init_context = chv_init_workarounds;
2294                 else
2295                         ring->init_context = bdw_init_workarounds;
2296                 ring->add_request = gen6_add_request;
2297                 ring->flush = gen8_render_ring_flush;
2298                 ring->irq_get = gen8_ring_get_irq;
2299                 ring->irq_put = gen8_ring_put_irq;
2300                 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2301                 ring->get_seqno = gen6_ring_get_seqno;
2302                 ring->set_seqno = ring_set_seqno;
2303                 if (i915_semaphore_is_enabled(dev)) {
2304                         WARN_ON(!dev_priv->semaphore_obj);
2305                         ring->semaphore.sync_to = gen8_ring_sync;
2306                         ring->semaphore.signal = gen8_rcs_signal;
2307                         GEN8_RING_SEMAPHORE_INIT;
2308                 }
2309         } else if (INTEL_INFO(dev)->gen >= 6) {
2310                 ring->add_request = gen6_add_request;
2311                 ring->flush = gen7_render_ring_flush;
2312                 if (INTEL_INFO(dev)->gen == 6)
2313                         ring->flush = gen6_render_ring_flush;
2314                 ring->irq_get = gen6_ring_get_irq;
2315                 ring->irq_put = gen6_ring_put_irq;
2316                 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2317                 ring->get_seqno = gen6_ring_get_seqno;
2318                 ring->set_seqno = ring_set_seqno;
2319                 if (i915_semaphore_is_enabled(dev)) {
2320                         ring->semaphore.sync_to = gen6_ring_sync;
2321                         ring->semaphore.signal = gen6_signal;
2322                         /*
2323                          * The current semaphore is only applied on pre-gen8
2324                          * platform.  And there is no VCS2 ring on the pre-gen8
2325                          * platform. So the semaphore between RCS and VCS2 is
2326                          * initialized as INVALID.  Gen8 will initialize the
2327                          * sema between VCS2 and RCS later.
2328                          */
2329                         ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_INVALID;
2330                         ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_RV;
2331                         ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_RB;
2332                         ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_RVE;
2333                         ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2334                         ring->semaphore.mbox.signal[RCS] = GEN6_NOSYNC;
2335                         ring->semaphore.mbox.signal[VCS] = GEN6_VRSYNC;
2336                         ring->semaphore.mbox.signal[BCS] = GEN6_BRSYNC;
2337                         ring->semaphore.mbox.signal[VECS] = GEN6_VERSYNC;
2338                         ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2339                 }
2340         } else if (IS_GEN5(dev)) {
2341                 ring->add_request = pc_render_add_request;
2342                 ring->flush = gen4_render_ring_flush;
2343                 ring->get_seqno = pc_render_get_seqno;
2344                 ring->set_seqno = pc_render_set_seqno;
2345                 ring->irq_get = gen5_ring_get_irq;
2346                 ring->irq_put = gen5_ring_put_irq;
2347                 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
2348                                         GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
2349         } else {
2350                 ring->add_request = i9xx_add_request;
2351                 if (INTEL_INFO(dev)->gen < 4)
2352                         ring->flush = gen2_render_ring_flush;
2353                 else
2354                         ring->flush = gen4_render_ring_flush;
2355                 ring->get_seqno = ring_get_seqno;
2356                 ring->set_seqno = ring_set_seqno;
2357                 if (IS_GEN2(dev)) {
2358                         ring->irq_get = i8xx_ring_get_irq;
2359                         ring->irq_put = i8xx_ring_put_irq;
2360                 } else {
2361                         ring->irq_get = i9xx_ring_get_irq;
2362                         ring->irq_put = i9xx_ring_put_irq;
2363                 }
2364                 ring->irq_enable_mask = I915_USER_INTERRUPT;
2365         }
2366         ring->write_tail = ring_write_tail;
2367
2368         if (IS_HASWELL(dev))
2369                 ring->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
2370         else if (IS_GEN8(dev))
2371                 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2372         else if (INTEL_INFO(dev)->gen >= 6)
2373                 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2374         else if (INTEL_INFO(dev)->gen >= 4)
2375                 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2376         else if (IS_I830(dev) || IS_845G(dev))
2377                 ring->dispatch_execbuffer = i830_dispatch_execbuffer;
2378         else
2379                 ring->dispatch_execbuffer = i915_dispatch_execbuffer;
2380         ring->init = init_render_ring;
2381         ring->cleanup = render_ring_cleanup;
2382
2383         /* Workaround batchbuffer to combat CS tlb bug. */
2384         if (HAS_BROKEN_CS_TLB(dev)) {
2385                 obj = i915_gem_alloc_object(dev, I830_WA_SIZE);
2386                 if (obj == NULL) {
2387                         DRM_ERROR("Failed to allocate batch bo\n");
2388                         return -ENOMEM;
2389                 }
2390
2391                 ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
2392                 if (ret != 0) {
2393                         drm_gem_object_unreference(&obj->base);
2394                         DRM_ERROR("Failed to ping batch bo\n");
2395                         return ret;
2396                 }
2397
2398                 ring->scratch.obj = obj;
2399                 ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
2400         }
2401
2402         return intel_init_ring_buffer(dev, ring);
2403 }
2404
2405 int intel_render_ring_init_dri(struct drm_device *dev, u64 start, u32 size)
2406 {
2407         struct drm_i915_private *dev_priv = dev->dev_private;
2408         struct intel_engine_cs *ring = &dev_priv->ring[RCS];
2409         struct intel_ringbuffer *ringbuf = ring->buffer;
2410         int ret;
2411
2412         if (ringbuf == NULL) {
2413                 ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
2414                 if (!ringbuf)
2415                         return -ENOMEM;
2416                 ring->buffer = ringbuf;
2417         }
2418
2419         ring->name = "render ring";
2420         ring->id = RCS;
2421         ring->mmio_base = RENDER_RING_BASE;
2422
2423         if (INTEL_INFO(dev)->gen >= 6) {
2424                 /* non-kms not supported on gen6+ */
2425                 ret = -ENODEV;
2426                 goto err_ringbuf;
2427         }
2428
2429         /* Note: gem is not supported on gen5/ilk without kms (the corresponding
2430          * gem_init ioctl returns with -ENODEV). Hence we do not need to set up
2431          * the special gen5 functions. */
2432         ring->add_request = i9xx_add_request;
2433         if (INTEL_INFO(dev)->gen < 4)
2434                 ring->flush = gen2_render_ring_flush;
2435         else
2436                 ring->flush = gen4_render_ring_flush;
2437         ring->get_seqno = ring_get_seqno;
2438         ring->set_seqno = ring_set_seqno;
2439         if (IS_GEN2(dev)) {
2440                 ring->irq_get = i8xx_ring_get_irq;
2441                 ring->irq_put = i8xx_ring_put_irq;
2442         } else {
2443                 ring->irq_get = i9xx_ring_get_irq;
2444                 ring->irq_put = i9xx_ring_put_irq;
2445         }
2446         ring->irq_enable_mask = I915_USER_INTERRUPT;
2447         ring->write_tail = ring_write_tail;
2448         if (INTEL_INFO(dev)->gen >= 4)
2449                 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2450         else if (IS_I830(dev) || IS_845G(dev))
2451                 ring->dispatch_execbuffer = i830_dispatch_execbuffer;
2452         else
2453                 ring->dispatch_execbuffer = i915_dispatch_execbuffer;
2454         ring->init = init_render_ring;
2455         ring->cleanup = render_ring_cleanup;
2456
2457         ring->dev = dev;
2458         INIT_LIST_HEAD(&ring->active_list);
2459         INIT_LIST_HEAD(&ring->request_list);
2460
2461         ringbuf->size = size;
2462         ringbuf->effective_size = ringbuf->size;
2463         if (IS_I830(ring->dev) || IS_845G(ring->dev))
2464                 ringbuf->effective_size -= 2 * CACHELINE_BYTES;
2465
2466         ringbuf->virtual_start = ioremap_wc(start, size);
2467         if (ringbuf->virtual_start == NULL) {
2468                 DRM_ERROR("can not ioremap virtual address for"
2469                           " ring buffer\n");
2470                 ret = -ENOMEM;
2471                 goto err_ringbuf;
2472         }
2473
2474         if (!I915_NEED_GFX_HWS(dev)) {
2475                 ret = init_phys_status_page(ring);
2476                 if (ret)
2477                         goto err_vstart;
2478         }
2479
2480         return 0;
2481
2482 err_vstart:
2483         pmap_unmapdev((vm_offset_t)ring->buffer->virtual_start, size);
2484 err_ringbuf:
2485         kfree(ringbuf);
2486         ring->buffer = NULL;
2487         return ret;
2488 }
2489
2490 int intel_init_bsd_ring_buffer(struct drm_device *dev)
2491 {
2492         struct drm_i915_private *dev_priv = dev->dev_private;
2493         struct intel_engine_cs *ring = &dev_priv->ring[VCS];
2494
2495         ring->name = "bsd ring";
2496         ring->id = VCS;
2497
2498         ring->write_tail = ring_write_tail;
2499         if (INTEL_INFO(dev)->gen >= 6) {
2500                 ring->mmio_base = GEN6_BSD_RING_BASE;
2501                 /* gen6 bsd needs a special wa for tail updates */
2502                 if (IS_GEN6(dev))
2503                         ring->write_tail = gen6_bsd_ring_write_tail;
2504                 ring->flush = gen6_bsd_ring_flush;
2505                 ring->add_request = gen6_add_request;
2506                 ring->get_seqno = gen6_ring_get_seqno;
2507                 ring->set_seqno = ring_set_seqno;
2508                 if (INTEL_INFO(dev)->gen >= 8) {
2509                         ring->irq_enable_mask =
2510                                 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
2511                         ring->irq_get = gen8_ring_get_irq;
2512                         ring->irq_put = gen8_ring_put_irq;
2513                         ring->dispatch_execbuffer =
2514                                 gen8_ring_dispatch_execbuffer;
2515                         if (i915_semaphore_is_enabled(dev)) {
2516                                 ring->semaphore.sync_to = gen8_ring_sync;
2517                                 ring->semaphore.signal = gen8_xcs_signal;
2518                                 GEN8_RING_SEMAPHORE_INIT;
2519                         }
2520                 } else {
2521                         ring->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2522                         ring->irq_get = gen6_ring_get_irq;
2523                         ring->irq_put = gen6_ring_put_irq;
2524                         ring->dispatch_execbuffer =
2525                                 gen6_ring_dispatch_execbuffer;
2526                         if (i915_semaphore_is_enabled(dev)) {
2527                                 ring->semaphore.sync_to = gen6_ring_sync;
2528                                 ring->semaphore.signal = gen6_signal;
2529                                 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VR;
2530                                 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_INVALID;
2531                                 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VB;
2532                                 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_VVE;
2533                                 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2534                                 ring->semaphore.mbox.signal[RCS] = GEN6_RVSYNC;
2535                                 ring->semaphore.mbox.signal[VCS] = GEN6_NOSYNC;
2536                                 ring->semaphore.mbox.signal[BCS] = GEN6_BVSYNC;
2537                                 ring->semaphore.mbox.signal[VECS] = GEN6_VEVSYNC;
2538                                 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2539                         }
2540                 }
2541         } else {
2542                 ring->mmio_base = BSD_RING_BASE;
2543                 ring->flush = bsd_ring_flush;
2544                 ring->add_request = i9xx_add_request;
2545                 ring->get_seqno = ring_get_seqno;
2546                 ring->set_seqno = ring_set_seqno;
2547                 if (IS_GEN5(dev)) {
2548                         ring->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2549                         ring->irq_get = gen5_ring_get_irq;
2550                         ring->irq_put = gen5_ring_put_irq;
2551                 } else {
2552                         ring->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2553                         ring->irq_get = i9xx_ring_get_irq;
2554                         ring->irq_put = i9xx_ring_put_irq;
2555                 }
2556                 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2557         }
2558         ring->init = init_ring_common;
2559
2560         return intel_init_ring_buffer(dev, ring);
2561 }
2562
2563 /**
2564  * Initialize the second BSD ring for Broadwell GT3.
2565  * It is noted that this only exists on Broadwell GT3.
2566  */
2567 int intel_init_bsd2_ring_buffer(struct drm_device *dev)
2568 {
2569         struct drm_i915_private *dev_priv = dev->dev_private;
2570         struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
2571
2572         if ((INTEL_INFO(dev)->gen != 8)) {
2573                 DRM_ERROR("No dual-BSD ring on non-BDW machine\n");
2574                 return -EINVAL;
2575         }
2576
2577         ring->name = "bsd2 ring";
2578         ring->id = VCS2;
2579
2580         ring->write_tail = ring_write_tail;
2581         ring->mmio_base = GEN8_BSD2_RING_BASE;
2582         ring->flush = gen6_bsd_ring_flush;
2583         ring->add_request = gen6_add_request;
2584         ring->get_seqno = gen6_ring_get_seqno;
2585         ring->set_seqno = ring_set_seqno;
2586         ring->irq_enable_mask =
2587                         GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
2588         ring->irq_get = gen8_ring_get_irq;
2589         ring->irq_put = gen8_ring_put_irq;
2590         ring->dispatch_execbuffer =
2591                         gen8_ring_dispatch_execbuffer;
2592         if (i915_semaphore_is_enabled(dev)) {
2593                 ring->semaphore.sync_to = gen8_ring_sync;
2594                 ring->semaphore.signal = gen8_xcs_signal;
2595                 GEN8_RING_SEMAPHORE_INIT;
2596         }
2597         ring->init = init_ring_common;
2598
2599         return intel_init_ring_buffer(dev, ring);
2600 }
2601
2602 int intel_init_blt_ring_buffer(struct drm_device *dev)
2603 {
2604         struct drm_i915_private *dev_priv = dev->dev_private;
2605         struct intel_engine_cs *ring = &dev_priv->ring[BCS];
2606
2607         ring->name = "blitter ring";
2608         ring->id = BCS;
2609
2610         ring->mmio_base = BLT_RING_BASE;
2611         ring->write_tail = ring_write_tail;
2612         ring->flush = gen6_ring_flush;
2613         ring->add_request = gen6_add_request;
2614         ring->get_seqno = gen6_ring_get_seqno;
2615         ring->set_seqno = ring_set_seqno;
2616         if (INTEL_INFO(dev)->gen >= 8) {
2617                 ring->irq_enable_mask =
2618                         GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
2619                 ring->irq_get = gen8_ring_get_irq;
2620                 ring->irq_put = gen8_ring_put_irq;
2621                 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2622                 if (i915_semaphore_is_enabled(dev)) {
2623                         ring->semaphore.sync_to = gen8_ring_sync;
2624                         ring->semaphore.signal = gen8_xcs_signal;
2625                         GEN8_RING_SEMAPHORE_INIT;
2626                 }
2627         } else {
2628                 ring->irq_enable_mask = GT_BLT_USER_INTERRUPT;
2629                 ring->irq_get = gen6_ring_get_irq;
2630                 ring->irq_put = gen6_ring_put_irq;
2631                 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2632                 if (i915_semaphore_is_enabled(dev)) {
2633                         ring->semaphore.signal = gen6_signal;
2634                         ring->semaphore.sync_to = gen6_ring_sync;
2635                         /*
2636                          * The current semaphore is only applied on pre-gen8
2637                          * platform.  And there is no VCS2 ring on the pre-gen8
2638                          * platform. So the semaphore between BCS and VCS2 is
2639                          * initialized as INVALID.  Gen8 will initialize the
2640                          * sema between BCS and VCS2 later.
2641                          */
2642                         ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_BR;
2643                         ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_BV;
2644                         ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_INVALID;
2645                         ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_BVE;
2646                         ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2647                         ring->semaphore.mbox.signal[RCS] = GEN6_RBSYNC;
2648                         ring->semaphore.mbox.signal[VCS] = GEN6_VBSYNC;
2649                         ring->semaphore.mbox.signal[BCS] = GEN6_NOSYNC;
2650                         ring->semaphore.mbox.signal[VECS] = GEN6_VEBSYNC;
2651                         ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2652                 }
2653         }
2654         ring->init = init_ring_common;
2655
2656         return intel_init_ring_buffer(dev, ring);
2657 }
2658
2659 int intel_init_vebox_ring_buffer(struct drm_device *dev)
2660 {
2661         struct drm_i915_private *dev_priv = dev->dev_private;
2662         struct intel_engine_cs *ring = &dev_priv->ring[VECS];
2663
2664         ring->name = "video enhancement ring";
2665         ring->id = VECS;
2666
2667         ring->mmio_base = VEBOX_RING_BASE;
2668         ring->write_tail = ring_write_tail;
2669         ring->flush = gen6_ring_flush;
2670         ring->add_request = gen6_add_request;
2671         ring->get_seqno = gen6_ring_get_seqno;
2672         ring->set_seqno = ring_set_seqno;
2673
2674         if (INTEL_INFO(dev)->gen >= 8) {
2675                 ring->irq_enable_mask =
2676                         GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
2677                 ring->irq_get = gen8_ring_get_irq;
2678                 ring->irq_put = gen8_ring_put_irq;
2679                 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2680                 if (i915_semaphore_is_enabled(dev)) {
2681                         ring->semaphore.sync_to = gen8_ring_sync;
2682                         ring->semaphore.signal = gen8_xcs_signal;
2683                         GEN8_RING_SEMAPHORE_INIT;
2684                 }
2685         } else {
2686                 ring->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
2687                 ring->irq_get = hsw_vebox_get_irq;
2688                 ring->irq_put = hsw_vebox_put_irq;
2689                 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2690                 if (i915_semaphore_is_enabled(dev)) {
2691                         ring->semaphore.sync_to = gen6_ring_sync;
2692                         ring->semaphore.signal = gen6_signal;
2693                         ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VER;
2694                         ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_VEV;
2695                         ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VEB;
2696                         ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_INVALID;
2697                         ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2698                         ring->semaphore.mbox.signal[RCS] = GEN6_RVESYNC;
2699                         ring->semaphore.mbox.signal[VCS] = GEN6_VVESYNC;
2700                         ring->semaphore.mbox.signal[BCS] = GEN6_BVESYNC;
2701                         ring->semaphore.mbox.signal[VECS] = GEN6_NOSYNC;
2702                         ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2703                 }
2704         }
2705         ring->init = init_ring_common;
2706
2707         return intel_init_ring_buffer(dev, ring);
2708 }
2709
2710 int
2711 intel_ring_flush_all_caches(struct intel_engine_cs *ring)
2712 {
2713         int ret;
2714
2715         if (!ring->gpu_caches_dirty)
2716                 return 0;
2717
2718         ret = ring->flush(ring, 0, I915_GEM_GPU_DOMAINS);
2719         if (ret)
2720                 return ret;
2721
2722         trace_i915_gem_ring_flush(ring, 0, I915_GEM_GPU_DOMAINS);
2723
2724         ring->gpu_caches_dirty = false;
2725         return 0;
2726 }
2727
2728 int
2729 intel_ring_invalidate_all_caches(struct intel_engine_cs *ring)
2730 {
2731         uint32_t flush_domains;
2732         int ret;
2733
2734         flush_domains = 0;
2735         if (ring->gpu_caches_dirty)
2736                 flush_domains = I915_GEM_GPU_DOMAINS;
2737
2738         ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
2739         if (ret)
2740                 return ret;
2741
2742         trace_i915_gem_ring_flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
2743
2744         ring->gpu_caches_dirty = false;
2745         return 0;
2746 }
2747
2748 void
2749 intel_stop_ring_buffer(struct intel_engine_cs *ring)
2750 {
2751         int ret;
2752
2753         if (!intel_ring_initialized(ring))
2754                 return;
2755
2756         ret = intel_ring_idle(ring);
2757         if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
2758                 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
2759                           ring->name, ret);
2760
2761         stop_ring(ring);
2762 }