bge: Commit coalesce parameters change in polling code
[dragonfly.git] / sys / dev / netif / bge / if_bge.c
1 /*
2  * Copyright (c) 2001 Wind River Systems
3  * Copyright (c) 1997, 1998, 1999, 2001
4  *      Bill Paul <wpaul@windriver.com>.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. All advertising materials mentioning features or use of this software
15  *    must display the following acknowledgement:
16  *      This product includes software developed by Bill Paul.
17  * 4. Neither the name of the author nor the names of any co-contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31  * THE POSSIBILITY OF SUCH DAMAGE.
32  *
33  * $FreeBSD: src/sys/dev/bge/if_bge.c,v 1.3.2.39 2005/07/03 03:41:18 silby Exp $
34  */
35
36 /*
37  * Broadcom BCM570x family gigabit ethernet driver for FreeBSD.
38  * 
39  * Written by Bill Paul <wpaul@windriver.com>
40  * Senior Engineer, Wind River Systems
41  */
42
43 /*
44  * The Broadcom BCM5700 is based on technology originally developed by
45  * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
46  * MAC chips. The BCM5700, sometimes refered to as the Tigon III, has
47  * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
48  * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
49  * frames, highly configurable RX filtering, and 16 RX and TX queues
50  * (which, along with RX filter rules, can be used for QOS applications).
51  * Other features, such as TCP segmentation, may be available as part
52  * of value-added firmware updates. Unlike the Tigon I and Tigon II,
53  * firmware images can be stored in hardware and need not be compiled
54  * into the driver.
55  *
56  * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
57  * function in a 32-bit/64-bit 33/66Mhz bus, or a 64-bit/133Mhz bus.
58  * 
59  * The BCM5701 is a single-chip solution incorporating both the BCM5700
60  * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
61  * does not support external SSRAM.
62  *
63  * Broadcom also produces a variation of the BCM5700 under the "Altima"
64  * brand name, which is functionally similar but lacks PCI-X support.
65  *
66  * Without external SSRAM, you can only have at most 4 TX rings,
67  * and the use of the mini RX ring is disabled. This seems to imply
68  * that these features are simply not available on the BCM5701. As a
69  * result, this driver does not implement any support for the mini RX
70  * ring.
71  */
72
73 #include "opt_ifpoll.h"
74
75 #include <sys/param.h>
76 #include <sys/bus.h>
77 #include <sys/endian.h>
78 #include <sys/kernel.h>
79 #include <sys/ktr.h>
80 #include <sys/interrupt.h>
81 #include <sys/mbuf.h>
82 #include <sys/malloc.h>
83 #include <sys/queue.h>
84 #include <sys/rman.h>
85 #include <sys/serialize.h>
86 #include <sys/socket.h>
87 #include <sys/sockio.h>
88 #include <sys/sysctl.h>
89
90 #include <netinet/ip.h>
91 #include <netinet/tcp.h>
92
93 #include <net/bpf.h>
94 #include <net/ethernet.h>
95 #include <net/if.h>
96 #include <net/if_arp.h>
97 #include <net/if_dl.h>
98 #include <net/if_media.h>
99 #include <net/if_poll.h>
100 #include <net/if_types.h>
101 #include <net/ifq_var.h>
102 #include <net/vlan/if_vlan_var.h>
103 #include <net/vlan/if_vlan_ether.h>
104
105 #include <dev/netif/mii_layer/mii.h>
106 #include <dev/netif/mii_layer/miivar.h>
107 #include <dev/netif/mii_layer/brgphyreg.h>
108
109 #include <bus/pci/pcidevs.h>
110 #include <bus/pci/pcireg.h>
111 #include <bus/pci/pcivar.h>
112
113 #include <dev/netif/bge/if_bgereg.h>
114 #include <dev/netif/bge/if_bgevar.h>
115
116 /* "device miibus" required.  See GENERIC if you get errors here. */
117 #include "miibus_if.h"
118
119 #define BGE_CSUM_FEATURES       (CSUM_IP | CSUM_TCP)
120
121 static const struct bge_type {
122         uint16_t                bge_vid;
123         uint16_t                bge_did;
124         char                    *bge_name;
125 } bge_devs[] = {
126         { PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C996,
127                 "3COM 3C996 Gigabit Ethernet" },
128
129         { PCI_VENDOR_ALTEON, PCI_PRODUCT_ALTEON_BCM5700,
130                 "Alteon BCM5700 Gigabit Ethernet" },
131         { PCI_VENDOR_ALTEON, PCI_PRODUCT_ALTEON_BCM5701,
132                 "Alteon BCM5701 Gigabit Ethernet" },
133
134         { PCI_VENDOR_ALTIMA, PCI_PRODUCT_ALTIMA_AC1000,
135                 "Altima AC1000 Gigabit Ethernet" },
136         { PCI_VENDOR_ALTIMA, PCI_PRODUCT_ALTIMA_AC1001,
137                 "Altima AC1002 Gigabit Ethernet" },
138         { PCI_VENDOR_ALTIMA, PCI_PRODUCT_ALTIMA_AC9100,
139                 "Altima AC9100 Gigabit Ethernet" },
140
141         { PCI_VENDOR_APPLE, PCI_PRODUCT_APPLE_BCM5701,
142                 "Apple BCM5701 Gigabit Ethernet" },
143
144         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5700,
145                 "Broadcom BCM5700 Gigabit Ethernet" },
146         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5701,
147                 "Broadcom BCM5701 Gigabit Ethernet" },
148         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5702,
149                 "Broadcom BCM5702 Gigabit Ethernet" },
150         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5702X,
151                 "Broadcom BCM5702X Gigabit Ethernet" },
152         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5702_ALT,
153                 "Broadcom BCM5702 Gigabit Ethernet" },
154         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5703,
155                 "Broadcom BCM5703 Gigabit Ethernet" },
156         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5703X,
157                 "Broadcom BCM5703X Gigabit Ethernet" },
158         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5703A3,
159                 "Broadcom BCM5703 Gigabit Ethernet" },
160         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5704C,
161                 "Broadcom BCM5704C Dual Gigabit Ethernet" },
162         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5704S,
163                 "Broadcom BCM5704S Dual Gigabit Ethernet" },
164         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5704S_ALT,
165                 "Broadcom BCM5704S Dual Gigabit Ethernet" },
166         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705,
167                 "Broadcom BCM5705 Gigabit Ethernet" },
168         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705F,
169                 "Broadcom BCM5705F Gigabit Ethernet" },
170         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705K,
171                 "Broadcom BCM5705K Gigabit Ethernet" },
172         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705M,
173                 "Broadcom BCM5705M Gigabit Ethernet" },
174         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705M_ALT,
175                 "Broadcom BCM5705M Gigabit Ethernet" },
176         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5714,
177                 "Broadcom BCM5714C Gigabit Ethernet" },
178         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5714S,
179                 "Broadcom BCM5714S Gigabit Ethernet" },
180         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5715,
181                 "Broadcom BCM5715 Gigabit Ethernet" },
182         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5715S,
183                 "Broadcom BCM5715S Gigabit Ethernet" },
184         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5720,
185                 "Broadcom BCM5720 Gigabit Ethernet" },
186         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5721,
187                 "Broadcom BCM5721 Gigabit Ethernet" },
188         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5722,
189                 "Broadcom BCM5722 Gigabit Ethernet" },
190         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5723,
191                 "Broadcom BCM5723 Gigabit Ethernet" },
192         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5750,
193                 "Broadcom BCM5750 Gigabit Ethernet" },
194         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5750M,
195                 "Broadcom BCM5750M Gigabit Ethernet" },
196         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5751,
197                 "Broadcom BCM5751 Gigabit Ethernet" },
198         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5751F,
199                 "Broadcom BCM5751F Gigabit Ethernet" },
200         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5751M,
201                 "Broadcom BCM5751M Gigabit Ethernet" },
202         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5752,
203                 "Broadcom BCM5752 Gigabit Ethernet" },
204         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5752M,
205                 "Broadcom BCM5752M Gigabit Ethernet" },
206         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5753,
207                 "Broadcom BCM5753 Gigabit Ethernet" },
208         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5753F,
209                 "Broadcom BCM5753F Gigabit Ethernet" },
210         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5753M,
211                 "Broadcom BCM5753M Gigabit Ethernet" },
212         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5754,
213                 "Broadcom BCM5754 Gigabit Ethernet" },
214         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5754M,
215                 "Broadcom BCM5754M Gigabit Ethernet" },
216         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5755,
217                 "Broadcom BCM5755 Gigabit Ethernet" },
218         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5755M,
219                 "Broadcom BCM5755M Gigabit Ethernet" },
220         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5756,
221                 "Broadcom BCM5756 Gigabit Ethernet" },
222         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5761,
223                 "Broadcom BCM5761 Gigabit Ethernet" },
224         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5761E,
225                 "Broadcom BCM5761E Gigabit Ethernet" },
226         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5761S,
227                 "Broadcom BCM5761S Gigabit Ethernet" },
228         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5761SE,
229                 "Broadcom BCM5761SE Gigabit Ethernet" },
230         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5764,
231                 "Broadcom BCM5764 Gigabit Ethernet" },
232         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5780,
233                 "Broadcom BCM5780 Gigabit Ethernet" },
234         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5780S,
235                 "Broadcom BCM5780S Gigabit Ethernet" },
236         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5781,
237                 "Broadcom BCM5781 Gigabit Ethernet" },
238         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5782,
239                 "Broadcom BCM5782 Gigabit Ethernet" },
240         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5784,
241                 "Broadcom BCM5784 Gigabit Ethernet" },
242         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5785F,
243                 "Broadcom BCM5785F Gigabit Ethernet" },
244         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5785G,
245                 "Broadcom BCM5785G Gigabit Ethernet" },
246         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5786,
247                 "Broadcom BCM5786 Gigabit Ethernet" },
248         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5787,
249                 "Broadcom BCM5787 Gigabit Ethernet" },
250         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5787F,
251                 "Broadcom BCM5787F Gigabit Ethernet" },
252         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5787M,
253                 "Broadcom BCM5787M Gigabit Ethernet" },
254         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5788,
255                 "Broadcom BCM5788 Gigabit Ethernet" },
256         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5789,
257                 "Broadcom BCM5789 Gigabit Ethernet" },
258         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5901,
259                 "Broadcom BCM5901 Fast Ethernet" },
260         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5901A2,
261                 "Broadcom BCM5901A2 Fast Ethernet" },
262         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5903M,
263                 "Broadcom BCM5903M Fast Ethernet" },
264         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5906,
265                 "Broadcom BCM5906 Fast Ethernet"},
266         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5906M,
267                 "Broadcom BCM5906M Fast Ethernet"},
268         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57760,
269                 "Broadcom BCM57760 Gigabit Ethernet"},
270         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57780,
271                 "Broadcom BCM57780 Gigabit Ethernet"},
272         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57788,
273                 "Broadcom BCM57788 Gigabit Ethernet"},
274         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57790,
275                 "Broadcom BCM57790 Gigabit Ethernet"},
276         { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
277                 "SysKonnect Gigabit Ethernet" },
278
279         { 0, 0, NULL }
280 };
281
282 #define BGE_IS_JUMBO_CAPABLE(sc)        ((sc)->bge_flags & BGE_FLAG_JUMBO)
283 #define BGE_IS_5700_FAMILY(sc)          ((sc)->bge_flags & BGE_FLAG_5700_FAMILY)
284 #define BGE_IS_5705_PLUS(sc)            ((sc)->bge_flags & BGE_FLAG_5705_PLUS)
285 #define BGE_IS_5714_FAMILY(sc)          ((sc)->bge_flags & BGE_FLAG_5714_FAMILY)
286 #define BGE_IS_575X_PLUS(sc)            ((sc)->bge_flags & BGE_FLAG_575X_PLUS)
287 #define BGE_IS_5755_PLUS(sc)            ((sc)->bge_flags & BGE_FLAG_5755_PLUS)
288 #define BGE_IS_5788(sc)                 ((sc)->bge_flags & BGE_FLAG_5788)
289
290 #define BGE_IS_CRIPPLED(sc)             \
291         (BGE_IS_5788((sc)) || (sc)->bge_asicrev == BGE_ASICREV_BCM5700)
292
293 typedef int     (*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]);
294
295 static int      bge_probe(device_t);
296 static int      bge_attach(device_t);
297 static int      bge_detach(device_t);
298 static void     bge_txeof(struct bge_softc *, uint16_t);
299 static void     bge_rxeof(struct bge_softc *, uint16_t);
300
301 static void     bge_tick(void *);
302 static void     bge_stats_update(struct bge_softc *);
303 static void     bge_stats_update_regs(struct bge_softc *);
304 static struct mbuf *
305                 bge_defrag_shortdma(struct mbuf *);
306 static int      bge_encap(struct bge_softc *, struct mbuf **, uint32_t *);
307 static int      bge_setup_tso(struct bge_softc *, struct mbuf **,
308                     uint16_t *, uint16_t *);
309
310 #ifdef IFPOLL_ENABLE
311 static void     bge_npoll(struct ifnet *, struct ifpoll_info *);
312 static void     bge_npoll_compat(struct ifnet *, void *, int );
313 #endif
314 static void     bge_intr_crippled(void *);
315 static void     bge_intr_legacy(void *);
316 static void     bge_msi(void *);
317 static void     bge_msi_oneshot(void *);
318 static void     bge_intr(struct bge_softc *);
319 static void     bge_enable_intr(struct bge_softc *);
320 static void     bge_disable_intr(struct bge_softc *);
321 static void     bge_start(struct ifnet *);
322 static int      bge_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
323 static void     bge_init(void *);
324 static void     bge_stop(struct bge_softc *);
325 static void     bge_watchdog(struct ifnet *);
326 static void     bge_shutdown(device_t);
327 static int      bge_suspend(device_t);
328 static int      bge_resume(device_t);
329 static int      bge_ifmedia_upd(struct ifnet *);
330 static void     bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
331
332 static uint8_t  bge_nvram_getbyte(struct bge_softc *, int, uint8_t *);
333 static int      bge_read_nvram(struct bge_softc *, caddr_t, int, int);
334
335 static uint8_t  bge_eeprom_getbyte(struct bge_softc *, uint32_t, uint8_t *);
336 static int      bge_read_eeprom(struct bge_softc *, caddr_t, uint32_t, size_t);
337
338 static void     bge_setmulti(struct bge_softc *);
339 static void     bge_setpromisc(struct bge_softc *);
340 static void     bge_enable_msi(struct bge_softc *sc);
341
342 static int      bge_alloc_jumbo_mem(struct bge_softc *);
343 static void     bge_free_jumbo_mem(struct bge_softc *);
344 static struct bge_jslot
345                 *bge_jalloc(struct bge_softc *);
346 static void     bge_jfree(void *);
347 static void     bge_jref(void *);
348 static int      bge_newbuf_std(struct bge_softc *, int, int);
349 static int      bge_newbuf_jumbo(struct bge_softc *, int, int);
350 static void     bge_setup_rxdesc_std(struct bge_softc *, int);
351 static void     bge_setup_rxdesc_jumbo(struct bge_softc *, int);
352 static int      bge_init_rx_ring_std(struct bge_softc *);
353 static void     bge_free_rx_ring_std(struct bge_softc *);
354 static int      bge_init_rx_ring_jumbo(struct bge_softc *);
355 static void     bge_free_rx_ring_jumbo(struct bge_softc *);
356 static void     bge_free_tx_ring(struct bge_softc *);
357 static int      bge_init_tx_ring(struct bge_softc *);
358
359 static int      bge_chipinit(struct bge_softc *);
360 static int      bge_blockinit(struct bge_softc *);
361 static void     bge_stop_block(struct bge_softc *, bus_size_t, uint32_t);
362
363 static uint32_t bge_readmem_ind(struct bge_softc *, uint32_t);
364 static void     bge_writemem_ind(struct bge_softc *, uint32_t, uint32_t);
365 #ifdef notdef
366 static uint32_t bge_readreg_ind(struct bge_softc *, uint32_t);
367 #endif
368 static void     bge_writereg_ind(struct bge_softc *, uint32_t, uint32_t);
369 static void     bge_writemem_direct(struct bge_softc *, uint32_t, uint32_t);
370 static void     bge_writembx(struct bge_softc *, int, int);
371
372 static int      bge_miibus_readreg(device_t, int, int);
373 static int      bge_miibus_writereg(device_t, int, int, int);
374 static void     bge_miibus_statchg(device_t);
375 static void     bge_bcm5700_link_upd(struct bge_softc *, uint32_t);
376 static void     bge_tbi_link_upd(struct bge_softc *, uint32_t);
377 static void     bge_copper_link_upd(struct bge_softc *, uint32_t);
378 static void     bge_autopoll_link_upd(struct bge_softc *, uint32_t);
379 static void     bge_link_poll(struct bge_softc *);
380
381 static void     bge_reset(struct bge_softc *);
382
383 static int      bge_dma_alloc(struct bge_softc *);
384 static void     bge_dma_free(struct bge_softc *);
385 static int      bge_dma_block_alloc(struct bge_softc *, bus_size_t,
386                                     bus_dma_tag_t *, bus_dmamap_t *,
387                                     void **, bus_addr_t *);
388 static void     bge_dma_block_free(bus_dma_tag_t, bus_dmamap_t, void *);
389
390 static int      bge_get_eaddr_mem(struct bge_softc *, uint8_t[]);
391 static int      bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]);
392 static int      bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]);
393 static int      bge_get_eaddr(struct bge_softc *, uint8_t[]);
394
395 static void     bge_coal_change(struct bge_softc *);
396 static int      bge_sysctl_rx_coal_ticks(SYSCTL_HANDLER_ARGS);
397 static int      bge_sysctl_tx_coal_ticks(SYSCTL_HANDLER_ARGS);
398 static int      bge_sysctl_rx_coal_bds(SYSCTL_HANDLER_ARGS);
399 static int      bge_sysctl_tx_coal_bds(SYSCTL_HANDLER_ARGS);
400 static int      bge_sysctl_rx_coal_ticks_int(SYSCTL_HANDLER_ARGS);
401 static int      bge_sysctl_tx_coal_ticks_int(SYSCTL_HANDLER_ARGS);
402 static int      bge_sysctl_rx_coal_bds_int(SYSCTL_HANDLER_ARGS);
403 static int      bge_sysctl_tx_coal_bds_int(SYSCTL_HANDLER_ARGS);
404 static int      bge_sysctl_coal_chg(SYSCTL_HANDLER_ARGS, uint32_t *,
405                     int, int, uint32_t);
406
407 /*
408  * Set following tunable to 1 for some IBM blade servers with the DNLK
409  * switch module. Auto negotiation is broken for those configurations.
410  */
411 static int      bge_fake_autoneg = 0;
412 TUNABLE_INT("hw.bge.fake_autoneg", &bge_fake_autoneg);
413
414 static int      bge_msi_enable = 1;
415 TUNABLE_INT("hw.bge.msi.enable", &bge_msi_enable);
416
417 #if !defined(KTR_IF_BGE)
418 #define KTR_IF_BGE      KTR_ALL
419 #endif
420 KTR_INFO_MASTER(if_bge);
421 KTR_INFO(KTR_IF_BGE, if_bge, intr, 0, "intr");
422 KTR_INFO(KTR_IF_BGE, if_bge, rx_pkt, 1, "rx_pkt");
423 KTR_INFO(KTR_IF_BGE, if_bge, tx_pkt, 2, "tx_pkt");
424 #define logif(name)     KTR_LOG(if_bge_ ## name)
425
426 static device_method_t bge_methods[] = {
427         /* Device interface */
428         DEVMETHOD(device_probe,         bge_probe),
429         DEVMETHOD(device_attach,        bge_attach),
430         DEVMETHOD(device_detach,        bge_detach),
431         DEVMETHOD(device_shutdown,      bge_shutdown),
432         DEVMETHOD(device_suspend,       bge_suspend),
433         DEVMETHOD(device_resume,        bge_resume),
434
435         /* bus interface */
436         DEVMETHOD(bus_print_child,      bus_generic_print_child),
437         DEVMETHOD(bus_driver_added,     bus_generic_driver_added),
438
439         /* MII interface */
440         DEVMETHOD(miibus_readreg,       bge_miibus_readreg),
441         DEVMETHOD(miibus_writereg,      bge_miibus_writereg),
442         DEVMETHOD(miibus_statchg,       bge_miibus_statchg),
443
444         { 0, 0 }
445 };
446
447 static DEFINE_CLASS_0(bge, bge_driver, bge_methods, sizeof(struct bge_softc));
448 static devclass_t bge_devclass;
449
450 DECLARE_DUMMY_MODULE(if_bge);
451 DRIVER_MODULE(if_bge, pci, bge_driver, bge_devclass, NULL, NULL);
452 DRIVER_MODULE(miibus, bge, miibus_driver, miibus_devclass, NULL, NULL);
453
454 static uint32_t
455 bge_readmem_ind(struct bge_softc *sc, uint32_t off)
456 {
457         device_t dev = sc->bge_dev;
458         uint32_t val;
459
460         if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
461             off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
462                 return 0;
463
464         pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
465         val = pci_read_config(dev, BGE_PCI_MEMWIN_DATA, 4);
466         pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
467         return (val);
468 }
469
470 static void
471 bge_writemem_ind(struct bge_softc *sc, uint32_t off, uint32_t val)
472 {
473         device_t dev = sc->bge_dev;
474
475         if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
476             off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
477                 return;
478
479         pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
480         pci_write_config(dev, BGE_PCI_MEMWIN_DATA, val, 4);
481         pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
482 }
483
484 #ifdef notdef
485 static uint32_t
486 bge_readreg_ind(struct bge_softc *sc, uin32_t off)
487 {
488         device_t dev = sc->bge_dev;
489
490         pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
491         return(pci_read_config(dev, BGE_PCI_REG_DATA, 4));
492 }
493 #endif
494
495 static void
496 bge_writereg_ind(struct bge_softc *sc, uint32_t off, uint32_t val)
497 {
498         device_t dev = sc->bge_dev;
499
500         pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
501         pci_write_config(dev, BGE_PCI_REG_DATA, val, 4);
502 }
503
504 static void
505 bge_writemem_direct(struct bge_softc *sc, uint32_t off, uint32_t val)
506 {
507         CSR_WRITE_4(sc, off, val);
508 }
509
510 static void
511 bge_writembx(struct bge_softc *sc, int off, int val)
512 {
513         if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
514                 off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
515
516         CSR_WRITE_4(sc, off, val);
517         if (sc->bge_mbox_reorder)
518                 CSR_READ_4(sc, off);
519 }
520
521 static uint8_t
522 bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
523 {
524         uint32_t access, byte = 0;
525         int i;
526
527         /* Lock. */
528         CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
529         for (i = 0; i < 8000; i++) {
530                 if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
531                         break;
532                 DELAY(20);
533         }
534         if (i == 8000)
535                 return (1);
536
537         /* Enable access. */
538         access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
539         CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
540
541         CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
542         CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
543         for (i = 0; i < BGE_TIMEOUT * 10; i++) {
544                 DELAY(10);
545                 if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
546                         DELAY(10);
547                         break;
548                 }
549         }
550
551         if (i == BGE_TIMEOUT * 10) {
552                 if_printf(&sc->arpcom.ac_if, "nvram read timed out\n");
553                 return (1);
554         }
555
556         /* Get result. */
557         byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
558
559         *dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
560
561         /* Disable access. */
562         CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
563
564         /* Unlock. */
565         CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
566         CSR_READ_4(sc, BGE_NVRAM_SWARB);
567
568         return (0);
569 }
570
571 /*
572  * Read a sequence of bytes from NVRAM.
573  */
574 static int
575 bge_read_nvram(struct bge_softc *sc, caddr_t dest, int off, int cnt)
576 {
577         int err = 0, i;
578         uint8_t byte = 0;
579
580         if (sc->bge_asicrev != BGE_ASICREV_BCM5906)
581                 return (1);
582
583         for (i = 0; i < cnt; i++) {
584                 err = bge_nvram_getbyte(sc, off + i, &byte);
585                 if (err)
586                         break;
587                 *(dest + i) = byte;
588         }
589
590         return (err ? 1 : 0);
591 }
592
593 /*
594  * Read a byte of data stored in the EEPROM at address 'addr.' The
595  * BCM570x supports both the traditional bitbang interface and an
596  * auto access interface for reading the EEPROM. We use the auto
597  * access method.
598  */
599 static uint8_t
600 bge_eeprom_getbyte(struct bge_softc *sc, uint32_t addr, uint8_t *dest)
601 {
602         int i;
603         uint32_t byte = 0;
604
605         /*
606          * Enable use of auto EEPROM access so we can avoid
607          * having to use the bitbang method.
608          */
609         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
610
611         /* Reset the EEPROM, load the clock period. */
612         CSR_WRITE_4(sc, BGE_EE_ADDR,
613             BGE_EEADDR_RESET|BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
614         DELAY(20);
615
616         /* Issue the read EEPROM command. */
617         CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
618
619         /* Wait for completion */
620         for(i = 0; i < BGE_TIMEOUT * 10; i++) {
621                 DELAY(10);
622                 if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
623                         break;
624         }
625
626         if (i == BGE_TIMEOUT) {
627                 if_printf(&sc->arpcom.ac_if, "eeprom read timed out\n");
628                 return(1);
629         }
630
631         /* Get result. */
632         byte = CSR_READ_4(sc, BGE_EE_DATA);
633
634         *dest = (byte >> ((addr % 4) * 8)) & 0xFF;
635
636         return(0);
637 }
638
639 /*
640  * Read a sequence of bytes from the EEPROM.
641  */
642 static int
643 bge_read_eeprom(struct bge_softc *sc, caddr_t dest, uint32_t off, size_t len)
644 {
645         size_t i;
646         int err;
647         uint8_t byte;
648
649         for (byte = 0, err = 0, i = 0; i < len; i++) {
650                 err = bge_eeprom_getbyte(sc, off + i, &byte);
651                 if (err)
652                         break;
653                 *(dest + i) = byte;
654         }
655
656         return(err ? 1 : 0);
657 }
658
659 static int
660 bge_miibus_readreg(device_t dev, int phy, int reg)
661 {
662         struct bge_softc *sc = device_get_softc(dev);
663         uint32_t val;
664         int i;
665
666         KASSERT(phy == sc->bge_phyno,
667             ("invalid phyno %d, should be %d", phy, sc->bge_phyno));
668
669         /* Clear the autopoll bit if set, otherwise may trigger PCI errors. */
670         if (sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) {
671                 CSR_WRITE_4(sc, BGE_MI_MODE,
672                     sc->bge_mi_mode & ~BGE_MIMODE_AUTOPOLL);
673                 DELAY(80);
674         }
675
676         CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY |
677             BGE_MIPHY(phy) | BGE_MIREG(reg));
678
679         /* Poll for the PHY register access to complete. */
680         for (i = 0; i < BGE_TIMEOUT; i++) {
681                 DELAY(10);
682                 val = CSR_READ_4(sc, BGE_MI_COMM);
683                 if ((val & BGE_MICOMM_BUSY) == 0) {
684                         DELAY(5);
685                         val = CSR_READ_4(sc, BGE_MI_COMM);
686                         break;
687                 }
688         }
689         if (i == BGE_TIMEOUT) {
690                 if_printf(&sc->arpcom.ac_if, "PHY read timed out "
691                     "(phy %d, reg %d, val 0x%08x)\n", phy, reg, val);
692                 val = 0;
693         }
694
695         /* Restore the autopoll bit if necessary. */
696         if (sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) {
697                 CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode);
698                 DELAY(80);
699         }
700
701         if (val & BGE_MICOMM_READFAIL)
702                 return 0;
703
704         return (val & 0xFFFF);
705 }
706
707 static int
708 bge_miibus_writereg(device_t dev, int phy, int reg, int val)
709 {
710         struct bge_softc *sc = device_get_softc(dev);
711         int i;
712
713         KASSERT(phy == sc->bge_phyno,
714             ("invalid phyno %d, should be %d", phy, sc->bge_phyno));
715
716         if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
717             (reg == BRGPHY_MII_1000CTL || reg == BRGPHY_MII_AUXCTL))
718                return 0;
719
720         /* Clear the autopoll bit if set, otherwise may trigger PCI errors. */
721         if (sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) {
722                 CSR_WRITE_4(sc, BGE_MI_MODE,
723                     sc->bge_mi_mode & ~BGE_MIMODE_AUTOPOLL);
724                 DELAY(80);
725         }
726
727         CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY |
728             BGE_MIPHY(phy) | BGE_MIREG(reg) | val);
729
730         for (i = 0; i < BGE_TIMEOUT; i++) {
731                 DELAY(10);
732                 if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) {
733                         DELAY(5);
734                         CSR_READ_4(sc, BGE_MI_COMM); /* dummy read */
735                         break;
736                 }
737         }
738         if (i == BGE_TIMEOUT) {
739                 if_printf(&sc->arpcom.ac_if, "PHY write timed out "
740                     "(phy %d, reg %d, val %d)\n", phy, reg, val);
741         }
742
743         /* Restore the autopoll bit if necessary. */
744         if (sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) {
745                 CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode);
746                 DELAY(80);
747         }
748
749         return 0;
750 }
751
752 static void
753 bge_miibus_statchg(device_t dev)
754 {
755         struct bge_softc *sc;
756         struct mii_data *mii;
757
758         sc = device_get_softc(dev);
759         mii = device_get_softc(sc->bge_miibus);
760
761         if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
762             (IFM_ACTIVE | IFM_AVALID)) {
763                 switch (IFM_SUBTYPE(mii->mii_media_active)) {
764                 case IFM_10_T:
765                 case IFM_100_TX:
766                         sc->bge_link = 1;
767                         break;
768                 case IFM_1000_T:
769                 case IFM_1000_SX:
770                 case IFM_2500_SX:
771                         if (sc->bge_asicrev != BGE_ASICREV_BCM5906)
772                                 sc->bge_link = 1;
773                         else
774                                 sc->bge_link = 0;
775                         break;
776                 default:
777                         sc->bge_link = 0;
778                         break;
779                 }
780         } else {
781                 sc->bge_link = 0;
782         }
783         if (sc->bge_link == 0)
784                 return;
785
786         BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE);
787         if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
788             IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX) {
789                 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII);
790         } else {
791                 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII);
792         }
793
794         if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
795                 BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
796         } else {
797                 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
798         }
799 }
800
801 /*
802  * Memory management for jumbo frames.
803  */
804 static int
805 bge_alloc_jumbo_mem(struct bge_softc *sc)
806 {
807         struct ifnet *ifp = &sc->arpcom.ac_if;
808         struct bge_jslot *entry;
809         uint8_t *ptr;
810         bus_addr_t paddr;
811         int i, error;
812
813         /*
814          * Create tag for jumbo mbufs.
815          * This is really a bit of a kludge. We allocate a special
816          * jumbo buffer pool which (thanks to the way our DMA
817          * memory allocation works) will consist of contiguous
818          * pages. This means that even though a jumbo buffer might
819          * be larger than a page size, we don't really need to
820          * map it into more than one DMA segment. However, the
821          * default mbuf tag will result in multi-segment mappings,
822          * so we have to create a special jumbo mbuf tag that
823          * lets us get away with mapping the jumbo buffers as
824          * a single segment. I think eventually the driver should
825          * be changed so that it uses ordinary mbufs and cluster
826          * buffers, i.e. jumbo frames can span multiple DMA
827          * descriptors. But that's a project for another day.
828          */
829
830         /*
831          * Create DMA stuffs for jumbo RX ring.
832          */
833         error = bge_dma_block_alloc(sc, BGE_JUMBO_RX_RING_SZ,
834                                     &sc->bge_cdata.bge_rx_jumbo_ring_tag,
835                                     &sc->bge_cdata.bge_rx_jumbo_ring_map,
836                                     (void *)&sc->bge_ldata.bge_rx_jumbo_ring,
837                                     &sc->bge_ldata.bge_rx_jumbo_ring_paddr);
838         if (error) {
839                 if_printf(ifp, "could not create jumbo RX ring\n");
840                 return error;
841         }
842
843         /*
844          * Create DMA stuffs for jumbo buffer block.
845          */
846         error = bge_dma_block_alloc(sc, BGE_JMEM,
847                                     &sc->bge_cdata.bge_jumbo_tag,
848                                     &sc->bge_cdata.bge_jumbo_map,
849                                     (void **)&sc->bge_ldata.bge_jumbo_buf,
850                                     &paddr);
851         if (error) {
852                 if_printf(ifp, "could not create jumbo buffer\n");
853                 return error;
854         }
855
856         SLIST_INIT(&sc->bge_jfree_listhead);
857
858         /*
859          * Now divide it up into 9K pieces and save the addresses
860          * in an array. Note that we play an evil trick here by using
861          * the first few bytes in the buffer to hold the the address
862          * of the softc structure for this interface. This is because
863          * bge_jfree() needs it, but it is called by the mbuf management
864          * code which will not pass it to us explicitly.
865          */
866         for (i = 0, ptr = sc->bge_ldata.bge_jumbo_buf; i < BGE_JSLOTS; i++) {
867                 entry = &sc->bge_cdata.bge_jslots[i];
868                 entry->bge_sc = sc;
869                 entry->bge_buf = ptr;
870                 entry->bge_paddr = paddr;
871                 entry->bge_inuse = 0;
872                 entry->bge_slot = i;
873                 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jslot_link);
874
875                 ptr += BGE_JLEN;
876                 paddr += BGE_JLEN;
877         }
878         return 0;
879 }
880
881 static void
882 bge_free_jumbo_mem(struct bge_softc *sc)
883 {
884         /* Destroy jumbo RX ring. */
885         bge_dma_block_free(sc->bge_cdata.bge_rx_jumbo_ring_tag,
886                            sc->bge_cdata.bge_rx_jumbo_ring_map,
887                            sc->bge_ldata.bge_rx_jumbo_ring);
888
889         /* Destroy jumbo buffer block. */
890         bge_dma_block_free(sc->bge_cdata.bge_jumbo_tag,
891                            sc->bge_cdata.bge_jumbo_map,
892                            sc->bge_ldata.bge_jumbo_buf);
893 }
894
895 /*
896  * Allocate a jumbo buffer.
897  */
898 static struct bge_jslot *
899 bge_jalloc(struct bge_softc *sc)
900 {
901         struct bge_jslot *entry;
902
903         lwkt_serialize_enter(&sc->bge_jslot_serializer);
904         entry = SLIST_FIRST(&sc->bge_jfree_listhead);
905         if (entry) {
906                 SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jslot_link);
907                 entry->bge_inuse = 1;
908         } else {
909                 if_printf(&sc->arpcom.ac_if, "no free jumbo buffers\n");
910         }
911         lwkt_serialize_exit(&sc->bge_jslot_serializer);
912         return(entry);
913 }
914
915 /*
916  * Adjust usage count on a jumbo buffer.
917  */
918 static void
919 bge_jref(void *arg)
920 {
921         struct bge_jslot *entry = (struct bge_jslot *)arg;
922         struct bge_softc *sc = entry->bge_sc;
923
924         if (sc == NULL)
925                 panic("bge_jref: can't find softc pointer!");
926
927         if (&sc->bge_cdata.bge_jslots[entry->bge_slot] != entry) {
928                 panic("bge_jref: asked to reference buffer "
929                     "that we don't manage!");
930         } else if (entry->bge_inuse == 0) {
931                 panic("bge_jref: buffer already free!");
932         } else {
933                 atomic_add_int(&entry->bge_inuse, 1);
934         }
935 }
936
937 /*
938  * Release a jumbo buffer.
939  */
940 static void
941 bge_jfree(void *arg)
942 {
943         struct bge_jslot *entry = (struct bge_jslot *)arg;
944         struct bge_softc *sc = entry->bge_sc;
945
946         if (sc == NULL)
947                 panic("bge_jfree: can't find softc pointer!");
948
949         if (&sc->bge_cdata.bge_jslots[entry->bge_slot] != entry) {
950                 panic("bge_jfree: asked to free buffer that we don't manage!");
951         } else if (entry->bge_inuse == 0) {
952                 panic("bge_jfree: buffer already free!");
953         } else {
954                 /*
955                  * Possible MP race to 0, use the serializer.  The atomic insn
956                  * is still needed for races against bge_jref().
957                  */
958                 lwkt_serialize_enter(&sc->bge_jslot_serializer);
959                 atomic_subtract_int(&entry->bge_inuse, 1);
960                 if (entry->bge_inuse == 0) {
961                         SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, 
962                                           entry, jslot_link);
963                 }
964                 lwkt_serialize_exit(&sc->bge_jslot_serializer);
965         }
966 }
967
968
969 /*
970  * Intialize a standard receive ring descriptor.
971  */
972 static int
973 bge_newbuf_std(struct bge_softc *sc, int i, int init)
974 {
975         struct mbuf *m_new = NULL;
976         bus_dma_segment_t seg;
977         bus_dmamap_t map;
978         int error, nsegs;
979
980         m_new = m_getcl(init ? MB_WAIT : MB_DONTWAIT, MT_DATA, M_PKTHDR);
981         if (m_new == NULL)
982                 return ENOBUFS;
983         m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
984
985         if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0)
986                 m_adj(m_new, ETHER_ALIGN);
987
988         error = bus_dmamap_load_mbuf_segment(sc->bge_cdata.bge_rx_mtag,
989                         sc->bge_cdata.bge_rx_tmpmap, m_new,
990                         &seg, 1, &nsegs, BUS_DMA_NOWAIT);
991         if (error) {
992                 m_freem(m_new);
993                 return error;
994         }
995
996         if (!init) {
997                 bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag,
998                                 sc->bge_cdata.bge_rx_std_dmamap[i],
999                                 BUS_DMASYNC_POSTREAD);
1000                 bus_dmamap_unload(sc->bge_cdata.bge_rx_mtag,
1001                         sc->bge_cdata.bge_rx_std_dmamap[i]);
1002         }
1003
1004         map = sc->bge_cdata.bge_rx_tmpmap;
1005         sc->bge_cdata.bge_rx_tmpmap = sc->bge_cdata.bge_rx_std_dmamap[i];
1006         sc->bge_cdata.bge_rx_std_dmamap[i] = map;
1007
1008         sc->bge_cdata.bge_rx_std_chain[i].bge_mbuf = m_new;
1009         sc->bge_cdata.bge_rx_std_chain[i].bge_paddr = seg.ds_addr;
1010
1011         bge_setup_rxdesc_std(sc, i);
1012         return 0;
1013 }
1014
1015 static void
1016 bge_setup_rxdesc_std(struct bge_softc *sc, int i)
1017 {
1018         struct bge_rxchain *rc;
1019         struct bge_rx_bd *r;
1020
1021         rc = &sc->bge_cdata.bge_rx_std_chain[i];
1022         r = &sc->bge_ldata.bge_rx_std_ring[i];
1023
1024         r->bge_addr.bge_addr_lo = BGE_ADDR_LO(rc->bge_paddr);
1025         r->bge_addr.bge_addr_hi = BGE_ADDR_HI(rc->bge_paddr);
1026         r->bge_len = rc->bge_mbuf->m_len;
1027         r->bge_idx = i;
1028         r->bge_flags = BGE_RXBDFLAG_END;
1029 }
1030
1031 /*
1032  * Initialize a jumbo receive ring descriptor. This allocates
1033  * a jumbo buffer from the pool managed internally by the driver.
1034  */
1035 static int
1036 bge_newbuf_jumbo(struct bge_softc *sc, int i, int init)
1037 {
1038         struct mbuf *m_new = NULL;
1039         struct bge_jslot *buf;
1040         bus_addr_t paddr;
1041
1042         /* Allocate the mbuf. */
1043         MGETHDR(m_new, init ? MB_WAIT : MB_DONTWAIT, MT_DATA);
1044         if (m_new == NULL)
1045                 return ENOBUFS;
1046
1047         /* Allocate the jumbo buffer */
1048         buf = bge_jalloc(sc);
1049         if (buf == NULL) {
1050                 m_freem(m_new);
1051                 return ENOBUFS;
1052         }
1053
1054         /* Attach the buffer to the mbuf. */
1055         m_new->m_ext.ext_arg = buf;
1056         m_new->m_ext.ext_buf = buf->bge_buf;
1057         m_new->m_ext.ext_free = bge_jfree;
1058         m_new->m_ext.ext_ref = bge_jref;
1059         m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
1060
1061         m_new->m_flags |= M_EXT;
1062
1063         m_new->m_data = m_new->m_ext.ext_buf;
1064         m_new->m_len = m_new->m_pkthdr.len = m_new->m_ext.ext_size;
1065
1066         paddr = buf->bge_paddr;
1067         if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0) {
1068                 m_adj(m_new, ETHER_ALIGN);
1069                 paddr += ETHER_ALIGN;
1070         }
1071
1072         /* Save necessary information */
1073         sc->bge_cdata.bge_rx_jumbo_chain[i].bge_mbuf = m_new;
1074         sc->bge_cdata.bge_rx_jumbo_chain[i].bge_paddr = paddr;
1075
1076         /* Set up the descriptor. */
1077         bge_setup_rxdesc_jumbo(sc, i);
1078         return 0;
1079 }
1080
1081 static void
1082 bge_setup_rxdesc_jumbo(struct bge_softc *sc, int i)
1083 {
1084         struct bge_rx_bd *r;
1085         struct bge_rxchain *rc;
1086
1087         r = &sc->bge_ldata.bge_rx_jumbo_ring[i];
1088         rc = &sc->bge_cdata.bge_rx_jumbo_chain[i];
1089
1090         r->bge_addr.bge_addr_lo = BGE_ADDR_LO(rc->bge_paddr);
1091         r->bge_addr.bge_addr_hi = BGE_ADDR_HI(rc->bge_paddr);
1092         r->bge_len = rc->bge_mbuf->m_len;
1093         r->bge_idx = i;
1094         r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
1095 }
1096
1097 static int
1098 bge_init_rx_ring_std(struct bge_softc *sc)
1099 {
1100         int i, error;
1101
1102         for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1103                 error = bge_newbuf_std(sc, i, 1);
1104                 if (error)
1105                         return error;
1106         };
1107
1108         sc->bge_std = BGE_STD_RX_RING_CNT - 1;
1109         bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
1110
1111         return(0);
1112 }
1113
1114 static void
1115 bge_free_rx_ring_std(struct bge_softc *sc)
1116 {
1117         int i;
1118
1119         for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1120                 struct bge_rxchain *rc = &sc->bge_cdata.bge_rx_std_chain[i];
1121
1122                 if (rc->bge_mbuf != NULL) {
1123                         bus_dmamap_unload(sc->bge_cdata.bge_rx_mtag,
1124                                           sc->bge_cdata.bge_rx_std_dmamap[i]);
1125                         m_freem(rc->bge_mbuf);
1126                         rc->bge_mbuf = NULL;
1127                 }
1128                 bzero(&sc->bge_ldata.bge_rx_std_ring[i],
1129                     sizeof(struct bge_rx_bd));
1130         }
1131 }
1132
1133 static int
1134 bge_init_rx_ring_jumbo(struct bge_softc *sc)
1135 {
1136         struct bge_rcb *rcb;
1137         int i, error;
1138
1139         for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1140                 error = bge_newbuf_jumbo(sc, i, 1);
1141                 if (error)
1142                         return error;
1143         };
1144
1145         sc->bge_jumbo = BGE_JUMBO_RX_RING_CNT - 1;
1146
1147         rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb;
1148         rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0, 0);
1149         CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1150
1151         bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
1152
1153         return(0);
1154 }
1155
1156 static void
1157 bge_free_rx_ring_jumbo(struct bge_softc *sc)
1158 {
1159         int i;
1160
1161         for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1162                 struct bge_rxchain *rc = &sc->bge_cdata.bge_rx_jumbo_chain[i];
1163
1164                 if (rc->bge_mbuf != NULL) {
1165                         m_freem(rc->bge_mbuf);
1166                         rc->bge_mbuf = NULL;
1167                 }
1168                 bzero(&sc->bge_ldata.bge_rx_jumbo_ring[i],
1169                     sizeof(struct bge_rx_bd));
1170         }
1171 }
1172
1173 static void
1174 bge_free_tx_ring(struct bge_softc *sc)
1175 {
1176         int i;
1177
1178         for (i = 0; i < BGE_TX_RING_CNT; i++) {
1179                 if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
1180                         bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag,
1181                                           sc->bge_cdata.bge_tx_dmamap[i]);
1182                         m_freem(sc->bge_cdata.bge_tx_chain[i]);
1183                         sc->bge_cdata.bge_tx_chain[i] = NULL;
1184                 }
1185                 bzero(&sc->bge_ldata.bge_tx_ring[i],
1186                     sizeof(struct bge_tx_bd));
1187         }
1188 }
1189
1190 static int
1191 bge_init_tx_ring(struct bge_softc *sc)
1192 {
1193         sc->bge_txcnt = 0;
1194         sc->bge_tx_saved_considx = 0;
1195         sc->bge_tx_prodidx = 0;
1196
1197         /* Initialize transmit producer index for host-memory send ring. */
1198         bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1199
1200         /* 5700 b2 errata */
1201         if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
1202                 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1203
1204         bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1205         /* 5700 b2 errata */
1206         if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
1207                 bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1208
1209         return(0);
1210 }
1211
1212 static void
1213 bge_setmulti(struct bge_softc *sc)
1214 {
1215         struct ifnet *ifp;
1216         struct ifmultiaddr *ifma;
1217         uint32_t hashes[4] = { 0, 0, 0, 0 };
1218         int h, i;
1219
1220         ifp = &sc->arpcom.ac_if;
1221
1222         if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
1223                 for (i = 0; i < 4; i++)
1224                         CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0xFFFFFFFF);
1225                 return;
1226         }
1227
1228         /* First, zot all the existing filters. */
1229         for (i = 0; i < 4; i++)
1230                 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0);
1231
1232         /* Now program new ones. */
1233         TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1234                 if (ifma->ifma_addr->sa_family != AF_LINK)
1235                         continue;
1236                 h = ether_crc32_le(
1237                     LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1238                     ETHER_ADDR_LEN) & 0x7f;
1239                 hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
1240         }
1241
1242         for (i = 0; i < 4; i++)
1243                 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
1244 }
1245
1246 /*
1247  * Do endian, PCI and DMA initialization. Also check the on-board ROM
1248  * self-test results.
1249  */
1250 static int
1251 bge_chipinit(struct bge_softc *sc)
1252 {
1253         int i;
1254         uint32_t dma_rw_ctl;
1255         uint16_t val;
1256
1257         /* Set endian type before we access any non-PCI registers. */
1258         pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL,
1259             BGE_INIT | sc->bge_pci_miscctl, 4);
1260
1261         /* Clear the MAC control register */
1262         CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
1263
1264         /*
1265          * Clear the MAC statistics block in the NIC's
1266          * internal memory.
1267          */
1268         for (i = BGE_STATS_BLOCK;
1269             i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
1270                 BGE_MEMWIN_WRITE(sc, i, 0);
1271
1272         for (i = BGE_STATUS_BLOCK;
1273             i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
1274                 BGE_MEMWIN_WRITE(sc, i, 0);
1275
1276         if (sc->bge_chiprev == BGE_CHIPREV_5704_BX) {
1277                 /*
1278                  * Fix data corruption caused by non-qword write with WB.
1279                  * Fix master abort in PCI mode.
1280                  * Fix PCI latency timer.
1281                  */
1282                 val = pci_read_config(sc->bge_dev, BGE_PCI_MSI_DATA + 2, 2);
1283                 val |= (1 << 10) | (1 << 12) | (1 << 13);
1284                 pci_write_config(sc->bge_dev, BGE_PCI_MSI_DATA + 2, val, 2);
1285         }
1286
1287         /* Set up the PCI DMA control register. */
1288         dma_rw_ctl = BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD;
1289         if (sc->bge_flags & BGE_FLAG_PCIE) {
1290                 /* PCI-E bus */
1291                 /* DMA read watermark not used on PCI-E */
1292                 dma_rw_ctl |= (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1293         } else if (sc->bge_flags & BGE_FLAG_PCIX) {
1294                 /* PCI-X bus */
1295                 if (sc->bge_asicrev == BGE_ASICREV_BCM5780) {
1296                         dma_rw_ctl |= (0x4 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1297                             (0x2 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1298                         dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
1299                 } else if (sc->bge_asicrev == BGE_ASICREV_BCM5714) {
1300                         dma_rw_ctl |= (0x4 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1301                             (0x2 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1302                         dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
1303                 } else if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1304                     sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1305                         uint32_t rd_wat = 0x7;
1306                         uint32_t clkctl;
1307
1308                         clkctl = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1f;
1309                         if ((sc->bge_flags & BGE_FLAG_MAXADDR_40BIT) &&
1310                             sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1311                                 dma_rw_ctl |=
1312                                     BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
1313                         } else if (clkctl == 0x6 || clkctl == 0x7) {
1314                                 dma_rw_ctl |=
1315                                     BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
1316                         }
1317                         if (sc->bge_asicrev == BGE_ASICREV_BCM5703)
1318                                 rd_wat = 0x4;
1319
1320                         dma_rw_ctl |= (rd_wat << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1321                             (3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1322                         dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE;
1323                 } else {
1324                         dma_rw_ctl |= (0x3 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1325                             (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1326                         dma_rw_ctl |= 0xf;
1327                 }
1328         } else {
1329                 /* Conventional PCI bus */
1330                 dma_rw_ctl |= (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1331                     (0x7 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1332                 if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
1333                     sc->bge_asicrev != BGE_ASICREV_BCM5750)
1334                         dma_rw_ctl |= 0xf;
1335         }
1336
1337         if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1338             sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1339                 dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
1340         } else if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
1341             sc->bge_asicrev == BGE_ASICREV_BCM5701) {
1342                 dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM |
1343                     BGE_PCIDMARWCTL_ASRT_ALL_BE;
1344         }
1345         pci_write_config(sc->bge_dev, BGE_PCI_DMA_RW_CTL, dma_rw_ctl, 4);
1346
1347         /*
1348          * Set up general mode register.
1349          */
1350         CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS|
1351             BGE_MODECTL_MAC_ATTN_INTR|BGE_MODECTL_HOST_SEND_BDS|
1352             BGE_MODECTL_TX_NO_PHDR_CSUM);
1353
1354         /*
1355          * BCM5701 B5 have a bug causing data corruption when using
1356          * 64-bit DMA reads, which can be terminated early and then
1357          * completed later as 32-bit accesses, in combination with
1358          * certain bridges.
1359          */
1360         if (sc->bge_asicrev == BGE_ASICREV_BCM5701 &&
1361             sc->bge_chipid == BGE_CHIPID_BCM5701_B5)
1362                 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_FORCE_PCI32);
1363
1364         /*
1365          * Disable memory write invalidate.  Apparently it is not supported
1366          * properly by these devices.  Also ensure that INTx isn't disabled,
1367          * as these chips need it even when using MSI.
1368          */
1369         PCI_CLRBIT(sc->bge_dev, BGE_PCI_CMD,
1370             (PCIM_CMD_MWRICEN | PCIM_CMD_INTxDIS), 4);
1371
1372         /* Set the timer prescaler (always 66Mhz) */
1373         CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/);
1374
1375         if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
1376                 DELAY(40);      /* XXX */
1377
1378                 /* Put PHY into ready state */
1379                 BGE_CLRBIT(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ);
1380                 CSR_READ_4(sc, BGE_MISC_CFG); /* Flush */
1381                 DELAY(40);
1382         }
1383
1384         return(0);
1385 }
1386
1387 static int
1388 bge_blockinit(struct bge_softc *sc)
1389 {
1390         struct bge_rcb *rcb;
1391         bus_size_t vrcb;
1392         bge_hostaddr taddr;
1393         uint32_t val;
1394         int i, limit;
1395
1396         /*
1397          * Initialize the memory window pointer register so that
1398          * we can access the first 32K of internal NIC RAM. This will
1399          * allow us to set up the TX send ring RCBs and the RX return
1400          * ring RCBs, plus other things which live in NIC memory.
1401          */
1402         CSR_WRITE_4(sc, BGE_PCI_MEMWIN_BASEADDR, 0);
1403
1404         /* Note: the BCM5704 has a smaller mbuf space than other chips. */
1405
1406         if (!BGE_IS_5705_PLUS(sc)) {
1407                 /* Configure mbuf memory pool */
1408                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_BUFFPOOL_1);
1409                 if (sc->bge_asicrev == BGE_ASICREV_BCM5704)
1410                         CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
1411                 else
1412                         CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1413
1414                 /* Configure DMA resource pool */
1415                 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
1416                     BGE_DMA_DESCRIPTORS);
1417                 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
1418         }
1419
1420         /* Configure mbuf pool watermarks */
1421         if (!BGE_IS_5705_PLUS(sc)) {
1422                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
1423                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
1424                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1425         } else if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
1426                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1427                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
1428                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
1429         } else {
1430                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1431                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
1432                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1433         }
1434
1435         /* Configure DMA resource watermarks */
1436         CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
1437         CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
1438
1439         /* Enable buffer manager */
1440         CSR_WRITE_4(sc, BGE_BMAN_MODE,
1441             BGE_BMANMODE_ENABLE|BGE_BMANMODE_LOMBUF_ATTN);
1442
1443         /* Poll for buffer manager start indication */
1444         for (i = 0; i < BGE_TIMEOUT; i++) {
1445                 if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
1446                         break;
1447                 DELAY(10);
1448         }
1449
1450         if (i == BGE_TIMEOUT) {
1451                 if_printf(&sc->arpcom.ac_if,
1452                           "buffer manager failed to start\n");
1453                 return(ENXIO);
1454         }
1455
1456         /* Enable flow-through queues */
1457         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
1458         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
1459
1460         /* Wait until queue initialization is complete */
1461         for (i = 0; i < BGE_TIMEOUT; i++) {
1462                 if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
1463                         break;
1464                 DELAY(10);
1465         }
1466
1467         if (i == BGE_TIMEOUT) {
1468                 if_printf(&sc->arpcom.ac_if,
1469                           "flow-through queue init failed\n");
1470                 return(ENXIO);
1471         }
1472
1473         /*
1474          * Summary of rings supported by the controller:
1475          *
1476          * Standard Receive Producer Ring
1477          * - This ring is used to feed receive buffers for "standard"
1478          *   sized frames (typically 1536 bytes) to the controller.
1479          *
1480          * Jumbo Receive Producer Ring
1481          * - This ring is used to feed receive buffers for jumbo sized
1482          *   frames (i.e. anything bigger than the "standard" frames)
1483          *   to the controller.
1484          *
1485          * Mini Receive Producer Ring
1486          * - This ring is used to feed receive buffers for "mini"
1487          *   sized frames to the controller.
1488          * - This feature required external memory for the controller
1489          *   but was never used in a production system.  Should always
1490          *   be disabled.
1491          *
1492          * Receive Return Ring
1493          * - After the controller has placed an incoming frame into a
1494          *   receive buffer that buffer is moved into a receive return
1495          *   ring.  The driver is then responsible to passing the
1496          *   buffer up to the stack.  Many versions of the controller
1497          *   support multiple RR rings.
1498          *
1499          * Send Ring
1500          * - This ring is used for outgoing frames.  Many versions of
1501          *   the controller support multiple send rings.
1502          */
1503
1504         /* Initialize the standard receive producer ring control block. */
1505         rcb = &sc->bge_ldata.bge_info.bge_std_rx_rcb;
1506         rcb->bge_hostaddr.bge_addr_lo =
1507             BGE_ADDR_LO(sc->bge_ldata.bge_rx_std_ring_paddr);
1508         rcb->bge_hostaddr.bge_addr_hi =
1509             BGE_ADDR_HI(sc->bge_ldata.bge_rx_std_ring_paddr);
1510         if (BGE_IS_5705_PLUS(sc)) {
1511                 /*
1512                  * Bits 31-16: Programmable ring size (512, 256, 128, 64, 32)
1513                  * Bits 15-2 : Reserved (should be 0)
1514                  * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
1515                  * Bit 0     : Reserved
1516                  */
1517                 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
1518         } else {
1519                 /*
1520                  * Ring size is always XXX entries
1521                  * Bits 31-16: Maximum RX frame size
1522                  * Bits 15-2 : Reserved (should be 0)
1523                  * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
1524                  * Bit 0     : Reserved
1525                  */
1526                 rcb->bge_maxlen_flags =
1527                     BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
1528         }
1529         rcb->bge_nicaddr = BGE_STD_RX_RINGS;
1530         /* Write the standard receive producer ring control block. */
1531         CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
1532         CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
1533         CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1534         CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
1535         /* Reset the standard receive producer ring producer index. */
1536         bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
1537
1538         /*
1539          * Initialize the jumbo RX producer ring control
1540          * block.  We set the 'ring disabled' bit in the
1541          * flags field until we're actually ready to start
1542          * using this ring (i.e. once we set the MTU
1543          * high enough to require it).
1544          */
1545         if (BGE_IS_JUMBO_CAPABLE(sc)) {
1546                 rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb;
1547                 /* Get the jumbo receive producer ring RCB parameters. */
1548                 rcb->bge_hostaddr.bge_addr_lo =
1549                     BGE_ADDR_LO(sc->bge_ldata.bge_rx_jumbo_ring_paddr);
1550                 rcb->bge_hostaddr.bge_addr_hi =
1551                     BGE_ADDR_HI(sc->bge_ldata.bge_rx_jumbo_ring_paddr);
1552                 rcb->bge_maxlen_flags =
1553                     BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN,
1554                     BGE_RCB_FLAG_RING_DISABLED);
1555                 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
1556                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
1557                     rcb->bge_hostaddr.bge_addr_hi);
1558                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
1559                     rcb->bge_hostaddr.bge_addr_lo);
1560                 /* Program the jumbo receive producer ring RCB parameters. */
1561                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
1562                     rcb->bge_maxlen_flags);
1563                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
1564                 /* Reset the jumbo receive producer ring producer index. */
1565                 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
1566         }
1567
1568         /* Disable the mini receive producer ring RCB. */
1569         if (BGE_IS_5700_FAMILY(sc)) {
1570                 rcb = &sc->bge_ldata.bge_info.bge_mini_rx_rcb;
1571                 rcb->bge_maxlen_flags =
1572                     BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
1573                 CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
1574                     rcb->bge_maxlen_flags);
1575                 /* Reset the mini receive producer ring producer index. */
1576                 bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
1577         }
1578
1579         /* Choose de-pipeline mode for BCM5906 A0, A1 and A2. */
1580         if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
1581             (sc->bge_chipid == BGE_CHIPID_BCM5906_A0 ||
1582              sc->bge_chipid == BGE_CHIPID_BCM5906_A1 ||
1583              sc->bge_chipid == BGE_CHIPID_BCM5906_A2)) {
1584                 CSR_WRITE_4(sc, BGE_ISO_PKT_TX,
1585                     (CSR_READ_4(sc, BGE_ISO_PKT_TX) & ~3) | 2);
1586         }
1587
1588         /*
1589          * The BD ring replenish thresholds control how often the
1590          * hardware fetches new BD's from the producer rings in host
1591          * memory.  Setting the value too low on a busy system can
1592          * starve the hardware and recue the throughpout.
1593          *
1594          * Set the BD ring replentish thresholds. The recommended
1595          * values are 1/8th the number of descriptors allocated to
1596          * each ring.
1597          */
1598         if (BGE_IS_5705_PLUS(sc))
1599                 val = 8;
1600         else
1601                 val = BGE_STD_RX_RING_CNT / 8;
1602         CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, val);
1603         if (BGE_IS_JUMBO_CAPABLE(sc)) {
1604                 CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH,
1605                     BGE_JUMBO_RX_RING_CNT/8);
1606         }
1607
1608         /*
1609          * Disable all send rings by setting the 'ring disabled' bit
1610          * in the flags field of all the TX send ring control blocks,
1611          * located in NIC memory.
1612          */
1613         if (!BGE_IS_5705_PLUS(sc)) {
1614                 /* 5700 to 5704 had 16 send rings. */
1615                 limit = BGE_TX_RINGS_EXTSSRAM_MAX;
1616         } else {
1617                 limit = 1;
1618         }
1619         vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1620         for (i = 0; i < limit; i++) {
1621                 RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1622                     BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
1623                 RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
1624                 vrcb += sizeof(struct bge_rcb);
1625         }
1626
1627         /* Configure send ring RCB 0 (we use only the first ring) */
1628         vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1629         BGE_HOSTADDR(taddr, sc->bge_ldata.bge_tx_ring_paddr);
1630         RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1631         RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1632         RCB_WRITE_4(sc, vrcb, bge_nicaddr,
1633             BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
1634         RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1635             BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
1636
1637         /*
1638          * Disable all receive return rings by setting the
1639          * 'ring diabled' bit in the flags field of all the receive
1640          * return ring control blocks, located in NIC memory.
1641          */
1642         if (!BGE_IS_5705_PLUS(sc))
1643                 limit = BGE_RX_RINGS_MAX;
1644         else if (sc->bge_asicrev == BGE_ASICREV_BCM5755)
1645                 limit = 4;
1646         else
1647                 limit = 1;
1648         /* Disable all receive return rings. */
1649         vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1650         for (i = 0; i < limit; i++) {
1651                 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, 0);
1652                 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, 0);
1653                 RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1654                     BGE_RCB_FLAG_RING_DISABLED);
1655                 RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
1656                 bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
1657                     (i * (sizeof(uint64_t))), 0);
1658                 vrcb += sizeof(struct bge_rcb);
1659         }
1660
1661         /*
1662          * Set up receive return ring 0.  Note that the NIC address
1663          * for RX return rings is 0x0.  The return rings live entirely
1664          * within the host, so the nicaddr field in the RCB isn't used.
1665          */
1666         vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1667         BGE_HOSTADDR(taddr, sc->bge_ldata.bge_rx_return_ring_paddr);
1668         RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1669         RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1670         RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
1671         RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1672             BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
1673
1674         /* Set random backoff seed for TX */
1675         CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
1676             sc->arpcom.ac_enaddr[0] + sc->arpcom.ac_enaddr[1] +
1677             sc->arpcom.ac_enaddr[2] + sc->arpcom.ac_enaddr[3] +
1678             sc->arpcom.ac_enaddr[4] + sc->arpcom.ac_enaddr[5] +
1679             BGE_TX_BACKOFF_SEED_MASK);
1680
1681         /* Set inter-packet gap */
1682         CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
1683
1684         /*
1685          * Specify which ring to use for packets that don't match
1686          * any RX rules.
1687          */
1688         CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
1689
1690         /*
1691          * Configure number of RX lists. One interrupt distribution
1692          * list, sixteen active lists, one bad frames class.
1693          */
1694         CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
1695
1696         /* Inialize RX list placement stats mask. */
1697         CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
1698         CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
1699
1700         /* Disable host coalescing until we get it set up */
1701         CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
1702
1703         /* Poll to make sure it's shut down. */
1704         for (i = 0; i < BGE_TIMEOUT; i++) {
1705                 if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
1706                         break;
1707                 DELAY(10);
1708         }
1709
1710         if (i == BGE_TIMEOUT) {
1711                 if_printf(&sc->arpcom.ac_if,
1712                           "host coalescing engine failed to idle\n");
1713                 return(ENXIO);
1714         }
1715
1716         /* Set up host coalescing defaults */
1717         CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
1718         CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
1719         CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_coal_bds);
1720         CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_coal_bds);
1721         if (!BGE_IS_5705_PLUS(sc)) {
1722                 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT,
1723                     sc->bge_rx_coal_ticks_int);
1724                 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT,
1725                     sc->bge_tx_coal_ticks_int);
1726         }
1727         /*
1728          * NOTE:
1729          * The datasheet (57XX-PG105-R) says BCM5705+ do not
1730          * have following two registers; obviously it is wrong.
1731          */
1732         CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, sc->bge_rx_coal_bds_int);
1733         CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, sc->bge_tx_coal_bds_int);
1734
1735         /* Set up address of statistics block */
1736         if (!BGE_IS_5705_PLUS(sc)) {
1737                 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI,
1738                     BGE_ADDR_HI(sc->bge_ldata.bge_stats_paddr));
1739                 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO,
1740                     BGE_ADDR_LO(sc->bge_ldata.bge_stats_paddr));
1741
1742                 CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
1743                 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
1744                 CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
1745         }
1746
1747         /* Set up address of status block */
1748         bzero(sc->bge_ldata.bge_status_block, BGE_STATUS_BLK_SZ);
1749         CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI,
1750             BGE_ADDR_HI(sc->bge_ldata.bge_status_block_paddr));
1751         CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO,
1752             BGE_ADDR_LO(sc->bge_ldata.bge_status_block_paddr));
1753
1754         /*
1755          * Set up status block partail update size.
1756          *
1757          * Because only single TX ring, RX produce ring and Rx return ring
1758          * are used, ask device to update only minimum part of status block
1759          * except for BCM5700 AX/BX, whose status block partial update size
1760          * can't be configured.
1761          */
1762         if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
1763             sc->bge_chipid != BGE_CHIPID_BCM5700_C0) {
1764                 /* XXX Actually reserved on BCM5700 AX/BX */
1765                 val = BGE_STATBLKSZ_FULL;
1766         } else {
1767                 val = BGE_STATBLKSZ_32BYTE;
1768         }
1769 #if 0
1770         /*
1771          * Does not seem to have visible effect in both
1772          * bulk data (1472B UDP datagram) and tiny data
1773          * (18B UDP datagram) TX tests.
1774          */
1775         if (!BGE_IS_CRIPPLED(sc))
1776                 val |= BGE_HCCMODE_CLRTICK_TX;
1777 #endif
1778
1779         /* Turn on host coalescing state machine */
1780         CSR_WRITE_4(sc, BGE_HCC_MODE, val | BGE_HCCMODE_ENABLE);
1781
1782         /* Turn on RX BD completion state machine and enable attentions */
1783         CSR_WRITE_4(sc, BGE_RBDC_MODE,
1784             BGE_RBDCMODE_ENABLE|BGE_RBDCMODE_ATTN);
1785
1786         /* Turn on RX list placement state machine */
1787         CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
1788
1789         /* Turn on RX list selector state machine. */
1790         if (!BGE_IS_5705_PLUS(sc))
1791                 CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
1792
1793         val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB |
1794             BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR |
1795             BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB |
1796             BGE_MACMODE_FRMHDR_DMA_ENB;
1797
1798         if (sc->bge_flags & BGE_FLAG_TBI)
1799                 val |= BGE_PORTMODE_TBI;
1800         else if (sc->bge_flags & BGE_FLAG_MII_SERDES)
1801                 val |= BGE_PORTMODE_GMII;
1802         else
1803                 val |= BGE_PORTMODE_MII;
1804
1805         /* Turn on DMA, clear stats */
1806         CSR_WRITE_4(sc, BGE_MAC_MODE, val);
1807
1808         /* Set misc. local control, enable interrupts on attentions */
1809         CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
1810
1811 #ifdef notdef
1812         /* Assert GPIO pins for PHY reset */
1813         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0|
1814             BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2);
1815         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0|
1816             BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2);
1817 #endif
1818
1819         /* Turn on DMA completion state machine */
1820         if (!BGE_IS_5705_PLUS(sc))
1821                 CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
1822
1823         /* Turn on write DMA state machine */
1824         val = BGE_WDMAMODE_ENABLE|BGE_WDMAMODE_ALL_ATTNS;
1825         if (BGE_IS_5755_PLUS(sc)) {
1826                 /* Enable host coalescing bug fix. */
1827                 val |= BGE_WDMAMODE_STATUS_TAG_FIX;
1828         }
1829         if (sc->bge_asicrev == BGE_ASICREV_BCM5785) {
1830                 /* Request larger DMA burst size to get better performance. */
1831                 val |= BGE_WDMAMODE_BURST_ALL_DATA;
1832         }
1833         CSR_WRITE_4(sc, BGE_WDMA_MODE, val);
1834         DELAY(40);
1835
1836         if (sc->bge_asicrev == BGE_ASICREV_BCM5761 ||
1837             sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
1838             sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
1839             sc->bge_asicrev == BGE_ASICREV_BCM57780) {
1840                 /*
1841                  * Enable fix for read DMA FIFO overruns.
1842                  * The fix is to limit the number of RX BDs
1843                  * the hardware would fetch at a fime.
1844                  */
1845                 val = CSR_READ_4(sc, BGE_RDMA_RSRVCTRL);
1846                 CSR_WRITE_4(sc, BGE_RDMA_RSRVCTRL,
1847                     val| BGE_RDMA_RSRVCTRL_FIFO_OFLW_FIX);
1848         }
1849
1850         /* Turn on read DMA state machine */
1851         val = BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
1852         if (sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
1853             sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
1854             sc->bge_asicrev == BGE_ASICREV_BCM57780)
1855                 val |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN |
1856                   BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN |
1857                   BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN;
1858         if (sc->bge_flags & BGE_FLAG_PCIE)
1859                 val |= BGE_RDMAMODE_FIFO_LONG_BURST;
1860         if (sc->bge_flags & BGE_FLAG_TSO)
1861                 val |= BGE_RDMAMODE_TSO4_ENABLE;
1862         CSR_WRITE_4(sc, BGE_RDMA_MODE, val);
1863         DELAY(40);
1864
1865         /* Turn on RX data completion state machine */
1866         CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
1867
1868         /* Turn on RX BD initiator state machine */
1869         CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
1870
1871         /* Turn on RX data and RX BD initiator state machine */
1872         CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
1873
1874         /* Turn on Mbuf cluster free state machine */
1875         if (!BGE_IS_5705_PLUS(sc))
1876                 CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
1877
1878         /* Turn on send BD completion state machine */
1879         CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
1880
1881         /* Turn on send data completion state machine */
1882         val = BGE_SDCMODE_ENABLE;
1883         if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
1884                 val |= BGE_SDCMODE_CDELAY; 
1885         CSR_WRITE_4(sc, BGE_SDC_MODE, val);
1886
1887         /* Turn on send data initiator state machine */
1888         if (sc->bge_flags & BGE_FLAG_TSO)
1889                 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE |
1890                     BGE_SDIMODE_HW_LSO_PRE_DMA);
1891         else
1892                 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
1893
1894         /* Turn on send BD initiator state machine */
1895         CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
1896
1897         /* Turn on send BD selector state machine */
1898         CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
1899
1900         CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
1901         CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
1902             BGE_SDISTATSCTL_ENABLE|BGE_SDISTATSCTL_FASTER);
1903
1904         /* ack/clear link change events */
1905         CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
1906             BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
1907             BGE_MACSTAT_LINK_CHANGED);
1908         CSR_WRITE_4(sc, BGE_MI_STS, 0);
1909
1910         /*
1911          * Enable attention when the link has changed state for
1912          * devices that use auto polling.
1913          */
1914         if (sc->bge_flags & BGE_FLAG_TBI) {
1915                 CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
1916         } else {
1917                 if (sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) {
1918                         CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode);
1919                         DELAY(80);
1920                 }
1921                 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
1922                     sc->bge_chipid != BGE_CHIPID_BCM5700_B2) {
1923                         CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
1924                             BGE_EVTENB_MI_INTERRUPT);
1925                 }
1926         }
1927
1928         /*
1929          * Clear any pending link state attention.
1930          * Otherwise some link state change events may be lost until attention
1931          * is cleared by bge_intr() -> bge_softc.bge_link_upd() sequence.
1932          * It's not necessary on newer BCM chips - perhaps enabling link
1933          * state change attentions implies clearing pending attention.
1934          */
1935         CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
1936             BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
1937             BGE_MACSTAT_LINK_CHANGED);
1938
1939         /* Enable link state change attentions. */
1940         BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
1941
1942         return(0);
1943 }
1944
1945 /*
1946  * Probe for a Broadcom chip. Check the PCI vendor and device IDs
1947  * against our list and return its name if we find a match. Note
1948  * that since the Broadcom controller contains VPD support, we
1949  * can get the device name string from the controller itself instead
1950  * of the compiled-in string. This is a little slow, but it guarantees
1951  * we'll always announce the right product name.
1952  */
1953 static int
1954 bge_probe(device_t dev)
1955 {
1956         const struct bge_type *t;
1957         uint16_t product, vendor;
1958
1959         product = pci_get_device(dev);
1960         vendor = pci_get_vendor(dev);
1961
1962         for (t = bge_devs; t->bge_name != NULL; t++) {
1963                 if (vendor == t->bge_vid && product == t->bge_did)
1964                         break;
1965         }
1966         if (t->bge_name == NULL)
1967                 return(ENXIO);
1968
1969         device_set_desc(dev, t->bge_name);
1970         return(0);
1971 }
1972
1973 static int
1974 bge_attach(device_t dev)
1975 {
1976         struct ifnet *ifp;
1977         struct bge_softc *sc;
1978         uint32_t hwcfg = 0, misccfg;
1979         int error = 0, rid, capmask;
1980         uint8_t ether_addr[ETHER_ADDR_LEN];
1981         uint16_t product, vendor;
1982         driver_intr_t *intr_func;
1983         uintptr_t mii_priv = 0;
1984         u_int intr_flags;
1985         int msi_enable;
1986
1987         sc = device_get_softc(dev);
1988         sc->bge_dev = dev;
1989         callout_init_mp(&sc->bge_stat_timer);
1990         lwkt_serialize_init(&sc->bge_jslot_serializer);
1991
1992         product = pci_get_device(dev);
1993         vendor = pci_get_vendor(dev);
1994
1995 #ifndef BURN_BRIDGES
1996         if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
1997                 uint32_t irq, mem;
1998
1999                 irq = pci_read_config(dev, PCIR_INTLINE, 4);
2000                 mem = pci_read_config(dev, BGE_PCI_BAR0, 4);
2001
2002                 device_printf(dev, "chip is in D%d power mode "
2003                     "-- setting to D0\n", pci_get_powerstate(dev));
2004
2005                 pci_set_powerstate(dev, PCI_POWERSTATE_D0);
2006
2007                 pci_write_config(dev, PCIR_INTLINE, irq, 4);
2008                 pci_write_config(dev, BGE_PCI_BAR0, mem, 4);
2009         }
2010 #endif  /* !BURN_BRIDGE */
2011
2012         /*
2013          * Map control/status registers.
2014          */
2015         pci_enable_busmaster(dev);
2016
2017         rid = BGE_PCI_BAR0;
2018         sc->bge_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
2019             RF_ACTIVE);
2020
2021         if (sc->bge_res == NULL) {
2022                 device_printf(dev, "couldn't map memory\n");
2023                 return ENXIO;
2024         }
2025
2026         sc->bge_btag = rman_get_bustag(sc->bge_res);
2027         sc->bge_bhandle = rman_get_bushandle(sc->bge_res);
2028
2029         /* Save various chip information */
2030         sc->bge_chipid =
2031             pci_read_config(dev, BGE_PCI_MISC_CTL, 4) >>
2032             BGE_PCIMISCCTL_ASICREV_SHIFT;
2033         if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_USE_PRODID_REG) {
2034                 /* All chips, which use BGE_PCI_PRODID_ASICREV, have CPMU */
2035                 sc->bge_flags |= BGE_FLAG_CPMU;
2036                 sc->bge_chipid = pci_read_config(dev, BGE_PCI_PRODID_ASICREV, 4);
2037         }
2038         sc->bge_asicrev = BGE_ASICREV(sc->bge_chipid);
2039         sc->bge_chiprev = BGE_CHIPREV(sc->bge_chipid);
2040
2041         /* Save chipset family. */
2042         switch (sc->bge_asicrev) {
2043         case BGE_ASICREV_BCM5755:
2044         case BGE_ASICREV_BCM5761:
2045         case BGE_ASICREV_BCM5784:
2046         case BGE_ASICREV_BCM5785:
2047         case BGE_ASICREV_BCM5787:
2048         case BGE_ASICREV_BCM57780:
2049             sc->bge_flags |= BGE_FLAG_5755_PLUS | BGE_FLAG_575X_PLUS |
2050                 BGE_FLAG_5705_PLUS;
2051             break;
2052
2053         case BGE_ASICREV_BCM5700:
2054         case BGE_ASICREV_BCM5701:
2055         case BGE_ASICREV_BCM5703:
2056         case BGE_ASICREV_BCM5704:
2057                 sc->bge_flags |= BGE_FLAG_5700_FAMILY | BGE_FLAG_JUMBO;
2058                 break;
2059
2060         case BGE_ASICREV_BCM5714_A0:
2061         case BGE_ASICREV_BCM5780:
2062         case BGE_ASICREV_BCM5714:
2063                 sc->bge_flags |= BGE_FLAG_5714_FAMILY;
2064                 /* Fall through */
2065
2066         case BGE_ASICREV_BCM5750:
2067         case BGE_ASICREV_BCM5752:
2068         case BGE_ASICREV_BCM5906:
2069                 sc->bge_flags |= BGE_FLAG_575X_PLUS;
2070                 /* Fall through */
2071
2072         case BGE_ASICREV_BCM5705:
2073                 sc->bge_flags |= BGE_FLAG_5705_PLUS;
2074                 break;
2075         }
2076
2077         if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
2078                 sc->bge_flags |= BGE_FLAG_NO_EEPROM;
2079
2080         misccfg = CSR_READ_4(sc, BGE_MISC_CFG) & BGE_MISCCFG_BOARD_ID_MASK;
2081         if (sc->bge_asicrev == BGE_ASICREV_BCM5705 &&
2082             (misccfg == BGE_MISCCFG_BOARD_ID_5788 ||
2083              misccfg == BGE_MISCCFG_BOARD_ID_5788M))
2084                 sc->bge_flags |= BGE_FLAG_5788;
2085
2086         /* BCM5755 or higher and BCM5906 have short DMA bug. */
2087         if (BGE_IS_5755_PLUS(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5906)
2088                 sc->bge_flags |= BGE_FLAG_SHORTDMA;
2089
2090         /*
2091          * Check if this is a PCI-X or PCI Express device.
2092          */
2093         if (BGE_IS_5705_PLUS(sc)) {
2094                 if (pci_is_pcie(dev)) {
2095                         sc->bge_flags |= BGE_FLAG_PCIE;
2096                         sc->bge_pciecap = pci_get_pciecap_ptr(sc->bge_dev);
2097                         pcie_set_max_readrq(dev, PCIEM_DEVCTL_MAX_READRQ_4096);
2098                 }
2099         } else {
2100                 /*
2101                  * Check if the device is in PCI-X Mode.
2102                  * (This bit is not valid on PCI Express controllers.)
2103                  */
2104                 if ((pci_read_config(sc->bge_dev, BGE_PCI_PCISTATE, 4) &
2105                     BGE_PCISTATE_PCI_BUSMODE) == 0) {
2106                         sc->bge_flags |= BGE_FLAG_PCIX;
2107                         sc->bge_pcixcap = pci_get_pcixcap_ptr(sc->bge_dev);
2108                         sc->bge_mbox_reorder = device_getenv_int(sc->bge_dev,
2109                             "mbox_reorder", 0);
2110                 }
2111         }
2112         device_printf(dev, "CHIP ID 0x%08x; "
2113                       "ASIC REV 0x%02x; CHIP REV 0x%02x; %s\n",
2114                       sc->bge_chipid, sc->bge_asicrev, sc->bge_chiprev,
2115                       (sc->bge_flags & BGE_FLAG_PCIX) ? "PCI-X"
2116                       : ((sc->bge_flags & BGE_FLAG_PCIE) ?
2117                         "PCI-E" : "PCI"));
2118
2119         /*
2120          * The 40bit DMA bug applies to the 5714/5715 controllers and is
2121          * not actually a MAC controller bug but an issue with the embedded
2122          * PCIe to PCI-X bridge in the device. Use 40bit DMA workaround.
2123          */
2124         if ((sc->bge_flags & BGE_FLAG_PCIX) &&
2125             (BGE_IS_5714_FAMILY(sc) || device_getenv_int(dev, "dma40b", 0)))
2126                 sc->bge_flags |= BGE_FLAG_MAXADDR_40BIT;
2127
2128         /*
2129          * When using the BCM5701 in PCI-X mode, data corruption has
2130          * been observed in the first few bytes of some received packets.
2131          * Aligning the packet buffer in memory eliminates the corruption.
2132          * Unfortunately, this misaligns the packet payloads.  On platforms
2133          * which do not support unaligned accesses, we will realign the
2134          * payloads by copying the received packets.
2135          */
2136         if (sc->bge_asicrev == BGE_ASICREV_BCM5701 &&
2137             (sc->bge_flags & BGE_FLAG_PCIX))
2138                 sc->bge_flags |= BGE_FLAG_RX_ALIGNBUG;
2139
2140         if (!BGE_IS_CRIPPLED(sc)) {
2141                 if (device_getenv_int(dev, "status_tag", 1)) {
2142                         sc->bge_flags |= BGE_FLAG_STATUS_TAG;
2143                         sc->bge_pci_miscctl = BGE_PCIMISCCTL_TAGGED_STATUS;
2144                         if (bootverbose)
2145                                 device_printf(dev, "enable status tag\n");
2146                 }
2147         }
2148
2149         if (BGE_IS_5755_PLUS(sc)) {
2150                 /*
2151                  * BCM5754 and BCM5787 shares the same ASIC id so
2152                  * explicit device id check is required.
2153                  * Due to unknown reason TSO does not work on BCM5755M.
2154                  */
2155                 if (product != PCI_PRODUCT_BROADCOM_BCM5754 &&
2156                     product != PCI_PRODUCT_BROADCOM_BCM5754M &&
2157                     product != PCI_PRODUCT_BROADCOM_BCM5755M)
2158                         sc->bge_flags |= BGE_FLAG_TSO;
2159         }
2160
2161         /*
2162          * Set various PHY quirk flags.
2163          */
2164
2165         if ((sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
2166              sc->bge_asicrev == BGE_ASICREV_BCM5701) &&
2167             pci_get_subvendor(dev) == PCI_VENDOR_DELL)
2168                 mii_priv |= BRGPHY_FLAG_NO_3LED;
2169
2170         capmask = MII_CAPMASK_DEFAULT;
2171         if ((sc->bge_asicrev == BGE_ASICREV_BCM5703 &&
2172              (misccfg == 0x4000 || misccfg == 0x8000)) ||
2173             (sc->bge_asicrev == BGE_ASICREV_BCM5705 &&
2174              vendor == PCI_VENDOR_BROADCOM &&
2175              (product == PCI_PRODUCT_BROADCOM_BCM5901 ||
2176               product == PCI_PRODUCT_BROADCOM_BCM5901A2 ||
2177               product == PCI_PRODUCT_BROADCOM_BCM5705F)) ||
2178             (vendor == PCI_VENDOR_BROADCOM &&
2179              (product == PCI_PRODUCT_BROADCOM_BCM5751F ||
2180               product == PCI_PRODUCT_BROADCOM_BCM5753F ||
2181               product == PCI_PRODUCT_BROADCOM_BCM5787F)) ||
2182             product == PCI_PRODUCT_BROADCOM_BCM57790 ||
2183             sc->bge_asicrev == BGE_ASICREV_BCM5906) {
2184                 /* 10/100 only */
2185                 capmask &= ~BMSR_EXTSTAT;
2186         }
2187
2188         mii_priv |= BRGPHY_FLAG_WIRESPEED;
2189         if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
2190             (sc->bge_asicrev == BGE_ASICREV_BCM5705 &&
2191              (sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
2192               sc->bge_chipid != BGE_CHIPID_BCM5705_A1)) ||
2193             sc->bge_asicrev == BGE_ASICREV_BCM5906)
2194                 mii_priv &= ~BRGPHY_FLAG_WIRESPEED;
2195
2196         if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
2197             sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
2198                 mii_priv |= BRGPHY_FLAG_CRC_BUG;
2199
2200         if (sc->bge_chiprev == BGE_CHIPREV_5703_AX ||
2201             sc->bge_chiprev == BGE_CHIPREV_5704_AX)
2202                 mii_priv |= BRGPHY_FLAG_ADC_BUG;
2203
2204         if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
2205                 mii_priv |= BRGPHY_FLAG_5704_A0;
2206
2207         if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
2208                 mii_priv |= BRGPHY_FLAG_5906;
2209
2210         if (BGE_IS_5705_PLUS(sc) &&
2211             sc->bge_asicrev != BGE_ASICREV_BCM5906 &&
2212             /* sc->bge_asicrev != BGE_ASICREV_BCM5717 && */
2213             sc->bge_asicrev != BGE_ASICREV_BCM5785 &&
2214             /* sc->bge_asicrev != BGE_ASICREV_BCM57765 && */
2215             sc->bge_asicrev != BGE_ASICREV_BCM57780) {
2216                 if (sc->bge_asicrev == BGE_ASICREV_BCM5755 ||
2217                     sc->bge_asicrev == BGE_ASICREV_BCM5761 ||
2218                     sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
2219                     sc->bge_asicrev == BGE_ASICREV_BCM5787) {
2220                         if (product != PCI_PRODUCT_BROADCOM_BCM5722 &&
2221                             product != PCI_PRODUCT_BROADCOM_BCM5756)
2222                                 mii_priv |= BRGPHY_FLAG_JITTER_BUG;
2223                         if (product == PCI_PRODUCT_BROADCOM_BCM5755M)
2224                                 mii_priv |= BRGPHY_FLAG_ADJUST_TRIM;
2225                 } else {
2226                         mii_priv |= BRGPHY_FLAG_BER_BUG;
2227                 }
2228         }
2229
2230         /*
2231          * Allocate interrupt
2232          */
2233         msi_enable = bge_msi_enable;
2234         if ((sc->bge_flags & BGE_FLAG_STATUS_TAG) == 0) {
2235                 /* If "tagged status" is disabled, don't enable MSI */
2236                 msi_enable = 0;
2237         } else if (msi_enable) {
2238                 msi_enable = 0; /* Disable by default */
2239                 if (BGE_IS_575X_PLUS(sc)) {
2240                         msi_enable = 1;
2241                         /* XXX we filter all 5714 chips */
2242                         if (sc->bge_asicrev == BGE_ASICREV_BCM5714 ||
2243                             (sc->bge_asicrev == BGE_ASICREV_BCM5750 &&
2244                              (sc->bge_chiprev == BGE_CHIPREV_5750_AX ||
2245                               sc->bge_chiprev == BGE_CHIPREV_5750_BX)))
2246                                 msi_enable = 0;
2247                         else if (BGE_IS_5755_PLUS(sc) ||
2248                             sc->bge_asicrev == BGE_ASICREV_BCM5906)
2249                                 sc->bge_flags |= BGE_FLAG_ONESHOT_MSI;
2250                 }
2251         }
2252         if (msi_enable) {
2253                 if (pci_find_extcap(dev, PCIY_MSI, &sc->bge_msicap)) {
2254                         device_printf(dev, "no MSI capability\n");
2255                         msi_enable = 0;
2256                 }
2257         }
2258
2259         sc->bge_irq_type = pci_alloc_1intr(dev, msi_enable, &sc->bge_irq_rid,
2260             &intr_flags);
2261
2262         sc->bge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->bge_irq_rid,
2263             intr_flags);
2264         if (sc->bge_irq == NULL) {
2265                 device_printf(dev, "couldn't map interrupt\n");
2266                 error = ENXIO;
2267                 goto fail;
2268         }
2269
2270         if (sc->bge_irq_type == PCI_INTR_TYPE_MSI)
2271                 bge_enable_msi(sc);
2272         else
2273                 sc->bge_flags &= ~BGE_FLAG_ONESHOT_MSI;
2274
2275         /* Initialize if_name earlier, so if_printf could be used */
2276         ifp = &sc->arpcom.ac_if;
2277         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
2278
2279         /* Try to reset the chip. */
2280         bge_reset(sc);
2281
2282         if (bge_chipinit(sc)) {
2283                 device_printf(dev, "chip initialization failed\n");
2284                 error = ENXIO;
2285                 goto fail;
2286         }
2287
2288         /*
2289          * Get station address
2290          */
2291         error = bge_get_eaddr(sc, ether_addr);
2292         if (error) {
2293                 device_printf(dev, "failed to read station address\n");
2294                 goto fail;
2295         }
2296
2297         /* 5705/5750 limits RX return ring to 512 entries. */
2298         if (BGE_IS_5705_PLUS(sc))
2299                 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
2300         else
2301                 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
2302
2303         error = bge_dma_alloc(sc);
2304         if (error)
2305                 goto fail;
2306
2307         /* Set default tuneable values. */
2308         sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
2309         sc->bge_rx_coal_ticks = BGE_RX_COAL_TICKS_DEF;
2310         sc->bge_tx_coal_ticks = BGE_TX_COAL_TICKS_DEF;
2311         sc->bge_rx_coal_bds = BGE_RX_COAL_BDS_DEF;
2312         sc->bge_tx_coal_bds = BGE_TX_COAL_BDS_DEF;
2313         if (sc->bge_flags & BGE_FLAG_STATUS_TAG) {
2314                 sc->bge_rx_coal_ticks_int = BGE_RX_COAL_TICKS_DEF;
2315                 sc->bge_tx_coal_ticks_int = BGE_TX_COAL_TICKS_DEF;
2316                 sc->bge_rx_coal_bds_int = BGE_RX_COAL_BDS_DEF;
2317                 sc->bge_tx_coal_bds_int = BGE_TX_COAL_BDS_DEF;
2318         } else {
2319                 sc->bge_rx_coal_ticks_int = BGE_RX_COAL_TICKS_MIN;
2320                 sc->bge_tx_coal_ticks_int = BGE_TX_COAL_TICKS_MIN;
2321                 sc->bge_rx_coal_bds_int = BGE_RX_COAL_BDS_MIN;
2322                 sc->bge_tx_coal_bds_int = BGE_TX_COAL_BDS_MIN;
2323         }
2324
2325         /* Set up TX spare and reserved descriptor count */
2326         if (sc->bge_flags & BGE_FLAG_TSO) {
2327                 sc->bge_txspare = BGE_NSEG_SPARE_TSO;
2328                 sc->bge_txrsvd = BGE_NSEG_RSVD_TSO;
2329         } else {
2330                 sc->bge_txspare = BGE_NSEG_SPARE;
2331                 sc->bge_txrsvd = BGE_NSEG_RSVD;
2332         }
2333
2334         /* Set up ifnet structure */
2335         ifp->if_softc = sc;
2336         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2337         ifp->if_ioctl = bge_ioctl;
2338         ifp->if_start = bge_start;
2339 #ifdef IFPOLL_ENABLE
2340         ifp->if_npoll = bge_npoll;
2341 #endif
2342         ifp->if_watchdog = bge_watchdog;
2343         ifp->if_init = bge_init;
2344         ifp->if_mtu = ETHERMTU;
2345         ifp->if_capabilities = IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU;
2346         ifq_set_maxlen(&ifp->if_snd, BGE_TX_RING_CNT - 1);
2347         ifq_set_ready(&ifp->if_snd);
2348
2349         /*
2350          * 5700 B0 chips do not support checksumming correctly due
2351          * to hardware bugs.
2352          */
2353         if (sc->bge_chipid != BGE_CHIPID_BCM5700_B0) {
2354                 ifp->if_capabilities |= IFCAP_HWCSUM;
2355                 ifp->if_hwassist |= BGE_CSUM_FEATURES;
2356         }
2357         if (sc->bge_flags & BGE_FLAG_TSO) {
2358                 ifp->if_capabilities |= IFCAP_TSO;
2359                 ifp->if_hwassist |= CSUM_TSO;
2360         }
2361         ifp->if_capenable = ifp->if_capabilities;
2362
2363         /*
2364          * Figure out what sort of media we have by checking the
2365          * hardware config word in the first 32k of NIC internal memory,
2366          * or fall back to examining the EEPROM if necessary.
2367          * Note: on some BCM5700 cards, this value appears to be unset.
2368          * If that's the case, we have to rely on identifying the NIC
2369          * by its PCI subsystem ID, as we do below for the SysKonnect
2370          * SK-9D41.
2371          */
2372         if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG) == BGE_MAGIC_NUMBER) {
2373                 hwcfg = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG);
2374         } else {
2375                 if (bge_read_eeprom(sc, (caddr_t)&hwcfg, BGE_EE_HWCFG_OFFSET,
2376                                     sizeof(hwcfg))) {
2377                         device_printf(dev, "failed to read EEPROM\n");
2378                         error = ENXIO;
2379                         goto fail;
2380                 }
2381                 hwcfg = ntohl(hwcfg);
2382         }
2383
2384         /* The SysKonnect SK-9D41 is a 1000baseSX card. */
2385         if (pci_get_subvendor(dev) == PCI_PRODUCT_SCHNEIDERKOCH_SK_9D41 ||
2386             (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) {
2387                 if (BGE_IS_5714_FAMILY(sc))
2388                         sc->bge_flags |= BGE_FLAG_MII_SERDES;
2389                 else
2390                         sc->bge_flags |= BGE_FLAG_TBI;
2391         }
2392
2393         /* Setup MI MODE */
2394         if (sc->bge_flags & BGE_FLAG_CPMU)
2395                 sc->bge_mi_mode = BGE_MIMODE_500KHZ_CONST;
2396         else
2397                 sc->bge_mi_mode = BGE_MIMODE_BASE;
2398         if (BGE_IS_5700_FAMILY(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5705) {
2399                 /* Enable auto polling for BCM570[0-5]. */
2400                 sc->bge_mi_mode |= BGE_MIMODE_AUTOPOLL;
2401         }
2402
2403         /* Setup link status update stuffs */
2404         if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
2405             sc->bge_chipid != BGE_CHIPID_BCM5700_B2) {
2406                 sc->bge_link_upd = bge_bcm5700_link_upd;
2407                 sc->bge_link_chg = BGE_MACSTAT_MI_INTERRUPT;
2408         } else if (sc->bge_flags & BGE_FLAG_TBI) {
2409                 sc->bge_link_upd = bge_tbi_link_upd;
2410                 sc->bge_link_chg = BGE_MACSTAT_LINK_CHANGED;
2411         } else if (sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) {
2412                 sc->bge_link_upd = bge_autopoll_link_upd;
2413                 sc->bge_link_chg = BGE_MACSTAT_LINK_CHANGED;
2414         } else {
2415                 sc->bge_link_upd = bge_copper_link_upd;
2416                 sc->bge_link_chg = BGE_MACSTAT_LINK_CHANGED;
2417         }
2418
2419         /*
2420          * Broadcom's own driver always assumes the internal
2421          * PHY is at GMII address 1.  On some chips, the PHY responds
2422          * to accesses at all addresses, which could cause us to
2423          * bogusly attach the PHY 32 times at probe type.  Always
2424          * restricting the lookup to address 1 is simpler than
2425          * trying to figure out which chips revisions should be
2426          * special-cased.
2427          */
2428         sc->bge_phyno = 1;
2429
2430         if (sc->bge_flags & BGE_FLAG_TBI) {
2431                 ifmedia_init(&sc->bge_ifmedia, IFM_IMASK,
2432                     bge_ifmedia_upd, bge_ifmedia_sts);
2433                 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
2434                 ifmedia_add(&sc->bge_ifmedia,
2435                     IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
2436                 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
2437                 ifmedia_set(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO);
2438                 sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
2439         } else {
2440                 struct mii_probe_args mii_args;
2441
2442                 mii_probe_args_init(&mii_args, bge_ifmedia_upd, bge_ifmedia_sts);
2443                 mii_args.mii_probemask = 1 << sc->bge_phyno;
2444                 mii_args.mii_capmask = capmask;
2445                 mii_args.mii_privtag = MII_PRIVTAG_BRGPHY;
2446                 mii_args.mii_priv = mii_priv;
2447
2448                 error = mii_probe(dev, &sc->bge_miibus, &mii_args);
2449                 if (error) {
2450                         device_printf(dev, "MII without any PHY!\n");
2451                         goto fail;
2452                 }
2453         }
2454
2455         /*
2456          * Create sysctl nodes.
2457          */
2458         sysctl_ctx_init(&sc->bge_sysctl_ctx);
2459         sc->bge_sysctl_tree = SYSCTL_ADD_NODE(&sc->bge_sysctl_ctx,
2460                                               SYSCTL_STATIC_CHILDREN(_hw),
2461                                               OID_AUTO,
2462                                               device_get_nameunit(dev),
2463                                               CTLFLAG_RD, 0, "");
2464         if (sc->bge_sysctl_tree == NULL) {
2465                 device_printf(dev, "can't add sysctl node\n");
2466                 error = ENXIO;
2467                 goto fail;
2468         }
2469
2470         SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx,
2471                         SYSCTL_CHILDREN(sc->bge_sysctl_tree),
2472                         OID_AUTO, "rx_coal_ticks",
2473                         CTLTYPE_INT | CTLFLAG_RW,
2474                         sc, 0, bge_sysctl_rx_coal_ticks, "I",
2475                         "Receive coalescing ticks (usec).");
2476         SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx,
2477                         SYSCTL_CHILDREN(sc->bge_sysctl_tree),
2478                         OID_AUTO, "tx_coal_ticks",
2479                         CTLTYPE_INT | CTLFLAG_RW,
2480                         sc, 0, bge_sysctl_tx_coal_ticks, "I",
2481                         "Transmit coalescing ticks (usec).");
2482         SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx,
2483                         SYSCTL_CHILDREN(sc->bge_sysctl_tree),
2484                         OID_AUTO, "rx_coal_bds",
2485                         CTLTYPE_INT | CTLFLAG_RW,
2486                         sc, 0, bge_sysctl_rx_coal_bds, "I",
2487                         "Receive max coalesced BD count.");
2488         SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx,
2489                         SYSCTL_CHILDREN(sc->bge_sysctl_tree),
2490                         OID_AUTO, "tx_coal_bds",
2491                         CTLTYPE_INT | CTLFLAG_RW,
2492                         sc, 0, bge_sysctl_tx_coal_bds, "I",
2493                         "Transmit max coalesced BD count.");
2494         if (sc->bge_flags & BGE_FLAG_PCIE) {
2495                 /*
2496                  * A common design characteristic for many Broadcom
2497                  * client controllers is that they only support a
2498                  * single outstanding DMA read operation on the PCIe
2499                  * bus. This means that it will take twice as long to
2500                  * fetch a TX frame that is split into header and
2501                  * payload buffers as it does to fetch a single,
2502                  * contiguous TX frame (2 reads vs. 1 read). For these
2503                  * controllers, coalescing buffers to reduce the number
2504                  * of memory reads is effective way to get maximum
2505                  * performance(about 940Mbps).  Without collapsing TX
2506                  * buffers the maximum TCP bulk transfer performance
2507                  * is about 850Mbps. However forcing coalescing mbufs
2508                  * consumes a lot of CPU cycles, so leave it off by
2509                  * default.
2510                  */
2511                 SYSCTL_ADD_INT(&sc->bge_sysctl_ctx,
2512                                SYSCTL_CHILDREN(sc->bge_sysctl_tree),
2513                                OID_AUTO, "force_defrag", CTLFLAG_RW,
2514                                &sc->bge_force_defrag, 0,
2515                                "Force defragment on TX path");
2516         }
2517         if (sc->bge_flags & BGE_FLAG_STATUS_TAG) {
2518                 if (!BGE_IS_5705_PLUS(sc)) {
2519                         SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx,
2520                             SYSCTL_CHILDREN(sc->bge_sysctl_tree), OID_AUTO,
2521                             "rx_coal_ticks_int", CTLTYPE_INT | CTLFLAG_RW,
2522                             sc, 0, bge_sysctl_rx_coal_ticks_int, "I",
2523                             "Receive coalescing ticks "
2524                             "during interrupt (usec).");
2525                         SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx,
2526                             SYSCTL_CHILDREN(sc->bge_sysctl_tree), OID_AUTO,
2527                             "tx_coal_ticks_int", CTLTYPE_INT | CTLFLAG_RW,
2528                             sc, 0, bge_sysctl_tx_coal_ticks_int, "I",
2529                             "Transmit coalescing ticks "
2530                             "during interrupt (usec).");
2531                 }
2532                 SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx,
2533                     SYSCTL_CHILDREN(sc->bge_sysctl_tree), OID_AUTO,
2534                     "rx_coal_bds_int", CTLTYPE_INT | CTLFLAG_RW,
2535                     sc, 0, bge_sysctl_rx_coal_bds_int, "I",
2536                     "Receive max coalesced BD count during interrupt.");
2537                 SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx,
2538                     SYSCTL_CHILDREN(sc->bge_sysctl_tree), OID_AUTO,
2539                     "tx_coal_bds_int", CTLTYPE_INT | CTLFLAG_RW,
2540                     sc, 0, bge_sysctl_tx_coal_bds_int, "I",
2541                     "Transmit max coalesced BD count during interrupt.");
2542         }
2543
2544         /*
2545          * Call MI attach routine.
2546          */
2547         ether_ifattach(ifp, ether_addr, NULL);
2548
2549 #ifdef IFPOLL_ENABLE
2550         /* Polling setup */
2551         ifpoll_compat_setup(&sc->bge_npoll,
2552             &sc->bge_sysctl_ctx, sc->bge_sysctl_tree, device_get_unit(dev),
2553             ifp->if_serializer);
2554 #endif
2555
2556         if (sc->bge_irq_type == PCI_INTR_TYPE_MSI) {
2557                 if (sc->bge_flags & BGE_FLAG_ONESHOT_MSI) {
2558                         intr_func = bge_msi_oneshot;
2559                         if (bootverbose)
2560                                 device_printf(dev, "oneshot MSI\n");
2561                 } else {
2562                         intr_func = bge_msi;
2563                 }
2564         } else if (sc->bge_flags & BGE_FLAG_STATUS_TAG) {
2565                 intr_func = bge_intr_legacy;
2566         } else {
2567                 intr_func = bge_intr_crippled;
2568         }
2569         error = bus_setup_intr(dev, sc->bge_irq, INTR_MPSAFE, intr_func, sc,
2570             &sc->bge_intrhand, ifp->if_serializer);
2571         if (error) {
2572                 ether_ifdetach(ifp);
2573                 device_printf(dev, "couldn't set up irq\n");
2574                 goto fail;
2575         }
2576
2577         ifp->if_cpuid = rman_get_cpuid(sc->bge_irq);
2578         KKASSERT(ifp->if_cpuid >= 0 && ifp->if_cpuid < ncpus);
2579
2580         return(0);
2581 fail:
2582         bge_detach(dev);
2583         return(error);
2584 }
2585
2586 static int
2587 bge_detach(device_t dev)
2588 {
2589         struct bge_softc *sc = device_get_softc(dev);
2590
2591         if (device_is_attached(dev)) {
2592                 struct ifnet *ifp = &sc->arpcom.ac_if;
2593
2594                 lwkt_serialize_enter(ifp->if_serializer);
2595                 bge_stop(sc);
2596                 bge_reset(sc);
2597                 bus_teardown_intr(dev, sc->bge_irq, sc->bge_intrhand);
2598                 lwkt_serialize_exit(ifp->if_serializer);
2599
2600                 ether_ifdetach(ifp);
2601         }
2602
2603         if (sc->bge_flags & BGE_FLAG_TBI)
2604                 ifmedia_removeall(&sc->bge_ifmedia);
2605         if (sc->bge_miibus)
2606                 device_delete_child(dev, sc->bge_miibus);
2607         bus_generic_detach(dev);
2608
2609         if (sc->bge_irq != NULL) {
2610                 bus_release_resource(dev, SYS_RES_IRQ, sc->bge_irq_rid,
2611                     sc->bge_irq);
2612         }
2613         if (sc->bge_irq_type == PCI_INTR_TYPE_MSI)
2614                 pci_release_msi(dev);
2615
2616         if (sc->bge_res != NULL) {
2617                 bus_release_resource(dev, SYS_RES_MEMORY,
2618                     BGE_PCI_BAR0, sc->bge_res);
2619         }
2620
2621         if (sc->bge_sysctl_tree != NULL)
2622                 sysctl_ctx_free(&sc->bge_sysctl_ctx);
2623
2624         bge_dma_free(sc);
2625
2626         return 0;
2627 }
2628
2629 static void
2630 bge_reset(struct bge_softc *sc)
2631 {
2632         device_t dev;
2633         uint32_t cachesize, command, pcistate, reset;
2634         void (*write_op)(struct bge_softc *, uint32_t, uint32_t);
2635         int i, val = 0;
2636
2637         dev = sc->bge_dev;
2638
2639         if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc) &&
2640             sc->bge_asicrev != BGE_ASICREV_BCM5906) {
2641                 if (sc->bge_flags & BGE_FLAG_PCIE)
2642                         write_op = bge_writemem_direct;
2643                 else
2644                         write_op = bge_writemem_ind;
2645         } else {
2646                 write_op = bge_writereg_ind;
2647         }
2648
2649         /* Save some important PCI state. */
2650         cachesize = pci_read_config(dev, BGE_PCI_CACHESZ, 4);
2651         command = pci_read_config(dev, BGE_PCI_CMD, 4);
2652         pcistate = pci_read_config(dev, BGE_PCI_PCISTATE, 4);
2653
2654         pci_write_config(dev, BGE_PCI_MISC_CTL,
2655             BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
2656             BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW|
2657             sc->bge_pci_miscctl, 4);
2658
2659         /* Disable fastboot on controllers that support it. */
2660         if (sc->bge_asicrev == BGE_ASICREV_BCM5752 ||
2661             BGE_IS_5755_PLUS(sc)) {
2662                 if (bootverbose)
2663                         if_printf(&sc->arpcom.ac_if, "Disabling fastboot\n");
2664                 CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0x0);
2665         }
2666
2667         /*
2668          * Write the magic number to SRAM at offset 0xB50.
2669          * When firmware finishes its initialization it will
2670          * write ~BGE_MAGIC_NUMBER to the same location.
2671          */
2672         bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
2673
2674         reset = BGE_MISCCFG_RESET_CORE_CLOCKS|(65<<1);
2675
2676         /* XXX: Broadcom Linux driver. */
2677         if (sc->bge_flags & BGE_FLAG_PCIE) {
2678                 /* Force PCI-E 1.0a mode */
2679                 if (sc->bge_asicrev != BGE_ASICREV_BCM5785 &&
2680                     CSR_READ_4(sc, BGE_PCIE_PHY_TSTCTL) ==
2681                     (BGE_PCIE_PHY_TSTCTL_PSCRAM |
2682                      BGE_PCIE_PHY_TSTCTL_PCIE10)) {
2683                         CSR_WRITE_4(sc, BGE_PCIE_PHY_TSTCTL,
2684                             BGE_PCIE_PHY_TSTCTL_PSCRAM);
2685                 }
2686                 if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
2687                         /* Prevent PCIE link training during global reset */
2688                         CSR_WRITE_4(sc, BGE_MISC_CFG, (1<<29));
2689                         reset |= (1<<29);
2690                 }
2691         }
2692
2693         /* 
2694          * Set GPHY Power Down Override to leave GPHY
2695          * powered up in D0 uninitialized.
2696          */
2697         if (BGE_IS_5705_PLUS(sc) && (sc->bge_flags & BGE_FLAG_CPMU) == 0)
2698                 reset |= BGE_MISCCFG_GPHY_PD_OVERRIDE;
2699
2700         /* Issue global reset */
2701         write_op(sc, BGE_MISC_CFG, reset);
2702
2703         if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
2704                 uint32_t status, ctrl;
2705
2706                 status = CSR_READ_4(sc, BGE_VCPU_STATUS);
2707                 CSR_WRITE_4(sc, BGE_VCPU_STATUS,
2708                     status | BGE_VCPU_STATUS_DRV_RESET);
2709                 ctrl = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
2710                 CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
2711                     ctrl & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
2712         }
2713
2714         DELAY(1000);
2715
2716         /* XXX: Broadcom Linux driver. */
2717         if (sc->bge_flags & BGE_FLAG_PCIE) {
2718                 uint16_t devctl;
2719
2720                 if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
2721                         uint32_t v;
2722
2723                         DELAY(500000); /* wait for link training to complete */
2724                         v = pci_read_config(dev, 0xc4, 4);
2725                         pci_write_config(dev, 0xc4, v | (1<<15), 4);
2726                 }
2727
2728                 devctl = pci_read_config(dev,
2729                     sc->bge_pciecap + PCIER_DEVCTRL, 2);
2730
2731                 /* Disable no snoop and disable relaxed ordering. */
2732                 devctl &= ~(PCIEM_DEVCTL_RELAX_ORDER | PCIEM_DEVCTL_NOSNOOP);
2733
2734                 /* Old PCI-E chips only support 128 bytes Max PayLoad Size. */
2735                 if ((sc->bge_flags & BGE_FLAG_CPMU) == 0) {
2736                         devctl &= ~PCIEM_DEVCTL_MAX_PAYLOAD_MASK;
2737                         devctl |= PCIEM_DEVCTL_MAX_PAYLOAD_128;
2738                 }
2739
2740                 pci_write_config(dev, sc->bge_pciecap + PCIER_DEVCTRL,
2741                     devctl, 2);
2742
2743                 /* Clear error status. */
2744                 pci_write_config(dev, sc->bge_pciecap + PCIER_DEVSTS,
2745                     PCIEM_DEVSTS_CORR_ERR |
2746                     PCIEM_DEVSTS_NFATAL_ERR |
2747                     PCIEM_DEVSTS_FATAL_ERR |
2748                     PCIEM_DEVSTS_UNSUPP_REQ, 2);
2749         }
2750
2751         /* Reset some of the PCI state that got zapped by reset */
2752         pci_write_config(dev, BGE_PCI_MISC_CTL,
2753             BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
2754             BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW|
2755             sc->bge_pci_miscctl, 4);
2756         pci_write_config(dev, BGE_PCI_CACHESZ, cachesize, 4);
2757         pci_write_config(dev, BGE_PCI_CMD, command, 4);
2758         write_op(sc, BGE_MISC_CFG, (65 << 1));
2759
2760         /*
2761          * Disable PCI-X relaxed ordering to ensure status block update
2762          * comes first then packet buffer DMA. Otherwise driver may
2763          * read stale status block.
2764          */
2765         if (sc->bge_flags & BGE_FLAG_PCIX) {
2766                 uint16_t devctl;
2767
2768                 devctl = pci_read_config(dev,
2769                     sc->bge_pcixcap + PCIXR_COMMAND, 2);
2770                 devctl &= ~PCIXM_COMMAND_ERO;
2771                 if (sc->bge_asicrev == BGE_ASICREV_BCM5703) {
2772                         devctl &= ~PCIXM_COMMAND_MAX_READ;
2773                         devctl |= PCIXM_COMMAND_MAX_READ_2048;
2774                 } else if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
2775                         devctl &= ~(PCIXM_COMMAND_MAX_SPLITS |
2776                             PCIXM_COMMAND_MAX_READ);
2777                         devctl |= PCIXM_COMMAND_MAX_READ_2048;
2778                 }
2779                 pci_write_config(dev, sc->bge_pcixcap + PCIXR_COMMAND,
2780                     devctl, 2);
2781         }
2782
2783         /*
2784          * Enable memory arbiter and re-enable MSI if necessary.
2785          */
2786         if (BGE_IS_5714_FAMILY(sc)) {
2787                 uint32_t val;
2788
2789                 if (sc->bge_irq_type == PCI_INTR_TYPE_MSI) {
2790                         /*
2791                          * Resetting BCM5714 family will clear MSI
2792                          * enable bit; restore it after resetting.
2793                          */
2794                         PCI_SETBIT(sc->bge_dev, sc->bge_msicap + PCIR_MSI_CTRL,
2795                             PCIM_MSICTRL_MSI_ENABLE, 2);
2796                         BGE_SETBIT(sc, BGE_MSI_MODE, BGE_MSIMODE_ENABLE);
2797                 }
2798                 val = CSR_READ_4(sc, BGE_MARB_MODE);
2799                 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | val);
2800         } else {
2801                 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
2802         }
2803
2804         if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
2805                 for (i = 0; i < BGE_TIMEOUT; i++) {
2806                         val = CSR_READ_4(sc, BGE_VCPU_STATUS);
2807                         if (val & BGE_VCPU_STATUS_INIT_DONE)
2808                                 break;
2809                         DELAY(100);
2810                 }
2811                 if (i == BGE_TIMEOUT) {
2812                         if_printf(&sc->arpcom.ac_if, "reset timed out\n");
2813                         return;
2814                 }
2815         } else {
2816                 /*
2817                  * Poll until we see the 1's complement of the magic number.
2818                  * This indicates that the firmware initialization
2819                  * is complete.
2820                  */
2821                 for (i = 0; i < BGE_FIRMWARE_TIMEOUT; i++) {
2822                         val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM);
2823                         if (val == ~BGE_MAGIC_NUMBER)
2824                                 break;
2825                         DELAY(10);
2826                 }
2827                 if (i == BGE_FIRMWARE_TIMEOUT) {
2828                         if_printf(&sc->arpcom.ac_if, "firmware handshake "
2829                                   "timed out, found 0x%08x\n", val);
2830                 }
2831         }
2832
2833         /*
2834          * XXX Wait for the value of the PCISTATE register to
2835          * return to its original pre-reset state. This is a
2836          * fairly good indicator of reset completion. If we don't
2837          * wait for the reset to fully complete, trying to read
2838          * from the device's non-PCI registers may yield garbage
2839          * results.
2840          */
2841         for (i = 0; i < BGE_TIMEOUT; i++) {
2842                 if (pci_read_config(dev, BGE_PCI_PCISTATE, 4) == pcistate)
2843                         break;
2844                 DELAY(10);
2845         }
2846
2847         /* Fix up byte swapping */
2848         CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS |
2849             BGE_MODECTL_BYTESWAP_DATA);
2850
2851         CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
2852
2853         /*
2854          * The 5704 in TBI mode apparently needs some special
2855          * adjustment to insure the SERDES drive level is set
2856          * to 1.2V.
2857          */
2858         if (sc->bge_asicrev == BGE_ASICREV_BCM5704 &&
2859             (sc->bge_flags & BGE_FLAG_TBI)) {
2860                 uint32_t serdescfg;
2861
2862                 serdescfg = CSR_READ_4(sc, BGE_SERDES_CFG);
2863                 serdescfg = (serdescfg & ~0xFFF) | 0x880;
2864                 CSR_WRITE_4(sc, BGE_SERDES_CFG, serdescfg);
2865         }
2866
2867         /* XXX: Broadcom Linux driver. */
2868         if ((sc->bge_flags & BGE_FLAG_PCIE) &&
2869             sc->bge_chipid != BGE_CHIPID_BCM5750_A0 &&
2870             sc->bge_asicrev != BGE_ASICREV_BCM5785) {
2871                 uint32_t v;
2872
2873                 /* Enable Data FIFO protection. */
2874                 v = CSR_READ_4(sc, BGE_PCIE_TLDLPL_PORT);
2875                 CSR_WRITE_4(sc, BGE_PCIE_TLDLPL_PORT, v | (1 << 25));
2876         }
2877
2878         DELAY(10000);
2879 }
2880
2881 /*
2882  * Frame reception handling. This is called if there's a frame
2883  * on the receive return list.
2884  *
2885  * Note: we have to be able to handle two possibilities here:
2886  * 1) the frame is from the jumbo recieve ring
2887  * 2) the frame is from the standard receive ring
2888  */
2889
2890 static void
2891 bge_rxeof(struct bge_softc *sc, uint16_t rx_prod)
2892 {
2893         struct ifnet *ifp;
2894         int stdcnt = 0, jumbocnt = 0;
2895
2896         ifp = &sc->arpcom.ac_if;
2897
2898         while (sc->bge_rx_saved_considx != rx_prod) {
2899                 struct bge_rx_bd        *cur_rx;
2900                 uint32_t                rxidx;
2901                 struct mbuf             *m = NULL;
2902                 uint16_t                vlan_tag = 0;
2903                 int                     have_tag = 0;
2904
2905                 cur_rx =
2906             &sc->bge_ldata.bge_rx_return_ring[sc->bge_rx_saved_considx];
2907
2908                 rxidx = cur_rx->bge_idx;
2909                 BGE_INC(sc->bge_rx_saved_considx, sc->bge_return_ring_cnt);
2910                 logif(rx_pkt);
2911
2912                 if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
2913                         have_tag = 1;
2914                         vlan_tag = cur_rx->bge_vlan_tag;
2915                 }
2916
2917                 if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
2918                         BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
2919                         jumbocnt++;
2920
2921                         if (rxidx != sc->bge_jumbo) {
2922                                 ifp->if_ierrors++;
2923                                 if_printf(ifp, "sw jumbo index(%d) "
2924                                     "and hw jumbo index(%d) mismatch, drop!\n",
2925                                     sc->bge_jumbo, rxidx);
2926                                 bge_setup_rxdesc_jumbo(sc, rxidx);
2927                                 continue;
2928                         }
2929
2930                         m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx].bge_mbuf;
2931                         if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
2932                                 ifp->if_ierrors++;
2933                                 bge_setup_rxdesc_jumbo(sc, sc->bge_jumbo);
2934                                 continue;
2935                         }
2936                         if (bge_newbuf_jumbo(sc, sc->bge_jumbo, 0)) {
2937                                 ifp->if_ierrors++;
2938                                 bge_setup_rxdesc_jumbo(sc, sc->bge_jumbo);
2939                                 continue;
2940                         }
2941                 } else {
2942                         BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
2943                         stdcnt++;
2944
2945                         if (rxidx != sc->bge_std) {
2946                                 ifp->if_ierrors++;
2947                                 if_printf(ifp, "sw std index(%d) "
2948                                     "and hw std index(%d) mismatch, drop!\n",
2949                                     sc->bge_std, rxidx);
2950                                 bge_setup_rxdesc_std(sc, rxidx);
2951                                 continue;
2952                         }
2953
2954                         m = sc->bge_cdata.bge_rx_std_chain[rxidx].bge_mbuf;
2955                         if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
2956                                 ifp->if_ierrors++;
2957                                 bge_setup_rxdesc_std(sc, sc->bge_std);
2958                                 continue;
2959                         }
2960                         if (bge_newbuf_std(sc, sc->bge_std, 0)) {
2961                                 ifp->if_ierrors++;
2962                                 bge_setup_rxdesc_std(sc, sc->bge_std);
2963                                 continue;
2964                         }
2965                 }
2966
2967                 ifp->if_ipackets++;
2968 #if !defined(__i386__) && !defined(__x86_64__)
2969                 /*
2970                  * The x86 allows unaligned accesses, but for other
2971                  * platforms we must make sure the payload is aligned.
2972                  */
2973                 if (sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) {
2974                         bcopy(m->m_data, m->m_data + ETHER_ALIGN,
2975                             cur_rx->bge_len);
2976                         m->m_data += ETHER_ALIGN;
2977                 }
2978 #endif
2979                 m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
2980                 m->m_pkthdr.rcvif = ifp;
2981
2982                 if (ifp->if_capenable & IFCAP_RXCSUM) {
2983                         if (cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) {
2984                                 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
2985                                 if ((cur_rx->bge_ip_csum ^ 0xffff) == 0)
2986                                         m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2987                         }
2988                         if ((cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) &&
2989                             m->m_pkthdr.len >= BGE_MIN_FRAMELEN) {
2990                                 m->m_pkthdr.csum_data =
2991                                         cur_rx->bge_tcp_udp_csum;
2992                                 m->m_pkthdr.csum_flags |=
2993                                         CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2994                         }
2995                 }
2996
2997                 /*
2998                  * If we received a packet with a vlan tag, pass it
2999                  * to vlan_input() instead of ether_input().
3000                  */
3001                 if (have_tag) {
3002                         m->m_flags |= M_VLANTAG;
3003                         m->m_pkthdr.ether_vlantag = vlan_tag;
3004                         have_tag = vlan_tag = 0;
3005                 }
3006                 ifp->if_input(ifp, m);
3007         }
3008
3009         bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
3010         if (stdcnt)
3011                 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
3012         if (jumbocnt)
3013                 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
3014 }
3015
3016 static void
3017 bge_txeof(struct bge_softc *sc, uint16_t tx_cons)
3018 {
3019         struct ifnet *ifp;
3020
3021         ifp = &sc->arpcom.ac_if;
3022
3023         /*
3024          * Go through our tx ring and free mbufs for those
3025          * frames that have been sent.
3026          */
3027         while (sc->bge_tx_saved_considx != tx_cons) {
3028                 uint32_t idx = 0;
3029
3030                 idx = sc->bge_tx_saved_considx;
3031                 if (sc->bge_cdata.bge_tx_chain[idx] != NULL) {
3032                         ifp->if_opackets++;
3033                         bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag,
3034                             sc->bge_cdata.bge_tx_dmamap[idx]);
3035                         m_freem(sc->bge_cdata.bge_tx_chain[idx]);
3036                         sc->bge_cdata.bge_tx_chain[idx] = NULL;
3037                 }
3038                 sc->bge_txcnt--;
3039                 BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
3040                 logif(tx_pkt);
3041         }
3042
3043         if ((BGE_TX_RING_CNT - sc->bge_txcnt) >=
3044             (sc->bge_txrsvd + sc->bge_txspare))
3045                 ifp->if_flags &= ~IFF_OACTIVE;
3046
3047         if (sc->bge_txcnt == 0)
3048                 ifp->if_timer = 0;
3049
3050         if (!ifq_is_empty(&ifp->if_snd))
3051                 if_devstart(ifp);
3052 }
3053
3054 #ifdef IFPOLL_ENABLE
3055
3056 static void
3057 bge_npoll_compat(struct ifnet *ifp, void *arg __unused, int cycles __unused)
3058 {
3059         struct bge_softc *sc = ifp->if_softc;
3060         struct bge_status_block *sblk = sc->bge_ldata.bge_status_block;
3061         uint16_t rx_prod, tx_cons;
3062
3063         ASSERT_SERIALIZED(ifp->if_serializer);
3064
3065         if (sc->bge_npoll.ifpc_stcount-- == 0) {
3066                 sc->bge_npoll.ifpc_stcount = sc->bge_npoll.ifpc_stfrac;
3067                 /*
3068                  * Process link state changes.
3069                  */
3070                 bge_link_poll(sc);
3071         }
3072
3073         if (sc->bge_flags & BGE_FLAG_STATUS_TAG) {
3074                 sc->bge_status_tag = sblk->bge_status_tag;
3075                 /*
3076                  * Use a load fence to ensure that status_tag
3077                  * is saved  before rx_prod and tx_cons.
3078                  */
3079                 cpu_lfence();
3080         }
3081
3082         rx_prod = sblk->bge_idx[0].bge_rx_prod_idx;
3083         if (sc->bge_rx_saved_considx != rx_prod)
3084                 bge_rxeof(sc, rx_prod);
3085
3086         tx_cons = sblk->bge_idx[0].bge_tx_cons_idx;
3087         if (sc->bge_tx_saved_considx != tx_cons)
3088                 bge_txeof(sc, tx_cons);
3089
3090         if (sc->bge_flags & BGE_FLAG_STATUS_TAG)
3091                 bge_writembx(sc, BGE_MBX_IRQ0_LO, sc->bge_status_tag << 24);
3092
3093         if (sc->bge_coal_chg)
3094                 bge_coal_change(sc);
3095 }
3096
3097 static void
3098 bge_npoll(struct ifnet *ifp, struct ifpoll_info *info)
3099 {
3100         struct bge_softc *sc = ifp->if_softc;
3101
3102         ASSERT_SERIALIZED(ifp->if_serializer);
3103
3104         if (info != NULL) {
3105                 int cpuid = sc->bge_npoll.ifpc_cpuid;
3106
3107                 info->ifpi_rx[cpuid].poll_func = bge_npoll_compat;
3108                 info->ifpi_rx[cpuid].arg = NULL;
3109                 info->ifpi_rx[cpuid].serializer = ifp->if_serializer;
3110
3111                 if (ifp->if_flags & IFF_RUNNING)
3112                         bge_disable_intr(sc);
3113                 ifp->if_npoll_cpuid = cpuid;
3114         } else {
3115                 if (ifp->if_flags & IFF_RUNNING)
3116                         bge_enable_intr(sc);
3117                 ifp->if_npoll_cpuid = -1;
3118         }
3119 }
3120
3121 #endif  /* IFPOLL_ENABLE */
3122
3123 static void
3124 bge_intr_crippled(void *xsc)
3125 {
3126         struct bge_softc *sc = xsc;
3127         struct ifnet *ifp = &sc->arpcom.ac_if;
3128
3129         logif(intr);
3130
3131         /*
3132          * Ack the interrupt by writing something to BGE_MBX_IRQ0_LO.  Don't
3133          * disable interrupts by writing nonzero like we used to, since with
3134          * our current organization this just gives complications and
3135          * pessimizations for re-enabling interrupts.  We used to have races
3136          * instead of the necessary complications.  Disabling interrupts
3137          * would just reduce the chance of a status update while we are
3138          * running (by switching to the interrupt-mode coalescence
3139          * parameters), but this chance is already very low so it is more
3140          * efficient to get another interrupt than prevent it.
3141          *
3142          * We do the ack first to ensure another interrupt if there is a
3143          * status update after the ack.  We don't check for the status
3144          * changing later because it is more efficient to get another
3145          * interrupt than prevent it, not quite as above (not checking is
3146          * a smaller optimization than not toggling the interrupt enable,
3147          * since checking doesn't involve PCI accesses and toggling require
3148          * the status check).  So toggling would probably be a pessimization
3149          * even with MSI.  It would only be needed for using a task queue.
3150          */
3151         bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
3152
3153         /*
3154          * Process link state changes.
3155          */
3156         bge_link_poll(sc);
3157
3158         if (ifp->if_flags & IFF_RUNNING) {
3159                 struct bge_status_block *sblk = sc->bge_ldata.bge_status_block;
3160                 uint16_t rx_prod, tx_cons;
3161
3162                 rx_prod = sblk->bge_idx[0].bge_rx_prod_idx;
3163                 if (sc->bge_rx_saved_considx != rx_prod)
3164                         bge_rxeof(sc, rx_prod);
3165
3166                 tx_cons = sblk->bge_idx[0].bge_tx_cons_idx;
3167                 if (sc->bge_tx_saved_considx != tx_cons)
3168                         bge_txeof(sc, tx_cons);
3169         }
3170
3171         if (sc->bge_coal_chg)
3172                 bge_coal_change(sc);
3173 }
3174
3175 static void
3176 bge_intr_legacy(void *xsc)
3177 {
3178         struct bge_softc *sc = xsc;
3179         struct bge_status_block *sblk = sc->bge_ldata.bge_status_block;
3180
3181         if (sc->bge_status_tag == sblk->bge_status_tag) {
3182                 uint32_t val;
3183
3184                 val = pci_read_config(sc->bge_dev, BGE_PCI_PCISTATE, 4);
3185                 if (val & BGE_PCISTAT_INTR_NOTACT)
3186                         return;
3187         }
3188
3189         /*
3190          * NOTE:
3191          * Interrupt will have to be disabled if tagged status
3192          * is used, else interrupt will always be asserted on
3193          * certain chips (at least on BCM5750 AX/BX).
3194          */
3195         bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
3196
3197         bge_intr(sc);
3198 }
3199
3200 static void
3201 bge_msi(void *xsc)
3202 {
3203         struct bge_softc *sc = xsc;
3204
3205         /* Disable interrupt first */
3206         bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
3207         bge_intr(sc);
3208 }
3209
3210 static void
3211 bge_msi_oneshot(void *xsc)
3212 {
3213         bge_intr(xsc);
3214 }
3215
3216 static void
3217 bge_intr(struct bge_softc *sc)
3218 {
3219         struct ifnet *ifp = &sc->arpcom.ac_if;
3220         struct bge_status_block *sblk = sc->bge_ldata.bge_status_block;
3221         uint16_t rx_prod, tx_cons;
3222         uint32_t status;
3223
3224         sc->bge_status_tag = sblk->bge_status_tag;
3225         /*
3226          * Use a load fence to ensure that status_tag is saved 
3227          * before rx_prod, tx_cons and status.
3228          */
3229         cpu_lfence();
3230
3231         rx_prod = sblk->bge_idx[0].bge_rx_prod_idx;
3232         tx_cons = sblk->bge_idx[0].bge_tx_cons_idx;
3233         status = sblk->bge_status;
3234
3235         if ((status & BGE_STATFLAG_LINKSTATE_CHANGED) || sc->bge_link_evt)
3236                 bge_link_poll(sc);
3237
3238         if (ifp->if_flags & IFF_RUNNING) {
3239                 if (sc->bge_rx_saved_considx != rx_prod)
3240                         bge_rxeof(sc, rx_prod);
3241
3242                 if (sc->bge_tx_saved_considx != tx_cons)
3243                         bge_txeof(sc, tx_cons);
3244         }
3245
3246         bge_writembx(sc, BGE_MBX_IRQ0_LO, sc->bge_status_tag << 24);
3247
3248         if (sc->bge_coal_chg)
3249                 bge_coal_change(sc);
3250 }
3251
3252 static void
3253 bge_tick(void *xsc)
3254 {
3255         struct bge_softc *sc = xsc;
3256         struct ifnet *ifp = &sc->arpcom.ac_if;
3257
3258         lwkt_serialize_enter(ifp->if_serializer);
3259
3260         if (BGE_IS_5705_PLUS(sc))
3261                 bge_stats_update_regs(sc);
3262         else
3263                 bge_stats_update(sc);
3264
3265         if (sc->bge_flags & BGE_FLAG_TBI) {
3266                 /*
3267                  * Since in TBI mode auto-polling can't be used we should poll
3268                  * link status manually. Here we register pending link event
3269                  * and trigger interrupt.
3270                  */
3271                 sc->bge_link_evt++;
3272                 if (BGE_IS_CRIPPLED(sc))
3273                         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
3274                 else
3275                         BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
3276         } else if (!sc->bge_link) {
3277                 mii_tick(device_get_softc(sc->bge_miibus));
3278         }
3279
3280         callout_reset(&sc->bge_stat_timer, hz, bge_tick, sc);
3281
3282         lwkt_serialize_exit(ifp->if_serializer);
3283 }
3284
3285 static void
3286 bge_stats_update_regs(struct bge_softc *sc)
3287 {
3288         struct ifnet *ifp = &sc->arpcom.ac_if;
3289         struct bge_mac_stats_regs stats;
3290         uint32_t *s;
3291         int i;
3292
3293         s = (uint32_t *)&stats;
3294         for (i = 0; i < sizeof(struct bge_mac_stats_regs); i += 4) {
3295                 *s = CSR_READ_4(sc, BGE_RX_STATS + i);
3296                 s++;
3297         }
3298
3299         ifp->if_collisions +=
3300            (stats.dot3StatsSingleCollisionFrames +
3301            stats.dot3StatsMultipleCollisionFrames +
3302            stats.dot3StatsExcessiveCollisions +
3303            stats.dot3StatsLateCollisions) -
3304            ifp->if_collisions;
3305 }
3306
3307 static void
3308 bge_stats_update(struct bge_softc *sc)
3309 {
3310         struct ifnet *ifp = &sc->arpcom.ac_if;
3311         bus_size_t stats;
3312
3313         stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
3314
3315 #define READ_STAT(sc, stats, stat)      \
3316         CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
3317
3318         ifp->if_collisions +=
3319            (READ_STAT(sc, stats,
3320                 txstats.dot3StatsSingleCollisionFrames.bge_addr_lo) +
3321             READ_STAT(sc, stats,
3322                 txstats.dot3StatsMultipleCollisionFrames.bge_addr_lo) +
3323             READ_STAT(sc, stats,
3324                 txstats.dot3StatsExcessiveCollisions.bge_addr_lo) +
3325             READ_STAT(sc, stats,
3326                 txstats.dot3StatsLateCollisions.bge_addr_lo)) -
3327            ifp->if_collisions;
3328
3329 #undef READ_STAT
3330
3331 #ifdef notdef
3332         ifp->if_collisions +=
3333            (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
3334            sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
3335            sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
3336            sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
3337            ifp->if_collisions;
3338 #endif
3339 }
3340
3341 /*
3342  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
3343  * pointers to descriptors.
3344  */
3345 static int
3346 bge_encap(struct bge_softc *sc, struct mbuf **m_head0, uint32_t *txidx)
3347 {
3348         struct bge_tx_bd *d = NULL, *last_d;
3349         uint16_t csum_flags = 0, mss = 0;
3350         bus_dma_segment_t segs[BGE_NSEG_NEW];
3351         bus_dmamap_t map;
3352         int error, maxsegs, nsegs, idx, i;
3353         struct mbuf *m_head = *m_head0, *m_new;
3354
3355         if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
3356                 error = bge_setup_tso(sc, m_head0, &mss, &csum_flags);
3357                 if (error)
3358                         return ENOBUFS;
3359                 m_head = *m_head0;
3360         } else if (m_head->m_pkthdr.csum_flags & BGE_CSUM_FEATURES) {
3361                 if (m_head->m_pkthdr.csum_flags & CSUM_IP)
3362                         csum_flags |= BGE_TXBDFLAG_IP_CSUM;
3363                 if (m_head->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))
3364                         csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
3365                 if (m_head->m_flags & M_LASTFRAG)
3366                         csum_flags |= BGE_TXBDFLAG_IP_FRAG_END;
3367                 else if (m_head->m_flags & M_FRAG)
3368                         csum_flags |= BGE_TXBDFLAG_IP_FRAG;
3369         }
3370
3371         idx = *txidx;
3372         map = sc->bge_cdata.bge_tx_dmamap[idx];
3373
3374         maxsegs = (BGE_TX_RING_CNT - sc->bge_txcnt) - sc->bge_txrsvd;
3375         KASSERT(maxsegs >= sc->bge_txspare,
3376                 ("not enough segments %d", maxsegs));
3377
3378         if (maxsegs > BGE_NSEG_NEW)
3379                 maxsegs = BGE_NSEG_NEW;
3380
3381         /*
3382          * Pad outbound frame to BGE_MIN_FRAMELEN for an unusual reason.
3383          * The bge hardware will pad out Tx runts to BGE_MIN_FRAMELEN,
3384          * but when such padded frames employ the bge IP/TCP checksum
3385          * offload, the hardware checksum assist gives incorrect results
3386          * (possibly from incorporating its own padding into the UDP/TCP
3387          * checksum; who knows).  If we pad such runts with zeros, the
3388          * onboard checksum comes out correct.
3389          */
3390         if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) &&
3391             m_head->m_pkthdr.len < BGE_MIN_FRAMELEN) {
3392                 error = m_devpad(m_head, BGE_MIN_FRAMELEN);
3393                 if (error)
3394                         goto back;
3395         }
3396
3397         if ((sc->bge_flags & BGE_FLAG_SHORTDMA) && m_head->m_next != NULL) {
3398                 m_new = bge_defrag_shortdma(m_head);
3399                 if (m_new == NULL) {
3400                         error = ENOBUFS;
3401                         goto back;
3402                 }
3403                 *m_head0 = m_head = m_new;
3404         }
3405         if ((m_head->m_pkthdr.csum_flags & CSUM_TSO) == 0 &&
3406             sc->bge_force_defrag && (sc->bge_flags & BGE_FLAG_PCIE) &&
3407             m_head->m_next != NULL) {
3408                 /*
3409                  * Forcefully defragment mbuf chain to overcome hardware
3410                  * limitation which only support a single outstanding
3411                  * DMA read operation.  If it fails, keep moving on using
3412                  * the original mbuf chain.
3413                  */
3414                 m_new = m_defrag(m_head, MB_DONTWAIT);
3415                 if (m_new != NULL)
3416                         *m_head0 = m_head = m_new;
3417         }
3418
3419         error = bus_dmamap_load_mbuf_defrag(sc->bge_cdata.bge_tx_mtag, map,
3420                         m_head0, segs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
3421         if (error)
3422                 goto back;
3423
3424         m_head = *m_head0;
3425         bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag, map, BUS_DMASYNC_PREWRITE);
3426
3427         for (i = 0; ; i++) {
3428                 d = &sc->bge_ldata.bge_tx_ring[idx];
3429
3430                 d->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[i].ds_addr);
3431                 d->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[i].ds_addr);
3432                 d->bge_len = segs[i].ds_len;
3433                 d->bge_flags = csum_flags;
3434                 d->bge_mss = mss;
3435
3436                 if (i == nsegs - 1)
3437                         break;
3438                 BGE_INC(idx, BGE_TX_RING_CNT);
3439         }
3440         last_d = d;
3441
3442         /* Set vlan tag to the first segment of the packet. */
3443         d = &sc->bge_ldata.bge_tx_ring[*txidx];
3444         if (m_head->m_flags & M_VLANTAG) {
3445                 d->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
3446                 d->bge_vlan_tag = m_head->m_pkthdr.ether_vlantag;
3447         } else {
3448                 d->bge_vlan_tag = 0;
3449         }
3450
3451         /* Mark the last segment as end of packet... */
3452         last_d->bge_flags |= BGE_TXBDFLAG_END;
3453
3454         /*
3455          * Insure that the map for this transmission is placed at
3456          * the array index of the last descriptor in this chain.
3457          */
3458         sc->bge_cdata.bge_tx_dmamap[*txidx] = sc->bge_cdata.bge_tx_dmamap[idx];
3459         sc->bge_cdata.bge_tx_dmamap[idx] = map;
3460         sc->bge_cdata.bge_tx_chain[idx] = m_head;
3461         sc->bge_txcnt += nsegs;
3462
3463         BGE_INC(idx, BGE_TX_RING_CNT);
3464         *txidx = idx;
3465 back:
3466         if (error) {
3467                 m_freem(*m_head0);
3468                 *m_head0 = NULL;
3469         }
3470         return error;
3471 }
3472
3473 /*
3474  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
3475  * to the mbuf data regions directly in the transmit descriptors.
3476  */
3477 static void
3478 bge_start(struct ifnet *ifp)
3479 {
3480         struct bge_softc *sc = ifp->if_softc;
3481         struct mbuf *m_head = NULL;
3482         uint32_t prodidx;
3483         int need_trans;
3484
3485         if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
3486                 return;
3487
3488         prodidx = sc->bge_tx_prodidx;
3489
3490         need_trans = 0;
3491         while (sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
3492                 m_head = ifq_dequeue(&ifp->if_snd, NULL);
3493                 if (m_head == NULL)
3494                         break;
3495
3496                 /*
3497                  * XXX
3498                  * The code inside the if() block is never reached since we
3499                  * must mark CSUM_IP_FRAGS in our if_hwassist to start getting
3500                  * requests to checksum TCP/UDP in a fragmented packet.
3501                  * 
3502                  * XXX
3503                  * safety overkill.  If this is a fragmented packet chain
3504                  * with delayed TCP/UDP checksums, then only encapsulate
3505                  * it if we have enough descriptors to handle the entire
3506                  * chain at once.
3507                  * (paranoia -- may not actually be needed)
3508                  */
3509                 if ((m_head->m_flags & M_FIRSTFRAG) &&
3510                     (m_head->m_pkthdr.csum_flags & CSUM_DELAY_DATA)) {
3511                         if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
3512                             m_head->m_pkthdr.csum_data + sc->bge_txrsvd) {
3513                                 ifp->if_flags |= IFF_OACTIVE;
3514                                 ifq_prepend(&ifp->if_snd, m_head);
3515                                 break;
3516                         }
3517                 }
3518
3519                 /*
3520                  * Sanity check: avoid coming within bge_txrsvd
3521                  * descriptors of the end of the ring.  Also make
3522                  * sure there are bge_txspare descriptors for
3523                  * jumbo buffers' defragmentation.
3524                  */
3525                 if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
3526                     (sc->bge_txrsvd + sc->bge_txspare)) {
3527                         ifp->if_flags |= IFF_OACTIVE;
3528                         ifq_prepend(&ifp->if_snd, m_head);
3529                         break;
3530                 }
3531
3532                 /*
3533                  * Pack the data into the transmit ring. If we
3534                  * don't have room, set the OACTIVE flag and wait
3535                  * for the NIC to drain the ring.
3536                  */
3537                 if (bge_encap(sc, &m_head, &prodidx)) {
3538                         ifp->if_flags |= IFF_OACTIVE;
3539                         ifp->if_oerrors++;
3540                         break;
3541                 }
3542                 need_trans = 1;
3543
3544                 ETHER_BPF_MTAP(ifp, m_head);
3545         }
3546
3547         if (!need_trans)
3548                 return;
3549
3550         /* Transmit */
3551         bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
3552         /* 5700 b2 errata */
3553         if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
3554                 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
3555
3556         sc->bge_tx_prodidx = prodidx;
3557
3558         /*
3559          * Set a timeout in case the chip goes out to lunch.
3560          */
3561         ifp->if_timer = 5;
3562 }
3563
3564 static void
3565 bge_init(void *xsc)
3566 {
3567         struct bge_softc *sc = xsc;
3568         struct ifnet *ifp = &sc->arpcom.ac_if;
3569         uint16_t *m;
3570         uint32_t mode;
3571
3572         ASSERT_SERIALIZED(ifp->if_serializer);
3573
3574         /* Cancel pending I/O and flush buffers. */
3575         bge_stop(sc);
3576         bge_reset(sc);
3577         bge_chipinit(sc);
3578
3579         /*
3580          * Init the various state machines, ring
3581          * control blocks and firmware.
3582          */
3583         if (bge_blockinit(sc)) {
3584                 if_printf(ifp, "initialization failure\n");
3585                 bge_stop(sc);
3586                 return;
3587         }
3588
3589         /* Specify MTU. */
3590         CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
3591             ETHER_HDR_LEN + ETHER_CRC_LEN + EVL_ENCAPLEN);
3592
3593         /* Load our MAC address. */
3594         m = (uint16_t *)&sc->arpcom.ac_enaddr[0];
3595         CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
3596         CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
3597
3598         /* Enable or disable promiscuous mode as needed. */
3599         bge_setpromisc(sc);
3600
3601         /* Program multicast filter. */
3602         bge_setmulti(sc);
3603
3604         /* Init RX ring. */
3605         if (bge_init_rx_ring_std(sc)) {
3606                 if_printf(ifp, "RX ring initialization failed\n");
3607                 bge_stop(sc);
3608                 return;
3609         }
3610
3611         /*
3612          * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
3613          * memory to insure that the chip has in fact read the first
3614          * entry of the ring.
3615          */
3616         if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
3617                 uint32_t                v, i;
3618                 for (i = 0; i < 10; i++) {
3619                         DELAY(20);
3620                         v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
3621                         if (v == (MCLBYTES - ETHER_ALIGN))
3622                                 break;
3623                 }
3624                 if (i == 10)
3625                         if_printf(ifp, "5705 A0 chip failed to load RX ring\n");
3626         }
3627
3628         /* Init jumbo RX ring. */
3629         if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN)) {
3630                 if (bge_init_rx_ring_jumbo(sc)) {
3631                         if_printf(ifp, "Jumbo RX ring initialization failed\n");
3632                         bge_stop(sc);
3633                         return;
3634                 }
3635         }
3636
3637         /* Init our RX return ring index */
3638         sc->bge_rx_saved_considx = 0;
3639
3640         /* Init TX ring. */
3641         bge_init_tx_ring(sc);
3642
3643         /* Enable TX MAC state machine lockup fix. */
3644         mode = CSR_READ_4(sc, BGE_TX_MODE);
3645         if (BGE_IS_5755_PLUS(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5906)
3646                 mode |= BGE_TXMODE_MBUF_LOCKUP_FIX;
3647         /* Turn on transmitter */
3648         CSR_WRITE_4(sc, BGE_TX_MODE, mode | BGE_TXMODE_ENABLE);
3649
3650         /* Turn on receiver */
3651         BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
3652
3653         /*
3654          * Set the number of good frames to receive after RX MBUF
3655          * Low Watermark has been reached.  After the RX MAC receives
3656          * this number of frames, it will drop subsequent incoming
3657          * frames until the MBUF High Watermark is reached.
3658          */
3659         CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 2);
3660
3661         if (sc->bge_irq_type == PCI_INTR_TYPE_MSI) {
3662                 if (bootverbose) {
3663                         if_printf(ifp, "MSI_MODE: %#x\n",
3664                             CSR_READ_4(sc, BGE_MSI_MODE));
3665                 }
3666
3667                 /*
3668                  * XXX
3669                  * Linux driver turns it on for all chips supporting MSI?!
3670                  */
3671                 if (sc->bge_flags & BGE_FLAG_ONESHOT_MSI) {
3672                         /*
3673                          * XXX
3674                          * According to 5722-PG101-R,
3675                          * BGE_PCIE_TRANSACT_ONESHOT_MSI applies only to
3676                          * BCM5906.
3677                          */
3678                         BGE_SETBIT(sc, BGE_PCIE_TRANSACT,
3679                             BGE_PCIE_TRANSACT_ONESHOT_MSI);
3680                 }
3681         }
3682
3683         /* Tell firmware we're alive. */
3684         BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3685
3686         /* Enable host interrupts if polling(4) is not enabled. */
3687         PCI_SETBIT(sc->bge_dev, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA, 4);
3688 #ifdef IFPOLL_ENABLE
3689         if (ifp->if_flags & IFF_NPOLLING)
3690                 bge_disable_intr(sc);
3691         else
3692 #endif
3693         bge_enable_intr(sc);
3694
3695         bge_ifmedia_upd(ifp);
3696
3697         ifp->if_flags |= IFF_RUNNING;
3698         ifp->if_flags &= ~IFF_OACTIVE;
3699
3700         callout_reset(&sc->bge_stat_timer, hz, bge_tick, sc);
3701 }
3702
3703 /*
3704  * Set media options.
3705  */
3706 static int
3707 bge_ifmedia_upd(struct ifnet *ifp)
3708 {
3709         struct bge_softc *sc = ifp->if_softc;
3710
3711         /* If this is a 1000baseX NIC, enable the TBI port. */
3712         if (sc->bge_flags & BGE_FLAG_TBI) {
3713                 struct ifmedia *ifm = &sc->bge_ifmedia;
3714
3715                 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
3716                         return(EINVAL);
3717
3718                 switch(IFM_SUBTYPE(ifm->ifm_media)) {
3719                 case IFM_AUTO:
3720                         /*
3721                          * The BCM5704 ASIC appears to have a special
3722                          * mechanism for programming the autoneg
3723                          * advertisement registers in TBI mode.
3724                          */
3725                         if (!bge_fake_autoneg &&
3726                             sc->bge_asicrev == BGE_ASICREV_BCM5704) {
3727                                 uint32_t sgdig;
3728
3729                                 CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
3730                                 sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
3731                                 sgdig |= BGE_SGDIGCFG_AUTO |
3732                                          BGE_SGDIGCFG_PAUSE_CAP |
3733                                          BGE_SGDIGCFG_ASYM_PAUSE;
3734                                 CSR_WRITE_4(sc, BGE_SGDIG_CFG,
3735                                             sgdig | BGE_SGDIGCFG_SEND);
3736                                 DELAY(5);
3737                                 CSR_WRITE_4(sc, BGE_SGDIG_CFG, sgdig);
3738                         }
3739                         break;
3740                 case IFM_1000_SX:
3741                         if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
3742                                 BGE_CLRBIT(sc, BGE_MAC_MODE,
3743                                     BGE_MACMODE_HALF_DUPLEX);
3744                         } else {
3745                                 BGE_SETBIT(sc, BGE_MAC_MODE,
3746                                     BGE_MACMODE_HALF_DUPLEX);
3747                         }
3748                         break;
3749                 default:
3750                         return(EINVAL);
3751                 }
3752         } else {
3753                 struct mii_data *mii = device_get_softc(sc->bge_miibus);
3754
3755                 sc->bge_link_evt++;
3756                 sc->bge_link = 0;
3757                 if (mii->mii_instance) {
3758                         struct mii_softc *miisc;
3759
3760                         LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
3761                                 mii_phy_reset(miisc);
3762                 }
3763                 mii_mediachg(mii);
3764
3765                 /*
3766                  * Force an interrupt so that we will call bge_link_upd
3767                  * if needed and clear any pending link state attention.
3768                  * Without this we are not getting any further interrupts
3769                  * for link state changes and thus will not UP the link and
3770                  * not be able to send in bge_start.  The only way to get
3771                  * things working was to receive a packet and get an RX
3772                  * intr.
3773                  *
3774                  * bge_tick should help for fiber cards and we might not
3775                  * need to do this here if BGE_FLAG_TBI is set but as
3776                  * we poll for fiber anyway it should not harm.
3777                  */
3778                 if (BGE_IS_CRIPPLED(sc))
3779                         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
3780                 else
3781                         BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
3782         }
3783         return(0);
3784 }
3785
3786 /*
3787  * Report current media status.
3788  */
3789 static void
3790 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
3791 {
3792         struct bge_softc *sc = ifp->if_softc;
3793
3794         if (sc->bge_flags & BGE_FLAG_TBI) {
3795                 ifmr->ifm_status = IFM_AVALID;
3796                 ifmr->ifm_active = IFM_ETHER;
3797                 if (CSR_READ_4(sc, BGE_MAC_STS) &
3798                     BGE_MACSTAT_TBI_PCS_SYNCHED) {
3799                         ifmr->ifm_status |= IFM_ACTIVE;
3800                 } else {
3801                         ifmr->ifm_active |= IFM_NONE;
3802                         return;
3803                 }
3804
3805                 ifmr->ifm_active |= IFM_1000_SX;
3806                 if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
3807                         ifmr->ifm_active |= IFM_HDX;    
3808                 else
3809                         ifmr->ifm_active |= IFM_FDX;
3810         } else {
3811                 struct mii_data *mii = device_get_softc(sc->bge_miibus);
3812
3813                 mii_pollstat(mii);
3814                 ifmr->ifm_active = mii->mii_media_active;
3815                 ifmr->ifm_status = mii->mii_media_status;
3816         }
3817 }
3818
3819 static int
3820 bge_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
3821 {
3822         struct bge_softc *sc = ifp->if_softc;
3823         struct ifreq *ifr = (struct ifreq *)data;
3824         int mask, error = 0;
3825
3826         ASSERT_SERIALIZED(ifp->if_serializer);
3827
3828         switch (command) {
3829         case SIOCSIFMTU:
3830                 if ((!BGE_IS_JUMBO_CAPABLE(sc) && ifr->ifr_mtu > ETHERMTU) ||
3831                     (BGE_IS_JUMBO_CAPABLE(sc) &&
3832                      ifr->ifr_mtu > BGE_JUMBO_MTU)) {
3833                         error = EINVAL;
3834                 } else if (ifp->if_mtu != ifr->ifr_mtu) {
3835                         ifp->if_mtu = ifr->ifr_mtu;
3836                         if (ifp->if_flags & IFF_RUNNING)
3837                                 bge_init(sc);
3838                 }
3839                 break;
3840         case SIOCSIFFLAGS:
3841                 if (ifp->if_flags & IFF_UP) {
3842                         if (ifp->if_flags & IFF_RUNNING) {
3843                                 mask = ifp->if_flags ^ sc->bge_if_flags;
3844
3845                                 /*
3846                                  * If only the state of the PROMISC flag
3847                                  * changed, then just use the 'set promisc
3848                                  * mode' command instead of reinitializing
3849                                  * the entire NIC. Doing a full re-init
3850                                  * means reloading the firmware and waiting
3851                                  * for it to start up, which may take a
3852                                  * second or two.  Similarly for ALLMULTI.
3853                                  */
3854                                 if (mask & IFF_PROMISC)
3855                                         bge_setpromisc(sc);
3856                                 if (mask & IFF_ALLMULTI)
3857                                         bge_setmulti(sc);
3858                         } else {
3859                                 bge_init(sc);
3860                         }
3861                 } else if (ifp->if_flags & IFF_RUNNING) {
3862                         bge_stop(sc);
3863                 }
3864                 sc->bge_if_flags = ifp->if_flags;
3865                 break;
3866         case SIOCADDMULTI:
3867         case SIOCDELMULTI:
3868                 if (ifp->if_flags & IFF_RUNNING)
3869                         bge_setmulti(sc);
3870                 break;
3871         case SIOCSIFMEDIA:
3872         case SIOCGIFMEDIA:
3873                 if (sc->bge_flags & BGE_FLAG_TBI) {
3874                         error = ifmedia_ioctl(ifp, ifr,
3875                             &sc->bge_ifmedia, command);
3876                 } else {
3877                         struct mii_data *mii;
3878
3879                         mii = device_get_softc(sc->bge_miibus);
3880                         error = ifmedia_ioctl(ifp, ifr,
3881                                               &mii->mii_media, command);
3882                 }
3883                 break;
3884         case SIOCSIFCAP:
3885                 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
3886                 if (mask & IFCAP_HWCSUM) {
3887                         ifp->if_capenable ^= (mask & IFCAP_HWCSUM);
3888                         if (ifp->if_capenable & IFCAP_TXCSUM)
3889                                 ifp->if_hwassist |= BGE_CSUM_FEATURES;
3890                         else
3891                                 ifp->if_hwassist &= ~BGE_CSUM_FEATURES;
3892                 }
3893                 if (mask & IFCAP_TSO) {
3894                         ifp->if_capenable ^= IFCAP_TSO;
3895                         if (ifp->if_capenable & IFCAP_TSO)
3896                                 ifp->if_hwassist |= CSUM_TSO;
3897                         else
3898                                 ifp->if_hwassist &= ~CSUM_TSO;
3899                 }
3900                 break;
3901         default:
3902                 error = ether_ioctl(ifp, command, data);
3903                 break;
3904         }
3905         return error;
3906 }
3907
3908 static void
3909 bge_watchdog(struct ifnet *ifp)
3910 {
3911         struct bge_softc *sc = ifp->if_softc;
3912
3913         if_printf(ifp, "watchdog timeout -- resetting\n");
3914
3915         bge_init(sc);
3916
3917         ifp->if_oerrors++;
3918
3919         if (!ifq_is_empty(&ifp->if_snd))
3920                 if_devstart(ifp);
3921 }
3922
3923 /*
3924  * Stop the adapter and free any mbufs allocated to the
3925  * RX and TX lists.
3926  */
3927 static void
3928 bge_stop(struct bge_softc *sc)
3929 {
3930         struct ifnet *ifp = &sc->arpcom.ac_if;
3931
3932         ASSERT_SERIALIZED(ifp->if_serializer);
3933
3934         callout_stop(&sc->bge_stat_timer);
3935
3936         /*
3937          * Disable all of the receiver blocks
3938          */
3939         bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
3940         bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
3941         bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
3942         if (BGE_IS_5700_FAMILY(sc))
3943                 bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
3944         bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
3945         bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
3946         bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
3947
3948         /*
3949          * Disable all of the transmit blocks
3950          */
3951         bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
3952         bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
3953         bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
3954         bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
3955         bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
3956         if (BGE_IS_5700_FAMILY(sc))
3957                 bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
3958         bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
3959
3960         /*
3961          * Shut down all of the memory managers and related
3962          * state machines.
3963          */
3964         bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
3965         bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
3966         if (BGE_IS_5700_FAMILY(sc))
3967                 bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
3968         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
3969         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
3970         if (!BGE_IS_5705_PLUS(sc)) {
3971                 BGE_CLRBIT(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
3972                 BGE_CLRBIT(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
3973         }
3974
3975         /* Disable host interrupts. */
3976         bge_disable_intr(sc);
3977
3978         /*
3979          * Tell firmware we're shutting down.
3980          */
3981         BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3982
3983         /* Free the RX lists. */
3984         bge_free_rx_ring_std(sc);
3985
3986         /* Free jumbo RX list. */
3987         if (BGE_IS_JUMBO_CAPABLE(sc))
3988                 bge_free_rx_ring_jumbo(sc);
3989
3990         /* Free TX buffers. */
3991         bge_free_tx_ring(sc);
3992
3993         sc->bge_status_tag = 0;
3994         sc->bge_link = 0;
3995         sc->bge_coal_chg = 0;
3996
3997         sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
3998
3999         ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
4000         ifp->if_timer = 0;
4001 }
4002
4003 /*
4004  * Stop all chip I/O so that the kernel's probe routines don't
4005  * get confused by errant DMAs when rebooting.
4006  */
4007 static void
4008 bge_shutdown(device_t dev)
4009 {
4010         struct bge_softc *sc = device_get_softc(dev);
4011         struct ifnet *ifp = &sc->arpcom.ac_if;
4012
4013         lwkt_serialize_enter(ifp->if_serializer);
4014         bge_stop(sc);
4015         bge_reset(sc);
4016         lwkt_serialize_exit(ifp->if_serializer);
4017 }
4018
4019 static int
4020 bge_suspend(device_t dev)
4021 {
4022         struct bge_softc *sc = device_get_softc(dev);
4023         struct ifnet *ifp = &sc->arpcom.ac_if;
4024
4025         lwkt_serialize_enter(ifp->if_serializer);
4026         bge_stop(sc);
4027         lwkt_serialize_exit(ifp->if_serializer);
4028
4029         return 0;
4030 }
4031
4032 static int
4033 bge_resume(device_t dev)
4034 {
4035         struct bge_softc *sc = device_get_softc(dev);
4036         struct ifnet *ifp = &sc->arpcom.ac_if;
4037
4038         lwkt_serialize_enter(ifp->if_serializer);
4039
4040         if (ifp->if_flags & IFF_UP) {
4041                 bge_init(sc);
4042
4043                 if (!ifq_is_empty(&ifp->if_snd))
4044                         if_devstart(ifp);
4045         }
4046
4047         lwkt_serialize_exit(ifp->if_serializer);
4048
4049         return 0;
4050 }
4051
4052 static void
4053 bge_setpromisc(struct bge_softc *sc)
4054 {
4055         struct ifnet *ifp = &sc->arpcom.ac_if;
4056
4057         if (ifp->if_flags & IFF_PROMISC)
4058                 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
4059         else
4060                 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
4061 }
4062
4063 static void
4064 bge_dma_free(struct bge_softc *sc)
4065 {
4066         int i;
4067
4068         /* Destroy RX mbuf DMA stuffs. */
4069         if (sc->bge_cdata.bge_rx_mtag != NULL) {
4070                 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
4071                         bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag,
4072                             sc->bge_cdata.bge_rx_std_dmamap[i]);
4073                 }
4074                 bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag,
4075                                    sc->bge_cdata.bge_rx_tmpmap);
4076                 bus_dma_tag_destroy(sc->bge_cdata.bge_rx_mtag);
4077         }
4078
4079         /* Destroy TX mbuf DMA stuffs. */
4080         if (sc->bge_cdata.bge_tx_mtag != NULL) {
4081                 for (i = 0; i < BGE_TX_RING_CNT; i++) {
4082                         bus_dmamap_destroy(sc->bge_cdata.bge_tx_mtag,
4083                             sc->bge_cdata.bge_tx_dmamap[i]);
4084                 }
4085                 bus_dma_tag_destroy(sc->bge_cdata.bge_tx_mtag);
4086         }
4087
4088         /* Destroy standard RX ring */
4089         bge_dma_block_free(sc->bge_cdata.bge_rx_std_ring_tag,
4090                            sc->bge_cdata.bge_rx_std_ring_map,
4091                            sc->bge_ldata.bge_rx_std_ring);
4092
4093         if (BGE_IS_JUMBO_CAPABLE(sc))
4094                 bge_free_jumbo_mem(sc);
4095
4096         /* Destroy RX return ring */
4097         bge_dma_block_free(sc->bge_cdata.bge_rx_return_ring_tag,
4098                            sc->bge_cdata.bge_rx_return_ring_map,
4099                            sc->bge_ldata.bge_rx_return_ring);
4100
4101         /* Destroy TX ring */
4102         bge_dma_block_free(sc->bge_cdata.bge_tx_ring_tag,
4103                            sc->bge_cdata.bge_tx_ring_map,
4104                            sc->bge_ldata.bge_tx_ring);
4105
4106         /* Destroy status block */
4107         bge_dma_block_free(sc->bge_cdata.bge_status_tag,
4108                            sc->bge_cdata.bge_status_map,
4109                            sc->bge_ldata.bge_status_block);
4110
4111         /* Destroy statistics block */
4112         bge_dma_block_free(sc->bge_cdata.bge_stats_tag,
4113                            sc->bge_cdata.bge_stats_map,
4114                            sc->bge_ldata.bge_stats);
4115
4116         /* Destroy the parent tag */
4117         if (sc->bge_cdata.bge_parent_tag != NULL)
4118                 bus_dma_tag_destroy(sc->bge_cdata.bge_parent_tag);
4119 }
4120
4121 static int
4122 bge_dma_alloc(struct bge_softc *sc)
4123 {
4124         struct ifnet *ifp = &sc->arpcom.ac_if;
4125         int i, error;
4126         bus_addr_t lowaddr;
4127         bus_size_t txmaxsz;
4128
4129         lowaddr = BUS_SPACE_MAXADDR;
4130         if (sc->bge_flags & BGE_FLAG_MAXADDR_40BIT)
4131                 lowaddr = BGE_DMA_MAXADDR_40BIT;
4132
4133         /*
4134          * Allocate the parent bus DMA tag appropriate for PCI.
4135          *
4136          * All of the NetExtreme/NetLink controllers have 4GB boundary
4137          * DMA bug.
4138          * Whenever an address crosses a multiple of the 4GB boundary
4139          * (including 4GB, 8Gb, 12Gb, etc.) and makes the transition
4140          * from 0xX_FFFF_FFFF to 0x(X+1)_0000_0000 an internal DMA
4141          * state machine will lockup and cause the device to hang.
4142          */
4143         error = bus_dma_tag_create(NULL, 1, BGE_DMA_BOUNDARY_4G,
4144                                    lowaddr, BUS_SPACE_MAXADDR,
4145                                    NULL, NULL,
4146                                    BUS_SPACE_MAXSIZE_32BIT, 0,
4147                                    BUS_SPACE_MAXSIZE_32BIT,
4148                                    0, &sc->bge_cdata.bge_parent_tag);
4149         if (error) {
4150                 if_printf(ifp, "could not allocate parent dma tag\n");
4151                 return error;
4152         }
4153
4154         /*
4155          * Create DMA tag and maps for RX mbufs.
4156          */
4157         error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag, 1, 0,
4158                                    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
4159                                    NULL, NULL, MCLBYTES, 1, MCLBYTES,
4160                                    BUS_DMA_ALLOCNOW | BUS_DMA_WAITOK,
4161                                    &sc->bge_cdata.bge_rx_mtag);
4162         if (error) {
4163                 if_printf(ifp, "could not allocate RX mbuf dma tag\n");
4164                 return error;
4165         }
4166
4167         error = bus_dmamap_create(sc->bge_cdata.bge_rx_mtag,
4168                                   BUS_DMA_WAITOK, &sc->bge_cdata.bge_rx_tmpmap);
4169         if (error) {
4170                 bus_dma_tag_destroy(sc->bge_cdata.bge_rx_mtag);
4171                 sc->bge_cdata.bge_rx_mtag = NULL;
4172                 return error;
4173         }
4174
4175         for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
4176                 error = bus_dmamap_create(sc->bge_cdata.bge_rx_mtag,
4177                                           BUS_DMA_WAITOK,
4178                                           &sc->bge_cdata.bge_rx_std_dmamap[i]);
4179                 if (error) {
4180                         int j;
4181
4182                         for (j = 0; j < i; ++j) {
4183                                 bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag,
4184                                         sc->bge_cdata.bge_rx_std_dmamap[j]);
4185                         }
4186                         bus_dma_tag_destroy(sc->bge_cdata.bge_rx_mtag);
4187                         sc->bge_cdata.bge_rx_mtag = NULL;
4188
4189                         if_printf(ifp, "could not create DMA map for RX\n");
4190                         return error;
4191                 }
4192         }
4193
4194         /*
4195          * Create DMA tag and maps for TX mbufs.
4196          */
4197         if (sc->bge_flags & BGE_FLAG_TSO)
4198                 txmaxsz = IP_MAXPACKET + sizeof(struct ether_vlan_header);
4199         else
4200                 txmaxsz = BGE_JUMBO_FRAMELEN;
4201         error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag, 1, 0,
4202                                    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
4203                                    NULL, NULL,
4204                                    txmaxsz, BGE_NSEG_NEW, PAGE_SIZE,
4205                                    BUS_DMA_ALLOCNOW | BUS_DMA_WAITOK |
4206                                    BUS_DMA_ONEBPAGE,
4207                                    &sc->bge_cdata.bge_tx_mtag);
4208         if (error) {
4209                 if_printf(ifp, "could not allocate TX mbuf dma tag\n");
4210                 return error;
4211         }
4212
4213         for (i = 0; i < BGE_TX_RING_CNT; i++) {
4214                 error = bus_dmamap_create(sc->bge_cdata.bge_tx_mtag,
4215                                           BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
4216                                           &sc->bge_cdata.bge_tx_dmamap[i]);
4217                 if (error) {
4218                         int j;
4219
4220                         for (j = 0; j < i; ++j) {
4221                                 bus_dmamap_destroy(sc->bge_cdata.bge_tx_mtag,
4222                                         sc->bge_cdata.bge_tx_dmamap[j]);
4223                         }
4224                         bus_dma_tag_destroy(sc->bge_cdata.bge_tx_mtag);
4225                         sc->bge_cdata.bge_tx_mtag = NULL;
4226
4227                         if_printf(ifp, "could not create DMA map for TX\n");
4228                         return error;
4229                 }
4230         }
4231
4232         /*
4233          * Create DMA stuffs for standard RX ring.
4234          */
4235         error = bge_dma_block_alloc(sc, BGE_STD_RX_RING_SZ,
4236                                     &sc->bge_cdata.bge_rx_std_ring_tag,
4237                                     &sc->bge_cdata.bge_rx_std_ring_map,
4238                                     (void *)&sc->bge_ldata.bge_rx_std_ring,
4239                                     &sc->bge_ldata.bge_rx_std_ring_paddr);
4240         if (error) {
4241                 if_printf(ifp, "could not create std RX ring\n");
4242                 return error;
4243         }
4244
4245         /*
4246          * Create jumbo buffer pool.
4247          */
4248         if (BGE_IS_JUMBO_CAPABLE(sc)) {
4249                 error = bge_alloc_jumbo_mem(sc);
4250                 if (error) {
4251                         if_printf(ifp, "could not create jumbo buffer pool\n");
4252                         return error;
4253                 }
4254         }
4255
4256         /*
4257          * Create DMA stuffs for RX return ring.
4258          */
4259         error = bge_dma_block_alloc(sc,
4260             BGE_RX_RTN_RING_SZ(sc->bge_return_ring_cnt),
4261             &sc->bge_cdata.bge_rx_return_ring_tag,
4262             &sc->bge_cdata.bge_rx_return_ring_map,
4263             (void *)&sc->bge_ldata.bge_rx_return_ring,
4264             &sc->bge_ldata.bge_rx_return_ring_paddr);
4265         if (error) {
4266                 if_printf(ifp, "could not create RX ret ring\n");
4267                 return error;
4268         }
4269
4270         /*
4271          * Create DMA stuffs for TX ring.
4272          */
4273         error = bge_dma_block_alloc(sc, BGE_TX_RING_SZ,
4274                                     &sc->bge_cdata.bge_tx_ring_tag,
4275                                     &sc->bge_cdata.bge_tx_ring_map,
4276                                     (void *)&sc->bge_ldata.bge_tx_ring,
4277                                     &sc->bge_ldata.bge_tx_ring_paddr);
4278         if (error) {
4279                 if_printf(ifp, "could not create TX ring\n");
4280                 return error;
4281         }
4282
4283         /*
4284          * Create DMA stuffs for status block.
4285          */
4286         error = bge_dma_block_alloc(sc, BGE_STATUS_BLK_SZ,
4287                                     &sc->bge_cdata.bge_status_tag,
4288                                     &sc->bge_cdata.bge_status_map,
4289                                     (void *)&sc->bge_ldata.bge_status_block,
4290                                     &sc->bge_ldata.bge_status_block_paddr);
4291         if (error) {
4292                 if_printf(ifp, "could not create status block\n");
4293                 return error;
4294         }
4295
4296         /*
4297          * Create DMA stuffs for statistics block.
4298          */
4299         error = bge_dma_block_alloc(sc, BGE_STATS_SZ,
4300                                     &sc->bge_cdata.bge_stats_tag,
4301                                     &sc->bge_cdata.bge_stats_map,
4302                                     (void *)&sc->bge_ldata.bge_stats,
4303                                     &sc->bge_ldata.bge_stats_paddr);
4304         if (error) {
4305                 if_printf(ifp, "could not create stats block\n");
4306                 return error;
4307         }
4308         return 0;
4309 }
4310
4311 static int
4312 bge_dma_block_alloc(struct bge_softc *sc, bus_size_t size, bus_dma_tag_t *tag,
4313                     bus_dmamap_t *map, void **addr, bus_addr_t *paddr)
4314 {
4315         bus_dmamem_t dmem;
4316         int error;
4317
4318         error = bus_dmamem_coherent(sc->bge_cdata.bge_parent_tag, PAGE_SIZE, 0,
4319                                     BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
4320                                     size, BUS_DMA_WAITOK | BUS_DMA_ZERO, &dmem);
4321         if (error)
4322                 return error;
4323
4324         *tag = dmem.dmem_tag;
4325         *map = dmem.dmem_map;
4326         *addr = dmem.dmem_addr;
4327         *paddr = dmem.dmem_busaddr;
4328
4329         return 0;
4330 }
4331
4332 static void
4333 bge_dma_block_free(bus_dma_tag_t tag, bus_dmamap_t map, void *addr)
4334 {
4335         if (tag != NULL) {
4336                 bus_dmamap_unload(tag, map);
4337                 bus_dmamem_free(tag, addr, map);
4338                 bus_dma_tag_destroy(tag);
4339         }
4340 }
4341
4342 /*
4343  * Grrr. The link status word in the status block does
4344  * not work correctly on the BCM5700 rev AX and BX chips,
4345  * according to all available information. Hence, we have
4346  * to enable MII interrupts in order to properly obtain
4347  * async link changes. Unfortunately, this also means that
4348  * we have to read the MAC status register to detect link
4349  * changes, thereby adding an additional register access to
4350  * the interrupt handler.
4351  *
4352  * XXX: perhaps link state detection procedure used for
4353  * BGE_CHIPID_BCM5700_B2 can be used for others BCM5700 revisions.
4354  */
4355 static void
4356 bge_bcm5700_link_upd(struct bge_softc *sc, uint32_t status __unused)
4357 {
4358         struct ifnet *ifp = &sc->arpcom.ac_if;
4359         struct mii_data *mii = device_get_softc(sc->bge_miibus);
4360
4361         mii_pollstat(mii);
4362
4363         if (!sc->bge_link &&
4364             (mii->mii_media_status & IFM_ACTIVE) &&
4365             IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
4366                 sc->bge_link++;
4367                 if (bootverbose)
4368                         if_printf(ifp, "link UP\n");
4369         } else if (sc->bge_link &&
4370             (!(mii->mii_media_status & IFM_ACTIVE) ||
4371             IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) {
4372                 sc->bge_link = 0;
4373                 if (bootverbose)
4374                         if_printf(ifp, "link DOWN\n");
4375         }
4376
4377         /* Clear the interrupt. */
4378         CSR_WRITE_4(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_MI_INTERRUPT);
4379         bge_miibus_readreg(sc->bge_dev, 1, BRGPHY_MII_ISR);
4380         bge_miibus_writereg(sc->bge_dev, 1, BRGPHY_MII_IMR, BRGPHY_INTRS);
4381 }
4382
4383 static void
4384 bge_tbi_link_upd(struct bge_softc *sc, uint32_t status)
4385 {
4386         struct ifnet *ifp = &sc->arpcom.ac_if;
4387
4388 #define PCS_ENCODE_ERR  (BGE_MACSTAT_PORT_DECODE_ERROR|BGE_MACSTAT_MI_COMPLETE)
4389
4390         /*
4391          * Sometimes PCS encoding errors are detected in
4392          * TBI mode (on fiber NICs), and for some reason
4393          * the chip will signal them as link changes.
4394          * If we get a link change event, but the 'PCS
4395          * encoding error' bit in the MAC status register
4396          * is set, don't bother doing a link check.
4397          * This avoids spurious "gigabit link up" messages
4398          * that sometimes appear on fiber NICs during
4399          * periods of heavy traffic.
4400          */
4401         if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
4402                 if (!sc->bge_link) {
4403                         sc->bge_link++;
4404                         if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
4405                                 BGE_CLRBIT(sc, BGE_MAC_MODE,
4406                                     BGE_MACMODE_TBI_SEND_CFGS);
4407                         }
4408                         CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
4409
4410                         if (bootverbose)
4411                                 if_printf(ifp, "link UP\n");
4412
4413                         ifp->if_link_state = LINK_STATE_UP;
4414                         if_link_state_change(ifp);
4415                 }
4416         } else if ((status & PCS_ENCODE_ERR) != PCS_ENCODE_ERR) {
4417                 if (sc->bge_link) {
4418                         sc->bge_link = 0;
4419
4420                         if (bootverbose)
4421                                 if_printf(ifp, "link DOWN\n");
4422
4423                         ifp->if_link_state = LINK_STATE_DOWN;
4424                         if_link_state_change(ifp);
4425                 }
4426         }
4427
4428 #undef PCS_ENCODE_ERR
4429
4430         /* Clear the attention. */
4431         CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
4432             BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
4433             BGE_MACSTAT_LINK_CHANGED);
4434 }
4435
4436 static void
4437 bge_copper_link_upd(struct bge_softc *sc, uint32_t status __unused)
4438 {
4439         struct ifnet *ifp = &sc->arpcom.ac_if;
4440         struct mii_data *mii = device_get_softc(sc->bge_miibus);
4441
4442         mii_pollstat(mii);
4443         bge_miibus_statchg(sc->bge_dev);
4444
4445         if (bootverbose) {
4446                 if (sc->bge_link)
4447                         if_printf(ifp, "link UP\n");
4448                 else
4449                         if_printf(ifp, "link DOWN\n");
4450         }
4451
4452         /* Clear the attention. */
4453         CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
4454             BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
4455             BGE_MACSTAT_LINK_CHANGED);
4456 }
4457
4458 static void
4459 bge_autopoll_link_upd(struct bge_softc *sc, uint32_t status __unused)
4460 {
4461         struct ifnet *ifp = &sc->arpcom.ac_if;
4462         struct mii_data *mii = device_get_softc(sc->bge_miibus);
4463
4464         mii_pollstat(mii);
4465
4466         if (!sc->bge_link &&
4467             (mii->mii_media_status & IFM_ACTIVE) &&
4468             IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
4469                 sc->bge_link++;
4470                 if (bootverbose)
4471                         if_printf(ifp, "link UP\n");
4472         } else if (sc->bge_link &&
4473             (!(mii->mii_media_status & IFM_ACTIVE) ||
4474             IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) {
4475                 sc->bge_link = 0;
4476                 if (bootverbose)
4477                         if_printf(ifp, "link DOWN\n");
4478         }
4479
4480         /* Clear the attention. */
4481         CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
4482             BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
4483             BGE_MACSTAT_LINK_CHANGED);
4484 }
4485
4486 static int
4487 bge_sysctl_rx_coal_ticks(SYSCTL_HANDLER_ARGS)
4488 {
4489         struct bge_softc *sc = arg1;
4490
4491         return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
4492             &sc->bge_rx_coal_ticks,
4493             BGE_RX_COAL_TICKS_MIN, BGE_RX_COAL_TICKS_MAX,
4494             BGE_RX_COAL_TICKS_CHG);
4495 }
4496
4497 static int
4498 bge_sysctl_tx_coal_ticks(SYSCTL_HANDLER_ARGS)
4499 {
4500         struct bge_softc *sc = arg1;
4501
4502         return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
4503             &sc->bge_tx_coal_ticks,
4504             BGE_TX_COAL_TICKS_MIN, BGE_TX_COAL_TICKS_MAX,
4505             BGE_TX_COAL_TICKS_CHG);
4506 }
4507
4508 static int
4509 bge_sysctl_rx_coal_bds(SYSCTL_HANDLER_ARGS)
4510 {
4511         struct bge_softc *sc = arg1;
4512
4513         return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
4514             &sc->bge_rx_coal_bds,
4515             BGE_RX_COAL_BDS_MIN, BGE_RX_COAL_BDS_MAX,
4516             BGE_RX_COAL_BDS_CHG);
4517 }
4518
4519 static int
4520 bge_sysctl_tx_coal_bds(SYSCTL_HANDLER_ARGS)
4521 {
4522         struct bge_softc *sc = arg1;
4523
4524         return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
4525             &sc->bge_tx_coal_bds,
4526             BGE_TX_COAL_BDS_MIN, BGE_TX_COAL_BDS_MAX,
4527             BGE_TX_COAL_BDS_CHG);
4528 }
4529
4530 static int
4531 bge_sysctl_rx_coal_ticks_int(SYSCTL_HANDLER_ARGS)
4532 {
4533         struct bge_softc *sc = arg1;
4534
4535         return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
4536             &sc->bge_rx_coal_ticks_int,
4537             BGE_RX_COAL_TICKS_MIN, BGE_RX_COAL_TICKS_MAX,
4538             BGE_RX_COAL_TICKS_INT_CHG);
4539 }
4540
4541 static int
4542 bge_sysctl_tx_coal_ticks_int(SYSCTL_HANDLER_ARGS)
4543 {
4544         struct bge_softc *sc = arg1;
4545
4546         return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
4547             &sc->bge_tx_coal_ticks_int,
4548             BGE_TX_COAL_TICKS_MIN, BGE_TX_COAL_TICKS_MAX,
4549             BGE_TX_COAL_TICKS_INT_CHG);
4550 }
4551
4552 static int
4553 bge_sysctl_rx_coal_bds_int(SYSCTL_HANDLER_ARGS)
4554 {
4555         struct bge_softc *sc = arg1;
4556
4557         return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
4558             &sc->bge_rx_coal_bds_int,
4559             BGE_RX_COAL_BDS_MIN, BGE_RX_COAL_BDS_MAX,
4560             BGE_RX_COAL_BDS_INT_CHG);
4561 }
4562
4563 static int
4564 bge_sysctl_tx_coal_bds_int(SYSCTL_HANDLER_ARGS)
4565 {
4566         struct bge_softc *sc = arg1;
4567
4568         return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
4569             &sc->bge_tx_coal_bds_int,
4570             BGE_TX_COAL_BDS_MIN, BGE_TX_COAL_BDS_MAX,
4571             BGE_TX_COAL_BDS_INT_CHG);
4572 }
4573
4574 static int
4575 bge_sysctl_coal_chg(SYSCTL_HANDLER_ARGS, uint32_t *coal,
4576     int coal_min, int coal_max, uint32_t coal_chg_mask)
4577 {
4578         struct bge_softc *sc = arg1;
4579         struct ifnet *ifp = &sc->arpcom.ac_if;
4580         int error = 0, v;
4581
4582         lwkt_serialize_enter(ifp->if_serializer);
4583
4584         v = *coal;
4585         error = sysctl_handle_int(oidp, &v, 0, req);
4586         if (!error && req->newptr != NULL) {
4587                 if (v < coal_min || v > coal_max) {
4588                         error = EINVAL;
4589                 } else {
4590                         *coal = v;
4591                         sc->bge_coal_chg |= coal_chg_mask;
4592                 }
4593         }
4594
4595         lwkt_serialize_exit(ifp->if_serializer);
4596         return error;
4597 }
4598
4599 static void
4600 bge_coal_change(struct bge_softc *sc)
4601 {
4602         struct ifnet *ifp = &sc->arpcom.ac_if;
4603         uint32_t val;
4604
4605         ASSERT_SERIALIZED(ifp->if_serializer);
4606
4607         if (sc->bge_coal_chg & BGE_RX_COAL_TICKS_CHG) {
4608                 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS,
4609                             sc->bge_rx_coal_ticks);
4610                 DELAY(10);
4611                 val = CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS);
4612
4613                 if (bootverbose) {
4614                         if_printf(ifp, "rx_coal_ticks -> %u\n",
4615                                   sc->bge_rx_coal_ticks);
4616                 }
4617         }
4618
4619         if (sc->bge_coal_chg & BGE_TX_COAL_TICKS_CHG) {
4620                 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS,
4621                             sc->bge_tx_coal_ticks);
4622                 DELAY(10);
4623                 val = CSR_READ_4(sc, BGE_HCC_TX_COAL_TICKS);
4624
4625                 if (bootverbose) {
4626                         if_printf(ifp, "tx_coal_ticks -> %u\n",
4627                                   sc->bge_tx_coal_ticks);
4628                 }
4629         }
4630
4631         if (sc->bge_coal_chg & BGE_RX_COAL_BDS_CHG) {
4632                 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS,
4633                             sc->bge_rx_coal_bds);
4634                 DELAY(10);
4635                 val = CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS);
4636
4637                 if (bootverbose) {
4638                         if_printf(ifp, "rx_coal_bds -> %u\n",
4639                                   sc->bge_rx_coal_bds);
4640                 }
4641         }
4642
4643         if (sc->bge_coal_chg & BGE_TX_COAL_BDS_CHG) {
4644                 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS,
4645                             sc->bge_tx_coal_bds);
4646                 DELAY(10);
4647                 val = CSR_READ_4(sc, BGE_HCC_TX_MAX_COAL_BDS);
4648
4649                 if (bootverbose) {
4650                         if_printf(ifp, "tx_max_coal_bds -> %u\n",
4651                                   sc->bge_tx_coal_bds);
4652                 }
4653         }
4654
4655         if (sc->bge_coal_chg & BGE_RX_COAL_TICKS_INT_CHG) {
4656                 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT,
4657                     sc->bge_rx_coal_ticks_int);
4658                 DELAY(10);
4659                 val = CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS_INT);
4660
4661                 if (bootverbose) {
4662                         if_printf(ifp, "rx_coal_ticks_int -> %u\n",
4663                             sc->bge_rx_coal_ticks_int);
4664                 }
4665         }
4666
4667         if (sc->bge_coal_chg & BGE_TX_COAL_TICKS_INT_CHG) {
4668                 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT,
4669                     sc->bge_tx_coal_ticks_int);
4670                 DELAY(10);
4671                 val = CSR_READ_4(sc, BGE_HCC_TX_COAL_TICKS_INT);
4672
4673                 if (bootverbose) {
4674                         if_printf(ifp, "tx_coal_ticks_int -> %u\n",
4675                             sc->bge_tx_coal_ticks_int);
4676                 }
4677         }
4678
4679         if (sc->bge_coal_chg & BGE_RX_COAL_BDS_INT_CHG) {
4680                 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT,
4681                     sc->bge_rx_coal_bds_int);
4682                 DELAY(10);
4683                 val = CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT);
4684
4685                 if (bootverbose) {
4686                         if_printf(ifp, "rx_coal_bds_int -> %u\n",
4687                             sc->bge_rx_coal_bds_int);
4688                 }
4689         }
4690
4691         if (sc->bge_coal_chg & BGE_TX_COAL_BDS_INT_CHG) {
4692                 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT,
4693                     sc->bge_tx_coal_bds_int);
4694                 DELAY(10);
4695                 val = CSR_READ_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT);
4696
4697                 if (bootverbose) {
4698                         if_printf(ifp, "tx_coal_bds_int -> %u\n",
4699                             sc->bge_tx_coal_bds_int);
4700                 }
4701         }
4702
4703         sc->bge_coal_chg = 0;
4704 }
4705
4706 static void
4707 bge_enable_intr(struct bge_softc *sc)
4708 {
4709         struct ifnet *ifp = &sc->arpcom.ac_if;
4710
4711         lwkt_serialize_handler_enable(ifp->if_serializer);
4712
4713         /*
4714          * Enable interrupt.
4715          */
4716         bge_writembx(sc, BGE_MBX_IRQ0_LO, sc->bge_status_tag << 24);
4717         if (sc->bge_flags & BGE_FLAG_ONESHOT_MSI) {
4718                 /* XXX Linux driver */
4719                 bge_writembx(sc, BGE_MBX_IRQ0_LO, sc->bge_status_tag << 24);
4720         }
4721
4722         /*
4723          * Unmask the interrupt when we stop polling.
4724          */
4725         PCI_CLRBIT(sc->bge_dev, BGE_PCI_MISC_CTL,
4726             BGE_PCIMISCCTL_MASK_PCI_INTR, 4);
4727
4728         /*
4729          * Trigger another interrupt, since above writing
4730          * to interrupt mailbox0 may acknowledge pending
4731          * interrupt.
4732          */
4733         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
4734 }
4735
4736 static void
4737 bge_disable_intr(struct bge_softc *sc)
4738 {
4739         struct ifnet *ifp = &sc->arpcom.ac_if;
4740
4741         /*
4742          * Mask the interrupt when we start polling.
4743          */
4744         PCI_SETBIT(sc->bge_dev, BGE_PCI_MISC_CTL,
4745             BGE_PCIMISCCTL_MASK_PCI_INTR, 4);
4746
4747         /*
4748          * Acknowledge possible asserted interrupt.
4749          */
4750         bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
4751
4752         sc->bge_npoll.ifpc_stcount = 0;
4753
4754         lwkt_serialize_handler_disable(ifp->if_serializer);
4755 }
4756
4757 static int
4758 bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[])
4759 {
4760         uint32_t mac_addr;
4761         int ret = 1;
4762
4763         mac_addr = bge_readmem_ind(sc, 0x0c14);
4764         if ((mac_addr >> 16) == 0x484b) {
4765                 ether_addr[0] = (uint8_t)(mac_addr >> 8);
4766                 ether_addr[1] = (uint8_t)mac_addr;
4767                 mac_addr = bge_readmem_ind(sc, 0x0c18);
4768                 ether_addr[2] = (uint8_t)(mac_addr >> 24);
4769                 ether_addr[3] = (uint8_t)(mac_addr >> 16);
4770                 ether_addr[4] = (uint8_t)(mac_addr >> 8);
4771                 ether_addr[5] = (uint8_t)mac_addr;
4772                 ret = 0;
4773         }
4774         return ret;
4775 }
4776
4777 static int
4778 bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[])
4779 {
4780         int mac_offset = BGE_EE_MAC_OFFSET;
4781
4782         if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
4783                 mac_offset = BGE_EE_MAC_OFFSET_5906;
4784
4785         return bge_read_nvram(sc, ether_addr, mac_offset + 2, ETHER_ADDR_LEN);
4786 }
4787
4788 static int
4789 bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[])
4790 {
4791         if (sc->bge_flags & BGE_FLAG_NO_EEPROM)
4792                 return 1;
4793
4794         return bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
4795                                ETHER_ADDR_LEN);
4796 }
4797
4798 static int
4799 bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[])
4800 {
4801         static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
4802                 /* NOTE: Order is critical */
4803                 bge_get_eaddr_mem,
4804                 bge_get_eaddr_nvram,
4805                 bge_get_eaddr_eeprom,
4806                 NULL
4807         };
4808         const bge_eaddr_fcn_t *func;
4809
4810         for (func = bge_eaddr_funcs; *func != NULL; ++func) {
4811                 if ((*func)(sc, eaddr) == 0)
4812                         break;
4813         }
4814         return (*func == NULL ? ENXIO : 0);
4815 }
4816
4817 /*
4818  * NOTE: 'm' is not freed upon failure
4819  */
4820 struct mbuf *
4821 bge_defrag_shortdma(struct mbuf *m)
4822 {
4823         struct mbuf *n;
4824         int found;
4825
4826         /*
4827          * If device receive two back-to-back send BDs with less than
4828          * or equal to 8 total bytes then the device may hang.  The two
4829          * back-to-back send BDs must in the same frame for this failure
4830          * to occur.  Scan mbuf chains and see whether two back-to-back
4831          * send BDs are there.  If this is the case, allocate new mbuf
4832          * and copy the frame to workaround the silicon bug.
4833          */
4834         for (n = m, found = 0; n != NULL; n = n->m_next) {
4835                 if (n->m_len < 8) {
4836                         found++;
4837                         if (found > 1)
4838                                 break;
4839                         continue;
4840                 }
4841                 found = 0;
4842         }
4843
4844         if (found > 1)
4845                 n = m_defrag(m, MB_DONTWAIT);
4846         else
4847                 n = m;
4848         return n;
4849 }
4850
4851 static void
4852 bge_stop_block(struct bge_softc *sc, bus_size_t reg, uint32_t bit)
4853 {
4854         int i;
4855
4856         BGE_CLRBIT(sc, reg, bit);
4857         for (i = 0; i < BGE_TIMEOUT; i++) {
4858                 if ((CSR_READ_4(sc, reg) & bit) == 0)
4859                         return;
4860                 DELAY(100);
4861         }
4862 }
4863
4864 static void
4865 bge_link_poll(struct bge_softc *sc)
4866 {
4867         uint32_t status;
4868
4869         status = CSR_READ_4(sc, BGE_MAC_STS);
4870         if ((status & sc->bge_link_chg) || sc->bge_link_evt) {
4871                 sc->bge_link_evt = 0;
4872                 sc->bge_link_upd(sc, status);
4873         }
4874 }
4875
4876 static void
4877 bge_enable_msi(struct bge_softc *sc)
4878 {
4879         uint32_t msi_mode;
4880
4881         msi_mode = CSR_READ_4(sc, BGE_MSI_MODE);
4882         msi_mode |= BGE_MSIMODE_ENABLE;
4883         if (sc->bge_flags & BGE_FLAG_ONESHOT_MSI) {
4884                 /*
4885                  * According to all of the datasheets that are publicly
4886                  * available, bit 5 of the MSI_MODE is defined to be
4887                  * "MSI FIFO Underrun Attn" for BCM5755+ and BCM5906, on
4888                  * which "oneshot MSI" is enabled.  However, it is always
4889                  * safe to clear it here.
4890                  */
4891                 msi_mode &= ~BGE_MSIMODE_ONESHOT_DISABLE;
4892         }
4893         CSR_WRITE_4(sc, BGE_MSI_MODE, msi_mode);
4894 }
4895
4896 static int
4897 bge_setup_tso(struct bge_softc *sc, struct mbuf **mp,
4898     uint16_t *mss0, uint16_t *flags0)
4899 {
4900         struct mbuf *m;
4901         struct ip *ip;
4902         struct tcphdr *th;
4903         int thoff, iphlen, hoff, hlen;
4904         uint16_t flags, mss;
4905
4906         m = *mp;
4907         KASSERT(M_WRITABLE(m), ("TSO mbuf not writable"));
4908
4909         hoff = m->m_pkthdr.csum_lhlen;
4910         iphlen = m->m_pkthdr.csum_iphlen;
4911         thoff = m->m_pkthdr.csum_thlen;
4912
4913         KASSERT(hoff > 0, ("invalid ether header len"));
4914         KASSERT(iphlen > 0, ("invalid ip header len"));
4915         KASSERT(thoff > 0, ("invalid tcp header len"));
4916
4917         if (__predict_false(m->m_len < hoff + iphlen + thoff)) {
4918                 m = m_pullup(m, hoff + iphlen + thoff);
4919                 if (m == NULL) {
4920                         *mp = NULL;
4921                         return ENOBUFS;
4922                 }
4923                 *mp = m;
4924         }
4925         ip = mtodoff(m, struct ip *, hoff);
4926         th = mtodoff(m, struct tcphdr *, hoff + iphlen);
4927
4928         mss = m->m_pkthdr.tso_segsz;
4929         flags = BGE_TXBDFLAG_CPU_PRE_DMA | BGE_TXBDFLAG_CPU_POST_DMA;
4930
4931         ip->ip_len = htons(mss + iphlen + thoff);
4932         th->th_sum = 0;
4933
4934         hlen = (iphlen + thoff) >> 2;
4935         mss |= (hlen << 11);
4936
4937         *mss0 = mss;
4938         *flags0 = flags;
4939
4940         return 0;
4941 }