c44a9c7aebee7b209be825919430755783269f74
[dragonfly.git] / sys / netinet / ip_input.c
1 /*
2  * Copyright (c) 2003, 2004 Jeffrey M. Hsu.  All rights reserved.
3  * Copyright (c) 2003, 2004 The DragonFly Project.  All rights reserved.
4  *
5  * This code is derived from software contributed to The DragonFly Project
6  * by Jeffrey M. Hsu.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of The DragonFly Project nor the names of its
17  *    contributors may be used to endorse or promote products derived
18  *    from this software without specific, prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
24  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
30  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33
34 /*
35  * Copyright (c) 1982, 1986, 1988, 1993
36  *      The Regents of the University of California.  All rights reserved.
37  *
38  * Redistribution and use in source and binary forms, with or without
39  * modification, are permitted provided that the following conditions
40  * are met:
41  * 1. Redistributions of source code must retain the above copyright
42  *    notice, this list of conditions and the following disclaimer.
43  * 2. Redistributions in binary form must reproduce the above copyright
44  *    notice, this list of conditions and the following disclaimer in the
45  *    documentation and/or other materials provided with the distribution.
46  * 3. All advertising materials mentioning features or use of this software
47  *    must display the following acknowledgement:
48  *      This product includes software developed by the University of
49  *      California, Berkeley and its contributors.
50  * 4. Neither the name of the University nor the names of its contributors
51  *    may be used to endorse or promote products derived from this software
52  *    without specific prior written permission.
53  *
54  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64  * SUCH DAMAGE.
65  *
66  *      @(#)ip_input.c  8.2 (Berkeley) 1/4/94
67  * $FreeBSD: src/sys/netinet/ip_input.c,v 1.130.2.52 2003/03/07 07:01:28 silby Exp $
68  * $DragonFly: src/sys/netinet/ip_input.c,v 1.67 2007/05/23 08:57:09 dillon Exp $
69  */
70
71 #define _IP_VHL
72
73 #include "opt_bootp.h"
74 #include "opt_ipfw.h"
75 #include "opt_ipdn.h"
76 #include "opt_ipdivert.h"
77 #include "opt_ipfilter.h"
78 #include "opt_ipstealth.h"
79 #include "opt_ipsec.h"
80
81 #include <sys/param.h>
82 #include <sys/systm.h>
83 #include <sys/mbuf.h>
84 #include <sys/malloc.h>
85 #include <sys/mpipe.h>
86 #include <sys/domain.h>
87 #include <sys/protosw.h>
88 #include <sys/socket.h>
89 #include <sys/time.h>
90 #include <sys/globaldata.h>
91 #include <sys/thread.h>
92 #include <sys/kernel.h>
93 #include <sys/syslog.h>
94 #include <sys/sysctl.h>
95 #include <sys/in_cksum.h>
96
97 #include <machine/stdarg.h>
98
99 #include <net/if.h>
100 #include <net/if_types.h>
101 #include <net/if_var.h>
102 #include <net/if_dl.h>
103 #include <net/pfil.h>
104 #include <net/route.h>
105 #include <net/netisr.h>
106 #include <net/intrq.h>
107
108 #include <netinet/in.h>
109 #include <netinet/in_systm.h>
110 #include <netinet/in_var.h>
111 #include <netinet/ip.h>
112 #include <netinet/in_pcb.h>
113 #include <netinet/ip_var.h>
114 #include <netinet/ip_icmp.h>
115
116 #include <sys/thread2.h>
117 #include <sys/msgport2.h>
118 #include <net/netmsg2.h>
119
120 #include <sys/socketvar.h>
121
122 #include <net/ipfw/ip_fw.h>
123 #include <net/dummynet/ip_dummynet.h>
124
125 #ifdef IPSEC
126 #include <netinet6/ipsec.h>
127 #include <netproto/key/key.h>
128 #endif
129
130 #ifdef FAST_IPSEC
131 #include <netproto/ipsec/ipsec.h>
132 #include <netproto/ipsec/key.h>
133 #endif
134
135 int rsvp_on = 0;
136 static int ip_rsvp_on;
137 struct socket *ip_rsvpd;
138
139 int ipforwarding = 0;
140 SYSCTL_INT(_net_inet_ip, IPCTL_FORWARDING, forwarding, CTLFLAG_RW,
141     &ipforwarding, 0, "Enable IP forwarding between interfaces");
142
143 static int ipsendredirects = 1; /* XXX */
144 SYSCTL_INT(_net_inet_ip, IPCTL_SENDREDIRECTS, redirect, CTLFLAG_RW,
145     &ipsendredirects, 0, "Enable sending IP redirects");
146
147 int ip_defttl = IPDEFTTL;
148 SYSCTL_INT(_net_inet_ip, IPCTL_DEFTTL, ttl, CTLFLAG_RW,
149     &ip_defttl, 0, "Maximum TTL on IP packets");
150
151 static int ip_dosourceroute = 0;
152 SYSCTL_INT(_net_inet_ip, IPCTL_SOURCEROUTE, sourceroute, CTLFLAG_RW,
153     &ip_dosourceroute, 0, "Enable forwarding source routed IP packets");
154
155 static int ip_acceptsourceroute = 0;
156 SYSCTL_INT(_net_inet_ip, IPCTL_ACCEPTSOURCEROUTE, accept_sourceroute,
157     CTLFLAG_RW, &ip_acceptsourceroute, 0,
158     "Enable accepting source routed IP packets");
159
160 static int ip_keepfaith = 0;
161 SYSCTL_INT(_net_inet_ip, IPCTL_KEEPFAITH, keepfaith, CTLFLAG_RW,
162     &ip_keepfaith, 0,
163     "Enable packet capture for FAITH IPv4->IPv6 translater daemon");
164
165 static int nipq = 0;    /* total # of reass queues */
166 static int maxnipq;
167 SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragpackets, CTLFLAG_RW,
168     &maxnipq, 0,
169     "Maximum number of IPv4 fragment reassembly queue entries");
170
171 static int maxfragsperpacket;
172 SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragsperpacket, CTLFLAG_RW,
173     &maxfragsperpacket, 0,
174     "Maximum number of IPv4 fragments allowed per packet");
175
176 static int ip_sendsourcequench = 0;
177 SYSCTL_INT(_net_inet_ip, OID_AUTO, sendsourcequench, CTLFLAG_RW,
178     &ip_sendsourcequench, 0,
179     "Enable the transmission of source quench packets");
180
181 int ip_do_randomid = 0;
182 SYSCTL_INT(_net_inet_ip, OID_AUTO, random_id, CTLFLAG_RW,
183     &ip_do_randomid, 0,
184     "Assign random ip_id values");      
185 /*
186  * XXX - Setting ip_checkinterface mostly implements the receive side of
187  * the Strong ES model described in RFC 1122, but since the routing table
188  * and transmit implementation do not implement the Strong ES model,
189  * setting this to 1 results in an odd hybrid.
190  *
191  * XXX - ip_checkinterface currently must be disabled if you use ipnat
192  * to translate the destination address to another local interface.
193  *
194  * XXX - ip_checkinterface must be disabled if you add IP aliases
195  * to the loopback interface instead of the interface where the
196  * packets for those addresses are received.
197  */
198 static int ip_checkinterface = 0;
199 SYSCTL_INT(_net_inet_ip, OID_AUTO, check_interface, CTLFLAG_RW,
200     &ip_checkinterface, 0, "Verify packet arrives on correct interface");
201
202 #ifdef DIAGNOSTIC
203 static int ipprintfs = 0;
204 #endif
205
206 static struct ifqueue ipintrq;
207 static int ipqmaxlen = IFQ_MAXLEN;
208
209 extern  struct domain inetdomain;
210 extern  struct protosw inetsw[];
211 u_char  ip_protox[IPPROTO_MAX];
212 struct  in_ifaddrhead in_ifaddrhead;            /* first inet address */
213 struct  in_ifaddrhashhead *in_ifaddrhashtbl;    /* inet addr hash table */
214 u_long  in_ifaddrhmask;                         /* mask for hash table */
215
216 SYSCTL_INT(_net_inet_ip, IPCTL_INTRQMAXLEN, intr_queue_maxlen, CTLFLAG_RW,
217     &ipintrq.ifq_maxlen, 0, "Maximum size of the IP input queue");
218 SYSCTL_INT(_net_inet_ip, IPCTL_INTRQDROPS, intr_queue_drops, CTLFLAG_RD,
219     &ipintrq.ifq_drops, 0, "Number of packets dropped from the IP input queue");
220
221 struct ip_stats ipstats_percpu[MAXCPU];
222 #ifdef SMP
223 static int
224 sysctl_ipstats(SYSCTL_HANDLER_ARGS)
225 {
226         int cpu, error = 0;
227
228         for (cpu = 0; cpu < ncpus; ++cpu) {
229                 if ((error = SYSCTL_OUT(req, &ipstats_percpu[cpu],
230                                         sizeof(struct ip_stats))))
231                         break;
232                 if ((error = SYSCTL_IN(req, &ipstats_percpu[cpu],
233                                        sizeof(struct ip_stats))))
234                         break;
235         }
236
237         return (error);
238 }
239 SYSCTL_PROC(_net_inet_ip, IPCTL_STATS, stats, (CTLTYPE_OPAQUE | CTLFLAG_RW),
240     0, 0, sysctl_ipstats, "S,ip_stats", "IP statistics");
241 #else
242 SYSCTL_STRUCT(_net_inet_ip, IPCTL_STATS, stats, CTLFLAG_RW,
243     &ipstat, ip_stats, "IP statistics");
244 #endif
245
246 /* Packet reassembly stuff */
247 #define IPREASS_NHASH_LOG2      6
248 #define IPREASS_NHASH           (1 << IPREASS_NHASH_LOG2)
249 #define IPREASS_HMASK           (IPREASS_NHASH - 1)
250 #define IPREASS_HASH(x,y)                                               \
251     (((((x) & 0xF) | ((((x) >> 8) & 0xF) << 4)) ^ (y)) & IPREASS_HMASK)
252
253 static struct ipq ipq[IPREASS_NHASH];
254 const  int    ipintrq_present = 1;
255
256 #ifdef IPCTL_DEFMTU
257 SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW,
258     &ip_mtu, 0, "Default MTU");
259 #endif
260
261 #ifdef IPSTEALTH
262 static int ipstealth = 0;
263 SYSCTL_INT(_net_inet_ip, OID_AUTO, stealth, CTLFLAG_RW, &ipstealth, 0, "");
264 #else
265 static const int ipstealth = 0;
266 #endif
267
268
269 /* Firewall hooks */
270 ip_fw_chk_t *ip_fw_chk_ptr;
271 int fw_enable = 1;
272 int fw_one_pass = 1;
273
274 /* Dummynet hooks */
275 ip_dn_io_t *ip_dn_io_ptr;
276
277 struct pfil_head inet_pfil_hook;
278
279 /*
280  * XXX this is ugly -- the following two global variables are
281  * used to store packet state while it travels through the stack.
282  * Note that the code even makes assumptions on the size and
283  * alignment of fields inside struct ip_srcrt so e.g. adding some
284  * fields will break the code. This needs to be fixed.
285  *
286  * We need to save the IP options in case a protocol wants to respond
287  * to an incoming packet over the same route if the packet got here
288  * using IP source routing.  This allows connection establishment and
289  * maintenance when the remote end is on a network that is not known
290  * to us.
291  */
292 static int ip_nhops = 0;
293
294 static  struct ip_srcrt {
295         struct  in_addr dst;                    /* final destination */
296         char    nop;                            /* one NOP to align */
297         char    srcopt[IPOPT_OFFSET + 1];       /* OPTVAL, OLEN and OFFSET */
298         struct  in_addr route[MAX_IPOPTLEN/sizeof(struct in_addr)];
299 } ip_srcrt;
300
301 static MALLOC_DEFINE(M_IPQ, "ipq", "IP Fragment Management");
302 static struct malloc_pipe ipq_mpipe;
303
304 static void             save_rte (u_char *, struct in_addr);
305 static int              ip_dooptions (struct mbuf *m, int,
306                                         struct sockaddr_in *next_hop);
307 static void             ip_forward (struct mbuf *m, boolean_t using_srcrt,
308                                         struct sockaddr_in *next_hop);
309 static void             ip_freef (struct ipq *);
310 static void             ip_input_handler (struct netmsg *);
311 static struct mbuf      *ip_reass (struct mbuf *, struct ipq *,
312                                         struct ipq *, u_int32_t *);
313
314 /*
315  * IP initialization: fill in IP protocol switch table.
316  * All protocols not implemented in kernel go to raw IP protocol handler.
317  */
318 void
319 ip_init(void)
320 {
321         struct protosw *pr;
322         int i;
323 #ifdef SMP
324         int cpu;
325 #endif
326
327         /*
328          * Make sure we can handle a reasonable number of fragments but
329          * cap it at 4000 (XXX).
330          */
331         mpipe_init(&ipq_mpipe, M_IPQ, sizeof(struct ipq),
332                     IFQ_MAXLEN, 4000, 0, NULL);
333         TAILQ_INIT(&in_ifaddrhead);
334         in_ifaddrhashtbl = hashinit(INADDR_NHASH, M_IFADDR, &in_ifaddrhmask);
335         pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
336         if (pr == NULL)
337                 panic("ip_init");
338         for (i = 0; i < IPPROTO_MAX; i++)
339                 ip_protox[i] = pr - inetsw;
340         for (pr = inetdomain.dom_protosw;
341              pr < inetdomain.dom_protoswNPROTOSW; pr++)
342                 if (pr->pr_domain->dom_family == PF_INET &&
343                     pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW)
344                         ip_protox[pr->pr_protocol] = pr - inetsw;
345
346         inet_pfil_hook.ph_type = PFIL_TYPE_AF;
347         inet_pfil_hook.ph_af = AF_INET;
348         if ((i = pfil_head_register(&inet_pfil_hook)) != 0) {
349                 kprintf("%s: WARNING: unable to register pfil hook, "
350                         "error %d\n", __func__, i);
351         }
352
353         for (i = 0; i < IPREASS_NHASH; i++)
354             ipq[i].next = ipq[i].prev = &ipq[i];
355
356         maxnipq = nmbclusters / 32;
357         maxfragsperpacket = 16;
358
359         ip_id = time_second & 0xffff;
360         ipintrq.ifq_maxlen = ipqmaxlen;
361
362         /*
363          * Initialize IP statistics counters for each CPU.
364          *
365          */
366 #ifdef SMP
367         for (cpu = 0; cpu < ncpus; ++cpu) {
368                 bzero(&ipstats_percpu[cpu], sizeof(struct ip_stats));
369         }
370 #else
371         bzero(&ipstat, sizeof(struct ip_stats));
372 #endif
373
374         netisr_register(NETISR_IP, ip_mport, ip_input_handler);
375 }
376
377 /*
378  * XXX watch out this one. It is perhaps used as a cache for
379  * the most recently used route ? it is cleared in in_addroute()
380  * when a new route is successfully created.
381  */
382 struct route ipforward_rt[MAXCPU];
383
384 /* Do transport protocol processing. */
385 static void
386 transport_processing_oncpu(struct mbuf *m, int hlen, struct ip *ip,
387                            struct sockaddr_in *nexthop)
388 {
389         /*
390          * Switch out to protocol's input routine.
391          */
392         if (nexthop && ip->ip_p == IPPROTO_TCP) {
393                 /* TCP needs IPFORWARD info if available */
394                 struct m_hdr tag;
395
396                 tag.mh_type = MT_TAG;
397                 tag.mh_flags = PACKET_TAG_IPFORWARD;
398                 tag.mh_data = (caddr_t)nexthop;
399                 tag.mh_next = m;
400
401                 (*inetsw[ip_protox[ip->ip_p]].pr_input)
402                     ((struct mbuf *)&tag, hlen, ip->ip_p);
403         } else {
404                 (*inetsw[ip_protox[ip->ip_p]].pr_input)(m, hlen, ip->ip_p);
405         }
406 }
407
408 struct netmsg_transport_packet {
409         struct netmsg           nm_netmsg;
410         struct mbuf             *nm_mbuf;
411         int                     nm_hlen;
412         boolean_t               nm_hasnexthop;
413         struct sockaddr_in      nm_nexthop;
414 };
415
416 static void
417 transport_processing_handler(netmsg_t netmsg)
418 {
419         struct netmsg_transport_packet *msg = (void *)netmsg;
420         struct sockaddr_in *nexthop;
421         struct ip *ip;
422
423         ip = mtod(msg->nm_mbuf, struct ip *);
424         nexthop = msg->nm_hasnexthop ? &msg->nm_nexthop : NULL;
425         transport_processing_oncpu(msg->nm_mbuf, msg->nm_hlen, ip, nexthop);
426         lwkt_replymsg(&msg->nm_netmsg.nm_lmsg, 0);
427 }
428
429 static void
430 ip_input_handler(struct netmsg *msg0)
431 {
432         struct mbuf *m = ((struct netmsg_packet *)msg0)->nm_packet;
433
434         ip_input(m);
435         /* msg0 was embedded in the mbuf, do not reply! */
436 }
437
438 /*
439  * IP input routine.  Checksum and byte swap header.  If fragmented
440  * try to reassemble.  Process options.  Pass to next level.
441  */
442 void
443 ip_input(struct mbuf *m)
444 {
445         struct ip *ip;
446         struct ipq *fp;
447         struct in_ifaddr *ia = NULL;
448         struct ifaddr *ifa;
449         int i, hlen, checkif;
450         u_short sum;
451         struct in_addr pkt_dst;
452         u_int32_t divert_info = 0;              /* packet divert/tee info */
453         struct ip_fw_args args;
454         boolean_t using_srcrt = FALSE;          /* forward (by PFIL_HOOKS) */
455         boolean_t needredispatch = FALSE;
456         struct in_addr odst;                    /* original dst address(NAT) */
457 #if defined(FAST_IPSEC) || defined(IPDIVERT)
458         struct m_tag *mtag;
459 #endif
460 #ifdef FAST_IPSEC
461         struct tdb_ident *tdbi;
462         struct secpolicy *sp;
463         int error;
464 #endif
465
466         args.eh = NULL;
467         args.oif = NULL;
468         args.rule = NULL;
469         args.next_hop = NULL;
470
471         /* Grab info from MT_TAG mbufs prepended to the chain. */
472         while (m != NULL && m->m_type == MT_TAG) {
473                 switch(m->_m_tag_id) {
474                 case PACKET_TAG_DUMMYNET:
475                         args.rule = ((struct dn_pkt *)m)->rule;
476                         break;
477                 case PACKET_TAG_IPFORWARD:
478                         args.next_hop = (struct sockaddr_in *)m->m_hdr.mh_data;
479                         break;
480                 default:
481                         kprintf("ip_input: unrecognised MT_TAG tag %d\n",
482                             m->_m_tag_id);
483                         break;
484                 }
485                 m = m->m_next;
486         }
487         KASSERT(m != NULL && (m->m_flags & M_PKTHDR), ("ip_input: no HDR"));
488
489         if (args.rule != NULL) {        /* dummynet already filtered us */
490                 ip = mtod(m, struct ip *);
491                 hlen = IP_VHL_HL(ip->ip_vhl) << 2;
492                 goto iphack;
493         }
494
495         ipstat.ips_total++;
496
497         /* length checks already done in ip_demux() */
498         KASSERT(m->m_len >= sizeof(ip), ("IP header not in one mbuf"));
499
500         ip = mtod(m, struct ip *);
501
502         if (IP_VHL_V(ip->ip_vhl) != IPVERSION) {
503                 ipstat.ips_badvers++;
504                 goto bad;
505         }
506
507         hlen = IP_VHL_HL(ip->ip_vhl) << 2;
508         /* length checks already done in ip_demux() */
509         KASSERT(hlen >= sizeof(struct ip), ("IP header len too small"));
510         KASSERT(m->m_len >= hlen, ("packet shorter than IP header length"));
511
512         /* 127/8 must not appear on wire - RFC1122 */
513         if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
514             (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
515                 if (!(m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK)) {
516                         ipstat.ips_badaddr++;
517                         goto bad;
518                 }
519         }
520
521         if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) {
522                 sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID);
523         } else {
524                 if (hlen == sizeof(struct ip)) {
525                         sum = in_cksum_hdr(ip);
526                 } else {
527                         sum = in_cksum(m, hlen);
528                 }
529         }
530         if (sum != 0) {
531                 ipstat.ips_badsum++;
532                 goto bad;
533         }
534
535 #ifdef ALTQ
536         if (altq_input != NULL && (*altq_input)(m, AF_INET) == 0) {
537                 /* packet is dropped by traffic conditioner */
538                 return;
539         }
540 #endif
541         /*
542          * Convert fields to host representation.
543          */
544         ip->ip_len = ntohs(ip->ip_len);
545         if (ip->ip_len < hlen) {
546                 ipstat.ips_badlen++;
547                 goto bad;
548         }
549         ip->ip_off = ntohs(ip->ip_off);
550
551         /*
552          * Check that the amount of data in the buffers
553          * is as at least much as the IP header would have us expect.
554          * Trim mbufs if longer than we expect.
555          * Drop packet if shorter than we expect.
556          */
557         if (m->m_pkthdr.len < ip->ip_len) {
558                 ipstat.ips_tooshort++;
559                 goto bad;
560         }
561         if (m->m_pkthdr.len > ip->ip_len) {
562                 if (m->m_len == m->m_pkthdr.len) {
563                         m->m_len = ip->ip_len;
564                         m->m_pkthdr.len = ip->ip_len;
565                 } else
566                         m_adj(m, ip->ip_len - m->m_pkthdr.len);
567         }
568 #if defined(IPSEC) && !defined(IPSEC_FILTERGIF)
569         /*
570          * Bypass packet filtering for packets from a tunnel (gif).
571          */
572         if (ipsec_gethist(m, NULL))
573                 goto pass;
574 #endif
575
576         /*
577          * IpHack's section.
578          * Right now when no processing on packet has done
579          * and it is still fresh out of network we do our black
580          * deals with it.
581          * - Firewall: deny/allow/divert
582          * - Xlate: translate packet's addr/port (NAT).
583          * - Pipe: pass pkt through dummynet.
584          * - Wrap: fake packet's addr/port <unimpl.>
585          * - Encapsulate: put it in another IP and send out. <unimp.>
586          */
587
588 iphack:
589
590         /*
591          * Run through list of hooks for input packets.
592          *
593          * NB: Beware of the destination address changing (e.g.
594          *     by NAT rewriting). When this happens, tell
595          *     ip_forward to do the right thing.
596          */
597         if (pfil_has_hooks(&inet_pfil_hook)) {
598                 odst = ip->ip_dst;
599                 if (pfil_run_hooks(&inet_pfil_hook, &m,
600                     m->m_pkthdr.rcvif, PFIL_IN)) {
601                         return;
602                 }
603                 if (m == NULL)                  /* consumed by filter */
604                         return;
605                 ip = mtod(m, struct ip *);
606                 using_srcrt = (odst.s_addr != ip->ip_dst.s_addr);
607         }
608
609         if (fw_enable && IPFW_LOADED) {
610                 /*
611                  * If we've been forwarded from the output side, then
612                  * skip the firewall a second time
613                  */
614                 if (args.next_hop != NULL)
615                         goto ours;
616
617                 args.m = m;
618                 i = ip_fw_chk_ptr(&args);
619                 m = args.m;
620
621                 if ((i & IP_FW_PORT_DENY_FLAG) || m == NULL) {  /* drop */
622                         if (m != NULL)
623                                 m_freem(m);
624                         return;
625                 }
626                 ip = mtod(m, struct ip *);      /* just in case m changed */
627                 if (i == 0 && args.next_hop == NULL)    /* common case */
628                         goto pass;
629                 if (DUMMYNET_LOADED && (i & IP_FW_PORT_DYNT_FLAG)) {
630                         /* Send packet to the appropriate pipe */
631                         ip_dn_io_ptr(m, i&0xffff, DN_TO_IP_IN, &args);
632                         return;
633                 }
634 #ifdef IPDIVERT
635                 if (i != 0 && !(i & IP_FW_PORT_DYNT_FLAG)) {
636                         /* Divert or tee packet */
637                         divert_info = i;
638                         goto ours;
639                 }
640 #endif
641                 if (i == 0 && args.next_hop != NULL)
642                         goto pass;
643                 /*
644                  * if we get here, the packet must be dropped
645                  */
646                 m_freem(m);
647                 return;
648         }
649 pass:
650
651         /*
652          * Process options and, if not destined for us,
653          * ship it on.  ip_dooptions returns 1 when an
654          * error was detected (causing an icmp message
655          * to be sent and the original packet to be freed).
656          */
657         ip_nhops = 0;           /* for source routed packets */
658         if (hlen > sizeof(struct ip) && ip_dooptions(m, 0, args.next_hop))
659                 return;
660
661         /* greedy RSVP, snatches any PATH packet of the RSVP protocol and no
662          * matter if it is destined to another node, or whether it is
663          * a multicast one, RSVP wants it! and prevents it from being forwarded
664          * anywhere else. Also checks if the rsvp daemon is running before
665          * grabbing the packet.
666          */
667         if (rsvp_on && ip->ip_p == IPPROTO_RSVP)
668                 goto ours;
669
670         /*
671          * Check our list of addresses, to see if the packet is for us.
672          * If we don't have any addresses, assume any unicast packet
673          * we receive might be for us (and let the upper layers deal
674          * with it).
675          */
676         if (TAILQ_EMPTY(&in_ifaddrhead) && !(m->m_flags & (M_MCAST | M_BCAST)))
677                 goto ours;
678
679         /*
680          * Cache the destination address of the packet; this may be
681          * changed by use of 'ipfw fwd'.
682          */
683         pkt_dst = args.next_hop ? args.next_hop->sin_addr : ip->ip_dst;
684
685         /*
686          * Enable a consistency check between the destination address
687          * and the arrival interface for a unicast packet (the RFC 1122
688          * strong ES model) if IP forwarding is disabled and the packet
689          * is not locally generated and the packet is not subject to
690          * 'ipfw fwd'.
691          *
692          * XXX - Checking also should be disabled if the destination
693          * address is ipnat'ed to a different interface.
694          *
695          * XXX - Checking is incompatible with IP aliases added
696          * to the loopback interface instead of the interface where
697          * the packets are received.
698          */
699         checkif = ip_checkinterface &&
700                   !ipforwarding &&
701                   m->m_pkthdr.rcvif != NULL &&
702                   !(m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) &&
703                   (args.next_hop == NULL);
704
705         /*
706          * Check for exact addresses in the hash bucket.
707          */
708         LIST_FOREACH(ia, INADDR_HASH(pkt_dst.s_addr), ia_hash) {
709                 /*
710                  * If the address matches, verify that the packet
711                  * arrived via the correct interface if checking is
712                  * enabled.
713                  */
714                 if (IA_SIN(ia)->sin_addr.s_addr == pkt_dst.s_addr &&
715                     (!checkif || ia->ia_ifp == m->m_pkthdr.rcvif))
716                         goto ours;
717         }
718         /*
719          * Check for broadcast addresses.
720          *
721          * Only accept broadcast packets that arrive via the matching
722          * interface.  Reception of forwarded directed broadcasts would
723          * be handled via ip_forward() and ether_output() with the loopback
724          * into the stack for SIMPLEX interfaces handled by ether_output().
725          */
726         if (m->m_pkthdr.rcvif->if_flags & IFF_BROADCAST) {
727                 TAILQ_FOREACH(ifa, &m->m_pkthdr.rcvif->if_addrhead, ifa_link) {
728                         if (ifa->ifa_addr == NULL) /* shutdown/startup race */
729                                 continue;
730                         if (ifa->ifa_addr->sa_family != AF_INET)
731                                 continue;
732                         ia = ifatoia(ifa);
733                         if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr ==
734                                                                 pkt_dst.s_addr)
735                                 goto ours;
736                         if (ia->ia_netbroadcast.s_addr == pkt_dst.s_addr)
737                                 goto ours;
738 #ifdef BOOTP_COMPAT
739                         if (IA_SIN(ia)->sin_addr.s_addr == INADDR_ANY)
740                                 goto ours;
741 #endif
742                 }
743         }
744         if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
745                 struct in_multi *inm;
746
747                 if (ip_mrouter != NULL) {
748                         /*
749                          * If we are acting as a multicast router, all
750                          * incoming multicast packets are passed to the
751                          * kernel-level multicast forwarding function.
752                          * The packet is returned (relatively) intact; if
753                          * ip_mforward() returns a non-zero value, the packet
754                          * must be discarded, else it may be accepted below.
755                          */
756                         if (ip_mforward != NULL &&
757                             ip_mforward(ip, m->m_pkthdr.rcvif, m, NULL) != 0) {
758                                 ipstat.ips_cantforward++;
759                                 m_freem(m);
760                                 return;
761                         }
762
763                         /*
764                          * The process-level routing daemon needs to receive
765                          * all multicast IGMP packets, whether or not this
766                          * host belongs to their destination groups.
767                          */
768                         if (ip->ip_p == IPPROTO_IGMP)
769                                 goto ours;
770                         ipstat.ips_forward++;
771                 }
772                 /*
773                  * See if we belong to the destination multicast group on the
774                  * arrival interface.
775                  */
776                 IN_LOOKUP_MULTI(ip->ip_dst, m->m_pkthdr.rcvif, inm);
777                 if (inm == NULL) {
778                         ipstat.ips_notmember++;
779                         m_freem(m);
780                         return;
781                 }
782                 goto ours;
783         }
784         if (ip->ip_dst.s_addr == INADDR_BROADCAST)
785                 goto ours;
786         if (ip->ip_dst.s_addr == INADDR_ANY)
787                 goto ours;
788
789         /*
790          * FAITH(Firewall Aided Internet Translator)
791          */
792         if (m->m_pkthdr.rcvif && m->m_pkthdr.rcvif->if_type == IFT_FAITH) {
793                 if (ip_keepfaith) {
794                         if (ip->ip_p == IPPROTO_TCP || ip->ip_p == IPPROTO_ICMP)
795                                 goto ours;
796                 }
797                 m_freem(m);
798                 return;
799         }
800
801         /*
802          * Not for us; forward if possible and desirable.
803          */
804         if (!ipforwarding) {
805                 ipstat.ips_cantforward++;
806                 m_freem(m);
807         } else {
808 #ifdef IPSEC
809                 /*
810                  * Enforce inbound IPsec SPD.
811                  */
812                 if (ipsec4_in_reject(m, NULL)) {
813                         ipsecstat.in_polvio++;
814                         goto bad;
815                 }
816 #endif
817 #ifdef FAST_IPSEC
818                 mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
819                 crit_enter();
820                 if (mtag != NULL) {
821                         tdbi = (struct tdb_ident *)m_tag_data(mtag);
822                         sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
823                 } else {
824                         sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
825                                                    IP_FORWARDING, &error);
826                 }
827                 if (sp == NULL) {       /* NB: can happen if error */
828                         crit_exit();
829                         /*XXX error stat???*/
830                         DPRINTF(("ip_input: no SP for forwarding\n"));  /*XXX*/
831                         goto bad;
832                 }
833
834                 /*
835                  * Check security policy against packet attributes.
836                  */
837                 error = ipsec_in_reject(sp, m);
838                 KEY_FREESP(&sp);
839                 crit_exit();
840                 if (error) {
841                         ipstat.ips_cantforward++;
842                         goto bad;
843                 }
844 #endif
845                 ip_forward(m, using_srcrt, args.next_hop);
846         }
847         return;
848
849 ours:
850
851         /*
852          * IPSTEALTH: Process non-routing options only
853          * if the packet is destined for us.
854          */
855         if (ipstealth &&
856             hlen > sizeof(struct ip) &&
857             ip_dooptions(m, 1, args.next_hop))
858                 return;
859
860         /* Count the packet in the ip address stats */
861         if (ia != NULL) {
862                 ia->ia_ifa.if_ipackets++;
863                 ia->ia_ifa.if_ibytes += m->m_pkthdr.len;
864         }
865
866         /*
867          * If offset or IP_MF are set, must reassemble.
868          * Otherwise, nothing need be done.
869          * (We could look in the reassembly queue to see
870          * if the packet was previously fragmented,
871          * but it's not worth the time; just let them time out.)
872          */
873         if (ip->ip_off & (IP_MF | IP_OFFMASK)) {
874
875                 /* If maxnipq is 0, never accept fragments. */
876                 if (maxnipq == 0) {
877                         ipstat.ips_fragments++;
878                         ipstat.ips_fragdropped++;
879                         goto bad;
880                 }
881
882                 sum = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
883                 /*
884                  * Look for queue of fragments
885                  * of this datagram.
886                  */
887                 for (fp = ipq[sum].next; fp != &ipq[sum]; fp = fp->next)
888                         if (ip->ip_id == fp->ipq_id &&
889                             ip->ip_src.s_addr == fp->ipq_src.s_addr &&
890                             ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
891                             ip->ip_p == fp->ipq_p)
892                                 goto found;
893
894                 fp = NULL;
895
896                 /*
897                  * Enforce upper bound on number of fragmented packets
898                  * for which we attempt reassembly;
899                  * If maxnipq is -1, accept all fragments without limitation.
900                  */
901                 if ((nipq > maxnipq) && (maxnipq > 0)) {
902                         /*
903                          * drop something from the tail of the current queue
904                          * before proceeding further
905                          */
906                         if (ipq[sum].prev == &ipq[sum]) {   /* gak */
907                                 for (i = 0; i < IPREASS_NHASH; i++) {
908                                         if (ipq[i].prev != &ipq[i]) {
909                                                 ipstat.ips_fragtimeout +=
910                                                     ipq[i].prev->ipq_nfrags;
911                                                 ip_freef(ipq[i].prev);
912                                                 break;
913                                         }
914                                 }
915                         } else {
916                                 ipstat.ips_fragtimeout +=
917                                     ipq[sum].prev->ipq_nfrags;
918                                 ip_freef(ipq[sum].prev);
919                         }
920                 }
921 found:
922                 /*
923                  * Adjust ip_len to not reflect header,
924                  * convert offset of this to bytes.
925                  */
926                 ip->ip_len -= hlen;
927                 if (ip->ip_off & IP_MF) {
928                         /*
929                          * Make sure that fragments have a data length
930                          * that's a non-zero multiple of 8 bytes.
931                          */
932                         if (ip->ip_len == 0 || (ip->ip_len & 0x7) != 0) {
933                                 ipstat.ips_toosmall++; /* XXX */
934                                 goto bad;
935                         }
936                         m->m_flags |= M_FRAG;
937                 } else
938                         m->m_flags &= ~M_FRAG;
939                 ip->ip_off <<= 3;
940
941                 /*
942                  * Attempt reassembly; if it succeeds, proceed.
943                  * ip_reass() will return a different mbuf, and update
944                  * the divert info in divert_info.
945                  */
946                 ipstat.ips_fragments++;
947                 m->m_pkthdr.header = ip;
948                 m = ip_reass(m, fp, &ipq[sum], &divert_info);
949                 if (m == NULL)
950                         return;
951                 ipstat.ips_reassembled++;
952                 needredispatch = TRUE;
953                 ip = mtod(m, struct ip *);
954                 /* Get the header length of the reassembled packet */
955                 hlen = IP_VHL_HL(ip->ip_vhl) << 2;
956 #ifdef IPDIVERT
957                 /* Restore original checksum before diverting packet */
958                 if (divert_info != 0) {
959                         ip->ip_len += hlen;
960                         ip->ip_len = htons(ip->ip_len);
961                         ip->ip_off = htons(ip->ip_off);
962                         ip->ip_sum = 0;
963                         if (hlen == sizeof(struct ip))
964                                 ip->ip_sum = in_cksum_hdr(ip);
965                         else
966                                 ip->ip_sum = in_cksum(m, hlen);
967                         ip->ip_off = ntohs(ip->ip_off);
968                         ip->ip_len = ntohs(ip->ip_len);
969                         ip->ip_len -= hlen;
970                 }
971 #endif
972         } else {
973                 ip->ip_len -= hlen;
974         }
975
976 #ifdef IPDIVERT
977         /*
978          * Divert or tee packet to the divert protocol if required.
979          */
980         if (divert_info != 0) {
981                 struct mbuf *clone = NULL;
982
983                 /* Clone packet if we're doing a 'tee' */
984                 if ((divert_info & IP_FW_PORT_TEE_FLAG) != 0)
985                         clone = m_dup(m, MB_DONTWAIT);
986
987                 /* Restore packet header fields to original values */
988                 ip->ip_len += hlen;
989                 ip->ip_len = htons(ip->ip_len);
990                 ip->ip_off = htons(ip->ip_off);
991
992                 /* Deliver packet to divert input routine */
993                 divert_packet(m, 1, divert_info & 0xffff);
994                 ipstat.ips_delivered++;
995
996                 /* If 'tee', continue with original packet */
997                 if (clone == NULL)
998                         return;
999                 m = clone;
1000                 ip = mtod(m, struct ip *);
1001                 ip->ip_len += hlen;
1002                 /*
1003                  * Jump backwards to complete processing of the
1004                  * packet. But first clear divert_info to avoid
1005                  * entering this block again.
1006                  * We do not need to clear args.divert_rule
1007                  * or args.next_hop as they will not be used.
1008                  *
1009                  * XXX Better safe than sorry, remove the DIVERT tag.
1010                  */
1011                 mtag = m_tag_find(m, PACKET_TAG_IPFW_DIVERT, NULL);
1012                 if (mtag != NULL)
1013                         m_tag_delete(m, mtag);
1014                 
1015                 divert_info = 0;
1016                 goto pass;
1017         }
1018 #endif
1019
1020 #ifdef IPSEC
1021         /*
1022          * enforce IPsec policy checking if we are seeing last header.
1023          * note that we do not visit this with protocols with pcb layer
1024          * code - like udp/tcp/raw ip.
1025          */
1026         if ((inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) &&
1027             ipsec4_in_reject(m, NULL)) {
1028                 ipsecstat.in_polvio++;
1029                 goto bad;
1030         }
1031 #endif
1032 #if FAST_IPSEC
1033         /*
1034          * enforce IPsec policy checking if we are seeing last header.
1035          * note that we do not visit this with protocols with pcb layer
1036          * code - like udp/tcp/raw ip.
1037          */
1038         if (inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) {
1039                 /*
1040                  * Check if the packet has already had IPsec processing
1041                  * done.  If so, then just pass it along.  This tag gets
1042                  * set during AH, ESP, etc. input handling, before the
1043                  * packet is returned to the ip input queue for delivery.
1044                  */
1045                 mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
1046                 crit_enter();
1047                 if (mtag != NULL) {
1048                         tdbi = (struct tdb_ident *)m_tag_data(mtag);
1049                         sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
1050                 } else {
1051                         sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
1052                                                    IP_FORWARDING, &error);
1053                 }
1054                 if (sp != NULL) {
1055                         /*
1056                          * Check security policy against packet attributes.
1057                          */
1058                         error = ipsec_in_reject(sp, m);
1059                         KEY_FREESP(&sp);
1060                 } else {
1061                         /* XXX error stat??? */
1062                         error = EINVAL;
1063 DPRINTF(("ip_input: no SP, packet discarded\n"));/*XXX*/
1064                         goto bad;
1065                 }
1066                 crit_exit();
1067                 if (error)
1068                         goto bad;
1069         }
1070 #endif /* FAST_IPSEC */
1071
1072         ipstat.ips_delivered++;
1073         if (needredispatch) {
1074                 struct netmsg_transport_packet *msg;
1075                 lwkt_port_t port;
1076
1077                 ip->ip_off = htons(ip->ip_off);
1078                 ip->ip_len = htons(ip->ip_len);
1079                 port = ip_mport(&m);
1080                 if (port == NULL)
1081                         return;
1082
1083                 msg = kmalloc(sizeof(struct netmsg_transport_packet), M_LWKTMSG,
1084                              M_INTWAIT | M_NULLOK);
1085                 if (msg == NULL)
1086                         goto bad;
1087
1088                 netmsg_init(&msg->nm_netmsg, &netisr_afree_rport, 0,
1089                             transport_processing_handler);
1090                 msg->nm_hlen = hlen;
1091                 msg->nm_hasnexthop = (args.next_hop != NULL);
1092                 if (msg->nm_hasnexthop)
1093                         msg->nm_nexthop = *args.next_hop;  /* structure copy */
1094
1095                 msg->nm_mbuf = m;
1096                 ip = mtod(m, struct ip *);
1097                 ip->ip_len = ntohs(ip->ip_len);
1098                 ip->ip_off = ntohs(ip->ip_off);
1099                 lwkt_sendmsg(port, &msg->nm_netmsg.nm_lmsg);
1100         } else {
1101                 transport_processing_oncpu(m, hlen, ip, args.next_hop);
1102         }
1103         return;
1104
1105 bad:
1106         m_freem(m);
1107 }
1108
1109 /*
1110  * Take incoming datagram fragment and try to reassemble it into
1111  * whole datagram.  If a chain for reassembly of this datagram already
1112  * exists, then it is given as fp; otherwise have to make a chain.
1113  *
1114  * When IPDIVERT enabled, keep additional state with each packet that
1115  * tells us if we need to divert or tee the packet we're building.
1116  * In particular, *divinfo includes the port and TEE flag.
1117  */
1118
1119 static struct mbuf *
1120 ip_reass(struct mbuf *m, struct ipq *fp, struct ipq *where,
1121          u_int32_t *divinfo)
1122 {
1123         struct ip *ip = mtod(m, struct ip *);
1124         struct mbuf *p = NULL, *q, *nq;
1125         struct mbuf *n;
1126         int hlen = IP_VHL_HL(ip->ip_vhl) << 2;
1127         int i, next;
1128 #ifdef IPDIVERT
1129         struct m_tag *mtag;
1130 #endif
1131
1132         /*
1133          * Presence of header sizes in mbufs
1134          * would confuse code below.
1135          */
1136         m->m_data += hlen;
1137         m->m_len -= hlen;
1138
1139         /*
1140          * If first fragment to arrive, create a reassembly queue.
1141          */
1142         if (fp == NULL) {
1143                 if ((fp = mpipe_alloc_nowait(&ipq_mpipe)) == NULL)
1144                         goto dropfrag;
1145                 insque(fp, where);
1146                 nipq++;
1147                 fp->ipq_nfrags = 1;
1148                 fp->ipq_ttl = IPFRAGTTL;
1149                 fp->ipq_p = ip->ip_p;
1150                 fp->ipq_id = ip->ip_id;
1151                 fp->ipq_src = ip->ip_src;
1152                 fp->ipq_dst = ip->ip_dst;
1153                 fp->ipq_frags = m;
1154                 m->m_nextpkt = NULL;
1155 #ifdef IPDIVERT
1156                 fp->ipq_div_info = 0;
1157 #endif
1158                 goto inserted;
1159         } else {
1160                 fp->ipq_nfrags++;
1161         }
1162
1163 #define GETIP(m)        ((struct ip*)((m)->m_pkthdr.header))
1164
1165         /*
1166          * Find a segment which begins after this one does.
1167          */
1168         for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt)
1169                 if (GETIP(q)->ip_off > ip->ip_off)
1170                         break;
1171
1172         /*
1173          * If there is a preceding segment, it may provide some of
1174          * our data already.  If so, drop the data from the incoming
1175          * segment.  If it provides all of our data, drop us, otherwise
1176          * stick new segment in the proper place.
1177          *
1178          * If some of the data is dropped from the the preceding
1179          * segment, then it's checksum is invalidated.
1180          */
1181         if (p) {
1182                 i = GETIP(p)->ip_off + GETIP(p)->ip_len - ip->ip_off;
1183                 if (i > 0) {
1184                         if (i >= ip->ip_len)
1185                                 goto dropfrag;
1186                         m_adj(m, i);
1187                         m->m_pkthdr.csum_flags = 0;
1188                         ip->ip_off += i;
1189                         ip->ip_len -= i;
1190                 }
1191                 m->m_nextpkt = p->m_nextpkt;
1192                 p->m_nextpkt = m;
1193         } else {
1194                 m->m_nextpkt = fp->ipq_frags;
1195                 fp->ipq_frags = m;
1196         }
1197
1198         /*
1199          * While we overlap succeeding segments trim them or,
1200          * if they are completely covered, dequeue them.
1201          */
1202         for (; q != NULL && ip->ip_off + ip->ip_len > GETIP(q)->ip_off;
1203              q = nq) {
1204                 i = (ip->ip_off + ip->ip_len) - GETIP(q)->ip_off;
1205                 if (i < GETIP(q)->ip_len) {
1206                         GETIP(q)->ip_len -= i;
1207                         GETIP(q)->ip_off += i;
1208                         m_adj(q, i);
1209                         q->m_pkthdr.csum_flags = 0;
1210                         break;
1211                 }
1212                 nq = q->m_nextpkt;
1213                 m->m_nextpkt = nq;
1214                 ipstat.ips_fragdropped++;
1215                 fp->ipq_nfrags--;
1216                 q->m_nextpkt = NULL;
1217                 m_freem(q);
1218         }
1219
1220 inserted:
1221
1222 #ifdef IPDIVERT
1223         /*
1224          * Transfer firewall instructions to the fragment structure.
1225          * Only trust info in the fragment at offset 0.
1226          */
1227         if (ip->ip_off == 0) {
1228                 fp->ipq_div_info = *divinfo;
1229         } else {
1230                 mtag = m_tag_find(m, PACKET_TAG_IPFW_DIVERT, NULL);
1231                 if (mtag != NULL)
1232                         m_tag_delete(m, mtag);
1233         }
1234         *divinfo = 0;
1235 #endif
1236
1237         /*
1238          * Check for complete reassembly and perform frag per packet
1239          * limiting.
1240          *
1241          * Frag limiting is performed here so that the nth frag has
1242          * a chance to complete the packet before we drop the packet.
1243          * As a result, n+1 frags are actually allowed per packet, but
1244          * only n will ever be stored. (n = maxfragsperpacket.)
1245          *
1246          */
1247         next = 0;
1248         for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
1249                 if (GETIP(q)->ip_off != next) {
1250                         if (fp->ipq_nfrags > maxfragsperpacket) {
1251                                 ipstat.ips_fragdropped += fp->ipq_nfrags;
1252                                 ip_freef(fp);
1253                         }
1254                         return (NULL);
1255                 }
1256                 next += GETIP(q)->ip_len;
1257         }
1258         /* Make sure the last packet didn't have the IP_MF flag */
1259         if (p->m_flags & M_FRAG) {
1260                 if (fp->ipq_nfrags > maxfragsperpacket) {
1261                         ipstat.ips_fragdropped += fp->ipq_nfrags;
1262                         ip_freef(fp);
1263                 }
1264                 return (NULL);
1265         }
1266
1267         /*
1268          * Reassembly is complete.  Make sure the packet is a sane size.
1269          */
1270         q = fp->ipq_frags;
1271         ip = GETIP(q);
1272         if (next + (IP_VHL_HL(ip->ip_vhl) << 2) > IP_MAXPACKET) {
1273                 ipstat.ips_toolong++;
1274                 ipstat.ips_fragdropped += fp->ipq_nfrags;
1275                 ip_freef(fp);
1276                 return (NULL);
1277         }
1278
1279         /*
1280          * Concatenate fragments.
1281          */
1282         m = q;
1283         n = m->m_next;
1284         m->m_next = NULL;
1285         m_cat(m, n);
1286         nq = q->m_nextpkt;
1287         q->m_nextpkt = NULL;
1288         for (q = nq; q != NULL; q = nq) {
1289                 nq = q->m_nextpkt;
1290                 q->m_nextpkt = NULL;
1291                 m->m_pkthdr.csum_flags &= q->m_pkthdr.csum_flags;
1292                 m->m_pkthdr.csum_data += q->m_pkthdr.csum_data;
1293                 m_cat(m, q);
1294         }
1295
1296 #ifdef IPDIVERT
1297         /*
1298          * Extract firewall instructions from the fragment structure.
1299          */
1300         *divinfo = fp->ipq_div_info;
1301 #endif
1302
1303         /*
1304          * Create header for new ip packet by
1305          * modifying header of first packet;
1306          * dequeue and discard fragment reassembly header.
1307          * Make header visible.
1308          */
1309         ip->ip_len = next;
1310         ip->ip_src = fp->ipq_src;
1311         ip->ip_dst = fp->ipq_dst;
1312         remque(fp);
1313         nipq--;
1314         mpipe_free(&ipq_mpipe, fp);
1315         m->m_len += (IP_VHL_HL(ip->ip_vhl) << 2);
1316         m->m_data -= (IP_VHL_HL(ip->ip_vhl) << 2);
1317         /* some debugging cruft by sklower, below, will go away soon */
1318         if (m->m_flags & M_PKTHDR) { /* XXX this should be done elsewhere */
1319                 int plen = 0;
1320
1321                 for (n = m; n; n = n->m_next)
1322                         plen += n->m_len;
1323                 m->m_pkthdr.len = plen;
1324         }
1325         return (m);
1326
1327 dropfrag:
1328 #ifdef IPDIVERT
1329         *divinfo = 0;
1330 #endif
1331         ipstat.ips_fragdropped++;
1332         if (fp != NULL)
1333                 fp->ipq_nfrags--;
1334         m_freem(m);
1335         return (NULL);
1336
1337 #undef GETIP
1338 }
1339
1340 /*
1341  * Free a fragment reassembly header and all
1342  * associated datagrams.
1343  */
1344 static void
1345 ip_freef(struct ipq *fp)
1346 {
1347         struct mbuf *q;
1348
1349         while (fp->ipq_frags) {
1350                 q = fp->ipq_frags;
1351                 fp->ipq_frags = q->m_nextpkt;
1352                 q->m_nextpkt = NULL;
1353                 m_freem(q);
1354         }
1355         remque(fp);
1356         mpipe_free(&ipq_mpipe, fp);
1357         nipq--;
1358 }
1359
1360 /*
1361  * IP timer processing;
1362  * if a timer expires on a reassembly
1363  * queue, discard it.
1364  */
1365 void
1366 ip_slowtimo(void)
1367 {
1368         struct ipq *fp;
1369         int i;
1370
1371         crit_enter();
1372         for (i = 0; i < IPREASS_NHASH; i++) {
1373                 fp = ipq[i].next;
1374                 if (fp == NULL)
1375                         continue;
1376                 while (fp != &ipq[i]) {
1377                         --fp->ipq_ttl;
1378                         fp = fp->next;
1379                         if (fp->prev->ipq_ttl == 0) {
1380                                 ipstat.ips_fragtimeout += fp->prev->ipq_nfrags;
1381                                 ip_freef(fp->prev);
1382                         }
1383                 }
1384         }
1385         /*
1386          * If we are over the maximum number of fragments
1387          * (due to the limit being lowered), drain off
1388          * enough to get down to the new limit.
1389          */
1390         if (maxnipq >= 0 && nipq > maxnipq) {
1391                 for (i = 0; i < IPREASS_NHASH; i++) {
1392                         while (nipq > maxnipq &&
1393                                 (ipq[i].next != &ipq[i])) {
1394                                 ipstat.ips_fragdropped +=
1395                                     ipq[i].next->ipq_nfrags;
1396                                 ip_freef(ipq[i].next);
1397                         }
1398                 }
1399         }
1400         ipflow_slowtimo();
1401         crit_exit();
1402 }
1403
1404 /*
1405  * Drain off all datagram fragments.
1406  */
1407 void
1408 ip_drain(void)
1409 {
1410         int i;
1411
1412         for (i = 0; i < IPREASS_NHASH; i++) {
1413                 while (ipq[i].next != &ipq[i]) {
1414                         ipstat.ips_fragdropped += ipq[i].next->ipq_nfrags;
1415                         ip_freef(ipq[i].next);
1416                 }
1417         }
1418         in_rtqdrain();
1419 }
1420
1421 /*
1422  * Do option processing on a datagram,
1423  * possibly discarding it if bad options are encountered,
1424  * or forwarding it if source-routed.
1425  * The pass argument is used when operating in the IPSTEALTH
1426  * mode to tell what options to process:
1427  * [LS]SRR (pass 0) or the others (pass 1).
1428  * The reason for as many as two passes is that when doing IPSTEALTH,
1429  * non-routing options should be processed only if the packet is for us.
1430  * Returns 1 if packet has been forwarded/freed,
1431  * 0 if the packet should be processed further.
1432  */
1433 static int
1434 ip_dooptions(struct mbuf *m, int pass, struct sockaddr_in *next_hop)
1435 {
1436         struct sockaddr_in ipaddr = { sizeof ipaddr, AF_INET };
1437         struct ip *ip = mtod(m, struct ip *);
1438         u_char *cp;
1439         struct in_ifaddr *ia;
1440         int opt, optlen, cnt, off, code, type = ICMP_PARAMPROB;
1441         boolean_t forward = FALSE;
1442         struct in_addr *sin, dst;
1443         n_time ntime;
1444
1445         dst = ip->ip_dst;
1446         cp = (u_char *)(ip + 1);
1447         cnt = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof(struct ip);
1448         for (; cnt > 0; cnt -= optlen, cp += optlen) {
1449                 opt = cp[IPOPT_OPTVAL];
1450                 if (opt == IPOPT_EOL)
1451                         break;
1452                 if (opt == IPOPT_NOP)
1453                         optlen = 1;
1454                 else {
1455                         if (cnt < IPOPT_OLEN + sizeof(*cp)) {
1456                                 code = &cp[IPOPT_OLEN] - (u_char *)ip;
1457                                 goto bad;
1458                         }
1459                         optlen = cp[IPOPT_OLEN];
1460                         if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt) {
1461                                 code = &cp[IPOPT_OLEN] - (u_char *)ip;
1462                                 goto bad;
1463                         }
1464                 }
1465                 switch (opt) {
1466
1467                 default:
1468                         break;
1469
1470                 /*
1471                  * Source routing with record.
1472                  * Find interface with current destination address.
1473                  * If none on this machine then drop if strictly routed,
1474                  * or do nothing if loosely routed.
1475                  * Record interface address and bring up next address
1476                  * component.  If strictly routed make sure next
1477                  * address is on directly accessible net.
1478                  */
1479                 case IPOPT_LSRR:
1480                 case IPOPT_SSRR:
1481                         if (ipstealth && pass > 0)
1482                                 break;
1483                         if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1484                                 code = &cp[IPOPT_OLEN] - (u_char *)ip;
1485                                 goto bad;
1486                         }
1487                         if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1488                                 code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1489                                 goto bad;
1490                         }
1491                         ipaddr.sin_addr = ip->ip_dst;
1492                         ia = (struct in_ifaddr *)
1493                                 ifa_ifwithaddr((struct sockaddr *)&ipaddr);
1494                         if (ia == NULL) {
1495                                 if (opt == IPOPT_SSRR) {
1496                                         type = ICMP_UNREACH;
1497                                         code = ICMP_UNREACH_SRCFAIL;
1498                                         goto bad;
1499                                 }
1500                                 if (!ip_dosourceroute)
1501                                         goto nosourcerouting;
1502                                 /*
1503                                  * Loose routing, and not at next destination
1504                                  * yet; nothing to do except forward.
1505                                  */
1506                                 break;
1507                         }
1508                         off--;                  /* 0 origin */
1509                         if (off > optlen - (int)sizeof(struct in_addr)) {
1510                                 /*
1511                                  * End of source route.  Should be for us.
1512                                  */
1513                                 if (!ip_acceptsourceroute)
1514                                         goto nosourcerouting;
1515                                 save_rte(cp, ip->ip_src);
1516                                 break;
1517                         }
1518                         if (ipstealth)
1519                                 goto dropit;
1520                         if (!ip_dosourceroute) {
1521                                 if (ipforwarding) {
1522                                         char buf[sizeof "aaa.bbb.ccc.ddd"];
1523
1524                                         /*
1525                                          * Acting as a router, so generate ICMP
1526                                          */
1527 nosourcerouting:
1528                                         strcpy(buf, inet_ntoa(ip->ip_dst));
1529                                         log(LOG_WARNING,
1530                                             "attempted source route from %s to %s\n",
1531                                             inet_ntoa(ip->ip_src), buf);
1532                                         type = ICMP_UNREACH;
1533                                         code = ICMP_UNREACH_SRCFAIL;
1534                                         goto bad;
1535                                 } else {
1536                                         /*
1537                                          * Not acting as a router,
1538                                          * so silently drop.
1539                                          */
1540 dropit:
1541                                         ipstat.ips_cantforward++;
1542                                         m_freem(m);
1543                                         return (1);
1544                                 }
1545                         }
1546
1547                         /*
1548                          * locate outgoing interface
1549                          */
1550                         memcpy(&ipaddr.sin_addr, cp + off,
1551                             sizeof ipaddr.sin_addr);
1552
1553                         if (opt == IPOPT_SSRR) {
1554 #define INA     struct in_ifaddr *
1555 #define SA      struct sockaddr *
1556                                 if ((ia = (INA)ifa_ifwithdstaddr((SA)&ipaddr))
1557                                                                         == NULL)
1558                                         ia = (INA)ifa_ifwithnet((SA)&ipaddr);
1559                         } else
1560                                 ia = ip_rtaddr(ipaddr.sin_addr,
1561                                                &ipforward_rt[mycpuid]);
1562                         if (ia == NULL) {
1563                                 type = ICMP_UNREACH;
1564                                 code = ICMP_UNREACH_SRCFAIL;
1565                                 goto bad;
1566                         }
1567                         ip->ip_dst = ipaddr.sin_addr;
1568                         memcpy(cp + off, &IA_SIN(ia)->sin_addr,
1569                             sizeof(struct in_addr));
1570                         cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1571                         /*
1572                          * Let ip_intr's mcast routing check handle mcast pkts
1573                          */
1574                         forward = !IN_MULTICAST(ntohl(ip->ip_dst.s_addr));
1575                         break;
1576
1577                 case IPOPT_RR:
1578                         if (ipstealth && pass == 0)
1579                                 break;
1580                         if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1581                                 code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1582                                 goto bad;
1583                         }
1584                         if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1585                                 code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1586                                 goto bad;
1587                         }
1588                         /*
1589                          * If no space remains, ignore.
1590                          */
1591                         off--;                  /* 0 origin */
1592                         if (off > optlen - (int)sizeof(struct in_addr))
1593                                 break;
1594                         memcpy(&ipaddr.sin_addr, &ip->ip_dst,
1595                             sizeof ipaddr.sin_addr);
1596                         /*
1597                          * locate outgoing interface; if we're the destination,
1598                          * use the incoming interface (should be same).
1599                          */
1600                         if ((ia = (INA)ifa_ifwithaddr((SA)&ipaddr)) == NULL &&
1601                             (ia = ip_rtaddr(ipaddr.sin_addr,
1602                                             &ipforward_rt[mycpuid]))
1603                                                                      == NULL) {
1604                                 type = ICMP_UNREACH;
1605                                 code = ICMP_UNREACH_HOST;
1606                                 goto bad;
1607                         }
1608                         memcpy(cp + off, &IA_SIN(ia)->sin_addr,
1609                             sizeof(struct in_addr));
1610                         cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1611                         break;
1612
1613                 case IPOPT_TS:
1614                         if (ipstealth && pass == 0)
1615                                 break;
1616                         code = cp - (u_char *)ip;
1617                         if (optlen < 4 || optlen > 40) {
1618                                 code = &cp[IPOPT_OLEN] - (u_char *)ip;
1619                                 goto bad;
1620                         }
1621                         if ((off = cp[IPOPT_OFFSET]) < 5) {
1622                                 code = &cp[IPOPT_OLEN] - (u_char *)ip;
1623                                 goto bad;
1624                         }
1625                         if (off > optlen - (int)sizeof(int32_t)) {
1626                                 cp[IPOPT_OFFSET + 1] += (1 << 4);
1627                                 if ((cp[IPOPT_OFFSET + 1] & 0xf0) == 0) {
1628                                         code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1629                                         goto bad;
1630                                 }
1631                                 break;
1632                         }
1633                         off--;                          /* 0 origin */
1634                         sin = (struct in_addr *)(cp + off);
1635                         switch (cp[IPOPT_OFFSET + 1] & 0x0f) {
1636
1637                         case IPOPT_TS_TSONLY:
1638                                 break;
1639
1640                         case IPOPT_TS_TSANDADDR:
1641                                 if (off + sizeof(n_time) +
1642                                     sizeof(struct in_addr) > optlen) {
1643                                         code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1644                                         goto bad;
1645                                 }
1646                                 ipaddr.sin_addr = dst;
1647                                 ia = (INA)ifaof_ifpforaddr((SA)&ipaddr,
1648                                                             m->m_pkthdr.rcvif);
1649                                 if (ia == NULL)
1650                                         continue;
1651                                 memcpy(sin, &IA_SIN(ia)->sin_addr,
1652                                     sizeof(struct in_addr));
1653                                 cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1654                                 off += sizeof(struct in_addr);
1655                                 break;
1656
1657                         case IPOPT_TS_PRESPEC:
1658                                 if (off + sizeof(n_time) +
1659                                     sizeof(struct in_addr) > optlen) {
1660                                         code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1661                                         goto bad;
1662                                 }
1663                                 memcpy(&ipaddr.sin_addr, sin,
1664                                     sizeof(struct in_addr));
1665                                 if (ifa_ifwithaddr((SA)&ipaddr) == NULL)
1666                                         continue;
1667                                 cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1668                                 off += sizeof(struct in_addr);
1669                                 break;
1670
1671                         default:
1672                                 code = &cp[IPOPT_OFFSET + 1] - (u_char *)ip;
1673                                 goto bad;
1674                         }
1675                         ntime = iptime();
1676                         memcpy(cp + off, &ntime, sizeof(n_time));
1677                         cp[IPOPT_OFFSET] += sizeof(n_time);
1678                 }
1679         }
1680         if (forward && ipforwarding) {
1681                 ip_forward(m, TRUE, next_hop);
1682                 return (1);
1683         }
1684         return (0);
1685 bad:
1686         icmp_error(m, type, code, 0, 0);
1687         ipstat.ips_badoptions++;
1688         return (1);
1689 }
1690
1691 /*
1692  * Given address of next destination (final or next hop),
1693  * return internet address info of interface to be used to get there.
1694  */
1695 struct in_ifaddr *
1696 ip_rtaddr(struct in_addr dst, struct route *ro)
1697 {
1698         struct sockaddr_in *sin;
1699
1700         sin = (struct sockaddr_in *)&ro->ro_dst;
1701
1702         if (ro->ro_rt == NULL || dst.s_addr != sin->sin_addr.s_addr) {
1703                 if (ro->ro_rt != NULL) {
1704                         RTFREE(ro->ro_rt);
1705                         ro->ro_rt = NULL;
1706                 }
1707                 sin->sin_family = AF_INET;
1708                 sin->sin_len = sizeof *sin;
1709                 sin->sin_addr = dst;
1710                 rtalloc_ign(ro, RTF_PRCLONING);
1711         }
1712
1713         if (ro->ro_rt == NULL)
1714                 return (NULL);
1715
1716         return (ifatoia(ro->ro_rt->rt_ifa));
1717 }
1718
1719 /*
1720  * Save incoming source route for use in replies,
1721  * to be picked up later by ip_srcroute if the receiver is interested.
1722  */
1723 void
1724 save_rte(u_char *option, struct in_addr dst)
1725 {
1726         unsigned olen;
1727
1728         olen = option[IPOPT_OLEN];
1729 #ifdef DIAGNOSTIC
1730         if (ipprintfs)
1731                 kprintf("save_rte: olen %d\n", olen);
1732 #endif
1733         if (olen > sizeof(ip_srcrt) - (1 + sizeof(dst)))
1734                 return;
1735         bcopy(option, ip_srcrt.srcopt, olen);
1736         ip_nhops = (olen - IPOPT_OFFSET - 1) / sizeof(struct in_addr);
1737         ip_srcrt.dst = dst;
1738 }
1739
1740 /*
1741  * Retrieve incoming source route for use in replies,
1742  * in the same form used by setsockopt.
1743  * The first hop is placed before the options, will be removed later.
1744  */
1745 struct mbuf *
1746 ip_srcroute(void)
1747 {
1748         struct in_addr *p, *q;
1749         struct mbuf *m;
1750
1751         if (ip_nhops == 0)
1752                 return (NULL);
1753         m = m_get(MB_DONTWAIT, MT_HEADER);
1754         if (m == NULL)
1755                 return (NULL);
1756
1757 #define OPTSIZ  (sizeof(ip_srcrt.nop) + sizeof(ip_srcrt.srcopt))
1758
1759         /* length is (nhops+1)*sizeof(addr) + sizeof(nop + srcrt header) */
1760         m->m_len = ip_nhops * sizeof(struct in_addr) + sizeof(struct in_addr) +
1761             OPTSIZ;
1762 #ifdef DIAGNOSTIC
1763         if (ipprintfs)
1764                 kprintf("ip_srcroute: nhops %d mlen %d", ip_nhops, m->m_len);
1765 #endif
1766
1767         /*
1768          * First save first hop for return route
1769          */
1770         p = &ip_srcrt.route[ip_nhops - 1];
1771         *(mtod(m, struct in_addr *)) = *p--;
1772 #ifdef DIAGNOSTIC
1773         if (ipprintfs)
1774                 kprintf(" hops %x", ntohl(mtod(m, struct in_addr *)->s_addr));
1775 #endif
1776
1777         /*
1778          * Copy option fields and padding (nop) to mbuf.
1779          */
1780         ip_srcrt.nop = IPOPT_NOP;
1781         ip_srcrt.srcopt[IPOPT_OFFSET] = IPOPT_MINOFF;
1782         memcpy(mtod(m, caddr_t) + sizeof(struct in_addr), &ip_srcrt.nop,
1783             OPTSIZ);
1784         q = (struct in_addr *)(mtod(m, caddr_t) +
1785             sizeof(struct in_addr) + OPTSIZ);
1786 #undef OPTSIZ
1787         /*
1788          * Record return path as an IP source route,
1789          * reversing the path (pointers are now aligned).
1790          */
1791         while (p >= ip_srcrt.route) {
1792 #ifdef DIAGNOSTIC
1793                 if (ipprintfs)
1794                         kprintf(" %x", ntohl(q->s_addr));
1795 #endif
1796                 *q++ = *p--;
1797         }
1798         /*
1799          * Last hop goes to final destination.
1800          */
1801         *q = ip_srcrt.dst;
1802 #ifdef DIAGNOSTIC
1803         if (ipprintfs)
1804                 kprintf(" %x\n", ntohl(q->s_addr));
1805 #endif
1806         return (m);
1807 }
1808
1809 /*
1810  * Strip out IP options.
1811  */
1812 void
1813 ip_stripoptions(struct mbuf *m)
1814 {
1815         int datalen;
1816         struct ip *ip = mtod(m, struct ip *);
1817         caddr_t opts;
1818         int optlen;
1819
1820         optlen = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof(struct ip);
1821         opts = (caddr_t)(ip + 1);
1822         datalen = m->m_len - (sizeof(struct ip) + optlen);
1823         bcopy(opts + optlen, opts, datalen);
1824         m->m_len -= optlen;
1825         if (m->m_flags & M_PKTHDR)
1826                 m->m_pkthdr.len -= optlen;
1827         ip->ip_vhl = IP_MAKE_VHL(IPVERSION, sizeof(struct ip) >> 2);
1828 }
1829
1830 u_char inetctlerrmap[PRC_NCMDS] = {
1831         0,              0,              0,              0,
1832         0,              EMSGSIZE,       EHOSTDOWN,      EHOSTUNREACH,
1833         EHOSTUNREACH,   EHOSTUNREACH,   ECONNREFUSED,   ECONNREFUSED,
1834         EMSGSIZE,       EHOSTUNREACH,   0,              0,
1835         0,              0,              0,              0,
1836         ENOPROTOOPT,    ECONNREFUSED
1837 };
1838
1839 /*
1840  * Forward a packet.  If some error occurs return the sender
1841  * an icmp packet.  Note we can't always generate a meaningful
1842  * icmp message because icmp doesn't have a large enough repertoire
1843  * of codes and types.
1844  *
1845  * If not forwarding, just drop the packet.  This could be confusing
1846  * if ipforwarding was zero but some routing protocol was advancing
1847  * us as a gateway to somewhere.  However, we must let the routing
1848  * protocol deal with that.
1849  *
1850  * The using_srcrt parameter indicates whether the packet is being forwarded
1851  * via a source route.
1852  */
1853 static void
1854 ip_forward(struct mbuf *m, boolean_t using_srcrt, struct sockaddr_in *next_hop)
1855 {
1856         struct ip *ip = mtod(m, struct ip *);
1857         struct sockaddr_in *ipforward_rtaddr;
1858         struct rtentry *rt;
1859         int error, type = 0, code = 0, destmtu = 0;
1860         struct mbuf *mcopy;
1861         n_long dest;
1862         struct in_addr pkt_dst;
1863         struct m_hdr tag;
1864         struct route *cache_rt = &ipforward_rt[mycpuid];
1865
1866         dest = INADDR_ANY;
1867         /*
1868          * Cache the destination address of the packet; this may be
1869          * changed by use of 'ipfw fwd'.
1870          */
1871         pkt_dst = (next_hop != NULL) ? next_hop->sin_addr : ip->ip_dst;
1872
1873 #ifdef DIAGNOSTIC
1874         if (ipprintfs)
1875                 kprintf("forward: src %x dst %x ttl %x\n",
1876                        ip->ip_src.s_addr, pkt_dst.s_addr, ip->ip_ttl);
1877 #endif
1878
1879         if (m->m_flags & (M_BCAST | M_MCAST) || !in_canforward(pkt_dst)) {
1880                 ipstat.ips_cantforward++;
1881                 m_freem(m);
1882                 return;
1883         }
1884         if (!ipstealth && ip->ip_ttl <= IPTTLDEC) {
1885                 icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS, dest, 0);
1886                 return;
1887         }
1888
1889         ipforward_rtaddr = (struct sockaddr_in *) &cache_rt->ro_dst;
1890         if (cache_rt->ro_rt == NULL ||
1891             ipforward_rtaddr->sin_addr.s_addr != pkt_dst.s_addr) {
1892                 if (cache_rt->ro_rt != NULL) {
1893                         RTFREE(cache_rt->ro_rt);
1894                         cache_rt->ro_rt = NULL;
1895                 }
1896                 ipforward_rtaddr->sin_family = AF_INET;
1897                 ipforward_rtaddr->sin_len = sizeof(struct sockaddr_in);
1898                 ipforward_rtaddr->sin_addr = pkt_dst;
1899                 rtalloc_ign(cache_rt, RTF_PRCLONING);
1900                 if (cache_rt->ro_rt == NULL) {
1901                         icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, dest, 0);
1902                         return;
1903                 }
1904         }
1905         rt = cache_rt->ro_rt;
1906
1907         /*
1908          * Save the IP header and at most 8 bytes of the payload,
1909          * in case we need to generate an ICMP message to the src.
1910          *
1911          * XXX this can be optimized a lot by saving the data in a local
1912          * buffer on the stack (72 bytes at most), and only allocating the
1913          * mbuf if really necessary. The vast majority of the packets
1914          * are forwarded without having to send an ICMP back (either
1915          * because unnecessary, or because rate limited), so we are
1916          * really we are wasting a lot of work here.
1917          *
1918          * We don't use m_copy() because it might return a reference
1919          * to a shared cluster. Both this function and ip_output()
1920          * assume exclusive access to the IP header in `m', so any
1921          * data in a cluster may change before we reach icmp_error().
1922          */
1923         MGETHDR(mcopy, MB_DONTWAIT, m->m_type);
1924         if (mcopy != NULL && !m_dup_pkthdr(mcopy, m, MB_DONTWAIT)) {
1925                 /*
1926                  * It's probably ok if the pkthdr dup fails (because
1927                  * the deep copy of the tag chain failed), but for now
1928                  * be conservative and just discard the copy since
1929                  * code below may some day want the tags.
1930                  */
1931                 m_free(mcopy);
1932                 mcopy = NULL;
1933         }
1934         if (mcopy != NULL) {
1935                 mcopy->m_len = imin((IP_VHL_HL(ip->ip_vhl) << 2) + 8,
1936                     (int)ip->ip_len);
1937                 mcopy->m_pkthdr.len = mcopy->m_len;
1938                 m_copydata(m, 0, mcopy->m_len, mtod(mcopy, caddr_t));
1939         }
1940
1941         if (!ipstealth)
1942                 ip->ip_ttl -= IPTTLDEC;
1943
1944         /*
1945          * If forwarding packet using same interface that it came in on,
1946          * perhaps should send a redirect to sender to shortcut a hop.
1947          * Only send redirect if source is sending directly to us,
1948          * and if packet was not source routed (or has any options).
1949          * Also, don't send redirect if forwarding using a default route
1950          * or a route modified by a redirect.
1951          */
1952         if (rt->rt_ifp == m->m_pkthdr.rcvif &&
1953             !(rt->rt_flags & (RTF_DYNAMIC | RTF_MODIFIED)) &&
1954             satosin(rt_key(rt))->sin_addr.s_addr != INADDR_ANY &&
1955             ipsendredirects && !using_srcrt && next_hop == NULL) {
1956                 u_long src = ntohl(ip->ip_src.s_addr);
1957                 struct in_ifaddr *rt_ifa = (struct in_ifaddr *)rt->rt_ifa;
1958
1959                 if (rt_ifa != NULL &&
1960                     (src & rt_ifa->ia_subnetmask) == rt_ifa->ia_subnet) {
1961                         if (rt->rt_flags & RTF_GATEWAY)
1962                                 dest = satosin(rt->rt_gateway)->sin_addr.s_addr;
1963                         else
1964                                 dest = pkt_dst.s_addr;
1965                         /*
1966                          * Router requirements says to only send
1967                          * host redirects.
1968                          */
1969                         type = ICMP_REDIRECT;
1970                         code = ICMP_REDIRECT_HOST;
1971 #ifdef DIAGNOSTIC
1972                         if (ipprintfs)
1973                                 kprintf("redirect (%d) to %x\n", code, dest);
1974 #endif
1975                 }
1976         }
1977
1978         if (next_hop != NULL) {
1979                 /* Pass IPFORWARD info if available */
1980                 tag.mh_type = MT_TAG;
1981                 tag.mh_flags = PACKET_TAG_IPFORWARD;
1982                 tag.mh_data = (caddr_t)next_hop;
1983                 tag.mh_next = m;
1984                 m = (struct mbuf *)&tag;
1985         }
1986
1987         error = ip_output(m, NULL, cache_rt, IP_FORWARDING, NULL,
1988                           NULL);
1989         if (error == 0) {
1990                 ipstat.ips_forward++;
1991                 if (type == 0) {
1992                         if (mcopy) {
1993                                 ipflow_create(cache_rt, mcopy);
1994                                 m_freem(mcopy);
1995                         }
1996                         return;         /* most common case */
1997                 } else {
1998                         ipstat.ips_redirectsent++;
1999                 }
2000         } else {
2001                 ipstat.ips_cantforward++;
2002         }
2003
2004         if (mcopy == NULL)
2005                 return;
2006
2007         /*
2008          * Send ICMP message.
2009          */
2010
2011         switch (error) {
2012
2013         case 0:                         /* forwarded, but need redirect */
2014                 /* type, code set above */
2015                 break;
2016
2017         case ENETUNREACH:               /* shouldn't happen, checked above */
2018         case EHOSTUNREACH:
2019         case ENETDOWN:
2020         case EHOSTDOWN:
2021         default:
2022                 type = ICMP_UNREACH;
2023                 code = ICMP_UNREACH_HOST;
2024                 break;
2025
2026         case EMSGSIZE:
2027                 type = ICMP_UNREACH;
2028                 code = ICMP_UNREACH_NEEDFRAG;
2029 #ifdef IPSEC
2030                 /*
2031                  * If the packet is routed over IPsec tunnel, tell the
2032                  * originator the tunnel MTU.
2033                  *      tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
2034                  * XXX quickhack!!!
2035                  */
2036                 if (cache_rt->ro_rt != NULL) {
2037                         struct secpolicy *sp = NULL;
2038                         int ipsecerror;
2039                         int ipsechdr;
2040                         struct route *ro;
2041
2042                         sp = ipsec4_getpolicybyaddr(mcopy,
2043                                                     IPSEC_DIR_OUTBOUND,
2044                                                     IP_FORWARDING,
2045                                                     &ipsecerror);
2046
2047                         if (sp == NULL)
2048                                 destmtu = cache_rt->ro_rt->rt_ifp->if_mtu;
2049                         else {
2050                                 /* count IPsec header size */
2051                                 ipsechdr = ipsec4_hdrsiz(mcopy,
2052                                                          IPSEC_DIR_OUTBOUND,
2053                                                          NULL);
2054
2055                                 /*
2056                                  * find the correct route for outer IPv4
2057                                  * header, compute tunnel MTU.
2058                                  *
2059                                  */
2060                                 if (sp->req != NULL && sp->req->sav != NULL &&
2061                                     sp->req->sav->sah != NULL) {
2062                                         ro = &sp->req->sav->sah->sa_route;
2063                                         if (ro->ro_rt != NULL &&
2064                                             ro->ro_rt->rt_ifp != NULL) {
2065                                                 destmtu =
2066                                                     ro->ro_rt->rt_ifp->if_mtu;
2067                                                 destmtu -= ipsechdr;
2068                                         }
2069                                 }
2070
2071                                 key_freesp(sp);
2072                         }
2073                 }
2074 #elif FAST_IPSEC
2075                 /*
2076                  * If the packet is routed over IPsec tunnel, tell the
2077                  * originator the tunnel MTU.
2078                  *      tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
2079                  * XXX quickhack!!!
2080                  */
2081                 if (cache_rt->ro_rt != NULL) {
2082                         struct secpolicy *sp = NULL;
2083                         int ipsecerror;
2084                         int ipsechdr;
2085                         struct route *ro;
2086
2087                         sp = ipsec_getpolicybyaddr(mcopy,
2088                                                    IPSEC_DIR_OUTBOUND,
2089                                                    IP_FORWARDING,
2090                                                    &ipsecerror);
2091
2092                         if (sp == NULL)
2093                                 destmtu = cache_rt->ro_rt->rt_ifp->if_mtu;
2094                         else {
2095                                 /* count IPsec header size */
2096                                 ipsechdr = ipsec4_hdrsiz(mcopy,
2097                                                          IPSEC_DIR_OUTBOUND,
2098                                                          NULL);
2099
2100                                 /*
2101                                  * find the correct route for outer IPv4
2102                                  * header, compute tunnel MTU.
2103                                  */
2104
2105                                 if (sp->req != NULL &&
2106                                     sp->req->sav != NULL &&
2107                                     sp->req->sav->sah != NULL) {
2108                                         ro = &sp->req->sav->sah->sa_route;
2109                                         if (ro->ro_rt != NULL &&
2110                                             ro->ro_rt->rt_ifp != NULL) {
2111                                                 destmtu =
2112                                                     ro->ro_rt->rt_ifp->if_mtu;
2113                                                 destmtu -= ipsechdr;
2114                                         }
2115                                 }
2116
2117                                 KEY_FREESP(&sp);
2118                         }
2119                 }
2120 #else /* !IPSEC && !FAST_IPSEC */
2121                 if (cache_rt->ro_rt != NULL)
2122                         destmtu = cache_rt->ro_rt->rt_ifp->if_mtu;
2123 #endif /*IPSEC*/
2124                 ipstat.ips_cantfrag++;
2125                 break;
2126
2127         case ENOBUFS:
2128                 /*
2129                  * A router should not generate ICMP_SOURCEQUENCH as
2130                  * required in RFC1812 Requirements for IP Version 4 Routers.
2131                  * Source quench could be a big problem under DoS attacks,
2132                  * or if the underlying interface is rate-limited.
2133                  * Those who need source quench packets may re-enable them
2134                  * via the net.inet.ip.sendsourcequench sysctl.
2135                  */
2136                 if (!ip_sendsourcequench) {
2137                         m_freem(mcopy);
2138                         return;
2139                 } else {
2140                         type = ICMP_SOURCEQUENCH;
2141                         code = 0;
2142                 }
2143                 break;
2144
2145         case EACCES:                    /* ipfw denied packet */
2146                 m_freem(mcopy);
2147                 return;
2148         }
2149         icmp_error(mcopy, type, code, dest, destmtu);
2150 }
2151
2152 void
2153 ip_savecontrol(struct inpcb *inp, struct mbuf **mp, struct ip *ip,
2154                struct mbuf *m)
2155 {
2156         if (inp->inp_socket->so_options & SO_TIMESTAMP) {
2157                 struct timeval tv;
2158
2159                 microtime(&tv);
2160                 *mp = sbcreatecontrol((caddr_t) &tv, sizeof(tv),
2161                     SCM_TIMESTAMP, SOL_SOCKET);
2162                 if (*mp)
2163                         mp = &(*mp)->m_next;
2164         }
2165         if (inp->inp_flags & INP_RECVDSTADDR) {
2166                 *mp = sbcreatecontrol((caddr_t) &ip->ip_dst,
2167                     sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
2168                 if (*mp)
2169                         mp = &(*mp)->m_next;
2170         }
2171         if (inp->inp_flags & INP_RECVTTL) {
2172                 *mp = sbcreatecontrol((caddr_t) &ip->ip_ttl,
2173                     sizeof(u_char), IP_RECVTTL, IPPROTO_IP);
2174                 if (*mp)
2175                         mp = &(*mp)->m_next;
2176         }
2177 #ifdef notyet
2178         /* XXX
2179          * Moving these out of udp_input() made them even more broken
2180          * than they already were.
2181          */
2182         /* options were tossed already */
2183         if (inp->inp_flags & INP_RECVOPTS) {
2184                 *mp = sbcreatecontrol((caddr_t) opts_deleted_above,
2185                     sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
2186                 if (*mp)
2187                         mp = &(*mp)->m_next;
2188         }
2189         /* ip_srcroute doesn't do what we want here, need to fix */
2190         if (inp->inp_flags & INP_RECVRETOPTS) {
2191                 *mp = sbcreatecontrol((caddr_t) ip_srcroute(),
2192                     sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
2193                 if (*mp)
2194                         mp = &(*mp)->m_next;
2195         }
2196 #endif
2197         if (inp->inp_flags & INP_RECVIF) {
2198                 struct ifnet *ifp;
2199                 struct sdlbuf {
2200                         struct sockaddr_dl sdl;
2201                         u_char  pad[32];
2202                 } sdlbuf;
2203                 struct sockaddr_dl *sdp;
2204                 struct sockaddr_dl *sdl2 = &sdlbuf.sdl;
2205
2206                 if (((ifp = m->m_pkthdr.rcvif)) &&
2207                     ((ifp->if_index != 0) && (ifp->if_index <= if_index))) {
2208                         sdp = IF_LLSOCKADDR(ifp);
2209                         /*
2210                          * Change our mind and don't try copy.
2211                          */
2212                         if ((sdp->sdl_family != AF_LINK) ||
2213                             (sdp->sdl_len > sizeof(sdlbuf))) {
2214                                 goto makedummy;
2215                         }
2216                         bcopy(sdp, sdl2, sdp->sdl_len);
2217                 } else {
2218 makedummy:
2219                         sdl2->sdl_len =
2220                             offsetof(struct sockaddr_dl, sdl_data[0]);
2221                         sdl2->sdl_family = AF_LINK;
2222                         sdl2->sdl_index = 0;
2223                         sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0;
2224                 }
2225                 *mp = sbcreatecontrol((caddr_t) sdl2, sdl2->sdl_len,
2226                         IP_RECVIF, IPPROTO_IP);
2227                 if (*mp)
2228                         mp = &(*mp)->m_next;
2229         }
2230 }
2231
2232 /*
2233  * XXX these routines are called from the upper part of the kernel.
2234  *
2235  * They could also be moved to ip_mroute.c, since all the RSVP
2236  *  handling is done there already.
2237  */
2238 int
2239 ip_rsvp_init(struct socket *so)
2240 {
2241         if (so->so_type != SOCK_RAW ||
2242             so->so_proto->pr_protocol != IPPROTO_RSVP)
2243                 return EOPNOTSUPP;
2244
2245         if (ip_rsvpd != NULL)
2246                 return EADDRINUSE;
2247
2248         ip_rsvpd = so;
2249         /*
2250          * This may seem silly, but we need to be sure we don't over-increment
2251          * the RSVP counter, in case something slips up.
2252          */
2253         if (!ip_rsvp_on) {
2254                 ip_rsvp_on = 1;
2255                 rsvp_on++;
2256         }
2257
2258         return 0;
2259 }
2260
2261 int
2262 ip_rsvp_done(void)
2263 {
2264         ip_rsvpd = NULL;
2265         /*
2266          * This may seem silly, but we need to be sure we don't over-decrement
2267          * the RSVP counter, in case something slips up.
2268          */
2269         if (ip_rsvp_on) {
2270                 ip_rsvp_on = 0;
2271                 rsvp_on--;
2272         }
2273         return 0;
2274 }
2275
2276 void
2277 rsvp_input(struct mbuf *m, ...) /* XXX must fixup manually */
2278 {
2279         int off, proto;
2280         __va_list ap;
2281
2282         __va_start(ap, m);
2283         off = __va_arg(ap, int);
2284         proto = __va_arg(ap, int);
2285         __va_end(ap);
2286
2287         if (rsvp_input_p) { /* call the real one if loaded */
2288                 rsvp_input_p(m, off, proto);
2289                 return;
2290         }
2291
2292         /* Can still get packets with rsvp_on = 0 if there is a local member
2293          * of the group to which the RSVP packet is addressed.  But in this
2294          * case we want to throw the packet away.
2295          */
2296
2297         if (!rsvp_on) {
2298                 m_freem(m);
2299                 return;
2300         }
2301
2302         if (ip_rsvpd != NULL) {
2303                 rip_input(m, off, proto);
2304                 return;
2305         }
2306         /* Drop the packet */
2307         m_freem(m);
2308 }