ca025c0a09d5f078d6a5b2af51d45b287936045b
[dragonfly.git] / sys / dev / netif / ural / if_ural.c
1 /*      $FreeBSD: src/sys/dev/usb/if_ural.c,v 1.10.2.8 2006/07/08 07:48:43 maxim Exp $  */
2 /*      $DragonFly: src/sys/dev/netif/ural/if_ural.c,v 1.15 2007/06/28 13:55:12 hasso Exp $     */
3
4 /*-
5  * Copyright (c) 2005, 2006
6  *      Damien Bergamini <damien.bergamini@free.fr>
7  *
8  * Permission to use, copy, modify, and distribute this software for any
9  * purpose with or without fee is hereby granted, provided that the above
10  * copyright notice and this permission notice appear in all copies.
11  *
12  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19  */
20
21 /*-
22  * Ralink Technology RT2500USB chipset driver
23  * http://www.ralinktech.com/
24  */
25
26 #include <sys/param.h>
27 #include <sys/bus.h>
28 #include <sys/endian.h>
29 #include <sys/kernel.h>
30 #include <sys/malloc.h>
31 #include <sys/mbuf.h>
32 #include <sys/rman.h>
33 #include <sys/socket.h>
34 #include <sys/sockio.h>
35 #include <sys/sysctl.h>
36
37 #include <net/bpf.h>
38 #include <net/ethernet.h>
39 #include <net/if.h>
40 #include <net/if_arp.h>
41 #include <net/if_dl.h>
42 #include <net/if_media.h>
43 #include <net/ifq_var.h>
44
45 #include <netproto/802_11/ieee80211_var.h>
46 #include <netproto/802_11/ieee80211_radiotap.h>
47 #include <netproto/802_11/wlan_ratectl/onoe/ieee80211_onoe_param.h>
48
49 #include <bus/usb/usb.h>
50 #include <bus/usb/usbdi.h>
51 #include <bus/usb/usbdi_util.h>
52 #include <bus/usb/usbdevs.h>
53
54 #include <dev/netif/ural/if_uralreg.h>
55 #include <dev/netif/ural/if_uralvar.h>
56
57 #ifdef USB_DEBUG
58 #define DPRINTF(x)      do { if (uraldebug > 0) kprintf x; } while (0)
59 #define DPRINTFN(n, x)  do { if (uraldebug >= (n)) kprintf x; } while (0)
60 int uraldebug = 0;
61 SYSCTL_NODE(_hw_usb, OID_AUTO, ural, CTLFLAG_RW, 0, "USB ural");
62 SYSCTL_INT(_hw_usb_ural, OID_AUTO, debug, CTLFLAG_RW, &uraldebug, 0,
63     "ural debug level");
64 #else
65 #define DPRINTF(x)
66 #define DPRINTFN(n, x)
67 #endif
68
69 #define URAL_RSSI(rssi)                                 \
70         ((rssi) > (RAL_NOISE_FLOOR + RAL_RSSI_CORR) ?   \
71          ((rssi) - RAL_NOISE_FLOOR + RAL_RSSI_CORR) : 0)
72
73 /* various supported device vendors/products */
74 static const struct usb_devno ural_devs[] = {
75         { USB_VENDOR_ASUS,              USB_PRODUCT_ASUS_WL167G },
76         { USB_VENDOR_ASUS,              USB_PRODUCT_RALINK_RT2570 },
77         { USB_VENDOR_BELKIN,            USB_PRODUCT_BELKIN_F5D7050 },
78         { USB_VENDOR_CONCEPTRONIC,      USB_PRODUCT_CONCEPTRONIC_C54U },
79         { USB_VENDOR_DLINK,             USB_PRODUCT_DLINK_DWLG122 },
80         { USB_VENDOR_GIGABYTE,          USB_PRODUCT_GIGABYTE_GNWBKG },
81         { USB_VENDOR_GUILLEMOT,         USB_PRODUCT_GUILLEMOT_HWGUSB254 },
82         { USB_VENDOR_LINKSYS4,          USB_PRODUCT_LINKSYS4_WUSB54G },
83         { USB_VENDOR_LINKSYS4,          USB_PRODUCT_LINKSYS4_WUSB54GP },
84         { USB_VENDOR_LINKSYS4,          USB_PRODUCT_LINKSYS4_HU200TS },
85         { USB_VENDOR_MELCO,             USB_PRODUCT_MELCO_KG54 },
86         { USB_VENDOR_MELCO,             USB_PRODUCT_MELCO_KG54AI },
87         { USB_VENDOR_MELCO,             USB_PRODUCT_MELCO_KG54YB },
88         { USB_VENDOR_MELCO,             USB_PRODUCT_MELCO_NINWIFI },
89         { USB_VENDOR_MSI,               USB_PRODUCT_MSI_RT2570 },
90         { USB_VENDOR_MSI,               USB_PRODUCT_MSI_RT2570_2 },
91         { USB_VENDOR_MSI,               USB_PRODUCT_MSI_RT2570_3 },
92         { USB_VENDOR_NOVATECH,          USB_PRODUCT_NOVATECH_NV902W },
93         { USB_VENDOR_RALINK,            USB_PRODUCT_RALINK_RT2570 },
94         { USB_VENDOR_RALINK,            USB_PRODUCT_RALINK_RT2570_2 },
95         { USB_VENDOR_RALINK,            USB_PRODUCT_RALINK_RT2570_3 },
96         { USB_VENDOR_SPHAIRON,          USB_PRODUCT_SPHAIRON_UB801R },
97         { USB_VENDOR_SURECOM,           USB_PRODUCT_SURECOM_RT2570 },
98         { USB_VENDOR_VTECH,             USB_PRODUCT_VTECH_RT2570 },
99         { USB_VENDOR_ZINWELL,           USB_PRODUCT_ZINWELL_RT2570 }
100 };
101
102 MODULE_DEPEND(ural, wlan, 1, 1, 1);
103
104 static int              ural_alloc_tx_list(struct ural_softc *);
105 static void             ural_free_tx_list(struct ural_softc *);
106 static int              ural_alloc_rx_list(struct ural_softc *);
107 static void             ural_free_rx_list(struct ural_softc *);
108 static int              ural_media_change(struct ifnet *);
109 static void             ural_next_scan(void *);
110 static void             ural_task(void *);
111 static int              ural_newstate(struct ieee80211com *,
112                             enum ieee80211_state, int);
113 static int              ural_rxrate(struct ural_rx_desc *);
114 static void             ural_txeof(usbd_xfer_handle, usbd_private_handle,
115                             usbd_status);
116 static void             ural_rxeof(usbd_xfer_handle, usbd_private_handle,
117                             usbd_status);
118 static uint8_t          ural_plcp_signal(int);
119 static void             ural_setup_tx_desc(struct ural_softc *,
120                             struct ural_tx_desc *, uint32_t, int, int);
121 static int              ural_tx_bcn(struct ural_softc *, struct mbuf *,
122                             struct ieee80211_node *);
123 static int              ural_tx_mgt(struct ural_softc *, struct mbuf *,
124                             struct ieee80211_node *);
125 static int              ural_tx_data(struct ural_softc *, struct mbuf *,
126                             struct ieee80211_node *);
127 static void             ural_start(struct ifnet *);
128 static void             ural_watchdog(struct ifnet *);
129 static int              ural_reset(struct ifnet *);
130 static int              ural_ioctl(struct ifnet *, u_long, caddr_t,
131                             struct ucred *);
132 static void             ural_set_testmode(struct ural_softc *);
133 static void             ural_eeprom_read(struct ural_softc *, uint16_t, void *,
134                             int);
135 static uint16_t         ural_read(struct ural_softc *, uint16_t);
136 static void             ural_read_multi(struct ural_softc *, uint16_t, void *,
137                             int);
138 static void             ural_write(struct ural_softc *, uint16_t, uint16_t);
139 static void             ural_write_multi(struct ural_softc *, uint16_t, void *,
140                             int) __unused;
141 static void             ural_bbp_write(struct ural_softc *, uint8_t, uint8_t);
142 static uint8_t          ural_bbp_read(struct ural_softc *, uint8_t);
143 static void             ural_rf_write(struct ural_softc *, uint8_t, uint32_t);
144 static void             ural_set_chan(struct ural_softc *,
145                             struct ieee80211_channel *);
146 static void             ural_disable_rf_tune(struct ural_softc *);
147 static void             ural_enable_tsf_sync(struct ural_softc *);
148 static void             ural_update_slot(struct ifnet *);
149 static void             ural_set_txpreamble(struct ural_softc *);
150 static void             ural_set_basicrates(struct ural_softc *);
151 static void             ural_set_bssid(struct ural_softc *, uint8_t *);
152 static void             ural_set_macaddr(struct ural_softc *, uint8_t *);
153 static void             ural_update_promisc(struct ural_softc *);
154 static const char       *ural_get_rf(int);
155 static void             ural_read_eeprom(struct ural_softc *);
156 static int              ural_bbp_init(struct ural_softc *);
157 static void             ural_set_txantenna(struct ural_softc *, int);
158 static void             ural_set_rxantenna(struct ural_softc *, int);
159 static void             ural_init(void *);
160 static void             ural_stop(struct ural_softc *);
161 static void             ural_stats(struct ieee80211com *,
162                                    struct ieee80211_node *,
163                                    struct ieee80211_ratectl_stats *);
164 static void             ural_stats_update(usbd_xfer_handle,
165                                           usbd_private_handle, usbd_status);
166 static void             ural_stats_timeout(void *);
167 static void             ural_ratectl_change(struct ieee80211com *ic, u_int,
168                                             u_int);
169
170 /*
171  * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
172  */
173 static const struct ieee80211_rateset ural_rateset_11a =
174         { 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
175
176 static const struct ieee80211_rateset ural_rateset_11b =
177         { 4, { 2, 4, 11, 22 } };
178
179 static const struct ieee80211_rateset ural_rateset_11g =
180         { 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
181
182 /*
183  * Default values for MAC registers; values taken from the reference driver.
184  */
185 static const struct {
186         uint16_t        reg;
187         uint16_t        val;
188 } ural_def_mac[] = {
189         { RAL_TXRX_CSR5,  0x8c8d },
190         { RAL_TXRX_CSR6,  0x8b8a },
191         { RAL_TXRX_CSR7,  0x8687 },
192         { RAL_TXRX_CSR8,  0x0085 },
193         { RAL_MAC_CSR13,  0x1111 },
194         { RAL_MAC_CSR14,  0x1e11 },
195         { RAL_TXRX_CSR21, 0xe78f },
196         { RAL_MAC_CSR9,   0xff1d },
197         { RAL_MAC_CSR11,  0x0002 },
198         { RAL_MAC_CSR22,  0x0053 },
199         { RAL_MAC_CSR15,  0x0000 },
200         { RAL_MAC_CSR8,   0x0780 },
201         { RAL_TXRX_CSR19, 0x0000 },
202         { RAL_TXRX_CSR18, 0x005a },
203         { RAL_PHY_CSR2,   0x0000 },
204         { RAL_TXRX_CSR0,  0x1ec0 },
205         { RAL_PHY_CSR4,   0x000f }
206 };
207
208 /*
209  * Default values for BBP registers; values taken from the reference driver.
210  */
211 static const struct {
212         uint8_t reg;
213         uint8_t val;
214 } ural_def_bbp[] = {
215         {  3, 0x02 },
216         {  4, 0x19 },
217         { 14, 0x1c },
218         { 15, 0x30 },
219         { 16, 0xac },
220         { 17, 0x48 },
221         { 18, 0x18 },
222         { 19, 0xff },
223         { 20, 0x1e },
224         { 21, 0x08 },
225         { 22, 0x08 },
226         { 23, 0x08 },
227         { 24, 0x80 },
228         { 25, 0x50 },
229         { 26, 0x08 },
230         { 27, 0x23 },
231         { 30, 0x10 },
232         { 31, 0x2b },
233         { 32, 0xb9 },
234         { 34, 0x12 },
235         { 35, 0x50 },
236         { 39, 0xc4 },
237         { 40, 0x02 },
238         { 41, 0x60 },
239         { 53, 0x10 },
240         { 54, 0x18 },
241         { 56, 0x08 },
242         { 57, 0x10 },
243         { 58, 0x08 },
244         { 61, 0x60 },
245         { 62, 0x10 },
246         { 75, 0xff }
247 };
248
249 /*
250  * Default values for RF register R2 indexed by channel numbers.
251  */
252 static const uint32_t ural_rf2522_r2[] = {
253         0x307f6, 0x307fb, 0x30800, 0x30805, 0x3080a, 0x3080f, 0x30814,
254         0x30819, 0x3081e, 0x30823, 0x30828, 0x3082d, 0x30832, 0x3083e
255 };
256
257 static const uint32_t ural_rf2523_r2[] = {
258         0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
259         0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
260 };
261
262 static const uint32_t ural_rf2524_r2[] = {
263         0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
264         0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
265 };
266
267 static const uint32_t ural_rf2525_r2[] = {
268         0x20327, 0x20328, 0x20329, 0x2032a, 0x2032b, 0x2032c, 0x2032d,
269         0x2032e, 0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20346
270 };
271
272 static const uint32_t ural_rf2525_hi_r2[] = {
273         0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20344, 0x20345,
274         0x20346, 0x20347, 0x20348, 0x20349, 0x2034a, 0x2034b, 0x2034e
275 };
276
277 static const uint32_t ural_rf2525e_r2[] = {
278         0x2044d, 0x2044e, 0x2044f, 0x20460, 0x20461, 0x20462, 0x20463,
279         0x20464, 0x20465, 0x20466, 0x20467, 0x20468, 0x20469, 0x2046b
280 };
281
282 static const uint32_t ural_rf2526_hi_r2[] = {
283         0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d, 0x0022d,
284         0x0022e, 0x0022e, 0x0022f, 0x0022d, 0x00240, 0x00240, 0x00241
285 };
286
287 static const uint32_t ural_rf2526_r2[] = {
288         0x00226, 0x00227, 0x00227, 0x00228, 0x00228, 0x00229, 0x00229,
289         0x0022a, 0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d
290 };
291
292 /*
293  * For dual-band RF, RF registers R1 and R4 also depend on channel number;
294  * values taken from the reference driver.
295  */
296 static const struct {
297         uint8_t         chan;
298         uint32_t        r1;
299         uint32_t        r2;
300         uint32_t        r4;
301 } ural_rf5222[] = {
302         {   1, 0x08808, 0x0044d, 0x00282 },
303         {   2, 0x08808, 0x0044e, 0x00282 },
304         {   3, 0x08808, 0x0044f, 0x00282 },
305         {   4, 0x08808, 0x00460, 0x00282 },
306         {   5, 0x08808, 0x00461, 0x00282 },
307         {   6, 0x08808, 0x00462, 0x00282 },
308         {   7, 0x08808, 0x00463, 0x00282 },
309         {   8, 0x08808, 0x00464, 0x00282 },
310         {   9, 0x08808, 0x00465, 0x00282 },
311         {  10, 0x08808, 0x00466, 0x00282 },
312         {  11, 0x08808, 0x00467, 0x00282 },
313         {  12, 0x08808, 0x00468, 0x00282 },
314         {  13, 0x08808, 0x00469, 0x00282 },
315         {  14, 0x08808, 0x0046b, 0x00286 },
316
317         {  36, 0x08804, 0x06225, 0x00287 },
318         {  40, 0x08804, 0x06226, 0x00287 },
319         {  44, 0x08804, 0x06227, 0x00287 },
320         {  48, 0x08804, 0x06228, 0x00287 },
321         {  52, 0x08804, 0x06229, 0x00287 },
322         {  56, 0x08804, 0x0622a, 0x00287 },
323         {  60, 0x08804, 0x0622b, 0x00287 },
324         {  64, 0x08804, 0x0622c, 0x00287 },
325
326         { 100, 0x08804, 0x02200, 0x00283 },
327         { 104, 0x08804, 0x02201, 0x00283 },
328         { 108, 0x08804, 0x02202, 0x00283 },
329         { 112, 0x08804, 0x02203, 0x00283 },
330         { 116, 0x08804, 0x02204, 0x00283 },
331         { 120, 0x08804, 0x02205, 0x00283 },
332         { 124, 0x08804, 0x02206, 0x00283 },
333         { 128, 0x08804, 0x02207, 0x00283 },
334         { 132, 0x08804, 0x02208, 0x00283 },
335         { 136, 0x08804, 0x02209, 0x00283 },
336         { 140, 0x08804, 0x0220a, 0x00283 },
337
338         { 149, 0x08808, 0x02429, 0x00281 },
339         { 153, 0x08808, 0x0242b, 0x00281 },
340         { 157, 0x08808, 0x0242d, 0x00281 },
341         { 161, 0x08808, 0x0242f, 0x00281 }
342 };
343
344 USB_DECLARE_DRIVER(ural);
345
346 USB_MATCH(ural)
347 {
348         USB_MATCH_START(ural, uaa);
349
350         if (uaa->iface != NULL)
351                 return UMATCH_NONE;
352
353         return (usb_lookup(ural_devs, uaa->vendor, uaa->product) != NULL) ?
354             UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
355 }
356
357 USB_ATTACH(ural)
358 {
359         USB_ATTACH_START(ural, sc, uaa);
360         struct ifnet *ifp;
361         struct ieee80211com *ic = &sc->sc_ic;
362         usb_interface_descriptor_t *id;
363         usb_endpoint_descriptor_t *ed;
364         usbd_status error;
365         char devinfo[1024];
366         int i;
367
368         sc->sc_udev = uaa->device;
369         sc->sc_tx_retries = 7;  /* TODO tunable/sysctl */
370
371         usbd_devinfo(sc->sc_udev, 0, devinfo);
372         USB_ATTACH_SETUP;
373
374         if (usbd_set_config_no(sc->sc_udev, RAL_CONFIG_NO, 0) != 0) {
375                 kprintf("%s: could not set configuration no\n",
376                     device_get_nameunit(sc->sc_dev));
377                 USB_ATTACH_ERROR_RETURN;
378         }
379
380         /* get the first interface handle */
381         error = usbd_device2interface_handle(sc->sc_udev, RAL_IFACE_INDEX,
382             &sc->sc_iface);
383         if (error != 0) {
384                 kprintf("%s: could not get interface handle\n",
385                     device_get_nameunit(sc->sc_dev));
386                 USB_ATTACH_ERROR_RETURN;
387         }
388
389         /*
390          * Find endpoints.
391          */
392         id = usbd_get_interface_descriptor(sc->sc_iface);
393
394         sc->sc_rx_no = sc->sc_tx_no = -1;
395         for (i = 0; i < id->bNumEndpoints; i++) {
396                 ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
397                 if (ed == NULL) {
398                         kprintf("%s: no endpoint descriptor for %d\n",
399                             device_get_nameunit(sc->sc_dev), i);
400                         USB_ATTACH_ERROR_RETURN;
401                 }
402
403                 if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
404                     UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
405                         sc->sc_rx_no = ed->bEndpointAddress;
406                 else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT &&
407                     UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
408                         sc->sc_tx_no = ed->bEndpointAddress;
409         }
410         if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) {
411                 kprintf("%s: missing endpoint\n", device_get_nameunit(sc->sc_dev));
412                 USB_ATTACH_ERROR_RETURN;
413         }
414
415         usb_init_task(&sc->sc_task, ural_task, sc);
416         callout_init(&sc->scan_ch);
417         callout_init(&sc->stats_ch);
418
419         /* retrieve RT2570 rev. no */
420         sc->asic_rev = ural_read(sc, RAL_MAC_CSR0);
421
422         /* retrieve MAC address and various other things from EEPROM */
423         ural_read_eeprom(sc);
424
425         kprintf("%s: MAC/BBP RT2570 (rev 0x%02x), RF %s\n",
426             device_get_nameunit(sc->sc_dev), sc->asic_rev, ural_get_rf(sc->rf_rev));
427
428         ifp = &ic->ic_if;
429         ifp->if_softc = sc;
430         if_initname(ifp, "ural", device_get_unit(sc->sc_dev));
431         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
432         ifp->if_init = ural_init;
433         ifp->if_ioctl = ural_ioctl;
434         ifp->if_start = ural_start;
435         ifp->if_watchdog = ural_watchdog;
436         ifq_set_maxlen(&ifp->if_snd, IFQ_MAXLEN);
437         ifq_set_ready(&ifp->if_snd);
438
439         ic->ic_ratectl.rc_st_ratectl_cap = IEEE80211_RATECTL_CAP_ONOE;
440         ic->ic_ratectl.rc_st_ratectl = IEEE80211_RATECTL_ONOE;
441         ic->ic_ratectl.rc_st_valid_stats =
442                 IEEE80211_RATECTL_STATS_PKT_NORETRY |
443                 IEEE80211_RATECTL_STATS_PKT_OK |
444                 IEEE80211_RATECTL_STATS_PKT_ERR |
445                 IEEE80211_RATECTL_STATS_RETRIES;
446         ic->ic_ratectl.rc_st_stats = ural_stats;
447         ic->ic_ratectl.rc_st_change = ural_ratectl_change;
448
449         ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
450         ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
451         ic->ic_state = IEEE80211_S_INIT;
452
453         /* set device capabilities */
454         ic->ic_caps =
455             IEEE80211_C_IBSS |          /* IBSS mode supported */
456             IEEE80211_C_MONITOR |       /* monitor mode supported */
457             IEEE80211_C_HOSTAP |        /* HostAp mode supported */
458             IEEE80211_C_TXPMGT |        /* tx power management */
459             IEEE80211_C_SHPREAMBLE |    /* short preamble supported */
460             IEEE80211_C_SHSLOT |        /* short slot time supported */
461             IEEE80211_C_WPA;            /* 802.11i */
462
463         if (sc->rf_rev == RAL_RF_5222) {
464                 /* set supported .11a rates */
465                 ic->ic_sup_rates[IEEE80211_MODE_11A] = ural_rateset_11a;
466
467                 /* set supported .11a channels */
468                 for (i = 36; i <= 64; i += 4) {
469                         ic->ic_channels[i].ic_freq =
470                             ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
471                         ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
472                 }
473                 for (i = 100; i <= 140; i += 4) {
474                         ic->ic_channels[i].ic_freq =
475                             ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
476                         ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
477                 }
478                 for (i = 149; i <= 161; i += 4) {
479                         ic->ic_channels[i].ic_freq =
480                             ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
481                         ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
482                 }
483         }
484
485         /* set supported .11b and .11g rates */
486         ic->ic_sup_rates[IEEE80211_MODE_11B] = ural_rateset_11b;
487         ic->ic_sup_rates[IEEE80211_MODE_11G] = ural_rateset_11g;
488
489         /* set supported .11b and .11g channels (1 through 14) */
490         for (i = 1; i <= 14; i++) {
491                 ic->ic_channels[i].ic_freq =
492                     ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
493                 ic->ic_channels[i].ic_flags =
494                     IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
495                     IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
496         }
497
498         sc->sc_sifs = IEEE80211_DUR_SIFS;       /* Default SIFS */
499
500         ieee80211_ifattach(ic);
501         ic->ic_reset = ural_reset;
502         /* enable s/w bmiss handling in sta mode */
503         ic->ic_flags_ext |= IEEE80211_FEXT_SWBMISS;
504
505         /* override state transition machine */
506         sc->sc_newstate = ic->ic_newstate;
507         ic->ic_newstate = ural_newstate;
508         ieee80211_media_init(ic, ural_media_change, ieee80211_media_status);
509
510         bpfattach_dlt(ifp, DLT_IEEE802_11_RADIO,
511             sizeof(struct ieee80211_frame) + 64, &sc->sc_drvbpf);
512
513         sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
514         sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
515         sc->sc_rxtap.wr_ihdr.it_present = htole32(RAL_RX_RADIOTAP_PRESENT);
516
517         sc->sc_txtap_len = sizeof sc->sc_txtapu;
518         sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
519         sc->sc_txtap.wt_ihdr.it_present = htole32(RAL_TX_RADIOTAP_PRESENT);
520
521         if (bootverbose)
522                 ieee80211_announce(ic);
523
524         USB_ATTACH_SUCCESS_RETURN;
525 }
526
527 USB_DETACH(ural)
528 {
529         USB_DETACH_START(ural, sc);
530         struct ieee80211com *ic = &sc->sc_ic;
531         struct ifnet *ifp = &ic->ic_if;
532 #ifdef INVARIANTS
533         int i;
534 #endif
535
536         crit_enter();
537
538         callout_stop(&sc->scan_ch);
539         callout_stop(&sc->stats_ch);
540
541         lwkt_serialize_enter(ifp->if_serializer);
542         ural_stop(sc);
543         lwkt_serialize_exit(ifp->if_serializer);
544
545         usb_rem_task(sc->sc_udev, &sc->sc_task);
546
547         bpfdetach(ifp);
548         ieee80211_ifdetach(ic);
549
550         crit_exit();
551
552         KKASSERT(sc->stats_xfer == NULL);
553         KKASSERT(sc->sc_rx_pipeh == NULL);
554         KKASSERT(sc->sc_tx_pipeh == NULL);
555
556 #ifdef INVARIANTS
557         /*
558          * Make sure TX/RX list is empty
559          */
560         for (i = 0; i < RAL_TX_LIST_COUNT; i++) {
561                 struct ural_tx_data *data = &sc->tx_data[i];
562
563                 KKASSERT(data->xfer == NULL);
564                 KKASSERT(data->ni == NULL);
565                 KKASSERT(data->m == NULL);
566         }
567         for (i = 0; i < RAL_RX_LIST_COUNT; i++) {
568                 struct ural_rx_data *data = &sc->rx_data[i];
569
570                 KKASSERT(data->xfer == NULL);
571                 KKASSERT(data->m == NULL);
572         }
573 #endif
574
575         return 0;
576 }
577
578 static int
579 ural_alloc_tx_list(struct ural_softc *sc)
580 {
581         int i;
582
583         sc->tx_queued = 0;
584
585         for (i = 0; i < RAL_TX_LIST_COUNT; i++) {
586                 struct ural_tx_data *data = &sc->tx_data[i];
587
588                 data->sc = sc;
589
590                 data->xfer = usbd_alloc_xfer(sc->sc_udev);
591                 if (data->xfer == NULL) {
592                         kprintf("%s: could not allocate tx xfer\n",
593                             device_get_nameunit(sc->sc_dev));
594                         return ENOMEM;
595                 }
596
597                 data->buf = usbd_alloc_buffer(data->xfer,
598                     RAL_TX_DESC_SIZE + MCLBYTES);
599                 if (data->buf == NULL) {
600                         kprintf("%s: could not allocate tx buffer\n",
601                             device_get_nameunit(sc->sc_dev));
602                         return ENOMEM;
603                 }
604         }
605         return 0;
606 }
607
608 static void
609 ural_free_tx_list(struct ural_softc *sc)
610 {
611         int i;
612
613         for (i = 0; i < RAL_TX_LIST_COUNT; i++) {
614                 struct ural_tx_data *data = &sc->tx_data[i];
615
616                 if (data->xfer != NULL) {
617                         usbd_free_xfer(data->xfer);
618                         data->xfer = NULL;
619                 }
620
621                 if (data->ni != NULL) {
622                         ieee80211_free_node(data->ni);
623                         data->ni = NULL;
624                 }
625                 if (data->m != NULL) {
626                         m_freem(data->m);
627                         data->m = NULL;
628                 }
629         }
630         sc->tx_queued = 0;
631 }
632
633 static int
634 ural_alloc_rx_list(struct ural_softc *sc)
635 {
636         int i;
637
638         for (i = 0; i < RAL_RX_LIST_COUNT; i++) {
639                 struct ural_rx_data *data = &sc->rx_data[i];
640
641                 data->sc = sc;
642
643                 data->xfer = usbd_alloc_xfer(sc->sc_udev);
644                 if (data->xfer == NULL) {
645                         kprintf("%s: could not allocate rx xfer\n",
646                             device_get_nameunit(sc->sc_dev));
647                         return ENOMEM;
648                 }
649
650                 if (usbd_alloc_buffer(data->xfer, MCLBYTES) == NULL) {
651                         kprintf("%s: could not allocate rx buffer\n",
652                             device_get_nameunit(sc->sc_dev));
653                         return ENOMEM;
654                 }
655
656                 data->m = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR);
657                 if (data->m == NULL) {
658                         kprintf("%s: could not allocate rx mbuf\n",
659                             device_get_nameunit(sc->sc_dev));
660                         return ENOMEM;
661                 }
662
663                 data->buf = mtod(data->m, uint8_t *);
664         }
665         return 0;
666 }
667
668 static void
669 ural_free_rx_list(struct ural_softc *sc)
670 {
671         int i;
672
673         for (i = 0; i < RAL_RX_LIST_COUNT; i++) {
674                 struct ural_rx_data *data = &sc->rx_data[i];
675
676                 if (data->xfer != NULL) {
677                         usbd_free_xfer(data->xfer);
678                         data->xfer = NULL;
679                 }
680
681                 if (data->m != NULL) {
682                         m_freem(data->m);
683                         data->m = NULL;
684                 }
685         }
686 }
687
688 static int
689 ural_media_change(struct ifnet *ifp)
690 {
691         struct ural_softc *sc = ifp->if_softc;
692         int error;
693
694         error = ieee80211_media_change(ifp);
695         if (error != ENETRESET)
696                 return error;
697
698         if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
699                 ural_init(sc);
700
701         return 0;
702 }
703
704 /*
705  * This function is called periodically (every 200ms) during scanning to
706  * switch from one channel to another.
707  */
708 static void
709 ural_next_scan(void *arg)
710 {
711         struct ural_softc *sc = arg;
712         struct ieee80211com *ic = &sc->sc_ic;
713         struct ifnet *ifp = &ic->ic_if;
714
715         if (sc->sc_stopped)
716                 return;
717
718         crit_enter();
719
720         if (ic->ic_state == IEEE80211_S_SCAN) {
721                 lwkt_serialize_enter(ifp->if_serializer);
722                 ieee80211_next_scan(ic);
723                 lwkt_serialize_exit(ifp->if_serializer);
724         }
725
726         crit_exit();
727 }
728
729 static void
730 ural_task(void *xarg)
731 {
732         struct ural_softc *sc = xarg;
733         struct ieee80211com *ic = &sc->sc_ic;
734         struct ifnet *ifp = &ic->ic_if;
735         enum ieee80211_state nstate;
736         struct ieee80211_node *ni;
737         struct mbuf *m;
738         int arg;
739
740         if (sc->sc_stopped)
741                 return;
742
743         crit_enter();
744
745         nstate = sc->sc_state;
746         arg = sc->sc_arg;
747
748         KASSERT(nstate != IEEE80211_S_INIT,
749                 ("->INIT state transition should not be defered\n"));
750         ural_set_chan(sc, ic->ic_curchan);
751
752         switch (sc->sc_state) {
753         case IEEE80211_S_RUN:
754                 ni = ic->ic_bss;
755
756                 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
757                         ural_update_slot(&ic->ic_if);
758                         ural_set_txpreamble(sc);
759                         ural_set_basicrates(sc);
760                         ural_set_bssid(sc, ni->ni_bssid);
761                 }
762
763                 if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
764                     ic->ic_opmode == IEEE80211_M_IBSS) {
765                         lwkt_serialize_enter(ifp->if_serializer);
766                         m = ieee80211_beacon_alloc(ic, ni, &sc->sc_bo);
767                         lwkt_serialize_exit(ifp->if_serializer);
768
769                         if (m == NULL) {
770                                 kprintf("%s: could not allocate beacon\n",
771                                     device_get_nameunit(sc->sc_dev));
772                                 crit_exit();
773                                 return;
774                         }
775
776                         if (ural_tx_bcn(sc, m, ni) != 0) {
777                                 kprintf("%s: could not send beacon\n",
778                                     device_get_nameunit(sc->sc_dev));
779                                 crit_exit();
780                                 return;
781                         }
782                 }
783
784                 /* make tx led blink on tx (controlled by ASIC) */
785                 ural_write(sc, RAL_MAC_CSR20, 1);
786
787                 if (ic->ic_opmode != IEEE80211_M_MONITOR)
788                         ural_enable_tsf_sync(sc);
789
790                 /* clear statistic registers (STA_CSR0 to STA_CSR10) */
791                 ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof(sc->sta));
792
793                 callout_reset(&sc->stats_ch, 4 * hz / 5,
794                               ural_stats_timeout, sc);
795                 break;
796
797         case IEEE80211_S_SCAN:
798                 callout_reset(&sc->scan_ch, hz / 5, ural_next_scan, sc);
799                 break;
800
801         default:
802                 break;
803         }
804
805         lwkt_serialize_enter(ifp->if_serializer);
806         ieee80211_ratectl_newstate(ic, sc->sc_state);
807         sc->sc_newstate(ic, sc->sc_state, arg);
808         lwkt_serialize_exit(ifp->if_serializer);
809
810         crit_exit();
811 }
812
813 static int
814 ural_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
815 {
816         struct ifnet *ifp = &ic->ic_if;
817         struct ural_softc *sc = ifp->if_softc;
818
819         ASSERT_SERIALIZED(ifp->if_serializer);
820
821         crit_enter();
822
823         callout_stop(&sc->scan_ch);
824         callout_stop(&sc->stats_ch);
825
826         /* do it in a process context */
827         sc->sc_state = nstate;
828         sc->sc_arg = arg;
829
830         lwkt_serialize_exit(ifp->if_serializer);
831         usb_rem_task(sc->sc_udev, &sc->sc_task);
832
833         if (nstate == IEEE80211_S_INIT) {
834                 lwkt_serialize_enter(ifp->if_serializer);
835                 ieee80211_ratectl_newstate(ic, nstate);
836                 sc->sc_newstate(ic, nstate, arg);
837         } else {
838                 usb_add_task(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER);
839                 lwkt_serialize_enter(ifp->if_serializer);
840         }
841
842         crit_exit();
843         return 0;
844 }
845
846 /* quickly determine if a given rate is CCK or OFDM */
847 #define RAL_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
848
849 #define RAL_ACK_SIZE    (sizeof(struct ieee80211_frame_ack) + IEEE80211_FCS_LEN)
850
851 #define RAL_RXTX_TURNAROUND     5       /* us */
852
853 /*
854  * This function is only used by the Rx radiotap code.
855  */
856 static int
857 ural_rxrate(struct ural_rx_desc *desc)
858 {
859         if (le32toh(desc->flags) & RAL_RX_OFDM) {
860                 /* reverse function of ural_plcp_signal */
861                 switch (desc->rate) {
862                 case 0xb:       return 12;
863                 case 0xf:       return 18;
864                 case 0xa:       return 24;
865                 case 0xe:       return 36;
866                 case 0x9:       return 48;
867                 case 0xd:       return 72;
868                 case 0x8:       return 96;
869                 case 0xc:       return 108;
870                 }
871         } else {
872                 if (desc->rate == 10)
873                         return 2;
874                 if (desc->rate == 20)
875                         return 4;
876                 if (desc->rate == 55)
877                         return 11;
878                 if (desc->rate == 110)
879                         return 22;
880         }
881         return 2;       /* should not get there */
882 }
883
884 static void
885 ural_txeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
886 {
887         struct ural_tx_data *data = priv;
888         struct ural_softc *sc = data->sc;
889         struct ieee80211_node *ni;
890         struct ifnet *ifp = &sc->sc_ic.ic_if;
891
892         if (sc->sc_stopped)
893                 return;
894
895         crit_enter();
896
897         if (status != USBD_NORMAL_COMPLETION) {
898                 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED) {
899                         crit_exit();
900                         return;
901                 }
902
903                 kprintf("%s: could not transmit buffer: %s\n",
904                     device_get_nameunit(sc->sc_dev), usbd_errstr(status));
905
906                 if (status == USBD_STALLED)
907                         usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh);
908
909                 ifp->if_oerrors++;
910                 crit_exit();
911                 return;
912         }
913
914         m_freem(data->m);
915         data->m = NULL;
916         ni = data->ni;
917         data->ni = NULL;
918
919         sc->tx_queued--;
920         ifp->if_opackets++;
921
922         DPRINTFN(10, ("tx done\n"));
923
924         sc->sc_tx_timer = 0;
925         ifp->if_flags &= ~IFF_OACTIVE;
926
927         lwkt_serialize_enter(ifp->if_serializer);
928         ieee80211_free_node(ni);
929         ifp->if_start(ifp);
930         lwkt_serialize_exit(ifp->if_serializer);
931
932         crit_exit();
933 }
934
935 static void
936 ural_rxeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
937 {
938         struct ural_rx_data *data = priv;
939         struct ural_softc *sc = data->sc;
940         struct ieee80211com *ic = &sc->sc_ic;
941         struct ifnet *ifp = &ic->ic_if;
942         struct ural_rx_desc *desc;
943         struct ieee80211_frame *wh;
944         struct ieee80211_node *ni;
945         struct mbuf *mnew, *m;
946         int len;
947
948         if (sc->sc_stopped)
949                 return;
950
951         crit_enter();
952
953         if (status != USBD_NORMAL_COMPLETION) {
954                 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED) {
955                         crit_exit();
956                         return;
957                 }
958
959                 if (status == USBD_STALLED)
960                         usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh);
961                 goto skip;
962         }
963
964         usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
965
966         if (len < RAL_RX_DESC_SIZE + IEEE80211_MIN_LEN) {
967                 DPRINTF(("%s: xfer too short %d\n", device_get_nameunit(sc->sc_dev),
968                     len));
969                 ifp->if_ierrors++;
970                 goto skip;
971         }
972
973         /* rx descriptor is located at the end */
974         desc = (struct ural_rx_desc *)(data->buf + len - RAL_RX_DESC_SIZE);
975
976         if ((le32toh(desc->flags) & RAL_RX_PHY_ERROR) ||
977             (le32toh(desc->flags) & RAL_RX_CRC_ERROR)) {
978                 /*
979                  * This should not happen since we did not request to receive
980                  * those frames when we filled RAL_TXRX_CSR2.
981                  */
982                 DPRINTFN(5, ("PHY or CRC error\n"));
983                 ifp->if_ierrors++;
984                 goto skip;
985         }
986
987         mnew = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR);
988         if (mnew == NULL) {
989                 ifp->if_ierrors++;
990                 goto skip;
991         }
992
993         m = data->m;
994         data->m = NULL;
995         data->buf = NULL;
996
997         lwkt_serialize_enter(ifp->if_serializer);
998
999         /* finalize mbuf */
1000         m->m_pkthdr.rcvif = ifp;
1001         m->m_pkthdr.len = m->m_len = (le32toh(desc->flags) >> 16) & 0xfff;
1002
1003         if (sc->sc_drvbpf != NULL) {
1004                 struct ural_rx_radiotap_header *tap = &sc->sc_rxtap;
1005
1006                 tap->wr_flags = IEEE80211_RADIOTAP_F_FCS; /* h/w leaves FCS */
1007                 tap->wr_rate = ural_rxrate(desc);
1008                 tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
1009                 tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
1010                 tap->wr_antenna = sc->rx_ant;
1011                 tap->wr_antsignal = URAL_RSSI(desc->rssi);
1012
1013                 bpf_ptap(sc->sc_drvbpf, m, tap, sc->sc_rxtap_len);
1014         }
1015
1016         /* trim CRC here so WEP can find its own CRC at the end of packet. */
1017         m_adj(m, -IEEE80211_CRC_LEN);
1018
1019         wh = mtod(m, struct ieee80211_frame *);
1020         ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
1021
1022         /* send the frame to the 802.11 layer */
1023         ieee80211_input(ic, m, ni, URAL_RSSI(desc->rssi), 0);
1024
1025         /* node is no longer needed */
1026         ieee80211_free_node(ni);
1027
1028         lwkt_serialize_exit(ifp->if_serializer);
1029
1030         data->m = mnew;
1031         data->buf = mtod(data->m, uint8_t *);
1032
1033         DPRINTFN(15, ("rx done\n"));
1034
1035 skip:   /* setup a new transfer */
1036         usbd_setup_xfer(xfer, sc->sc_rx_pipeh, data, data->buf, MCLBYTES,
1037             USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, ural_rxeof);
1038         usbd_transfer(xfer);
1039
1040         crit_exit();
1041 }
1042
1043 static uint8_t
1044 ural_plcp_signal(int rate)
1045 {
1046         switch (rate) {
1047         /* CCK rates (returned values are device-dependent) */
1048         case 2:         return 0x0;
1049         case 4:         return 0x1;
1050         case 11:        return 0x2;
1051         case 22:        return 0x3;
1052
1053         /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1054         case 12:        return 0xb;
1055         case 18:        return 0xf;
1056         case 24:        return 0xa;
1057         case 36:        return 0xe;
1058         case 48:        return 0x9;
1059         case 72:        return 0xd;
1060         case 96:        return 0x8;
1061         case 108:       return 0xc;
1062
1063         /* unsupported rates (should not get there) */
1064         default:        return 0xff;
1065         }
1066 }
1067
1068 static void
1069 ural_setup_tx_desc(struct ural_softc *sc, struct ural_tx_desc *desc,
1070     uint32_t flags, int len, int rate)
1071 {
1072         struct ieee80211com *ic = &sc->sc_ic;
1073         uint16_t plcp_length;
1074         int remainder;
1075
1076         desc->flags = htole32(flags);
1077         desc->flags |= htole32(RAL_TX_NEWSEQ);
1078         desc->flags |= htole32(len << 16);
1079
1080         desc->wme = htole16(RAL_AIFSN(2) | RAL_LOGCWMIN(3) | RAL_LOGCWMAX(5));
1081         desc->wme |= htole16(RAL_IVOFFSET(sizeof (struct ieee80211_frame)));
1082
1083         /* setup PLCP fields */
1084         desc->plcp_signal  = ural_plcp_signal(rate);
1085         desc->plcp_service = 4;
1086
1087         len += IEEE80211_CRC_LEN;
1088         if (RAL_RATE_IS_OFDM(rate)) {
1089                 desc->flags |= htole32(RAL_TX_OFDM);
1090
1091                 plcp_length = len & 0xfff;
1092                 desc->plcp_length_hi = plcp_length >> 6;
1093                 desc->plcp_length_lo = plcp_length & 0x3f;
1094         } else {
1095                 plcp_length = (16 * len + rate - 1) / rate;
1096                 if (rate == 22) {
1097                         remainder = (16 * len) % 22;
1098                         if (remainder != 0 && remainder < 7)
1099                                 desc->plcp_service |= RAL_PLCP_LENGEXT;
1100                 }
1101                 desc->plcp_length_hi = plcp_length >> 8;
1102                 desc->plcp_length_lo = plcp_length & 0xff;
1103
1104                 if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1105                         desc->plcp_signal |= 0x08;
1106         }
1107
1108         desc->iv = 0;
1109         desc->eiv = 0;
1110 }
1111
1112 #define RAL_TX_TIMEOUT  5000
1113
1114 static int
1115 ural_tx_bcn(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1116 {
1117         struct ural_tx_desc *desc;
1118         usbd_xfer_handle xfer;
1119         uint8_t cmd = 0;
1120         usbd_status error;
1121         uint8_t *buf;
1122         int xferlen, rate;
1123
1124         rate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2;
1125
1126         xfer = usbd_alloc_xfer(sc->sc_udev);
1127         if (xfer == NULL)
1128                 return ENOMEM;
1129
1130         /* xfer length needs to be a multiple of two! */
1131         xferlen = (RAL_TX_DESC_SIZE + m0->m_pkthdr.len + 1) & ~1;
1132
1133         buf = usbd_alloc_buffer(xfer, xferlen);
1134         if (buf == NULL) {
1135                 usbd_free_xfer(xfer);
1136                 return ENOMEM;
1137         }
1138
1139         usbd_setup_xfer(xfer, sc->sc_tx_pipeh, NULL, &cmd, sizeof cmd,
1140             USBD_FORCE_SHORT_XFER, RAL_TX_TIMEOUT, NULL);
1141
1142         error = usbd_sync_transfer(xfer);
1143         if (error != 0) {
1144                 usbd_free_xfer(xfer);
1145                 return error;
1146         }
1147
1148         desc = (struct ural_tx_desc *)buf;
1149
1150         m_copydata(m0, 0, m0->m_pkthdr.len, buf + RAL_TX_DESC_SIZE);
1151         ural_setup_tx_desc(sc, desc, RAL_TX_IFS_NEWBACKOFF | RAL_TX_TIMESTAMP,
1152             m0->m_pkthdr.len, rate);
1153
1154         DPRINTFN(10, ("sending beacon frame len=%u rate=%u xfer len=%u\n",
1155             m0->m_pkthdr.len, rate, xferlen));
1156
1157         usbd_setup_xfer(xfer, sc->sc_tx_pipeh, NULL, buf, xferlen,
1158             USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RAL_TX_TIMEOUT, NULL);
1159
1160         error = usbd_sync_transfer(xfer);
1161         usbd_free_xfer(xfer);
1162
1163         return error;
1164 }
1165
1166 static int
1167 ural_tx_mgt(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1168 {
1169         struct ieee80211com *ic = &sc->sc_ic;
1170         struct ifnet *ifp = &ic->ic_if;
1171         struct ural_tx_desc *desc;
1172         struct ural_tx_data *data;
1173         struct ieee80211_frame *wh;
1174         uint32_t flags = 0;
1175         uint16_t dur;
1176         usbd_status error;
1177         int xferlen, rate;
1178
1179         data = &sc->tx_data[0];
1180         desc = (struct ural_tx_desc *)data->buf;
1181
1182         rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
1183
1184         data->m = m0;
1185         data->ni = ni;
1186
1187         wh = mtod(m0, struct ieee80211_frame *);
1188
1189         if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1190                 flags |= RAL_TX_ACK;
1191
1192                 dur = ieee80211_txtime(ni, RAL_ACK_SIZE, rate, ic->ic_flags) +
1193                       sc->sc_sifs;
1194                 *(uint16_t *)wh->i_dur = htole16(dur);
1195
1196                 /* tell hardware to add timestamp for probe responses */
1197                 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1198                     IEEE80211_FC0_TYPE_MGT &&
1199                     (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1200                     IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1201                         flags |= RAL_TX_TIMESTAMP;
1202         }
1203
1204         if (sc->sc_drvbpf != NULL) {
1205                 struct ural_tx_radiotap_header *tap = &sc->sc_txtap;
1206
1207                 tap->wt_flags = 0;
1208                 tap->wt_rate = rate;
1209                 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1210                 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1211                 tap->wt_antenna = sc->tx_ant;
1212
1213                 bpf_ptap(sc->sc_drvbpf, m0, tap, sc->sc_txtap_len);
1214         }
1215
1216         m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RAL_TX_DESC_SIZE);
1217         ural_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate);
1218
1219         /* align end on a 2-bytes boundary */
1220         xferlen = (RAL_TX_DESC_SIZE + m0->m_pkthdr.len + 1) & ~1;
1221
1222         /*
1223          * No space left in the last URB to store the extra 2 bytes, force
1224          * sending of another URB.
1225          */
1226         if ((xferlen % 64) == 0)
1227                 xferlen += 2;
1228
1229         DPRINTFN(10, ("sending mgt frame len=%u rate=%u xfer len=%u\n",
1230             m0->m_pkthdr.len, rate, xferlen));
1231
1232         lwkt_serialize_exit(ifp->if_serializer);
1233
1234         usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf,
1235             xferlen, USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RAL_TX_TIMEOUT,
1236             ural_txeof);
1237
1238         error = usbd_transfer(data->xfer);
1239         if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS) {
1240                 m_freem(m0);
1241                 data->m = NULL;
1242                 data->ni = NULL;
1243         } else {
1244                 sc->tx_queued++;
1245                 error = 0;
1246         }
1247
1248         lwkt_serialize_enter(ifp->if_serializer);
1249         return error;
1250 }
1251
1252 static int
1253 ural_tx_data(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1254 {
1255         struct ieee80211com *ic = &sc->sc_ic;
1256         struct ifnet *ifp = &ic->ic_if;
1257         struct ural_tx_desc *desc;
1258         struct ural_tx_data *data;
1259         struct ieee80211_frame *wh;
1260         struct ieee80211_key *k;
1261         uint32_t flags = 0;
1262         uint16_t dur;
1263         usbd_status error;
1264         int xferlen, rate, rate_idx;
1265
1266         wh = mtod(m0, struct ieee80211_frame *);
1267
1268         ieee80211_ratectl_findrate(ni, m0->m_pkthdr.len, &rate_idx, 1);
1269         rate = IEEE80211_RS_RATE(&ni->ni_rates, rate_idx);
1270
1271         if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1272                 k = ieee80211_crypto_encap(ic, ni, m0);
1273                 if (k == NULL) {
1274                         m_freem(m0);
1275                         return ENOBUFS;
1276                 }
1277
1278                 /* packet header may have moved, reset our local pointer */
1279                 wh = mtod(m0, struct ieee80211_frame *);
1280         }
1281
1282         data = &sc->tx_data[0];
1283         desc = (struct ural_tx_desc *)data->buf;
1284
1285         data->m = m0;
1286         data->ni = ni;
1287
1288         if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1289                 flags |= RAL_TX_ACK;
1290                 flags |= RAL_TX_RETRY(sc->sc_tx_retries);
1291
1292                 dur = ieee80211_txtime(ni, RAL_ACK_SIZE,
1293                         ieee80211_ack_rate(ni, rate), ic->ic_flags) +
1294                         sc->sc_sifs;
1295                 *(uint16_t *)wh->i_dur = htole16(dur);
1296         }
1297
1298         if (sc->sc_drvbpf != NULL) {
1299                 struct ural_tx_radiotap_header *tap = &sc->sc_txtap;
1300
1301                 tap->wt_flags = 0;
1302                 tap->wt_rate = rate;
1303                 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1304                 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1305                 tap->wt_antenna = sc->tx_ant;
1306
1307                 bpf_ptap(sc->sc_drvbpf, m0, tap, sc->sc_txtap_len);
1308         }
1309
1310         m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RAL_TX_DESC_SIZE);
1311         ural_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate);
1312
1313         /* align end on a 2-bytes boundary */
1314         xferlen = (RAL_TX_DESC_SIZE + m0->m_pkthdr.len + 1) & ~1;
1315
1316         /*
1317          * No space left in the last URB to store the extra 2 bytes, force
1318          * sending of another URB.
1319          */
1320         if ((xferlen % 64) == 0)
1321                 xferlen += 2;
1322
1323         DPRINTFN(10, ("sending data frame len=%u rate=%u xfer len=%u\n",
1324             m0->m_pkthdr.len, rate, xferlen));
1325
1326         lwkt_serialize_exit(ifp->if_serializer);
1327
1328         usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf,
1329             xferlen, USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RAL_TX_TIMEOUT,
1330             ural_txeof);
1331
1332         error = usbd_transfer(data->xfer);
1333         if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS) {
1334                 m_freem(m0);
1335                 data->m = NULL;
1336                 data->ni = NULL;
1337         } else {
1338                 sc->tx_queued++;
1339                 error = 0;
1340         }
1341
1342         lwkt_serialize_enter(ifp->if_serializer);
1343         return error;
1344 }
1345
1346 static void
1347 ural_start(struct ifnet *ifp)
1348 {
1349         struct ural_softc *sc = ifp->if_softc;
1350         struct ieee80211com *ic = &sc->sc_ic;
1351
1352         ASSERT_SERIALIZED(ifp->if_serializer);
1353
1354         if (sc->sc_stopped)
1355                 return;
1356
1357         crit_enter();
1358
1359         if ((ifp->if_flags & (IFF_OACTIVE | IFF_RUNNING)) != IFF_RUNNING) {
1360                 crit_exit();
1361                 return;
1362         }
1363
1364         for (;;) {
1365                 struct ieee80211_node *ni;
1366                 struct mbuf *m0;
1367
1368                 if (!IF_QEMPTY(&ic->ic_mgtq)) {
1369                         if (sc->tx_queued >= RAL_TX_LIST_COUNT) {
1370                                 ifp->if_flags |= IFF_OACTIVE;
1371                                 break;
1372                         }
1373                         IF_DEQUEUE(&ic->ic_mgtq, m0);
1374
1375                         ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
1376                         m0->m_pkthdr.rcvif = NULL;
1377
1378                         if (ic->ic_rawbpf != NULL)
1379                                 bpf_mtap(ic->ic_rawbpf, m0);
1380
1381                         if (ural_tx_mgt(sc, m0, ni) != 0) {
1382                                 ieee80211_free_node(ni);
1383                                 break;
1384                         }
1385                 } else {
1386                         struct ether_header *eh;
1387
1388                         if (ic->ic_state != IEEE80211_S_RUN)
1389                                 break;
1390                         m0 = ifq_poll(&ifp->if_snd);
1391                         if (m0 == NULL)
1392                                 break;
1393                         if (sc->tx_queued >= RAL_TX_LIST_COUNT) {
1394                                 ifp->if_flags |= IFF_OACTIVE;
1395                                 break;
1396                         }
1397
1398                         ifq_dequeue(&ifp->if_snd, m0);
1399
1400                         if (m0->m_len < sizeof (struct ether_header)) {
1401                                 m0 = m_pullup(m0, sizeof (struct ether_header));
1402                                 if (m0 == NULL) {
1403                                         ifp->if_oerrors++;
1404                                         continue;
1405                                 }
1406                         }
1407
1408                         eh = mtod(m0, struct ether_header *);
1409                         ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1410                         if (ni == NULL) {
1411                                 m_freem(m0);
1412                                 continue;
1413                         }
1414                         BPF_MTAP(ifp, m0);
1415
1416                         m0 = ieee80211_encap(ic, m0, ni);
1417                         if (m0 == NULL) {
1418                                 ieee80211_free_node(ni);
1419                                 continue;
1420                         }
1421
1422                         if (ic->ic_rawbpf != NULL)
1423                                 bpf_mtap(ic->ic_rawbpf, m0);
1424
1425                         if (ural_tx_data(sc, m0, ni) != 0) {
1426                                 ieee80211_free_node(ni);
1427                                 ifp->if_oerrors++;
1428                                 break;
1429                         }
1430                 }
1431
1432                 sc->sc_tx_timer = 5;
1433                 ifp->if_timer = 1;
1434         }
1435
1436         crit_exit();
1437 }
1438
1439 static void
1440 ural_watchdog(struct ifnet *ifp)
1441 {
1442         struct ural_softc *sc = ifp->if_softc;
1443         struct ieee80211com *ic = &sc->sc_ic;
1444
1445         ASSERT_SERIALIZED(ifp->if_serializer);
1446
1447         crit_enter();
1448
1449         ifp->if_timer = 0;
1450
1451         if (sc->sc_tx_timer > 0) {
1452                 if (--sc->sc_tx_timer == 0) {
1453                         device_printf(sc->sc_dev, "device timeout\n");
1454                         /*ural_init(sc); XXX needs a process context! */
1455                         ifp->if_oerrors++;
1456
1457                         crit_exit();
1458                         return;
1459                 }
1460                 ifp->if_timer = 1;
1461         }
1462         ieee80211_watchdog(ic);
1463
1464         crit_exit();
1465 }
1466
1467 /*
1468  * This function allows for fast channel switching in monitor mode (used by
1469  * net-mgmt/kismet). In IBSS mode, we must explicitly reset the interface to
1470  * generate a new beacon frame.
1471  */
1472 static int
1473 ural_reset(struct ifnet *ifp)
1474 {
1475         struct ural_softc *sc = ifp->if_softc;
1476         struct ieee80211com *ic = &sc->sc_ic;
1477
1478         ASSERT_SERIALIZED(ifp->if_serializer);
1479
1480         if (ic->ic_opmode != IEEE80211_M_MONITOR)
1481                 return ENETRESET;
1482
1483         crit_enter();
1484
1485         lwkt_serialize_exit(ifp->if_serializer);
1486         ural_set_chan(sc, ic->ic_curchan);
1487         lwkt_serialize_enter(ifp->if_serializer);
1488
1489         crit_exit();
1490
1491         return 0;
1492 }
1493
1494 static int
1495 ural_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data, struct ucred *cr)
1496 {
1497         struct ural_softc *sc = ifp->if_softc;
1498         struct ieee80211com *ic = &sc->sc_ic;
1499         int error = 0;
1500
1501         ASSERT_SERIALIZED(ifp->if_serializer);
1502
1503         crit_enter();
1504
1505         switch (cmd) {
1506         case SIOCSIFFLAGS:
1507                 if (ifp->if_flags & IFF_UP) {
1508                         if (ifp->if_flags & IFF_RUNNING) {
1509                                 lwkt_serialize_exit(ifp->if_serializer);
1510                                 ural_update_promisc(sc);
1511                                 lwkt_serialize_enter(ifp->if_serializer);
1512                         } else {
1513                                 ural_init(sc);
1514                         }
1515                 } else {
1516                         if (ifp->if_flags & IFF_RUNNING)
1517                                 ural_stop(sc);
1518                 }
1519                 break;
1520
1521         default:
1522                 error = ieee80211_ioctl(ic, cmd, data, cr);
1523         }
1524
1525         if (error == ENETRESET) {
1526                 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1527                     (IFF_UP | IFF_RUNNING) &&
1528                     ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
1529                         ural_init(sc);
1530                 error = 0;
1531         }
1532
1533         crit_exit();
1534         return error;
1535 }
1536
1537 static void
1538 ural_set_testmode(struct ural_softc *sc)
1539 {
1540         usb_device_request_t req;
1541         usbd_status error;
1542
1543         req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1544         req.bRequest = RAL_VENDOR_REQUEST;
1545         USETW(req.wValue, 4);
1546         USETW(req.wIndex, 1);
1547         USETW(req.wLength, 0);
1548
1549         error = usbd_do_request(sc->sc_udev, &req, NULL);
1550         if (error != 0) {
1551                 kprintf("%s: could not set test mode: %s\n",
1552                     device_get_nameunit(sc->sc_dev), usbd_errstr(error));
1553         }
1554 }
1555
1556 static void
1557 ural_eeprom_read(struct ural_softc *sc, uint16_t addr, void *buf, int len)
1558 {
1559         usb_device_request_t req;
1560         usbd_status error;
1561
1562         req.bmRequestType = UT_READ_VENDOR_DEVICE;
1563         req.bRequest = RAL_READ_EEPROM;
1564         USETW(req.wValue, 0);
1565         USETW(req.wIndex, addr);
1566         USETW(req.wLength, len);
1567
1568         error = usbd_do_request(sc->sc_udev, &req, buf);
1569         if (error != 0) {
1570                 kprintf("%s: could not read EEPROM: %s\n",
1571                     device_get_nameunit(sc->sc_dev), usbd_errstr(error));
1572         }
1573 }
1574
1575 static uint16_t
1576 ural_read(struct ural_softc *sc, uint16_t reg)
1577 {
1578         usb_device_request_t req;
1579         usbd_status error;
1580         uint16_t val;
1581
1582         req.bmRequestType = UT_READ_VENDOR_DEVICE;
1583         req.bRequest = RAL_READ_MAC;
1584         USETW(req.wValue, 0);
1585         USETW(req.wIndex, reg);
1586         USETW(req.wLength, sizeof (uint16_t));
1587
1588         error = usbd_do_request(sc->sc_udev, &req, &val);
1589         if (error != 0) {
1590                 kprintf("%s: could not read MAC register: %s\n",
1591                     device_get_nameunit(sc->sc_dev), usbd_errstr(error));
1592                 return 0;
1593         }
1594
1595         return le16toh(val);
1596 }
1597
1598 static void
1599 ural_read_multi(struct ural_softc *sc, uint16_t reg, void *buf, int len)
1600 {
1601         usb_device_request_t req;
1602         usbd_status error;
1603
1604         req.bmRequestType = UT_READ_VENDOR_DEVICE;
1605         req.bRequest = RAL_READ_MULTI_MAC;
1606         USETW(req.wValue, 0);
1607         USETW(req.wIndex, reg);
1608         USETW(req.wLength, len);
1609
1610         error = usbd_do_request(sc->sc_udev, &req, buf);
1611         if (error != 0) {
1612                 kprintf("%s: could not read MAC register: %s\n",
1613                     device_get_nameunit(sc->sc_dev), usbd_errstr(error));
1614         }
1615 }
1616
1617 static void
1618 ural_write(struct ural_softc *sc, uint16_t reg, uint16_t val)
1619 {
1620         usb_device_request_t req;
1621         usbd_status error;
1622
1623         req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1624         req.bRequest = RAL_WRITE_MAC;
1625         USETW(req.wValue, val);
1626         USETW(req.wIndex, reg);
1627         USETW(req.wLength, 0);
1628
1629         error = usbd_do_request(sc->sc_udev, &req, NULL);
1630         if (error != 0) {
1631                 kprintf("%s: could not write MAC register: %s\n",
1632                     device_get_nameunit(sc->sc_dev), usbd_errstr(error));
1633         }
1634 }
1635
1636 static void
1637 ural_write_multi(struct ural_softc *sc, uint16_t reg, void *buf, int len)
1638 {
1639         usb_device_request_t req;
1640         usbd_status error;
1641
1642         req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1643         req.bRequest = RAL_WRITE_MULTI_MAC;
1644         USETW(req.wValue, 0);
1645         USETW(req.wIndex, reg);
1646         USETW(req.wLength, len);
1647
1648         error = usbd_do_request(sc->sc_udev, &req, buf);
1649         if (error != 0) {
1650                 kprintf("%s: could not write MAC register: %s\n",
1651                     device_get_nameunit(sc->sc_dev), usbd_errstr(error));
1652         }
1653 }
1654
1655 static void
1656 ural_bbp_write(struct ural_softc *sc, uint8_t reg, uint8_t val)
1657 {
1658         uint16_t tmp;
1659         int ntries;
1660
1661         for (ntries = 0; ntries < 5; ntries++) {
1662                 if (!(ural_read(sc, RAL_PHY_CSR8) & RAL_BBP_BUSY))
1663                         break;
1664         }
1665         if (ntries == 5) {
1666                 kprintf("%s: could not write to BBP\n", device_get_nameunit(sc->sc_dev));
1667                 return;
1668         }
1669
1670         tmp = reg << 8 | val;
1671         ural_write(sc, RAL_PHY_CSR7, tmp);
1672 }
1673
1674 static uint8_t
1675 ural_bbp_read(struct ural_softc *sc, uint8_t reg)
1676 {
1677         uint16_t val;
1678         int ntries;
1679
1680         val = RAL_BBP_WRITE | reg << 8;
1681         ural_write(sc, RAL_PHY_CSR7, val);
1682
1683         for (ntries = 0; ntries < 5; ntries++) {
1684                 if (!(ural_read(sc, RAL_PHY_CSR8) & RAL_BBP_BUSY))
1685                         break;
1686         }
1687         if (ntries == 5) {
1688                 kprintf("%s: could not read BBP\n", device_get_nameunit(sc->sc_dev));
1689                 return 0;
1690         }
1691
1692         return ural_read(sc, RAL_PHY_CSR7) & 0xff;
1693 }
1694
1695 static void
1696 ural_rf_write(struct ural_softc *sc, uint8_t reg, uint32_t val)
1697 {
1698         uint32_t tmp;
1699         int ntries;
1700
1701         for (ntries = 0; ntries < 5; ntries++) {
1702                 if (!(ural_read(sc, RAL_PHY_CSR10) & RAL_RF_LOBUSY))
1703                         break;
1704         }
1705         if (ntries == 5) {
1706                 kprintf("%s: could not write to RF\n", device_get_nameunit(sc->sc_dev));
1707                 return;
1708         }
1709
1710         tmp = RAL_RF_BUSY | RAL_RF_20BIT | (val & 0xfffff) << 2 | (reg & 0x3);
1711         ural_write(sc, RAL_PHY_CSR9,  tmp & 0xffff);
1712         ural_write(sc, RAL_PHY_CSR10, tmp >> 16);
1713
1714         /* remember last written value in sc */
1715         sc->rf_regs[reg] = val;
1716
1717         DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 0x3, val & 0xfffff));
1718 }
1719
1720 static void
1721 ural_set_chan(struct ural_softc *sc, struct ieee80211_channel *c)
1722 {
1723         struct ieee80211com *ic = &sc->sc_ic;
1724         uint8_t power, tmp;
1725         u_int i, chan;
1726
1727         chan = ieee80211_chan2ieee(ic, c);
1728         if (chan == 0 || chan == IEEE80211_CHAN_ANY)
1729                 return;
1730
1731         if (IEEE80211_IS_CHAN_2GHZ(c))
1732                 power = min(sc->txpow[chan - 1], 31);
1733         else
1734                 power = 31;
1735
1736         /* adjust txpower using ifconfig settings */
1737         power -= (100 - ic->ic_txpowlimit) / 8;
1738
1739         DPRINTFN(2, ("setting channel to %u, txpower to %u\n", chan, power));
1740
1741         switch (sc->rf_rev) {
1742         case RAL_RF_2522:
1743                 ural_rf_write(sc, RAL_RF1, 0x00814);
1744                 ural_rf_write(sc, RAL_RF2, ural_rf2522_r2[chan - 1]);
1745                 ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1746                 break;
1747
1748         case RAL_RF_2523:
1749                 ural_rf_write(sc, RAL_RF1, 0x08804);
1750                 ural_rf_write(sc, RAL_RF2, ural_rf2523_r2[chan - 1]);
1751                 ural_rf_write(sc, RAL_RF3, power << 7 | 0x38044);
1752                 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1753                 break;
1754
1755         case RAL_RF_2524:
1756                 ural_rf_write(sc, RAL_RF1, 0x0c808);
1757                 ural_rf_write(sc, RAL_RF2, ural_rf2524_r2[chan - 1]);
1758                 ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1759                 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1760                 break;
1761
1762         case RAL_RF_2525:
1763                 ural_rf_write(sc, RAL_RF1, 0x08808);
1764                 ural_rf_write(sc, RAL_RF2, ural_rf2525_hi_r2[chan - 1]);
1765                 ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1766                 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1767
1768                 ural_rf_write(sc, RAL_RF1, 0x08808);
1769                 ural_rf_write(sc, RAL_RF2, ural_rf2525_r2[chan - 1]);
1770                 ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1771                 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1772                 break;
1773
1774         case RAL_RF_2525E:
1775                 ural_rf_write(sc, RAL_RF1, 0x08808);
1776                 ural_rf_write(sc, RAL_RF2, ural_rf2525e_r2[chan - 1]);
1777                 ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1778                 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00286 : 0x00282);
1779                 break;
1780
1781         case RAL_RF_2526:
1782                 ural_rf_write(sc, RAL_RF2, ural_rf2526_hi_r2[chan - 1]);
1783                 ural_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381);
1784                 ural_rf_write(sc, RAL_RF1, 0x08804);
1785
1786                 ural_rf_write(sc, RAL_RF2, ural_rf2526_r2[chan - 1]);
1787                 ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1788                 ural_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381);
1789                 break;
1790
1791         /* dual-band RF */
1792         case RAL_RF_5222:
1793                 for (i = 0; ural_rf5222[i].chan != chan; i++)
1794                         ; /* EMPTY */
1795
1796                 ural_rf_write(sc, RAL_RF1, ural_rf5222[i].r1);
1797                 ural_rf_write(sc, RAL_RF2, ural_rf5222[i].r2);
1798                 ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1799                 ural_rf_write(sc, RAL_RF4, ural_rf5222[i].r4);
1800                 break;
1801         }
1802
1803         if (ic->ic_opmode != IEEE80211_M_MONITOR &&
1804             ic->ic_state != IEEE80211_S_SCAN) {
1805                 /* set Japan filter bit for channel 14 */
1806                 tmp = ural_bbp_read(sc, 70);
1807
1808                 tmp &= ~RAL_JAPAN_FILTER;
1809                 if (chan == 14)
1810                         tmp |= RAL_JAPAN_FILTER;
1811
1812                 ural_bbp_write(sc, 70, tmp);
1813
1814                 /* clear CRC errors */
1815                 ural_read(sc, RAL_STA_CSR0);
1816
1817                 DELAY(10000);
1818                 ural_disable_rf_tune(sc);
1819         }
1820
1821         sc->sc_sifs = IEEE80211_IS_CHAN_5GHZ(c) ? IEEE80211_DUR_OFDM_SIFS
1822                                                 : IEEE80211_DUR_SIFS;
1823 }
1824
1825 /*
1826  * Disable RF auto-tuning.
1827  */
1828 static void
1829 ural_disable_rf_tune(struct ural_softc *sc)
1830 {
1831         uint32_t tmp;
1832
1833         if (sc->rf_rev != RAL_RF_2523) {
1834                 tmp = sc->rf_regs[RAL_RF1] & ~RAL_RF1_AUTOTUNE;
1835                 ural_rf_write(sc, RAL_RF1, tmp);
1836         }
1837
1838         tmp = sc->rf_regs[RAL_RF3] & ~RAL_RF3_AUTOTUNE;
1839         ural_rf_write(sc, RAL_RF3, tmp);
1840
1841         DPRINTFN(2, ("disabling RF autotune\n"));
1842 }
1843
1844 /*
1845  * Refer to IEEE Std 802.11-1999 pp. 123 for more information on TSF
1846  * synchronization.
1847  */
1848 static void
1849 ural_enable_tsf_sync(struct ural_softc *sc)
1850 {
1851         struct ieee80211com *ic = &sc->sc_ic;
1852         uint16_t logcwmin, preload, tmp;
1853
1854         /* first, disable TSF synchronization */
1855         ural_write(sc, RAL_TXRX_CSR19, 0);
1856
1857         tmp = (16 * ic->ic_bss->ni_intval) << 4;
1858         ural_write(sc, RAL_TXRX_CSR18, tmp);
1859
1860         logcwmin = (ic->ic_opmode == IEEE80211_M_IBSS) ? 2 : 0;
1861         preload = (ic->ic_opmode == IEEE80211_M_IBSS) ? 320 : 6;
1862         tmp = logcwmin << 12 | preload;
1863         ural_write(sc, RAL_TXRX_CSR20, tmp);
1864
1865         /* finally, enable TSF synchronization */
1866         tmp = RAL_ENABLE_TSF | RAL_ENABLE_TBCN;
1867         if (ic->ic_opmode == IEEE80211_M_STA)
1868                 tmp |= RAL_ENABLE_TSF_SYNC(1);
1869         else
1870                 tmp |= RAL_ENABLE_TSF_SYNC(2) | RAL_ENABLE_BEACON_GENERATOR;
1871         ural_write(sc, RAL_TXRX_CSR19, tmp);
1872
1873         DPRINTF(("enabling TSF synchronization\n"));
1874 }
1875
1876 static void
1877 ural_update_slot(struct ifnet *ifp)
1878 {
1879         struct ural_softc *sc = ifp->if_softc;
1880         struct ieee80211com *ic = &sc->sc_ic;
1881         uint16_t slottime, sifs, eifs;
1882
1883         slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
1884
1885         /*
1886          * These settings may sound a bit inconsistent but this is what the
1887          * reference driver does.
1888          */
1889         if (ic->ic_curmode == IEEE80211_MODE_11B) {
1890                 sifs = 16 - RAL_RXTX_TURNAROUND;
1891                 eifs = 364;
1892         } else {
1893                 sifs = 10 - RAL_RXTX_TURNAROUND;
1894                 eifs = 64;
1895         }
1896
1897         ural_write(sc, RAL_MAC_CSR10, slottime);
1898         ural_write(sc, RAL_MAC_CSR11, sifs);
1899         ural_write(sc, RAL_MAC_CSR12, eifs);
1900 }
1901
1902 static void
1903 ural_set_txpreamble(struct ural_softc *sc)
1904 {
1905         uint16_t tmp;
1906
1907         tmp = ural_read(sc, RAL_TXRX_CSR10);
1908
1909         tmp &= ~RAL_SHORT_PREAMBLE;
1910         if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE)
1911                 tmp |= RAL_SHORT_PREAMBLE;
1912
1913         ural_write(sc, RAL_TXRX_CSR10, tmp);
1914 }
1915
1916 static void
1917 ural_set_basicrates(struct ural_softc *sc)
1918 {
1919         struct ieee80211com *ic = &sc->sc_ic;
1920
1921         /* update basic rate set */
1922         if (ic->ic_curmode == IEEE80211_MODE_11B) {
1923                 /* 11b basic rates: 1, 2Mbps */
1924                 ural_write(sc, RAL_TXRX_CSR11, 0x3);
1925         } else if (IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->ni_chan)) {
1926                 /* 11a basic rates: 6, 12, 24Mbps */
1927                 ural_write(sc, RAL_TXRX_CSR11, 0x150);
1928         } else {
1929                 /* 11g basic rates: 1, 2, 5.5, 11, 6, 12, 24Mbps */
1930                 ural_write(sc, RAL_TXRX_CSR11, 0x15f);
1931         }
1932 }
1933
1934 static void
1935 ural_set_bssid(struct ural_softc *sc, uint8_t *bssid)
1936 {
1937         uint16_t tmp;
1938
1939         tmp = bssid[0] | bssid[1] << 8;
1940         ural_write(sc, RAL_MAC_CSR5, tmp);
1941
1942         tmp = bssid[2] | bssid[3] << 8;
1943         ural_write(sc, RAL_MAC_CSR6, tmp);
1944
1945         tmp = bssid[4] | bssid[5] << 8;
1946         ural_write(sc, RAL_MAC_CSR7, tmp);
1947
1948         DPRINTF(("setting BSSID to %6D\n", bssid, ":"));
1949 }
1950
1951 static void
1952 ural_set_macaddr(struct ural_softc *sc, uint8_t *addr)
1953 {
1954         uint16_t tmp;
1955
1956         tmp = addr[0] | addr[1] << 8;
1957         ural_write(sc, RAL_MAC_CSR2, tmp);
1958
1959         tmp = addr[2] | addr[3] << 8;
1960         ural_write(sc, RAL_MAC_CSR3, tmp);
1961
1962         tmp = addr[4] | addr[5] << 8;
1963         ural_write(sc, RAL_MAC_CSR4, tmp);
1964
1965         DPRINTF(("setting MAC address to %6D\n", addr, ":"));
1966 }
1967
1968 static void
1969 ural_update_promisc(struct ural_softc *sc)
1970 {
1971         struct ifnet *ifp = &sc->sc_ic.ic_if;
1972         uint32_t tmp;
1973
1974         tmp = ural_read(sc, RAL_TXRX_CSR2);
1975
1976         tmp &= ~RAL_DROP_NOT_TO_ME;
1977         if (!(ifp->if_flags & IFF_PROMISC))
1978                 tmp |= RAL_DROP_NOT_TO_ME;
1979
1980         ural_write(sc, RAL_TXRX_CSR2, tmp);
1981
1982         DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
1983             "entering" : "leaving"));
1984 }
1985
1986 static const char *
1987 ural_get_rf(int rev)
1988 {
1989         switch (rev) {
1990         case RAL_RF_2522:       return "RT2522";
1991         case RAL_RF_2523:       return "RT2523";
1992         case RAL_RF_2524:       return "RT2524";
1993         case RAL_RF_2525:       return "RT2525";
1994         case RAL_RF_2525E:      return "RT2525e";
1995         case RAL_RF_2526:       return "RT2526";
1996         case RAL_RF_5222:       return "RT5222";
1997         default:                return "unknown";
1998         }
1999 }
2000
2001 static void
2002 ural_read_eeprom(struct ural_softc *sc)
2003 {
2004         struct ieee80211com *ic = &sc->sc_ic;
2005         uint16_t val;
2006
2007         ural_eeprom_read(sc, RAL_EEPROM_CONFIG0, &val, 2);
2008         val = le16toh(val);
2009         sc->rf_rev =   (val >> 11) & 0x7;
2010         sc->hw_radio = (val >> 10) & 0x1;
2011         sc->led_mode = (val >> 6)  & 0x7;
2012         sc->rx_ant =   (val >> 4)  & 0x3;
2013         sc->tx_ant =   (val >> 2)  & 0x3;
2014         sc->nb_ant =   val & 0x3;
2015
2016         /* read MAC address */
2017         ural_eeprom_read(sc, RAL_EEPROM_ADDRESS, ic->ic_myaddr, 6);
2018
2019         /* read default values for BBP registers */
2020         ural_eeprom_read(sc, RAL_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16);
2021
2022         /* read Tx power for all b/g channels */
2023         ural_eeprom_read(sc, RAL_EEPROM_TXPOWER, sc->txpow, 14);
2024 }
2025
2026 static int
2027 ural_bbp_init(struct ural_softc *sc)
2028 {
2029 #define N(a)    (sizeof (a) / sizeof ((a)[0]))
2030         int i, ntries;
2031
2032         /* wait for BBP to be ready */
2033         for (ntries = 0; ntries < 100; ntries++) {
2034                 if (ural_bbp_read(sc, RAL_BBP_VERSION) != 0)
2035                         break;
2036                 DELAY(1000);
2037         }
2038         if (ntries == 100) {
2039                 device_printf(sc->sc_dev, "timeout waiting for BBP\n");
2040                 return EIO;
2041         }
2042
2043         /* initialize BBP registers to default values */
2044         for (i = 0; i < N(ural_def_bbp); i++)
2045                 ural_bbp_write(sc, ural_def_bbp[i].reg, ural_def_bbp[i].val);
2046
2047 #if 0
2048         /* initialize BBP registers to values stored in EEPROM */
2049         for (i = 0; i < 16; i++) {
2050                 if (sc->bbp_prom[i].reg == 0xff)
2051                         continue;
2052                 ural_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
2053         }
2054 #endif
2055
2056         return 0;
2057 #undef N
2058 }
2059
2060 static void
2061 ural_set_txantenna(struct ural_softc *sc, int antenna)
2062 {
2063         uint16_t tmp;
2064         uint8_t tx;
2065
2066         tx = ural_bbp_read(sc, RAL_BBP_TX) & ~RAL_BBP_ANTMASK;
2067         if (antenna == 1)
2068                 tx |= RAL_BBP_ANTA;
2069         else if (antenna == 2)
2070                 tx |= RAL_BBP_ANTB;
2071         else
2072                 tx |= RAL_BBP_DIVERSITY;
2073
2074         /* need to force I/Q flip for RF 2525e, 2526 and 5222 */
2075         if (sc->rf_rev == RAL_RF_2525E || sc->rf_rev == RAL_RF_2526 ||
2076             sc->rf_rev == RAL_RF_5222)
2077                 tx |= RAL_BBP_FLIPIQ;
2078
2079         ural_bbp_write(sc, RAL_BBP_TX, tx);
2080
2081         /* update values in PHY_CSR5 and PHY_CSR6 */
2082         tmp = ural_read(sc, RAL_PHY_CSR5) & ~0x7;
2083         ural_write(sc, RAL_PHY_CSR5, tmp | (tx & 0x7));
2084
2085         tmp = ural_read(sc, RAL_PHY_CSR6) & ~0x7;
2086         ural_write(sc, RAL_PHY_CSR6, tmp | (tx & 0x7));
2087 }
2088
2089 static void
2090 ural_set_rxantenna(struct ural_softc *sc, int antenna)
2091 {
2092         uint8_t rx;
2093
2094         rx = ural_bbp_read(sc, RAL_BBP_RX) & ~RAL_BBP_ANTMASK;
2095         if (antenna == 1)
2096                 rx |= RAL_BBP_ANTA;
2097         else if (antenna == 2)
2098                 rx |= RAL_BBP_ANTB;
2099         else
2100                 rx |= RAL_BBP_DIVERSITY;
2101
2102         /* need to force no I/Q flip for RF 2525e and 2526 */
2103         if (sc->rf_rev == RAL_RF_2525E || sc->rf_rev == RAL_RF_2526)
2104                 rx &= ~RAL_BBP_FLIPIQ;
2105
2106         ural_bbp_write(sc, RAL_BBP_RX, rx);
2107 }
2108
2109 static void
2110 ural_init(void *priv)
2111 {
2112 #define N(a)    (sizeof (a) / sizeof ((a)[0]))
2113         struct ural_softc *sc = priv;
2114         struct ieee80211com *ic = &sc->sc_ic;
2115         struct ifnet *ifp = &ic->ic_if;
2116         struct ural_rx_data *data;
2117         uint16_t tmp;
2118         usbd_status usb_err;
2119         int i, ntries, error;
2120
2121         ASSERT_SERIALIZED(ifp->if_serializer);
2122
2123         crit_enter();
2124
2125         lwkt_serialize_exit(ifp->if_serializer);
2126         ural_set_testmode(sc);
2127         ural_write(sc, 0x308, 0x00f0);  /* XXX magic */
2128         lwkt_serialize_enter(ifp->if_serializer);
2129
2130         ural_stop(sc);
2131         sc->sc_stopped = 0;
2132
2133         lwkt_serialize_exit(ifp->if_serializer);
2134
2135         /* initialize MAC registers to default values */
2136         for (i = 0; i < N(ural_def_mac); i++)
2137                 ural_write(sc, ural_def_mac[i].reg, ural_def_mac[i].val);
2138
2139         /* wait for BBP and RF to wake up (this can take a long time!) */
2140         for (ntries = 0; ntries < 100; ntries++) {
2141                 tmp = ural_read(sc, RAL_MAC_CSR17);
2142                 if ((tmp & (RAL_BBP_AWAKE | RAL_RF_AWAKE)) ==
2143                     (RAL_BBP_AWAKE | RAL_RF_AWAKE))
2144                         break;
2145                 DELAY(1000);
2146         }
2147         if (ntries == 100) {
2148                 kprintf("%s: timeout waiting for BBP/RF to wakeup\n",
2149                     device_get_nameunit(sc->sc_dev));
2150                 error = ETIMEDOUT;
2151                 goto fail;
2152         }
2153
2154         /* we're ready! */
2155         ural_write(sc, RAL_MAC_CSR1, RAL_HOST_READY);
2156
2157         /* set basic rate set (will be updated later) */
2158         ural_write(sc, RAL_TXRX_CSR11, 0x15f);
2159
2160         error = ural_bbp_init(sc);
2161         if (error)
2162                 goto fail;
2163
2164         /* set default BSS channel */
2165         ural_set_chan(sc, ic->ic_curchan);
2166
2167         /* clear statistic registers (STA_CSR0 to STA_CSR10) */
2168         ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof sc->sta);
2169
2170         ural_set_txantenna(sc, sc->tx_ant);
2171         ural_set_rxantenna(sc, sc->rx_ant);
2172
2173         IEEE80211_ADDR_COPY(ic->ic_myaddr, IF_LLADDR(ifp));
2174         ural_set_macaddr(sc, ic->ic_myaddr);
2175
2176         /*
2177          * Allocate xfer for AMRR statistics requests.
2178          */
2179         sc->stats_xfer = usbd_alloc_xfer(sc->sc_udev);
2180         if (sc->stats_xfer == NULL) {
2181                 kprintf("%s: could not allocate AMRR xfer\n",
2182                     device_get_nameunit(sc->sc_dev));
2183                 error = ENOMEM;
2184                 goto fail;
2185         }
2186
2187         /*
2188          * Open Tx and Rx USB bulk pipes.
2189          */
2190         usb_err = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE,
2191             &sc->sc_tx_pipeh);
2192         if (usb_err != 0) {
2193                 kprintf("%s: could not open Tx pipe: %s\n",
2194                     device_get_nameunit(sc->sc_dev), usbd_errstr(usb_err));
2195                 error = ENOMEM;
2196                 goto fail;
2197         }
2198
2199         usb_err = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE,
2200             &sc->sc_rx_pipeh);
2201         if (usb_err != 0) {
2202                 kprintf("%s: could not open Rx pipe: %s\n",
2203                     device_get_nameunit(sc->sc_dev), usbd_errstr(usb_err));
2204                 error = ENOMEM;
2205                 goto fail;
2206         }
2207
2208         /*
2209          * Allocate Tx and Rx xfer queues.
2210          */
2211         error = ural_alloc_tx_list(sc);
2212         if (error) {
2213                 kprintf("%s: could not allocate Tx list\n",
2214                     device_get_nameunit(sc->sc_dev));
2215                 goto fail;
2216         }
2217
2218         error = ural_alloc_rx_list(sc);
2219         if (error) {
2220                 kprintf("%s: could not allocate Rx list\n",
2221                     device_get_nameunit(sc->sc_dev));
2222                 goto fail;
2223         }
2224
2225         /*
2226          * Start up the receive pipe.
2227          */
2228         for (i = 0; i < RAL_RX_LIST_COUNT; i++) {
2229                 data = &sc->rx_data[i];
2230
2231                 usbd_setup_xfer(data->xfer, sc->sc_rx_pipeh, data, data->buf,
2232                     MCLBYTES, USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, ural_rxeof);
2233                 usbd_transfer(data->xfer);
2234         }
2235
2236         /* kick Rx */
2237         tmp = RAL_DROP_PHY | RAL_DROP_CRC;
2238         if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2239                 tmp |= RAL_DROP_CTL | RAL_DROP_BAD_VERSION;
2240                 if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2241                         tmp |= RAL_DROP_TODS;
2242                 if (!(ifp->if_flags & IFF_PROMISC))
2243                         tmp |= RAL_DROP_NOT_TO_ME;
2244         }
2245         ural_write(sc, RAL_TXRX_CSR2, tmp);
2246
2247         /* clear statistic registers (STA_CSR0 to STA_CSR10) */
2248         ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof(sc->sta));
2249 fail:
2250         lwkt_serialize_enter(ifp->if_serializer);
2251         if (error) {
2252                 ural_stop(sc);
2253         } else {
2254                 ifp->if_flags &= ~IFF_OACTIVE;
2255                 ifp->if_flags |= IFF_RUNNING;
2256
2257                 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2258                         if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
2259                                 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2260                 } else {
2261                         ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2262                 }
2263         }
2264
2265         crit_exit();
2266 #undef N
2267 }
2268
2269 static void
2270 ural_stop(struct ural_softc *sc)
2271 {
2272         struct ieee80211com *ic = &sc->sc_ic;
2273         struct ifnet *ifp = &ic->ic_if;
2274
2275         ASSERT_SERIALIZED(ifp->if_serializer);
2276
2277         crit_enter();
2278
2279         ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2280         sc->sc_stopped = 1;
2281
2282         ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2283
2284         sc->sc_tx_timer = 0;
2285         ifp->if_timer = 0;
2286
2287         lwkt_serialize_exit(ifp->if_serializer);
2288
2289         /* disable Rx */
2290         ural_write(sc, RAL_TXRX_CSR2, RAL_DISABLE_RX);
2291
2292         /* reset ASIC and BBP (but won't reset MAC registers!) */
2293         ural_write(sc, RAL_MAC_CSR1, RAL_RESET_ASIC | RAL_RESET_BBP);
2294         ural_write(sc, RAL_MAC_CSR1, 0);
2295
2296         if (sc->stats_xfer != NULL) {
2297                 usbd_free_xfer(sc->stats_xfer);
2298                 sc->stats_xfer = NULL;
2299         }
2300
2301         if (sc->sc_rx_pipeh != NULL) {
2302                 usbd_abort_pipe(sc->sc_rx_pipeh);
2303                 usbd_close_pipe(sc->sc_rx_pipeh);
2304                 sc->sc_rx_pipeh = NULL;
2305         }
2306
2307         if (sc->sc_tx_pipeh != NULL) {
2308                 usbd_abort_pipe(sc->sc_tx_pipeh);
2309                 usbd_close_pipe(sc->sc_tx_pipeh);
2310                 sc->sc_tx_pipeh = NULL;
2311         }
2312
2313         lwkt_serialize_enter(ifp->if_serializer);
2314
2315         ural_free_rx_list(sc);
2316         ural_free_tx_list(sc);
2317
2318         crit_exit();
2319 }
2320
2321 static void
2322 ural_stats_timeout(void *arg)
2323 {
2324         struct ural_softc *sc = (struct ural_softc *)arg;
2325         usb_device_request_t req;
2326
2327         if (sc->sc_stopped)
2328                 return;
2329
2330         crit_enter();
2331
2332         /*
2333          * Asynchronously read statistic registers (cleared by read).
2334          */
2335         req.bmRequestType = UT_READ_VENDOR_DEVICE;
2336         req.bRequest = RAL_READ_MULTI_MAC;
2337         USETW(req.wValue, 0);
2338         USETW(req.wIndex, RAL_STA_CSR0);
2339         USETW(req.wLength, sizeof(sc->sta));
2340
2341         usbd_setup_default_xfer(sc->stats_xfer, sc->sc_udev, sc,
2342                                 USBD_DEFAULT_TIMEOUT, &req,
2343                                 sc->sta, sizeof(sc->sta), 0,
2344                                 ural_stats_update);
2345         usbd_transfer(sc->stats_xfer);
2346
2347         crit_exit();
2348 }
2349
2350 static void
2351 ural_stats_update(usbd_xfer_handle xfer, usbd_private_handle priv,
2352                   usbd_status status)
2353 {
2354         struct ural_softc *sc = (struct ural_softc *)priv;
2355         struct ifnet *ifp = &sc->sc_ic.ic_if;
2356         struct ieee80211_ratectl_stats *stats = &sc->sc_stats;
2357
2358         if (status != USBD_NORMAL_COMPLETION) {
2359                 device_printf(sc->sc_dev, "could not retrieve Tx statistics - "
2360                     "cancelling automatic rate control\n");
2361                 return;
2362         }
2363
2364         crit_enter();
2365
2366         /* count TX retry-fail as Tx errors */
2367         ifp->if_oerrors += sc->sta[RAL_TX_PKT_FAIL];
2368
2369         stats->stats_pkt_ok += sc->sta[RAL_TX_PKT_NO_RETRY] +
2370                                sc->sta[RAL_TX_PKT_ONE_RETRY] +
2371                                sc->sta[RAL_TX_PKT_MULTI_RETRY];
2372
2373         stats->stats_pkt_err += sc->sta[RAL_TX_PKT_FAIL];
2374
2375         stats->stats_pkt_noretry += sc->sta[RAL_TX_PKT_NO_RETRY];
2376
2377         stats->stats_retries += sc->sta[RAL_TX_PKT_ONE_RETRY];
2378 #if 1
2379         /*
2380          * XXX Estimated average:
2381          * Actual number of retries for each packet should belong to
2382          * [2, sc->sc_tx_retries]
2383          */
2384         stats->stats_retries += sc->sta[RAL_TX_PKT_MULTI_RETRY] *
2385                                 ((2 + sc->sc_tx_retries) / 2);
2386 #else
2387         stats->stats_retries += sc->sta[RAL_TX_PKT_MULTI_RETRY];
2388 #endif
2389         stats->stats_retries += sc->sta[RAL_TX_PKT_FAIL] * sc->sc_tx_retries;
2390
2391         callout_reset(&sc->stats_ch, 4 * hz / 5, ural_stats_timeout, sc);
2392
2393         crit_exit();
2394 }
2395
2396 static void
2397 ural_stats(struct ieee80211com *ic, struct ieee80211_node *ni __unused,
2398            struct ieee80211_ratectl_stats *stats)
2399 {
2400         struct ifnet *ifp = &ic->ic_if;
2401         struct ural_softc *sc = ifp->if_softc;
2402
2403         ASSERT_SERIALIZED(ifp->if_serializer);
2404
2405         bcopy(&sc->sc_stats, stats, sizeof(*stats));
2406         bzero(&sc->sc_stats, sizeof(sc->sc_stats));
2407 }
2408
2409 static void
2410 ural_ratectl_change(struct ieee80211com *ic, u_int orc __unused, u_int nrc)
2411 {
2412         struct ieee80211_ratectl_state *st = &ic->ic_ratectl;
2413         struct ieee80211_onoe_param *oparam;
2414
2415         if (st->rc_st_param != NULL) {
2416                 kfree(st->rc_st_param, M_DEVBUF);
2417                 st->rc_st_param = NULL;
2418         }
2419
2420         switch (nrc) {
2421         case IEEE80211_RATECTL_ONOE:
2422                 oparam = kmalloc(sizeof(*oparam), M_DEVBUF, M_INTWAIT);
2423
2424                 IEEE80211_ONOE_PARAM_SETUP(oparam);
2425                 oparam->onoe_raise = 20;
2426
2427                 st->rc_st_param = oparam;
2428                 break;
2429         case IEEE80211_RATECTL_NONE:
2430                 /* This could only happen during detaching */
2431                 break;
2432         default:
2433                 panic("unknown rate control algo %u\n", nrc);
2434         }
2435 }
2436
2437 DRIVER_MODULE(ural, uhub, ural_driver, ural_devclass, usbd_driver_load, 0);