For rum(4) and rt2661 part of ral(4):
[dragonfly.git] / sys / dev / netif / rum / if_rum.c
1 /*      $OpenBSD: if_rum.c,v 1.40 2006/09/18 16:20:20 damien Exp $      */
2 /*      $DragonFly: src/sys/dev/netif/rum/if_rum.c,v 1.6 2007/02/07 12:34:26 sephe Exp $        */
3
4 /*-
5  * Copyright (c) 2005, 2006 Damien Bergamini <damien.bergamini@free.fr>
6  * Copyright (c) 2006 Niall O'Higgins <niallo@openbsd.org>
7  *
8  * Permission to use, copy, modify, and distribute this software for any
9  * purpose with or without fee is hereby granted, provided that the above
10  * copyright notice and this permission notice appear in all copies.
11  *
12  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19  */
20
21 /*-
22  * Ralink Technology RT2501USB/RT2601USB chipset driver
23  * http://www.ralinktech.com/
24  */
25
26 #include <sys/param.h>
27 #include <sys/bus.h>
28 #include <sys/endian.h>
29 #include <sys/kernel.h>
30 #include <sys/malloc.h>
31 #include <sys/mbuf.h>
32 #include <sys/rman.h>
33 #include <sys/serialize.h>
34 #include <sys/socket.h>
35 #include <sys/sockio.h>
36
37 #include <net/bpf.h>
38 #include <net/ethernet.h>
39 #include <net/if.h>
40 #include <net/if_arp.h>
41 #include <net/if_dl.h>
42 #include <net/if_media.h>
43 #include <net/ifq_var.h>
44
45 #include <netproto/802_11/ieee80211_var.h>
46 #include <netproto/802_11/ieee80211_radiotap.h>
47 #include <netproto/802_11/wlan_ratectl/onoe/ieee80211_onoe_param.h>
48
49 #include <bus/usb/usb.h>
50 #include <bus/usb/usbdi.h>
51 #include <bus/usb/usbdi_util.h>
52 #include <bus/usb/usbdevs.h>
53
54 #include "if_rumreg.h"
55 #include "if_rumvar.h"
56 #include "rum_ucode.h"
57
58 #ifdef USB_DEBUG
59 #define RUM_DEBUG
60 #endif
61
62 #ifdef RUM_DEBUG
63 #define DPRINTF(x)      do { if (rum_debug) logprintf x; } while (0)
64 #define DPRINTFN(n, x)  do { if (rum_debug >= (n)) logprintf x; } while (0)
65 int rum_debug = 0;
66 #else
67 #define DPRINTF(x)
68 #define DPRINTFN(n, x)
69 #endif
70
71 /* various supported device vendors/products */
72 static const struct usb_devno rum_devs[] = {
73         { USB_VENDOR_ABOCOM,            USB_PRODUCT_ABOCOM_RT2573 },
74         { USB_VENDOR_ASUS,              USB_PRODUCT_ASUS_WL167G_2 },
75         { USB_VENDOR_BELKIN,            USB_PRODUCT_BELKIN_F5D7050A },
76         { USB_VENDOR_BELKIN,            USB_PRODUCT_BELKIN_F5D9050V3 },
77         { USB_VENDOR_LINKSYS4,          USB_PRODUCT_LINKSYS4_WUSB54GC },
78         { USB_VENDOR_CONCEPTRONIC,      USB_PRODUCT_CONCEPTRONIC_C54RU2 },
79         { USB_VENDOR_DICKSMITH,         USB_PRODUCT_DICKSMITH_CWD854F },
80         { USB_VENDOR_DICKSMITH,         USB_PRODUCT_DICKSMITH_RT2573 },
81         { USB_VENDOR_DLINK2,            USB_PRODUCT_DLINK2_DWLG122C1 },
82         { USB_VENDOR_DLINK2,            USB_PRODUCT_DLINK2_WUA1340 },
83         { USB_VENDOR_GIGABYTE,          USB_PRODUCT_GIGABYTE_GNWB01GS },
84         { USB_VENDOR_GIGASET,           USB_PRODUCT_GIGASET_RT2573 },
85         { USB_VENDOR_GOODWAY,           USB_PRODUCT_GOODWAY_RT2573 },
86         { USB_VENDOR_HUAWEI3COM,        USB_PRODUCT_HUAWEI3COM_RT2573 },
87         { USB_VENDOR_MSI,               USB_PRODUCT_MSI_RT2573 },
88         { USB_VENDOR_MSI,               USB_PRODUCT_MSI_RT2573_2 },
89         { USB_VENDOR_MSI,               USB_PRODUCT_MSI_RT2573_3 },
90         { USB_VENDOR_PLANEX2,           USB_PRODUCT_PLANEX2_GWUSMM },
91         { USB_VENDOR_QCOM,              USB_PRODUCT_QCOM_RT2573 },
92         { USB_VENDOR_QCOM,              USB_PRODUCT_QCOM_RT2573_2 },
93         { USB_VENDOR_RALINK,            USB_PRODUCT_RALINK_RT2573 },
94         { USB_VENDOR_RALINK,            USB_PRODUCT_RALINK_RT2671 },
95         { USB_VENDOR_SITECOMEU,         USB_PRODUCT_SITECOMEU_WL113R2 },
96         { USB_VENDOR_SITECOMEU,         USB_PRODUCT_SITECOMEU_WL172 },
97         { USB_VENDOR_SURECOM,           USB_PRODUCT_SURECOM_RT2573 }
98 };
99
100 #ifdef notyet
101 Static void             rum_attachhook(void *);
102 #endif
103 Static int              rum_alloc_tx_list(struct rum_softc *);
104 Static void             rum_free_tx_list(struct rum_softc *);
105 Static int              rum_alloc_rx_list(struct rum_softc *);
106 Static void             rum_free_rx_list(struct rum_softc *);
107 Static int              rum_media_change(struct ifnet *);
108 Static void             rum_next_scan(void *);
109 Static void             rum_task(void *);
110 Static int              rum_newstate(struct ieee80211com *,
111                             enum ieee80211_state, int);
112 Static void             rum_txeof(usbd_xfer_handle, usbd_private_handle,
113                             usbd_status);
114 Static void             rum_rxeof(usbd_xfer_handle, usbd_private_handle,
115                             usbd_status);
116 Static uint8_t          rum_rxrate(struct rum_rx_desc *);
117 Static int              rum_ack_rate(struct ieee80211com *, int);
118 Static uint16_t         rum_txtime(int, int, uint32_t);
119 Static uint8_t          rum_plcp_signal(int);
120 Static void             rum_setup_tx_desc(struct rum_softc *,
121                             struct rum_tx_desc *, uint32_t, uint16_t, int,
122                             int);
123 Static int              rum_tx_data(struct rum_softc *, struct mbuf *,
124                             struct ieee80211_node *);
125 Static void             rum_start(struct ifnet *);
126 Static void             rum_watchdog(struct ifnet *);
127 Static int              rum_ioctl(struct ifnet *, u_long, caddr_t,
128                                   struct ucred *);
129 Static void             rum_eeprom_read(struct rum_softc *, uint16_t, void *,
130                             int);
131 Static uint32_t         rum_read(struct rum_softc *, uint16_t);
132 Static void             rum_read_multi(struct rum_softc *, uint16_t, void *,
133                             int);
134 Static void             rum_write(struct rum_softc *, uint16_t, uint32_t);
135 Static void             rum_write_multi(struct rum_softc *, uint16_t, void *,
136                             size_t);
137 Static void             rum_bbp_write(struct rum_softc *, uint8_t, uint8_t);
138 Static uint8_t          rum_bbp_read(struct rum_softc *, uint8_t);
139 Static void             rum_rf_write(struct rum_softc *, uint8_t, uint32_t);
140 Static void             rum_select_antenna(struct rum_softc *);
141 Static void             rum_enable_mrr(struct rum_softc *);
142 Static void             rum_set_txpreamble(struct rum_softc *);
143 Static void             rum_set_basicrates(struct rum_softc *);
144 Static void             rum_select_band(struct rum_softc *,
145                             struct ieee80211_channel *);
146 Static void             rum_set_chan(struct rum_softc *,
147                             struct ieee80211_channel *);
148 Static void             rum_enable_tsf_sync(struct rum_softc *);
149 Static void             rum_update_slot(struct rum_softc *);
150 Static void             rum_set_bssid(struct rum_softc *, const uint8_t *);
151 Static void             rum_set_macaddr(struct rum_softc *, const uint8_t *);
152 Static void             rum_update_promisc(struct rum_softc *);
153 Static const char       *rum_get_rf(int);
154 Static void             rum_read_eeprom(struct rum_softc *);
155 Static int              rum_bbp_init(struct rum_softc *);
156 Static void             rum_init(void *);
157 Static void             rum_stop(struct rum_softc *);
158 Static int              rum_load_microcode(struct rum_softc *, const uint8_t *,
159                             size_t);
160 Static int              rum_prepare_beacon(struct rum_softc *);
161
162 Static void             rum_stats_timeout(void *);
163 Static void             rum_stats_update(usbd_xfer_handle, usbd_private_handle,
164                                          usbd_status);
165 Static void             rum_stats(struct ieee80211com *,
166                                   struct ieee80211_node *,
167                                   struct ieee80211_ratectl_stats *);
168 Static void             rum_ratectl_change(struct ieee80211com *ic, u_int,
169                                            u_int);
170 Static int              rum_get_rssi(struct rum_softc *, uint8_t);
171
172 /*
173  * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
174  */
175 static const struct ieee80211_rateset rum_rateset_11a =
176         { 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
177
178 static const struct ieee80211_rateset rum_rateset_11b =
179         { 4, { 2, 4, 11, 22 } };
180
181 static const struct ieee80211_rateset rum_rateset_11g =
182         { 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
183
184 static const struct {
185         uint32_t        reg;
186         uint32_t        val;
187 } rum_def_mac[] = {
188         RT2573_DEF_MAC
189 };
190
191 static const struct {
192         uint8_t reg;
193         uint8_t val;
194 } rum_def_bbp[] = {
195         RT2573_DEF_BBP
196 };
197
198 static const struct rfprog {
199         uint8_t         chan;
200         uint32_t        r1, r2, r3, r4;
201 }  rum_rf5226[] = {
202         RT2573_RF5226
203 }, rum_rf5225[] = {
204         RT2573_RF5225
205 };
206
207 USB_DECLARE_DRIVER(rum);
208 DRIVER_MODULE(rum, uhub, rum_driver, rum_devclass, usbd_driver_load, 0);
209
210 USB_MATCH(rum)
211 {
212         USB_MATCH_START(rum, uaa);
213
214         if (uaa->iface != NULL)
215                 return UMATCH_NONE;
216
217         return (usb_lookup(rum_devs, uaa->vendor, uaa->product) != NULL) ?
218             UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
219 }
220
221 USB_ATTACH(rum)
222 {
223         USB_ATTACH_START(rum, sc, uaa);
224         struct ieee80211com *ic = &sc->sc_ic;
225         struct ifnet *ifp = &ic->ic_if;
226         usb_interface_descriptor_t *id;
227         usb_endpoint_descriptor_t *ed;
228         usbd_status error;
229         char devinfo[1024];
230         int i, ntries;
231         uint32_t tmp;
232
233         sc->sc_udev = uaa->device;
234
235         usbd_devinfo(uaa->device, 0, devinfo);
236         USB_ATTACH_SETUP;
237
238         if (usbd_set_config_no(sc->sc_udev, RT2573_CONFIG_NO, 0) != 0) {
239                 kprintf("%s: could not set configuration no\n",
240                     USBDEVNAME(sc->sc_dev));
241                 USB_ATTACH_ERROR_RETURN;
242         }
243
244         /* get the first interface handle */
245         error = usbd_device2interface_handle(sc->sc_udev, RT2573_IFACE_INDEX,
246             &sc->sc_iface);
247         if (error != 0) {
248                 kprintf("%s: could not get interface handle\n",
249                     USBDEVNAME(sc->sc_dev));
250                 USB_ATTACH_ERROR_RETURN;
251         }
252
253         /*
254          * Find endpoints.
255          */
256         id = usbd_get_interface_descriptor(sc->sc_iface);
257
258         sc->sc_rx_no = sc->sc_tx_no = -1;
259         for (i = 0; i < id->bNumEndpoints; i++) {
260                 ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
261                 if (ed == NULL) {
262                         kprintf("%s: no endpoint descriptor for iface %d\n",
263                             USBDEVNAME(sc->sc_dev), i);
264                         USB_ATTACH_ERROR_RETURN;
265                 }
266
267                 if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
268                     UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
269                         sc->sc_rx_no = ed->bEndpointAddress;
270                 else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT &&
271                     UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
272                         sc->sc_tx_no = ed->bEndpointAddress;
273         }
274         if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) {
275                 kprintf("%s: missing endpoint\n", USBDEVNAME(sc->sc_dev));
276                 USB_ATTACH_ERROR_RETURN;
277         }
278
279         usb_init_task(&sc->sc_task, rum_task, sc);
280
281         callout_init(&sc->scan_ch);
282         callout_init(&sc->stats_ch);
283
284         /* retrieve RT2573 rev. no */
285         for (ntries = 0; ntries < 1000; ntries++) {
286                 if ((tmp = rum_read(sc, RT2573_MAC_CSR0)) != 0)
287                         break;
288                 DELAY(1000);
289         }
290         if (ntries == 1000) {
291                 kprintf("%s: timeout waiting for chip to settle\n",
292                     USBDEVNAME(sc->sc_dev));
293                 USB_ATTACH_ERROR_RETURN;
294         }
295
296         /* retrieve MAC address and various other things from EEPROM */
297         rum_read_eeprom(sc);
298
299         kprintf("%s: MAC/BBP RT%04x (rev 0x%05x), RF %s, address %6D\n",
300             USBDEVNAME(sc->sc_dev), sc->macbbp_rev, tmp,
301             rum_get_rf(sc->rf_rev), ic->ic_myaddr, ":");
302
303         error = rum_load_microcode(sc, rt2573, sizeof(rt2573));
304         if (error != 0) {
305                 device_printf(self, "can't load microcode\n");
306                 USB_ATTACH_ERROR_RETURN;
307         }
308
309         ic->ic_phytype = IEEE80211_T_OFDM;      /* not only, but not used */
310         ic->ic_opmode = IEEE80211_M_STA;        /* default to BSS mode */
311         ic->ic_state = IEEE80211_S_INIT;
312
313         /* set device capabilities */
314         ic->ic_caps =
315             IEEE80211_C_IBSS |          /* IBSS mode supported */
316             IEEE80211_C_MONITOR |       /* monitor mode supported */
317             IEEE80211_C_HOSTAP |        /* HostAp mode supported */
318             IEEE80211_C_TXPMGT |        /* tx power management */
319             IEEE80211_C_SHPREAMBLE |    /* short preamble supported */
320             IEEE80211_C_SHSLOT |        /* short slot time supported */
321             IEEE80211_C_WPA;            /* WPA 1+2 */
322
323         if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_5226) {
324                 /* set supported .11a rates */
325                 ic->ic_sup_rates[IEEE80211_MODE_11A] = rum_rateset_11a;
326
327                 /* set supported .11a channels */
328                 for (i = 34; i <= 46; i += 4) {
329                         ic->ic_channels[i].ic_freq =
330                             ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
331                         ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
332                 }
333                 for (i = 36; i <= 64; i += 4) {
334                         ic->ic_channels[i].ic_freq =
335                             ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
336                         ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
337                 }
338                 for (i = 100; i <= 140; i += 4) {
339                         ic->ic_channels[i].ic_freq =
340                             ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
341                         ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
342                 }
343                 for (i = 149; i <= 165; i += 4) {
344                         ic->ic_channels[i].ic_freq =
345                             ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
346                         ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
347                 }
348         }
349
350         /* set supported .11b and .11g rates */
351         ic->ic_sup_rates[IEEE80211_MODE_11B] = rum_rateset_11b;
352         ic->ic_sup_rates[IEEE80211_MODE_11G] = rum_rateset_11g;
353
354         /* set supported .11b and .11g channels (1 through 14) */
355         for (i = 1; i <= 14; i++) {
356                 ic->ic_channels[i].ic_freq =
357                     ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
358                 ic->ic_channels[i].ic_flags =
359                     IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
360                     IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
361         }
362
363         if_initname(ifp, device_get_name(self), device_get_unit(self));
364         ifp->if_softc = sc;
365         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
366         ifp->if_init = rum_init;
367         ifp->if_ioctl = rum_ioctl;
368         ifp->if_start = rum_start;
369         ifp->if_watchdog = rum_watchdog;
370         ifq_set_maxlen(&ifp->if_snd, IFQ_MAXLEN);
371         ifq_set_ready(&ifp->if_snd);
372
373         ic->ic_ratectl.rc_st_ratectl_cap = IEEE80211_RATECTL_CAP_ONOE;
374         ic->ic_ratectl.rc_st_ratectl = IEEE80211_RATECTL_ONOE;
375         ic->ic_ratectl.rc_st_valid_stats =
376                 IEEE80211_RATECTL_STATS_PKT_NORETRY |
377                 IEEE80211_RATECTL_STATS_PKT_OK |
378                 IEEE80211_RATECTL_STATS_PKT_ERR |
379                 IEEE80211_RATECTL_STATS_RETRIES;
380         ic->ic_ratectl.rc_st_stats = rum_stats;
381         ic->ic_ratectl.rc_st_change = rum_ratectl_change;
382
383         ieee80211_ifattach(ic);
384
385         /* Enable software beacon missing handling. */
386         ic->ic_flags_ext |= IEEE80211_FEXT_SWBMISS;
387
388         /* override state transition machine */
389         sc->sc_newstate = ic->ic_newstate;
390         ic->ic_newstate = rum_newstate;
391         ieee80211_media_init(ic, rum_media_change, ieee80211_media_status);
392
393         bpfattach_dlt(ifp, DLT_IEEE802_11_RADIO,
394             sizeof(struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
395             &sc->sc_drvbpf);
396
397         sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
398         sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
399         sc->sc_rxtap.wr_ihdr.it_present = htole32(RT2573_RX_RADIOTAP_PRESENT);
400
401         sc->sc_txtap_len = sizeof sc->sc_txtapu;
402         sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
403         sc->sc_txtap.wt_ihdr.it_present = htole32(RT2573_TX_RADIOTAP_PRESENT);
404
405         if (bootverbose)
406                 ieee80211_announce(ic);
407
408         USB_ATTACH_SUCCESS_RETURN;
409 }
410
411 USB_DETACH(rum)
412 {
413         USB_DETACH_START(rum, sc);
414         struct ifnet *ifp = &sc->sc_ic.ic_if;
415
416 #ifdef spl
417         s = splusb();
418 #endif
419
420         lwkt_serialize_enter(ifp->if_serializer);
421
422         callout_stop(&sc->scan_ch);
423         callout_stop(&sc->stats_ch);
424
425         sc->sc_flags |= RUM_FLAG_SYNCTASK;
426         rum_stop(sc);
427
428         lwkt_serialize_exit(ifp->if_serializer);
429
430         usb_rem_task(sc->sc_udev, &sc->sc_task);
431
432         bpfdetach(ifp);
433         ieee80211_ifdetach(&sc->sc_ic); /* free all nodes */
434
435         if (sc->stats_xfer != NULL) {
436                 usbd_free_xfer(sc->stats_xfer);
437                 sc->stats_xfer = NULL;
438         }
439
440         if (sc->sc_rx_pipeh != NULL) {
441                 usbd_abort_pipe(sc->sc_rx_pipeh);
442                 usbd_close_pipe(sc->sc_rx_pipeh);
443         }
444
445         if (sc->sc_tx_pipeh != NULL) {
446                 usbd_abort_pipe(sc->sc_tx_pipeh);
447                 usbd_close_pipe(sc->sc_tx_pipeh);
448         }
449
450         rum_free_rx_list(sc);
451         rum_free_tx_list(sc);
452
453 #ifdef spl
454         splx(s);
455 #endif
456         return 0;
457 }
458
459 Static int
460 rum_alloc_tx_list(struct rum_softc *sc)
461 {
462         struct rum_tx_data *data;
463         int i, error;
464
465         sc->tx_queued = 0;
466
467         for (i = 0; i < RT2573_TX_LIST_COUNT; i++) {
468                 data = &sc->tx_data[i];
469
470                 data->sc = sc;
471
472                 data->xfer = usbd_alloc_xfer(sc->sc_udev);
473                 if (data->xfer == NULL) {
474                         kprintf("%s: could not allocate tx xfer\n",
475                             USBDEVNAME(sc->sc_dev));
476                         error = ENOMEM;
477                         goto fail;
478                 }
479
480                 data->buf = usbd_alloc_buffer(data->xfer,
481                     RT2573_TX_DESC_SIZE + IEEE80211_MAX_LEN);
482                 if (data->buf == NULL) {
483                         kprintf("%s: could not allocate tx buffer\n",
484                             USBDEVNAME(sc->sc_dev));
485                         error = ENOMEM;
486                         goto fail;
487                 }
488
489                 /* clean Tx descriptor */
490                 bzero(data->buf, RT2573_TX_DESC_SIZE);
491         }
492
493         return 0;
494
495 fail:   rum_free_tx_list(sc);
496         return error;
497 }
498
499 Static void
500 rum_free_tx_list(struct rum_softc *sc)
501 {
502         struct rum_tx_data *data;
503         int i;
504
505         for (i = 0; i < RT2573_TX_LIST_COUNT; i++) {
506                 data = &sc->tx_data[i];
507
508                 if (data->xfer != NULL) {
509                         usbd_free_xfer(data->xfer);
510                         data->xfer = NULL;
511                 }
512
513                 if (data->ni != NULL) {
514                         ieee80211_free_node(data->ni);
515                         data->ni = NULL;
516                 }
517         }
518 }
519
520 Static int
521 rum_alloc_rx_list(struct rum_softc *sc)
522 {
523         struct rum_rx_data *data;
524         int i, error;
525
526         for (i = 0; i < RT2573_RX_LIST_COUNT; i++) {
527                 data = &sc->rx_data[i];
528
529                 data->sc = sc;
530
531                 data->xfer = usbd_alloc_xfer(sc->sc_udev);
532                 if (data->xfer == NULL) {
533                         kprintf("%s: could not allocate rx xfer\n",
534                             USBDEVNAME(sc->sc_dev));
535                         error = ENOMEM;
536                         goto fail;
537                 }
538
539                 if (usbd_alloc_buffer(data->xfer, MCLBYTES) == NULL) {
540                         kprintf("%s: could not allocate rx buffer\n",
541                             USBDEVNAME(sc->sc_dev));
542                         error = ENOMEM;
543                         goto fail;
544                 }
545
546                 data->m = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR);
547                 if (data->m == NULL) {
548                         kprintf("%s: could not allocate rx mbuf\n",
549                             USBDEVNAME(sc->sc_dev));
550                         error = ENOMEM;
551                         goto fail;
552                 }
553
554                 data->buf = mtod(data->m, uint8_t *);
555                 bzero(data->buf, sizeof(struct rum_rx_desc));
556         }
557
558         return 0;
559
560 fail:   rum_free_tx_list(sc);
561         return error;
562 }
563
564 Static void
565 rum_free_rx_list(struct rum_softc *sc)
566 {
567         struct rum_rx_data *data;
568         int i;
569
570         for (i = 0; i < RT2573_RX_LIST_COUNT; i++) {
571                 data = &sc->rx_data[i];
572
573                 if (data->xfer != NULL) {
574                         usbd_free_xfer(data->xfer);
575                         data->xfer = NULL;
576                 }
577
578                 if (data->m != NULL) {
579                         m_freem(data->m);
580                         data->m = NULL;
581                 }
582         }
583 }
584
585 Static int
586 rum_media_change(struct ifnet *ifp)
587 {
588         int error;
589
590         error = ieee80211_media_change(ifp);
591         if (error != ENETRESET)
592                 return error;
593
594         if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
595                 rum_init(ifp->if_softc);
596
597         return 0;
598 }
599
600 /*
601  * This function is called periodically (every 200ms) during scanning to
602  * switch from one channel to another.
603  */
604 Static void
605 rum_next_scan(void *arg)
606 {
607         struct rum_softc *sc = arg;
608         struct ieee80211com *ic = &sc->sc_ic;
609         struct ifnet *ifp = &ic->ic_if;
610
611         lwkt_serialize_enter(ifp->if_serializer);
612
613         if (ic->ic_state == IEEE80211_S_SCAN)
614                 ieee80211_next_scan(ic);
615
616         lwkt_serialize_exit(ifp->if_serializer);
617 }
618
619 Static void
620 rum_task(void *arg)
621 {
622         struct rum_softc *sc = arg;
623         struct ieee80211com *ic = &sc->sc_ic;
624         struct ifnet *ifp = &ic->ic_if;
625         enum ieee80211_state ostate;
626         struct ieee80211_node *ni;
627         uint32_t tmp;
628
629         lwkt_serialize_enter(ifp->if_serializer);
630
631         ieee80211_ratectl_newstate(ic, sc->sc_state);
632
633         ostate = ic->ic_state;
634
635         switch (sc->sc_state) {
636         case IEEE80211_S_INIT:
637                 if (ostate == IEEE80211_S_RUN) {
638                         /* abort TSF synchronization */
639                         tmp = rum_read(sc, RT2573_TXRX_CSR9);
640                         rum_write(sc, RT2573_TXRX_CSR9, tmp & ~0x00ffffff);
641                 }
642                 break;
643
644         case IEEE80211_S_SCAN:
645                 rum_set_chan(sc, ic->ic_curchan);
646                 callout_reset(&sc->scan_ch, hz / 5, rum_next_scan, sc);
647                 break;
648
649         case IEEE80211_S_AUTH:
650                 rum_set_chan(sc, ic->ic_curchan);
651                 break;
652
653         case IEEE80211_S_ASSOC:
654                 rum_set_chan(sc, ic->ic_curchan);
655                 break;
656
657         case IEEE80211_S_RUN:
658                 rum_set_chan(sc, ic->ic_curchan);
659
660                 ni = ic->ic_bss;
661
662                 lwkt_serialize_exit(ifp->if_serializer);
663
664                 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
665                         rum_update_slot(sc);
666                         rum_enable_mrr(sc);
667                         rum_set_txpreamble(sc);
668                         rum_set_basicrates(sc);
669                         rum_set_bssid(sc, ni->ni_bssid);
670                 }
671
672                 if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
673                     ic->ic_opmode == IEEE80211_M_IBSS)
674                         rum_prepare_beacon(sc);
675
676                 if (ic->ic_opmode != IEEE80211_M_MONITOR)
677                         rum_enable_tsf_sync(sc);
678
679                 /* clear statistic registers (STA_CSR0 to STA_CSR5) */
680                 rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof(sc->sta));
681
682                 lwkt_serialize_enter(ifp->if_serializer);
683
684                 callout_reset(&sc->stats_ch, 4 * hz / 5, rum_stats_timeout, sc);
685
686                 break;
687         }
688
689         sc->sc_newstate(ic, sc->sc_state, sc->sc_arg);
690
691         lwkt_serialize_exit(ifp->if_serializer);
692 }
693
694 Static int
695 rum_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
696 {
697         struct rum_softc *sc = ic->ic_if.if_softc;
698         struct ifnet *ifp = &ic->ic_if;
699
700         ASSERT_SERIALIZED(ifp->if_serializer);
701
702         callout_stop(&sc->scan_ch);
703         callout_stop(&sc->stats_ch);
704
705         /* do it in a process context */
706         sc->sc_state = nstate;
707         sc->sc_arg = arg;
708
709         lwkt_serialize_exit(ifp->if_serializer);
710         usb_rem_task(sc->sc_udev, &sc->sc_task);
711
712         if (sc->sc_flags & RUM_FLAG_SYNCTASK) {
713                 usb_do_task(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER,
714                             USBD_NO_TIMEOUT);
715         } else {
716                 usb_add_task(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER);
717         }
718         lwkt_serialize_enter(ifp->if_serializer);
719
720         return 0;
721 }
722
723 /* quickly determine if a given rate is CCK or OFDM */
724 #define RUM_RATE_IS_OFDM(rate)  ((rate) >= 12 && (rate) != 22)
725
726 #define RUM_ACK_SIZE    14      /* 10 + 4(FCS) */
727 #define RUM_CTS_SIZE    14      /* 10 + 4(FCS) */
728
729 Static void
730 rum_txeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
731 {
732         struct rum_tx_data *data = priv;
733         struct rum_softc *sc = data->sc;
734         struct ieee80211com *ic = &sc->sc_ic;
735         struct ifnet *ifp = &ic->ic_if;
736
737         if (status != USBD_NORMAL_COMPLETION) {
738                 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
739                         return;
740
741                 kprintf("%s: could not transmit buffer: %s\n",
742                     USBDEVNAME(sc->sc_dev), usbd_errstr(status));
743
744                 if (status == USBD_STALLED)
745                         usbd_clear_endpoint_stall_async(sc->sc_tx_pipeh);
746
747                 ifp->if_oerrors++;
748                 return;
749         }
750
751 #ifdef spl
752         s = splnet();
753 #endif
754
755         lwkt_serialize_enter(ifp->if_serializer);
756
757         m_freem(data->m);
758         data->m = NULL;
759         ieee80211_free_node(data->ni);
760         data->ni = NULL;
761
762         bzero(data->buf, sizeof(struct rum_tx_data));
763         sc->tx_queued--;
764         ifp->if_opackets++;
765
766         DPRINTFN(10, ("tx done\n"));
767
768         sc->sc_tx_timer = 0;
769         ifp->if_flags &= ~IFF_OACTIVE;
770         rum_start(ifp);
771
772         lwkt_serialize_exit(ifp->if_serializer);
773
774 #ifdef spl
775         splx(s);
776 #endif
777 }
778
779 Static void
780 rum_rxeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
781 {
782         struct rum_rx_data *data = priv;
783         struct rum_softc *sc = data->sc;
784         struct ieee80211com *ic = &sc->sc_ic;
785         struct ifnet *ifp = &ic->ic_if;
786         struct rum_rx_desc *desc;
787         struct ieee80211_frame_min *wh;
788         struct ieee80211_node *ni;
789         struct mbuf *mnew, *m;
790         int len, rssi;
791
792         if (status != USBD_NORMAL_COMPLETION) {
793                 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
794                         return;
795
796                 if (status == USBD_STALLED)
797                         usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh);
798                 goto skip;
799         }
800
801         usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
802
803         if (len < RT2573_RX_DESC_SIZE + sizeof (struct ieee80211_frame_min)) {
804                 DPRINTF(("%s: xfer too short %d\n", USBDEVNAME(sc->sc_dev),
805                     len));
806                 ifp->if_ierrors++;
807                 goto skip;
808         }
809
810         desc = (struct rum_rx_desc *)data->buf;
811
812         if (le32toh(desc->flags) & RT2573_RX_CRC_ERROR) {
813                 /*
814                  * This should not happen since we did not request to receive
815                  * those frames when we filled RT2573_TXRX_CSR0.
816                  */
817                 DPRINTFN(5, ("CRC error\n"));
818                 ifp->if_ierrors++;
819                 goto skip;
820         }
821
822         mnew = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR);
823         if (mnew == NULL) {
824                 kprintf("%s: could not allocate rx mbuf\n",
825                     USBDEVNAME(sc->sc_dev));
826                 ifp->if_ierrors++;
827                 goto skip;
828         }
829
830         m = data->m;
831         data->m = mnew;
832         data->buf = mtod(data->m, uint8_t *);
833
834         /* finalize mbuf */
835         m->m_pkthdr.rcvif = ifp;
836         m->m_data = (caddr_t)(desc + 1);
837         m->m_pkthdr.len = m->m_len = (le32toh(desc->flags) >> 16) & 0xfff;
838
839 #ifdef spl
840         s = splnet();
841 #endif
842
843         lwkt_serialize_enter(ifp->if_serializer);
844
845         rssi = rum_get_rssi(sc, desc->rssi);
846
847         wh = mtod(m, struct ieee80211_frame_min *);
848         ni = ieee80211_find_rxnode(ic, wh);
849
850         /* Error happened during RSSI conversion. */
851         if (rssi < 0)
852                 rssi = ni->ni_rssi;
853
854         if (sc->sc_drvbpf != NULL) {
855                 struct rum_rx_radiotap_header *tap = &sc->sc_rxtap;
856
857                 tap->wr_flags = 0;
858                 tap->wr_rate = rum_rxrate(desc);
859                 tap->wr_chan_freq = htole16(ic->ic_bss->ni_chan->ic_freq);
860                 tap->wr_chan_flags = htole16(ic->ic_bss->ni_chan->ic_flags);
861                 tap->wr_antenna = sc->rx_ant;
862                 tap->wr_antsignal = rssi;
863
864                 bpf_ptap(sc->sc_drvbpf, m, tap, sc->sc_rxtap_len);
865         }
866
867         /* send the frame to the 802.11 layer */
868         ieee80211_input(ic, m, ni, rssi, 0);
869
870         /* node is no longer needed */
871         ieee80211_free_node(ni);
872
873         /*
874          * In HostAP mode, ieee80211_input() will enqueue packets in if_snd
875          * without calling if_start().
876          */
877         if (!ifq_is_empty(&ifp->if_snd) && !(ifp->if_flags & IFF_OACTIVE))
878                 rum_start(ifp);
879
880 #ifdef spl
881         splx(s);
882 #endif
883
884         lwkt_serialize_exit(ifp->if_serializer);
885
886         DPRINTFN(15, ("rx done\n"));
887
888 skip:   /* setup a new transfer */
889         bzero(data->buf, sizeof(struct rum_rx_desc));
890         usbd_setup_xfer(xfer, sc->sc_rx_pipeh, data, data->buf, MCLBYTES,
891             USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, rum_rxeof);
892         usbd_transfer(xfer);
893 }
894
895 /*
896  * This function is only used by the Rx radiotap code. It returns the rate at
897  * which a given frame was received.
898  */
899 Static uint8_t
900 rum_rxrate(struct rum_rx_desc *desc)
901 {
902         if (le32toh(desc->flags) & RT2573_RX_OFDM) {
903                 /* reverse function of rum_plcp_signal */
904                 switch (desc->rate) {
905                 case 0xb:       return 12;
906                 case 0xf:       return 18;
907                 case 0xa:       return 24;
908                 case 0xe:       return 36;
909                 case 0x9:       return 48;
910                 case 0xd:       return 72;
911                 case 0x8:       return 96;
912                 case 0xc:       return 108;
913                 }
914         } else {
915                 if (desc->rate == 10)
916                         return 2;
917                 if (desc->rate == 20)
918                         return 4;
919                 if (desc->rate == 55)
920                         return 11;
921                 if (desc->rate == 110)
922                         return 22;
923         }
924         return 2;       /* should not get there */
925 }
926
927 /*
928  * Return the expected ack rate for a frame transmitted at rate `rate'.
929  * XXX: this should depend on the destination node basic rate set.
930  */
931 Static int
932 rum_ack_rate(struct ieee80211com *ic, int rate)
933 {
934         switch (rate) {
935         /* CCK rates */
936         case 2:
937                 return 2;
938         case 4:
939         case 11:
940         case 22:
941                 return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate;
942
943         /* OFDM rates */
944         case 12:
945         case 18:
946                 return 12;
947         case 24:
948         case 36:
949                 return 24;
950         case 48:
951         case 72:
952         case 96:
953         case 108:
954                 return 48;
955         }
956
957         /* default to 1Mbps */
958         return 2;
959 }
960
961 /*
962  * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
963  * The function automatically determines the operating mode depending on the
964  * given rate. `flags' indicates whether short preamble is in use or not.
965  */
966 Static uint16_t
967 rum_txtime(int len, int rate, uint32_t flags)
968 {
969         uint16_t txtime;
970
971         if (RUM_RATE_IS_OFDM(rate)) {
972                 /* IEEE Std 802.11a-1999, pp. 37 */
973                 txtime = (8 + 4 * len + 3 + rate - 1) / rate;
974                 txtime = 16 + 4 + 4 * txtime + 6;
975         } else {
976                 /* IEEE Std 802.11b-1999, pp. 28 */
977                 txtime = (16 * len + rate - 1) / rate;
978                 if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE))
979                         txtime +=  72 + 24;
980                 else
981                         txtime += 144 + 48;
982         }
983         return txtime;
984 }
985
986 Static uint8_t
987 rum_plcp_signal(int rate)
988 {
989         switch (rate) {
990         /* CCK rates (returned values are device-dependent) */
991         case 2:         return 0x0;
992         case 4:         return 0x1;
993         case 11:        return 0x2;
994         case 22:        return 0x3;
995
996         /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
997         case 12:        return 0xb;
998         case 18:        return 0xf;
999         case 24:        return 0xa;
1000         case 36:        return 0xe;
1001         case 48:        return 0x9;
1002         case 72:        return 0xd;
1003         case 96:        return 0x8;
1004         case 108:       return 0xc;
1005
1006         /* unsupported rates (should not get there) */
1007         default:        return 0xff;
1008         }
1009 }
1010
1011 Static void
1012 rum_setup_tx_desc(struct rum_softc *sc, struct rum_tx_desc *desc,
1013     uint32_t flags, uint16_t xflags, int len, int rate)
1014 {
1015         struct ieee80211com *ic = &sc->sc_ic;
1016         uint16_t plcp_length;
1017         int remainder;
1018
1019         desc->flags = htole32(flags);
1020         desc->flags |= htole32(len << 16);
1021
1022         desc->xflags = htole16(xflags);
1023
1024         desc->wme = htole16(
1025             RT2573_QID(0) |
1026             RT2573_AIFSN(2) |
1027             RT2573_LOGCWMIN(4) |
1028             RT2573_LOGCWMAX(10));
1029
1030         /* setup PLCP fields */
1031         desc->plcp_signal  = rum_plcp_signal(rate);
1032         desc->plcp_service = 4;
1033
1034         len += IEEE80211_CRC_LEN;
1035         if (RUM_RATE_IS_OFDM(rate)) {
1036                 desc->flags |= htole32(RT2573_TX_OFDM);
1037
1038                 plcp_length = len & 0xfff;
1039                 desc->plcp_length_hi = plcp_length >> 6;
1040                 desc->plcp_length_lo = plcp_length & 0x3f;
1041         } else {
1042                 plcp_length = (16 * len + rate - 1) / rate;
1043                 if (rate == 22) {
1044                         remainder = (16 * len) % 22;
1045                         if (remainder != 0 && remainder < 7)
1046                                 desc->plcp_service |= RT2573_PLCP_LENGEXT;
1047                 }
1048                 desc->plcp_length_hi = plcp_length >> 8;
1049                 desc->plcp_length_lo = plcp_length & 0xff;
1050
1051                 if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1052                         desc->plcp_signal |= 0x08;
1053         }
1054         desc->flags |= htole32(RT2573_TX_VALID);
1055 }
1056
1057 #define RUM_TX_TIMEOUT  5000
1058
1059 Static int
1060 rum_tx_data(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1061 {
1062         struct ieee80211com *ic = &sc->sc_ic;
1063         struct rum_tx_desc *desc;
1064         struct rum_tx_data *data;
1065         struct ieee80211_frame *wh;
1066         uint32_t flags = 0;
1067         uint16_t dur;
1068         usbd_status error;
1069         int xferlen, rate;
1070
1071         wh = mtod(m0, struct ieee80211_frame *);
1072
1073         if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1074                 if (ieee80211_crypto_encap(ic, ni, m0) == NULL) {
1075                         m_freem(m0);
1076                         return ENOBUFS;
1077                 }
1078
1079                 /* packet header may have moved, reset our local pointer */
1080                 wh = mtod(m0, struct ieee80211_frame *);
1081         }
1082
1083         /* pickup a rate */
1084         if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1085             IEEE80211_FC0_TYPE_MGT) {
1086                 /* mgmt frames are sent at the lowest available bit-rate */
1087                 rate = ni->ni_rates.rs_rates[0];
1088         } else {
1089                 if (ic->ic_fixed_rate != -1) {
1090                         rate = ic->ic_sup_rates[ic->ic_curmode].
1091                             rs_rates[ic->ic_fixed_rate];
1092                 } else
1093                         rate = ni->ni_rates.rs_rates[ni->ni_txrate];
1094         }
1095         rate &= IEEE80211_RATE_VAL;
1096         if (rate == 0)
1097                 rate = 2;       /* fallback to 1Mbps; should not happen  */
1098
1099         data = &sc->tx_data[0];
1100         desc = (struct rum_tx_desc *)data->buf;
1101
1102         data->m = m0;
1103         data->ni = ni;
1104
1105         if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1106                 flags |= RT2573_TX_ACK;
1107
1108                 dur = rum_txtime(RUM_ACK_SIZE, rum_ack_rate(ic, rate),
1109                     ic->ic_flags) + sc->sifs;
1110                 *(uint16_t *)wh->i_dur = htole16(dur);
1111
1112                 /* tell hardware to set timestamp in probe responses */
1113                 if ((wh->i_fc[0] &
1114                     (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
1115                     (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
1116                         flags |= RT2573_TX_TIMESTAMP;
1117         }
1118
1119         if (sc->sc_drvbpf != NULL) {
1120                 struct rum_tx_radiotap_header *tap = &sc->sc_txtap;
1121
1122                 tap->wt_flags = 0;
1123                 tap->wt_rate = rate;
1124                 tap->wt_chan_freq = htole16(ic->ic_bss->ni_chan->ic_freq);
1125                 tap->wt_chan_flags = htole16(ic->ic_bss->ni_chan->ic_flags);
1126                 tap->wt_antenna = sc->tx_ant;
1127
1128                 bpf_ptap(sc->sc_drvbpf, m0, tap, sc->sc_txtap_len);
1129         }
1130
1131         m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RT2573_TX_DESC_SIZE);
1132         rum_setup_tx_desc(sc, desc, flags, 0, m0->m_pkthdr.len, rate);
1133
1134         /* align end on a 4-bytes boundary */
1135         xferlen = (RT2573_TX_DESC_SIZE + m0->m_pkthdr.len + 3) & ~3;
1136
1137         /*
1138          * No space left in the last URB to store the extra 4 bytes, force
1139          * sending of another URB.
1140          */
1141         if ((xferlen % 64) == 0)
1142                 xferlen += 4;
1143
1144         DPRINTFN(10, ("sending frame len=%u rate=%u xfer len=%u\n",
1145             m0->m_pkthdr.len + RT2573_TX_DESC_SIZE, rate, xferlen));
1146
1147         usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf, xferlen,
1148             USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RUM_TX_TIMEOUT, rum_txeof);
1149
1150         error = usbd_transfer(data->xfer);
1151         if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS) {
1152                 m_freem(m0);
1153                 return error;
1154         }
1155
1156         sc->tx_queued++;
1157
1158         return 0;
1159 }
1160
1161 Static void
1162 rum_start(struct ifnet *ifp)
1163 {
1164         struct rum_softc *sc = ifp->if_softc;
1165         struct ieee80211com *ic = &sc->sc_ic;
1166         struct ieee80211_node *ni;
1167         struct mbuf *m0;
1168
1169         ASSERT_SERIALIZED(ifp->if_serializer);
1170
1171         /*
1172          * net80211 may still try to send management frames even if the
1173          * IFF_RUNNING flag is not set...
1174          */
1175         if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1176                 return;
1177
1178         for (;;) {
1179                 if (!IF_QEMPTY(&ic->ic_mgtq)) {
1180                         if (sc->tx_queued >= RT2573_TX_LIST_COUNT) {
1181                                 ifp->if_flags |= IFF_OACTIVE;
1182                                 break;
1183                         }
1184                         IF_DEQUEUE(&ic->ic_mgtq, m0);
1185
1186                         ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
1187                         m0->m_pkthdr.rcvif = NULL;
1188
1189                         BPF_MTAP(ifp, m0);
1190
1191                         if (rum_tx_data(sc, m0, ni) != 0)
1192                                 break;
1193
1194                 } else {
1195                         struct ether_header *eh;
1196
1197                         if (ic->ic_state != IEEE80211_S_RUN)
1198                                 break;
1199
1200                         m0 = ifq_poll(&ifp->if_snd);
1201                         if (m0 == NULL)
1202                                 break;
1203                         if (sc->tx_queued >= RT2573_TX_LIST_COUNT) {
1204                                 ifp->if_flags |= IFF_OACTIVE;
1205                                 break;
1206                         }
1207                         ifq_dequeue(&ifp->if_snd, m0);
1208
1209                         if (m0->m_len < sizeof (struct ether_header) &&
1210                             !(m0 = m_pullup(m0, sizeof (struct ether_header))))
1211                                 continue;
1212
1213                         eh = mtod(m0, struct ether_header *);
1214                         ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1215                         if (ni == NULL) {
1216                                 m_freem(m0);
1217                                 continue;
1218                         }
1219
1220                         BPF_MTAP(ifp, m0);
1221
1222                         m0 = ieee80211_encap(ic, m0, ni);
1223                         if (m0 == NULL)
1224                                 continue;
1225
1226                         if (ic->ic_rawbpf != NULL)
1227                                 bpf_mtap(ic->ic_rawbpf, m0);
1228
1229                         if (rum_tx_data(sc, m0, ni) != 0) {
1230                                 if (ni != NULL)
1231                                         ieee80211_free_node(ni);
1232                                 ifp->if_oerrors++;
1233                                 break;
1234                         }
1235                 }
1236
1237                 sc->sc_tx_timer = 5;
1238                 ifp->if_timer = 1;
1239         }
1240 }
1241
1242 Static void
1243 rum_watchdog(struct ifnet *ifp)
1244 {
1245         struct rum_softc *sc = ifp->if_softc;
1246
1247         ASSERT_SERIALIZED(ifp->if_serializer);
1248
1249         ifp->if_timer = 0;
1250
1251         if (sc->sc_tx_timer > 0) {
1252                 if (--sc->sc_tx_timer == 0) {
1253                         kprintf("%s: device timeout\n", USBDEVNAME(sc->sc_dev));
1254                         /*rum_init(sc); XXX needs a process context! */
1255                         ifp->if_oerrors++;
1256                         return;
1257                 }
1258                 ifp->if_timer = 1;
1259         }
1260
1261         ieee80211_watchdog(&sc->sc_ic);
1262 }
1263
1264 Static int
1265 rum_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data, struct ucred *cr)
1266 {
1267         struct rum_softc *sc = ifp->if_softc;
1268         struct ieee80211com *ic = &sc->sc_ic;
1269         int error = 0;
1270
1271         ASSERT_SERIALIZED(ifp->if_serializer);
1272
1273 #ifdef spl
1274         s = splnet();
1275 #endif
1276
1277         switch (cmd) {
1278         case SIOCSIFFLAGS:
1279                 if (ifp->if_flags & IFF_UP) {
1280                         if (ifp->if_flags & IFF_RUNNING)
1281                                 rum_update_promisc(sc);
1282                         else
1283                                 rum_init(sc);
1284                 } else {
1285                         if (ifp->if_flags & IFF_RUNNING)
1286                                 rum_stop(sc);
1287                 }
1288                 break;
1289         default:
1290                 error = ieee80211_ioctl(ic, cmd, data, cr);
1291                 break;
1292         }
1293
1294         if (error == ENETRESET) {
1295                 struct ieee80211req *ireq = (struct ieee80211req *)data;
1296
1297                 if (cmd == SIOCS80211 &&
1298                     ireq->i_type == IEEE80211_IOC_CHANNEL &&
1299                     ic->ic_opmode == IEEE80211_M_MONITOR) {
1300                         /*
1301                          * This allows for fast channel switching in monitor mode
1302                          * (used by kismet). In IBSS mode, we must explicitly reset
1303                          * the interface to generate a new beacon frame.
1304                          */
1305                         rum_set_chan(sc, ic->ic_ibss_chan);
1306                 } else if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1307                     (IFF_UP | IFF_RUNNING)) {
1308                         rum_init(sc);
1309                 }
1310                 error = 0;
1311         }
1312
1313 #ifdef spl
1314         splx(s);
1315 #endif
1316
1317         return error;
1318 }
1319
1320 Static void
1321 rum_eeprom_read(struct rum_softc *sc, uint16_t addr, void *buf, int len)
1322 {
1323         usb_device_request_t req;
1324         usbd_status error;
1325
1326         req.bmRequestType = UT_READ_VENDOR_DEVICE;
1327         req.bRequest = RT2573_READ_EEPROM;
1328         USETW(req.wValue, 0);
1329         USETW(req.wIndex, addr);
1330         USETW(req.wLength, len);
1331
1332         error = usbd_do_request(sc->sc_udev, &req, buf);
1333         if (error != 0) {
1334                 kprintf("%s: could not read EEPROM: %s\n",
1335                     USBDEVNAME(sc->sc_dev), usbd_errstr(error));
1336         }
1337 }
1338
1339 Static uint32_t
1340 rum_read(struct rum_softc *sc, uint16_t reg)
1341 {
1342         uint32_t val;
1343
1344         rum_read_multi(sc, reg, &val, sizeof val);
1345
1346         return le32toh(val);
1347 }
1348
1349 Static void
1350 rum_read_multi(struct rum_softc *sc, uint16_t reg, void *buf, int len)
1351 {
1352         usb_device_request_t req;
1353         usbd_status error;
1354
1355         req.bmRequestType = UT_READ_VENDOR_DEVICE;
1356         req.bRequest = RT2573_READ_MULTI_MAC;
1357         USETW(req.wValue, 0);
1358         USETW(req.wIndex, reg);
1359         USETW(req.wLength, len);
1360
1361         error = usbd_do_request(sc->sc_udev, &req, buf);
1362         if (error != 0) {
1363                 kprintf("%s: could not multi read MAC register: %s\n",
1364                     USBDEVNAME(sc->sc_dev), usbd_errstr(error));
1365         }
1366 }
1367
1368 Static void
1369 rum_write(struct rum_softc *sc, uint16_t reg, uint32_t val)
1370 {
1371         uint32_t tmp = htole32(val);
1372
1373         rum_write_multi(sc, reg, &tmp, sizeof tmp);
1374 }
1375
1376 Static void
1377 rum_write_multi(struct rum_softc *sc, uint16_t reg, void *buf, size_t len)
1378 {
1379         usb_device_request_t req;
1380         usbd_status error;
1381
1382         req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1383         req.bRequest = RT2573_WRITE_MULTI_MAC;
1384         USETW(req.wValue, 0);
1385         USETW(req.wIndex, reg);
1386         USETW(req.wLength, len);
1387
1388         error = usbd_do_request(sc->sc_udev, &req, buf);
1389         if (error != 0) {
1390                 kprintf("%s: could not multi write MAC register: %s\n",
1391                     USBDEVNAME(sc->sc_dev), usbd_errstr(error));
1392         }
1393 }
1394
1395 Static void
1396 rum_bbp_write(struct rum_softc *sc, uint8_t reg, uint8_t val)
1397 {
1398         uint32_t tmp;
1399         int ntries;
1400
1401         for (ntries = 0; ntries < 5; ntries++) {
1402                 if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY))
1403                         break;
1404         }
1405         if (ntries == 5) {
1406                 kprintf("%s: could not write to BBP\n", USBDEVNAME(sc->sc_dev));
1407                 return;
1408         }
1409
1410         tmp = RT2573_BBP_BUSY | (reg & 0x7f) << 8 | val;
1411         rum_write(sc, RT2573_PHY_CSR3, tmp);
1412 }
1413
1414 Static uint8_t
1415 rum_bbp_read(struct rum_softc *sc, uint8_t reg)
1416 {
1417         uint32_t val;
1418         int ntries;
1419
1420         for (ntries = 0; ntries < 5; ntries++) {
1421                 if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY))
1422                         break;
1423         }
1424         if (ntries == 5) {
1425                 kprintf("%s: could not read BBP\n", USBDEVNAME(sc->sc_dev));
1426                 return 0;
1427         }
1428
1429         val = RT2573_BBP_BUSY | RT2573_BBP_READ | reg << 8;
1430         rum_write(sc, RT2573_PHY_CSR3, val);
1431
1432         for (ntries = 0; ntries < 100; ntries++) {
1433                 val = rum_read(sc, RT2573_PHY_CSR3);
1434                 if (!(val & RT2573_BBP_BUSY))
1435                         return val & 0xff;
1436                 DELAY(1);
1437         }
1438
1439         kprintf("%s: could not read BBP\n", USBDEVNAME(sc->sc_dev));
1440         return 0;
1441 }
1442
1443 Static void
1444 rum_rf_write(struct rum_softc *sc, uint8_t reg, uint32_t val)
1445 {
1446         uint32_t tmp;
1447         int ntries;
1448
1449         for (ntries = 0; ntries < 5; ntries++) {
1450                 if (!(rum_read(sc, RT2573_PHY_CSR4) & RT2573_RF_BUSY))
1451                         break;
1452         }
1453         if (ntries == 5) {
1454                 kprintf("%s: could not write to RF\n", USBDEVNAME(sc->sc_dev));
1455                 return;
1456         }
1457
1458         tmp = RT2573_RF_BUSY | RT2573_RF_20BIT | (val & 0xfffff) << 2 |
1459             (reg & 3);
1460         rum_write(sc, RT2573_PHY_CSR4, tmp);
1461
1462         /* remember last written value in sc */
1463         sc->rf_regs[reg] = val;
1464
1465         DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 3, val & 0xfffff));
1466 }
1467
1468 Static void
1469 rum_select_antenna(struct rum_softc *sc)
1470 {
1471         uint8_t bbp4, bbp77;
1472         uint32_t tmp;
1473
1474         bbp4  = rum_bbp_read(sc, 4);
1475         bbp77 = rum_bbp_read(sc, 77);
1476
1477         /* TBD */
1478
1479         /* make sure Rx is disabled before switching antenna */
1480         tmp = rum_read(sc, RT2573_TXRX_CSR0);
1481         rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX);
1482
1483         rum_bbp_write(sc,  4, bbp4);
1484         rum_bbp_write(sc, 77, bbp77);
1485
1486         rum_write(sc, RT2573_TXRX_CSR0, tmp);
1487 }
1488
1489 /*
1490  * Enable multi-rate retries for frames sent at OFDM rates.
1491  * In 802.11b/g mode, allow fallback to CCK rates.
1492  */
1493 Static void
1494 rum_enable_mrr(struct rum_softc *sc)
1495 {
1496         struct ieee80211com *ic = &sc->sc_ic;
1497         uint32_t tmp;
1498
1499         tmp = rum_read(sc, RT2573_TXRX_CSR4);
1500
1501         tmp &= ~RT2573_MRR_CCK_FALLBACK;
1502         if (!IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan))
1503                 tmp |= RT2573_MRR_CCK_FALLBACK;
1504         tmp |= RT2573_MRR_ENABLED;
1505
1506         rum_write(sc, RT2573_TXRX_CSR4, tmp);
1507 }
1508
1509 Static void
1510 rum_set_txpreamble(struct rum_softc *sc)
1511 {
1512         uint32_t tmp;
1513
1514         tmp = rum_read(sc, RT2573_TXRX_CSR4);
1515
1516         tmp &= ~RT2573_SHORT_PREAMBLE;
1517         if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE)
1518                 tmp |= RT2573_SHORT_PREAMBLE;
1519
1520         rum_write(sc, RT2573_TXRX_CSR4, tmp);
1521 }
1522
1523 Static void
1524 rum_set_basicrates(struct rum_softc *sc)
1525 {
1526         struct ieee80211com *ic = &sc->sc_ic;
1527
1528         /* update basic rate set */
1529         if (ic->ic_curmode == IEEE80211_MODE_11B) {
1530                 /* 11b basic rates: 1, 2Mbps */
1531                 rum_write(sc, RT2573_TXRX_CSR5, 0x3);
1532         } else if (IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->ni_chan)) {
1533                 /* 11a basic rates: 6, 12, 24Mbps */
1534                 rum_write(sc, RT2573_TXRX_CSR5, 0x150);
1535         } else {
1536                 /* 11g basic rates: 1, 2, 5.5, 11, 6, 12, 24Mbps */
1537                 rum_write(sc, RT2573_TXRX_CSR5, 0x15f);
1538         }
1539 }
1540
1541 /*
1542  * Reprogram MAC/BBP to switch to a new band.  Values taken from the reference
1543  * driver.
1544  */
1545 Static void
1546 rum_select_band(struct rum_softc *sc, struct ieee80211_channel *c)
1547 {
1548         uint8_t bbp17, bbp35, bbp96, bbp97, bbp98, bbp104;
1549         uint32_t tmp;
1550
1551         /* update all BBP registers that depend on the band */
1552         bbp17 = 0x20; bbp96 = 0x48; bbp104 = 0x2c;
1553         bbp35 = 0x50; bbp97 = 0x48; bbp98  = 0x48;
1554         if (IEEE80211_IS_CHAN_5GHZ(c)) {
1555                 bbp17 += 0x08; bbp96 += 0x10; bbp104 += 0x0c;
1556                 bbp35 += 0x10; bbp97 += 0x10; bbp98  += 0x10;
1557         }
1558         if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
1559             (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
1560                 bbp17 += 0x10; bbp96 += 0x10; bbp104 += 0x10;
1561         }
1562
1563         sc->bbp17 = bbp17;
1564         rum_bbp_write(sc,  17, bbp17);
1565         rum_bbp_write(sc,  96, bbp96);
1566         rum_bbp_write(sc, 104, bbp104);
1567
1568         if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
1569             (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
1570                 rum_bbp_write(sc, 75, 0x80);
1571                 rum_bbp_write(sc, 86, 0x80);
1572                 rum_bbp_write(sc, 88, 0x80);
1573         }
1574
1575         rum_bbp_write(sc, 35, bbp35);
1576         rum_bbp_write(sc, 97, bbp97);
1577         rum_bbp_write(sc, 98, bbp98);
1578
1579         tmp = rum_read(sc, RT2573_PHY_CSR0);
1580         tmp &= ~(RT2573_PA_PE_2GHZ | RT2573_PA_PE_5GHZ);
1581         if (IEEE80211_IS_CHAN_2GHZ(c))
1582                 tmp |= RT2573_PA_PE_2GHZ;
1583         else
1584                 tmp |= RT2573_PA_PE_5GHZ;
1585         rum_write(sc, RT2573_PHY_CSR0, tmp);
1586
1587         /* 802.11a uses a 16 microseconds short interframe space */
1588         sc->sifs = IEEE80211_IS_CHAN_5GHZ(c) ? 16 : 10;
1589 }
1590
1591 Static void
1592 rum_set_chan(struct rum_softc *sc, struct ieee80211_channel *c)
1593 {
1594         struct ieee80211com *ic = &sc->sc_ic;
1595         struct ifnet *ifp = &ic->ic_if;
1596         const struct rfprog *rfprog;
1597         uint8_t bbp3, bbp94 = RT2573_BBPR94_DEFAULT;
1598         int8_t power;
1599         u_int i, chan;
1600
1601         ASSERT_SERIALIZED(ifp->if_serializer);
1602
1603         chan = ieee80211_chan2ieee(ic, c);
1604         if (chan == 0 || chan == IEEE80211_CHAN_ANY)
1605                 return;
1606
1607         lwkt_serialize_exit(ifp->if_serializer);
1608
1609         /* select the appropriate RF settings based on what EEPROM says */
1610         rfprog = (sc->rf_rev == RT2573_RF_5225 ||
1611                   sc->rf_rev == RT2573_RF_2527) ? rum_rf5225 : rum_rf5226;
1612
1613         /* find the settings for this channel (we know it exists) */
1614         for (i = 0; rfprog[i].chan != chan; i++)
1615                 ;       /* EMPTY */
1616
1617         power = sc->txpow[i];
1618         if (power < 0) {
1619                 bbp94 += power;
1620                 power = 0;
1621         } else if (power > 31) {
1622                 bbp94 += power - 31;
1623                 power = 31;
1624         }
1625
1626         /*
1627          * If we are switching from the 2GHz band to the 5GHz band or
1628          * vice-versa, BBP registers need to be reprogrammed.
1629          */
1630         if (c->ic_flags != sc->sc_curchan->ic_flags) {
1631                 rum_select_band(sc, c);
1632                 rum_select_antenna(sc);
1633         }
1634         sc->sc_curchan = c;
1635
1636         rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1637         rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1638         rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7);
1639         rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1640
1641         rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1642         rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1643         rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7 | 1);
1644         rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1645
1646         rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1647         rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1648         rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7);
1649         rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1650
1651         DELAY(10);
1652
1653         /* enable smart mode for MIMO-capable RFs */
1654         bbp3 = rum_bbp_read(sc, 3);
1655
1656         bbp3 &= ~RT2573_SMART_MODE;
1657         if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_2527)
1658                 bbp3 |= RT2573_SMART_MODE;
1659
1660         rum_bbp_write(sc, 3, bbp3);
1661
1662         if (bbp94 != RT2573_BBPR94_DEFAULT)
1663                 rum_bbp_write(sc, 94, bbp94);
1664
1665         lwkt_serialize_enter(ifp->if_serializer);
1666 }
1667
1668 /*
1669  * Enable TSF synchronization and tell h/w to start sending beacons for IBSS
1670  * and HostAP operating modes.
1671  */
1672 Static void
1673 rum_enable_tsf_sync(struct rum_softc *sc)
1674 {
1675         struct ieee80211com *ic = &sc->sc_ic;
1676         uint32_t tmp;
1677
1678         if (ic->ic_opmode != IEEE80211_M_STA) {
1679                 /*
1680                  * Change default 16ms TBTT adjustment to 8ms.
1681                  * Must be done before enabling beacon generation.
1682                  */
1683                 rum_write(sc, RT2573_TXRX_CSR10, 1 << 12 | 8);
1684         }
1685
1686         tmp = rum_read(sc, RT2573_TXRX_CSR9) & 0xff000000;
1687
1688         /* set beacon interval (in 1/16ms unit) */
1689         tmp |= ic->ic_bss->ni_intval * 16;
1690
1691         tmp |= RT2573_TSF_TICKING | RT2573_ENABLE_TBTT;
1692         if (ic->ic_opmode == IEEE80211_M_STA)
1693                 tmp |= RT2573_TSF_MODE(1);
1694         else
1695                 tmp |= RT2573_TSF_MODE(2) | RT2573_GENERATE_BEACON;
1696
1697         rum_write(sc, RT2573_TXRX_CSR9, tmp);
1698 }
1699
1700 Static void
1701 rum_update_slot(struct rum_softc *sc)
1702 {
1703         struct ieee80211com *ic = &sc->sc_ic;
1704         uint8_t slottime;
1705         uint32_t tmp;
1706
1707         slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
1708
1709         tmp = rum_read(sc, RT2573_MAC_CSR9);
1710         tmp = (tmp & ~0xff) | slottime;
1711         rum_write(sc, RT2573_MAC_CSR9, tmp);
1712
1713         DPRINTF(("setting slot time to %uus\n", slottime));
1714 }
1715
1716 Static void
1717 rum_set_bssid(struct rum_softc *sc, const uint8_t *bssid)
1718 {
1719         uint32_t tmp;
1720
1721         tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24;
1722         rum_write(sc, RT2573_MAC_CSR4, tmp);
1723
1724         tmp = bssid[4] | bssid[5] << 8 | RT2573_ONE_BSSID << 16;
1725         rum_write(sc, RT2573_MAC_CSR5, tmp);
1726 }
1727
1728 Static void
1729 rum_set_macaddr(struct rum_softc *sc, const uint8_t *addr)
1730 {
1731         uint32_t tmp;
1732
1733         tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24;
1734         rum_write(sc, RT2573_MAC_CSR2, tmp);
1735
1736         tmp = addr[4] | addr[5] << 8 | 0xff << 16;
1737         rum_write(sc, RT2573_MAC_CSR3, tmp);
1738 }
1739
1740 Static void
1741 rum_update_promisc(struct rum_softc *sc)
1742 {
1743         struct ifnet *ifp = &sc->sc_ic.ic_if;
1744         uint32_t tmp;
1745
1746         tmp = rum_read(sc, RT2573_TXRX_CSR0);
1747
1748         tmp &= ~RT2573_DROP_NOT_TO_ME;
1749         if (!(ifp->if_flags & IFF_PROMISC))
1750                 tmp |= RT2573_DROP_NOT_TO_ME;
1751
1752         rum_write(sc, RT2573_TXRX_CSR0, tmp);
1753
1754         DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
1755             "entering" : "leaving"));
1756 }
1757
1758 Static const char *
1759 rum_get_rf(int rev)
1760 {
1761         switch (rev) {
1762         case RT2573_RF_2527:    return "RT2527 (MIMO XR)";
1763         case RT2573_RF_2528:    return "RT2528";
1764         case RT2573_RF_5225:    return "RT5225 (MIMO XR)";
1765         case RT2573_RF_5226:    return "RT5226";
1766         default:                return "unknown";
1767         }
1768 }
1769
1770 Static void
1771 rum_read_eeprom(struct rum_softc *sc)
1772 {
1773         struct ieee80211com *ic = &sc->sc_ic;
1774         uint16_t val;
1775 #ifdef RUM_DEBUG
1776         int i;
1777 #endif
1778
1779         /* read MAC/BBP type */
1780         rum_eeprom_read(sc, RT2573_EEPROM_MACBBP, &val, 2);
1781         sc->macbbp_rev = le16toh(val);
1782
1783         /* read MAC address */
1784         rum_eeprom_read(sc, RT2573_EEPROM_ADDRESS, ic->ic_myaddr, 6);
1785
1786         rum_eeprom_read(sc, RT2573_EEPROM_ANTENNA, &val, 2);
1787         val = le16toh(val);
1788         sc->rf_rev =   (val >> 11) & 0x1f;
1789         sc->hw_radio = (val >> 10) & 0x1;
1790         sc->rx_ant =   (val >> 4)  & 0x3;
1791         sc->tx_ant =   (val >> 2)  & 0x3;
1792         sc->nb_ant =   val & 0x3;
1793
1794         DPRINTF(("RF revision=%d\n", sc->rf_rev));
1795
1796         rum_eeprom_read(sc, RT2573_EEPROM_CONFIG2, &val, 2);
1797         val = le16toh(val);
1798         sc->ext_5ghz_lna = (val >> 6) & 0x1;
1799         sc->ext_2ghz_lna = (val >> 4) & 0x1;
1800
1801         DPRINTF(("External 2GHz LNA=%d\nExternal 5GHz LNA=%d\n",
1802             sc->ext_2ghz_lna, sc->ext_5ghz_lna));
1803
1804         rum_eeprom_read(sc, RT2573_EEPROM_RSSI_2GHZ_OFFSET, &val, 2);
1805         val = le16toh(val);
1806         if ((val & 0xff) != 0xff)
1807                 sc->rssi_2ghz_corr = (int8_t)(val & 0xff);      /* signed */
1808
1809         /* Only [-10, 10] is valid */
1810         if (sc->rssi_2ghz_corr < -10 || sc->rssi_2ghz_corr > 10)
1811                 sc->rssi_2ghz_corr = 0;
1812
1813         rum_eeprom_read(sc, RT2573_EEPROM_RSSI_5GHZ_OFFSET, &val, 2);
1814         val = le16toh(val);
1815         if ((val & 0xff) != 0xff)
1816                 sc->rssi_5ghz_corr = (int8_t)(val & 0xff);      /* signed */
1817
1818         /* Only [-10, 10] is valid */
1819         if (sc->rssi_5ghz_corr < -10 || sc->rssi_5ghz_corr > 10)
1820                 sc->rssi_5ghz_corr = 0;
1821
1822         if (sc->ext_2ghz_lna)
1823                 sc->rssi_2ghz_corr -= 14;
1824         if (sc->ext_5ghz_lna)
1825                 sc->rssi_5ghz_corr -= 14;
1826
1827         DPRINTF(("RSSI 2GHz corr=%d\nRSSI 5GHz corr=%d\n",
1828             sc->rssi_2ghz_corr, sc->rssi_5ghz_corr));
1829
1830         rum_eeprom_read(sc, RT2573_EEPROM_FREQ_OFFSET, &val, 2);
1831         val = le16toh(val);
1832         if ((val & 0xff) != 0xff)
1833                 sc->rffreq = val & 0xff;
1834
1835         DPRINTF(("RF freq=%d\n", sc->rffreq));
1836
1837         /* read Tx power for all a/b/g channels */
1838         rum_eeprom_read(sc, RT2573_EEPROM_TXPOWER, sc->txpow, 14);
1839         /* XXX default Tx power for 802.11a channels */
1840         memset(sc->txpow + 14, 24, sizeof (sc->txpow) - 14);
1841 #ifdef RUM_DEBUG
1842         for (i = 0; i < 14; i++)
1843                 DPRINTF(("Channel=%d Tx power=%d\n", i + 1,  sc->txpow[i]));
1844 #endif
1845
1846         /* read default values for BBP registers */
1847         rum_eeprom_read(sc, RT2573_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16);
1848 #ifdef RUM_DEBUG
1849         for (i = 0; i < 14; i++) {
1850                 if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff)
1851                         continue;
1852                 DPRINTF(("BBP R%d=%02x\n", sc->bbp_prom[i].reg,
1853                     sc->bbp_prom[i].val));
1854         }
1855 #endif
1856 }
1857
1858 Static int
1859 rum_bbp_init(struct rum_softc *sc)
1860 {
1861 #define N(a)    (sizeof (a) / sizeof ((a)[0]))
1862         int i, ntries;
1863         uint8_t val;
1864
1865         /* wait for BBP to be ready */
1866         for (ntries = 0; ntries < 100; ntries++) {
1867                 val = rum_bbp_read(sc, 0);
1868                 if (val != 0 && val != 0xff)
1869                         break;
1870                 DELAY(1000);
1871         }
1872         if (ntries == 100) {
1873                 kprintf("%s: timeout waiting for BBP\n",
1874                     USBDEVNAME(sc->sc_dev));
1875                 return EIO;
1876         }
1877
1878         /* initialize BBP registers to default values */
1879         for (i = 0; i < N(rum_def_bbp); i++)
1880                 rum_bbp_write(sc, rum_def_bbp[i].reg, rum_def_bbp[i].val);
1881
1882         /* write vendor-specific BBP values (from EEPROM) */
1883         for (i = 0; i < 16; i++) {
1884                 if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff)
1885                         continue;
1886                 rum_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
1887         }
1888
1889         return 0;
1890 #undef N
1891 }
1892
1893 Static void
1894 rum_init(void *xsc)
1895 {
1896 #define N(a)    (sizeof (a) / sizeof ((a)[0]))
1897         struct rum_softc *sc = xsc;
1898         struct ieee80211com *ic = &sc->sc_ic;
1899         struct ifnet *ifp = &ic->ic_if;
1900         struct rum_rx_data *data;
1901         uint32_t tmp;
1902         usbd_status error;
1903         int i, ntries;
1904
1905         ASSERT_SERIALIZED(ifp->if_serializer);
1906
1907         rum_stop(sc);
1908
1909         /* initialize MAC registers to default values */
1910         for (i = 0; i < N(rum_def_mac); i++)
1911                 rum_write(sc, rum_def_mac[i].reg, rum_def_mac[i].val);
1912
1913         /* set host ready */
1914         rum_write(sc, RT2573_MAC_CSR1, 3);
1915         rum_write(sc, RT2573_MAC_CSR1, 0);
1916
1917         /* wait for BBP/RF to wakeup */
1918         for (ntries = 0; ntries < 1000; ntries++) {
1919                 if (rum_read(sc, RT2573_MAC_CSR12) & 8)
1920                         break;
1921                 rum_write(sc, RT2573_MAC_CSR12, 4);     /* force wakeup */
1922                 DELAY(1000);
1923         }
1924         if (ntries == 1000) {
1925                 kprintf("%s: timeout waiting for BBP/RF to wakeup\n",
1926                     USBDEVNAME(sc->sc_dev));
1927                 goto fail;
1928         }
1929
1930         if ((error = rum_bbp_init(sc)) != 0)
1931                 goto fail;
1932
1933         /* select default channel */
1934         sc->sc_curchan = ic->ic_curchan = ic->ic_ibss_chan;
1935         rum_select_band(sc, sc->sc_curchan);
1936         rum_select_antenna(sc);
1937         rum_set_chan(sc, sc->sc_curchan);
1938
1939         /* clear STA registers */
1940         rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta);
1941
1942         IEEE80211_ADDR_COPY(ic->ic_myaddr, IF_LLADDR(ifp));
1943         rum_set_macaddr(sc, ic->ic_myaddr);
1944
1945         /* initialize ASIC */
1946         rum_write(sc, RT2573_MAC_CSR1, 4);
1947
1948         /*
1949          * Allocate xfer for AMRR statistics requests.
1950          */
1951         sc->stats_xfer = usbd_alloc_xfer(sc->sc_udev);
1952         if (sc->stats_xfer == NULL) {
1953                 kprintf("%s: could not allocate AMRR xfer\n",
1954                     USBDEVNAME(sc->sc_dev));
1955                 goto fail;
1956         }
1957
1958         /*
1959          * Open Tx and Rx USB bulk pipes.
1960          */
1961         error = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE,
1962             &sc->sc_tx_pipeh);
1963         if (error != 0) {
1964                 kprintf("%s: could not open Tx pipe: %s\n",
1965                     USBDEVNAME(sc->sc_dev), usbd_errstr(error));
1966                 goto fail;
1967         }
1968
1969         error = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE,
1970             &sc->sc_rx_pipeh);
1971         if (error != 0) {
1972                 kprintf("%s: could not open Rx pipe: %s\n",
1973                     USBDEVNAME(sc->sc_dev), usbd_errstr(error));
1974                 goto fail;
1975         }
1976
1977         /*
1978          * Allocate Tx and Rx xfer queues.
1979          */
1980         error = rum_alloc_tx_list(sc);
1981         if (error != 0) {
1982                 kprintf("%s: could not allocate Tx list\n",
1983                     USBDEVNAME(sc->sc_dev));
1984                 goto fail;
1985         }
1986
1987         error = rum_alloc_rx_list(sc);
1988         if (error != 0) {
1989                 kprintf("%s: could not allocate Rx list\n",
1990                     USBDEVNAME(sc->sc_dev));
1991                 goto fail;
1992         }
1993
1994         /*
1995          * Start up the receive pipe.
1996          */
1997         for (i = 0; i < RT2573_RX_LIST_COUNT; i++) {
1998                 data = &sc->rx_data[i];
1999
2000                 usbd_setup_xfer(data->xfer, sc->sc_rx_pipeh, data, data->buf,
2001                     MCLBYTES, USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, rum_rxeof);
2002                 usbd_transfer(data->xfer);
2003         }
2004
2005         /* update Rx filter */
2006         tmp = rum_read(sc, RT2573_TXRX_CSR0) & 0xffff;
2007
2008         tmp |= RT2573_DROP_PHY_ERROR | RT2573_DROP_CRC_ERROR;
2009         if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2010                 tmp |= RT2573_DROP_CTL | RT2573_DROP_VER_ERROR |
2011                        RT2573_DROP_ACKCTS;
2012                 if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2013                         tmp |= RT2573_DROP_TODS;
2014                 if (!(ifp->if_flags & IFF_PROMISC))
2015                         tmp |= RT2573_DROP_NOT_TO_ME;
2016         }
2017         rum_write(sc, RT2573_TXRX_CSR0, tmp);
2018
2019         ifp->if_flags &= ~IFF_OACTIVE;
2020         ifp->if_flags |= IFF_RUNNING;
2021
2022         if (ic->ic_opmode == IEEE80211_M_MONITOR)
2023                 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2024         else
2025                 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2026
2027         return;
2028
2029 fail:   rum_stop(sc);
2030
2031 #undef N
2032 }
2033
2034 Static void
2035 rum_stop(struct rum_softc *sc)
2036 {
2037         struct ieee80211com *ic = &sc->sc_ic;
2038         struct ifnet *ifp = &ic->ic_if;
2039         uint32_t tmp;
2040
2041         ASSERT_SERIALIZED(ifp->if_serializer);
2042
2043         ieee80211_new_state(ic, IEEE80211_S_INIT, -1);  /* free all nodes */
2044
2045         sc->sc_tx_timer = 0;
2046         ifp->if_timer = 0;
2047         ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2048
2049         /* disable Rx */
2050         tmp = rum_read(sc, RT2573_TXRX_CSR0);
2051         rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX);
2052
2053         /* reset ASIC */
2054         rum_write(sc, RT2573_MAC_CSR1, 3);
2055         rum_write(sc, RT2573_MAC_CSR1, 0);
2056
2057         if (sc->sc_rx_pipeh != NULL) {
2058                 usbd_abort_pipe(sc->sc_rx_pipeh);
2059                 usbd_close_pipe(sc->sc_rx_pipeh);
2060                 sc->sc_rx_pipeh = NULL;
2061         }
2062
2063         if (sc->sc_tx_pipeh != NULL) {
2064                 usbd_abort_pipe(sc->sc_tx_pipeh);
2065                 usbd_close_pipe(sc->sc_tx_pipeh);
2066                 sc->sc_tx_pipeh = NULL;
2067         }
2068
2069         rum_free_rx_list(sc);
2070         rum_free_tx_list(sc);
2071 }
2072
2073 Static int
2074 rum_load_microcode(struct rum_softc *sc, const uint8_t *ucode, size_t size)
2075 {
2076         usb_device_request_t req;
2077         uint16_t reg = RT2573_MCU_CODE_BASE;
2078         usbd_status error;
2079
2080         /* copy firmware image into NIC */
2081         for (; size >= 4; reg += 4, ucode += 4, size -= 4)
2082                 rum_write(sc, reg, UGETDW(ucode));
2083
2084         req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
2085         req.bRequest = RT2573_MCU_CNTL;
2086         USETW(req.wValue, RT2573_MCU_RUN);
2087         USETW(req.wIndex, 0);
2088         USETW(req.wLength, 0);
2089
2090         error = usbd_do_request(sc->sc_udev, &req, NULL);
2091         if (error != 0) {
2092                 kprintf("%s: could not run firmware: %s\n",
2093                     USBDEVNAME(sc->sc_dev), usbd_errstr(error));
2094         }
2095         return error;
2096 }
2097
2098 Static int
2099 rum_prepare_beacon(struct rum_softc *sc)
2100 {
2101         struct ieee80211com *ic = &sc->sc_ic;
2102         struct ieee80211_beacon_offsets bo;
2103         struct rum_tx_desc desc;
2104         struct mbuf *m0;
2105         int rate;
2106
2107         m0 = ieee80211_beacon_alloc(ic, ic->ic_bss, &bo);
2108         if (m0 == NULL) {
2109                 if_printf(&ic->ic_if, "could not allocate beacon frame\n");
2110                 return ENOBUFS;
2111         }
2112
2113         /* send beacons at the lowest available rate */
2114         rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->ni_chan) ? 12 : 2;
2115
2116         rum_setup_tx_desc(sc, &desc, RT2573_TX_TIMESTAMP, RT2573_TX_HWSEQ,
2117             m0->m_pkthdr.len, rate);
2118
2119         /* copy the first 24 bytes of Tx descriptor into NIC memory */
2120         rum_write_multi(sc, RT2573_HW_BEACON_BASE0, (uint8_t *)&desc, 24);
2121
2122         /* copy beacon header and payload into NIC memory */
2123         rum_write_multi(sc, RT2573_HW_BEACON_BASE0 + 24, mtod(m0, uint8_t *),
2124             m0->m_pkthdr.len);
2125
2126         m_freem(m0);
2127
2128         return 0;
2129 }
2130
2131 Static void
2132 rum_stats_timeout(void *arg)
2133 {
2134         struct rum_softc *sc = arg;
2135         struct ifnet *ifp = &sc->sc_ic.ic_if;
2136         usb_device_request_t req;
2137
2138         lwkt_serialize_enter(ifp->if_serializer);
2139
2140         /*
2141          * Asynchronously read statistic registers (cleared by read).
2142          */
2143         req.bmRequestType = UT_READ_VENDOR_DEVICE;
2144         req.bRequest = RT2573_READ_MULTI_MAC;
2145         USETW(req.wValue, 0);
2146         USETW(req.wIndex, RT2573_STA_CSR0);
2147         USETW(req.wLength, sizeof(sc->sta));
2148
2149         usbd_setup_default_xfer(sc->stats_xfer, sc->sc_udev, sc,
2150                                 USBD_DEFAULT_TIMEOUT, &req,
2151                                 sc->sta, sizeof(sc->sta), 0,
2152                                 rum_stats_update);
2153         usbd_transfer(sc->stats_xfer);
2154
2155         lwkt_serialize_exit(ifp->if_serializer);
2156 }
2157
2158 Static void
2159 rum_stats_update(usbd_xfer_handle xfer, usbd_private_handle priv,
2160                  usbd_status status)
2161 {
2162         struct rum_softc *sc = (struct rum_softc *)priv;
2163         struct ifnet *ifp = &sc->sc_ic.ic_if;
2164         struct ieee80211_ratectl_stats *stats = &sc->sc_stats;
2165
2166         if (status != USBD_NORMAL_COMPLETION) {
2167                 kprintf("%s: could not retrieve Tx statistics - cancelling "
2168                     "automatic rate control\n", USBDEVNAME(sc->sc_dev));
2169                 return;
2170         }
2171
2172         lwkt_serialize_enter(ifp->if_serializer);
2173
2174         /* count TX retry-fail as Tx errors */
2175         ifp->if_oerrors += RUM_TX_PKT_FAIL(sc);
2176
2177         stats->stats_pkt_noretry += RUM_TX_PKT_NO_RETRY(sc);
2178         stats->stats_pkt_ok += RUM_TX_PKT_NO_RETRY(sc) +
2179                                RUM_TX_PKT_ONE_RETRY(sc) +
2180                                RUM_TX_PKT_MULTI_RETRY(sc);
2181         stats->stats_pkt_err += RUM_TX_PKT_FAIL(sc);
2182
2183         stats->stats_short_retries += RUM_TX_PKT_ONE_RETRY(sc);
2184 #if 1
2185         /*
2186          * XXX Estimated average:
2187          * Actual number of retries for each packet should belong to
2188          * [2, RUM_TX_SHORT_RETRY_MAX]
2189          */
2190         stats->stats_short_retries +=
2191                 RUM_TX_PKT_MULTI_RETRY(sc) *
2192                 ((2 + RUM_TX_SHORT_RETRY_MAX) / 2);
2193 #else
2194         stats->stats_short_retries += RUM_TX_PKT_MULTI_RETRY(sc);
2195 #endif
2196         stats->stats_short_retries +=
2197                 RUM_TX_PKT_FAIL(sc) * RUM_TX_SHORT_RETRY_MAX;
2198
2199         callout_reset(&sc->stats_ch, 4 * hz / 5, rum_stats_timeout, sc);
2200
2201         lwkt_serialize_exit(ifp->if_serializer);
2202 }
2203
2204 Static void
2205 rum_stats(struct ieee80211com *ic, struct ieee80211_node *ni __unused,
2206           struct ieee80211_ratectl_stats *stats)
2207 {
2208         struct ifnet *ifp = &ic->ic_if;
2209         struct rum_softc *sc = ifp->if_softc;
2210
2211         ASSERT_SERIALIZED(ifp->if_serializer);
2212
2213         bcopy(&sc->sc_stats, stats, sizeof(*stats));
2214         bzero(&sc->sc_stats, sizeof(sc->sc_stats));
2215 }
2216
2217 Static void
2218 rum_ratectl_change(struct ieee80211com *ic, u_int orc __unused, u_int nrc)
2219 {
2220         struct ieee80211_ratectl_state *st = &ic->ic_ratectl;
2221         struct ieee80211_onoe_param *oparam;
2222
2223         if (st->rc_st_param != NULL) {
2224                 kfree(st->rc_st_param, M_DEVBUF);
2225                 st->rc_st_param = NULL;
2226         }
2227
2228         switch (nrc) {
2229         case IEEE80211_RATECTL_ONOE:
2230                 oparam = kmalloc(sizeof(*oparam), M_DEVBUF, M_INTWAIT);
2231
2232                 IEEE80211_ONOE_PARAM_SETUP(oparam);
2233                 oparam->onoe_raise = 15;
2234
2235                 st->rc_st_param = oparam;
2236                 break;
2237         case IEEE80211_RATECTL_NONE:
2238                 /* This could only happen during detaching */
2239                 break;
2240         default:
2241                 panic("unknown rate control algo %u\n", nrc);
2242         }
2243 }
2244
2245 Static int
2246 rum_get_rssi(struct rum_softc *sc, uint8_t raw)
2247 {
2248         int lna, agc, rssi;
2249
2250         lna = (raw >> 5) & 0x3;
2251         agc = raw & 0x1f;
2252
2253         if (lna == 0) {
2254                 /*
2255                  * No RSSI mapping
2256                  *
2257                  * NB: Since RSSI is relative to noise floor, -1 is
2258                  *     adequate for caller to know error happened.
2259                  */
2260                 return -1;
2261         }
2262
2263         rssi = (2 * agc) - RT2573_NOISE_FLOOR;
2264
2265         if (IEEE80211_IS_CHAN_2GHZ(sc->sc_curchan)) {
2266                 rssi += sc->rssi_2ghz_corr;
2267
2268                 if (lna == 1)
2269                         rssi -= 64;
2270                 else if (lna == 2)
2271                         rssi -= 74;
2272                 else if (lna == 3)
2273                         rssi -= 90;
2274         } else {
2275                 rssi += sc->rssi_5ghz_corr;
2276
2277                 if (!sc->ext_5ghz_lna && lna != 1)
2278                         rssi += 4;
2279
2280                 if (lna == 1)
2281                         rssi -= 64;
2282                 else if (lna == 2)
2283                         rssi -= 86;
2284                 else if (lna == 3)
2285                         rssi -= 100;
2286         }
2287         return rssi;
2288 }