Wrap the VM MAP locking routines with _KERNEL, user-land has no
[dragonfly.git] / sys / vm / vm_pageout.c
1 /*
2  * Copyright (c) 1991 Regents of the University of California.
3  * All rights reserved.
4  * Copyright (c) 1994 John S. Dyson
5  * All rights reserved.
6  * Copyright (c) 1994 David Greenman
7  * All rights reserved.
8  *
9  * This code is derived from software contributed to Berkeley by
10  * The Mach Operating System project at Carnegie-Mellon University.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. All advertising materials mentioning features or use of this software
21  *    must display the following acknowledgement:
22  *      This product includes software developed by the University of
23  *      California, Berkeley and its contributors.
24  * 4. Neither the name of the University nor the names of its contributors
25  *    may be used to endorse or promote products derived from this software
26  *    without specific prior written permission.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38  * SUCH DAMAGE.
39  *
40  *      from: @(#)vm_pageout.c  7.4 (Berkeley) 5/7/91
41  *
42  *
43  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
44  * All rights reserved.
45  *
46  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
47  *
48  * Permission to use, copy, modify and distribute this software and
49  * its documentation is hereby granted, provided that both the copyright
50  * notice and this permission notice appear in all copies of the
51  * software, derivative works or modified versions, and any portions
52  * thereof, and that both notices appear in supporting documentation.
53  *
54  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57  *
58  * Carnegie Mellon requests users of this software to return to
59  *
60  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
61  *  School of Computer Science
62  *  Carnegie Mellon University
63  *  Pittsburgh PA 15213-3890
64  *
65  * any improvements or extensions that they make and grant Carnegie the
66  * rights to redistribute these changes.
67  *
68  * $FreeBSD: src/sys/vm/vm_pageout.c,v 1.151.2.15 2002/12/29 18:21:04 dillon Exp $
69  * $DragonFly: src/sys/vm/vm_pageout.c,v 1.11 2004/05/13 17:40:19 dillon Exp $
70  */
71
72 /*
73  *      The proverbial page-out daemon.
74  */
75
76 #include "opt_vm.h"
77 #include <sys/param.h>
78 #include <sys/systm.h>
79 #include <sys/kernel.h>
80 #include <sys/proc.h>
81 #include <sys/kthread.h>
82 #include <sys/resourcevar.h>
83 #include <sys/signalvar.h>
84 #include <sys/vnode.h>
85 #include <sys/vmmeter.h>
86 #include <sys/sysctl.h>
87
88 #include <vm/vm.h>
89 #include <vm/vm_param.h>
90 #include <sys/lock.h>
91 #include <vm/vm_object.h>
92 #include <vm/vm_page.h>
93 #include <vm/vm_map.h>
94 #include <vm/vm_pageout.h>
95 #include <vm/vm_pager.h>
96 #include <vm/swap_pager.h>
97 #include <vm/vm_extern.h>
98 #include <vm/vm_page2.h>
99
100 /*
101  * System initialization
102  */
103
104 /* the kernel process "vm_pageout"*/
105 static void vm_pageout (void);
106 static int vm_pageout_clean (vm_page_t);
107 static void vm_pageout_scan (int pass);
108 static int vm_pageout_free_page_calc (vm_size_t count);
109 struct thread *pagethread;
110
111 static struct kproc_desc page_kp = {
112         "pagedaemon",
113         vm_pageout,
114         &pagethread
115 };
116 SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, kproc_start, &page_kp)
117
118 #if !defined(NO_SWAPPING)
119 /* the kernel process "vm_daemon"*/
120 static void vm_daemon (void);
121 static struct   thread *vmthread;
122
123 static struct kproc_desc vm_kp = {
124         "vmdaemon",
125         vm_daemon,
126         &vmthread
127 };
128 SYSINIT(vmdaemon, SI_SUB_KTHREAD_VM, SI_ORDER_FIRST, kproc_start, &vm_kp)
129 #endif
130
131
132 int vm_pages_needed=0;          /* Event on which pageout daemon sleeps */
133 int vm_pageout_deficit=0;       /* Estimated number of pages deficit */
134 int vm_pageout_pages_needed=0;  /* flag saying that the pageout daemon needs pages */
135
136 #if !defined(NO_SWAPPING)
137 static int vm_pageout_req_swapout;      /* XXX */
138 static int vm_daemon_needed;
139 #endif
140 extern int vm_swap_size;
141 static int vm_max_launder = 32;
142 static int vm_pageout_stats_max=0, vm_pageout_stats_interval = 0;
143 static int vm_pageout_full_stats_interval = 0;
144 static int vm_pageout_stats_free_max=0, vm_pageout_algorithm=0;
145 static int defer_swap_pageouts=0;
146 static int disable_swap_pageouts=0;
147
148 #if defined(NO_SWAPPING)
149 static int vm_swap_enabled=0;
150 static int vm_swap_idle_enabled=0;
151 #else
152 static int vm_swap_enabled=1;
153 static int vm_swap_idle_enabled=0;
154 #endif
155
156 SYSCTL_INT(_vm, VM_PAGEOUT_ALGORITHM, pageout_algorithm,
157         CTLFLAG_RW, &vm_pageout_algorithm, 0, "LRU page mgmt");
158
159 SYSCTL_INT(_vm, OID_AUTO, max_launder,
160         CTLFLAG_RW, &vm_max_launder, 0, "Limit dirty flushes in pageout");
161
162 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_max,
163         CTLFLAG_RW, &vm_pageout_stats_max, 0, "Max pageout stats scan length");
164
165 SYSCTL_INT(_vm, OID_AUTO, pageout_full_stats_interval,
166         CTLFLAG_RW, &vm_pageout_full_stats_interval, 0, "Interval for full stats scan");
167
168 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_interval,
169         CTLFLAG_RW, &vm_pageout_stats_interval, 0, "Interval for partial stats scan");
170
171 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_free_max,
172         CTLFLAG_RW, &vm_pageout_stats_free_max, 0, "Not implemented");
173
174 #if defined(NO_SWAPPING)
175 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
176         CTLFLAG_RD, &vm_swap_enabled, 0, "");
177 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
178         CTLFLAG_RD, &vm_swap_idle_enabled, 0, "");
179 #else
180 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
181         CTLFLAG_RW, &vm_swap_enabled, 0, "Enable entire process swapout");
182 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
183         CTLFLAG_RW, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
184 #endif
185
186 SYSCTL_INT(_vm, OID_AUTO, defer_swapspace_pageouts,
187         CTLFLAG_RW, &defer_swap_pageouts, 0, "Give preference to dirty pages in mem");
188
189 SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
190         CTLFLAG_RW, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages");
191
192 static int pageout_lock_miss;
193 SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss,
194         CTLFLAG_RD, &pageout_lock_miss, 0, "vget() lock misses during pageout");
195
196 #define VM_PAGEOUT_PAGE_COUNT 16
197 int vm_pageout_page_count = VM_PAGEOUT_PAGE_COUNT;
198
199 int vm_page_max_wired;          /* XXX max # of wired pages system-wide */
200
201 #if !defined(NO_SWAPPING)
202 typedef void freeer_fcn_t (vm_map_t, vm_object_t, vm_pindex_t, int);
203 static void vm_pageout_map_deactivate_pages (vm_map_t, vm_pindex_t);
204 static freeer_fcn_t vm_pageout_object_deactivate_pages;
205 static void vm_req_vmdaemon (void);
206 #endif
207 static void vm_pageout_page_stats(void);
208
209 /*
210  * vm_pageout_clean:
211  *
212  * Clean the page and remove it from the laundry.  The page must not be
213  * busy on-call.
214  * 
215  * We set the busy bit to cause potential page faults on this page to
216  * block.  Note the careful timing, however, the busy bit isn't set till
217  * late and we cannot do anything that will mess with the page.
218  */
219
220 static int
221 vm_pageout_clean(vm_page_t m)
222 {
223         vm_object_t object;
224         vm_page_t mc[2*vm_pageout_page_count];
225         int pageout_count;
226         int ib, is, page_base;
227         vm_pindex_t pindex = m->pindex;
228
229         object = m->object;
230
231         /*
232          * It doesn't cost us anything to pageout OBJT_DEFAULT or OBJT_SWAP
233          * with the new swapper, but we could have serious problems paging
234          * out other object types if there is insufficient memory.  
235          *
236          * Unfortunately, checking free memory here is far too late, so the
237          * check has been moved up a procedural level.
238          */
239
240         /*
241          * Don't mess with the page if it's busy, held, or special
242          */
243         if ((m->hold_count != 0) ||
244             ((m->busy != 0) || (m->flags & (PG_BUSY|PG_UNMANAGED)))) {
245                 return 0;
246         }
247
248         mc[vm_pageout_page_count] = m;
249         pageout_count = 1;
250         page_base = vm_pageout_page_count;
251         ib = 1;
252         is = 1;
253
254         /*
255          * Scan object for clusterable pages.
256          *
257          * We can cluster ONLY if: ->> the page is NOT
258          * clean, wired, busy, held, or mapped into a
259          * buffer, and one of the following:
260          * 1) The page is inactive, or a seldom used
261          *    active page.
262          * -or-
263          * 2) we force the issue.
264          *
265          * During heavy mmap/modification loads the pageout
266          * daemon can really fragment the underlying file
267          * due to flushing pages out of order and not trying
268          * align the clusters (which leave sporatic out-of-order
269          * holes).  To solve this problem we do the reverse scan
270          * first and attempt to align our cluster, then do a 
271          * forward scan if room remains.
272          */
273
274 more:
275         while (ib && pageout_count < vm_pageout_page_count) {
276                 vm_page_t p;
277
278                 if (ib > pindex) {
279                         ib = 0;
280                         break;
281                 }
282
283                 if ((p = vm_page_lookup(object, pindex - ib)) == NULL) {
284                         ib = 0;
285                         break;
286                 }
287                 if (((p->queue - p->pc) == PQ_CACHE) ||
288                     (p->flags & (PG_BUSY|PG_UNMANAGED)) || p->busy) {
289                         ib = 0;
290                         break;
291                 }
292                 vm_page_test_dirty(p);
293                 if ((p->dirty & p->valid) == 0 ||
294                     p->queue != PQ_INACTIVE ||
295                     p->wire_count != 0 ||       /* may be held by buf cache */
296                     p->hold_count != 0) {       /* may be undergoing I/O */
297                         ib = 0;
298                         break;
299                 }
300                 mc[--page_base] = p;
301                 ++pageout_count;
302                 ++ib;
303                 /*
304                  * alignment boundry, stop here and switch directions.  Do
305                  * not clear ib.
306                  */
307                 if ((pindex - (ib - 1)) % vm_pageout_page_count == 0)
308                         break;
309         }
310
311         while (pageout_count < vm_pageout_page_count && 
312             pindex + is < object->size) {
313                 vm_page_t p;
314
315                 if ((p = vm_page_lookup(object, pindex + is)) == NULL)
316                         break;
317                 if (((p->queue - p->pc) == PQ_CACHE) ||
318                     (p->flags & (PG_BUSY|PG_UNMANAGED)) || p->busy) {
319                         break;
320                 }
321                 vm_page_test_dirty(p);
322                 if ((p->dirty & p->valid) == 0 ||
323                     p->queue != PQ_INACTIVE ||
324                     p->wire_count != 0 ||       /* may be held by buf cache */
325                     p->hold_count != 0) {       /* may be undergoing I/O */
326                         break;
327                 }
328                 mc[page_base + pageout_count] = p;
329                 ++pageout_count;
330                 ++is;
331         }
332
333         /*
334          * If we exhausted our forward scan, continue with the reverse scan
335          * when possible, even past a page boundry.  This catches boundry
336          * conditions.
337          */
338         if (ib && pageout_count < vm_pageout_page_count)
339                 goto more;
340
341         /*
342          * we allow reads during pageouts...
343          */
344         return vm_pageout_flush(&mc[page_base], pageout_count, 0);
345 }
346
347 /*
348  * vm_pageout_flush() - launder the given pages
349  *
350  *      The given pages are laundered.  Note that we setup for the start of
351  *      I/O ( i.e. busy the page ), mark it read-only, and bump the object
352  *      reference count all in here rather then in the parent.  If we want
353  *      the parent to do more sophisticated things we may have to change
354  *      the ordering.
355  */
356
357 int
358 vm_pageout_flush(vm_page_t *mc, int count, int flags)
359 {
360         vm_object_t object;
361         int pageout_status[count];
362         int numpagedout = 0;
363         int i;
364
365         /*
366          * Initiate I/O.  Bump the vm_page_t->busy counter and
367          * mark the pages read-only.
368          *
369          * We do not have to fixup the clean/dirty bits here... we can
370          * allow the pager to do it after the I/O completes.
371          */
372
373         for (i = 0; i < count; i++) {
374                 KASSERT(mc[i]->valid == VM_PAGE_BITS_ALL, ("vm_pageout_flush page %p index %d/%d: partially invalid page", mc[i], i, count));
375                 vm_page_io_start(mc[i]);
376                 vm_page_protect(mc[i], VM_PROT_READ);
377         }
378
379         object = mc[0]->object;
380         vm_object_pip_add(object, count);
381
382         vm_pager_put_pages(object, mc, count,
383             (flags | ((object == kernel_object) ? VM_PAGER_PUT_SYNC : 0)),
384             pageout_status);
385
386         for (i = 0; i < count; i++) {
387                 vm_page_t mt = mc[i];
388
389                 switch (pageout_status[i]) {
390                 case VM_PAGER_OK:
391                         numpagedout++;
392                         break;
393                 case VM_PAGER_PEND:
394                         numpagedout++;
395                         break;
396                 case VM_PAGER_BAD:
397                         /*
398                          * Page outside of range of object. Right now we
399                          * essentially lose the changes by pretending it
400                          * worked.
401                          */
402                         pmap_clear_modify(mt);
403                         vm_page_undirty(mt);
404                         break;
405                 case VM_PAGER_ERROR:
406                 case VM_PAGER_FAIL:
407                         /*
408                          * If page couldn't be paged out, then reactivate the
409                          * page so it doesn't clog the inactive list.  (We
410                          * will try paging out it again later).
411                          */
412                         vm_page_activate(mt);
413                         break;
414                 case VM_PAGER_AGAIN:
415                         break;
416                 }
417
418                 /*
419                  * If the operation is still going, leave the page busy to
420                  * block all other accesses. Also, leave the paging in
421                  * progress indicator set so that we don't attempt an object
422                  * collapse.
423                  */
424                 if (pageout_status[i] != VM_PAGER_PEND) {
425                         vm_object_pip_wakeup(object);
426                         vm_page_io_finish(mt);
427                         if (!vm_page_count_severe() || !vm_page_try_to_cache(mt))
428                                 vm_page_protect(mt, VM_PROT_READ);
429                 }
430         }
431         return numpagedout;
432 }
433
434 #if !defined(NO_SWAPPING)
435 /*
436  *      vm_pageout_object_deactivate_pages
437  *
438  *      deactivate enough pages to satisfy the inactive target
439  *      requirements or if vm_page_proc_limit is set, then
440  *      deactivate all of the pages in the object and its
441  *      backing_objects.
442  *
443  *      The object and map must be locked.
444  */
445 static void
446 vm_pageout_object_deactivate_pages(vm_map_t map, vm_object_t object,
447         vm_pindex_t desired, int map_remove_only)
448 {
449         vm_page_t p, next;
450         int rcount;
451         int remove_mode;
452         int s;
453
454         if (object->type == OBJT_DEVICE || object->type == OBJT_PHYS)
455                 return;
456
457         while (object) {
458                 if (pmap_resident_count(vm_map_pmap(map)) <= desired)
459                         return;
460                 if (object->paging_in_progress)
461                         return;
462
463                 remove_mode = map_remove_only;
464                 if (object->shadow_count > 1)
465                         remove_mode = 1;
466
467                 /*
468                  * scan the objects entire memory queue.  spl protection is
469                  * required to avoid an interrupt unbusy/free race against
470                  * our busy check.
471                  */
472                 s = splvm();
473                 rcount = object->resident_page_count;
474                 p = TAILQ_FIRST(&object->memq);
475
476                 while (p && (rcount-- > 0)) {
477                         int actcount;
478                         if (pmap_resident_count(vm_map_pmap(map)) <= desired) {
479                                 splx(s);
480                                 return;
481                         }
482                         next = TAILQ_NEXT(p, listq);
483                         mycpu->gd_cnt.v_pdpages++;
484                         if (p->wire_count != 0 ||
485                             p->hold_count != 0 ||
486                             p->busy != 0 ||
487                             (p->flags & (PG_BUSY|PG_UNMANAGED)) ||
488                             !pmap_page_exists_quick(vm_map_pmap(map), p)) {
489                                 p = next;
490                                 continue;
491                         }
492
493                         actcount = pmap_ts_referenced(p);
494                         if (actcount) {
495                                 vm_page_flag_set(p, PG_REFERENCED);
496                         } else if (p->flags & PG_REFERENCED) {
497                                 actcount = 1;
498                         }
499
500                         if ((p->queue != PQ_ACTIVE) &&
501                                 (p->flags & PG_REFERENCED)) {
502                                 vm_page_activate(p);
503                                 p->act_count += actcount;
504                                 vm_page_flag_clear(p, PG_REFERENCED);
505                         } else if (p->queue == PQ_ACTIVE) {
506                                 if ((p->flags & PG_REFERENCED) == 0) {
507                                         p->act_count -= min(p->act_count, ACT_DECLINE);
508                                         if (!remove_mode && (vm_pageout_algorithm || (p->act_count == 0))) {
509                                                 vm_page_protect(p, VM_PROT_NONE);
510                                                 vm_page_deactivate(p);
511                                         } else {
512                                                 TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, p, pageq);
513                                                 TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, p, pageq);
514                                         }
515                                 } else {
516                                         vm_page_activate(p);
517                                         vm_page_flag_clear(p, PG_REFERENCED);
518                                         if (p->act_count < (ACT_MAX - ACT_ADVANCE))
519                                                 p->act_count += ACT_ADVANCE;
520                                         TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, p, pageq);
521                                         TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, p, pageq);
522                                 }
523                         } else if (p->queue == PQ_INACTIVE) {
524                                 vm_page_protect(p, VM_PROT_NONE);
525                         }
526                         p = next;
527                 }
528                 splx(s);
529                 object = object->backing_object;
530         }
531 }
532
533 /*
534  * deactivate some number of pages in a map, try to do it fairly, but
535  * that is really hard to do.
536  */
537 static void
538 vm_pageout_map_deactivate_pages(vm_map_t map, vm_pindex_t desired)
539 {
540         vm_map_entry_t tmpe;
541         vm_object_t obj, bigobj;
542         int nothingwired;
543
544         if (lockmgr(&map->lock, LK_EXCLUSIVE | LK_NOWAIT, NULL, curthread)) {
545                 return;
546         }
547
548         bigobj = NULL;
549         nothingwired = TRUE;
550
551         /*
552          * first, search out the biggest object, and try to free pages from
553          * that.
554          */
555         tmpe = map->header.next;
556         while (tmpe != &map->header) {
557                 if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
558                         obj = tmpe->object.vm_object;
559                         if ((obj != NULL) && (obj->shadow_count <= 1) &&
560                                 ((bigobj == NULL) ||
561                                  (bigobj->resident_page_count < obj->resident_page_count))) {
562                                 bigobj = obj;
563                         }
564                 }
565                 if (tmpe->wired_count > 0)
566                         nothingwired = FALSE;
567                 tmpe = tmpe->next;
568         }
569
570         if (bigobj)
571                 vm_pageout_object_deactivate_pages(map, bigobj, desired, 0);
572
573         /*
574          * Next, hunt around for other pages to deactivate.  We actually
575          * do this search sort of wrong -- .text first is not the best idea.
576          */
577         tmpe = map->header.next;
578         while (tmpe != &map->header) {
579                 if (pmap_resident_count(vm_map_pmap(map)) <= desired)
580                         break;
581                 if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
582                         obj = tmpe->object.vm_object;
583                         if (obj)
584                                 vm_pageout_object_deactivate_pages(map, obj, desired, 0);
585                 }
586                 tmpe = tmpe->next;
587         };
588
589         /*
590          * Remove all mappings if a process is swapped out, this will free page
591          * table pages.
592          */
593         if (desired == 0 && nothingwired)
594                 pmap_remove(vm_map_pmap(map),
595                         VM_MIN_ADDRESS, VM_MAXUSER_ADDRESS);
596         vm_map_unlock(map);
597         return;
598 }
599 #endif
600
601 /*
602  * Don't try to be fancy - being fancy can lead to VOP_LOCK's and therefore
603  * to vnode deadlocks.  We only do it for OBJT_DEFAULT and OBJT_SWAP objects
604  * which we know can be trivially freed.
605  */
606
607 void
608 vm_pageout_page_free(vm_page_t m) {
609         vm_object_t object = m->object;
610         int type = object->type;
611
612         if (type == OBJT_SWAP || type == OBJT_DEFAULT)
613                 vm_object_reference(object);
614         vm_page_busy(m);
615         vm_page_protect(m, VM_PROT_NONE);
616         vm_page_free(m);
617         if (type == OBJT_SWAP || type == OBJT_DEFAULT)
618                 vm_object_deallocate(object);
619 }
620
621 /*
622  *      vm_pageout_scan does the dirty work for the pageout daemon.
623  */
624 static void
625 vm_pageout_scan(int pass)
626 {
627         vm_page_t m, next;
628         struct vm_page marker;
629         int page_shortage, maxscan, pcount;
630         int addl_page_shortage, addl_page_shortage_init;
631         struct proc *p, *bigproc;
632         vm_offset_t size, bigsize;
633         vm_object_t object;
634         int actcount;
635         int vnodes_skipped = 0;
636         int maxlaunder;
637         int s;
638
639         /*
640          * Do whatever cleanup that the pmap code can.
641          */
642         pmap_collect();
643
644         addl_page_shortage_init = vm_pageout_deficit;
645         vm_pageout_deficit = 0;
646
647         /*
648          * Calculate the number of pages we want to either free or move
649          * to the cache.
650          */
651         page_shortage = vm_paging_target() + addl_page_shortage_init;
652
653         /*
654          * Initialize our marker
655          */
656         bzero(&marker, sizeof(marker));
657         marker.flags = PG_BUSY | PG_FICTITIOUS | PG_MARKER;
658         marker.queue = PQ_INACTIVE;
659         marker.wire_count = 1;
660
661         /*
662          * Start scanning the inactive queue for pages we can move to the
663          * cache or free.  The scan will stop when the target is reached or
664          * we have scanned the entire inactive queue.  Note that m->act_count
665          * is not used to form decisions for the inactive queue, only for the
666          * active queue.
667          *
668          * maxlaunder limits the number of dirty pages we flush per scan.
669          * For most systems a smaller value (16 or 32) is more robust under
670          * extreme memory and disk pressure because any unnecessary writes
671          * to disk can result in extreme performance degredation.  However,
672          * systems with excessive dirty pages (especially when MAP_NOSYNC is
673          * used) will die horribly with limited laundering.  If the pageout
674          * daemon cannot clean enough pages in the first pass, we let it go
675          * all out in succeeding passes.
676          */
677         if ((maxlaunder = vm_max_launder) <= 1)
678                 maxlaunder = 1;
679         if (pass)
680                 maxlaunder = 10000;
681
682         /*
683          * We will generally be at splvm() throughout the scan, but we
684          * can release it temporarily when we are sitting on a non-busy
685          * page without fear.  The spl protection is required because an
686          * an interrupt can come along and unbusy/free a busy page prior
687          * to our busy check, leaving us on the wrong queue or checking
688          * the wrong page.
689          */
690         s = splvm();
691 rescan0:
692         addl_page_shortage = addl_page_shortage_init;
693         maxscan = vmstats.v_inactive_count;
694         for (m = TAILQ_FIRST(&vm_page_queues[PQ_INACTIVE].pl);
695              m != NULL && maxscan-- > 0 && page_shortage > 0;
696              m = next
697          ) {
698                 mycpu->gd_cnt.v_pdpages++;
699
700                 /*
701                  * Give interrupts a chance
702                  */
703                 splx(s);
704                 s = splvm();
705
706                 /*
707                  * It's easier for some of the conditions below to just loop
708                  * and catch queue changes here rather then check everywhere
709                  * else.
710                  */
711                 if (m->queue != PQ_INACTIVE)
712                         goto rescan0;
713                 next = TAILQ_NEXT(m, pageq);
714
715                 /*
716                  * skip marker pages
717                  */
718                 if (m->flags & PG_MARKER)
719                         continue;
720
721                 /*
722                  * A held page may be undergoing I/O, so skip it.
723                  */
724                 if (m->hold_count) {
725                         TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
726                         TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
727                         addl_page_shortage++;
728                         continue;
729                 }
730
731                 /*
732                  * Dont mess with busy pages, keep in the front of the
733                  * queue, most likely are being paged out.
734                  */
735                 if (m->busy || (m->flags & PG_BUSY)) {
736                         addl_page_shortage++;
737                         continue;
738                 }
739
740                 if (m->object->ref_count == 0) {
741                         /*
742                          * If the object is not being used, we ignore previous 
743                          * references.
744                          */
745                         vm_page_flag_clear(m, PG_REFERENCED);
746                         pmap_clear_reference(m);
747
748                 } else if (((m->flags & PG_REFERENCED) == 0) &&
749                             (actcount = pmap_ts_referenced(m))) {
750                         /*
751                          * Otherwise, if the page has been referenced while 
752                          * in the inactive queue, we bump the "activation
753                          * count" upwards, making it less likely that the
754                          * page will be added back to the inactive queue
755                          * prematurely again.  Here we check the page tables
756                          * (or emulated bits, if any), given the upper level
757                          * VM system not knowing anything about existing 
758                          * references.
759                          */
760                         vm_page_activate(m);
761                         m->act_count += (actcount + ACT_ADVANCE);
762                         continue;
763                 }
764
765                 /*
766                  * If the upper level VM system knows about any page 
767                  * references, we activate the page.  We also set the 
768                  * "activation count" higher than normal so that we will less 
769                  * likely place pages back onto the inactive queue again.
770                  */
771                 if ((m->flags & PG_REFERENCED) != 0) {
772                         vm_page_flag_clear(m, PG_REFERENCED);
773                         actcount = pmap_ts_referenced(m);
774                         vm_page_activate(m);
775                         m->act_count += (actcount + ACT_ADVANCE + 1);
776                         continue;
777                 }
778
779                 /*
780                  * If the upper level VM system doesn't know anything about 
781                  * the page being dirty, we have to check for it again.  As 
782                  * far as the VM code knows, any partially dirty pages are 
783                  * fully dirty.
784                  *
785                  * Pages marked PG_WRITEABLE may be mapped into the user
786                  * address space of a process running on another cpu.  A
787                  * user process (without holding the MP lock) running on
788                  * another cpu may be able to touch the page while we are
789                  * trying to remove it.  To prevent this from occuring we
790                  * must call pmap_remove_all() or otherwise make the page
791                  * read-only.  If the race occured pmap_remove_all() is
792                  * responsible for setting m->dirty.
793                  */
794                 if (m->dirty == 0) {
795                         vm_page_test_dirty(m);
796 #if 0
797                         if (m->dirty == 0 && (m->flags & PG_WRITEABLE) != 0)
798                                 pmap_remove_all(m);
799 #endif
800                 } else {
801                         vm_page_dirty(m);
802                 }
803
804                 if (m->valid == 0) {
805                         /*
806                          * Invalid pages can be easily freed
807                          */
808                         vm_pageout_page_free(m);
809                         mycpu->gd_cnt.v_dfree++;
810                         --page_shortage;
811                 } else if (m->dirty == 0) {
812                         /*
813                          * Clean pages can be placed onto the cache queue.
814                          * This effectively frees them.
815                          */
816                         vm_page_cache(m);
817                         --page_shortage;
818                 } else if ((m->flags & PG_WINATCFLS) == 0 && pass == 0) {
819                         /*
820                          * Dirty pages need to be paged out, but flushing
821                          * a page is extremely expensive verses freeing
822                          * a clean page.  Rather then artificially limiting
823                          * the number of pages we can flush, we instead give
824                          * dirty pages extra priority on the inactive queue
825                          * by forcing them to be cycled through the queue
826                          * twice before being flushed, after which the 
827                          * (now clean) page will cycle through once more
828                          * before being freed.  This significantly extends
829                          * the thrash point for a heavily loaded machine.
830                          */
831                         vm_page_flag_set(m, PG_WINATCFLS);
832                         TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
833                         TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
834                 } else if (maxlaunder > 0) {
835                         /*
836                          * We always want to try to flush some dirty pages if
837                          * we encounter them, to keep the system stable.
838                          * Normally this number is small, but under extreme
839                          * pressure where there are insufficient clean pages
840                          * on the inactive queue, we may have to go all out.
841                          */
842                         int swap_pageouts_ok;
843                         struct vnode *vp = NULL;
844
845                         object = m->object;
846
847                         if ((object->type != OBJT_SWAP) && (object->type != OBJT_DEFAULT)) {
848                                 swap_pageouts_ok = 1;
849                         } else {
850                                 swap_pageouts_ok = !(defer_swap_pageouts || disable_swap_pageouts);
851                                 swap_pageouts_ok |= (!disable_swap_pageouts && defer_swap_pageouts &&
852                                 vm_page_count_min());
853                                                                                 
854                         }
855
856                         /*
857                          * We don't bother paging objects that are "dead".  
858                          * Those objects are in a "rundown" state.
859                          */
860                         if (!swap_pageouts_ok || (object->flags & OBJ_DEAD)) {
861                                 TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
862                                 TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
863                                 continue;
864                         }
865
866                         /*
867                          * The object is already known NOT to be dead.   It
868                          * is possible for the vget() to block the whole
869                          * pageout daemon, but the new low-memory handling
870                          * code should prevent it.
871                          *
872                          * The previous code skipped locked vnodes and, worse,
873                          * reordered pages in the queue.  This results in
874                          * completely non-deterministic operation because,
875                          * quite often, a vm_fault has initiated an I/O and
876                          * is holding a locked vnode at just the point where
877                          * the pageout daemon is woken up.
878                          *
879                          * We can't wait forever for the vnode lock, we might
880                          * deadlock due to a vn_read() getting stuck in
881                          * vm_wait while holding this vnode.  We skip the 
882                          * vnode if we can't get it in a reasonable amount
883                          * of time.
884                          */
885
886                         if (object->type == OBJT_VNODE) {
887                                 vp = object->handle;
888
889                                 if (vget(vp, NULL, LK_EXCLUSIVE|LK_NOOBJ|LK_TIMELOCK, curthread)) {
890                                         ++pageout_lock_miss;
891                                         if (object->flags & OBJ_MIGHTBEDIRTY)
892                                                     vnodes_skipped++;
893                                         continue;
894                                 }
895
896                                 /*
897                                  * The page might have been moved to another
898                                  * queue during potential blocking in vget()
899                                  * above.  The page might have been freed and
900                                  * reused for another vnode.  The object might
901                                  * have been reused for another vnode.
902                                  */
903                                 if (m->queue != PQ_INACTIVE ||
904                                     m->object != object ||
905                                     object->handle != vp) {
906                                         if (object->flags & OBJ_MIGHTBEDIRTY)
907                                                 vnodes_skipped++;
908                                         vput(vp);
909                                         continue;
910                                 }
911         
912                                 /*
913                                  * The page may have been busied during the
914                                  * blocking in vput();  We don't move the
915                                  * page back onto the end of the queue so that
916                                  * statistics are more correct if we don't.
917                                  */
918                                 if (m->busy || (m->flags & PG_BUSY)) {
919                                         vput(vp);
920                                         continue;
921                                 }
922
923                                 /*
924                                  * If the page has become held it might
925                                  * be undergoing I/O, so skip it
926                                  */
927                                 if (m->hold_count) {
928                                         TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
929                                         TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
930                                         if (object->flags & OBJ_MIGHTBEDIRTY)
931                                                 vnodes_skipped++;
932                                         vput(vp);
933                                         continue;
934                                 }
935                         }
936
937                         /*
938                          * If a page is dirty, then it is either being washed
939                          * (but not yet cleaned) or it is still in the
940                          * laundry.  If it is still in the laundry, then we
941                          * start the cleaning operation. 
942                          *
943                          * This operation may cluster, invalidating the 'next'
944                          * pointer.  To prevent an inordinate number of
945                          * restarts we use our marker to remember our place.
946                          *
947                          * decrement page_shortage on success to account for
948                          * the (future) cleaned page.  Otherwise we could wind
949                          * up laundering or cleaning too many pages.
950                          */
951                         TAILQ_INSERT_AFTER(&vm_page_queues[PQ_INACTIVE].pl, m, &marker, pageq);
952                         if (vm_pageout_clean(m) != 0) {
953                                 --page_shortage;
954                                 --maxlaunder;
955                         } 
956                         next = TAILQ_NEXT(&marker, pageq);
957                         TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, &marker, pageq);
958                         if (vp != NULL)
959                                 vput(vp);
960                 }
961         }
962
963         /*
964          * Compute the number of pages we want to try to move from the
965          * active queue to the inactive queue.
966          */
967         page_shortage = vm_paging_target() +
968             vmstats.v_inactive_target - vmstats.v_inactive_count;
969         page_shortage += addl_page_shortage;
970
971         /*
972          * Scan the active queue for things we can deactivate. We nominally
973          * track the per-page activity counter and use it to locate 
974          * deactivation candidates.
975          *
976          * NOTE: we are still at splvm().
977          */
978         pcount = vmstats.v_active_count;
979         m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
980
981         while ((m != NULL) && (pcount-- > 0) && (page_shortage > 0)) {
982                 /*
983                  * Give interrupts a chance.
984                  */
985                 splx(s);
986                 s = splvm();
987
988                 /*
989                  * If the page was ripped out from under us, just stop.
990                  */
991                 if (m->queue != PQ_ACTIVE)
992                         break;
993                 next = TAILQ_NEXT(m, pageq);
994
995                 /*
996                  * Don't deactivate pages that are busy.
997                  */
998                 if ((m->busy != 0) ||
999                     (m->flags & PG_BUSY) ||
1000                     (m->hold_count != 0)) {
1001                         TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1002                         TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1003                         m = next;
1004                         continue;
1005                 }
1006
1007                 /*
1008                  * The count for pagedaemon pages is done after checking the
1009                  * page for eligibility...
1010                  */
1011                 mycpu->gd_cnt.v_pdpages++;
1012
1013                 /*
1014                  * Check to see "how much" the page has been used.
1015                  */
1016                 actcount = 0;
1017                 if (m->object->ref_count != 0) {
1018                         if (m->flags & PG_REFERENCED) {
1019                                 actcount += 1;
1020                         }
1021                         actcount += pmap_ts_referenced(m);
1022                         if (actcount) {
1023                                 m->act_count += ACT_ADVANCE + actcount;
1024                                 if (m->act_count > ACT_MAX)
1025                                         m->act_count = ACT_MAX;
1026                         }
1027                 }
1028
1029                 /*
1030                  * Since we have "tested" this bit, we need to clear it now.
1031                  */
1032                 vm_page_flag_clear(m, PG_REFERENCED);
1033
1034                 /*
1035                  * Only if an object is currently being used, do we use the
1036                  * page activation count stats.
1037                  */
1038                 if (actcount && (m->object->ref_count != 0)) {
1039                         TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1040                         TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1041                 } else {
1042                         m->act_count -= min(m->act_count, ACT_DECLINE);
1043                         if (vm_pageout_algorithm ||
1044                             m->object->ref_count == 0 ||
1045                             m->act_count == 0) {
1046                                 page_shortage--;
1047                                 if (m->object->ref_count == 0) {
1048                                         vm_page_protect(m, VM_PROT_NONE);
1049                                         if (m->dirty == 0)
1050                                                 vm_page_cache(m);
1051                                         else
1052                                                 vm_page_deactivate(m);
1053                                 } else {
1054                                         vm_page_deactivate(m);
1055                                 }
1056                         } else {
1057                                 TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1058                                 TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1059                         }
1060                 }
1061                 m = next;
1062         }
1063
1064         /*
1065          * We try to maintain some *really* free pages, this allows interrupt
1066          * code to be guaranteed space.  Since both cache and free queues 
1067          * are considered basically 'free', moving pages from cache to free
1068          * does not effect other calculations.
1069          *
1070          * NOTE: we are still at splvm().
1071          */
1072
1073         while (vmstats.v_free_count < vmstats.v_free_reserved) {
1074                 static int cache_rover = 0;
1075                 m = vm_page_list_find(PQ_CACHE, cache_rover, FALSE);
1076                 if (!m)
1077                         break;
1078                 if ((m->flags & (PG_BUSY|PG_UNMANAGED)) || 
1079                     m->busy || 
1080                     m->hold_count || 
1081                     m->wire_count) {
1082 #ifdef INVARIANTS
1083                         printf("Warning: busy page %p found in cache\n", m);
1084 #endif
1085                         vm_page_deactivate(m);
1086                         continue;
1087                 }
1088                 cache_rover = (cache_rover + PQ_PRIME2) & PQ_L2_MASK;
1089                 vm_pageout_page_free(m);
1090                 mycpu->gd_cnt.v_dfree++;
1091         }
1092
1093         splx(s);
1094
1095 #if !defined(NO_SWAPPING)
1096         /*
1097          * Idle process swapout -- run once per second.
1098          */
1099         if (vm_swap_idle_enabled) {
1100                 static long lsec;
1101                 if (time_second != lsec) {
1102                         vm_pageout_req_swapout |= VM_SWAP_IDLE;
1103                         vm_req_vmdaemon();
1104                         lsec = time_second;
1105                 }
1106         }
1107 #endif
1108                 
1109         /*
1110          * If we didn't get enough free pages, and we have skipped a vnode
1111          * in a writeable object, wakeup the sync daemon.  And kick swapout
1112          * if we did not get enough free pages.
1113          */
1114         if (vm_paging_target() > 0) {
1115                 if (vnodes_skipped && vm_page_count_min())
1116                         (void) speedup_syncer();
1117 #if !defined(NO_SWAPPING)
1118                 if (vm_swap_enabled && vm_page_count_target()) {
1119                         vm_req_vmdaemon();
1120                         vm_pageout_req_swapout |= VM_SWAP_NORMAL;
1121                 }
1122 #endif
1123         }
1124
1125         /*
1126          * If we are out of swap and were not able to reach our paging
1127          * target, kill the largest process.
1128          */
1129         if ((vm_swap_size < 64 && vm_page_count_min()) ||
1130             (swap_pager_full && vm_paging_target() > 0)) {
1131 #if 0
1132         if ((vm_swap_size < 64 || swap_pager_full) && vm_page_count_min()) {
1133 #endif
1134                 bigproc = NULL;
1135                 bigsize = 0;
1136                 for (p = allproc.lh_first; p != 0; p = p->p_list.le_next) {
1137                         /*
1138                          * if this is a system process, skip it
1139                          */
1140                         if ((p->p_flag & P_SYSTEM) || (p->p_pid == 1) ||
1141                             ((p->p_pid < 48) && (vm_swap_size != 0))) {
1142                                 continue;
1143                         }
1144                         /*
1145                          * if the process is in a non-running type state,
1146                          * don't touch it.
1147                          */
1148                         if (p->p_stat != SRUN && p->p_stat != SSLEEP) {
1149                                 continue;
1150                         }
1151                         /*
1152                          * get the process size
1153                          */
1154                         size = vmspace_resident_count(p->p_vmspace) +
1155                                 vmspace_swap_count(p->p_vmspace);
1156                         /*
1157                          * if the this process is bigger than the biggest one
1158                          * remember it.
1159                          */
1160                         if (size > bigsize) {
1161                                 bigproc = p;
1162                                 bigsize = size;
1163                         }
1164                 }
1165                 if (bigproc != NULL) {
1166                         killproc(bigproc, "out of swap space");
1167                         bigproc->p_estcpu = 0;
1168                         bigproc->p_nice = PRIO_MIN;
1169                         resetpriority(bigproc);
1170                         wakeup(&vmstats.v_free_count);
1171                 }
1172         }
1173 }
1174
1175 /*
1176  * This routine tries to maintain the pseudo LRU active queue,
1177  * so that during long periods of time where there is no paging,
1178  * that some statistic accumulation still occurs.  This code
1179  * helps the situation where paging just starts to occur.
1180  */
1181 static void
1182 vm_pageout_page_stats(void)
1183 {
1184         int s;
1185         vm_page_t m,next;
1186         int pcount,tpcount;             /* Number of pages to check */
1187         static int fullintervalcount = 0;
1188         int page_shortage;
1189         int s0;
1190
1191         page_shortage = 
1192             (vmstats.v_inactive_target + vmstats.v_cache_max + vmstats.v_free_min) -
1193             (vmstats.v_free_count + vmstats.v_inactive_count + vmstats.v_cache_count);
1194
1195         if (page_shortage <= 0)
1196                 return;
1197
1198         s0 = splvm();
1199
1200         pcount = vmstats.v_active_count;
1201         fullintervalcount += vm_pageout_stats_interval;
1202         if (fullintervalcount < vm_pageout_full_stats_interval) {
1203                 tpcount = (vm_pageout_stats_max * vmstats.v_active_count) / vmstats.v_page_count;
1204                 if (pcount > tpcount)
1205                         pcount = tpcount;
1206         } else {
1207                 fullintervalcount = 0;
1208         }
1209
1210         m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1211         while ((m != NULL) && (pcount-- > 0)) {
1212                 int actcount;
1213
1214                 if (m->queue != PQ_ACTIVE) {
1215                         break;
1216                 }
1217
1218                 next = TAILQ_NEXT(m, pageq);
1219                 /*
1220                  * Don't deactivate pages that are busy.
1221                  */
1222                 if ((m->busy != 0) ||
1223                     (m->flags & PG_BUSY) ||
1224                     (m->hold_count != 0)) {
1225                         s = splvm();
1226                         TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1227                         TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1228                         splx(s);
1229                         m = next;
1230                         continue;
1231                 }
1232
1233                 actcount = 0;
1234                 if (m->flags & PG_REFERENCED) {
1235                         vm_page_flag_clear(m, PG_REFERENCED);
1236                         actcount += 1;
1237                 }
1238
1239                 actcount += pmap_ts_referenced(m);
1240                 if (actcount) {
1241                         m->act_count += ACT_ADVANCE + actcount;
1242                         if (m->act_count > ACT_MAX)
1243                                 m->act_count = ACT_MAX;
1244                         s = splvm();
1245                         TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1246                         TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1247                         splx(s);
1248                 } else {
1249                         if (m->act_count == 0) {
1250                                 /*
1251                                  * We turn off page access, so that we have
1252                                  * more accurate RSS stats.  We don't do this
1253                                  * in the normal page deactivation when the
1254                                  * system is loaded VM wise, because the
1255                                  * cost of the large number of page protect
1256                                  * operations would be higher than the value
1257                                  * of doing the operation.
1258                                  */
1259                                 vm_page_protect(m, VM_PROT_NONE);
1260                                 vm_page_deactivate(m);
1261                         } else {
1262                                 m->act_count -= min(m->act_count, ACT_DECLINE);
1263                                 s = splvm();
1264                                 TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1265                                 TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1266                                 splx(s);
1267                         }
1268                 }
1269
1270                 m = next;
1271         }
1272         splx(s0);
1273 }
1274
1275 static int
1276 vm_pageout_free_page_calc(vm_size_t count)
1277 {
1278         if (count < vmstats.v_page_count)
1279                  return 0;
1280         /*
1281          * free_reserved needs to include enough for the largest swap pager
1282          * structures plus enough for any pv_entry structs when paging.
1283          */
1284         if (vmstats.v_page_count > 1024)
1285                 vmstats.v_free_min = 4 + (vmstats.v_page_count - 1024) / 200;
1286         else
1287                 vmstats.v_free_min = 4;
1288         vmstats.v_pageout_free_min = (2*MAXBSIZE)/PAGE_SIZE +
1289                 vmstats.v_interrupt_free_min;
1290         vmstats.v_free_reserved = vm_pageout_page_count +
1291                 vmstats.v_pageout_free_min + (count / 768) + PQ_L2_SIZE;
1292         vmstats.v_free_severe = vmstats.v_free_min / 2;
1293         vmstats.v_free_min += vmstats.v_free_reserved;
1294         vmstats.v_free_severe += vmstats.v_free_reserved;
1295         return 1;
1296 }
1297
1298
1299 /*
1300  *      vm_pageout is the high level pageout daemon.
1301  */
1302 static void
1303 vm_pageout(void)
1304 {
1305         int pass;
1306
1307         /*
1308          * Initialize some paging parameters.
1309          */
1310
1311         vmstats.v_interrupt_free_min = 2;
1312         if (vmstats.v_page_count < 2000)
1313                 vm_pageout_page_count = 8;
1314
1315         vm_pageout_free_page_calc(vmstats.v_page_count);
1316         /*
1317          * v_free_target and v_cache_min control pageout hysteresis.  Note
1318          * that these are more a measure of the VM cache queue hysteresis
1319          * then the VM free queue.  Specifically, v_free_target is the
1320          * high water mark (free+cache pages).
1321          *
1322          * v_free_reserved + v_cache_min (mostly means v_cache_min) is the
1323          * low water mark, while v_free_min is the stop.  v_cache_min must
1324          * be big enough to handle memory needs while the pageout daemon
1325          * is signalled and run to free more pages.
1326          */
1327         if (vmstats.v_free_count > 6144)
1328                 vmstats.v_free_target = 4 * vmstats.v_free_min + vmstats.v_free_reserved;
1329         else
1330                 vmstats.v_free_target = 2 * vmstats.v_free_min + vmstats.v_free_reserved;
1331
1332         if (vmstats.v_free_count > 2048) {
1333                 vmstats.v_cache_min = vmstats.v_free_target;
1334                 vmstats.v_cache_max = 2 * vmstats.v_cache_min;
1335                 vmstats.v_inactive_target = (3 * vmstats.v_free_target) / 2;
1336         } else {
1337                 vmstats.v_cache_min = 0;
1338                 vmstats.v_cache_max = 0;
1339                 vmstats.v_inactive_target = vmstats.v_free_count / 4;
1340         }
1341         if (vmstats.v_inactive_target > vmstats.v_free_count / 3)
1342                 vmstats.v_inactive_target = vmstats.v_free_count / 3;
1343
1344         /* XXX does not really belong here */
1345         if (vm_page_max_wired == 0)
1346                 vm_page_max_wired = vmstats.v_free_count / 3;
1347
1348         if (vm_pageout_stats_max == 0)
1349                 vm_pageout_stats_max = vmstats.v_free_target;
1350
1351         /*
1352          * Set interval in seconds for stats scan.
1353          */
1354         if (vm_pageout_stats_interval == 0)
1355                 vm_pageout_stats_interval = 5;
1356         if (vm_pageout_full_stats_interval == 0)
1357                 vm_pageout_full_stats_interval = vm_pageout_stats_interval * 4;
1358         
1359
1360         /*
1361          * Set maximum free per pass
1362          */
1363         if (vm_pageout_stats_free_max == 0)
1364                 vm_pageout_stats_free_max = 5;
1365
1366         swap_pager_swap_init();
1367         pass = 0;
1368         /*
1369          * The pageout daemon is never done, so loop forever.
1370          */
1371         while (TRUE) {
1372                 int error;
1373                 int s = splvm();
1374
1375                 /*
1376                  * If we have enough free memory, wakeup waiters.  Do
1377                  * not clear vm_pages_needed until we reach our target,
1378                  * otherwise we may be woken up over and over again and
1379                  * waste a lot of cpu.
1380                  */
1381                 if (vm_pages_needed && !vm_page_count_min()) {
1382                         if (vm_paging_needed() <= 0)
1383                                 vm_pages_needed = 0;
1384                         wakeup(&vmstats.v_free_count);
1385                 }
1386                 if (vm_pages_needed) {
1387                         /*
1388                          * Still not done, take a second pass without waiting
1389                          * (unlimited dirty cleaning), otherwise sleep a bit
1390                          * and try again.
1391                          */
1392                         ++pass;
1393                         if (pass > 1)
1394                                 tsleep(&vm_pages_needed, 0, "psleep", hz/2);
1395                 } else {
1396                         /*
1397                          * Good enough, sleep & handle stats.  Prime the pass
1398                          * for the next run.
1399                          */
1400                         if (pass > 1)
1401                                 pass = 1;
1402                         else
1403                                 pass = 0;
1404                         error = tsleep(&vm_pages_needed,
1405                                 0, "psleep", vm_pageout_stats_interval * hz);
1406                         if (error && !vm_pages_needed) {
1407                                 splx(s);
1408                                 pass = 0;
1409                                 vm_pageout_page_stats();
1410                                 continue;
1411                         }
1412                 }
1413
1414                 if (vm_pages_needed)
1415                         mycpu->gd_cnt.v_pdwakeups++;
1416                 splx(s);
1417                 vm_pageout_scan(pass);
1418                 vm_pageout_deficit = 0;
1419         }
1420 }
1421
1422 void
1423 pagedaemon_wakeup(void)
1424 {
1425         if (!vm_pages_needed && curthread != pagethread) {
1426                 vm_pages_needed++;
1427                 wakeup(&vm_pages_needed);
1428         }
1429 }
1430
1431 #if !defined(NO_SWAPPING)
1432 static void
1433 vm_req_vmdaemon(void)
1434 {
1435         static int lastrun = 0;
1436
1437         if ((ticks > (lastrun + hz)) || (ticks < lastrun)) {
1438                 wakeup(&vm_daemon_needed);
1439                 lastrun = ticks;
1440         }
1441 }
1442
1443 static void
1444 vm_daemon(void)
1445 {
1446         struct proc *p;
1447
1448         while (TRUE) {
1449                 tsleep(&vm_daemon_needed, 0, "psleep", 0);
1450                 if (vm_pageout_req_swapout) {
1451                         swapout_procs(vm_pageout_req_swapout);
1452                         vm_pageout_req_swapout = 0;
1453                 }
1454                 /*
1455                  * scan the processes for exceeding their rlimits or if
1456                  * process is swapped out -- deactivate pages
1457                  */
1458
1459                 for (p = allproc.lh_first; p != 0; p = p->p_list.le_next) {
1460                         vm_pindex_t limit, size;
1461
1462                         /*
1463                          * if this is a system process or if we have already
1464                          * looked at this process, skip it.
1465                          */
1466                         if (p->p_flag & (P_SYSTEM | P_WEXIT)) {
1467                                 continue;
1468                         }
1469                         /*
1470                          * if the process is in a non-running type state,
1471                          * don't touch it.
1472                          */
1473                         if (p->p_stat != SRUN && p->p_stat != SSLEEP) {
1474                                 continue;
1475                         }
1476                         /*
1477                          * get a limit
1478                          */
1479                         limit = OFF_TO_IDX(
1480                             qmin(p->p_rlimit[RLIMIT_RSS].rlim_cur,
1481                                 p->p_rlimit[RLIMIT_RSS].rlim_max));
1482
1483                         /*
1484                          * let processes that are swapped out really be
1485                          * swapped out set the limit to nothing (will force a
1486                          * swap-out.)
1487                          */
1488                         if ((p->p_flag & P_INMEM) == 0)
1489                                 limit = 0;      /* XXX */
1490
1491                         size = vmspace_resident_count(p->p_vmspace);
1492                         if (limit >= 0 && size >= limit) {
1493                                 vm_pageout_map_deactivate_pages(
1494                                     &p->p_vmspace->vm_map, limit);
1495                         }
1496                 }
1497         }
1498 }
1499 #endif