Merge from vendor branch BIND:
[dragonfly.git] / contrib / gcc-3.4 / gcc / doc / md.texi
1 @c Copyright (C) 1988, 1989, 1992, 1993, 1994, 1996, 1998, 1999, 2000, 2001,
2 @c 2002, 2003, 2004 Free Software Foundation, Inc.
3 @c This is part of the GCC manual.
4 @c For copying conditions, see the file gcc.texi.
5
6 @ifset INTERNALS
7 @node Machine Desc
8 @chapter Machine Descriptions
9 @cindex machine descriptions
10
11 A machine description has two parts: a file of instruction patterns
12 (@file{.md} file) and a C header file of macro definitions.
13
14 The @file{.md} file for a target machine contains a pattern for each
15 instruction that the target machine supports (or at least each instruction
16 that is worth telling the compiler about).  It may also contain comments.
17 A semicolon causes the rest of the line to be a comment, unless the semicolon
18 is inside a quoted string.
19
20 See the next chapter for information on the C header file.
21
22 @menu
23 * Overview::            How the machine description is used.
24 * Patterns::            How to write instruction patterns.
25 * Example::             An explained example of a @code{define_insn} pattern.
26 * RTL Template::        The RTL template defines what insns match a pattern.
27 * Output Template::     The output template says how to make assembler code
28                           from such an insn.
29 * Output Statement::    For more generality, write C code to output
30                           the assembler code.
31 * Constraints::         When not all operands are general operands.
32 * Standard Names::      Names mark patterns to use for code generation.
33 * Pattern Ordering::    When the order of patterns makes a difference.
34 * Dependent Patterns::  Having one pattern may make you need another.
35 * Jump Patterns::       Special considerations for patterns for jump insns.
36 * Looping Patterns::    How to define patterns for special looping insns.
37 * Insn Canonicalizations::Canonicalization of Instructions
38 * Expander Definitions::Generating a sequence of several RTL insns
39                           for a standard operation.
40 * Insn Splitting::      Splitting Instructions into Multiple Instructions.
41 * Including Patterns::      Including Patterns in Machine Descriptions.
42 * Peephole Definitions::Defining machine-specific peephole optimizations.
43 * Insn Attributes::     Specifying the value of attributes for generated insns.
44 * Conditional Execution::Generating @code{define_insn} patterns for
45                            predication.
46 * Constant Definitions::Defining symbolic constants that can be used in the
47                         md file.
48 @end menu
49
50 @node Overview
51 @section Overview of How the Machine Description is Used
52
53 There are three main conversions that happen in the compiler:
54
55 @enumerate
56
57 @item
58 The front end reads the source code and builds a parse tree.
59
60 @item
61 The parse tree is used to generate an RTL insn list based on named
62 instruction patterns.
63
64 @item
65 The insn list is matched against the RTL templates to produce assembler
66 code.
67
68 @end enumerate
69
70 For the generate pass, only the names of the insns matter, from either a
71 named @code{define_insn} or a @code{define_expand}.  The compiler will
72 choose the pattern with the right name and apply the operands according
73 to the documentation later in this chapter, without regard for the RTL
74 template or operand constraints.  Note that the names the compiler looks
75 for are hard-coded in the compiler---it will ignore unnamed patterns and
76 patterns with names it doesn't know about, but if you don't provide a
77 named pattern it needs, it will abort.
78
79 If a @code{define_insn} is used, the template given is inserted into the
80 insn list.  If a @code{define_expand} is used, one of three things
81 happens, based on the condition logic.  The condition logic may manually
82 create new insns for the insn list, say via @code{emit_insn()}, and
83 invoke @code{DONE}.  For certain named patterns, it may invoke @code{FAIL} to tell the
84 compiler to use an alternate way of performing that task.  If it invokes
85 neither @code{DONE} nor @code{FAIL}, the template given in the pattern
86 is inserted, as if the @code{define_expand} were a @code{define_insn}.
87
88 Once the insn list is generated, various optimization passes convert,
89 replace, and rearrange the insns in the insn list.  This is where the
90 @code{define_split} and @code{define_peephole} patterns get used, for
91 example.
92
93 Finally, the insn list's RTL is matched up with the RTL templates in the
94 @code{define_insn} patterns, and those patterns are used to emit the
95 final assembly code.  For this purpose, each named @code{define_insn}
96 acts like it's unnamed, since the names are ignored.
97
98 @node Patterns
99 @section Everything about Instruction Patterns
100 @cindex patterns
101 @cindex instruction patterns
102
103 @findex define_insn
104 Each instruction pattern contains an incomplete RTL expression, with pieces
105 to be filled in later, operand constraints that restrict how the pieces can
106 be filled in, and an output pattern or C code to generate the assembler
107 output, all wrapped up in a @code{define_insn} expression.
108
109 A @code{define_insn} is an RTL expression containing four or five operands:
110
111 @enumerate
112 @item
113 An optional name.  The presence of a name indicate that this instruction
114 pattern can perform a certain standard job for the RTL-generation
115 pass of the compiler.  This pass knows certain names and will use
116 the instruction patterns with those names, if the names are defined
117 in the machine description.
118
119 The absence of a name is indicated by writing an empty string
120 where the name should go.  Nameless instruction patterns are never
121 used for generating RTL code, but they may permit several simpler insns
122 to be combined later on.
123
124 Names that are not thus known and used in RTL-generation have no
125 effect; they are equivalent to no name at all.
126
127 For the purpose of debugging the compiler, you may also specify a
128 name beginning with the @samp{*} character.  Such a name is used only
129 for identifying the instruction in RTL dumps; it is entirely equivalent
130 to having a nameless pattern for all other purposes.
131
132 @item
133 The @dfn{RTL template} (@pxref{RTL Template}) is a vector of incomplete
134 RTL expressions which show what the instruction should look like.  It is
135 incomplete because it may contain @code{match_operand},
136 @code{match_operator}, and @code{match_dup} expressions that stand for
137 operands of the instruction.
138
139 If the vector has only one element, that element is the template for the
140 instruction pattern.  If the vector has multiple elements, then the
141 instruction pattern is a @code{parallel} expression containing the
142 elements described.
143
144 @item
145 @cindex pattern conditions
146 @cindex conditions, in patterns
147 A condition.  This is a string which contains a C expression that is
148 the final test to decide whether an insn body matches this pattern.
149
150 @cindex named patterns and conditions
151 For a named pattern, the condition (if present) may not depend on
152 the data in the insn being matched, but only the target-machine-type
153 flags.  The compiler needs to test these conditions during
154 initialization in order to learn exactly which named instructions are
155 available in a particular run.
156
157 @findex operands
158 For nameless patterns, the condition is applied only when matching an
159 individual insn, and only after the insn has matched the pattern's
160 recognition template.  The insn's operands may be found in the vector
161 @code{operands}.  For an insn where the condition has once matched, it
162 can't be used to control register allocation, for example by excluding
163 certain hard registers or hard register combinations.
164
165 @item
166 The @dfn{output template}: a string that says how to output matching
167 insns as assembler code.  @samp{%} in this string specifies where
168 to substitute the value of an operand.  @xref{Output Template}.
169
170 When simple substitution isn't general enough, you can specify a piece
171 of C code to compute the output.  @xref{Output Statement}.
172
173 @item
174 Optionally, a vector containing the values of attributes for insns matching
175 this pattern.  @xref{Insn Attributes}.
176 @end enumerate
177
178 @node Example
179 @section Example of @code{define_insn}
180 @cindex @code{define_insn} example
181
182 Here is an actual example of an instruction pattern, for the 68000/68020.
183
184 @smallexample
185 (define_insn "tstsi"
186   [(set (cc0)
187         (match_operand:SI 0 "general_operand" "rm"))]
188   ""
189   "*
190 @{
191   if (TARGET_68020 || ! ADDRESS_REG_P (operands[0]))
192     return \"tstl %0\";
193   return \"cmpl #0,%0\";
194 @}")
195 @end smallexample
196
197 @noindent
198 This can also be written using braced strings:
199
200 @smallexample
201 (define_insn "tstsi"
202   [(set (cc0)
203         (match_operand:SI 0 "general_operand" "rm"))]
204   ""
205 @{
206   if (TARGET_68020 || ! ADDRESS_REG_P (operands[0]))
207     return "tstl %0";
208   return "cmpl #0,%0";
209 @})
210 @end smallexample
211
212 This is an instruction that sets the condition codes based on the value of
213 a general operand.  It has no condition, so any insn whose RTL description
214 has the form shown may be handled according to this pattern.  The name
215 @samp{tstsi} means ``test a @code{SImode} value'' and tells the RTL generation
216 pass that, when it is necessary to test such a value, an insn to do so
217 can be constructed using this pattern.
218
219 The output control string is a piece of C code which chooses which
220 output template to return based on the kind of operand and the specific
221 type of CPU for which code is being generated.
222
223 @samp{"rm"} is an operand constraint.  Its meaning is explained below.
224
225 @node RTL Template
226 @section RTL Template
227 @cindex RTL insn template
228 @cindex generating insns
229 @cindex insns, generating
230 @cindex recognizing insns
231 @cindex insns, recognizing
232
233 The RTL template is used to define which insns match the particular pattern
234 and how to find their operands.  For named patterns, the RTL template also
235 says how to construct an insn from specified operands.
236
237 Construction involves substituting specified operands into a copy of the
238 template.  Matching involves determining the values that serve as the
239 operands in the insn being matched.  Both of these activities are
240 controlled by special expression types that direct matching and
241 substitution of the operands.
242
243 @table @code
244 @findex match_operand
245 @item (match_operand:@var{m} @var{n} @var{predicate} @var{constraint})
246 This expression is a placeholder for operand number @var{n} of
247 the insn.  When constructing an insn, operand number @var{n}
248 will be substituted at this point.  When matching an insn, whatever
249 appears at this position in the insn will be taken as operand
250 number @var{n}; but it must satisfy @var{predicate} or this instruction
251 pattern will not match at all.
252
253 Operand numbers must be chosen consecutively counting from zero in
254 each instruction pattern.  There may be only one @code{match_operand}
255 expression in the pattern for each operand number.  Usually operands
256 are numbered in the order of appearance in @code{match_operand}
257 expressions.  In the case of a @code{define_expand}, any operand numbers
258 used only in @code{match_dup} expressions have higher values than all
259 other operand numbers.
260
261 @var{predicate} is a string that is the name of a C function that accepts two
262 arguments, an expression and a machine mode.  During matching, the
263 function will be called with the putative operand as the expression and
264 @var{m} as the mode argument (if @var{m} is not specified,
265 @code{VOIDmode} will be used, which normally causes @var{predicate} to accept
266 any mode).  If it returns zero, this instruction pattern fails to match.
267 @var{predicate} may be an empty string; then it means no test is to be done
268 on the operand, so anything which occurs in this position is valid.
269
270 Most of the time, @var{predicate} will reject modes other than @var{m}---but
271 not always.  For example, the predicate @code{address_operand} uses
272 @var{m} as the mode of memory ref that the address should be valid for.
273 Many predicates accept @code{const_int} nodes even though their mode is
274 @code{VOIDmode}.
275
276 @var{constraint} controls reloading and the choice of the best register
277 class to use for a value, as explained later (@pxref{Constraints}).
278
279 People are often unclear on the difference between the constraint and the
280 predicate.  The predicate helps decide whether a given insn matches the
281 pattern.  The constraint plays no role in this decision; instead, it
282 controls various decisions in the case of an insn which does match.
283
284 @findex general_operand
285 On CISC machines, the most common @var{predicate} is
286 @code{"general_operand"}.  This function checks that the putative
287 operand is either a constant, a register or a memory reference, and that
288 it is valid for mode @var{m}.
289
290 @findex register_operand
291 For an operand that must be a register, @var{predicate} should be
292 @code{"register_operand"}.  Using @code{"general_operand"} would be
293 valid, since the reload pass would copy any non-register operands
294 through registers, but this would make GCC do extra work, it would
295 prevent invariant operands (such as constant) from being removed from
296 loops, and it would prevent the register allocator from doing the best
297 possible job.  On RISC machines, it is usually most efficient to allow
298 @var{predicate} to accept only objects that the constraints allow.
299
300 @findex immediate_operand
301 For an operand that must be a constant, you must be sure to either use
302 @code{"immediate_operand"} for @var{predicate}, or make the instruction
303 pattern's extra condition require a constant, or both.  You cannot
304 expect the constraints to do this work!  If the constraints allow only
305 constants, but the predicate allows something else, the compiler will
306 crash when that case arises.
307
308 @findex match_scratch
309 @item (match_scratch:@var{m} @var{n} @var{constraint})
310 This expression is also a placeholder for operand number @var{n}
311 and indicates that operand must be a @code{scratch} or @code{reg}
312 expression.
313
314 When matching patterns, this is equivalent to
315
316 @smallexample
317 (match_operand:@var{m} @var{n} "scratch_operand" @var{pred})
318 @end smallexample
319
320 but, when generating RTL, it produces a (@code{scratch}:@var{m})
321 expression.
322
323 If the last few expressions in a @code{parallel} are @code{clobber}
324 expressions whose operands are either a hard register or
325 @code{match_scratch}, the combiner can add or delete them when
326 necessary.  @xref{Side Effects}.
327
328 @findex match_dup
329 @item (match_dup @var{n})
330 This expression is also a placeholder for operand number @var{n}.
331 It is used when the operand needs to appear more than once in the
332 insn.
333
334 In construction, @code{match_dup} acts just like @code{match_operand}:
335 the operand is substituted into the insn being constructed.  But in
336 matching, @code{match_dup} behaves differently.  It assumes that operand
337 number @var{n} has already been determined by a @code{match_operand}
338 appearing earlier in the recognition template, and it matches only an
339 identical-looking expression.
340
341 Note that @code{match_dup} should not be used to tell the compiler that
342 a particular register is being used for two operands (example:
343 @code{add} that adds one register to another; the second register is
344 both an input operand and the output operand).  Use a matching
345 constraint (@pxref{Simple Constraints}) for those.  @code{match_dup} is for the cases where one
346 operand is used in two places in the template, such as an instruction
347 that computes both a quotient and a remainder, where the opcode takes
348 two input operands but the RTL template has to refer to each of those
349 twice; once for the quotient pattern and once for the remainder pattern.
350
351 @findex match_operator
352 @item (match_operator:@var{m} @var{n} @var{predicate} [@var{operands}@dots{}])
353 This pattern is a kind of placeholder for a variable RTL expression
354 code.
355
356 When constructing an insn, it stands for an RTL expression whose
357 expression code is taken from that of operand @var{n}, and whose
358 operands are constructed from the patterns @var{operands}.
359
360 When matching an expression, it matches an expression if the function
361 @var{predicate} returns nonzero on that expression @emph{and} the
362 patterns @var{operands} match the operands of the expression.
363
364 Suppose that the function @code{commutative_operator} is defined as
365 follows, to match any expression whose operator is one of the
366 commutative arithmetic operators of RTL and whose mode is @var{mode}:
367
368 @smallexample
369 int
370 commutative_operator (x, mode)
371      rtx x;
372      enum machine_mode mode;
373 @{
374   enum rtx_code code = GET_CODE (x);
375   if (GET_MODE (x) != mode)
376     return 0;
377   return (GET_RTX_CLASS (code) == 'c'
378           || code == EQ || code == NE);
379 @}
380 @end smallexample
381
382 Then the following pattern will match any RTL expression consisting
383 of a commutative operator applied to two general operands:
384
385 @smallexample
386 (match_operator:SI 3 "commutative_operator"
387   [(match_operand:SI 1 "general_operand" "g")
388    (match_operand:SI 2 "general_operand" "g")])
389 @end smallexample
390
391 Here the vector @code{[@var{operands}@dots{}]} contains two patterns
392 because the expressions to be matched all contain two operands.
393
394 When this pattern does match, the two operands of the commutative
395 operator are recorded as operands 1 and 2 of the insn.  (This is done
396 by the two instances of @code{match_operand}.)  Operand 3 of the insn
397 will be the entire commutative expression: use @code{GET_CODE
398 (operands[3])} to see which commutative operator was used.
399
400 The machine mode @var{m} of @code{match_operator} works like that of
401 @code{match_operand}: it is passed as the second argument to the
402 predicate function, and that function is solely responsible for
403 deciding whether the expression to be matched ``has'' that mode.
404
405 When constructing an insn, argument 3 of the gen-function will specify
406 the operation (i.e.@: the expression code) for the expression to be
407 made.  It should be an RTL expression, whose expression code is copied
408 into a new expression whose operands are arguments 1 and 2 of the
409 gen-function.  The subexpressions of argument 3 are not used;
410 only its expression code matters.
411
412 When @code{match_operator} is used in a pattern for matching an insn,
413 it usually best if the operand number of the @code{match_operator}
414 is higher than that of the actual operands of the insn.  This improves
415 register allocation because the register allocator often looks at
416 operands 1 and 2 of insns to see if it can do register tying.
417
418 There is no way to specify constraints in @code{match_operator}.  The
419 operand of the insn which corresponds to the @code{match_operator}
420 never has any constraints because it is never reloaded as a whole.
421 However, if parts of its @var{operands} are matched by
422 @code{match_operand} patterns, those parts may have constraints of
423 their own.
424
425 @findex match_op_dup
426 @item (match_op_dup:@var{m} @var{n}[@var{operands}@dots{}])
427 Like @code{match_dup}, except that it applies to operators instead of
428 operands.  When constructing an insn, operand number @var{n} will be
429 substituted at this point.  But in matching, @code{match_op_dup} behaves
430 differently.  It assumes that operand number @var{n} has already been
431 determined by a @code{match_operator} appearing earlier in the
432 recognition template, and it matches only an identical-looking
433 expression.
434
435 @findex match_parallel
436 @item (match_parallel @var{n} @var{predicate} [@var{subpat}@dots{}])
437 This pattern is a placeholder for an insn that consists of a
438 @code{parallel} expression with a variable number of elements.  This
439 expression should only appear at the top level of an insn pattern.
440
441 When constructing an insn, operand number @var{n} will be substituted at
442 this point.  When matching an insn, it matches if the body of the insn
443 is a @code{parallel} expression with at least as many elements as the
444 vector of @var{subpat} expressions in the @code{match_parallel}, if each
445 @var{subpat} matches the corresponding element of the @code{parallel},
446 @emph{and} the function @var{predicate} returns nonzero on the
447 @code{parallel} that is the body of the insn.  It is the responsibility
448 of the predicate to validate elements of the @code{parallel} beyond
449 those listed in the @code{match_parallel}.
450
451 A typical use of @code{match_parallel} is to match load and store
452 multiple expressions, which can contain a variable number of elements
453 in a @code{parallel}.  For example,
454
455 @smallexample
456 (define_insn ""
457   [(match_parallel 0 "load_multiple_operation"
458      [(set (match_operand:SI 1 "gpc_reg_operand" "=r")
459            (match_operand:SI 2 "memory_operand" "m"))
460       (use (reg:SI 179))
461       (clobber (reg:SI 179))])]
462   ""
463   "loadm 0,0,%1,%2")
464 @end smallexample
465
466 This example comes from @file{a29k.md}.  The function
467 @code{load_multiple_operation} is defined in @file{a29k.c} and checks
468 that subsequent elements in the @code{parallel} are the same as the
469 @code{set} in the pattern, except that they are referencing subsequent
470 registers and memory locations.
471
472 An insn that matches this pattern might look like:
473
474 @smallexample
475 (parallel
476  [(set (reg:SI 20) (mem:SI (reg:SI 100)))
477   (use (reg:SI 179))
478   (clobber (reg:SI 179))
479   (set (reg:SI 21)
480        (mem:SI (plus:SI (reg:SI 100)
481                         (const_int 4))))
482   (set (reg:SI 22)
483        (mem:SI (plus:SI (reg:SI 100)
484                         (const_int 8))))])
485 @end smallexample
486
487 @findex match_par_dup
488 @item (match_par_dup @var{n} [@var{subpat}@dots{}])
489 Like @code{match_op_dup}, but for @code{match_parallel} instead of
490 @code{match_operator}.
491
492 @findex match_insn
493 @item (match_insn @var{predicate})
494 Match a complete insn.  Unlike the other @code{match_*} recognizers,
495 @code{match_insn} does not take an operand number.
496
497 The machine mode @var{m} of @code{match_insn} works like that of
498 @code{match_operand}: it is passed as the second argument to the
499 predicate function, and that function is solely responsible for
500 deciding whether the expression to be matched ``has'' that mode.
501
502 @findex match_insn2
503 @item (match_insn2 @var{n} @var{predicate})
504 Match a complete insn.
505
506 The machine mode @var{m} of @code{match_insn2} works like that of
507 @code{match_operand}: it is passed as the second argument to the
508 predicate function, and that function is solely responsible for
509 deciding whether the expression to be matched ``has'' that mode.
510
511 @end table
512
513 @node Output Template
514 @section Output Templates and Operand Substitution
515 @cindex output templates
516 @cindex operand substitution
517
518 @cindex @samp{%} in template
519 @cindex percent sign
520 The @dfn{output template} is a string which specifies how to output the
521 assembler code for an instruction pattern.  Most of the template is a
522 fixed string which is output literally.  The character @samp{%} is used
523 to specify where to substitute an operand; it can also be used to
524 identify places where different variants of the assembler require
525 different syntax.
526
527 In the simplest case, a @samp{%} followed by a digit @var{n} says to output
528 operand @var{n} at that point in the string.
529
530 @samp{%} followed by a letter and a digit says to output an operand in an
531 alternate fashion.  Four letters have standard, built-in meanings described
532 below.  The machine description macro @code{PRINT_OPERAND} can define
533 additional letters with nonstandard meanings.
534
535 @samp{%c@var{digit}} can be used to substitute an operand that is a
536 constant value without the syntax that normally indicates an immediate
537 operand.
538
539 @samp{%n@var{digit}} is like @samp{%c@var{digit}} except that the value of
540 the constant is negated before printing.
541
542 @samp{%a@var{digit}} can be used to substitute an operand as if it were a
543 memory reference, with the actual operand treated as the address.  This may
544 be useful when outputting a ``load address'' instruction, because often the
545 assembler syntax for such an instruction requires you to write the operand
546 as if it were a memory reference.
547
548 @samp{%l@var{digit}} is used to substitute a @code{label_ref} into a jump
549 instruction.
550
551 @samp{%=} outputs a number which is unique to each instruction in the
552 entire compilation.  This is useful for making local labels to be
553 referred to more than once in a single template that generates multiple
554 assembler instructions.
555
556 @samp{%} followed by a punctuation character specifies a substitution that
557 does not use an operand.  Only one case is standard: @samp{%%} outputs a
558 @samp{%} into the assembler code.  Other nonstandard cases can be
559 defined in the @code{PRINT_OPERAND} macro.  You must also define
560 which punctuation characters are valid with the
561 @code{PRINT_OPERAND_PUNCT_VALID_P} macro.
562
563 @cindex \
564 @cindex backslash
565 The template may generate multiple assembler instructions.  Write the text
566 for the instructions, with @samp{\;} between them.
567
568 @cindex matching operands
569 When the RTL contains two operands which are required by constraint to match
570 each other, the output template must refer only to the lower-numbered operand.
571 Matching operands are not always identical, and the rest of the compiler
572 arranges to put the proper RTL expression for printing into the lower-numbered
573 operand.
574
575 One use of nonstandard letters or punctuation following @samp{%} is to
576 distinguish between different assembler languages for the same machine; for
577 example, Motorola syntax versus MIT syntax for the 68000.  Motorola syntax
578 requires periods in most opcode names, while MIT syntax does not.  For
579 example, the opcode @samp{movel} in MIT syntax is @samp{move.l} in Motorola
580 syntax.  The same file of patterns is used for both kinds of output syntax,
581 but the character sequence @samp{%.} is used in each place where Motorola
582 syntax wants a period.  The @code{PRINT_OPERAND} macro for Motorola syntax
583 defines the sequence to output a period; the macro for MIT syntax defines
584 it to do nothing.
585
586 @cindex @code{#} in template
587 As a special case, a template consisting of the single character @code{#}
588 instructs the compiler to first split the insn, and then output the
589 resulting instructions separately.  This helps eliminate redundancy in the
590 output templates.   If you have a @code{define_insn} that needs to emit
591 multiple assembler instructions, and there is an matching @code{define_split}
592 already defined, then you can simply use @code{#} as the output template
593 instead of writing an output template that emits the multiple assembler
594 instructions.
595
596 If the macro @code{ASSEMBLER_DIALECT} is defined, you can use construct
597 of the form @samp{@{option0|option1|option2@}} in the templates.  These
598 describe multiple variants of assembler language syntax.
599 @xref{Instruction Output}.
600
601 @node Output Statement
602 @section C Statements for Assembler Output
603 @cindex output statements
604 @cindex C statements for assembler output
605 @cindex generating assembler output
606
607 Often a single fixed template string cannot produce correct and efficient
608 assembler code for all the cases that are recognized by a single
609 instruction pattern.  For example, the opcodes may depend on the kinds of
610 operands; or some unfortunate combinations of operands may require extra
611 machine instructions.
612
613 If the output control string starts with a @samp{@@}, then it is actually
614 a series of templates, each on a separate line.  (Blank lines and
615 leading spaces and tabs are ignored.)  The templates correspond to the
616 pattern's constraint alternatives (@pxref{Multi-Alternative}).  For example,
617 if a target machine has a two-address add instruction @samp{addr} to add
618 into a register and another @samp{addm} to add a register to memory, you
619 might write this pattern:
620
621 @smallexample
622 (define_insn "addsi3"
623   [(set (match_operand:SI 0 "general_operand" "=r,m")
624         (plus:SI (match_operand:SI 1 "general_operand" "0,0")
625                  (match_operand:SI 2 "general_operand" "g,r")))]
626   ""
627   "@@
628    addr %2,%0
629    addm %2,%0")
630 @end smallexample
631
632 @cindex @code{*} in template
633 @cindex asterisk in template
634 If the output control string starts with a @samp{*}, then it is not an
635 output template but rather a piece of C program that should compute a
636 template.  It should execute a @code{return} statement to return the
637 template-string you want.  Most such templates use C string literals, which
638 require doublequote characters to delimit them.  To include these
639 doublequote characters in the string, prefix each one with @samp{\}.
640
641 If the output control string is written as a brace block instead of a
642 double-quoted string, it is automatically assumed to be C code.  In that
643 case, it is not necessary to put in a leading asterisk, or to escape the
644 doublequotes surrounding C string literals.
645
646 The operands may be found in the array @code{operands}, whose C data type
647 is @code{rtx []}.
648
649 It is very common to select different ways of generating assembler code
650 based on whether an immediate operand is within a certain range.  Be
651 careful when doing this, because the result of @code{INTVAL} is an
652 integer on the host machine.  If the host machine has more bits in an
653 @code{int} than the target machine has in the mode in which the constant
654 will be used, then some of the bits you get from @code{INTVAL} will be
655 superfluous.  For proper results, you must carefully disregard the
656 values of those bits.
657
658 @findex output_asm_insn
659 It is possible to output an assembler instruction and then go on to output
660 or compute more of them, using the subroutine @code{output_asm_insn}.  This
661 receives two arguments: a template-string and a vector of operands.  The
662 vector may be @code{operands}, or it may be another array of @code{rtx}
663 that you declare locally and initialize yourself.
664
665 @findex which_alternative
666 When an insn pattern has multiple alternatives in its constraints, often
667 the appearance of the assembler code is determined mostly by which alternative
668 was matched.  When this is so, the C code can test the variable
669 @code{which_alternative}, which is the ordinal number of the alternative
670 that was actually satisfied (0 for the first, 1 for the second alternative,
671 etc.).
672
673 For example, suppose there are two opcodes for storing zero, @samp{clrreg}
674 for registers and @samp{clrmem} for memory locations.  Here is how
675 a pattern could use @code{which_alternative} to choose between them:
676
677 @smallexample
678 (define_insn ""
679   [(set (match_operand:SI 0 "general_operand" "=r,m")
680         (const_int 0))]
681   ""
682   @{
683   return (which_alternative == 0
684           ? "clrreg %0" : "clrmem %0");
685   @})
686 @end smallexample
687
688 The example above, where the assembler code to generate was
689 @emph{solely} determined by the alternative, could also have been specified
690 as follows, having the output control string start with a @samp{@@}:
691
692 @smallexample
693 @group
694 (define_insn ""
695   [(set (match_operand:SI 0 "general_operand" "=r,m")
696         (const_int 0))]
697   ""
698   "@@
699    clrreg %0
700    clrmem %0")
701 @end group
702 @end smallexample
703 @end ifset
704
705 @c Most of this node appears by itself (in a different place) even
706 @c when the INTERNALS flag is clear.  Passages that require the internals
707 @c manual's context are conditionalized to appear only in the internals manual.
708 @ifset INTERNALS
709 @node Constraints
710 @section Operand Constraints
711 @cindex operand constraints
712 @cindex constraints
713
714 Each @code{match_operand} in an instruction pattern can specify a
715 constraint for the type of operands allowed.
716 @end ifset
717 @ifclear INTERNALS
718 @node Constraints
719 @section Constraints for @code{asm} Operands
720 @cindex operand constraints, @code{asm}
721 @cindex constraints, @code{asm}
722 @cindex @code{asm} constraints
723
724 Here are specific details on what constraint letters you can use with
725 @code{asm} operands.
726 @end ifclear
727 Constraints can say whether
728 an operand may be in a register, and which kinds of register; whether the
729 operand can be a memory reference, and which kinds of address; whether the
730 operand may be an immediate constant, and which possible values it may
731 have.  Constraints can also require two operands to match.
732
733 @ifset INTERNALS
734 @menu
735 * Simple Constraints::  Basic use of constraints.
736 * Multi-Alternative::   When an insn has two alternative constraint-patterns.
737 * Class Preferences::   Constraints guide which hard register to put things in.
738 * Modifiers::           More precise control over effects of constraints.
739 * Machine Constraints:: Existing constraints for some particular machines.
740 @end menu
741 @end ifset
742
743 @ifclear INTERNALS
744 @menu
745 * Simple Constraints::  Basic use of constraints.
746 * Multi-Alternative::   When an insn has two alternative constraint-patterns.
747 * Modifiers::           More precise control over effects of constraints.
748 * Machine Constraints:: Special constraints for some particular machines.
749 @end menu
750 @end ifclear
751
752 @node Simple Constraints
753 @subsection Simple Constraints
754 @cindex simple constraints
755
756 The simplest kind of constraint is a string full of letters, each of
757 which describes one kind of operand that is permitted.  Here are
758 the letters that are allowed:
759
760 @table @asis
761 @item whitespace
762 Whitespace characters are ignored and can be inserted at any position
763 except the first.  This enables each alternative for different operands to
764 be visually aligned in the machine description even if they have different
765 number of constraints and modifiers.
766
767 @cindex @samp{m} in constraint
768 @cindex memory references in constraints
769 @item @samp{m}
770 A memory operand is allowed, with any kind of address that the machine
771 supports in general.
772
773 @cindex offsettable address
774 @cindex @samp{o} in constraint
775 @item @samp{o}
776 A memory operand is allowed, but only if the address is
777 @dfn{offsettable}.  This means that adding a small integer (actually,
778 the width in bytes of the operand, as determined by its machine mode)
779 may be added to the address and the result is also a valid memory
780 address.
781
782 @cindex autoincrement/decrement addressing
783 For example, an address which is constant is offsettable; so is an
784 address that is the sum of a register and a constant (as long as a
785 slightly larger constant is also within the range of address-offsets
786 supported by the machine); but an autoincrement or autodecrement
787 address is not offsettable.  More complicated indirect/indexed
788 addresses may or may not be offsettable depending on the other
789 addressing modes that the machine supports.
790
791 Note that in an output operand which can be matched by another
792 operand, the constraint letter @samp{o} is valid only when accompanied
793 by both @samp{<} (if the target machine has predecrement addressing)
794 and @samp{>} (if the target machine has preincrement addressing).
795
796 @cindex @samp{V} in constraint
797 @item @samp{V}
798 A memory operand that is not offsettable.  In other words, anything that
799 would fit the @samp{m} constraint but not the @samp{o} constraint.
800
801 @cindex @samp{<} in constraint
802 @item @samp{<}
803 A memory operand with autodecrement addressing (either predecrement or
804 postdecrement) is allowed.
805
806 @cindex @samp{>} in constraint
807 @item @samp{>}
808 A memory operand with autoincrement addressing (either preincrement or
809 postincrement) is allowed.
810
811 @cindex @samp{r} in constraint
812 @cindex registers in constraints
813 @item @samp{r}
814 A register operand is allowed provided that it is in a general
815 register.
816
817 @cindex constants in constraints
818 @cindex @samp{i} in constraint
819 @item @samp{i}
820 An immediate integer operand (one with constant value) is allowed.
821 This includes symbolic constants whose values will be known only at
822 assembly time.
823
824 @cindex @samp{n} in constraint
825 @item @samp{n}
826 An immediate integer operand with a known numeric value is allowed.
827 Many systems cannot support assembly-time constants for operands less
828 than a word wide.  Constraints for these operands should use @samp{n}
829 rather than @samp{i}.
830
831 @cindex @samp{I} in constraint
832 @item @samp{I}, @samp{J}, @samp{K}, @dots{} @samp{P}
833 Other letters in the range @samp{I} through @samp{P} may be defined in
834 a machine-dependent fashion to permit immediate integer operands with
835 explicit integer values in specified ranges.  For example, on the
836 68000, @samp{I} is defined to stand for the range of values 1 to 8.
837 This is the range permitted as a shift count in the shift
838 instructions.
839
840 @cindex @samp{E} in constraint
841 @item @samp{E}
842 An immediate floating operand (expression code @code{const_double}) is
843 allowed, but only if the target floating point format is the same as
844 that of the host machine (on which the compiler is running).
845
846 @cindex @samp{F} in constraint
847 @item @samp{F}
848 An immediate floating operand (expression code @code{const_double} or
849 @code{const_vector}) is allowed.
850
851 @cindex @samp{G} in constraint
852 @cindex @samp{H} in constraint
853 @item @samp{G}, @samp{H}
854 @samp{G} and @samp{H} may be defined in a machine-dependent fashion to
855 permit immediate floating operands in particular ranges of values.
856
857 @cindex @samp{s} in constraint
858 @item @samp{s}
859 An immediate integer operand whose value is not an explicit integer is
860 allowed.
861
862 This might appear strange; if an insn allows a constant operand with a
863 value not known at compile time, it certainly must allow any known
864 value.  So why use @samp{s} instead of @samp{i}?  Sometimes it allows
865 better code to be generated.
866
867 For example, on the 68000 in a fullword instruction it is possible to
868 use an immediate operand; but if the immediate value is between @minus{}128
869 and 127, better code results from loading the value into a register and
870 using the register.  This is because the load into the register can be
871 done with a @samp{moveq} instruction.  We arrange for this to happen
872 by defining the letter @samp{K} to mean ``any integer outside the
873 range @minus{}128 to 127'', and then specifying @samp{Ks} in the operand
874 constraints.
875
876 @cindex @samp{g} in constraint
877 @item @samp{g}
878 Any register, memory or immediate integer operand is allowed, except for
879 registers that are not general registers.
880
881 @cindex @samp{X} in constraint
882 @item @samp{X}
883 @ifset INTERNALS
884 Any operand whatsoever is allowed, even if it does not satisfy
885 @code{general_operand}.  This is normally used in the constraint of
886 a @code{match_scratch} when certain alternatives will not actually
887 require a scratch register.
888 @end ifset
889 @ifclear INTERNALS
890 Any operand whatsoever is allowed.
891 @end ifclear
892
893 @cindex @samp{0} in constraint
894 @cindex digits in constraint
895 @item @samp{0}, @samp{1}, @samp{2}, @dots{} @samp{9}
896 An operand that matches the specified operand number is allowed.  If a
897 digit is used together with letters within the same alternative, the
898 digit should come last.
899
900 This number is allowed to be more than a single digit.  If multiple
901 digits are encountered consecutively, they are interpreted as a single
902 decimal integer.  There is scant chance for ambiguity, since to-date
903 it has never been desirable that @samp{10} be interpreted as matching
904 either operand 1 @emph{or} operand 0.  Should this be desired, one
905 can use multiple alternatives instead.
906
907 @cindex matching constraint
908 @cindex constraint, matching
909 This is called a @dfn{matching constraint} and what it really means is
910 that the assembler has only a single operand that fills two roles
911 @ifset INTERNALS
912 considered separate in the RTL insn.  For example, an add insn has two
913 input operands and one output operand in the RTL, but on most CISC
914 @end ifset
915 @ifclear INTERNALS
916 which @code{asm} distinguishes.  For example, an add instruction uses
917 two input operands and an output operand, but on most CISC
918 @end ifclear
919 machines an add instruction really has only two operands, one of them an
920 input-output operand:
921
922 @smallexample
923 addl #35,r12
924 @end smallexample
925
926 Matching constraints are used in these circumstances.
927 More precisely, the two operands that match must include one input-only
928 operand and one output-only operand.  Moreover, the digit must be a
929 smaller number than the number of the operand that uses it in the
930 constraint.
931
932 @ifset INTERNALS
933 For operands to match in a particular case usually means that they
934 are identical-looking RTL expressions.  But in a few special cases
935 specific kinds of dissimilarity are allowed.  For example, @code{*x}
936 as an input operand will match @code{*x++} as an output operand.
937 For proper results in such cases, the output template should always
938 use the output-operand's number when printing the operand.
939 @end ifset
940
941 @cindex load address instruction
942 @cindex push address instruction
943 @cindex address constraints
944 @cindex @samp{p} in constraint
945 @item @samp{p}
946 An operand that is a valid memory address is allowed.  This is
947 for ``load address'' and ``push address'' instructions.
948
949 @findex address_operand
950 @samp{p} in the constraint must be accompanied by @code{address_operand}
951 as the predicate in the @code{match_operand}.  This predicate interprets
952 the mode specified in the @code{match_operand} as the mode of the memory
953 reference for which the address would be valid.
954
955 @cindex other register constraints
956 @cindex extensible constraints
957 @item @var{other-letters}
958 Other letters can be defined in machine-dependent fashion to stand for
959 particular classes of registers or other arbitrary operand types.
960 @samp{d}, @samp{a} and @samp{f} are defined on the 68000/68020 to stand
961 for data, address and floating point registers.
962
963 @ifset INTERNALS
964 The machine description macro @code{REG_CLASS_FROM_LETTER} has first
965 cut at the otherwise unused letters.  If it evaluates to @code{NO_REGS},
966 then @code{EXTRA_CONSTRAINT} is evaluated.
967
968 A typical use for @code{EXTRA_CONSTRAINT} would be to distinguish certain
969 types of memory references that affect other insn operands.
970 @end ifset
971 @end table
972
973 @ifset INTERNALS
974 In order to have valid assembler code, each operand must satisfy
975 its constraint.  But a failure to do so does not prevent the pattern
976 from applying to an insn.  Instead, it directs the compiler to modify
977 the code so that the constraint will be satisfied.  Usually this is
978 done by copying an operand into a register.
979
980 Contrast, therefore, the two instruction patterns that follow:
981
982 @smallexample
983 (define_insn ""
984   [(set (match_operand:SI 0 "general_operand" "=r")
985         (plus:SI (match_dup 0)
986                  (match_operand:SI 1 "general_operand" "r")))]
987   ""
988   "@dots{}")
989 @end smallexample
990
991 @noindent
992 which has two operands, one of which must appear in two places, and
993
994 @smallexample
995 (define_insn ""
996   [(set (match_operand:SI 0 "general_operand" "=r")
997         (plus:SI (match_operand:SI 1 "general_operand" "0")
998                  (match_operand:SI 2 "general_operand" "r")))]
999   ""
1000   "@dots{}")
1001 @end smallexample
1002
1003 @noindent
1004 which has three operands, two of which are required by a constraint to be
1005 identical.  If we are considering an insn of the form
1006
1007 @smallexample
1008 (insn @var{n} @var{prev} @var{next}
1009   (set (reg:SI 3)
1010        (plus:SI (reg:SI 6) (reg:SI 109)))
1011   @dots{})
1012 @end smallexample
1013
1014 @noindent
1015 the first pattern would not apply at all, because this insn does not
1016 contain two identical subexpressions in the right place.  The pattern would
1017 say, ``That does not look like an add instruction; try other patterns.''
1018 The second pattern would say, ``Yes, that's an add instruction, but there
1019 is something wrong with it.''  It would direct the reload pass of the
1020 compiler to generate additional insns to make the constraint true.  The
1021 results might look like this:
1022
1023 @smallexample
1024 (insn @var{n2} @var{prev} @var{n}
1025   (set (reg:SI 3) (reg:SI 6))
1026   @dots{})
1027
1028 (insn @var{n} @var{n2} @var{next}
1029   (set (reg:SI 3)
1030        (plus:SI (reg:SI 3) (reg:SI 109)))
1031   @dots{})
1032 @end smallexample
1033
1034 It is up to you to make sure that each operand, in each pattern, has
1035 constraints that can handle any RTL expression that could be present for
1036 that operand.  (When multiple alternatives are in use, each pattern must,
1037 for each possible combination of operand expressions, have at least one
1038 alternative which can handle that combination of operands.)  The
1039 constraints don't need to @emph{allow} any possible operand---when this is
1040 the case, they do not constrain---but they must at least point the way to
1041 reloading any possible operand so that it will fit.
1042
1043 @itemize @bullet
1044 @item
1045 If the constraint accepts whatever operands the predicate permits,
1046 there is no problem: reloading is never necessary for this operand.
1047
1048 For example, an operand whose constraints permit everything except
1049 registers is safe provided its predicate rejects registers.
1050
1051 An operand whose predicate accepts only constant values is safe
1052 provided its constraints include the letter @samp{i}.  If any possible
1053 constant value is accepted, then nothing less than @samp{i} will do;
1054 if the predicate is more selective, then the constraints may also be
1055 more selective.
1056
1057 @item
1058 Any operand expression can be reloaded by copying it into a register.
1059 So if an operand's constraints allow some kind of register, it is
1060 certain to be safe.  It need not permit all classes of registers; the
1061 compiler knows how to copy a register into another register of the
1062 proper class in order to make an instruction valid.
1063
1064 @cindex nonoffsettable memory reference
1065 @cindex memory reference, nonoffsettable
1066 @item
1067 A nonoffsettable memory reference can be reloaded by copying the
1068 address into a register.  So if the constraint uses the letter
1069 @samp{o}, all memory references are taken care of.
1070
1071 @item
1072 A constant operand can be reloaded by allocating space in memory to
1073 hold it as preinitialized data.  Then the memory reference can be used
1074 in place of the constant.  So if the constraint uses the letters
1075 @samp{o} or @samp{m}, constant operands are not a problem.
1076
1077 @item
1078 If the constraint permits a constant and a pseudo register used in an insn
1079 was not allocated to a hard register and is equivalent to a constant,
1080 the register will be replaced with the constant.  If the predicate does
1081 not permit a constant and the insn is re-recognized for some reason, the
1082 compiler will crash.  Thus the predicate must always recognize any
1083 objects allowed by the constraint.
1084 @end itemize
1085
1086 If the operand's predicate can recognize registers, but the constraint does
1087 not permit them, it can make the compiler crash.  When this operand happens
1088 to be a register, the reload pass will be stymied, because it does not know
1089 how to copy a register temporarily into memory.
1090
1091 If the predicate accepts a unary operator, the constraint applies to the
1092 operand.  For example, the MIPS processor at ISA level 3 supports an
1093 instruction which adds two registers in @code{SImode} to produce a
1094 @code{DImode} result, but only if the registers are correctly sign
1095 extended.  This predicate for the input operands accepts a
1096 @code{sign_extend} of an @code{SImode} register.  Write the constraint
1097 to indicate the type of register that is required for the operand of the
1098 @code{sign_extend}.
1099 @end ifset
1100
1101 @node Multi-Alternative
1102 @subsection Multiple Alternative Constraints
1103 @cindex multiple alternative constraints
1104
1105 Sometimes a single instruction has multiple alternative sets of possible
1106 operands.  For example, on the 68000, a logical-or instruction can combine
1107 register or an immediate value into memory, or it can combine any kind of
1108 operand into a register; but it cannot combine one memory location into
1109 another.
1110
1111 These constraints are represented as multiple alternatives.  An alternative
1112 can be described by a series of letters for each operand.  The overall
1113 constraint for an operand is made from the letters for this operand
1114 from the first alternative, a comma, the letters for this operand from
1115 the second alternative, a comma, and so on until the last alternative.
1116 @ifset INTERNALS
1117 Here is how it is done for fullword logical-or on the 68000:
1118
1119 @smallexample
1120 (define_insn "iorsi3"
1121   [(set (match_operand:SI 0 "general_operand" "=m,d")
1122         (ior:SI (match_operand:SI 1 "general_operand" "%0,0")
1123                 (match_operand:SI 2 "general_operand" "dKs,dmKs")))]
1124   @dots{})
1125 @end smallexample
1126
1127 The first alternative has @samp{m} (memory) for operand 0, @samp{0} for
1128 operand 1 (meaning it must match operand 0), and @samp{dKs} for operand
1129 2.  The second alternative has @samp{d} (data register) for operand 0,
1130 @samp{0} for operand 1, and @samp{dmKs} for operand 2.  The @samp{=} and
1131 @samp{%} in the constraints apply to all the alternatives; their
1132 meaning is explained in the next section (@pxref{Class Preferences}).
1133 @end ifset
1134
1135 @c FIXME Is this ? and ! stuff of use in asm()?  If not, hide unless INTERNAL
1136 If all the operands fit any one alternative, the instruction is valid.
1137 Otherwise, for each alternative, the compiler counts how many instructions
1138 must be added to copy the operands so that that alternative applies.
1139 The alternative requiring the least copying is chosen.  If two alternatives
1140 need the same amount of copying, the one that comes first is chosen.
1141 These choices can be altered with the @samp{?} and @samp{!} characters:
1142
1143 @table @code
1144 @cindex @samp{?} in constraint
1145 @cindex question mark
1146 @item ?
1147 Disparage slightly the alternative that the @samp{?} appears in,
1148 as a choice when no alternative applies exactly.  The compiler regards
1149 this alternative as one unit more costly for each @samp{?} that appears
1150 in it.
1151
1152 @cindex @samp{!} in constraint
1153 @cindex exclamation point
1154 @item !
1155 Disparage severely the alternative that the @samp{!} appears in.
1156 This alternative can still be used if it fits without reloading,
1157 but if reloading is needed, some other alternative will be used.
1158 @end table
1159
1160 @ifset INTERNALS
1161 When an insn pattern has multiple alternatives in its constraints, often
1162 the appearance of the assembler code is determined mostly by which
1163 alternative was matched.  When this is so, the C code for writing the
1164 assembler code can use the variable @code{which_alternative}, which is
1165 the ordinal number of the alternative that was actually satisfied (0 for
1166 the first, 1 for the second alternative, etc.).  @xref{Output Statement}.
1167 @end ifset
1168
1169 @ifset INTERNALS
1170 @node Class Preferences
1171 @subsection Register Class Preferences
1172 @cindex class preference constraints
1173 @cindex register class preference constraints
1174
1175 @cindex voting between constraint alternatives
1176 The operand constraints have another function: they enable the compiler
1177 to decide which kind of hardware register a pseudo register is best
1178 allocated to.  The compiler examines the constraints that apply to the
1179 insns that use the pseudo register, looking for the machine-dependent
1180 letters such as @samp{d} and @samp{a} that specify classes of registers.
1181 The pseudo register is put in whichever class gets the most ``votes''.
1182 The constraint letters @samp{g} and @samp{r} also vote: they vote in
1183 favor of a general register.  The machine description says which registers
1184 are considered general.
1185
1186 Of course, on some machines all registers are equivalent, and no register
1187 classes are defined.  Then none of this complexity is relevant.
1188 @end ifset
1189
1190 @node Modifiers
1191 @subsection Constraint Modifier Characters
1192 @cindex modifiers in constraints
1193 @cindex constraint modifier characters
1194
1195 @c prevent bad page break with this line
1196 Here are constraint modifier characters.
1197
1198 @table @samp
1199 @cindex @samp{=} in constraint
1200 @item =
1201 Means that this operand is write-only for this instruction: the previous
1202 value is discarded and replaced by output data.
1203
1204 @cindex @samp{+} in constraint
1205 @item +
1206 Means that this operand is both read and written by the instruction.
1207
1208 When the compiler fixes up the operands to satisfy the constraints,
1209 it needs to know which operands are inputs to the instruction and
1210 which are outputs from it.  @samp{=} identifies an output; @samp{+}
1211 identifies an operand that is both input and output; all other operands
1212 are assumed to be input only.
1213
1214 If you specify @samp{=} or @samp{+} in a constraint, you put it in the
1215 first character of the constraint string.
1216
1217 @cindex @samp{&} in constraint
1218 @cindex earlyclobber operand
1219 @item &
1220 Means (in a particular alternative) that this operand is an
1221 @dfn{earlyclobber} operand, which is modified before the instruction is
1222 finished using the input operands.  Therefore, this operand may not lie
1223 in a register that is used as an input operand or as part of any memory
1224 address.
1225
1226 @samp{&} applies only to the alternative in which it is written.  In
1227 constraints with multiple alternatives, sometimes one alternative
1228 requires @samp{&} while others do not.  See, for example, the
1229 @samp{movdf} insn of the 68000.
1230
1231 An input operand can be tied to an earlyclobber operand if its only
1232 use as an input occurs before the early result is written.  Adding
1233 alternatives of this form often allows GCC to produce better code
1234 when only some of the inputs can be affected by the earlyclobber.
1235 See, for example, the @samp{mulsi3} insn of the ARM@.
1236
1237 @samp{&} does not obviate the need to write @samp{=}.
1238
1239 @cindex @samp{%} in constraint
1240 @item %
1241 Declares the instruction to be commutative for this operand and the
1242 following operand.  This means that the compiler may interchange the
1243 two operands if that is the cheapest way to make all operands fit the
1244 constraints.
1245 @ifset INTERNALS
1246 This is often used in patterns for addition instructions
1247 that really have only two operands: the result must go in one of the
1248 arguments.  Here for example, is how the 68000 halfword-add
1249 instruction is defined:
1250
1251 @smallexample
1252 (define_insn "addhi3"
1253   [(set (match_operand:HI 0 "general_operand" "=m,r")
1254      (plus:HI (match_operand:HI 1 "general_operand" "%0,0")
1255               (match_operand:HI 2 "general_operand" "di,g")))]
1256   @dots{})
1257 @end smallexample
1258 @end ifset
1259 GCC can only handle one commutative pair in an asm; if you use more,
1260 the compiler may fail.  Note that you need not use the modifier if
1261 the two alternatives are strictly identical; this would only waste
1262 time in the reload pass.
1263
1264 @cindex @samp{#} in constraint
1265 @item #
1266 Says that all following characters, up to the next comma, are to be
1267 ignored as a constraint.  They are significant only for choosing
1268 register preferences.
1269
1270 @cindex @samp{*} in constraint
1271 @item *
1272 Says that the following character should be ignored when choosing
1273 register preferences.  @samp{*} has no effect on the meaning of the
1274 constraint as a constraint, and no effect on reloading.
1275
1276 @ifset INTERNALS
1277 Here is an example: the 68000 has an instruction to sign-extend a
1278 halfword in a data register, and can also sign-extend a value by
1279 copying it into an address register.  While either kind of register is
1280 acceptable, the constraints on an address-register destination are
1281 less strict, so it is best if register allocation makes an address
1282 register its goal.  Therefore, @samp{*} is used so that the @samp{d}
1283 constraint letter (for data register) is ignored when computing
1284 register preferences.
1285
1286 @smallexample
1287 (define_insn "extendhisi2"
1288   [(set (match_operand:SI 0 "general_operand" "=*d,a")
1289         (sign_extend:SI
1290          (match_operand:HI 1 "general_operand" "0,g")))]
1291   @dots{})
1292 @end smallexample
1293 @end ifset
1294 @end table
1295
1296 @node Machine Constraints
1297 @subsection Constraints for Particular Machines
1298 @cindex machine specific constraints
1299 @cindex constraints, machine specific
1300
1301 Whenever possible, you should use the general-purpose constraint letters
1302 in @code{asm} arguments, since they will convey meaning more readily to
1303 people reading your code.  Failing that, use the constraint letters
1304 that usually have very similar meanings across architectures.  The most
1305 commonly used constraints are @samp{m} and @samp{r} (for memory and
1306 general-purpose registers respectively; @pxref{Simple Constraints}), and
1307 @samp{I}, usually the letter indicating the most common
1308 immediate-constant format.
1309
1310 For each machine architecture, the
1311 @file{config/@var{machine}/@var{machine}.h} file defines additional
1312 constraints.  These constraints are used by the compiler itself for
1313 instruction generation, as well as for @code{asm} statements; therefore,
1314 some of the constraints are not particularly interesting for @code{asm}.
1315 The constraints are defined through these macros:
1316
1317 @table @code
1318 @item REG_CLASS_FROM_LETTER
1319 Register class constraints (usually lowercase).
1320
1321 @item CONST_OK_FOR_LETTER_P
1322 Immediate constant constraints, for non-floating point constants of
1323 word size or smaller precision (usually uppercase).
1324
1325 @item CONST_DOUBLE_OK_FOR_LETTER_P
1326 Immediate constant constraints, for all floating point constants and for
1327 constants of greater than word size precision (usually uppercase).
1328
1329 @item EXTRA_CONSTRAINT
1330 Special cases of registers or memory.  This macro is not required, and
1331 is only defined for some machines.
1332 @end table
1333
1334 Inspecting these macro definitions in the compiler source for your
1335 machine is the best way to be certain you have the right constraints.
1336 However, here is a summary of the machine-dependent constraints
1337 available on some particular machines.
1338
1339 @table @emph
1340 @item ARM family---@file{arm.h}
1341 @table @code
1342 @item f
1343 Floating-point register
1344
1345 @item F
1346 One of the floating-point constants 0.0, 0.5, 1.0, 2.0, 3.0, 4.0, 5.0
1347 or 10.0
1348
1349 @item G
1350 Floating-point constant that would satisfy the constraint @samp{F} if it
1351 were negated
1352
1353 @item I
1354 Integer that is valid as an immediate operand in a data processing
1355 instruction.  That is, an integer in the range 0 to 255 rotated by a
1356 multiple of 2
1357
1358 @item J
1359 Integer in the range @minus{}4095 to 4095
1360
1361 @item K
1362 Integer that satisfies constraint @samp{I} when inverted (ones complement)
1363
1364 @item L
1365 Integer that satisfies constraint @samp{I} when negated (twos complement)
1366
1367 @item M
1368 Integer in the range 0 to 32
1369
1370 @item Q
1371 A memory reference where the exact address is in a single register
1372 (`@samp{m}' is preferable for @code{asm} statements)
1373
1374 @item R
1375 An item in the constant pool
1376
1377 @item S
1378 A symbol in the text segment of the current file
1379 @end table
1380
1381 @item AVR family---@file{avr.h}
1382 @table @code
1383 @item l
1384 Registers from r0 to r15
1385
1386 @item a
1387 Registers from r16 to r23
1388
1389 @item d
1390 Registers from r16 to r31
1391
1392 @item w
1393 Registers from r24 to r31.  These registers can be used in @samp{adiw} command
1394
1395 @item e
1396 Pointer register (r26--r31)
1397
1398 @item b
1399 Base pointer register (r28--r31)
1400
1401 @item q
1402 Stack pointer register (SPH:SPL)
1403
1404 @item t
1405 Temporary register r0
1406
1407 @item x
1408 Register pair X (r27:r26)
1409
1410 @item y
1411 Register pair Y (r29:r28)
1412
1413 @item z
1414 Register pair Z (r31:r30)
1415
1416 @item I
1417 Constant greater than @minus{}1, less than 64
1418
1419 @item J
1420 Constant greater than @minus{}64, less than 1
1421
1422 @item K
1423 Constant integer 2
1424
1425 @item L
1426 Constant integer 0
1427
1428 @item M
1429 Constant that fits in 8 bits
1430
1431 @item N
1432 Constant integer @minus{}1
1433
1434 @item O
1435 Constant integer 8, 16, or 24
1436
1437 @item P
1438 Constant integer 1
1439
1440 @item G
1441 A floating point constant 0.0
1442 @end table
1443
1444 @item PowerPC and IBM RS6000---@file{rs6000.h}
1445 @table @code
1446 @item b
1447 Address base register
1448
1449 @item f
1450 Floating point register
1451
1452 @item v
1453 Vector register
1454
1455 @item h
1456 @samp{MQ}, @samp{CTR}, or @samp{LINK} register
1457
1458 @item q
1459 @samp{MQ} register
1460
1461 @item c
1462 @samp{CTR} register
1463
1464 @item l
1465 @samp{LINK} register
1466
1467 @item x
1468 @samp{CR} register (condition register) number 0
1469
1470 @item y
1471 @samp{CR} register (condition register)
1472
1473 @item z
1474 @samp{FPMEM} stack memory for FPR-GPR transfers
1475
1476 @item I
1477 Signed 16-bit constant
1478
1479 @item J
1480 Unsigned 16-bit constant shifted left 16 bits (use @samp{L} instead for
1481 @code{SImode} constants)
1482
1483 @item K
1484 Unsigned 16-bit constant
1485
1486 @item L
1487 Signed 16-bit constant shifted left 16 bits
1488
1489 @item M
1490 Constant larger than 31
1491
1492 @item N
1493 Exact power of 2
1494
1495 @item O
1496 Zero
1497
1498 @item P
1499 Constant whose negation is a signed 16-bit constant
1500
1501 @item G
1502 Floating point constant that can be loaded into a register with one
1503 instruction per word
1504
1505 @item Q
1506 Memory operand that is an offset from a register (@samp{m} is preferable
1507 for @code{asm} statements)
1508
1509 @item R
1510 AIX TOC entry
1511
1512 @item S
1513 Constant suitable as a 64-bit mask operand
1514
1515 @item T
1516 Constant suitable as a 32-bit mask operand
1517
1518 @item U
1519 System V Release 4 small data area reference
1520 @end table
1521
1522 @item Intel 386---@file{i386.h}
1523 @table @code
1524 @item q
1525 @samp{a}, @code{b}, @code{c}, or @code{d} register for the i386.
1526 For x86-64 it is equivalent to @samp{r} class. (for 8-bit instructions that
1527 do not use upper halves)
1528
1529 @item Q
1530 @samp{a}, @code{b}, @code{c}, or @code{d} register. (for 8-bit instructions,
1531 that do use upper halves)
1532
1533 @item R
1534 Legacy register---equivalent to @code{r} class in i386 mode.
1535 (for non-8-bit registers used together with 8-bit upper halves in a single
1536 instruction)
1537
1538 @item A
1539 Specifies the @samp{a} or @samp{d} registers.  This is primarily useful
1540 for 64-bit integer values (when in 32-bit mode) intended to be returned
1541 with the @samp{d} register holding the most significant bits and the
1542 @samp{a} register holding the least significant bits.
1543
1544 @item f
1545 Floating point register
1546
1547 @item t
1548 First (top of stack) floating point register
1549
1550 @item u
1551 Second floating point register
1552
1553 @item a
1554 @samp{a} register
1555
1556 @item b
1557 @samp{b} register
1558
1559 @item c
1560 @samp{c} register
1561
1562 @item C
1563 Specifies constant that can be easily constructed in SSE register without
1564 loading it from memory.
1565
1566 @item d
1567 @samp{d} register
1568
1569 @item D
1570 @samp{di} register
1571
1572 @item S
1573 @samp{si} register
1574
1575 @item x
1576 @samp{xmm} SSE register
1577
1578 @item y
1579 MMX register
1580
1581 @item I
1582 Constant in range 0 to 31 (for 32-bit shifts)
1583
1584 @item J
1585 Constant in range 0 to 63 (for 64-bit shifts)
1586
1587 @item K
1588 @samp{0xff}
1589
1590 @item L
1591 @samp{0xffff}
1592
1593 @item M
1594 0, 1, 2, or 3 (shifts for @code{lea} instruction)
1595
1596 @item N
1597 Constant in range 0 to 255 (for @code{out} instruction)
1598
1599 @item Z
1600 Constant in range 0 to @code{0xffffffff} or symbolic reference known to fit specified range.
1601 (for using immediates in zero extending 32-bit to 64-bit x86-64 instructions)
1602
1603 @item e
1604 Constant in range @minus{}2147483648 to 2147483647 or symbolic reference known to fit specified range.
1605 (for using immediates in 64-bit x86-64 instructions)
1606
1607 @item G
1608 Standard 80387 floating point constant
1609 @end table
1610
1611 @item Intel 960---@file{i960.h}
1612 @table @code
1613 @item f
1614 Floating point register (@code{fp0} to @code{fp3})
1615
1616 @item l
1617 Local register (@code{r0} to @code{r15})
1618
1619 @item b
1620 Global register (@code{g0} to @code{g15})
1621
1622 @item d
1623 Any local or global register
1624
1625 @item I
1626 Integers from 0 to 31
1627
1628 @item J
1629 0
1630
1631 @item K
1632 Integers from @minus{}31 to 0
1633
1634 @item G
1635 Floating point 0
1636
1637 @item H
1638 Floating point 1
1639 @end table
1640
1641 @item Intel IA-64---@file{ia64.h}
1642 @table @code
1643 @item a
1644 General register @code{r0} to @code{r3} for @code{addl} instruction
1645
1646 @item b
1647 Branch register
1648
1649 @item c
1650 Predicate register (@samp{c} as in ``conditional'')
1651
1652 @item d
1653 Application register residing in M-unit
1654
1655 @item e
1656 Application register residing in I-unit
1657
1658 @item f
1659 Floating-point register
1660
1661 @item m
1662 Memory operand.
1663 Remember that @samp{m} allows postincrement and postdecrement which
1664 require printing with @samp{%Pn} on IA-64.
1665 Use @samp{S} to disallow postincrement and postdecrement.
1666
1667 @item G
1668 Floating-point constant 0.0 or 1.0
1669
1670 @item I
1671 14-bit signed integer constant
1672
1673 @item J
1674 22-bit signed integer constant
1675
1676 @item K
1677 8-bit signed integer constant for logical instructions
1678
1679 @item L
1680 8-bit adjusted signed integer constant for compare pseudo-ops
1681
1682 @item M
1683 6-bit unsigned integer constant for shift counts
1684
1685 @item N
1686 9-bit signed integer constant for load and store postincrements
1687
1688 @item O
1689 The constant zero
1690
1691 @item P
1692 0 or -1 for @code{dep} instruction
1693
1694 @item Q
1695 Non-volatile memory for floating-point loads and stores
1696
1697 @item R
1698 Integer constant in the range 1 to 4 for @code{shladd} instruction
1699
1700 @item S
1701 Memory operand except postincrement and postdecrement
1702 @end table
1703
1704 @item FRV---@file{frv.h}
1705 @table @code
1706 @item a
1707 Register in the class @code{ACC_REGS} (@code{acc0} to @code{acc7}).
1708
1709 @item b
1710 Register in the class @code{EVEN_ACC_REGS} (@code{acc0} to @code{acc7}).
1711
1712 @item c
1713 Register in the class @code{CC_REGS} (@code{fcc0} to @code{fcc3} and
1714 @code{icc0} to @code{icc3}).
1715
1716 @item d
1717 Register in the class @code{GPR_REGS} (@code{gr0} to @code{gr63}).
1718
1719 @item e
1720 Register in the class @code{EVEN_REGS} (@code{gr0} to @code{gr63}).
1721 Odd registers are excluded not in the class but through the use of a machine
1722 mode larger than 4 bytes.
1723
1724 @item f
1725 Register in the class @code{FPR_REGS} (@code{fr0} to @code{fr63}).
1726
1727 @item h
1728 Register in the class @code{FEVEN_REGS} (@code{fr0} to @code{fr63}).
1729 Odd registers are excluded not in the class but through the use of a machine
1730 mode larger than 4 bytes.
1731
1732 @item l
1733 Register in the class @code{LR_REG} (the @code{lr} register).
1734
1735 @item q
1736 Register in the class @code{QUAD_REGS} (@code{gr2} to @code{gr63}).
1737 Register numbers not divisible by 4 are excluded not in the class but through
1738 the use of a machine mode larger than 8 bytes.
1739
1740 @item t
1741 Register in the class @code{ICC_REGS} (@code{icc0} to @code{icc3}).
1742
1743 @item u
1744 Register in the class @code{FCC_REGS} (@code{fcc0} to @code{fcc3}).
1745
1746 @item v
1747 Register in the class @code{ICR_REGS} (@code{cc4} to @code{cc7}).
1748
1749 @item w
1750 Register in the class @code{FCR_REGS} (@code{cc0} to @code{cc3}).
1751
1752 @item x
1753 Register in the class @code{QUAD_FPR_REGS} (@code{fr0} to @code{fr63}).
1754 Register numbers not divisible by 4 are excluded not in the class but through
1755 the use of a machine mode larger than 8 bytes.
1756
1757 @item z
1758 Register in the class @code{SPR_REGS} (@code{lcr} and @code{lr}).
1759
1760 @item A
1761 Register in the class @code{QUAD_ACC_REGS} (@code{acc0} to @code{acc7}).
1762
1763 @item B
1764 Register in the class @code{ACCG_REGS} (@code{accg0} to @code{accg7}).
1765
1766 @item C
1767 Register in the class @code{CR_REGS} (@code{cc0} to @code{cc7}).
1768
1769 @item G
1770 Floating point constant zero
1771
1772 @item I
1773 6-bit signed integer constant
1774
1775 @item J
1776 10-bit signed integer constant
1777
1778 @item L
1779 16-bit signed integer constant
1780
1781 @item M
1782 16-bit unsigned integer constant
1783
1784 @item N
1785 12-bit signed integer constant that is negative---i.e.@: in the
1786 range of @minus{}2048 to @minus{}1
1787
1788 @item O
1789 Constant zero
1790
1791 @item P
1792 12-bit signed integer constant that is greater than zero---i.e.@: in the
1793 range of 1 to 2047.
1794
1795 @end table
1796
1797 @item IP2K---@file{ip2k.h}
1798 @table @code
1799 @item a
1800 @samp{DP} or @samp{IP} registers (general address)
1801
1802 @item f
1803 @samp{IP} register
1804
1805 @item j
1806 @samp{IPL} register
1807
1808 @item k
1809 @samp{IPH} register
1810
1811 @item b
1812 @samp{DP} register
1813
1814 @item y
1815 @samp{DPH} register
1816
1817 @item z
1818 @samp{DPL} register
1819
1820 @item q
1821 @samp{SP} register
1822
1823 @item c
1824 @samp{DP} or @samp{SP} registers (offsettable address)
1825
1826 @item d
1827 Non-pointer registers (not @samp{SP}, @samp{DP}, @samp{IP})
1828
1829 @item u
1830 Non-SP registers (everything except @samp{SP})
1831
1832 @item R
1833 Indirect through @samp{IP} - Avoid this except for @code{QImode}, since we
1834 can't access extra bytes
1835
1836 @item S
1837 Indirect through @samp{SP} or @samp{DP} with short displacement (0..127)
1838
1839 @item T
1840 Data-section immediate value
1841
1842 @item I
1843 Integers from @minus{}255 to @minus{}1
1844
1845 @item J
1846 Integers from 0 to 7---valid bit number in a register
1847
1848 @item K
1849 Integers from 0 to 127---valid displacement for addressing mode
1850
1851 @item L
1852 Integers from 1 to 127
1853
1854 @item M
1855 Integer @minus{}1
1856
1857 @item N
1858 Integer 1
1859
1860 @item O
1861 Zero
1862
1863 @item P
1864 Integers from 0 to 255
1865 @end table
1866
1867 @item MIPS---@file{mips.h}
1868 @table @code
1869 @item d
1870 General-purpose integer register
1871
1872 @item f
1873 Floating-point register (if available)
1874
1875 @item h
1876 @samp{Hi} register
1877
1878 @item l
1879 @samp{Lo} register
1880
1881 @item x
1882 @samp{Hi} or @samp{Lo} register
1883
1884 @item y
1885 General-purpose integer register
1886
1887 @item z
1888 Floating-point status register
1889
1890 @item I
1891 Signed 16-bit constant (for arithmetic instructions)
1892
1893 @item J
1894 Zero
1895
1896 @item K
1897 Zero-extended 16-bit constant (for logic instructions)
1898
1899 @item L
1900 Constant with low 16 bits zero (can be loaded with @code{lui})
1901
1902 @item M
1903 32-bit constant which requires two instructions to load (a constant
1904 which is not @samp{I}, @samp{K}, or @samp{L})
1905
1906 @item N
1907 Negative 16-bit constant
1908
1909 @item O
1910 Exact power of two
1911
1912 @item P
1913 Positive 16-bit constant
1914
1915 @item G
1916 Floating point zero
1917
1918 @item Q
1919 Memory reference that can be loaded with more than one instruction
1920 (@samp{m} is preferable for @code{asm} statements)
1921
1922 @item R
1923 Memory reference that can be loaded with one instruction
1924 (@samp{m} is preferable for @code{asm} statements)
1925
1926 @item S
1927 Memory reference in external OSF/rose PIC format
1928 (@samp{m} is preferable for @code{asm} statements)
1929 @end table
1930
1931 @item Motorola 680x0---@file{m68k.h}
1932 @table @code
1933 @item a
1934 Address register
1935
1936 @item d
1937 Data register
1938
1939 @item f
1940 68881 floating-point register, if available
1941
1942 @item I
1943 Integer in the range 1 to 8
1944
1945 @item J
1946 16-bit signed number
1947
1948 @item K
1949 Signed number whose magnitude is greater than 0x80
1950
1951 @item L
1952 Integer in the range @minus{}8 to @minus{}1
1953
1954 @item M
1955 Signed number whose magnitude is greater than 0x100
1956
1957 @item G
1958 Floating point constant that is not a 68881 constant
1959 @end table
1960
1961 @item Motorola 68HC11 & 68HC12 families---@file{m68hc11.h}
1962 @table @code
1963 @item a
1964 Register 'a'
1965
1966 @item b
1967 Register 'b'
1968
1969 @item d
1970 Register 'd'
1971
1972 @item q
1973 An 8-bit register
1974
1975 @item t
1976 Temporary soft register _.tmp
1977
1978 @item u
1979 A soft register _.d1 to _.d31
1980
1981 @item w
1982 Stack pointer register
1983
1984 @item x
1985 Register 'x'
1986
1987 @item y
1988 Register 'y'
1989
1990 @item z
1991 Pseudo register 'z' (replaced by 'x' or 'y' at the end)
1992
1993 @item A
1994 An address register: x, y or z
1995
1996 @item B
1997 An address register: x or y
1998
1999 @item D
2000 Register pair (x:d) to form a 32-bit value
2001
2002 @item L
2003 Constants in the range @minus{}65536 to 65535
2004
2005 @item M
2006 Constants whose 16-bit low part is zero
2007
2008 @item N
2009 Constant integer 1 or @minus{}1
2010
2011 @item O
2012 Constant integer 16
2013
2014 @item P
2015 Constants in the range @minus{}8 to 2
2016
2017 @end table
2018
2019 @need 1000
2020 @item SPARC---@file{sparc.h}
2021 @table @code
2022 @item f
2023 Floating-point register on the SPARC-V8 architecture and
2024 lower floating-point register on the SPARC-V9 architecture.
2025
2026 @item e
2027 Floating-point register. It is equivalent to @samp{f} on the
2028 SPARC-V8 architecture and contains both lower and upper
2029 floating-point registers on the SPARC-V9 architecture.
2030
2031 @item c
2032 Floating-point condition code register.
2033
2034 @item d
2035 Lower floating-point register. It is only valid on the SPARC-V9
2036 architecture when the Visual Instruction Set is available.
2037
2038 @item b
2039 Floating-point register. It is only valid on the SPARC-V9 architecture
2040 when the Visual Instruction Set is available.
2041
2042 @item h
2043 64-bit global or out register for the SPARC-V8+ architecture.
2044
2045 @item I
2046 Signed 13-bit constant
2047
2048 @item J
2049 Zero
2050
2051 @item K
2052 32-bit constant with the low 12 bits clear (a constant that can be
2053 loaded with the @code{sethi} instruction)
2054
2055 @item L
2056 A constant in the range supported by @code{movcc} instructions
2057
2058 @item M
2059 A constant in the range supported by @code{movrcc} instructions
2060
2061 @item N
2062 Same as @samp{K}, except that it verifies that bits that are not in the
2063 lower 32-bit range are all zero.  Must be used instead of @samp{K} for
2064 modes wider than @code{SImode}
2065
2066 @item O
2067 The constant 4096
2068
2069 @item G
2070 Floating-point zero
2071
2072 @item H
2073 Signed 13-bit constant, sign-extended to 32 or 64 bits
2074
2075 @item Q
2076 Floating-point constant whose integral representation can
2077 be moved into an integer register using a single sethi
2078 instruction
2079
2080 @item R
2081 Floating-point constant whose integral representation can
2082 be moved into an integer register using a single mov
2083 instruction
2084
2085 @item S
2086 Floating-point constant whose integral representation can
2087 be moved into an integer register using a high/lo_sum
2088 instruction sequence
2089
2090 @item T
2091 Memory address aligned to an 8-byte boundary
2092
2093 @item U
2094 Even register
2095
2096 @item W
2097 Memory address for @samp{e} constraint registers.
2098
2099 @end table
2100
2101 @item TMS320C3x/C4x---@file{c4x.h}
2102 @table @code
2103 @item a
2104 Auxiliary (address) register (ar0-ar7)
2105
2106 @item b
2107 Stack pointer register (sp)
2108
2109 @item c
2110 Standard (32-bit) precision integer register
2111
2112 @item f
2113 Extended (40-bit) precision register (r0-r11)
2114
2115 @item k
2116 Block count register (bk)
2117
2118 @item q
2119 Extended (40-bit) precision low register (r0-r7)
2120
2121 @item t
2122 Extended (40-bit) precision register (r0-r1)
2123
2124 @item u
2125 Extended (40-bit) precision register (r2-r3)
2126
2127 @item v
2128 Repeat count register (rc)
2129
2130 @item x
2131 Index register (ir0-ir1)
2132
2133 @item y
2134 Status (condition code) register (st)
2135
2136 @item z
2137 Data page register (dp)
2138
2139 @item G
2140 Floating-point zero
2141
2142 @item H
2143 Immediate 16-bit floating-point constant
2144
2145 @item I
2146 Signed 16-bit constant
2147
2148 @item J
2149 Signed 8-bit constant
2150
2151 @item K
2152 Signed 5-bit constant
2153
2154 @item L
2155 Unsigned 16-bit constant
2156
2157 @item M
2158 Unsigned 8-bit constant
2159
2160 @item N
2161 Ones complement of unsigned 16-bit constant
2162
2163 @item O
2164 High 16-bit constant (32-bit constant with 16 LSBs zero)
2165
2166 @item Q
2167 Indirect memory reference with signed 8-bit or index register displacement
2168
2169 @item R
2170 Indirect memory reference with unsigned 5-bit displacement
2171
2172 @item S
2173 Indirect memory reference with 1 bit or index register displacement
2174
2175 @item T
2176 Direct memory reference
2177
2178 @item U
2179 Symbolic address
2180
2181 @end table
2182
2183 @item S/390 and zSeries---@file{s390.h}
2184 @table @code
2185 @item a
2186 Address register (general purpose register except r0)
2187
2188 @item d
2189 Data register (arbitrary general purpose register)
2190
2191 @item f
2192 Floating-point register
2193
2194 @item I
2195 Unsigned 8-bit constant (0--255)
2196
2197 @item J
2198 Unsigned 12-bit constant (0--4095)
2199
2200 @item K
2201 Signed 16-bit constant (@minus{}32768--32767)
2202
2203 @item L
2204 Value appropriate as displacement.
2205 @table @code
2206        @item (0..4095)
2207        for short displacement
2208        @item (-524288..524287)
2209        for long displacement
2210 @end table
2211
2212 @item M
2213 Constant integer with a value of 0x7fffffff.
2214
2215 @item N
2216 Multiple letter constraint followed by 4 parameter letters.
2217 @table @code
2218          @item 0..9:
2219          number of the part counting from most to least significant
2220          @item H,Q:
2221          mode of the part
2222          @item D,S,H:
2223          mode of the containing operand
2224          @item 0,F:
2225          value of the other parts (F - all bits set)
2226 @end table
2227 The constraint matches if the specified part of a constant
2228 has a value different from it's other parts.
2229
2230 @item Q
2231 Memory reference without index register and with short displacement.
2232
2233 @item R
2234 Memory reference with index register and short displacement.
2235
2236 @item S
2237 Memory reference without index register but with long displacement.
2238
2239 @item T
2240 Memory reference with index register and long displacement.
2241
2242 @item U
2243 Pointer with short displacement.
2244
2245 @item W
2246 Pointer with long displacement.
2247
2248 @item Y
2249 Shift count operand.
2250
2251 @end table
2252
2253 @item Xstormy16---@file{stormy16.h}
2254 @table @code
2255 @item a
2256 Register r0.
2257
2258 @item b
2259 Register r1.
2260
2261 @item c
2262 Register r2.
2263
2264 @item d
2265 Register r8.
2266
2267 @item e
2268 Registers r0 through r7.
2269
2270 @item t
2271 Registers r0 and r1.
2272
2273 @item y
2274 The carry register.
2275
2276 @item z
2277 Registers r8 and r9.
2278
2279 @item I
2280 A constant between 0 and 3 inclusive.
2281
2282 @item J
2283 A constant that has exactly one bit set.
2284
2285 @item K
2286 A constant that has exactly one bit clear.
2287
2288 @item L
2289 A constant between 0 and 255 inclusive.
2290
2291 @item M
2292 A constant between @minus{}255 and 0 inclusive.
2293
2294 @item N
2295 A constant between @minus{}3 and 0 inclusive.
2296
2297 @item O
2298 A constant between 1 and 4 inclusive.
2299
2300 @item P
2301 A constant between @minus{}4 and @minus{}1 inclusive.
2302
2303 @item Q
2304 A memory reference that is a stack push.
2305
2306 @item R
2307 A memory reference that is a stack pop.
2308
2309 @item S
2310 A memory reference that refers to a constant address of known value.
2311
2312 @item T
2313 The register indicated by Rx (not implemented yet).
2314
2315 @item U
2316 A constant that is not between 2 and 15 inclusive.
2317
2318 @item Z
2319 The constant 0.
2320
2321 @end table
2322
2323 @item Xtensa---@file{xtensa.h}
2324 @table @code
2325 @item a
2326 General-purpose 32-bit register
2327
2328 @item b
2329 One-bit boolean register
2330
2331 @item A
2332 MAC16 40-bit accumulator register
2333
2334 @item I
2335 Signed 12-bit integer constant, for use in MOVI instructions
2336
2337 @item J
2338 Signed 8-bit integer constant, for use in ADDI instructions
2339
2340 @item K
2341 Integer constant valid for BccI instructions
2342
2343 @item L
2344 Unsigned constant valid for BccUI instructions
2345
2346 @end table
2347
2348 @end table
2349
2350 @ifset INTERNALS
2351 @node Standard Names
2352 @section Standard Pattern Names For Generation
2353 @cindex standard pattern names
2354 @cindex pattern names
2355 @cindex names, pattern
2356
2357 Here is a table of the instruction names that are meaningful in the RTL
2358 generation pass of the compiler.  Giving one of these names to an
2359 instruction pattern tells the RTL generation pass that it can use the
2360 pattern to accomplish a certain task.
2361
2362 @table @asis
2363 @cindex @code{mov@var{m}} instruction pattern
2364 @item @samp{mov@var{m}}
2365 Here @var{m} stands for a two-letter machine mode name, in lowercase.
2366 This instruction pattern moves data with that machine mode from operand
2367 1 to operand 0.  For example, @samp{movsi} moves full-word data.
2368
2369 If operand 0 is a @code{subreg} with mode @var{m} of a register whose
2370 own mode is wider than @var{m}, the effect of this instruction is
2371 to store the specified value in the part of the register that corresponds
2372 to mode @var{m}.  Bits outside of @var{m}, but which are within the
2373 same target word as the @code{subreg} are undefined.  Bits which are
2374 outside the target word are left unchanged.
2375
2376 This class of patterns is special in several ways.  First of all, each
2377 of these names up to and including full word size @emph{must} be defined,
2378 because there is no other way to copy a datum from one place to another.
2379 If there are patterns accepting operands in larger modes,
2380 @samp{mov@var{m}} must be defined for integer modes of those sizes.
2381
2382 Second, these patterns are not used solely in the RTL generation pass.
2383 Even the reload pass can generate move insns to copy values from stack
2384 slots into temporary registers.  When it does so, one of the operands is
2385 a hard register and the other is an operand that can need to be reloaded
2386 into a register.
2387
2388 @findex force_reg
2389 Therefore, when given such a pair of operands, the pattern must generate
2390 RTL which needs no reloading and needs no temporary registers---no
2391 registers other than the operands.  For example, if you support the
2392 pattern with a @code{define_expand}, then in such a case the
2393 @code{define_expand} mustn't call @code{force_reg} or any other such
2394 function which might generate new pseudo registers.
2395
2396 This requirement exists even for subword modes on a RISC machine where
2397 fetching those modes from memory normally requires several insns and
2398 some temporary registers.
2399
2400 @findex change_address
2401 During reload a memory reference with an invalid address may be passed
2402 as an operand.  Such an address will be replaced with a valid address
2403 later in the reload pass.  In this case, nothing may be done with the
2404 address except to use it as it stands.  If it is copied, it will not be
2405 replaced with a valid address.  No attempt should be made to make such
2406 an address into a valid address and no routine (such as
2407 @code{change_address}) that will do so may be called.  Note that
2408 @code{general_operand} will fail when applied to such an address.
2409
2410 @findex reload_in_progress
2411 The global variable @code{reload_in_progress} (which must be explicitly
2412 declared if required) can be used to determine whether such special
2413 handling is required.
2414
2415 The variety of operands that have reloads depends on the rest of the
2416 machine description, but typically on a RISC machine these can only be
2417 pseudo registers that did not get hard registers, while on other
2418 machines explicit memory references will get optional reloads.
2419
2420 If a scratch register is required to move an object to or from memory,
2421 it can be allocated using @code{gen_reg_rtx} prior to life analysis.
2422
2423 If there are cases which need scratch registers during or after reload,
2424 you must define @code{SECONDARY_INPUT_RELOAD_CLASS} and/or
2425 @code{SECONDARY_OUTPUT_RELOAD_CLASS} to detect them, and provide
2426 patterns @samp{reload_in@var{m}} or @samp{reload_out@var{m}} to handle
2427 them.  @xref{Register Classes}.
2428
2429 @findex no_new_pseudos
2430 The global variable @code{no_new_pseudos} can be used to determine if it
2431 is unsafe to create new pseudo registers.  If this variable is nonzero, then
2432 it is unsafe to call @code{gen_reg_rtx} to allocate a new pseudo.
2433
2434 The constraints on a @samp{mov@var{m}} must permit moving any hard
2435 register to any other hard register provided that
2436 @code{HARD_REGNO_MODE_OK} permits mode @var{m} in both registers and
2437 @code{REGISTER_MOVE_COST} applied to their classes returns a value of 2.
2438
2439 It is obligatory to support floating point @samp{mov@var{m}}
2440 instructions into and out of any registers that can hold fixed point
2441 values, because unions and structures (which have modes @code{SImode} or
2442 @code{DImode}) can be in those registers and they may have floating
2443 point members.
2444
2445 There may also be a need to support fixed point @samp{mov@var{m}}
2446 instructions in and out of floating point registers.  Unfortunately, I
2447 have forgotten why this was so, and I don't know whether it is still
2448 true.  If @code{HARD_REGNO_MODE_OK} rejects fixed point values in
2449 floating point registers, then the constraints of the fixed point
2450 @samp{mov@var{m}} instructions must be designed to avoid ever trying to
2451 reload into a floating point register.
2452
2453 @cindex @code{reload_in} instruction pattern
2454 @cindex @code{reload_out} instruction pattern
2455 @item @samp{reload_in@var{m}}
2456 @itemx @samp{reload_out@var{m}}
2457 Like @samp{mov@var{m}}, but used when a scratch register is required to
2458 move between operand 0 and operand 1.  Operand 2 describes the scratch
2459 register.  See the discussion of the @code{SECONDARY_RELOAD_CLASS}
2460 macro in @pxref{Register Classes}.
2461
2462 There are special restrictions on the form of the @code{match_operand}s
2463 used in these patterns.  First, only the predicate for the reload
2464 operand is examined, i.e., @code{reload_in} examines operand 1, but not
2465 the predicates for operand 0 or 2.  Second, there may be only one
2466 alternative in the constraints.  Third, only a single register class
2467 letter may be used for the constraint; subsequent constraint letters
2468 are ignored.  As a special exception, an empty constraint string
2469 matches the @code{ALL_REGS} register class.  This may relieve ports
2470 of the burden of defining an @code{ALL_REGS} constraint letter just
2471 for these patterns.
2472
2473 @cindex @code{movstrict@var{m}} instruction pattern
2474 @item @samp{movstrict@var{m}}
2475 Like @samp{mov@var{m}} except that if operand 0 is a @code{subreg}
2476 with mode @var{m} of a register whose natural mode is wider,
2477 the @samp{movstrict@var{m}} instruction is guaranteed not to alter
2478 any of the register except the part which belongs to mode @var{m}.
2479
2480 @cindex @code{load_multiple} instruction pattern
2481 @item @samp{load_multiple}
2482 Load several consecutive memory locations into consecutive registers.
2483 Operand 0 is the first of the consecutive registers, operand 1
2484 is the first memory location, and operand 2 is a constant: the
2485 number of consecutive registers.
2486
2487 Define this only if the target machine really has such an instruction;
2488 do not define this if the most efficient way of loading consecutive
2489 registers from memory is to do them one at a time.
2490
2491 On some machines, there are restrictions as to which consecutive
2492 registers can be stored into memory, such as particular starting or
2493 ending register numbers or only a range of valid counts.  For those
2494 machines, use a @code{define_expand} (@pxref{Expander Definitions})
2495 and make the pattern fail if the restrictions are not met.
2496
2497 Write the generated insn as a @code{parallel} with elements being a
2498 @code{set} of one register from the appropriate memory location (you may
2499 also need @code{use} or @code{clobber} elements).  Use a
2500 @code{match_parallel} (@pxref{RTL Template}) to recognize the insn.  See
2501 @file{rs6000.md} for examples of the use of this insn pattern.
2502
2503 @cindex @samp{store_multiple} instruction pattern
2504 @item @samp{store_multiple}
2505 Similar to @samp{load_multiple}, but store several consecutive registers
2506 into consecutive memory locations.  Operand 0 is the first of the
2507 consecutive memory locations, operand 1 is the first register, and
2508 operand 2 is a constant: the number of consecutive registers.
2509
2510 @cindex @code{push@var{m}} instruction pattern
2511 @item @samp{push@var{m}}
2512 Output a push instruction.  Operand 0 is value to push.  Used only when
2513 @code{PUSH_ROUNDING} is defined.  For historical reason, this pattern may be
2514 missing and in such case an @code{mov} expander is used instead, with a
2515 @code{MEM} expression forming the push operation.  The @code{mov} expander
2516 method is deprecated.
2517
2518 @cindex @code{add@var{m}3} instruction pattern
2519 @item @samp{add@var{m}3}
2520 Add operand 2 and operand 1, storing the result in operand 0.  All operands
2521 must have mode @var{m}.  This can be used even on two-address machines, by
2522 means of constraints requiring operands 1 and 0 to be the same location.
2523
2524 @cindex @code{sub@var{m}3} instruction pattern
2525 @cindex @code{mul@var{m}3} instruction pattern
2526 @cindex @code{div@var{m}3} instruction pattern
2527 @cindex @code{udiv@var{m}3} instruction pattern
2528 @cindex @code{mod@var{m}3} instruction pattern
2529 @cindex @code{umod@var{m}3} instruction pattern
2530 @cindex @code{smin@var{m}3} instruction pattern
2531 @cindex @code{smax@var{m}3} instruction pattern
2532 @cindex @code{umin@var{m}3} instruction pattern
2533 @cindex @code{umax@var{m}3} instruction pattern
2534 @cindex @code{and@var{m}3} instruction pattern
2535 @cindex @code{ior@var{m}3} instruction pattern
2536 @cindex @code{xor@var{m}3} instruction pattern
2537 @item @samp{sub@var{m}3}, @samp{mul@var{m}3}
2538 @itemx @samp{div@var{m}3}, @samp{udiv@var{m}3}, @samp{mod@var{m}3}, @samp{umod@var{m}3}
2539 @itemx @samp{smin@var{m}3}, @samp{smax@var{m}3}, @samp{umin@var{m}3}, @samp{umax@var{m}3}
2540 @itemx @samp{and@var{m}3}, @samp{ior@var{m}3}, @samp{xor@var{m}3}
2541 Similar, for other arithmetic operations.
2542 @cindex @code{min@var{m}3} instruction pattern
2543 @cindex @code{max@var{m}3} instruction pattern
2544 @itemx @samp{min@var{m}3}, @samp{max@var{m}3}
2545 Floating point min and max operations.  If both operands are zeros,
2546 or if either operand is NaN, then it is unspecified which of the two
2547 operands is returned as the result.
2548
2549
2550 @cindex @code{mulhisi3} instruction pattern
2551 @item @samp{mulhisi3}
2552 Multiply operands 1 and 2, which have mode @code{HImode}, and store
2553 a @code{SImode} product in operand 0.
2554
2555 @cindex @code{mulqihi3} instruction pattern
2556 @cindex @code{mulsidi3} instruction pattern
2557 @item @samp{mulqihi3}, @samp{mulsidi3}
2558 Similar widening-multiplication instructions of other widths.
2559
2560 @cindex @code{umulqihi3} instruction pattern
2561 @cindex @code{umulhisi3} instruction pattern
2562 @cindex @code{umulsidi3} instruction pattern
2563 @item @samp{umulqihi3}, @samp{umulhisi3}, @samp{umulsidi3}
2564 Similar widening-multiplication instructions that do unsigned
2565 multiplication.
2566
2567 @cindex @code{smul@var{m}3_highpart} instruction pattern
2568 @item @samp{smul@var{m}3_highpart}
2569 Perform a signed multiplication of operands 1 and 2, which have mode
2570 @var{m}, and store the most significant half of the product in operand 0.
2571 The least significant half of the product is discarded.
2572
2573 @cindex @code{umul@var{m}3_highpart} instruction pattern
2574 @item @samp{umul@var{m}3_highpart}
2575 Similar, but the multiplication is unsigned.
2576
2577 @cindex @code{divmod@var{m}4} instruction pattern
2578 @item @samp{divmod@var{m}4}
2579 Signed division that produces both a quotient and a remainder.
2580 Operand 1 is divided by operand 2 to produce a quotient stored
2581 in operand 0 and a remainder stored in operand 3.
2582
2583 For machines with an instruction that produces both a quotient and a
2584 remainder, provide a pattern for @samp{divmod@var{m}4} but do not
2585 provide patterns for @samp{div@var{m}3} and @samp{mod@var{m}3}.  This
2586 allows optimization in the relatively common case when both the quotient
2587 and remainder are computed.
2588
2589 If an instruction that just produces a quotient or just a remainder
2590 exists and is more efficient than the instruction that produces both,
2591 write the output routine of @samp{divmod@var{m}4} to call
2592 @code{find_reg_note} and look for a @code{REG_UNUSED} note on the
2593 quotient or remainder and generate the appropriate instruction.
2594
2595 @cindex @code{udivmod@var{m}4} instruction pattern
2596 @item @samp{udivmod@var{m}4}
2597 Similar, but does unsigned division.
2598
2599 @cindex @code{ashl@var{m}3} instruction pattern
2600 @item @samp{ashl@var{m}3}
2601 Arithmetic-shift operand 1 left by a number of bits specified by operand
2602 2, and store the result in operand 0.  Here @var{m} is the mode of
2603 operand 0 and operand 1; operand 2's mode is specified by the
2604 instruction pattern, and the compiler will convert the operand to that
2605 mode before generating the instruction.
2606
2607 @cindex @code{ashr@var{m}3} instruction pattern
2608 @cindex @code{lshr@var{m}3} instruction pattern
2609 @cindex @code{rotl@var{m}3} instruction pattern
2610 @cindex @code{rotr@var{m}3} instruction pattern
2611 @item @samp{ashr@var{m}3}, @samp{lshr@var{m}3}, @samp{rotl@var{m}3}, @samp{rotr@var{m}3}
2612 Other shift and rotate instructions, analogous to the
2613 @code{ashl@var{m}3} instructions.
2614
2615 @cindex @code{neg@var{m}2} instruction pattern
2616 @item @samp{neg@var{m}2}
2617 Negate operand 1 and store the result in operand 0.
2618
2619 @cindex @code{abs@var{m}2} instruction pattern
2620 @item @samp{abs@var{m}2}
2621 Store the absolute value of operand 1 into operand 0.
2622
2623 @cindex @code{sqrt@var{m}2} instruction pattern
2624 @item @samp{sqrt@var{m}2}
2625 Store the square root of operand 1 into operand 0.
2626
2627 The @code{sqrt} built-in function of C always uses the mode which
2628 corresponds to the C data type @code{double} and the @code{sqrtf}
2629 built-in function uses the mode which corresponds to the C data
2630 type @code{float}.
2631
2632 @cindex @code{cos@var{m}2} instruction pattern
2633 @item @samp{cos@var{m}2}
2634 Store the cosine of operand 1 into operand 0.
2635
2636 The @code{cos} built-in function of C always uses the mode which
2637 corresponds to the C data type @code{double} and the @code{cosf}
2638 built-in function uses the mode which corresponds to the C data
2639 type @code{float}.
2640
2641 @cindex @code{sin@var{m}2} instruction pattern
2642 @item @samp{sin@var{m}2}
2643 Store the sine of operand 1 into operand 0.
2644
2645 The @code{sin} built-in function of C always uses the mode which
2646 corresponds to the C data type @code{double} and the @code{sinf}
2647 built-in function uses the mode which corresponds to the C data
2648 type @code{float}.
2649
2650 @cindex @code{exp@var{m}2} instruction pattern
2651 @item @samp{exp@var{m}2}
2652 Store the exponential of operand 1 into operand 0.
2653
2654 The @code{exp} built-in function of C always uses the mode which
2655 corresponds to the C data type @code{double} and the @code{expf}
2656 built-in function uses the mode which corresponds to the C data
2657 type @code{float}.
2658
2659 @cindex @code{log@var{m}2} instruction pattern
2660 @item @samp{log@var{m}2}
2661 Store the natural logarithm of operand 1 into operand 0.
2662
2663 The @code{log} built-in function of C always uses the mode which
2664 corresponds to the C data type @code{double} and the @code{logf}
2665 built-in function uses the mode which corresponds to the C data
2666 type @code{float}.
2667
2668 @cindex @code{pow@var{m}3} instruction pattern
2669 @item @samp{pow@var{m}3}
2670 Store the value of operand 1 raised to the exponent operand 2
2671 into operand 0.
2672
2673 The @code{pow} built-in function of C always uses the mode which
2674 corresponds to the C data type @code{double} and the @code{powf}
2675 built-in function uses the mode which corresponds to the C data
2676 type @code{float}.
2677
2678 @cindex @code{atan2@var{m}3} instruction pattern
2679 @item @samp{atan2@var{m}3}
2680 Store the arc tangent (inverse tangent) of operand 1 divided by
2681 operand 2 into operand 0, using the signs of both arguments to
2682 determine the quadrant of the result.
2683
2684 The @code{atan2} built-in function of C always uses the mode which
2685 corresponds to the C data type @code{double} and the @code{atan2f}
2686 built-in function uses the mode which corresponds to the C data
2687 type @code{float}.
2688
2689 @cindex @code{floor@var{m}2} instruction pattern
2690 @item @samp{floor@var{m}2}
2691 Store the largest integral value not greater than argument.
2692
2693 The @code{floor} built-in function of C always uses the mode which
2694 corresponds to the C data type @code{double} and the @code{floorf}
2695 built-in function uses the mode which corresponds to the C data
2696 type @code{float}.
2697
2698 @cindex @code{trunc@var{m}2} instruction pattern
2699 @item @samp{trunc@var{m}2}
2700 Store the argument rounded to integer towards zero.
2701
2702 The @code{trunc} built-in function of C always uses the mode which
2703 corresponds to the C data type @code{double} and the @code{truncf}
2704 built-in function uses the mode which corresponds to the C data
2705 type @code{float}.
2706
2707 @cindex @code{round@var{m}2} instruction pattern
2708 @item @samp{round@var{m}2}
2709 Store the argument rounded to integer away from zero.
2710
2711 The @code{round} built-in function of C always uses the mode which
2712 corresponds to the C data type @code{double} and the @code{roundf}
2713 built-in function uses the mode which corresponds to the C data
2714 type @code{float}.
2715
2716 @cindex @code{ceil@var{m}2} instruction pattern
2717 @item @samp{ceil@var{m}2}
2718 Store the argument rounded to integer away from zero.
2719
2720 The @code{ceil} built-in function of C always uses the mode which
2721 corresponds to the C data type @code{double} and the @code{ceilf}
2722 built-in function uses the mode which corresponds to the C data
2723 type @code{float}.
2724
2725 @cindex @code{nearbyint@var{m}2} instruction pattern
2726 @item @samp{nearbyint@var{m}2}
2727 Store the argument rounded according to the default rounding mode
2728
2729 The @code{nearbyint} built-in function of C always uses the mode which
2730 corresponds to the C data type @code{double} and the @code{nearbyintf}
2731 built-in function uses the mode which corresponds to the C data
2732 type @code{float}.
2733
2734 @cindex @code{ffs@var{m}2} instruction pattern
2735 @item @samp{ffs@var{m}2}
2736 Store into operand 0 one plus the index of the least significant 1-bit
2737 of operand 1.  If operand 1 is zero, store zero.  @var{m} is the mode
2738 of operand 0; operand 1's mode is specified by the instruction
2739 pattern, and the compiler will convert the operand to that mode before
2740 generating the instruction.
2741
2742 The @code{ffs} built-in function of C always uses the mode which
2743 corresponds to the C data type @code{int}.
2744
2745 @cindex @code{clz@var{m}2} instruction pattern
2746 @item @samp{clz@var{m}2}
2747 Store into operand 0 the number of leading 0-bits in @var{x}, starting
2748 at the most significant bit position.  If @var{x} is 0, the result is
2749 undefined.  @var{m} is the mode of operand 0; operand 1's mode is
2750 specified by the instruction pattern, and the compiler will convert the
2751 operand to that mode before generating the instruction.
2752
2753 @cindex @code{ctz@var{m}2} instruction pattern
2754 @item @samp{ctz@var{m}2}
2755 Store into operand 0 the number of trailing 0-bits in @var{x}, starting
2756 at the least significant bit position.  If @var{x} is 0, the result is
2757 undefined.  @var{m} is the mode of operand 0; operand 1's mode is
2758 specified by the instruction pattern, and the compiler will convert the
2759 operand to that mode before generating the instruction.
2760
2761 @cindex @code{popcount@var{m}2} instruction pattern
2762 @item @samp{popcount@var{m}2}
2763 Store into operand 0 the number of 1-bits in @var{x}.  @var{m} is the
2764 mode of operand 0; operand 1's mode is specified by the instruction
2765 pattern, and the compiler will convert the operand to that mode before
2766 generating the instruction.
2767
2768 @cindex @code{parity@var{m}2} instruction pattern
2769 @item @samp{parity@var{m}2}
2770 Store into operand 0 the parity of @var{x}, i.@:e. the number of 1-bits
2771 in @var{x} modulo 2.  @var{m} is the mode of operand 0; operand 1's mode
2772 is specified by the instruction pattern, and the compiler will convert
2773 the operand to that mode before generating the instruction.
2774
2775 @cindex @code{one_cmpl@var{m}2} instruction pattern
2776 @item @samp{one_cmpl@var{m}2}
2777 Store the bitwise-complement of operand 1 into operand 0.
2778
2779 @cindex @code{cmp@var{m}} instruction pattern
2780 @item @samp{cmp@var{m}}
2781 Compare operand 0 and operand 1, and set the condition codes.
2782 The RTL pattern should look like this:
2783
2784 @smallexample
2785 (set (cc0) (compare (match_operand:@var{m} 0 @dots{})
2786                     (match_operand:@var{m} 1 @dots{})))
2787 @end smallexample
2788
2789 @cindex @code{tst@var{m}} instruction pattern
2790 @item @samp{tst@var{m}}
2791 Compare operand 0 against zero, and set the condition codes.
2792 The RTL pattern should look like this:
2793
2794 @smallexample
2795 (set (cc0) (match_operand:@var{m} 0 @dots{}))
2796 @end smallexample
2797
2798 @samp{tst@var{m}} patterns should not be defined for machines that do
2799 not use @code{(cc0)}.  Doing so would confuse the optimizer since it
2800 would no longer be clear which @code{set} operations were comparisons.
2801 The @samp{cmp@var{m}} patterns should be used instead.
2802
2803 @cindex @code{movstr@var{m}} instruction pattern
2804 @item @samp{movstr@var{m}}
2805 Block move instruction.  The addresses of the destination and source
2806 strings are the first two operands, and both are in mode @code{Pmode}.
2807
2808 The number of bytes to move is the third operand, in mode @var{m}.
2809 Usually, you specify @code{word_mode} for @var{m}.  However, if you can
2810 generate better code knowing the range of valid lengths is smaller than
2811 those representable in a full word, you should provide a pattern with a
2812 mode corresponding to the range of values you can handle efficiently
2813 (e.g., @code{QImode} for values in the range 0--127; note we avoid numbers
2814 that appear negative) and also a pattern with @code{word_mode}.
2815
2816 The fourth operand is the known shared alignment of the source and
2817 destination, in the form of a @code{const_int} rtx.  Thus, if the
2818 compiler knows that both source and destination are word-aligned,
2819 it may provide the value 4 for this operand.
2820
2821 Descriptions of multiple @code{movstr@var{m}} patterns can only be
2822 beneficial if the patterns for smaller modes have fewer restrictions
2823 on their first, second and fourth operands.  Note that the mode @var{m}
2824 in @code{movstr@var{m}} does not impose any restriction on the mode of
2825 individually moved data units in the block.
2826
2827 These patterns need not give special consideration to the possibility
2828 that the source and destination strings might overlap.
2829
2830 @cindex @code{clrstr@var{m}} instruction pattern
2831 @item @samp{clrstr@var{m}}
2832 Block clear instruction.  The addresses of the destination string is the
2833 first operand, in mode @code{Pmode}.  The number of bytes to clear is
2834 the second operand, in mode @var{m}.  See @samp{movstr@var{m}} for
2835 a discussion of the choice of mode.
2836
2837 The third operand is the known alignment of the destination, in the form
2838 of a @code{const_int} rtx.  Thus, if the compiler knows that the
2839 destination is word-aligned, it may provide the value 4 for this
2840 operand.
2841
2842 The use for multiple @code{clrstr@var{m}} is as for @code{movstr@var{m}}.
2843
2844 @cindex @code{cmpstr@var{m}} instruction pattern
2845 @item @samp{cmpstr@var{m}}
2846 String compare instruction, with five operands.  Operand 0 is the output;
2847 it has mode @var{m}.  The remaining four operands are like the operands
2848 of @samp{movstr@var{m}}.  The two memory blocks specified are compared
2849 byte by byte in lexicographic order starting at the beginning of each
2850 string.  The instruction is not allowed to prefetch more than one byte
2851 at a time since either string may end in the first byte and reading past
2852 that may access an invalid page or segment and cause a fault.  The
2853 effect of the instruction is to store a value in operand 0 whose sign
2854 indicates the result of the comparison.
2855
2856 @cindex @code{cmpmem@var{m}} instruction pattern
2857 @item @samp{cmpmem@var{m}}
2858 Block compare instruction, with five operands like the operands
2859 of @samp{cmpstr@var{m}}.  The two memory blocks specified are compared
2860 byte by byte in lexicographic order starting at the beginning of each
2861 block.  Unlike @samp{cmpstr@var{m}} the instruction can prefetch
2862 any bytes in the two memory blocks.  The effect of the instruction is
2863 to store a value in operand 0 whose sign indicates the result of the
2864 comparison.
2865
2866 @cindex @code{strlen@var{m}} instruction pattern
2867 @item @samp{strlen@var{m}}
2868 Compute the length of a string, with three operands.
2869 Operand 0 is the result (of mode @var{m}), operand 1 is
2870 a @code{mem} referring to the first character of the string,
2871 operand 2 is the character to search for (normally zero),
2872 and operand 3 is a constant describing the known alignment
2873 of the beginning of the string.
2874
2875 @cindex @code{float@var{mn}2} instruction pattern
2876 @item @samp{float@var{m}@var{n}2}
2877 Convert signed integer operand 1 (valid for fixed point mode @var{m}) to
2878 floating point mode @var{n} and store in operand 0 (which has mode
2879 @var{n}).
2880
2881 @cindex @code{floatuns@var{mn}2} instruction pattern
2882 @item @samp{floatuns@var{m}@var{n}2}
2883 Convert unsigned integer operand 1 (valid for fixed point mode @var{m})
2884 to floating point mode @var{n} and store in operand 0 (which has mode
2885 @var{n}).
2886
2887 @cindex @code{fix@var{mn}2} instruction pattern
2888 @item @samp{fix@var{m}@var{n}2}
2889 Convert operand 1 (valid for floating point mode @var{m}) to fixed
2890 point mode @var{n} as a signed number and store in operand 0 (which
2891 has mode @var{n}).  This instruction's result is defined only when
2892 the value of operand 1 is an integer.
2893
2894 @cindex @code{fixuns@var{mn}2} instruction pattern
2895 @item @samp{fixuns@var{m}@var{n}2}
2896 Convert operand 1 (valid for floating point mode @var{m}) to fixed
2897 point mode @var{n} as an unsigned number and store in operand 0 (which
2898 has mode @var{n}).  This instruction's result is defined only when the
2899 value of operand 1 is an integer.
2900
2901 @cindex @code{ftrunc@var{m}2} instruction pattern
2902 @item @samp{ftrunc@var{m}2}
2903 Convert operand 1 (valid for floating point mode @var{m}) to an
2904 integer value, still represented in floating point mode @var{m}, and
2905 store it in operand 0 (valid for floating point mode @var{m}).
2906
2907 @cindex @code{fix_trunc@var{mn}2} instruction pattern
2908 @item @samp{fix_trunc@var{m}@var{n}2}
2909 Like @samp{fix@var{m}@var{n}2} but works for any floating point value
2910 of mode @var{m} by converting the value to an integer.
2911
2912 @cindex @code{fixuns_trunc@var{mn}2} instruction pattern
2913 @item @samp{fixuns_trunc@var{m}@var{n}2}
2914 Like @samp{fixuns@var{m}@var{n}2} but works for any floating point
2915 value of mode @var{m} by converting the value to an integer.
2916
2917 @cindex @code{trunc@var{mn}2} instruction pattern
2918 @item @samp{trunc@var{m}@var{n}2}
2919 Truncate operand 1 (valid for mode @var{m}) to mode @var{n} and
2920 store in operand 0 (which has mode @var{n}).  Both modes must be fixed
2921 point or both floating point.
2922
2923 @cindex @code{extend@var{mn}2} instruction pattern
2924 @item @samp{extend@var{m}@var{n}2}
2925 Sign-extend operand 1 (valid for mode @var{m}) to mode @var{n} and
2926 store in operand 0 (which has mode @var{n}).  Both modes must be fixed
2927 point or both floating point.
2928
2929 @cindex @code{zero_extend@var{mn}2} instruction pattern
2930 @item @samp{zero_extend@var{m}@var{n}2}
2931 Zero-extend operand 1 (valid for mode @var{m}) to mode @var{n} and
2932 store in operand 0 (which has mode @var{n}).  Both modes must be fixed
2933 point.
2934
2935 @cindex @code{extv} instruction pattern
2936 @item @samp{extv}
2937 Extract a bit-field from operand 1 (a register or memory operand), where
2938 operand 2 specifies the width in bits and operand 3 the starting bit,
2939 and store it in operand 0.  Operand 0 must have mode @code{word_mode}.
2940 Operand 1 may have mode @code{byte_mode} or @code{word_mode}; often
2941 @code{word_mode} is allowed only for registers.  Operands 2 and 3 must
2942 be valid for @code{word_mode}.
2943
2944 The RTL generation pass generates this instruction only with constants
2945 for operands 2 and 3.
2946
2947 The bit-field value is sign-extended to a full word integer
2948 before it is stored in operand 0.
2949
2950 @cindex @code{extzv} instruction pattern
2951 @item @samp{extzv}
2952 Like @samp{extv} except that the bit-field value is zero-extended.
2953
2954 @cindex @code{insv} instruction pattern
2955 @item @samp{insv}
2956 Store operand 3 (which must be valid for @code{word_mode}) into a
2957 bit-field in operand 0, where operand 1 specifies the width in bits and
2958 operand 2 the starting bit.  Operand 0 may have mode @code{byte_mode} or
2959 @code{word_mode}; often @code{word_mode} is allowed only for registers.
2960 Operands 1 and 2 must be valid for @code{word_mode}.
2961
2962 The RTL generation pass generates this instruction only with constants
2963 for operands 1 and 2.
2964
2965 @cindex @code{mov@var{mode}cc} instruction pattern
2966 @item @samp{mov@var{mode}cc}
2967 Conditionally move operand 2 or operand 3 into operand 0 according to the
2968 comparison in operand 1.  If the comparison is true, operand 2 is moved
2969 into operand 0, otherwise operand 3 is moved.
2970
2971 The mode of the operands being compared need not be the same as the operands
2972 being moved.  Some machines, sparc64 for example, have instructions that
2973 conditionally move an integer value based on the floating point condition
2974 codes and vice versa.
2975
2976 If the machine does not have conditional move instructions, do not
2977 define these patterns.
2978
2979 @cindex @code{add@var{mode}cc} instruction pattern
2980 @item @samp{add@var{mode}cc}
2981 Similar to @samp{mov@var{mode}cc} but for conditional addition.  Conditionally
2982 move operand 2 or (operands 2 + operand 3) into operand 0 according to the
2983 comparison in operand 1.  If the comparison is true, operand 2 is moved into
2984 operand 0, otherwise (operand 2 + operand 3) is moved.
2985
2986 @cindex @code{s@var{cond}} instruction pattern
2987 @item @samp{s@var{cond}}
2988 Store zero or nonzero in the operand according to the condition codes.
2989 Value stored is nonzero iff the condition @var{cond} is true.
2990 @var{cond} is the name of a comparison operation expression code, such
2991 as @code{eq}, @code{lt} or @code{leu}.
2992
2993 You specify the mode that the operand must have when you write the
2994 @code{match_operand} expression.  The compiler automatically sees
2995 which mode you have used and supplies an operand of that mode.
2996
2997 The value stored for a true condition must have 1 as its low bit, or
2998 else must be negative.  Otherwise the instruction is not suitable and
2999 you should omit it from the machine description.  You describe to the
3000 compiler exactly which value is stored by defining the macro
3001 @code{STORE_FLAG_VALUE} (@pxref{Misc}).  If a description cannot be
3002 found that can be used for all the @samp{s@var{cond}} patterns, you
3003 should omit those operations from the machine description.
3004
3005 These operations may fail, but should do so only in relatively
3006 uncommon cases; if they would fail for common cases involving
3007 integer comparisons, it is best to omit these patterns.
3008
3009 If these operations are omitted, the compiler will usually generate code
3010 that copies the constant one to the target and branches around an
3011 assignment of zero to the target.  If this code is more efficient than
3012 the potential instructions used for the @samp{s@var{cond}} pattern
3013 followed by those required to convert the result into a 1 or a zero in
3014 @code{SImode}, you should omit the @samp{s@var{cond}} operations from
3015 the machine description.
3016
3017 @cindex @code{b@var{cond}} instruction pattern
3018 @item @samp{b@var{cond}}
3019 Conditional branch instruction.  Operand 0 is a @code{label_ref} that
3020 refers to the label to jump to.  Jump if the condition codes meet
3021 condition @var{cond}.
3022
3023 Some machines do not follow the model assumed here where a comparison
3024 instruction is followed by a conditional branch instruction.  In that
3025 case, the @samp{cmp@var{m}} (and @samp{tst@var{m}}) patterns should
3026 simply store the operands away and generate all the required insns in a
3027 @code{define_expand} (@pxref{Expander Definitions}) for the conditional
3028 branch operations.  All calls to expand @samp{b@var{cond}} patterns are
3029 immediately preceded by calls to expand either a @samp{cmp@var{m}}
3030 pattern or a @samp{tst@var{m}} pattern.
3031
3032 Machines that use a pseudo register for the condition code value, or
3033 where the mode used for the comparison depends on the condition being
3034 tested, should also use the above mechanism.  @xref{Jump Patterns}.
3035
3036 The above discussion also applies to the @samp{mov@var{mode}cc} and
3037 @samp{s@var{cond}} patterns.
3038
3039 @cindex @code{jump} instruction pattern
3040 @item @samp{jump}
3041 A jump inside a function; an unconditional branch.  Operand 0 is the
3042 @code{label_ref} of the label to jump to.  This pattern name is mandatory
3043 on all machines.
3044
3045 @cindex @code{call} instruction pattern
3046 @item @samp{call}
3047 Subroutine call instruction returning no value.  Operand 0 is the
3048 function to call; operand 1 is the number of bytes of arguments pushed
3049 as a @code{const_int}; operand 2 is the number of registers used as
3050 operands.
3051
3052 On most machines, operand 2 is not actually stored into the RTL
3053 pattern.  It is supplied for the sake of some RISC machines which need
3054 to put this information into the assembler code; they can put it in
3055 the RTL instead of operand 1.
3056
3057 Operand 0 should be a @code{mem} RTX whose address is the address of the
3058 function.  Note, however, that this address can be a @code{symbol_ref}
3059 expression even if it would not be a legitimate memory address on the
3060 target machine.  If it is also not a valid argument for a call
3061 instruction, the pattern for this operation should be a
3062 @code{define_expand} (@pxref{Expander Definitions}) that places the
3063 address into a register and uses that register in the call instruction.
3064
3065 @cindex @code{call_value} instruction pattern
3066 @item @samp{call_value}
3067 Subroutine call instruction returning a value.  Operand 0 is the hard
3068 register in which the value is returned.  There are three more
3069 operands, the same as the three operands of the @samp{call}
3070 instruction (but with numbers increased by one).
3071
3072 Subroutines that return @code{BLKmode} objects use the @samp{call}
3073 insn.
3074
3075 @cindex @code{call_pop} instruction pattern
3076 @cindex @code{call_value_pop} instruction pattern
3077 @item @samp{call_pop}, @samp{call_value_pop}
3078 Similar to @samp{call} and @samp{call_value}, except used if defined and
3079 if @code{RETURN_POPS_ARGS} is nonzero.  They should emit a @code{parallel}
3080 that contains both the function call and a @code{set} to indicate the
3081 adjustment made to the frame pointer.
3082
3083 For machines where @code{RETURN_POPS_ARGS} can be nonzero, the use of these
3084 patterns increases the number of functions for which the frame pointer
3085 can be eliminated, if desired.
3086
3087 @cindex @code{untyped_call} instruction pattern
3088 @item @samp{untyped_call}
3089 Subroutine call instruction returning a value of any type.  Operand 0 is
3090 the function to call; operand 1 is a memory location where the result of
3091 calling the function is to be stored; operand 2 is a @code{parallel}
3092 expression where each element is a @code{set} expression that indicates
3093 the saving of a function return value into the result block.
3094
3095 This instruction pattern should be defined to support
3096 @code{__builtin_apply} on machines where special instructions are needed
3097 to call a subroutine with arbitrary arguments or to save the value
3098 returned.  This instruction pattern is required on machines that have
3099 multiple registers that can hold a return value
3100 (i.e.@: @code{FUNCTION_VALUE_REGNO_P} is true for more than one register).
3101
3102 @cindex @code{return} instruction pattern
3103 @item @samp{return}
3104 Subroutine return instruction.  This instruction pattern name should be
3105 defined only if a single instruction can do all the work of returning
3106 from a function.
3107
3108 Like the @samp{mov@var{m}} patterns, this pattern is also used after the
3109 RTL generation phase.  In this case it is to support machines where
3110 multiple instructions are usually needed to return from a function, but
3111 some class of functions only requires one instruction to implement a
3112 return.  Normally, the applicable functions are those which do not need
3113 to save any registers or allocate stack space.
3114
3115 @findex reload_completed
3116 @findex leaf_function_p
3117 For such machines, the condition specified in this pattern should only
3118 be true when @code{reload_completed} is nonzero and the function's
3119 epilogue would only be a single instruction.  For machines with register
3120 windows, the routine @code{leaf_function_p} may be used to determine if
3121 a register window push is required.
3122
3123 Machines that have conditional return instructions should define patterns
3124 such as
3125
3126 @smallexample
3127 (define_insn ""
3128   [(set (pc)
3129         (if_then_else (match_operator
3130                          0 "comparison_operator"
3131                          [(cc0) (const_int 0)])
3132                       (return)
3133                       (pc)))]
3134   "@var{condition}"
3135   "@dots{}")
3136 @end smallexample
3137
3138 where @var{condition} would normally be the same condition specified on the
3139 named @samp{return} pattern.
3140
3141 @cindex @code{untyped_return} instruction pattern
3142 @item @samp{untyped_return}
3143 Untyped subroutine return instruction.  This instruction pattern should
3144 be defined to support @code{__builtin_return} on machines where special
3145 instructions are needed to return a value of any type.
3146
3147 Operand 0 is a memory location where the result of calling a function
3148 with @code{__builtin_apply} is stored; operand 1 is a @code{parallel}
3149 expression where each element is a @code{set} expression that indicates
3150 the restoring of a function return value from the result block.
3151
3152 @cindex @code{nop} instruction pattern
3153 @item @samp{nop}
3154 No-op instruction.  This instruction pattern name should always be defined
3155 to output a no-op in assembler code.  @code{(const_int 0)} will do as an
3156 RTL pattern.
3157
3158 @cindex @code{indirect_jump} instruction pattern
3159 @item @samp{indirect_jump}
3160 An instruction to jump to an address which is operand zero.
3161 This pattern name is mandatory on all machines.
3162
3163 @cindex @code{casesi} instruction pattern
3164 @item @samp{casesi}
3165 Instruction to jump through a dispatch table, including bounds checking.
3166 This instruction takes five operands:
3167
3168 @enumerate
3169 @item
3170 The index to dispatch on, which has mode @code{SImode}.
3171
3172 @item
3173 The lower bound for indices in the table, an integer constant.
3174
3175 @item
3176 The total range of indices in the table---the largest index
3177 minus the smallest one (both inclusive).
3178
3179 @item
3180 A label that precedes the table itself.
3181
3182 @item
3183 A label to jump to if the index has a value outside the bounds.
3184 (If the machine-description macro @code{CASE_DROPS_THROUGH} is defined,
3185 then an out-of-bounds index drops through to the code following
3186 the jump table instead of jumping to this label.  In that case,
3187 this label is not actually used by the @samp{casesi} instruction,
3188 but it is always provided as an operand.)
3189 @end enumerate
3190
3191 The table is a @code{addr_vec} or @code{addr_diff_vec} inside of a
3192 @code{jump_insn}.  The number of elements in the table is one plus the
3193 difference between the upper bound and the lower bound.
3194
3195 @cindex @code{tablejump} instruction pattern
3196 @item @samp{tablejump}
3197 Instruction to jump to a variable address.  This is a low-level
3198 capability which can be used to implement a dispatch table when there
3199 is no @samp{casesi} pattern.
3200
3201 This pattern requires two operands: the address or offset, and a label
3202 which should immediately precede the jump table.  If the macro
3203 @code{CASE_VECTOR_PC_RELATIVE} evaluates to a nonzero value then the first
3204 operand is an offset which counts from the address of the table; otherwise,
3205 it is an absolute address to jump to.  In either case, the first operand has
3206 mode @code{Pmode}.
3207
3208 The @samp{tablejump} insn is always the last insn before the jump
3209 table it uses.  Its assembler code normally has no need to use the
3210 second operand, but you should incorporate it in the RTL pattern so
3211 that the jump optimizer will not delete the table as unreachable code.
3212
3213
3214 @cindex @code{decrement_and_branch_until_zero} instruction pattern
3215 @item @samp{decrement_and_branch_until_zero}
3216 Conditional branch instruction that decrements a register and
3217 jumps if the register is nonzero.  Operand 0 is the register to
3218 decrement and test; operand 1 is the label to jump to if the
3219 register is nonzero.  @xref{Looping Patterns}.
3220
3221 This optional instruction pattern is only used by the combiner,
3222 typically for loops reversed by the loop optimizer when strength
3223 reduction is enabled.
3224
3225 @cindex @code{doloop_end} instruction pattern
3226 @item @samp{doloop_end}
3227 Conditional branch instruction that decrements a register and jumps if
3228 the register is nonzero.  This instruction takes five operands: Operand
3229 0 is the register to decrement and test; operand 1 is the number of loop
3230 iterations as a @code{const_int} or @code{const0_rtx} if this cannot be
3231 determined until run-time; operand 2 is the actual or estimated maximum
3232 number of iterations as a @code{const_int}; operand 3 is the number of
3233 enclosed loops as a @code{const_int} (an innermost loop has a value of
3234 1); operand 4 is the label to jump to if the register is nonzero.
3235 @xref{Looping Patterns}.
3236
3237 This optional instruction pattern should be defined for machines with
3238 low-overhead looping instructions as the loop optimizer will try to
3239 modify suitable loops to utilize it.  If nested low-overhead looping is
3240 not supported, use a @code{define_expand} (@pxref{Expander Definitions})
3241 and make the pattern fail if operand 3 is not @code{const1_rtx}.
3242 Similarly, if the actual or estimated maximum number of iterations is
3243 too large for this instruction, make it fail.
3244
3245 @cindex @code{doloop_begin} instruction pattern
3246 @item @samp{doloop_begin}
3247 Companion instruction to @code{doloop_end} required for machines that
3248 need to perform some initialization, such as loading special registers
3249 used by a low-overhead looping instruction.  If initialization insns do
3250 not always need to be emitted, use a @code{define_expand}
3251 (@pxref{Expander Definitions}) and make it fail.
3252
3253
3254 @cindex @code{canonicalize_funcptr_for_compare} instruction pattern
3255 @item @samp{canonicalize_funcptr_for_compare}
3256 Canonicalize the function pointer in operand 1 and store the result
3257 into operand 0.
3258
3259 Operand 0 is always a @code{reg} and has mode @code{Pmode}; operand 1
3260 may be a @code{reg}, @code{mem}, @code{symbol_ref}, @code{const_int}, etc
3261 and also has mode @code{Pmode}.
3262
3263 Canonicalization of a function pointer usually involves computing
3264 the address of the function which would be called if the function
3265 pointer were used in an indirect call.
3266
3267 Only define this pattern if function pointers on the target machine
3268 can have different values but still call the same function when
3269 used in an indirect call.
3270
3271 @cindex @code{save_stack_block} instruction pattern
3272 @cindex @code{save_stack_function} instruction pattern
3273 @cindex @code{save_stack_nonlocal} instruction pattern
3274 @cindex @code{restore_stack_block} instruction pattern
3275 @cindex @code{restore_stack_function} instruction pattern
3276 @cindex @code{restore_stack_nonlocal} instruction pattern
3277 @item @samp{save_stack_block}
3278 @itemx @samp{save_stack_function}
3279 @itemx @samp{save_stack_nonlocal}
3280 @itemx @samp{restore_stack_block}
3281 @itemx @samp{restore_stack_function}
3282 @itemx @samp{restore_stack_nonlocal}
3283 Most machines save and restore the stack pointer by copying it to or
3284 from an object of mode @code{Pmode}.  Do not define these patterns on
3285 such machines.
3286
3287 Some machines require special handling for stack pointer saves and
3288 restores.  On those machines, define the patterns corresponding to the
3289 non-standard cases by using a @code{define_expand} (@pxref{Expander
3290 Definitions}) that produces the required insns.  The three types of
3291 saves and restores are:
3292
3293 @enumerate
3294 @item
3295 @samp{save_stack_block} saves the stack pointer at the start of a block
3296 that allocates a variable-sized object, and @samp{restore_stack_block}
3297 restores the stack pointer when the block is exited.
3298
3299 @item
3300 @samp{save_stack_function} and @samp{restore_stack_function} do a
3301 similar job for the outermost block of a function and are used when the
3302 function allocates variable-sized objects or calls @code{alloca}.  Only
3303 the epilogue uses the restored stack pointer, allowing a simpler save or
3304 restore sequence on some machines.
3305
3306 @item
3307 @samp{save_stack_nonlocal} is used in functions that contain labels
3308 branched to by nested functions.  It saves the stack pointer in such a
3309 way that the inner function can use @samp{restore_stack_nonlocal} to
3310 restore the stack pointer.  The compiler generates code to restore the
3311 frame and argument pointer registers, but some machines require saving
3312 and restoring additional data such as register window information or
3313 stack backchains.  Place insns in these patterns to save and restore any
3314 such required data.
3315 @end enumerate
3316
3317 When saving the stack pointer, operand 0 is the save area and operand 1
3318 is the stack pointer.  The mode used to allocate the save area defaults
3319 to @code{Pmode} but you can override that choice by defining the
3320 @code{STACK_SAVEAREA_MODE} macro (@pxref{Storage Layout}).  You must
3321 specify an integral mode, or @code{VOIDmode} if no save area is needed
3322 for a particular type of save (either because no save is needed or
3323 because a machine-specific save area can be used).  Operand 0 is the
3324 stack pointer and operand 1 is the save area for restore operations.  If
3325 @samp{save_stack_block} is defined, operand 0 must not be
3326 @code{VOIDmode} since these saves can be arbitrarily nested.
3327
3328 A save area is a @code{mem} that is at a constant offset from
3329 @code{virtual_stack_vars_rtx} when the stack pointer is saved for use by
3330 nonlocal gotos and a @code{reg} in the other two cases.
3331
3332 @cindex @code{allocate_stack} instruction pattern
3333 @item @samp{allocate_stack}
3334 Subtract (or add if @code{STACK_GROWS_DOWNWARD} is undefined) operand 1 from
3335 the stack pointer to create space for dynamically allocated data.
3336
3337 Store the resultant pointer to this space into operand 0.  If you
3338 are allocating space from the main stack, do this by emitting a
3339 move insn to copy @code{virtual_stack_dynamic_rtx} to operand 0.
3340 If you are allocating the space elsewhere, generate code to copy the
3341 location of the space to operand 0.  In the latter case, you must
3342 ensure this space gets freed when the corresponding space on the main
3343 stack is free.
3344
3345 Do not define this pattern if all that must be done is the subtraction.
3346 Some machines require other operations such as stack probes or
3347 maintaining the back chain.  Define this pattern to emit those
3348 operations in addition to updating the stack pointer.
3349
3350 @cindex @code{check_stack} instruction pattern
3351 @item @samp{check_stack}
3352 If stack checking cannot be done on your system by probing the stack with
3353 a load or store instruction (@pxref{Stack Checking}), define this pattern
3354 to perform the needed check and signaling an error if the stack
3355 has overflowed.  The single operand is the location in the stack furthest
3356 from the current stack pointer that you need to validate.  Normally,
3357 on machines where this pattern is needed, you would obtain the stack
3358 limit from a global or thread-specific variable or register.
3359
3360 @cindex @code{nonlocal_goto} instruction pattern
3361 @item @samp{nonlocal_goto}
3362 Emit code to generate a non-local goto, e.g., a jump from one function
3363 to a label in an outer function.  This pattern has four arguments,
3364 each representing a value to be used in the jump.  The first
3365 argument is to be loaded into the frame pointer, the second is
3366 the address to branch to (code to dispatch to the actual label),
3367 the third is the address of a location where the stack is saved,
3368 and the last is the address of the label, to be placed in the
3369 location for the incoming static chain.
3370
3371 On most machines you need not define this pattern, since GCC will
3372 already generate the correct code, which is to load the frame pointer
3373 and static chain, restore the stack (using the
3374 @samp{restore_stack_nonlocal} pattern, if defined), and jump indirectly
3375 to the dispatcher.  You need only define this pattern if this code will
3376 not work on your machine.
3377
3378 @cindex @code{nonlocal_goto_receiver} instruction pattern
3379 @item @samp{nonlocal_goto_receiver}
3380 This pattern, if defined, contains code needed at the target of a
3381 nonlocal goto after the code already generated by GCC@.  You will not
3382 normally need to define this pattern.  A typical reason why you might
3383 need this pattern is if some value, such as a pointer to a global table,
3384 must be restored when the frame pointer is restored.  Note that a nonlocal
3385 goto only occurs within a unit-of-translation, so a global table pointer
3386 that is shared by all functions of a given module need not be restored.
3387 There are no arguments.
3388
3389 @cindex @code{exception_receiver} instruction pattern
3390 @item @samp{exception_receiver}
3391 This pattern, if defined, contains code needed at the site of an
3392 exception handler that isn't needed at the site of a nonlocal goto.  You
3393 will not normally need to define this pattern.  A typical reason why you
3394 might need this pattern is if some value, such as a pointer to a global
3395 table, must be restored after control flow is branched to the handler of
3396 an exception.  There are no arguments.
3397
3398 @cindex @code{builtin_setjmp_setup} instruction pattern
3399 @item @samp{builtin_setjmp_setup}
3400 This pattern, if defined, contains additional code needed to initialize
3401 the @code{jmp_buf}.  You will not normally need to define this pattern.
3402 A typical reason why you might need this pattern is if some value, such
3403 as a pointer to a global table, must be restored.  Though it is
3404 preferred that the pointer value be recalculated if possible (given the
3405 address of a label for instance).  The single argument is a pointer to
3406 the @code{jmp_buf}.  Note that the buffer is five words long and that
3407 the first three are normally used by the generic mechanism.
3408
3409 @cindex @code{builtin_setjmp_receiver} instruction pattern
3410 @item @samp{builtin_setjmp_receiver}
3411 This pattern, if defined, contains code needed at the site of an
3412 built-in setjmp that isn't needed at the site of a nonlocal goto.  You
3413 will not normally need to define this pattern.  A typical reason why you
3414 might need this pattern is if some value, such as a pointer to a global
3415 table, must be restored.  It takes one argument, which is the label
3416 to which builtin_longjmp transfered control; this pattern may be emitted
3417 at a small offset from that label.
3418
3419 @cindex @code{builtin_longjmp} instruction pattern
3420 @item @samp{builtin_longjmp}
3421 This pattern, if defined, performs the entire action of the longjmp.
3422 You will not normally need to define this pattern unless you also define
3423 @code{builtin_setjmp_setup}.  The single argument is a pointer to the
3424 @code{jmp_buf}.
3425
3426 @cindex @code{eh_return} instruction pattern
3427 @item @samp{eh_return}
3428 This pattern, if defined, affects the way @code{__builtin_eh_return},
3429 and thence the call frame exception handling library routines, are
3430 built.  It is intended to handle non-trivial actions needed along
3431 the abnormal return path.
3432
3433 The address of the exception handler to which the function should return
3434 is passed as operand to this pattern.  It will normally need to copied by
3435 the pattern to some special register or memory location.
3436 If the pattern needs to determine the location of the target call
3437 frame in order to do so, it may use @code{EH_RETURN_STACKADJ_RTX},
3438 if defined; it will have already been assigned.
3439
3440 If this pattern is not defined, the default action will be to simply
3441 copy the return address to @code{EH_RETURN_HANDLER_RTX}.  Either
3442 that macro or this pattern needs to be defined if call frame exception
3443 handling is to be used.
3444
3445 @cindex @code{prologue} instruction pattern
3446 @anchor{prologue instruction pattern}
3447 @item @samp{prologue}
3448 This pattern, if defined, emits RTL for entry to a function.  The function
3449 entry is responsible for setting up the stack frame, initializing the frame
3450 pointer register, saving callee saved registers, etc.
3451
3452 Using a prologue pattern is generally preferred over defining
3453 @code{TARGET_ASM_FUNCTION_PROLOGUE} to emit assembly code for the prologue.
3454
3455 The @code{prologue} pattern is particularly useful for targets which perform
3456 instruction scheduling.
3457
3458 @cindex @code{epilogue} instruction pattern
3459 @anchor{epilogue instruction pattern}
3460 @item @samp{epilogue}
3461 This pattern emits RTL for exit from a function.  The function
3462 exit is responsible for deallocating the stack frame, restoring callee saved
3463 registers and emitting the return instruction.
3464
3465 Using an epilogue pattern is generally preferred over defining
3466 @code{TARGET_ASM_FUNCTION_EPILOGUE} to emit assembly code for the epilogue.
3467
3468 The @code{epilogue} pattern is particularly useful for targets which perform
3469 instruction scheduling or which have delay slots for their return instruction.
3470
3471 @cindex @code{sibcall_epilogue} instruction pattern
3472 @item @samp{sibcall_epilogue}
3473 This pattern, if defined, emits RTL for exit from a function without the final
3474 branch back to the calling function.  This pattern will be emitted before any
3475 sibling call (aka tail call) sites.
3476
3477 The @code{sibcall_epilogue} pattern must not clobber any arguments used for
3478 parameter passing or any stack slots for arguments passed to the current
3479 function.
3480
3481 @cindex @code{trap} instruction pattern
3482 @item @samp{trap}
3483 This pattern, if defined, signals an error, typically by causing some
3484 kind of signal to be raised.  Among other places, it is used by the Java
3485 front end to signal `invalid array index' exceptions.
3486
3487 @cindex @code{conditional_trap} instruction pattern
3488 @item @samp{conditional_trap}
3489 Conditional trap instruction.  Operand 0 is a piece of RTL which
3490 performs a comparison.  Operand 1 is the trap code, an integer.
3491
3492 A typical @code{conditional_trap} pattern looks like
3493
3494 @smallexample
3495 (define_insn "conditional_trap"
3496   [(trap_if (match_operator 0 "trap_operator"
3497              [(cc0) (const_int 0)])
3498             (match_operand 1 "const_int_operand" "i"))]
3499   ""
3500   "@dots{}")
3501 @end smallexample
3502
3503 @cindex @code{prefetch} instruction pattern
3504 @item @samp{prefetch}
3505
3506 This pattern, if defined, emits code for a non-faulting data prefetch
3507 instruction.  Operand 0 is the address of the memory to prefetch.  Operand 1
3508 is a constant 1 if the prefetch is preparing for a write to the memory
3509 address, or a constant 0 otherwise.  Operand 2 is the expected degree of
3510 temporal locality of the data and is a value between 0 and 3, inclusive; 0
3511 means that the data has no temporal locality, so it need not be left in the
3512 cache after the access; 3 means that the data has a high degree of temporal
3513 locality and should be left in all levels of cache possible;  1 and 2 mean,
3514 respectively, a low or moderate degree of temporal locality.
3515
3516 Targets that do not support write prefetches or locality hints can ignore
3517 the values of operands 1 and 2.
3518
3519 @end table
3520
3521 @end ifset
3522 @c Each of the following nodes are wrapped in separate
3523 @c "@ifset INTERNALS" to work around memory limits for the default
3524 @c configuration in older tetex distributions.  Known to not work:
3525 @c tetex-1.0.7, known to work: tetex-2.0.2.
3526 @ifset INTERNALS
3527 @node Pattern Ordering
3528 @section When the Order of Patterns Matters
3529 @cindex Pattern Ordering
3530 @cindex Ordering of Patterns
3531
3532 Sometimes an insn can match more than one instruction pattern.  Then the
3533 pattern that appears first in the machine description is the one used.
3534 Therefore, more specific patterns (patterns that will match fewer things)
3535 and faster instructions (those that will produce better code when they
3536 do match) should usually go first in the description.
3537
3538 In some cases the effect of ordering the patterns can be used to hide
3539 a pattern when it is not valid.  For example, the 68000 has an
3540 instruction for converting a fullword to floating point and another
3541 for converting a byte to floating point.  An instruction converting
3542 an integer to floating point could match either one.  We put the
3543 pattern to convert the fullword first to make sure that one will
3544 be used rather than the other.  (Otherwise a large integer might
3545 be generated as a single-byte immediate quantity, which would not work.)
3546 Instead of using this pattern ordering it would be possible to make the
3547 pattern for convert-a-byte smart enough to deal properly with any
3548 constant value.
3549
3550 @end ifset
3551 @ifset INTERNALS
3552 @node Dependent Patterns
3553 @section Interdependence of Patterns
3554 @cindex Dependent Patterns
3555 @cindex Interdependence of Patterns
3556
3557 Every machine description must have a named pattern for each of the
3558 conditional branch names @samp{b@var{cond}}.  The recognition template
3559 must always have the form
3560
3561 @smallexample
3562 (set (pc)
3563      (if_then_else (@var{cond} (cc0) (const_int 0))
3564                    (label_ref (match_operand 0 "" ""))
3565                    (pc)))
3566 @end smallexample
3567
3568 @noindent
3569 In addition, every machine description must have an anonymous pattern
3570 for each of the possible reverse-conditional branches.  Their templates
3571 look like
3572
3573 @smallexample
3574 (set (pc)
3575      (if_then_else (@var{cond} (cc0) (const_int 0))
3576                    (pc)
3577                    (label_ref (match_operand 0 "" ""))))
3578 @end smallexample
3579
3580 @noindent
3581 They are necessary because jump optimization can turn direct-conditional
3582 branches into reverse-conditional branches.
3583
3584 It is often convenient to use the @code{match_operator} construct to
3585 reduce the number of patterns that must be specified for branches.  For
3586 example,
3587
3588 @smallexample
3589 (define_insn ""
3590   [(set (pc)
3591         (if_then_else (match_operator 0 "comparison_operator"
3592                                       [(cc0) (const_int 0)])
3593                       (pc)
3594                       (label_ref (match_operand 1 "" ""))))]
3595   "@var{condition}"
3596   "@dots{}")
3597 @end smallexample
3598
3599 In some cases machines support instructions identical except for the
3600 machine mode of one or more operands.  For example, there may be
3601 ``sign-extend halfword'' and ``sign-extend byte'' instructions whose
3602 patterns are
3603
3604 @smallexample
3605 (set (match_operand:SI 0 @dots{})
3606      (extend:SI (match_operand:HI 1 @dots{})))
3607
3608 (set (match_operand:SI 0 @dots{})
3609      (extend:SI (match_operand:QI 1 @dots{})))
3610 @end smallexample
3611
3612 @noindent
3613 Constant integers do not specify a machine mode, so an instruction to
3614 extend a constant value could match either pattern.  The pattern it
3615 actually will match is the one that appears first in the file.  For correct
3616 results, this must be the one for the widest possible mode (@code{HImode},
3617 here).  If the pattern matches the @code{QImode} instruction, the results
3618 will be incorrect if the constant value does not actually fit that mode.
3619
3620 Such instructions to extend constants are rarely generated because they are
3621 optimized away, but they do occasionally happen in nonoptimized
3622 compilations.
3623
3624 If a constraint in a pattern allows a constant, the reload pass may
3625 replace a register with a constant permitted by the constraint in some
3626 cases.  Similarly for memory references.  Because of this substitution,
3627 you should not provide separate patterns for increment and decrement
3628 instructions.  Instead, they should be generated from the same pattern
3629 that supports register-register add insns by examining the operands and
3630 generating the appropriate machine instruction.
3631
3632 @end ifset
3633 @ifset INTERNALS
3634 @node Jump Patterns
3635 @section Defining Jump Instruction Patterns
3636 @cindex jump instruction patterns
3637 @cindex defining jump instruction patterns
3638
3639 For most machines, GCC assumes that the machine has a condition code.
3640 A comparison insn sets the condition code, recording the results of both
3641 signed and unsigned comparison of the given operands.  A separate branch
3642 insn tests the condition code and branches or not according its value.
3643 The branch insns come in distinct signed and unsigned flavors.  Many
3644 common machines, such as the VAX, the 68000 and the 32000, work this
3645 way.
3646
3647 Some machines have distinct signed and unsigned compare instructions, and
3648 only one set of conditional branch instructions.  The easiest way to handle
3649 these machines is to treat them just like the others until the final stage
3650 where assembly code is written.  At this time, when outputting code for the
3651 compare instruction, peek ahead at the following branch using
3652 @code{next_cc0_user (insn)}.  (The variable @code{insn} refers to the insn
3653 being output, in the output-writing code in an instruction pattern.)  If
3654 the RTL says that is an unsigned branch, output an unsigned compare;
3655 otherwise output a signed compare.  When the branch itself is output, you
3656 can treat signed and unsigned branches identically.
3657
3658 The reason you can do this is that GCC always generates a pair of
3659 consecutive RTL insns, possibly separated by @code{note} insns, one to
3660 set the condition code and one to test it, and keeps the pair inviolate
3661 until the end.
3662
3663 To go with this technique, you must define the machine-description macro
3664 @code{NOTICE_UPDATE_CC} to do @code{CC_STATUS_INIT}; in other words, no
3665 compare instruction is superfluous.
3666
3667 Some machines have compare-and-branch instructions and no condition code.
3668 A similar technique works for them.  When it is time to ``output'' a
3669 compare instruction, record its operands in two static variables.  When
3670 outputting the branch-on-condition-code instruction that follows, actually
3671 output a compare-and-branch instruction that uses the remembered operands.
3672
3673 It also works to define patterns for compare-and-branch instructions.
3674 In optimizing compilation, the pair of compare and branch instructions
3675 will be combined according to these patterns.  But this does not happen
3676 if optimization is not requested.  So you must use one of the solutions
3677 above in addition to any special patterns you define.
3678
3679 In many RISC machines, most instructions do not affect the condition
3680 code and there may not even be a separate condition code register.  On
3681 these machines, the restriction that the definition and use of the
3682 condition code be adjacent insns is not necessary and can prevent
3683 important optimizations.  For example, on the IBM RS/6000, there is a
3684 delay for taken branches unless the condition code register is set three
3685 instructions earlier than the conditional branch.  The instruction
3686 scheduler cannot perform this optimization if it is not permitted to
3687 separate the definition and use of the condition code register.
3688
3689 On these machines, do not use @code{(cc0)}, but instead use a register
3690 to represent the condition code.  If there is a specific condition code
3691 register in the machine, use a hard register.  If the condition code or
3692 comparison result can be placed in any general register, or if there are
3693 multiple condition registers, use a pseudo register.
3694
3695 @findex prev_cc0_setter
3696 @findex next_cc0_user
3697 On some machines, the type of branch instruction generated may depend on
3698 the way the condition code was produced; for example, on the 68k and
3699 SPARC, setting the condition code directly from an add or subtract
3700 instruction does not clear the overflow bit the way that a test
3701 instruction does, so a different branch instruction must be used for
3702 some conditional branches.  For machines that use @code{(cc0)}, the set
3703 and use of the condition code must be adjacent (separated only by
3704 @code{note} insns) allowing flags in @code{cc_status} to be used.
3705 (@xref{Condition Code}.)  Also, the comparison and branch insns can be
3706 located from each other by using the functions @code{prev_cc0_setter}
3707 and @code{next_cc0_user}.
3708
3709 However, this is not true on machines that do not use @code{(cc0)}.  On
3710 those machines, no assumptions can be made about the adjacency of the
3711 compare and branch insns and the above methods cannot be used.  Instead,
3712 we use the machine mode of the condition code register to record
3713 different formats of the condition code register.
3714
3715 Registers used to store the condition code value should have a mode that
3716 is in class @code{MODE_CC}.  Normally, it will be @code{CCmode}.  If
3717 additional modes are required (as for the add example mentioned above in
3718 the SPARC), define the macro @code{EXTRA_CC_MODES} to list the
3719 additional modes required (@pxref{Condition Code}).  Also define
3720 @code{SELECT_CC_MODE} to choose a mode given an operand of a compare.
3721
3722 If it is known during RTL generation that a different mode will be
3723 required (for example, if the machine has separate compare instructions
3724 for signed and unsigned quantities, like most IBM processors), they can
3725 be specified at that time.
3726
3727 If the cases that require different modes would be made by instruction
3728 combination, the macro @code{SELECT_CC_MODE} determines which machine
3729 mode should be used for the comparison result.  The patterns should be
3730 written using that mode.  To support the case of the add on the SPARC
3731 discussed above, we have the pattern
3732
3733 @smallexample
3734 (define_insn ""
3735   [(set (reg:CC_NOOV 0)
3736         (compare:CC_NOOV
3737           (plus:SI (match_operand:SI 0 "register_operand" "%r")
3738                    (match_operand:SI 1 "arith_operand" "rI"))
3739           (const_int 0)))]
3740   ""
3741   "@dots{}")
3742 @end smallexample
3743
3744 The @code{SELECT_CC_MODE} macro on the SPARC returns @code{CC_NOOVmode}
3745 for comparisons whose argument is a @code{plus}.
3746
3747 @end ifset
3748 @ifset INTERNALS
3749 @node Looping Patterns
3750 @section Defining Looping Instruction Patterns
3751 @cindex looping instruction patterns
3752 @cindex defining looping instruction patterns
3753
3754 Some machines have special jump instructions that can be utilized to
3755 make loops more efficient.  A common example is the 68000 @samp{dbra}
3756 instruction which performs a decrement of a register and a branch if the
3757 result was greater than zero.  Other machines, in particular digital
3758 signal processors (DSPs), have special block repeat instructions to
3759 provide low-overhead loop support.  For example, the TI TMS320C3x/C4x
3760 DSPs have a block repeat instruction that loads special registers to
3761 mark the top and end of a loop and to count the number of loop
3762 iterations.  This avoids the need for fetching and executing a
3763 @samp{dbra}-like instruction and avoids pipeline stalls associated with
3764 the jump.
3765
3766 GCC has three special named patterns to support low overhead looping.
3767 They are @samp{decrement_and_branch_until_zero}, @samp{doloop_begin},
3768 and @samp{doloop_end}.  The first pattern,
3769 @samp{decrement_and_branch_until_zero}, is not emitted during RTL
3770 generation but may be emitted during the instruction combination phase.
3771 This requires the assistance of the loop optimizer, using information
3772 collected during strength reduction, to reverse a loop to count down to
3773 zero.  Some targets also require the loop optimizer to add a
3774 @code{REG_NONNEG} note to indicate that the iteration count is always
3775 positive.  This is needed if the target performs a signed loop
3776 termination test.  For example, the 68000 uses a pattern similar to the
3777 following for its @code{dbra} instruction:
3778
3779 @smallexample
3780 @group
3781 (define_insn "decrement_and_branch_until_zero"
3782   [(set (pc)
3783         (if_then_else
3784           (ge (plus:SI (match_operand:SI 0 "general_operand" "+d*am")
3785                        (const_int -1))
3786               (const_int 0))
3787           (label_ref (match_operand 1 "" ""))
3788           (pc)))
3789    (set (match_dup 0)
3790         (plus:SI (match_dup 0)
3791                  (const_int -1)))]
3792   "find_reg_note (insn, REG_NONNEG, 0)"
3793   "@dots{}")
3794 @end group
3795 @end smallexample
3796
3797 Note that since the insn is both a jump insn and has an output, it must
3798 deal with its own reloads, hence the `m' constraints.  Also note that
3799 since this insn is generated by the instruction combination phase
3800 combining two sequential insns together into an implicit parallel insn,
3801 the iteration counter needs to be biased by the same amount as the
3802 decrement operation, in this case @minus{}1.  Note that the following similar
3803 pattern will not be matched by the combiner.
3804
3805 @smallexample
3806 @group
3807 (define_insn "decrement_and_branch_until_zero"
3808   [(set (pc)
3809         (if_then_else
3810           (ge (match_operand:SI 0 "general_operand" "+d*am")
3811               (const_int 1))
3812           (label_ref (match_operand 1 "" ""))
3813           (pc)))
3814    (set (match_dup 0)
3815         (plus:SI (match_dup 0)
3816                  (const_int -1)))]
3817   "find_reg_note (insn, REG_NONNEG, 0)"
3818   "@dots{}")
3819 @end group
3820 @end smallexample
3821
3822 The other two special looping patterns, @samp{doloop_begin} and
3823 @samp{doloop_end}, are emitted by the loop optimizer for certain
3824 well-behaved loops with a finite number of loop iterations using
3825 information collected during strength reduction.
3826
3827 The @samp{doloop_end} pattern describes the actual looping instruction
3828 (or the implicit looping operation) and the @samp{doloop_begin} pattern
3829 is an optional companion pattern that can be used for initialization
3830 needed for some low-overhead looping instructions.
3831
3832 Note that some machines require the actual looping instruction to be
3833 emitted at the top of the loop (e.g., the TMS320C3x/C4x DSPs).  Emitting
3834 the true RTL for a looping instruction at the top of the loop can cause
3835 problems with flow analysis.  So instead, a dummy @code{doloop} insn is
3836 emitted at the end of the loop.  The machine dependent reorg pass checks
3837 for the presence of this @code{doloop} insn and then searches back to
3838 the top of the loop, where it inserts the true looping insn (provided
3839 there are no instructions in the loop which would cause problems).  Any
3840 additional labels can be emitted at this point.  In addition, if the
3841 desired special iteration counter register was not allocated, this
3842 machine dependent reorg pass could emit a traditional compare and jump
3843 instruction pair.
3844
3845 The essential difference between the
3846 @samp{decrement_and_branch_until_zero} and the @samp{doloop_end}
3847 patterns is that the loop optimizer allocates an additional pseudo
3848 register for the latter as an iteration counter.  This pseudo register
3849 cannot be used within the loop (i.e., general induction variables cannot
3850 be derived from it), however, in many cases the loop induction variable
3851 may become redundant and removed by the flow pass.
3852
3853
3854 @end ifset
3855 @ifset INTERNALS
3856 @node Insn Canonicalizations
3857 @section Canonicalization of Instructions
3858 @cindex canonicalization of instructions
3859 @cindex insn canonicalization
3860
3861 There are often cases where multiple RTL expressions could represent an
3862 operation performed by a single machine instruction.  This situation is
3863 most commonly encountered with logical, branch, and multiply-accumulate
3864 instructions.  In such cases, the compiler attempts to convert these
3865 multiple RTL expressions into a single canonical form to reduce the
3866 number of insn patterns required.
3867
3868 In addition to algebraic simplifications, following canonicalizations
3869 are performed:
3870
3871 @itemize @bullet
3872 @item
3873 For commutative and comparison operators, a constant is always made the
3874 second operand.  If a machine only supports a constant as the second
3875 operand, only patterns that match a constant in the second operand need
3876 be supplied.
3877
3878 @cindex @code{neg}, canonicalization of
3879 @cindex @code{not}, canonicalization of
3880 @cindex @code{mult}, canonicalization of
3881 @cindex @code{plus}, canonicalization of
3882 @cindex @code{minus}, canonicalization of
3883 For these operators, if only one operand is a @code{neg}, @code{not},
3884 @code{mult}, @code{plus}, or @code{minus} expression, it will be the
3885 first operand.
3886
3887 @item
3888 In combinations of @code{neg}, @code{mult}, @code{plus}, and
3889 @code{minus}, the @code{neg} operations (if any) will be moved inside
3890 the operations as far as possible.  For instance,
3891 @code{(neg (mult A B))} is canonicalized as @code{(mult (neg A) B)}, but
3892 @code{(plus (mult (neg A) B) C)} is canonicalized as
3893 @code{(minus A (mult B C))}.
3894
3895 @cindex @code{compare}, canonicalization of
3896 @item
3897 For the @code{compare} operator, a constant is always the second operand
3898 on machines where @code{cc0} is used (@pxref{Jump Patterns}).  On other
3899 machines, there are rare cases where the compiler might want to construct
3900 a @code{compare} with a constant as the first operand.  However, these
3901 cases are not common enough for it to be worthwhile to provide a pattern
3902 matching a constant as the first operand unless the machine actually has
3903 such an instruction.
3904
3905 An operand of @code{neg}, @code{not}, @code{mult}, @code{plus}, or
3906 @code{minus} is made the first operand under the same conditions as
3907 above.
3908
3909 @item
3910 @code{(minus @var{x} (const_int @var{n}))} is converted to
3911 @code{(plus @var{x} (const_int @var{-n}))}.
3912
3913 @item
3914 Within address computations (i.e., inside @code{mem}), a left shift is
3915 converted into the appropriate multiplication by a power of two.
3916
3917 @cindex @code{ior}, canonicalization of
3918 @cindex @code{and}, canonicalization of
3919 @cindex De Morgan's law
3920 @item
3921 De`Morgan's Law is used to move bitwise negation inside a bitwise
3922 logical-and or logical-or operation.  If this results in only one
3923 operand being a @code{not} expression, it will be the first one.
3924
3925 A machine that has an instruction that performs a bitwise logical-and of one
3926 operand with the bitwise negation of the other should specify the pattern
3927 for that instruction as
3928
3929 @smallexample
3930 (define_insn ""
3931   [(set (match_operand:@var{m} 0 @dots{})
3932         (and:@var{m} (not:@var{m} (match_operand:@var{m} 1 @dots{}))
3933                      (match_operand:@var{m} 2 @dots{})))]
3934   "@dots{}"
3935   "@dots{}")
3936 @end smallexample
3937
3938 @noindent
3939 Similarly, a pattern for a ``NAND'' instruction should be written
3940
3941 @smallexample
3942 (define_insn ""
3943   [(set (match_operand:@var{m} 0 @dots{})
3944         (ior:@var{m} (not:@var{m} (match_operand:@var{m} 1 @dots{}))
3945                      (not:@var{m} (match_operand:@var{m} 2 @dots{}))))]
3946   "@dots{}"
3947   "@dots{}")
3948 @end smallexample
3949
3950 In both cases, it is not necessary to include patterns for the many
3951 logically equivalent RTL expressions.
3952
3953 @cindex @code{xor}, canonicalization of
3954 @item
3955 The only possible RTL expressions involving both bitwise exclusive-or
3956 and bitwise negation are @code{(xor:@var{m} @var{x} @var{y})}
3957 and @code{(not:@var{m} (xor:@var{m} @var{x} @var{y}))}.
3958
3959 @item
3960 The sum of three items, one of which is a constant, will only appear in
3961 the form
3962
3963 @smallexample
3964 (plus:@var{m} (plus:@var{m} @var{x} @var{y}) @var{constant})
3965 @end smallexample
3966
3967 @item
3968 On machines that do not use @code{cc0},
3969 @code{(compare @var{x} (const_int 0))} will be converted to
3970 @var{x}.
3971
3972 @cindex @code{zero_extract}, canonicalization of
3973 @cindex @code{sign_extract}, canonicalization of
3974 @item
3975 Equality comparisons of a group of bits (usually a single bit) with zero
3976 will be written using @code{zero_extract} rather than the equivalent
3977 @code{and} or @code{sign_extract} operations.
3978
3979 @end itemize
3980
3981 @end ifset
3982 @ifset INTERNALS
3983 @node Expander Definitions
3984 @section Defining RTL Sequences for Code Generation
3985 @cindex expander definitions
3986 @cindex code generation RTL sequences
3987 @cindex defining RTL sequences for code generation
3988
3989 On some target machines, some standard pattern names for RTL generation
3990 cannot be handled with single insn, but a sequence of RTL insns can
3991 represent them.  For these target machines, you can write a
3992 @code{define_expand} to specify how to generate the sequence of RTL@.
3993
3994 @findex define_expand
3995 A @code{define_expand} is an RTL expression that looks almost like a
3996 @code{define_insn}; but, unlike the latter, a @code{define_expand} is used
3997 only for RTL generation and it can produce more than one RTL insn.
3998
3999 A @code{define_expand} RTX has four operands:
4000
4001 @itemize @bullet
4002 @item
4003 The name.  Each @code{define_expand} must have a name, since the only
4004 use for it is to refer to it by name.
4005
4006 @item
4007 The RTL template.  This is a vector of RTL expressions representing
4008 a sequence of separate instructions.  Unlike @code{define_insn}, there
4009 is no implicit surrounding @code{PARALLEL}.
4010
4011 @item
4012 The condition, a string containing a C expression.  This expression is
4013 used to express how the availability of this pattern depends on
4014 subclasses of target machine, selected by command-line options when GCC
4015 is run.  This is just like the condition of a @code{define_insn} that
4016 has a standard name.  Therefore, the condition (if present) may not
4017 depend on the data in the insn being matched, but only the
4018 target-machine-type flags.  The compiler needs to test these conditions
4019 during initialization in order to learn exactly which named instructions
4020 are available in a particular run.
4021
4022 @item
4023 The preparation statements, a string containing zero or more C
4024 statements which are to be executed before RTL code is generated from
4025 the RTL template.
4026
4027 Usually these statements prepare temporary registers for use as
4028 internal operands in the RTL template, but they can also generate RTL
4029 insns directly by calling routines such as @code{emit_insn}, etc.
4030 Any such insns precede the ones that come from the RTL template.
4031 @end itemize
4032
4033 Every RTL insn emitted by a @code{define_expand} must match some
4034 @code{define_insn} in the machine description.  Otherwise, the compiler
4035 will crash when trying to generate code for the insn or trying to optimize
4036 it.
4037
4038 The RTL template, in addition to controlling generation of RTL insns,
4039 also describes the operands that need to be specified when this pattern
4040 is used.  In particular, it gives a predicate for each operand.
4041
4042 A true operand, which needs to be specified in order to generate RTL from
4043 the pattern, should be described with a @code{match_operand} in its first
4044 occurrence in the RTL template.  This enters information on the operand's
4045 predicate into the tables that record such things.  GCC uses the
4046 information to preload the operand into a register if that is required for
4047 valid RTL code.  If the operand is referred to more than once, subsequent
4048 references should use @code{match_dup}.
4049
4050 The RTL template may also refer to internal ``operands'' which are
4051 temporary registers or labels used only within the sequence made by the
4052 @code{define_expand}.  Internal operands are substituted into the RTL
4053 template with @code{match_dup}, never with @code{match_operand}.  The
4054 values of the internal operands are not passed in as arguments by the
4055 compiler when it requests use of this pattern.  Instead, they are computed
4056 within the pattern, in the preparation statements.  These statements
4057 compute the values and store them into the appropriate elements of
4058 @code{operands} so that @code{match_dup} can find them.
4059
4060 There are two special macros defined for use in the preparation statements:
4061 @code{DONE} and @code{FAIL}.  Use them with a following semicolon,
4062 as a statement.
4063
4064 @table @code
4065
4066 @findex DONE
4067 @item DONE
4068 Use the @code{DONE} macro to end RTL generation for the pattern.  The
4069 only RTL insns resulting from the pattern on this occasion will be
4070 those already emitted by explicit calls to @code{emit_insn} within the
4071 preparation statements; the RTL template will not be generated.
4072
4073 @findex FAIL
4074 @item FAIL
4075 Make the pattern fail on this occasion.  When a pattern fails, it means
4076 that the pattern was not truly available.  The calling routines in the
4077 compiler will try other strategies for code generation using other patterns.
4078
4079 Failure is currently supported only for binary (addition, multiplication,
4080 shifting, etc.) and bit-field (@code{extv}, @code{extzv}, and @code{insv})
4081 operations.
4082 @end table
4083
4084 If the preparation falls through (invokes neither @code{DONE} nor
4085 @code{FAIL}), then the @code{define_expand} acts like a
4086 @code{define_insn} in that the RTL template is used to generate the
4087 insn.
4088
4089 The RTL template is not used for matching, only for generating the
4090 initial insn list.  If the preparation statement always invokes
4091 @code{DONE} or @code{FAIL}, the RTL template may be reduced to a simple
4092 list of operands, such as this example:
4093
4094 @smallexample
4095 @group
4096 (define_expand "addsi3"
4097   [(match_operand:SI 0 "register_operand" "")
4098    (match_operand:SI 1 "register_operand" "")
4099    (match_operand:SI 2 "register_operand" "")]
4100 @end group
4101 @group
4102   ""
4103   "
4104 @{
4105   handle_add (operands[0], operands[1], operands[2]);
4106   DONE;
4107 @}")
4108 @end group
4109 @end smallexample
4110
4111 Here is an example, the definition of left-shift for the SPUR chip:
4112
4113 @smallexample
4114 @group
4115 (define_expand "ashlsi3"
4116   [(set (match_operand:SI 0 "register_operand" "")
4117         (ashift:SI
4118 @end group
4119 @group
4120           (match_operand:SI 1 "register_operand" "")
4121           (match_operand:SI 2 "nonmemory_operand" "")))]
4122   ""
4123   "
4124 @end group
4125 @end smallexample
4126
4127 @smallexample
4128 @group
4129 @{
4130   if (GET_CODE (operands[2]) != CONST_INT
4131       || (unsigned) INTVAL (operands[2]) > 3)
4132     FAIL;
4133 @}")
4134 @end group
4135 @end smallexample
4136
4137 @noindent
4138 This example uses @code{define_expand} so that it can generate an RTL insn
4139 for shifting when the shift-count is in the supported range of 0 to 3 but
4140 fail in other cases where machine insns aren't available.  When it fails,
4141 the compiler tries another strategy using different patterns (such as, a
4142 library call).
4143
4144 If the compiler were able to handle nontrivial condition-strings in
4145 patterns with names, then it would be possible to use a
4146 @code{define_insn} in that case.  Here is another case (zero-extension
4147 on the 68000) which makes more use of the power of @code{define_expand}:
4148
4149 @smallexample
4150 (define_expand "zero_extendhisi2"
4151   [(set (match_operand:SI 0 "general_operand" "")
4152         (const_int 0))
4153    (set (strict_low_part
4154           (subreg:HI
4155             (match_dup 0)
4156             0))
4157         (match_operand:HI 1 "general_operand" ""))]
4158   ""
4159   "operands[1] = make_safe_from (operands[1], operands[0]);")
4160 @end smallexample
4161
4162 @noindent
4163 @findex make_safe_from
4164 Here two RTL insns are generated, one to clear the entire output operand
4165 and the other to copy the input operand into its low half.  This sequence
4166 is incorrect if the input operand refers to [the old value of] the output
4167 operand, so the preparation statement makes sure this isn't so.  The
4168 function @code{make_safe_from} copies the @code{operands[1]} into a
4169 temporary register if it refers to @code{operands[0]}.  It does this
4170 by emitting another RTL insn.
4171
4172 Finally, a third example shows the use of an internal operand.
4173 Zero-extension on the SPUR chip is done by @code{and}-ing the result
4174 against a halfword mask.  But this mask cannot be represented by a
4175 @code{const_int} because the constant value is too large to be legitimate
4176 on this machine.  So it must be copied into a register with
4177 @code{force_reg} and then the register used in the @code{and}.
4178
4179 @smallexample
4180 (define_expand "zero_extendhisi2"
4181   [(set (match_operand:SI 0 "register_operand" "")
4182         (and:SI (subreg:SI
4183                   (match_operand:HI 1 "register_operand" "")
4184                   0)
4185                 (match_dup 2)))]
4186   ""
4187   "operands[2]
4188      = force_reg (SImode, GEN_INT (65535)); ")
4189 @end smallexample
4190
4191 @strong{Note:} If the @code{define_expand} is used to serve a
4192 standard binary or unary arithmetic operation or a bit-field operation,
4193 then the last insn it generates must not be a @code{code_label},
4194 @code{barrier} or @code{note}.  It must be an @code{insn},
4195 @code{jump_insn} or @code{call_insn}.  If you don't need a real insn
4196 at the end, emit an insn to copy the result of the operation into
4197 itself.  Such an insn will generate no code, but it can avoid problems
4198 in the compiler.
4199
4200 @end ifset
4201 @ifset INTERNALS
4202 @node Insn Splitting
4203 @section Defining How to Split Instructions
4204 @cindex insn splitting
4205 @cindex instruction splitting
4206 @cindex splitting instructions
4207
4208 There are two cases where you should specify how to split a pattern
4209 into multiple insns.  On machines that have instructions requiring
4210 delay slots (@pxref{Delay Slots}) or that have instructions whose
4211 output is not available for multiple cycles (@pxref{Processor pipeline
4212 description}), the compiler phases that optimize these cases need to
4213 be able to move insns into one-instruction delay slots.  However, some
4214 insns may generate more than one machine instruction.  These insns
4215 cannot be placed into a delay slot.
4216
4217 Often you can rewrite the single insn as a list of individual insns,
4218 each corresponding to one machine instruction.  The disadvantage of
4219 doing so is that it will cause the compilation to be slower and require
4220 more space.  If the resulting insns are too complex, it may also
4221 suppress some optimizations.  The compiler splits the insn if there is a
4222 reason to believe that it might improve instruction or delay slot
4223 scheduling.
4224
4225 The insn combiner phase also splits putative insns.  If three insns are
4226 merged into one insn with a complex expression that cannot be matched by
4227 some @code{define_insn} pattern, the combiner phase attempts to split
4228 the complex pattern into two insns that are recognized.  Usually it can
4229 break the complex pattern into two patterns by splitting out some
4230 subexpression.  However, in some other cases, such as performing an
4231 addition of a large constant in two insns on a RISC machine, the way to
4232 split the addition into two insns is machine-dependent.
4233
4234 @findex define_split
4235 The @code{define_split} definition tells the compiler how to split a
4236 complex insn into several simpler insns.  It looks like this:
4237
4238 @smallexample
4239 (define_split
4240   [@var{insn-pattern}]
4241   "@var{condition}"
4242   [@var{new-insn-pattern-1}
4243    @var{new-insn-pattern-2}
4244    @dots{}]
4245   "@var{preparation-statements}")
4246 @end smallexample
4247
4248 @var{insn-pattern} is a pattern that needs to be split and
4249 @var{condition} is the final condition to be tested, as in a
4250 @code{define_insn}.  When an insn matching @var{insn-pattern} and
4251 satisfying @var{condition} is found, it is replaced in the insn list
4252 with the insns given by @var{new-insn-pattern-1},
4253 @var{new-insn-pattern-2}, etc.
4254
4255 The @var{preparation-statements} are similar to those statements that
4256 are specified for @code{define_expand} (@pxref{Expander Definitions})
4257 and are executed before the new RTL is generated to prepare for the
4258 generated code or emit some insns whose pattern is not fixed.  Unlike
4259 those in @code{define_expand}, however, these statements must not
4260 generate any new pseudo-registers.  Once reload has completed, they also
4261 must not allocate any space in the stack frame.
4262
4263 Patterns are matched against @var{insn-pattern} in two different
4264 circumstances.  If an insn needs to be split for delay slot scheduling
4265 or insn scheduling, the insn is already known to be valid, which means
4266 that it must have been matched by some @code{define_insn} and, if
4267 @code{reload_completed} is nonzero, is known to satisfy the constraints
4268 of that @code{define_insn}.  In that case, the new insn patterns must
4269 also be insns that are matched by some @code{define_insn} and, if
4270 @code{reload_completed} is nonzero, must also satisfy the constraints
4271 of those definitions.
4272
4273 As an example of this usage of @code{define_split}, consider the following
4274 example from @file{a29k.md}, which splits a @code{sign_extend} from
4275 @code{HImode} to @code{SImode} into a pair of shift insns:
4276
4277 @smallexample
4278 (define_split
4279   [(set (match_operand:SI 0 "gen_reg_operand" "")
4280         (sign_extend:SI (match_operand:HI 1 "gen_reg_operand" "")))]
4281   ""
4282   [(set (match_dup 0)
4283         (ashift:SI (match_dup 1)
4284                    (const_int 16)))
4285    (set (match_dup 0)
4286         (ashiftrt:SI (match_dup 0)
4287                      (const_int 16)))]
4288   "
4289 @{ operands[1] = gen_lowpart (SImode, operands[1]); @}")
4290 @end smallexample
4291
4292 When the combiner phase tries to split an insn pattern, it is always the
4293 case that the pattern is @emph{not} matched by any @code{define_insn}.
4294 The combiner pass first tries to split a single @code{set} expression
4295 and then the same @code{set} expression inside a @code{parallel}, but
4296 followed by a @code{clobber} of a pseudo-reg to use as a scratch
4297 register.  In these cases, the combiner expects exactly two new insn
4298 patterns to be generated.  It will verify that these patterns match some
4299 @code{define_insn} definitions, so you need not do this test in the
4300 @code{define_split} (of course, there is no point in writing a
4301 @code{define_split} that will never produce insns that match).
4302
4303 Here is an example of this use of @code{define_split}, taken from
4304 @file{rs6000.md}:
4305
4306 @smallexample
4307 (define_split
4308   [(set (match_operand:SI 0 "gen_reg_operand" "")
4309         (plus:SI (match_operand:SI 1 "gen_reg_operand" "")
4310                  (match_operand:SI 2 "non_add_cint_operand" "")))]
4311   ""
4312   [(set (match_dup 0) (plus:SI (match_dup 1) (match_dup 3)))
4313    (set (match_dup 0) (plus:SI (match_dup 0) (match_dup 4)))]
4314 "
4315 @{
4316   int low = INTVAL (operands[2]) & 0xffff;
4317   int high = (unsigned) INTVAL (operands[2]) >> 16;
4318
4319   if (low & 0x8000)
4320     high++, low |= 0xffff0000;
4321
4322   operands[3] = GEN_INT (high << 16);
4323   operands[4] = GEN_INT (low);
4324 @}")
4325 @end smallexample
4326
4327 Here the predicate @code{non_add_cint_operand} matches any
4328 @code{const_int} that is @emph{not} a valid operand of a single add
4329 insn.  The add with the smaller displacement is written so that it
4330 can be substituted into the address of a subsequent operation.
4331
4332 An example that uses a scratch register, from the same file, generates
4333 an equality comparison of a register and a large constant:
4334
4335 @smallexample
4336 (define_split
4337   [(set (match_operand:CC 0 "cc_reg_operand" "")
4338         (compare:CC (match_operand:SI 1 "gen_reg_operand" "")
4339                     (match_operand:SI 2 "non_short_cint_operand" "")))
4340    (clobber (match_operand:SI 3 "gen_reg_operand" ""))]
4341   "find_single_use (operands[0], insn, 0)
4342    && (GET_CODE (*find_single_use (operands[0], insn, 0)) == EQ
4343        || GET_CODE (*find_single_use (operands[0], insn, 0)) == NE)"
4344   [(set (match_dup 3) (xor:SI (match_dup 1) (match_dup 4)))
4345    (set (match_dup 0) (compare:CC (match_dup 3) (match_dup 5)))]
4346   "
4347 @{
4348   /* Get the constant we are comparing against, C, and see what it
4349      looks like sign-extended to 16 bits.  Then see what constant
4350      could be XOR'ed with C to get the sign-extended value.  */
4351
4352   int c = INTVAL (operands[2]);
4353   int sextc = (c << 16) >> 16;
4354   int xorv = c ^ sextc;
4355
4356   operands[4] = GEN_INT (xorv);
4357   operands[5] = GEN_INT (sextc);
4358 @}")
4359 @end smallexample
4360
4361 To avoid confusion, don't write a single @code{define_split} that
4362 accepts some insns that match some @code{define_insn} as well as some
4363 insns that don't.  Instead, write two separate @code{define_split}
4364 definitions, one for the insns that are valid and one for the insns that
4365 are not valid.
4366
4367 The splitter is allowed to split jump instructions into sequence of
4368 jumps or create new jumps in while splitting non-jump instructions.  As
4369 the central flowgraph and branch prediction information needs to be updated,
4370 several restriction apply.
4371
4372 Splitting of jump instruction into sequence that over by another jump
4373 instruction is always valid, as compiler expect identical behavior of new
4374 jump.  When new sequence contains multiple jump instructions or new labels,
4375 more assistance is needed.  Splitter is required to create only unconditional
4376 jumps, or simple conditional jump instructions.  Additionally it must attach a
4377 @code{REG_BR_PROB} note to each conditional jump.  A global variable
4378 @code{split_branch_probability} hold the probability of original branch in case
4379 it was an simple conditional jump, @minus{}1 otherwise.  To simplify
4380 recomputing of edge frequencies, new sequence is required to have only
4381 forward jumps to the newly created labels.
4382
4383 @findex define_insn_and_split
4384 For the common case where the pattern of a define_split exactly matches the
4385 pattern of a define_insn, use @code{define_insn_and_split}.  It looks like
4386 this:
4387
4388 @smallexample
4389 (define_insn_and_split
4390   [@var{insn-pattern}]
4391   "@var{condition}"
4392   "@var{output-template}"
4393   "@var{split-condition}"
4394   [@var{new-insn-pattern-1}
4395    @var{new-insn-pattern-2}
4396    @dots{}]
4397   "@var{preparation-statements}"
4398   [@var{insn-attributes}])
4399
4400 @end smallexample
4401
4402 @var{insn-pattern}, @var{condition}, @var{output-template}, and
4403 @var{insn-attributes} are used as in @code{define_insn}.  The
4404 @var{new-insn-pattern} vector and the @var{preparation-statements} are used as
4405 in a @code{define_split}.  The @var{split-condition} is also used as in
4406 @code{define_split}, with the additional behavior that if the condition starts
4407 with @samp{&&}, the condition used for the split will be the constructed as a
4408 logical ``and'' of the split condition with the insn condition.  For example,
4409 from i386.md:
4410
4411 @smallexample
4412 (define_insn_and_split "zero_extendhisi2_and"
4413   [(set (match_operand:SI 0 "register_operand" "=r")
4414      (zero_extend:SI (match_operand:HI 1 "register_operand" "0")))
4415    (clobber (reg:CC 17))]
4416   "TARGET_ZERO_EXTEND_WITH_AND && !optimize_size"
4417   "#"
4418   "&& reload_completed"
4419   [(parallel [(set (match_dup 0)
4420                    (and:SI (match_dup 0) (const_int 65535)))
4421               (clobber (reg:CC 17))])]
4422   ""
4423   [(set_attr "type" "alu1")])
4424
4425 @end smallexample
4426
4427 In this case, the actual split condition will be
4428 @samp{TARGET_ZERO_EXTEND_WITH_AND && !optimize_size && reload_completed}.
4429
4430 The @code{define_insn_and_split} construction provides exactly the same
4431 functionality as two separate @code{define_insn} and @code{define_split}
4432 patterns.  It exists for compactness, and as a maintenance tool to prevent
4433 having to ensure the two patterns' templates match.
4434
4435 @end ifset
4436 @ifset INTERNALS
4437 @node Including Patterns
4438 @section Including Patterns in Machine Descriptions.
4439 @cindex insn includes
4440
4441 @findex include
4442 The @code{include} pattern tells the compiler tools where to
4443 look for patterns that are in files other than in the file
4444 @file{.md}. This is used only at build time and there is no preprocessing allowed.
4445
4446 It looks like:
4447
4448 @smallexample
4449
4450 (include
4451   @var{pathname})
4452 @end smallexample
4453
4454 For example:
4455
4456 @smallexample
4457
4458 (include "filestuff")
4459
4460 @end smallexample
4461
4462 Where @var{pathname} is a string that specifies the location of the file,
4463 specifies the include file to be in @file{gcc/config/target/filestuff}. The
4464 directory @file{gcc/config/target} is regarded as the default directory.
4465
4466
4467 Machine descriptions may be split up into smaller more manageable subsections
4468 and placed into subdirectories.
4469
4470 By specifying:
4471
4472 @smallexample
4473
4474 (include "BOGUS/filestuff")
4475
4476 @end smallexample
4477
4478 the include file is specified to be in @file{gcc/config/@var{target}/BOGUS/filestuff}.
4479
4480 Specifying an absolute path for the include file such as;
4481 @smallexample
4482
4483 (include "/u2/BOGUS/filestuff")
4484
4485 @end smallexample
4486 is permitted but is not encouraged.
4487
4488 @subsection RTL Generation Tool Options for Directory Search
4489 @cindex directory options .md
4490 @cindex options, directory search
4491 @cindex search options
4492
4493 The @option{-I@var{dir}} option specifies directories to search for machine descriptions.
4494 For example:
4495
4496 @smallexample
4497
4498 genrecog -I/p1/abc/proc1 -I/p2/abcd/pro2 target.md
4499
4500 @end smallexample
4501
4502
4503 Add the directory @var{dir} to the head of the list of directories to be
4504 searched for header files.  This can be used to override a system machine definition
4505 file, substituting your own version, since these directories are
4506 searched before the default machine description file directories.  If you use more than
4507 one @option{-I} option, the directories are scanned in left-to-right
4508 order; the standard default directory come after.
4509
4510
4511 @end ifset
4512 @ifset INTERNALS
4513 @node Peephole Definitions
4514 @section Machine-Specific Peephole Optimizers
4515 @cindex peephole optimizer definitions
4516 @cindex defining peephole optimizers
4517
4518 In addition to instruction patterns the @file{md} file may contain
4519 definitions of machine-specific peephole optimizations.
4520
4521 The combiner does not notice certain peephole optimizations when the data
4522 flow in the program does not suggest that it should try them.  For example,
4523 sometimes two consecutive insns related in purpose can be combined even
4524 though the second one does not appear to use a register computed in the
4525 first one.  A machine-specific peephole optimizer can detect such
4526 opportunities.
4527
4528 There are two forms of peephole definitions that may be used.  The
4529 original @code{define_peephole} is run at assembly output time to
4530 match insns and substitute assembly text.  Use of @code{define_peephole}
4531 is deprecated.
4532
4533 A newer @code{define_peephole2} matches insns and substitutes new
4534 insns.  The @code{peephole2} pass is run after register allocation
4535 but before scheduling, which may result in much better code for
4536 targets that do scheduling.
4537
4538 @menu
4539 * define_peephole::     RTL to Text Peephole Optimizers
4540 * define_peephole2::    RTL to RTL Peephole Optimizers
4541 @end menu
4542
4543 @end ifset
4544 @ifset INTERNALS
4545 @node define_peephole
4546 @subsection RTL to Text Peephole Optimizers
4547 @findex define_peephole
4548
4549 @need 1000
4550 A definition looks like this:
4551
4552 @smallexample
4553 (define_peephole
4554   [@var{insn-pattern-1}
4555    @var{insn-pattern-2}
4556    @dots{}]
4557   "@var{condition}"
4558   "@var{template}"
4559   "@var{optional-insn-attributes}")
4560 @end smallexample
4561
4562 @noindent
4563 The last string operand may be omitted if you are not using any
4564 machine-specific information in this machine description.  If present,
4565 it must obey the same rules as in a @code{define_insn}.
4566
4567 In this skeleton, @var{insn-pattern-1} and so on are patterns to match
4568 consecutive insns.  The optimization applies to a sequence of insns when
4569 @var{insn-pattern-1} matches the first one, @var{insn-pattern-2} matches
4570 the next, and so on.
4571
4572 Each of the insns matched by a peephole must also match a
4573 @code{define_insn}.  Peepholes are checked only at the last stage just
4574 before code generation, and only optionally.  Therefore, any insn which
4575 would match a peephole but no @code{define_insn} will cause a crash in code
4576 generation in an unoptimized compilation, or at various optimization
4577 stages.
4578
4579 The operands of the insns are matched with @code{match_operands},
4580 @code{match_operator}, and @code{match_dup}, as usual.  What is not
4581 usual is that the operand numbers apply to all the insn patterns in the
4582 definition.  So, you can check for identical operands in two insns by
4583 using @code{match_operand} in one insn and @code{match_dup} in the
4584 other.
4585
4586 The operand constraints used in @code{match_operand} patterns do not have
4587 any direct effect on the applicability of the peephole, but they will
4588 be validated afterward, so make sure your constraints are general enough
4589 to apply whenever the peephole matches.  If the peephole matches
4590 but the constraints are not satisfied, the compiler will crash.
4591
4592 It is safe to omit constraints in all the operands of the peephole; or
4593 you can write constraints which serve as a double-check on the criteria
4594 previously tested.
4595
4596 Once a sequence of insns matches the patterns, the @var{condition} is
4597 checked.  This is a C expression which makes the final decision whether to
4598 perform the optimization (we do so if the expression is nonzero).  If
4599 @var{condition} is omitted (in other words, the string is empty) then the
4600 optimization is applied to every sequence of insns that matches the
4601 patterns.
4602
4603 The defined peephole optimizations are applied after register allocation
4604 is complete.  Therefore, the peephole definition can check which
4605 operands have ended up in which kinds of registers, just by looking at
4606 the operands.
4607
4608 @findex prev_active_insn
4609 The way to refer to the operands in @var{condition} is to write
4610 @code{operands[@var{i}]} for operand number @var{i} (as matched by
4611 @code{(match_operand @var{i} @dots{})}).  Use the variable @code{insn}
4612 to refer to the last of the insns being matched; use
4613 @code{prev_active_insn} to find the preceding insns.
4614
4615 @findex dead_or_set_p
4616 When optimizing computations with intermediate results, you can use
4617 @var{condition} to match only when the intermediate results are not used
4618 elsewhere.  Use the C expression @code{dead_or_set_p (@var{insn},
4619 @var{op})}, where @var{insn} is the insn in which you expect the value
4620 to be used for the last time (from the value of @code{insn}, together
4621 with use of @code{prev_nonnote_insn}), and @var{op} is the intermediate
4622 value (from @code{operands[@var{i}]}).
4623
4624 Applying the optimization means replacing the sequence of insns with one
4625 new insn.  The @var{template} controls ultimate output of assembler code
4626 for this combined insn.  It works exactly like the template of a
4627 @code{define_insn}.  Operand numbers in this template are the same ones
4628 used in matching the original sequence of insns.
4629
4630 The result of a defined peephole optimizer does not need to match any of
4631 the insn patterns in the machine description; it does not even have an
4632 opportunity to match them.  The peephole optimizer definition itself serves
4633 as the insn pattern to control how the insn is output.
4634
4635 Defined peephole optimizers are run as assembler code is being output,
4636 so the insns they produce are never combined or rearranged in any way.
4637
4638 Here is an example, taken from the 68000 machine description:
4639
4640 @smallexample
4641 (define_peephole
4642   [(set (reg:SI 15) (plus:SI (reg:SI 15) (const_int 4)))
4643    (set (match_operand:DF 0 "register_operand" "=f")
4644         (match_operand:DF 1 "register_operand" "ad"))]
4645   "FP_REG_P (operands[0]) && ! FP_REG_P (operands[1])"
4646 @{
4647   rtx xoperands[2];
4648   xoperands[1] = gen_rtx (REG, SImode, REGNO (operands[1]) + 1);
4649 #ifdef MOTOROLA
4650   output_asm_insn ("move.l %1,(sp)", xoperands);
4651   output_asm_insn ("move.l %1,-(sp)", operands);
4652   return "fmove.d (sp)+,%0";
4653 #else
4654   output_asm_insn ("movel %1,sp@@", xoperands);
4655   output_asm_insn ("movel %1,sp@@-", operands);
4656   return "fmoved sp@@+,%0";
4657 #endif
4658 @})
4659 @end smallexample
4660
4661 @need 1000
4662 The effect of this optimization is to change
4663
4664 @smallexample
4665 @group
4666 jbsr _foobar
4667 addql #4,sp
4668 movel d1,sp@@-
4669 movel d0,sp@@-
4670 fmoved sp@@+,fp0
4671 @end group
4672 @end smallexample
4673
4674 @noindent
4675 into
4676
4677 @smallexample
4678 @group
4679 jbsr _foobar
4680 movel d1,sp@@
4681 movel d0,sp@@-
4682 fmoved sp@@+,fp0
4683 @end group
4684 @end smallexample
4685
4686 @ignore
4687 @findex CC_REVERSED
4688 If a peephole matches a sequence including one or more jump insns, you must
4689 take account of the flags such as @code{CC_REVERSED} which specify that the
4690 condition codes are represented in an unusual manner.  The compiler
4691 automatically alters any ordinary conditional jumps which occur in such
4692 situations, but the compiler cannot alter jumps which have been replaced by
4693 peephole optimizations.  So it is up to you to alter the assembler code
4694 that the peephole produces.  Supply C code to write the assembler output,
4695 and in this C code check the condition code status flags and change the
4696 assembler code as appropriate.
4697 @end ignore
4698
4699 @var{insn-pattern-1} and so on look @emph{almost} like the second
4700 operand of @code{define_insn}.  There is one important difference: the
4701 second operand of @code{define_insn} consists of one or more RTX's
4702 enclosed in square brackets.  Usually, there is only one: then the same
4703 action can be written as an element of a @code{define_peephole}.  But
4704 when there are multiple actions in a @code{define_insn}, they are
4705 implicitly enclosed in a @code{parallel}.  Then you must explicitly
4706 write the @code{parallel}, and the square brackets within it, in the
4707 @code{define_peephole}.  Thus, if an insn pattern looks like this,
4708
4709 @smallexample
4710 (define_insn "divmodsi4"
4711   [(set (match_operand:SI 0 "general_operand" "=d")
4712         (div:SI (match_operand:SI 1 "general_operand" "0")
4713                 (match_operand:SI 2 "general_operand" "dmsK")))
4714    (set (match_operand:SI 3 "general_operand" "=d")
4715         (mod:SI (match_dup 1) (match_dup 2)))]
4716   "TARGET_68020"
4717   "divsl%.l %2,%3:%0")
4718 @end smallexample
4719
4720 @noindent
4721 then the way to mention this insn in a peephole is as follows:
4722
4723 @smallexample
4724 (define_peephole
4725   [@dots{}
4726    (parallel
4727     [(set (match_operand:SI 0 "general_operand" "=d")
4728           (div:SI (match_operand:SI 1 "general_operand" "0")
4729                   (match_operand:SI 2 "general_operand" "dmsK")))
4730      (set (match_operand:SI 3 "general_operand" "=d")
4731           (mod:SI (match_dup 1) (match_dup 2)))])
4732    @dots{}]
4733   @dots{})
4734 @end smallexample
4735
4736 @end ifset
4737 @ifset INTERNALS
4738 @node define_peephole2
4739 @subsection RTL to RTL Peephole Optimizers
4740 @findex define_peephole2
4741
4742 The @code{define_peephole2} definition tells the compiler how to
4743 substitute one sequence of instructions for another sequence,
4744 what additional scratch registers may be needed and what their
4745 lifetimes must be.
4746
4747 @smallexample
4748 (define_peephole2
4749   [@var{insn-pattern-1}
4750    @var{insn-pattern-2}
4751    @dots{}]
4752   "@var{condition}"
4753   [@var{new-insn-pattern-1}
4754    @var{new-insn-pattern-2}
4755    @dots{}]
4756   "@var{preparation-statements}")
4757 @end smallexample
4758
4759 The definition is almost identical to @code{define_split}
4760 (@pxref{Insn Splitting}) except that the pattern to match is not a
4761 single instruction, but a sequence of instructions.
4762
4763 It is possible to request additional scratch registers for use in the
4764 output template.  If appropriate registers are not free, the pattern
4765 will simply not match.
4766
4767 @findex match_scratch
4768 @findex match_dup
4769 Scratch registers are requested with a @code{match_scratch} pattern at
4770 the top level of the input pattern.  The allocated register (initially) will
4771 be dead at the point requested within the original sequence.  If the scratch
4772 is used at more than a single point, a @code{match_dup} pattern at the
4773 top level of the input pattern marks the last position in the input sequence
4774 at which the register must be available.
4775
4776 Here is an example from the IA-32 machine description:
4777
4778 @smallexample
4779 (define_peephole2
4780   [(match_scratch:SI 2 "r")
4781    (parallel [(set (match_operand:SI 0 "register_operand" "")
4782                    (match_operator:SI 3 "arith_or_logical_operator"
4783                      [(match_dup 0)
4784                       (match_operand:SI 1 "memory_operand" "")]))
4785               (clobber (reg:CC 17))])]
4786   "! optimize_size && ! TARGET_READ_MODIFY"
4787   [(set (match_dup 2) (match_dup 1))
4788    (parallel [(set (match_dup 0)
4789                    (match_op_dup 3 [(match_dup 0) (match_dup 2)]))
4790               (clobber (reg:CC 17))])]
4791   "")
4792 @end smallexample
4793
4794 @noindent
4795 This pattern tries to split a load from its use in the hopes that we'll be
4796 able to schedule around the memory load latency.  It allocates a single
4797 @code{SImode} register of class @code{GENERAL_REGS} (@code{"r"}) that needs
4798 to be live only at the point just before the arithmetic.
4799
4800 A real example requiring extended scratch lifetimes is harder to come by,
4801 so here's a silly made-up example:
4802
4803 @smallexample
4804 (define_peephole2
4805   [(match_scratch:SI 4 "r")
4806    (set (match_operand:SI 0 "" "") (match_operand:SI 1 "" ""))
4807    (set (match_operand:SI 2 "" "") (match_dup 1))
4808    (match_dup 4)
4809    (set (match_operand:SI 3 "" "") (match_dup 1))]
4810   "/* @r{determine 1 does not overlap 0 and 2} */"
4811   [(set (match_dup 4) (match_dup 1))
4812    (set (match_dup 0) (match_dup 4))
4813    (set (match_dup 2) (match_dup 4))]
4814    (set (match_dup 3) (match_dup 4))]
4815   "")
4816 @end smallexample
4817
4818 @noindent
4819 If we had not added the @code{(match_dup 4)} in the middle of the input
4820 sequence, it might have been the case that the register we chose at the
4821 beginning of the sequence is killed by the first or second @code{set}.
4822
4823 @end ifset
4824 @ifset INTERNALS
4825 @node Insn Attributes
4826 @section Instruction Attributes
4827 @cindex insn attributes
4828 @cindex instruction attributes
4829
4830 In addition to describing the instruction supported by the target machine,
4831 the @file{md} file also defines a group of @dfn{attributes} and a set of
4832 values for each.  Every generated insn is assigned a value for each attribute.
4833 One possible attribute would be the effect that the insn has on the machine's
4834 condition code.  This attribute can then be used by @code{NOTICE_UPDATE_CC}
4835 to track the condition codes.
4836
4837 @menu
4838 * Defining Attributes:: Specifying attributes and their values.
4839 * Expressions::         Valid expressions for attribute values.
4840 * Tagging Insns::       Assigning attribute values to insns.
4841 * Attr Example::        An example of assigning attributes.
4842 * Insn Lengths::        Computing the length of insns.
4843 * Constant Attributes:: Defining attributes that are constant.
4844 * Delay Slots::         Defining delay slots required for a machine.
4845 * Processor pipeline description:: Specifying information for insn scheduling.
4846 @end menu
4847
4848 @end ifset
4849 @ifset INTERNALS
4850 @node Defining Attributes
4851 @subsection Defining Attributes and their Values
4852 @cindex defining attributes and their values
4853 @cindex attributes, defining
4854
4855 @findex define_attr
4856 The @code{define_attr} expression is used to define each attribute required
4857 by the target machine.  It looks like:
4858
4859 @smallexample
4860 (define_attr @var{name} @var{list-of-values} @var{default})
4861 @end smallexample
4862
4863 @var{name} is a string specifying the name of the attribute being defined.
4864
4865 @var{list-of-values} is either a string that specifies a comma-separated
4866 list of values that can be assigned to the attribute, or a null string to
4867 indicate that the attribute takes numeric values.
4868
4869 @var{default} is an attribute expression that gives the value of this
4870 attribute for insns that match patterns whose definition does not include
4871 an explicit value for this attribute.  @xref{Attr Example}, for more
4872 information on the handling of defaults.  @xref{Constant Attributes},
4873 for information on attributes that do not depend on any particular insn.
4874
4875 @findex insn-attr.h
4876 For each defined attribute, a number of definitions are written to the
4877 @file{insn-attr.h} file.  For cases where an explicit set of values is
4878 specified for an attribute, the following are defined:
4879
4880 @itemize @bullet
4881 @item
4882 A @samp{#define} is written for the symbol @samp{HAVE_ATTR_@var{name}}.
4883
4884 @item
4885 An enumerated class is defined for @samp{attr_@var{name}} with
4886 elements of the form @samp{@var{upper-name}_@var{upper-value}} where
4887 the attribute name and value are first converted to uppercase.
4888
4889 @item
4890 A function @samp{get_attr_@var{name}} is defined that is passed an insn and
4891 returns the attribute value for that insn.
4892 @end itemize
4893
4894 For example, if the following is present in the @file{md} file:
4895
4896 @smallexample
4897 (define_attr "type" "branch,fp,load,store,arith" @dots{})
4898 @end smallexample
4899
4900 @noindent
4901 the following lines will be written to the file @file{insn-attr.h}.
4902
4903 @smallexample
4904 #define HAVE_ATTR_type
4905 enum attr_type @{TYPE_BRANCH, TYPE_FP, TYPE_LOAD,
4906                  TYPE_STORE, TYPE_ARITH@};
4907 extern enum attr_type get_attr_type ();
4908 @end smallexample
4909
4910 If the attribute takes numeric values, no @code{enum} type will be
4911 defined and the function to obtain the attribute's value will return
4912 @code{int}.
4913
4914 @end ifset
4915 @ifset INTERNALS
4916 @node Expressions
4917 @subsection Attribute Expressions
4918 @cindex attribute expressions
4919
4920 RTL expressions used to define attributes use the codes described above
4921 plus a few specific to attribute definitions, to be discussed below.
4922 Attribute value expressions must have one of the following forms:
4923
4924 @table @code
4925 @cindex @code{const_int} and attributes
4926 @item (const_int @var{i})
4927 The integer @var{i} specifies the value of a numeric attribute.  @var{i}
4928 must be non-negative.
4929
4930 The value of a numeric attribute can be specified either with a
4931 @code{const_int}, or as an integer represented as a string in
4932 @code{const_string}, @code{eq_attr} (see below), @code{attr},
4933 @code{symbol_ref}, simple arithmetic expressions, and @code{set_attr}
4934 overrides on specific instructions (@pxref{Tagging Insns}).
4935
4936 @cindex @code{const_string} and attributes
4937 @item (const_string @var{value})
4938 The string @var{value} specifies a constant attribute value.
4939 If @var{value} is specified as @samp{"*"}, it means that the default value of
4940 the attribute is to be used for the insn containing this expression.
4941 @samp{"*"} obviously cannot be used in the @var{default} expression
4942 of a @code{define_attr}.
4943
4944 If the attribute whose value is being specified is numeric, @var{value}
4945 must be a string containing a non-negative integer (normally
4946 @code{const_int} would be used in this case).  Otherwise, it must
4947 contain one of the valid values for the attribute.
4948
4949 @cindex @code{if_then_else} and attributes
4950 @item (if_then_else @var{test} @var{true-value} @var{false-value})
4951 @var{test} specifies an attribute test, whose format is defined below.
4952 The value of this expression is @var{true-value} if @var{test} is true,
4953 otherwise it is @var{false-value}.
4954
4955 @cindex @code{cond} and attributes
4956 @item (cond [@var{test1} @var{value1} @dots{}] @var{default})
4957 The first operand of this expression is a vector containing an even
4958 number of expressions and consisting of pairs of @var{test} and @var{value}
4959 expressions.  The value of the @code{cond} expression is that of the
4960 @var{value} corresponding to the first true @var{test} expression.  If
4961 none of the @var{test} expressions are true, the value of the @code{cond}
4962 expression is that of the @var{default} expression.
4963 @end table
4964
4965 @var{test} expressions can have one of the following forms:
4966
4967 @table @code
4968 @cindex @code{const_int} and attribute tests
4969 @item (const_int @var{i})
4970 This test is true if @var{i} is nonzero and false otherwise.
4971
4972 @cindex @code{not} and attributes
4973 @cindex @code{ior} and attributes
4974 @cindex @code{and} and attributes
4975 @item (not @var{test})
4976 @itemx (ior @var{test1} @var{test2})
4977 @itemx (and @var{test1} @var{test2})
4978 These tests are true if the indicated logical function is true.
4979
4980 @cindex @code{match_operand} and attributes
4981 @item (match_operand:@var{m} @var{n} @var{pred} @var{constraints})
4982 This test is true if operand @var{n} of the insn whose attribute value
4983 is being determined has mode @var{m} (this part of the test is ignored
4984 if @var{m} is @code{VOIDmode}) and the function specified by the string
4985 @var{pred} returns a nonzero value when passed operand @var{n} and mode
4986 @var{m} (this part of the test is ignored if @var{pred} is the null
4987 string).
4988
4989 The @var{constraints} operand is ignored and should be the null string.
4990
4991 @cindex @code{le} and attributes
4992 @cindex @code{leu} and attributes
4993 @cindex @code{lt} and attributes
4994 @cindex @code{gt} and attributes
4995 @cindex @code{gtu} and attributes
4996 @cindex @code{ge} and attributes
4997 @cindex @code{geu} and attributes
4998 @cindex @code{ne} and attributes
4999 @cindex @code{eq} and attributes
5000 @cindex @code{plus} and attributes
5001 @cindex @code{minus} and attributes
5002 @cindex @code{mult} and attributes
5003 @cindex @code{div} and attributes
5004 @cindex @code{mod} and attributes
5005 @cindex @code{abs} and attributes
5006 @cindex @code{neg} and attributes
5007 @cindex @code{ashift} and attributes
5008 @cindex @code{lshiftrt} and attributes
5009 @cindex @code{ashiftrt} and attributes
5010 @item (le @var{arith1} @var{arith2})
5011 @itemx (leu @var{arith1} @var{arith2})
5012 @itemx (lt @var{arith1} @var{arith2})
5013 @itemx (ltu @var{arith1} @var{arith2})
5014 @itemx (gt @var{arith1} @var{arith2})
5015 @itemx (gtu @var{arith1} @var{arith2})
5016 @itemx (ge @var{arith1} @var{arith2})
5017 @itemx (geu @var{arith1} @var{arith2})
5018 @itemx (ne @var{arith1} @var{arith2})
5019 @itemx (eq @var{arith1} @var{arith2})
5020 These tests are true if the indicated comparison of the two arithmetic
5021 expressions is true.  Arithmetic expressions are formed with
5022 @code{plus}, @code{minus}, @code{mult}, @code{div}, @code{mod},
5023 @code{abs}, @code{neg}, @code{and}, @code{ior}, @code{xor}, @code{not},
5024 @code{ashift}, @code{lshiftrt}, and @code{ashiftrt} expressions.
5025
5026 @findex get_attr
5027 @code{const_int} and @code{symbol_ref} are always valid terms (@pxref{Insn
5028 Lengths},for additional forms).  @code{symbol_ref} is a string
5029 denoting a C expression that yields an @code{int} when evaluated by the
5030 @samp{get_attr_@dots{}} routine.  It should normally be a global
5031 variable.
5032
5033 @findex eq_attr
5034 @item (eq_attr @var{name} @var{value})
5035 @var{name} is a string specifying the name of an attribute.
5036
5037 @var{value} is a string that is either a valid value for attribute
5038 @var{name}, a comma-separated list of values, or @samp{!} followed by a
5039 value or list.  If @var{value} does not begin with a @samp{!}, this
5040 test is true if the value of the @var{name} attribute of the current
5041 insn is in the list specified by @var{value}.  If @var{value} begins
5042 with a @samp{!}, this test is true if the attribute's value is
5043 @emph{not} in the specified list.
5044
5045 For example,
5046
5047 @smallexample
5048 (eq_attr "type" "load,store")
5049 @end smallexample
5050
5051 @noindent
5052 is equivalent to
5053
5054 @smallexample
5055 (ior (eq_attr "type" "load") (eq_attr "type" "store"))
5056 @end smallexample
5057
5058 If @var{name} specifies an attribute of @samp{alternative}, it refers to the
5059 value of the compiler variable @code{which_alternative}
5060 (@pxref{Output Statement}) and the values must be small integers.  For
5061 example,
5062
5063 @smallexample
5064 (eq_attr "alternative" "2,3")
5065 @end smallexample
5066
5067 @noindent
5068 is equivalent to
5069
5070 @smallexample
5071 (ior (eq (symbol_ref "which_alternative") (const_int 2))
5072      (eq (symbol_ref "which_alternative") (const_int 3)))
5073 @end smallexample
5074
5075 Note that, for most attributes, an @code{eq_attr} test is simplified in cases
5076 where the value of the attribute being tested is known for all insns matching
5077 a particular pattern.  This is by far the most common case.
5078
5079 @findex attr_flag
5080 @item (attr_flag @var{name})
5081 The value of an @code{attr_flag} expression is true if the flag
5082 specified by @var{name} is true for the @code{insn} currently being
5083 scheduled.
5084
5085 @var{name} is a string specifying one of a fixed set of flags to test.
5086 Test the flags @code{forward} and @code{backward} to determine the
5087 direction of a conditional branch.  Test the flags @code{very_likely},
5088 @code{likely}, @code{very_unlikely}, and @code{unlikely} to determine
5089 if a conditional branch is expected to be taken.
5090
5091 If the @code{very_likely} flag is true, then the @code{likely} flag is also
5092 true.  Likewise for the @code{very_unlikely} and @code{unlikely} flags.
5093
5094 This example describes a conditional branch delay slot which
5095 can be nullified for forward branches that are taken (annul-true) or
5096 for backward branches which are not taken (annul-false).
5097
5098 @smallexample
5099 (define_delay (eq_attr "type" "cbranch")
5100   [(eq_attr "in_branch_delay" "true")
5101    (and (eq_attr "in_branch_delay" "true")
5102         (attr_flag "forward"))
5103    (and (eq_attr "in_branch_delay" "true")
5104         (attr_flag "backward"))])
5105 @end smallexample
5106
5107 The @code{forward} and @code{backward} flags are false if the current
5108 @code{insn} being scheduled is not a conditional branch.
5109
5110 The @code{very_likely} and @code{likely} flags are true if the
5111 @code{insn} being scheduled is not a conditional branch.
5112 The @code{very_unlikely} and @code{unlikely} flags are false if the
5113 @code{insn} being scheduled is not a conditional branch.
5114
5115 @code{attr_flag} is only used during delay slot scheduling and has no
5116 meaning to other passes of the compiler.
5117
5118 @findex attr
5119 @item (attr @var{name})
5120 The value of another attribute is returned.  This is most useful
5121 for numeric attributes, as @code{eq_attr} and @code{attr_flag}
5122 produce more efficient code for non-numeric attributes.
5123 @end table
5124
5125 @end ifset
5126 @ifset INTERNALS
5127 @node Tagging Insns
5128 @subsection Assigning Attribute Values to Insns
5129 @cindex tagging insns
5130 @cindex assigning attribute values to insns
5131
5132 The value assigned to an attribute of an insn is primarily determined by
5133 which pattern is matched by that insn (or which @code{define_peephole}
5134 generated it).  Every @code{define_insn} and @code{define_peephole} can
5135 have an optional last argument to specify the values of attributes for
5136 matching insns.  The value of any attribute not specified in a particular
5137 insn is set to the default value for that attribute, as specified in its
5138 @code{define_attr}.  Extensive use of default values for attributes
5139 permits the specification of the values for only one or two attributes
5140 in the definition of most insn patterns, as seen in the example in the
5141 next section.
5142
5143 The optional last argument of @code{define_insn} and
5144 @code{define_peephole} is a vector of expressions, each of which defines
5145 the value for a single attribute.  The most general way of assigning an
5146 attribute's value is to use a @code{set} expression whose first operand is an
5147 @code{attr} expression giving the name of the attribute being set.  The
5148 second operand of the @code{set} is an attribute expression
5149 (@pxref{Expressions}) giving the value of the attribute.
5150
5151 When the attribute value depends on the @samp{alternative} attribute
5152 (i.e., which is the applicable alternative in the constraint of the
5153 insn), the @code{set_attr_alternative} expression can be used.  It
5154 allows the specification of a vector of attribute expressions, one for
5155 each alternative.
5156
5157 @findex set_attr
5158 When the generality of arbitrary attribute expressions is not required,
5159 the simpler @code{set_attr} expression can be used, which allows
5160 specifying a string giving either a single attribute value or a list
5161 of attribute values, one for each alternative.
5162
5163 The form of each of the above specifications is shown below.  In each case,
5164 @var{name} is a string specifying the attribute to be set.
5165
5166 @table @code
5167 @item (set_attr @var{name} @var{value-string})
5168 @var{value-string} is either a string giving the desired attribute value,
5169 or a string containing a comma-separated list giving the values for
5170 succeeding alternatives.  The number of elements must match the number
5171 of alternatives in the constraint of the insn pattern.
5172
5173 Note that it may be useful to specify @samp{*} for some alternative, in
5174 which case the attribute will assume its default value for insns matching
5175 that alternative.
5176
5177 @findex set_attr_alternative
5178 @item (set_attr_alternative @var{name} [@var{value1} @var{value2} @dots{}])
5179 Depending on the alternative of the insn, the value will be one of the
5180 specified values.  This is a shorthand for using a @code{cond} with
5181 tests on the @samp{alternative} attribute.
5182
5183 @findex attr
5184 @item (set (attr @var{name}) @var{value})
5185 The first operand of this @code{set} must be the special RTL expression
5186 @code{attr}, whose sole operand is a string giving the name of the
5187 attribute being set.  @var{value} is the value of the attribute.
5188 @end table
5189
5190 The following shows three different ways of representing the same
5191 attribute value specification:
5192
5193 @smallexample
5194 (set_attr "type" "load,store,arith")
5195
5196 (set_attr_alternative "type"
5197                       [(const_string "load") (const_string "store")
5198                        (const_string "arith")])
5199
5200 (set (attr "type")
5201      (cond [(eq_attr "alternative" "1") (const_string "load")
5202             (eq_attr "alternative" "2") (const_string "store")]
5203            (const_string "arith")))
5204 @end smallexample
5205
5206 @need 1000
5207 @findex define_asm_attributes
5208 The @code{define_asm_attributes} expression provides a mechanism to
5209 specify the attributes assigned to insns produced from an @code{asm}
5210 statement.  It has the form:
5211
5212 @smallexample
5213 (define_asm_attributes [@var{attr-sets}])
5214 @end smallexample
5215
5216 @noindent
5217 where @var{attr-sets} is specified the same as for both the
5218 @code{define_insn} and the @code{define_peephole} expressions.
5219
5220 These values will typically be the ``worst case'' attribute values.  For
5221 example, they might indicate that the condition code will be clobbered.
5222
5223 A specification for a @code{length} attribute is handled specially.  The
5224 way to compute the length of an @code{asm} insn is to multiply the
5225 length specified in the expression @code{define_asm_attributes} by the
5226 number of machine instructions specified in the @code{asm} statement,
5227 determined by counting the number of semicolons and newlines in the
5228 string.  Therefore, the value of the @code{length} attribute specified
5229 in a @code{define_asm_attributes} should be the maximum possible length
5230 of a single machine instruction.
5231
5232 @end ifset
5233 @ifset INTERNALS
5234 @node Attr Example
5235 @subsection Example of Attribute Specifications
5236 @cindex attribute specifications example
5237 @cindex attribute specifications
5238
5239 The judicious use of defaulting is important in the efficient use of
5240 insn attributes.  Typically, insns are divided into @dfn{types} and an
5241 attribute, customarily called @code{type}, is used to represent this
5242 value.  This attribute is normally used only to define the default value
5243 for other attributes.  An example will clarify this usage.
5244
5245 Assume we have a RISC machine with a condition code and in which only
5246 full-word operations are performed in registers.  Let us assume that we
5247 can divide all insns into loads, stores, (integer) arithmetic
5248 operations, floating point operations, and branches.
5249
5250 Here we will concern ourselves with determining the effect of an insn on
5251 the condition code and will limit ourselves to the following possible
5252 effects:  The condition code can be set unpredictably (clobbered), not
5253 be changed, be set to agree with the results of the operation, or only
5254 changed if the item previously set into the condition code has been
5255 modified.
5256
5257 Here is part of a sample @file{md} file for such a machine:
5258
5259 @smallexample
5260 (define_attr "type" "load,store,arith,fp,branch" (const_string "arith"))
5261
5262 (define_attr "cc" "clobber,unchanged,set,change0"
5263              (cond [(eq_attr "type" "load")
5264                         (const_string "change0")
5265                     (eq_attr "type" "store,branch")
5266                         (const_string "unchanged")
5267                     (eq_attr "type" "arith")
5268                         (if_then_else (match_operand:SI 0 "" "")
5269                                       (const_string "set")
5270                                       (const_string "clobber"))]
5271                    (const_string "clobber")))
5272
5273 (define_insn ""
5274   [(set (match_operand:SI 0 "general_operand" "=r,r,m")
5275         (match_operand:SI 1 "general_operand" "r,m,r"))]
5276   ""
5277   "@@
5278    move %0,%1
5279    load %0,%1
5280    store %0,%1"
5281   [(set_attr "type" "arith,load,store")])
5282 @end smallexample
5283
5284 Note that we assume in the above example that arithmetic operations
5285 performed on quantities smaller than a machine word clobber the condition
5286 code since they will set the condition code to a value corresponding to the
5287 full-word result.
5288
5289 @end ifset
5290 @ifset INTERNALS
5291 @node Insn Lengths
5292 @subsection Computing the Length of an Insn
5293 @cindex insn lengths, computing
5294 @cindex computing the length of an insn
5295
5296 For many machines, multiple types of branch instructions are provided, each
5297 for different length branch displacements.  In most cases, the assembler
5298 will choose the correct instruction to use.  However, when the assembler
5299 cannot do so, GCC can when a special attribute, the @samp{length}
5300 attribute, is defined.  This attribute must be defined to have numeric
5301 values by specifying a null string in its @code{define_attr}.
5302
5303 In the case of the @samp{length} attribute, two additional forms of
5304 arithmetic terms are allowed in test expressions:
5305
5306 @table @code
5307 @cindex @code{match_dup} and attributes
5308 @item (match_dup @var{n})
5309 This refers to the address of operand @var{n} of the current insn, which
5310 must be a @code{label_ref}.
5311
5312 @cindex @code{pc} and attributes
5313 @item (pc)
5314 This refers to the address of the @emph{current} insn.  It might have
5315 been more consistent with other usage to make this the address of the
5316 @emph{next} insn but this would be confusing because the length of the
5317 current insn is to be computed.
5318 @end table
5319
5320 @cindex @code{addr_vec}, length of
5321 @cindex @code{addr_diff_vec}, length of
5322 For normal insns, the length will be determined by value of the
5323 @samp{length} attribute.  In the case of @code{addr_vec} and
5324 @code{addr_diff_vec} insn patterns, the length is computed as
5325 the number of vectors multiplied by the size of each vector.
5326
5327 Lengths are measured in addressable storage units (bytes).
5328
5329 The following macros can be used to refine the length computation:
5330
5331 @table @code
5332 @findex ADJUST_INSN_LENGTH
5333 @item ADJUST_INSN_LENGTH (@var{insn}, @var{length})
5334 If defined, modifies the length assigned to instruction @var{insn} as a
5335 function of the context in which it is used.  @var{length} is an lvalue
5336 that contains the initially computed length of the insn and should be
5337 updated with the correct length of the insn.
5338
5339 This macro will normally not be required.  A case in which it is
5340 required is the ROMP@.  On this machine, the size of an @code{addr_vec}
5341 insn must be increased by two to compensate for the fact that alignment
5342 may be required.
5343 @end table
5344
5345 @findex get_attr_length
5346 The routine that returns @code{get_attr_length} (the value of the
5347 @code{length} attribute) can be used by the output routine to
5348 determine the form of the branch instruction to be written, as the
5349 example below illustrates.
5350
5351 As an example of the specification of variable-length branches, consider
5352 the IBM 360.  If we adopt the convention that a register will be set to
5353 the starting address of a function, we can jump to labels within 4k of
5354 the start using a four-byte instruction.  Otherwise, we need a six-byte
5355 sequence to load the address from memory and then branch to it.
5356
5357 On such a machine, a pattern for a branch instruction might be specified
5358 as follows:
5359
5360 @smallexample
5361 (define_insn "jump"
5362   [(set (pc)
5363         (label_ref (match_operand 0 "" "")))]
5364   ""
5365 @{
5366    return (get_attr_length (insn) == 4
5367            ? "b %l0" : "l r15,=a(%l0); br r15");
5368 @}
5369   [(set (attr "length")
5370         (if_then_else (lt (match_dup 0) (const_int 4096))
5371                       (const_int 4)
5372                       (const_int 6)))])
5373 @end smallexample
5374
5375 @end ifset
5376 @ifset INTERNALS
5377 @node Constant Attributes
5378 @subsection Constant Attributes
5379 @cindex constant attributes
5380
5381 A special form of @code{define_attr}, where the expression for the
5382 default value is a @code{const} expression, indicates an attribute that
5383 is constant for a given run of the compiler.  Constant attributes may be
5384 used to specify which variety of processor is used.  For example,
5385
5386 @smallexample
5387 (define_attr "cpu" "m88100,m88110,m88000"
5388  (const
5389   (cond [(symbol_ref "TARGET_88100") (const_string "m88100")
5390          (symbol_ref "TARGET_88110") (const_string "m88110")]
5391         (const_string "m88000"))))
5392
5393 (define_attr "memory" "fast,slow"
5394  (const
5395   (if_then_else (symbol_ref "TARGET_FAST_MEM")
5396                 (const_string "fast")
5397                 (const_string "slow"))))
5398 @end smallexample
5399
5400 The routine generated for constant attributes has no parameters as it
5401 does not depend on any particular insn.  RTL expressions used to define
5402 the value of a constant attribute may use the @code{symbol_ref} form,
5403 but may not use either the @code{match_operand} form or @code{eq_attr}
5404 forms involving insn attributes.
5405
5406 @end ifset
5407 @ifset INTERNALS
5408 @node Delay Slots
5409 @subsection Delay Slot Scheduling
5410 @cindex delay slots, defining
5411
5412 The insn attribute mechanism can be used to specify the requirements for
5413 delay slots, if any, on a target machine.  An instruction is said to
5414 require a @dfn{delay slot} if some instructions that are physically
5415 after the instruction are executed as if they were located before it.
5416 Classic examples are branch and call instructions, which often execute
5417 the following instruction before the branch or call is performed.
5418
5419 On some machines, conditional branch instructions can optionally
5420 @dfn{annul} instructions in the delay slot.  This means that the
5421 instruction will not be executed for certain branch outcomes.  Both
5422 instructions that annul if the branch is true and instructions that
5423 annul if the branch is false are supported.
5424
5425 Delay slot scheduling differs from instruction scheduling in that
5426 determining whether an instruction needs a delay slot is dependent only
5427 on the type of instruction being generated, not on data flow between the
5428 instructions.  See the next section for a discussion of data-dependent
5429 instruction scheduling.
5430
5431 @findex define_delay
5432 The requirement of an insn needing one or more delay slots is indicated
5433 via the @code{define_delay} expression.  It has the following form:
5434
5435 @smallexample
5436 (define_delay @var{test}
5437               [@var{delay-1} @var{annul-true-1} @var{annul-false-1}
5438                @var{delay-2} @var{annul-true-2} @var{annul-false-2}
5439                @dots{}])
5440 @end smallexample
5441
5442 @var{test} is an attribute test that indicates whether this
5443 @code{define_delay} applies to a particular insn.  If so, the number of
5444 required delay slots is determined by the length of the vector specified
5445 as the second argument.  An insn placed in delay slot @var{n} must
5446 satisfy attribute test @var{delay-n}.  @var{annul-true-n} is an
5447 attribute test that specifies which insns may be annulled if the branch
5448 is true.  Similarly, @var{annul-false-n} specifies which insns in the
5449 delay slot may be annulled if the branch is false.  If annulling is not
5450 supported for that delay slot, @code{(nil)} should be coded.
5451
5452 For example, in the common case where branch and call insns require
5453 a single delay slot, which may contain any insn other than a branch or
5454 call, the following would be placed in the @file{md} file:
5455
5456 @smallexample
5457 (define_delay (eq_attr "type" "branch,call")
5458               [(eq_attr "type" "!branch,call") (nil) (nil)])
5459 @end smallexample
5460
5461 Multiple @code{define_delay} expressions may be specified.  In this
5462 case, each such expression specifies different delay slot requirements
5463 and there must be no insn for which tests in two @code{define_delay}
5464 expressions are both true.
5465
5466 For example, if we have a machine that requires one delay slot for branches
5467 but two for calls,  no delay slot can contain a branch or call insn,
5468 and any valid insn in the delay slot for the branch can be annulled if the
5469 branch is true, we might represent this as follows:
5470
5471 @smallexample
5472 (define_delay (eq_attr "type" "branch")
5473    [(eq_attr "type" "!branch,call")
5474     (eq_attr "type" "!branch,call")
5475     (nil)])
5476
5477 (define_delay (eq_attr "type" "call")
5478               [(eq_attr "type" "!branch,call") (nil) (nil)
5479                (eq_attr "type" "!branch,call") (nil) (nil)])
5480 @end smallexample
5481 @c the above is *still* too long.  --mew 4feb93
5482
5483 @end ifset
5484 @ifset INTERNALS
5485 @node Processor pipeline description
5486 @subsection Specifying processor pipeline description
5487 @cindex processor pipeline description
5488 @cindex processor functional units
5489 @cindex instruction latency time
5490 @cindex interlock delays
5491 @cindex data dependence delays
5492 @cindex reservation delays
5493 @cindex pipeline hazard recognizer
5494 @cindex automaton based pipeline description
5495 @cindex regular expressions
5496 @cindex deterministic finite state automaton
5497 @cindex automaton based scheduler
5498 @cindex RISC
5499 @cindex VLIW
5500
5501 To achieve better performance, most modern processors
5502 (super-pipelined, superscalar @acronym{RISC}, and @acronym{VLIW}
5503 processors) have many @dfn{functional units} on which several
5504 instructions can be executed simultaneously.  An instruction starts
5505 execution if its issue conditions are satisfied.  If not, the
5506 instruction is stalled until its conditions are satisfied.  Such
5507 @dfn{interlock (pipeline) delay} causes interruption of the fetching
5508 of successor instructions (or demands nop instructions, e.g. for some
5509 MIPS processors).
5510
5511 There are two major kinds of interlock delays in modern processors.
5512 The first one is a data dependence delay determining @dfn{instruction
5513 latency time}.  The instruction execution is not started until all
5514 source data have been evaluated by prior instructions (there are more
5515 complex cases when the instruction execution starts even when the data
5516 are not available but will be ready in given time after the
5517 instruction execution start).  Taking the data dependence delays into
5518 account is simple.  The data dependence (true, output, and
5519 anti-dependence) delay between two instructions is given by a
5520 constant.  In most cases this approach is adequate.  The second kind
5521 of interlock delays is a reservation delay.  The reservation delay
5522 means that two instructions under execution will be in need of shared
5523 processors resources, i.e. buses, internal registers, and/or
5524 functional units, which are reserved for some time.  Taking this kind
5525 of delay into account is complex especially for modern @acronym{RISC}
5526 processors.
5527
5528 The task of exploiting more processor parallelism is solved by an
5529 instruction scheduler.  For a better solution to this problem, the
5530 instruction scheduler has to have an adequate description of the
5531 processor parallelism (or @dfn{pipeline description}).  Currently GCC
5532 provides two alternative ways to describe processor parallelism,
5533 both described below.  The first method is outlined in the next section;
5534 it was once the only method provided by GCC, and thus is used in a number
5535 of exiting ports.  The second, and preferred method, specifies functional
5536 unit reservations for groups of instructions with the aid of @dfn{regular
5537 expressions}.  This is called the @dfn{automaton based description}.
5538
5539 The GCC instruction scheduler uses a @dfn{pipeline hazard recognizer} to
5540 figure out the possibility of the instruction issue by the processor
5541 on a given simulated processor cycle.  The pipeline hazard recognizer is
5542 automatically generated from the processor pipeline description.  The
5543 pipeline hazard recognizer generated from the automaton based
5544 description is more sophisticated and based on a deterministic finite
5545 state automaton (@acronym{DFA}) and therefore faster than one
5546 generated from the old description.  Furthermore, its speed is not dependent
5547 on processor complexity.  The instruction issue is possible if there is
5548 a transition from one automaton state to another one.
5549
5550 You can use either model to describe processor pipeline
5551 characteristics or even mix them.  You could use the old description
5552 for some processor submodels and the @acronym{DFA}-based one for other
5553 processor submodels.
5554
5555 In general, using the automaton based description is preferred.  Its
5556 model is richer and makes it possible to more accurately describe
5557 pipeline characteristics of processors, which results in improved
5558 code quality (although sometimes only marginally).  It will also be
5559 used as an infrastructure to implement sophisticated and practical
5560 instruction scheduling which will try many instruction sequences to
5561 choose the best one.
5562
5563
5564 @menu
5565 * Old pipeline description:: Specifying information for insn scheduling.
5566 * Automaton pipeline description:: Describing insn pipeline characteristics.
5567 * Comparison of the two descriptions:: Drawbacks of the old pipeline description
5568 @end menu
5569
5570 @end ifset
5571 @ifset INTERNALS
5572 @node Old pipeline description
5573 @subsubsection Specifying Function Units
5574 @cindex old pipeline description
5575 @cindex function units, for scheduling
5576
5577 On most @acronym{RISC} machines, there are instructions whose results
5578 are not available for a specific number of cycles.  Common cases are
5579 instructions that load data from memory.  On many machines, a pipeline
5580 stall will result if the data is referenced too soon after the load
5581 instruction.
5582
5583 In addition, many newer microprocessors have multiple function units, usually
5584 one for integer and one for floating point, and often will incur pipeline
5585 stalls when a result that is needed is not yet ready.
5586
5587 The descriptions in this section allow the specification of how much
5588 time must elapse between the execution of an instruction and the time
5589 when its result is used.  It also allows specification of when the
5590 execution of an instruction will delay execution of similar instructions
5591 due to function unit conflicts.
5592
5593 For the purposes of the specifications in this section, a machine is
5594 divided into @dfn{function units}, each of which execute a specific
5595 class of instructions in first-in-first-out order.  Function units
5596 that accept one instruction each cycle and allow a result to be used
5597 in the succeeding instruction (usually via forwarding) need not be
5598 specified.  Classic @acronym{RISC} microprocessors will normally have
5599 a single function unit, which we can call @samp{memory}.  The newer
5600 ``superscalar'' processors will often have function units for floating
5601 point operations, usually at least a floating point adder and
5602 multiplier.
5603
5604 @findex define_function_unit
5605 Each usage of a function units by a class of insns is specified with a
5606 @code{define_function_unit} expression, which looks like this:
5607
5608 @smallexample
5609 (define_function_unit @var{name} @var{multiplicity} @var{simultaneity}
5610                       @var{test} @var{ready-delay} @var{issue-delay}
5611                      [@var{conflict-list}])
5612 @end smallexample
5613
5614 @var{name} is a string giving the name of the function unit.
5615
5616 @var{multiplicity} is an integer specifying the number of identical
5617 units in the processor.  If more than one unit is specified, they will
5618 be scheduled independently.  Only truly independent units should be
5619 counted; a pipelined unit should be specified as a single unit.  (The
5620 only common example of a machine that has multiple function units for a
5621 single instruction class that are truly independent and not pipelined
5622 are the two multiply and two increment units of the CDC 6600.)
5623
5624 @var{simultaneity} specifies the maximum number of insns that can be
5625 executing in each instance of the function unit simultaneously or zero
5626 if the unit is pipelined and has no limit.
5627
5628 All @code{define_function_unit} definitions referring to function unit
5629 @var{name} must have the same name and values for @var{multiplicity} and
5630 @var{simultaneity}.
5631
5632 @var{test} is an attribute test that selects the insns we are describing
5633 in this definition.  Note that an insn may use more than one function
5634 unit and a function unit may be specified in more than one
5635 @code{define_function_unit}.
5636
5637 @var{ready-delay} is an integer that specifies the number of cycles
5638 after which the result of the instruction can be used without
5639 introducing any stalls.
5640
5641 @var{issue-delay} is an integer that specifies the number of cycles
5642 after the instruction matching the @var{test} expression begins using
5643 this unit until a subsequent instruction can begin.  A cost of @var{N}
5644 indicates an @var{N-1} cycle delay.  A subsequent instruction may also
5645 be delayed if an earlier instruction has a longer @var{ready-delay}
5646 value.  This blocking effect is computed using the @var{simultaneity},
5647 @var{ready-delay}, @var{issue-delay}, and @var{conflict-list} terms.
5648 For a normal non-pipelined function unit, @var{simultaneity} is one, the
5649 unit is taken to block for the @var{ready-delay} cycles of the executing
5650 insn, and smaller values of @var{issue-delay} are ignored.
5651
5652 @var{conflict-list} is an optional list giving detailed conflict costs
5653 for this unit.  If specified, it is a list of condition test expressions
5654 to be applied to insns chosen to execute in @var{name} following the
5655 particular insn matching @var{test} that is already executing in
5656 @var{name}.  For each insn in the list, @var{issue-delay} specifies the
5657 conflict cost; for insns not in the list, the cost is zero.  If not
5658 specified, @var{conflict-list} defaults to all instructions that use the
5659 function unit.
5660
5661 Typical uses of this vector are where a floating point function unit can
5662 pipeline either single- or double-precision operations, but not both, or
5663 where a memory unit can pipeline loads, but not stores, etc.
5664
5665 As an example, consider a classic @acronym{RISC} machine where the
5666 result of a load instruction is not available for two cycles (a single
5667 ``delay'' instruction is required) and where only one load instruction
5668 can be executed simultaneously.  This would be specified as:
5669
5670 @smallexample
5671 (define_function_unit "memory" 1 1 (eq_attr "type" "load") 2 0)
5672 @end smallexample
5673
5674 For the case of a floating point function unit that can pipeline either
5675 single or double precision, but not both, the following could be specified:
5676
5677 @smallexample
5678 (define_function_unit
5679    "fp" 1 0 (eq_attr "type" "sp_fp") 4 4 [(eq_attr "type" "dp_fp")])
5680 (define_function_unit
5681    "fp" 1 0 (eq_attr "type" "dp_fp") 4 4 [(eq_attr "type" "sp_fp")])
5682 @end smallexample
5683
5684 @strong{Note:} The scheduler attempts to avoid function unit conflicts
5685 and uses all the specifications in the @code{define_function_unit}
5686 expression.  It has recently been discovered that these
5687 specifications may not allow modeling of some of the newer
5688 ``superscalar'' processors that have insns using multiple pipelined
5689 units.  These insns will cause a potential conflict for the second unit
5690 used during their execution and there is no way of representing that
5691 conflict.  Any examples of how function unit conflicts work
5692 in such processors and suggestions for their representation would be
5693 welcomed.
5694
5695 @end ifset
5696 @ifset INTERNALS
5697 @node Automaton pipeline description
5698 @subsubsection Describing instruction pipeline characteristics
5699 @cindex automaton based pipeline description
5700
5701 This section describes constructions of the automaton based processor
5702 pipeline description.  The order of constructions within the machine
5703 description file is not important.
5704
5705 @findex define_automaton
5706 @cindex pipeline hazard recognizer
5707 The following optional construction describes names of automata
5708 generated and used for the pipeline hazards recognition.  Sometimes
5709 the generated finite state automaton used by the pipeline hazard
5710 recognizer is large.  If we use more than one automaton and bind functional
5711 units to the automata, the total size of the automata is usually
5712 less than the size of the single automaton.  If there is no one such
5713 construction, only one finite state automaton is generated.
5714
5715 @smallexample
5716 (define_automaton @var{automata-names})
5717 @end smallexample
5718
5719 @var{automata-names} is a string giving names of the automata.  The
5720 names are separated by commas.  All the automata should have unique names.
5721 The automaton name is used in the constructions @code{define_cpu_unit} and
5722 @code{define_query_cpu_unit}.
5723
5724 @findex define_cpu_unit
5725 @cindex processor functional units
5726 Each processor functional unit used in the description of instruction
5727 reservations should be described by the following construction.
5728
5729 @smallexample
5730 (define_cpu_unit @var{unit-names} [@var{automaton-name}])
5731 @end smallexample
5732
5733 @var{unit-names} is a string giving the names of the functional units
5734 separated by commas.  Don't use name @samp{nothing}, it is reserved
5735 for other goals.
5736
5737 @var{automaton-name} is a string giving the name of the automaton with
5738 which the unit is bound.  The automaton should be described in
5739 construction @code{define_automaton}.  You should give
5740 @dfn{automaton-name}, if there is a defined automaton.
5741
5742 The assignment of units to automata are constrained by the uses of the
5743 units in insn reservations.  The most important constraint is: if a
5744 unit reservation is present on a particular cycle of an alternative
5745 for an insn reservation, then some unit from the same automaton must
5746 be present on the same cycle for the other alternatives of the insn
5747 reservation.  The rest of the constraints are mentioned in the
5748 description of the subsequent constructions.
5749
5750 @findex define_query_cpu_unit
5751 @cindex querying function unit reservations
5752 The following construction describes CPU functional units analogously
5753 to @code{define_cpu_unit}.  The reservation of such units can be
5754 queried for an automaton state.  The instruction scheduler never
5755 queries reservation of functional units for given automaton state.  So
5756 as a rule, you don't need this construction.  This construction could
5757 be used for future code generation goals (e.g. to generate
5758 @acronym{VLIW} insn templates).
5759
5760 @smallexample
5761 (define_query_cpu_unit @var{unit-names} [@var{automaton-name}])
5762 @end smallexample
5763
5764 @var{unit-names} is a string giving names of the functional units
5765 separated by commas.
5766
5767 @var{automaton-name} is a string giving the name of the automaton with
5768 which the unit is bound.
5769
5770 @findex define_insn_reservation
5771 @cindex instruction latency time
5772 @cindex regular expressions
5773 @cindex data bypass
5774 The following construction is the major one to describe pipeline
5775 characteristics of an instruction.
5776
5777 @smallexample
5778 (define_insn_reservation @var{insn-name} @var{default_latency}
5779                          @var{condition} @var{regexp})
5780 @end smallexample
5781
5782 @var{default_latency} is a number giving latency time of the
5783 instruction.  There is an important difference between the old
5784 description and the automaton based pipeline description.  The latency
5785 time is used for all dependencies when we use the old description.  In
5786 the automaton based pipeline description, the given latency time is only
5787 used for true dependencies.  The cost of anti-dependencies is always
5788 zero and the cost of output dependencies is the difference between
5789 latency times of the producing and consuming insns (if the difference
5790 is negative, the cost is considered to be zero).  You can always
5791 change the default costs for any description by using the target hook
5792 @code{TARGET_SCHED_ADJUST_COST} (@pxref{Scheduling}).
5793
5794 @var{insn-name} is a string giving the internal name of the insn.  The
5795 internal names are used in constructions @code{define_bypass} and in
5796 the automaton description file generated for debugging.  The internal
5797 name has nothing in common with the names in @code{define_insn}.  It is a
5798 good practice to use insn classes described in the processor manual.
5799
5800 @var{condition} defines what RTL insns are described by this
5801 construction.  You should remember that you will be in trouble if
5802 @var{condition} for two or more different
5803 @code{define_insn_reservation} constructions is TRUE for an insn.  In
5804 this case what reservation will be used for the insn is not defined.
5805 Such cases are not checked during generation of the pipeline hazards
5806 recognizer because in general recognizing that two conditions may have
5807 the same value is quite difficult (especially if the conditions
5808 contain @code{symbol_ref}).  It is also not checked during the
5809 pipeline hazard recognizer work because it would slow down the
5810 recognizer considerably.
5811
5812 @var{regexp} is a string describing the reservation of the cpu's functional
5813 units by the instruction.  The reservations are described by a regular
5814 expression according to the following syntax:
5815
5816 @smallexample
5817        regexp = regexp "," oneof
5818               | oneof
5819
5820        oneof = oneof "|" allof
5821              | allof
5822
5823        allof = allof "+" repeat
5824              | repeat
5825
5826        repeat = element "*" number
5827               | element
5828
5829        element = cpu_function_unit_name
5830                | reservation_name
5831                | result_name
5832                | "nothing"
5833                | "(" regexp ")"
5834 @end smallexample
5835
5836 @itemize @bullet
5837 @item
5838 @samp{,} is used for describing the start of the next cycle in
5839 the reservation.
5840
5841 @item
5842 @samp{|} is used for describing a reservation described by the first
5843 regular expression @strong{or} a reservation described by the second
5844 regular expression @strong{or} etc.
5845
5846 @item
5847 @samp{+} is used for describing a reservation described by the first
5848 regular expression @strong{and} a reservation described by the
5849 second regular expression @strong{and} etc.
5850
5851 @item
5852 @samp{*} is used for convenience and simply means a sequence in which
5853 the regular expression are repeated @var{number} times with cycle
5854 advancing (see @samp{,}).
5855
5856 @item
5857 @samp{cpu_function_unit_name} denotes reservation of the named
5858 functional unit.
5859
5860 @item
5861 @samp{reservation_name} --- see description of construction
5862 @samp{define_reservation}.
5863
5864 @item
5865 @samp{nothing} denotes no unit reservations.
5866 @end itemize
5867
5868 @findex define_reservation
5869 Sometimes unit reservations for different insns contain common parts.
5870 In such case, you can simplify the pipeline description by describing
5871 the common part by the following construction
5872
5873 @smallexample
5874 (define_reservation @var{reservation-name} @var{regexp})
5875 @end smallexample
5876
5877 @var{reservation-name} is a string giving name of @var{regexp}.
5878 Functional unit names and reservation names are in the same name
5879 space.  So the reservation names should be different from the
5880 functional unit names and can not be the reserved name @samp{nothing}.
5881
5882 @findex define_bypass
5883 @cindex instruction latency time
5884 @cindex data bypass
5885 The following construction is used to describe exceptions in the
5886 latency time for given instruction pair.  This is so called bypasses.
5887
5888 @smallexample
5889 (define_bypass @var{number} @var{out_insn_names} @var{in_insn_names}
5890                [@var{guard}])
5891 @end smallexample
5892
5893 @var{number} defines when the result generated by the instructions
5894 given in string @var{out_insn_names} will be ready for the
5895 instructions given in string @var{in_insn_names}.  The instructions in
5896 the string are separated by commas.
5897
5898 @var{guard} is an optional string giving the name of a C function which
5899 defines an additional guard for the bypass.  The function will get the
5900 two insns as parameters.  If the function returns zero the bypass will
5901 be ignored for this case.  The additional guard is necessary to
5902 recognize complicated bypasses, e.g. when the consumer is only an address
5903 of insn @samp{store} (not a stored value).
5904
5905 @findex exclusion_set
5906 @findex presence_set
5907 @findex final_presence_set
5908 @findex absence_set
5909 @findex final_absence_set
5910 @cindex VLIW
5911 @cindex RISC
5912 The following five constructions are usually used to describe
5913 @acronym{VLIW} processors, or more precisely, to describe a placement
5914 of small instructions into @acronym{VLIW} instruction slots.  They
5915 can be used for @acronym{RISC} processors, too.
5916
5917 @smallexample
5918 (exclusion_set @var{unit-names} @var{unit-names})
5919 (presence_set @var{unit-names} @var{patterns})
5920 (final_presence_set @var{unit-names} @var{patterns})
5921 (absence_set @var{unit-names} @var{patterns})
5922 (final_absence_set @var{unit-names} @var{patterns})
5923 @end smallexample
5924
5925 @var{unit-names} is a string giving names of functional units
5926 separated by commas.
5927
5928 @var{patterns} is a string giving patterns of functional units
5929 separated by comma.  Currently pattern is is one unit or units
5930 separated by white-spaces.
5931
5932 The first construction (@samp{exclusion_set}) means that each
5933 functional unit in the first string can not be reserved simultaneously
5934 with a unit whose name is in the second string and vice versa.  For
5935 example, the construction is useful for describing processors
5936 (e.g. some SPARC processors) with a fully pipelined floating point
5937 functional unit which can execute simultaneously only single floating
5938 point insns or only double floating point insns.
5939
5940 The second construction (@samp{presence_set}) means that each
5941 functional unit in the first string can not be reserved unless at
5942 least one of pattern of units whose names are in the second string is
5943 reserved.  This is an asymmetric relation.  For example, it is useful
5944 for description that @acronym{VLIW} @samp{slot1} is reserved after
5945 @samp{slot0} reservation.  We could describe it by the following
5946 construction
5947
5948 @smallexample
5949 (presence_set "slot1" "slot0")
5950 @end smallexample
5951
5952 Or @samp{slot1} is reserved only after @samp{slot0} and unit @samp{b0}
5953 reservation.  In this case we could write
5954
5955 @smallexample
5956 (presence_set "slot1" "slot0 b0")
5957 @end smallexample
5958
5959 The third construction (@samp{final_presence_set}) is analogous to
5960 @samp{presence_set}.  The difference between them is when checking is
5961 done.  When an instruction is issued in given automaton state
5962 reflecting all current and planned unit reservations, the automaton
5963 state is changed.  The first state is a source state, the second one
5964 is a result state.  Checking for @samp{presence_set} is done on the
5965 source state reservation, checking for @samp{final_presence_set} is
5966 done on the result reservation.  This construction is useful to
5967 describe a reservation which is actually two subsequent reservations.
5968 For example, if we use
5969
5970 @smallexample
5971 (presence_set "slot1" "slot0")
5972 @end smallexample
5973
5974 the following insn will be never issued (because @samp{slot1} requires
5975 @samp{slot0} which is absent in the source state).
5976
5977 @smallexample
5978 (define_reservation "insn_and_nop" "slot0 + slot1")
5979 @end smallexample
5980
5981 but it can be issued if we use analogous @samp{final_presence_set}.
5982
5983 The forth construction (@samp{absence_set}) means that each functional
5984 unit in the first string can be reserved only if each pattern of units
5985 whose names are in the second string is not reserved.  This is an
5986 asymmetric relation (actually @samp{exclusion_set} is analogous to
5987 this one but it is symmetric).  For example, it is useful for
5988 description that @acronym{VLIW} @samp{slot0} can not be reserved after
5989 @samp{slot1} or @samp{slot2} reservation.  We could describe it by the
5990 following construction
5991
5992 @smallexample
5993 (absence_set "slot2" "slot0, slot1")
5994 @end smallexample
5995
5996 Or @samp{slot2} can not be reserved if @samp{slot0} and unit @samp{b0}
5997 are reserved or @samp{slot1} and unit @samp{b1} are reserved.  In
5998 this case we could write
5999
6000 @smallexample
6001 (absence_set "slot2" "slot0 b0, slot1 b1")
6002 @end smallexample
6003
6004 All functional units mentioned in a set should belong to the same
6005 automaton.
6006
6007 The last construction (@samp{final_absence_set}) is analogous to
6008 @samp{absence_set} but checking is done on the result (state)
6009 reservation.  See comments for @samp{final_presence_set}.
6010
6011 @findex automata_option
6012 @cindex deterministic finite state automaton
6013 @cindex nondeterministic finite state automaton
6014 @cindex finite state automaton minimization
6015 You can control the generator of the pipeline hazard recognizer with
6016 the following construction.
6017
6018 @smallexample
6019 (automata_option @var{options})
6020 @end smallexample
6021
6022 @var{options} is a string giving options which affect the generated
6023 code.  Currently there are the following options:
6024
6025 @itemize @bullet
6026 @item
6027 @dfn{no-minimization} makes no minimization of the automaton.  This is
6028 only worth to do when we are debugging the description and need to
6029 look more accurately at reservations of states.
6030
6031 @item
6032 @dfn{time} means printing additional time statistics about
6033 generation of automata.
6034
6035 @item
6036 @dfn{v} means a generation of the file describing the result automata.
6037 The file has suffix @samp{.dfa} and can be used for the description
6038 verification and debugging.
6039
6040 @item
6041 @dfn{w} means a generation of warning instead of error for
6042 non-critical errors.
6043
6044 @item
6045 @dfn{ndfa} makes nondeterministic finite state automata.  This affects
6046 the treatment of operator @samp{|} in the regular expressions.  The
6047 usual treatment of the operator is to try the first alternative and,
6048 if the reservation is not possible, the second alternative.  The
6049 nondeterministic treatment means trying all alternatives, some of them
6050 may be rejected by reservations in the subsequent insns.  You can not
6051 query functional unit reservations in nondeterministic automaton
6052 states.
6053
6054 @item
6055 @dfn{progress} means output of a progress bar showing how many states
6056 were generated so far for automaton being processed.  This is useful
6057 during debugging a @acronym{DFA} description.  If you see too many
6058 generated states, you could interrupt the generator of the pipeline
6059 hazard recognizer and try to figure out a reason for generation of the
6060 huge automaton.
6061 @end itemize
6062
6063 As an example, consider a superscalar @acronym{RISC} machine which can
6064 issue three insns (two integer insns and one floating point insn) on
6065 the cycle but can finish only two insns.  To describe this, we define
6066 the following functional units.
6067
6068 @smallexample
6069 (define_cpu_unit "i0_pipeline, i1_pipeline, f_pipeline")
6070 (define_cpu_unit "port0, port1")
6071 @end smallexample
6072
6073 All simple integer insns can be executed in any integer pipeline and
6074 their result is ready in two cycles.  The simple integer insns are
6075 issued into the first pipeline unless it is reserved, otherwise they
6076 are issued into the second pipeline.  Integer division and
6077 multiplication insns can be executed only in the second integer
6078 pipeline and their results are ready correspondingly in 8 and 4
6079 cycles.  The integer division is not pipelined, i.e. the subsequent
6080 integer division insn can not be issued until the current division
6081 insn finished.  Floating point insns are fully pipelined and their
6082 results are ready in 3 cycles.  Where the result of a floating point
6083 insn is used by an integer insn, an additional delay of one cycle is
6084 incurred.  To describe all of this we could specify
6085
6086 @smallexample
6087 (define_cpu_unit "div")
6088
6089 (define_insn_reservation "simple" 2 (eq_attr "type" "int")
6090                          "(i0_pipeline | i1_pipeline), (port0 | port1)")
6091
6092 (define_insn_reservation "mult" 4 (eq_attr "type" "mult")
6093                          "i1_pipeline, nothing*2, (port0 | port1)")
6094
6095 (define_insn_reservation "div" 8 (eq_attr "type" "div")
6096                          "i1_pipeline, div*7, div + (port0 | port1)")
6097
6098 (define_insn_reservation "float" 3 (eq_attr "type" "float")
6099                          "f_pipeline, nothing, (port0 | port1))
6100
6101 (define_bypass 4 "float" "simple,mult,div")
6102 @end smallexample
6103
6104 To simplify the description we could describe the following reservation
6105
6106 @smallexample
6107 (define_reservation "finish" "port0|port1")
6108 @end smallexample
6109
6110 and use it in all @code{define_insn_reservation} as in the following
6111 construction
6112
6113 @smallexample
6114 (define_insn_reservation "simple" 2 (eq_attr "type" "int")
6115                          "(i0_pipeline | i1_pipeline), finish")
6116 @end smallexample
6117
6118
6119 @end ifset
6120 @ifset INTERNALS
6121 @node Comparison of the two descriptions
6122 @subsubsection Drawbacks of the old pipeline description
6123 @cindex old pipeline description
6124 @cindex automaton based pipeline description
6125 @cindex processor functional units
6126 @cindex interlock delays
6127 @cindex instruction latency time
6128 @cindex pipeline hazard recognizer
6129 @cindex data bypass
6130
6131 The old instruction level parallelism description and the pipeline
6132 hazards recognizer based on it have the following drawbacks in
6133 comparison with the @acronym{DFA}-based ones:
6134
6135 @itemize @bullet
6136 @item
6137 Each functional unit is believed to be reserved at the instruction
6138 execution start.  This is a very inaccurate model for modern
6139 processors.
6140
6141 @item
6142 An inadequate description of instruction latency times.  The latency
6143 time is bound with a functional unit reserved by an instruction not
6144 with the instruction itself.  In other words, the description is
6145 oriented to describe at most one unit reservation by each instruction.
6146 It also does not permit to describe special bypasses between
6147 instruction pairs.
6148
6149 @item
6150 The implementation of the pipeline hazard recognizer interface has
6151 constraints on number of functional units.  This is a number of bits
6152 in integer on the host machine.
6153
6154 @item
6155 The interface to the pipeline hazard recognizer is more complex than
6156 one to the automaton based pipeline recognizer.
6157
6158 @item
6159 An unnatural description when you write a unit and a condition which
6160 selects instructions using the unit.  Writing all unit reservations
6161 for an instruction (an instruction class) is more natural.
6162
6163 @item
6164 The recognition of the interlock delays has a slow implementation.  The GCC
6165 scheduler supports structures which describe the unit reservations.
6166 The more functional units a processor has, the slower its pipeline hazard
6167 recognizer will be.  Such an implementation would become even slower when we
6168 allowed to
6169 reserve functional units not only at the instruction execution start.
6170 In an automaton based pipeline hazard recognizer, speed is not dependent
6171 on processor complexity.
6172 @end itemize
6173
6174 @end ifset
6175 @ifset INTERNALS
6176 @node Conditional Execution
6177 @section Conditional Execution
6178 @cindex conditional execution
6179 @cindex predication
6180
6181 A number of architectures provide for some form of conditional
6182 execution, or predication.  The hallmark of this feature is the
6183 ability to nullify most of the instructions in the instruction set.
6184 When the instruction set is large and not entirely symmetric, it
6185 can be quite tedious to describe these forms directly in the
6186 @file{.md} file.  An alternative is the @code{define_cond_exec} template.
6187
6188 @findex define_cond_exec
6189 @smallexample
6190 (define_cond_exec
6191   [@var{predicate-pattern}]
6192   "@var{condition}"
6193   "@var{output-template}")
6194 @end smallexample
6195
6196 @var{predicate-pattern} is the condition that must be true for the
6197 insn to be executed at runtime and should match a relational operator.
6198 One can use @code{match_operator} to match several relational operators
6199 at once.  Any @code{match_operand} operands must have no more than one
6200 alternative.
6201
6202 @var{condition} is a C expression that must be true for the generated
6203 pattern to match.
6204
6205 @findex current_insn_predicate
6206 @var{output-template} is a string similar to the @code{define_insn}
6207 output template (@pxref{Output Template}), except that the @samp{*}
6208 and @samp{@@} special cases do not apply.  This is only useful if the
6209 assembly text for the predicate is a simple prefix to the main insn.
6210 In order to handle the general case, there is a global variable
6211 @code{current_insn_predicate} that will contain the entire predicate
6212 if the current insn is predicated, and will otherwise be @code{NULL}.
6213
6214 When @code{define_cond_exec} is used, an implicit reference to
6215 the @code{predicable} instruction attribute is made.
6216 @xref{Insn Attributes}.  This attribute must be boolean (i.e.@: have
6217 exactly two elements in its @var{list-of-values}).  Further, it must
6218 not be used with complex expressions.  That is, the default and all
6219 uses in the insns must be a simple constant, not dependent on the
6220 alternative or anything else.
6221
6222 For each @code{define_insn} for which the @code{predicable}
6223 attribute is true, a new @code{define_insn} pattern will be
6224 generated that matches a predicated version of the instruction.
6225 For example,
6226
6227 @smallexample
6228 (define_insn "addsi"
6229   [(set (match_operand:SI 0 "register_operand" "r")
6230         (plus:SI (match_operand:SI 1 "register_operand" "r")
6231                  (match_operand:SI 2 "register_operand" "r")))]
6232   "@var{test1}"
6233   "add %2,%1,%0")
6234
6235 (define_cond_exec
6236   [(ne (match_operand:CC 0 "register_operand" "c")
6237        (const_int 0))]
6238   "@var{test2}"
6239   "(%0)")
6240 @end smallexample
6241
6242 @noindent
6243 generates a new pattern
6244
6245 @smallexample
6246 (define_insn ""
6247   [(cond_exec
6248      (ne (match_operand:CC 3 "register_operand" "c") (const_int 0))
6249      (set (match_operand:SI 0 "register_operand" "r")
6250           (plus:SI (match_operand:SI 1 "register_operand" "r")
6251                    (match_operand:SI 2 "register_operand" "r"))))]
6252   "(@var{test2}) && (@var{test1})"
6253   "(%3) add %2,%1,%0")
6254 @end smallexample
6255
6256 @end ifset
6257 @ifset INTERNALS
6258 @node Constant Definitions
6259 @section Constant Definitions
6260 @cindex constant definitions
6261 @findex define_constants
6262
6263 Using literal constants inside instruction patterns reduces legibility and
6264 can be a maintenance problem.
6265
6266 To overcome this problem, you may use the @code{define_constants}
6267 expression.  It contains a vector of name-value pairs.  From that
6268 point on, wherever any of the names appears in the MD file, it is as
6269 if the corresponding value had been written instead.  You may use
6270 @code{define_constants} multiple times; each appearance adds more
6271 constants to the table.  It is an error to redefine a constant with
6272 a different value.
6273
6274 To come back to the a29k load multiple example, instead of
6275
6276 @smallexample
6277 (define_insn ""
6278   [(match_parallel 0 "load_multiple_operation"
6279      [(set (match_operand:SI 1 "gpc_reg_operand" "=r")
6280            (match_operand:SI 2 "memory_operand" "m"))
6281       (use (reg:SI 179))
6282       (clobber (reg:SI 179))])]
6283   ""
6284   "loadm 0,0,%1,%2")
6285 @end smallexample
6286
6287 You could write:
6288
6289 @smallexample
6290 (define_constants [
6291     (R_BP 177)
6292     (R_FC 178)
6293     (R_CR 179)
6294     (R_Q  180)
6295 ])
6296
6297 (define_insn ""
6298   [(match_parallel 0 "load_multiple_operation"
6299      [(set (match_operand:SI 1 "gpc_reg_operand" "=r")
6300            (match_operand:SI 2 "memory_operand" "m"))
6301       (use (reg:SI R_CR))
6302       (clobber (reg:SI R_CR))])]
6303   ""
6304   "loadm 0,0,%1,%2")
6305 @end smallexample
6306
6307 The constants that are defined with a define_constant are also output
6308 in the insn-codes.h header file as #defines.
6309 @end ifset