Bring in branch-8 bugfixes into GCC80.
[dragonfly.git] / contrib / gcc-8.0 / gcc / rtlanal.c
1 /* Analyze RTL for GNU compiler.
2    Copyright (C) 1987-2018 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3.  If not see
18 <http://www.gnu.org/licenses/>.  */
19
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "target.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "predict.h"
29 #include "df.h"
30 #include "memmodel.h"
31 #include "tm_p.h"
32 #include "insn-config.h"
33 #include "regs.h"
34 #include "emit-rtl.h"  /* FIXME: Can go away once crtl is moved to rtl.h.  */
35 #include "recog.h"
36 #include "addresses.h"
37 #include "rtl-iter.h"
38
39 /* Forward declarations */
40 static void set_of_1 (rtx, const_rtx, void *);
41 static bool covers_regno_p (const_rtx, unsigned int);
42 static bool covers_regno_no_parallel_p (const_rtx, unsigned int);
43 static int computed_jump_p_1 (const_rtx);
44 static void parms_set (rtx, const_rtx, void *);
45
46 static unsigned HOST_WIDE_INT cached_nonzero_bits (const_rtx, scalar_int_mode,
47                                                    const_rtx, machine_mode,
48                                                    unsigned HOST_WIDE_INT);
49 static unsigned HOST_WIDE_INT nonzero_bits1 (const_rtx, scalar_int_mode,
50                                              const_rtx, machine_mode,
51                                              unsigned HOST_WIDE_INT);
52 static unsigned int cached_num_sign_bit_copies (const_rtx, scalar_int_mode,
53                                                 const_rtx, machine_mode,
54                                                 unsigned int);
55 static unsigned int num_sign_bit_copies1 (const_rtx, scalar_int_mode,
56                                           const_rtx, machine_mode,
57                                           unsigned int);
58
59 rtx_subrtx_bound_info rtx_all_subrtx_bounds[NUM_RTX_CODE];
60 rtx_subrtx_bound_info rtx_nonconst_subrtx_bounds[NUM_RTX_CODE];
61
62 /* Truncation narrows the mode from SOURCE mode to DESTINATION mode.
63    If TARGET_MODE_REP_EXTENDED (DESTINATION, DESTINATION_REP) is
64    SIGN_EXTEND then while narrowing we also have to enforce the
65    representation and sign-extend the value to mode DESTINATION_REP.
66
67    If the value is already sign-extended to DESTINATION_REP mode we
68    can just switch to DESTINATION mode on it.  For each pair of
69    integral modes SOURCE and DESTINATION, when truncating from SOURCE
70    to DESTINATION, NUM_SIGN_BIT_COPIES_IN_REP[SOURCE][DESTINATION]
71    contains the number of high-order bits in SOURCE that have to be
72    copies of the sign-bit so that we can do this mode-switch to
73    DESTINATION.  */
74
75 static unsigned int
76 num_sign_bit_copies_in_rep[MAX_MODE_INT + 1][MAX_MODE_INT + 1];
77 \f
78 /* Store X into index I of ARRAY.  ARRAY is known to have at least I
79    elements.  Return the new base of ARRAY.  */
80
81 template <typename T>
82 typename T::value_type *
83 generic_subrtx_iterator <T>::add_single_to_queue (array_type &array,
84                                                   value_type *base,
85                                                   size_t i, value_type x)
86 {
87   if (base == array.stack)
88     {
89       if (i < LOCAL_ELEMS)
90         {
91           base[i] = x;
92           return base;
93         }
94       gcc_checking_assert (i == LOCAL_ELEMS);
95       /* A previous iteration might also have moved from the stack to the
96          heap, in which case the heap array will already be big enough.  */
97       if (vec_safe_length (array.heap) <= i)
98         vec_safe_grow (array.heap, i + 1);
99       base = array.heap->address ();
100       memcpy (base, array.stack, sizeof (array.stack));
101       base[LOCAL_ELEMS] = x;
102       return base;
103     }
104   unsigned int length = array.heap->length ();
105   if (length > i)
106     {
107       gcc_checking_assert (base == array.heap->address ());
108       base[i] = x;
109       return base;
110     }
111   else
112     {
113       gcc_checking_assert (i == length);
114       vec_safe_push (array.heap, x);
115       return array.heap->address ();
116     }
117 }
118
119 /* Add the subrtxes of X to worklist ARRAY, starting at END.  Return the
120    number of elements added to the worklist.  */
121
122 template <typename T>
123 size_t
124 generic_subrtx_iterator <T>::add_subrtxes_to_queue (array_type &array,
125                                                     value_type *base,
126                                                     size_t end, rtx_type x)
127 {
128   enum rtx_code code = GET_CODE (x);
129   const char *format = GET_RTX_FORMAT (code);
130   size_t orig_end = end;
131   if (__builtin_expect (INSN_P (x), false))
132     {
133       /* Put the pattern at the top of the queue, since that's what
134          we're likely to want most.  It also allows for the SEQUENCE
135          code below.  */
136       for (int i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; --i)
137         if (format[i] == 'e')
138           {
139             value_type subx = T::get_value (x->u.fld[i].rt_rtx);
140             if (__builtin_expect (end < LOCAL_ELEMS, true))
141               base[end++] = subx;
142             else
143               base = add_single_to_queue (array, base, end++, subx);
144           }
145     }
146   else
147     for (int i = 0; format[i]; ++i)
148       if (format[i] == 'e')
149         {
150           value_type subx = T::get_value (x->u.fld[i].rt_rtx);
151           if (__builtin_expect (end < LOCAL_ELEMS, true))
152             base[end++] = subx;
153           else
154             base = add_single_to_queue (array, base, end++, subx);
155         }
156       else if (format[i] == 'E')
157         {
158           unsigned int length = GET_NUM_ELEM (x->u.fld[i].rt_rtvec);
159           rtx *vec = x->u.fld[i].rt_rtvec->elem;
160           if (__builtin_expect (end + length <= LOCAL_ELEMS, true))
161             for (unsigned int j = 0; j < length; j++)
162               base[end++] = T::get_value (vec[j]);
163           else
164             for (unsigned int j = 0; j < length; j++)
165               base = add_single_to_queue (array, base, end++,
166                                           T::get_value (vec[j]));
167           if (code == SEQUENCE && end == length)
168             /* If the subrtxes of the sequence fill the entire array then
169                we know that no other parts of a containing insn are queued.
170                The caller is therefore iterating over the sequence as a
171                PATTERN (...), so we also want the patterns of the
172                subinstructions.  */
173             for (unsigned int j = 0; j < length; j++)
174               {
175                 typename T::rtx_type x = T::get_rtx (base[j]);
176                 if (INSN_P (x))
177                   base[j] = T::get_value (PATTERN (x));
178               }
179         }
180   return end - orig_end;
181 }
182
183 template <typename T>
184 void
185 generic_subrtx_iterator <T>::free_array (array_type &array)
186 {
187   vec_free (array.heap);
188 }
189
190 template <typename T>
191 const size_t generic_subrtx_iterator <T>::LOCAL_ELEMS;
192
193 template class generic_subrtx_iterator <const_rtx_accessor>;
194 template class generic_subrtx_iterator <rtx_var_accessor>;
195 template class generic_subrtx_iterator <rtx_ptr_accessor>;
196
197 /* Return 1 if the value of X is unstable
198    (would be different at a different point in the program).
199    The frame pointer, arg pointer, etc. are considered stable
200    (within one function) and so is anything marked `unchanging'.  */
201
202 int
203 rtx_unstable_p (const_rtx x)
204 {
205   const RTX_CODE code = GET_CODE (x);
206   int i;
207   const char *fmt;
208
209   switch (code)
210     {
211     case MEM:
212       return !MEM_READONLY_P (x) || rtx_unstable_p (XEXP (x, 0));
213
214     case CONST:
215     CASE_CONST_ANY:
216     case SYMBOL_REF:
217     case LABEL_REF:
218       return 0;
219
220     case REG:
221       /* As in rtx_varies_p, we have to use the actual rtx, not reg number.  */
222       if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
223           /* The arg pointer varies if it is not a fixed register.  */
224           || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
225         return 0;
226       /* ??? When call-clobbered, the value is stable modulo the restore
227          that must happen after a call.  This currently screws up local-alloc
228          into believing that the restore is not needed.  */
229       if (!PIC_OFFSET_TABLE_REG_CALL_CLOBBERED && x == pic_offset_table_rtx)
230         return 0;
231       return 1;
232
233     case ASM_OPERANDS:
234       if (MEM_VOLATILE_P (x))
235         return 1;
236
237       /* Fall through.  */
238
239     default:
240       break;
241     }
242
243   fmt = GET_RTX_FORMAT (code);
244   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
245     if (fmt[i] == 'e')
246       {
247         if (rtx_unstable_p (XEXP (x, i)))
248           return 1;
249       }
250     else if (fmt[i] == 'E')
251       {
252         int j;
253         for (j = 0; j < XVECLEN (x, i); j++)
254           if (rtx_unstable_p (XVECEXP (x, i, j)))
255             return 1;
256       }
257
258   return 0;
259 }
260
261 /* Return 1 if X has a value that can vary even between two
262    executions of the program.  0 means X can be compared reliably
263    against certain constants or near-constants.
264    FOR_ALIAS is nonzero if we are called from alias analysis; if it is
265    zero, we are slightly more conservative.
266    The frame pointer and the arg pointer are considered constant.  */
267
268 bool
269 rtx_varies_p (const_rtx x, bool for_alias)
270 {
271   RTX_CODE code;
272   int i;
273   const char *fmt;
274
275   if (!x)
276     return 0;
277
278   code = GET_CODE (x);
279   switch (code)
280     {
281     case MEM:
282       return !MEM_READONLY_P (x) || rtx_varies_p (XEXP (x, 0), for_alias);
283
284     case CONST:
285     CASE_CONST_ANY:
286     case SYMBOL_REF:
287     case LABEL_REF:
288       return 0;
289
290     case REG:
291       /* Note that we have to test for the actual rtx used for the frame
292          and arg pointers and not just the register number in case we have
293          eliminated the frame and/or arg pointer and are using it
294          for pseudos.  */
295       if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
296           /* The arg pointer varies if it is not a fixed register.  */
297           || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
298         return 0;
299       if (x == pic_offset_table_rtx
300           /* ??? When call-clobbered, the value is stable modulo the restore
301              that must happen after a call.  This currently screws up
302              local-alloc into believing that the restore is not needed, so we
303              must return 0 only if we are called from alias analysis.  */
304           && (!PIC_OFFSET_TABLE_REG_CALL_CLOBBERED || for_alias))
305         return 0;
306       return 1;
307
308     case LO_SUM:
309       /* The operand 0 of a LO_SUM is considered constant
310          (in fact it is related specifically to operand 1)
311          during alias analysis.  */
312       return (! for_alias && rtx_varies_p (XEXP (x, 0), for_alias))
313              || rtx_varies_p (XEXP (x, 1), for_alias);
314
315     case ASM_OPERANDS:
316       if (MEM_VOLATILE_P (x))
317         return 1;
318
319       /* Fall through.  */
320
321     default:
322       break;
323     }
324
325   fmt = GET_RTX_FORMAT (code);
326   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
327     if (fmt[i] == 'e')
328       {
329         if (rtx_varies_p (XEXP (x, i), for_alias))
330           return 1;
331       }
332     else if (fmt[i] == 'E')
333       {
334         int j;
335         for (j = 0; j < XVECLEN (x, i); j++)
336           if (rtx_varies_p (XVECEXP (x, i, j), for_alias))
337             return 1;
338       }
339
340   return 0;
341 }
342
343 /* Compute an approximation for the offset between the register
344    FROM and TO for the current function, as it was at the start
345    of the routine.  */
346
347 static poly_int64
348 get_initial_register_offset (int from, int to)
349 {
350   static const struct elim_table_t
351   {
352     const int from;
353     const int to;
354   } table[] = ELIMINABLE_REGS;
355   poly_int64 offset1, offset2;
356   unsigned int i, j;
357
358   if (to == from)
359     return 0;
360
361   /* It is not safe to call INITIAL_ELIMINATION_OFFSET before the epilogue
362      is completed, but we need to give at least an estimate for the stack
363      pointer based on the frame size.  */
364   if (!epilogue_completed)
365     {
366       offset1 = crtl->outgoing_args_size + get_frame_size ();
367 #if !STACK_GROWS_DOWNWARD
368       offset1 = - offset1;
369 #endif
370       if (to == STACK_POINTER_REGNUM)
371         return offset1;
372       else if (from == STACK_POINTER_REGNUM)
373         return - offset1;
374       else
375         return 0;
376      }
377
378   for (i = 0; i < ARRAY_SIZE (table); i++)
379       if (table[i].from == from)
380         {
381           if (table[i].to == to)
382             {
383               INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
384                                           offset1);
385               return offset1;
386             }
387           for (j = 0; j < ARRAY_SIZE (table); j++)
388             {
389               if (table[j].to == to
390                   && table[j].from == table[i].to)
391                 {
392                   INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
393                                               offset1);
394                   INITIAL_ELIMINATION_OFFSET (table[j].from, table[j].to,
395                                               offset2);
396                   return offset1 + offset2;
397                 }
398               if (table[j].from == to
399                   && table[j].to == table[i].to)
400                 {
401                   INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
402                                               offset1);
403                   INITIAL_ELIMINATION_OFFSET (table[j].from, table[j].to,
404                                               offset2);
405                   return offset1 - offset2;
406                 }
407             }
408         }
409       else if (table[i].to == from)
410         {
411           if (table[i].from == to)
412             {
413               INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
414                                           offset1);
415               return - offset1;
416             }
417           for (j = 0; j < ARRAY_SIZE (table); j++)
418             {
419               if (table[j].to == to
420                   && table[j].from == table[i].from)
421                 {
422                   INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
423                                               offset1);
424                   INITIAL_ELIMINATION_OFFSET (table[j].from, table[j].to,
425                                               offset2);
426                   return - offset1 + offset2;
427                 }
428               if (table[j].from == to
429                   && table[j].to == table[i].from)
430                 {
431                   INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
432                                               offset1);
433                   INITIAL_ELIMINATION_OFFSET (table[j].from, table[j].to,
434                                               offset2);
435                   return - offset1 - offset2;
436                 }
437             }
438         }
439
440   /* If the requested register combination was not found,
441      try a different more simple combination.  */
442   if (from == ARG_POINTER_REGNUM)
443     return get_initial_register_offset (HARD_FRAME_POINTER_REGNUM, to);
444   else if (to == ARG_POINTER_REGNUM)
445     return get_initial_register_offset (from, HARD_FRAME_POINTER_REGNUM);
446   else if (from == HARD_FRAME_POINTER_REGNUM)
447     return get_initial_register_offset (FRAME_POINTER_REGNUM, to);
448   else if (to == HARD_FRAME_POINTER_REGNUM)
449     return get_initial_register_offset (from, FRAME_POINTER_REGNUM);
450   else
451     return 0;
452 }
453
454 /* Return nonzero if the use of X+OFFSET as an address in a MEM with SIZE
455    bytes can cause a trap.  MODE is the mode of the MEM (not that of X) and
456    UNALIGNED_MEMS controls whether nonzero is returned for unaligned memory
457    references on strict alignment machines.  */
458
459 static int
460 rtx_addr_can_trap_p_1 (const_rtx x, poly_int64 offset, poly_int64 size,
461                        machine_mode mode, bool unaligned_mems)
462 {
463   enum rtx_code code = GET_CODE (x);
464   gcc_checking_assert (mode == BLKmode || known_size_p (size));
465
466   /* The offset must be a multiple of the mode size if we are considering
467      unaligned memory references on strict alignment machines.  */
468   if (STRICT_ALIGNMENT && unaligned_mems && mode != BLKmode)
469     {
470       poly_int64 actual_offset = offset;
471
472 #ifdef SPARC_STACK_BOUNDARY_HACK
473       /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
474              the real alignment of %sp.  However, when it does this, the
475              alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY.  */
476       if (SPARC_STACK_BOUNDARY_HACK
477           && (x == stack_pointer_rtx || x == hard_frame_pointer_rtx))
478         actual_offset -= STACK_POINTER_OFFSET;
479 #endif
480
481       if (!multiple_p (actual_offset, GET_MODE_SIZE (mode)))
482         return 1;
483     }
484
485   switch (code)
486     {
487     case SYMBOL_REF:
488       if (SYMBOL_REF_WEAK (x))
489         return 1;
490       if (!CONSTANT_POOL_ADDRESS_P (x) && !SYMBOL_REF_FUNCTION_P (x))
491         {
492           tree decl;
493           poly_int64 decl_size;
494
495           if (maybe_lt (offset, 0))
496             return 1;
497           if (!known_size_p (size))
498             return maybe_ne (offset, 0);
499
500           /* If the size of the access or of the symbol is unknown,
501              assume the worst.  */
502           decl = SYMBOL_REF_DECL (x);
503
504           /* Else check that the access is in bounds.  TODO: restructure
505              expr_size/tree_expr_size/int_expr_size and just use the latter.  */
506           if (!decl)
507             decl_size = -1;
508           else if (DECL_P (decl) && DECL_SIZE_UNIT (decl))
509             {
510               if (!poly_int_tree_p (DECL_SIZE_UNIT (decl), &decl_size))
511                 decl_size = -1;
512             }
513           else if (TREE_CODE (decl) == STRING_CST)
514             decl_size = TREE_STRING_LENGTH (decl);
515           else if (TYPE_SIZE_UNIT (TREE_TYPE (decl)))
516             decl_size = int_size_in_bytes (TREE_TYPE (decl));
517           else
518             decl_size = -1;
519
520           return (!known_size_p (decl_size) || known_eq (decl_size, 0)
521                   ? maybe_ne (offset, 0)
522                   : maybe_gt (offset + size, decl_size));
523         }
524
525       return 0;
526
527     case LABEL_REF:
528       return 0;
529
530     case REG:
531       /* Stack references are assumed not to trap, but we need to deal with
532          nonsensical offsets.  */
533       if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
534          || x == stack_pointer_rtx
535          /* The arg pointer varies if it is not a fixed register.  */
536          || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
537         {
538 #ifdef RED_ZONE_SIZE
539           poly_int64 red_zone_size = RED_ZONE_SIZE;
540 #else
541           poly_int64 red_zone_size = 0;
542 #endif
543           poly_int64 stack_boundary = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
544           poly_int64 low_bound, high_bound;
545
546           if (!known_size_p (size))
547             return 1;
548
549           if (x == frame_pointer_rtx)
550             {
551               if (FRAME_GROWS_DOWNWARD)
552                 {
553                   high_bound = targetm.starting_frame_offset ();
554                   low_bound  = high_bound - get_frame_size ();
555                 }
556               else
557                 {
558                   low_bound  = targetm.starting_frame_offset ();
559                   high_bound = low_bound + get_frame_size ();
560                 }
561             }
562           else if (x == hard_frame_pointer_rtx)
563             {
564               poly_int64 sp_offset
565                 = get_initial_register_offset (STACK_POINTER_REGNUM,
566                                                HARD_FRAME_POINTER_REGNUM);
567               poly_int64 ap_offset
568                 = get_initial_register_offset (ARG_POINTER_REGNUM,
569                                                HARD_FRAME_POINTER_REGNUM);
570
571 #if STACK_GROWS_DOWNWARD
572               low_bound  = sp_offset - red_zone_size - stack_boundary;
573               high_bound = ap_offset
574                            + FIRST_PARM_OFFSET (current_function_decl)
575 #if !ARGS_GROW_DOWNWARD
576                            + crtl->args.size
577 #endif
578                            + stack_boundary;
579 #else
580               high_bound = sp_offset + red_zone_size + stack_boundary;
581               low_bound  = ap_offset
582                            + FIRST_PARM_OFFSET (current_function_decl)
583 #if ARGS_GROW_DOWNWARD
584                            - crtl->args.size
585 #endif
586                            - stack_boundary;
587 #endif
588             }
589           else if (x == stack_pointer_rtx)
590             {
591               poly_int64 ap_offset
592                 = get_initial_register_offset (ARG_POINTER_REGNUM,
593                                                STACK_POINTER_REGNUM);
594
595 #if STACK_GROWS_DOWNWARD
596               low_bound  = - red_zone_size - stack_boundary;
597               high_bound = ap_offset
598                            + FIRST_PARM_OFFSET (current_function_decl)
599 #if !ARGS_GROW_DOWNWARD
600                            + crtl->args.size
601 #endif
602                            + stack_boundary;
603 #else
604               high_bound = red_zone_size + stack_boundary;
605               low_bound  = ap_offset
606                            + FIRST_PARM_OFFSET (current_function_decl)
607 #if ARGS_GROW_DOWNWARD
608                            - crtl->args.size
609 #endif
610                            - stack_boundary;
611 #endif
612             }
613           else
614             {
615               /* We assume that accesses are safe to at least the
616                  next stack boundary.
617                  Examples are varargs and __builtin_return_address.  */
618 #if ARGS_GROW_DOWNWARD
619               high_bound = FIRST_PARM_OFFSET (current_function_decl)
620                            + stack_boundary;
621               low_bound  = FIRST_PARM_OFFSET (current_function_decl)
622                            - crtl->args.size - stack_boundary;
623 #else
624               low_bound  = FIRST_PARM_OFFSET (current_function_decl)
625                            - stack_boundary;
626               high_bound = FIRST_PARM_OFFSET (current_function_decl)
627                            + crtl->args.size + stack_boundary;
628 #endif
629             }
630
631           if (known_ge (offset, low_bound)
632               && known_le (offset, high_bound - size))
633             return 0;
634           return 1;
635         }
636       /* All of the virtual frame registers are stack references.  */
637       if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
638           && REGNO (x) <= LAST_VIRTUAL_REGISTER)
639         return 0;
640       return 1;
641
642     case CONST:
643       return rtx_addr_can_trap_p_1 (XEXP (x, 0), offset, size,
644                                     mode, unaligned_mems);
645
646     case PLUS:
647       /* An address is assumed not to trap if:
648          - it is the pic register plus a const unspec without offset.  */
649       if (XEXP (x, 0) == pic_offset_table_rtx
650           && GET_CODE (XEXP (x, 1)) == CONST
651           && GET_CODE (XEXP (XEXP (x, 1), 0)) == UNSPEC
652           && known_eq (offset, 0))
653         return 0;
654
655       /* - or it is an address that can't trap plus a constant integer.  */
656       if (CONST_INT_P (XEXP (x, 1))
657           && !rtx_addr_can_trap_p_1 (XEXP (x, 0), offset + INTVAL (XEXP (x, 1)),
658                                      size, mode, unaligned_mems))
659         return 0;
660
661       return 1;
662
663     case LO_SUM:
664     case PRE_MODIFY:
665       return rtx_addr_can_trap_p_1 (XEXP (x, 1), offset, size,
666                                     mode, unaligned_mems);
667
668     case PRE_DEC:
669     case PRE_INC:
670     case POST_DEC:
671     case POST_INC:
672     case POST_MODIFY:
673       return rtx_addr_can_trap_p_1 (XEXP (x, 0), offset, size,
674                                     mode, unaligned_mems);
675
676     default:
677       break;
678     }
679
680   /* If it isn't one of the case above, it can cause a trap.  */
681   return 1;
682 }
683
684 /* Return nonzero if the use of X as an address in a MEM can cause a trap.  */
685
686 int
687 rtx_addr_can_trap_p (const_rtx x)
688 {
689   return rtx_addr_can_trap_p_1 (x, 0, -1, BLKmode, false);
690 }
691
692 /* Return true if X contains a MEM subrtx.  */
693
694 bool
695 contains_mem_rtx_p (rtx x)
696 {
697   subrtx_iterator::array_type array;
698   FOR_EACH_SUBRTX (iter, array, x, ALL)
699     if (MEM_P (*iter))
700       return true;
701
702   return false;
703 }
704
705 /* Return true if X is an address that is known to not be zero.  */
706
707 bool
708 nonzero_address_p (const_rtx x)
709 {
710   const enum rtx_code code = GET_CODE (x);
711
712   switch (code)
713     {
714     case SYMBOL_REF:
715       return flag_delete_null_pointer_checks && !SYMBOL_REF_WEAK (x);
716
717     case LABEL_REF:
718       return true;
719
720     case REG:
721       /* As in rtx_varies_p, we have to use the actual rtx, not reg number.  */
722       if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
723           || x == stack_pointer_rtx
724           || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
725         return true;
726       /* All of the virtual frame registers are stack references.  */
727       if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
728           && REGNO (x) <= LAST_VIRTUAL_REGISTER)
729         return true;
730       return false;
731
732     case CONST:
733       return nonzero_address_p (XEXP (x, 0));
734
735     case PLUS:
736       /* Handle PIC references.  */
737       if (XEXP (x, 0) == pic_offset_table_rtx
738                && CONSTANT_P (XEXP (x, 1)))
739         return true;
740       return false;
741
742     case PRE_MODIFY:
743       /* Similar to the above; allow positive offsets.  Further, since
744          auto-inc is only allowed in memories, the register must be a
745          pointer.  */
746       if (CONST_INT_P (XEXP (x, 1))
747           && INTVAL (XEXP (x, 1)) > 0)
748         return true;
749       return nonzero_address_p (XEXP (x, 0));
750
751     case PRE_INC:
752       /* Similarly.  Further, the offset is always positive.  */
753       return true;
754
755     case PRE_DEC:
756     case POST_DEC:
757     case POST_INC:
758     case POST_MODIFY:
759       return nonzero_address_p (XEXP (x, 0));
760
761     case LO_SUM:
762       return nonzero_address_p (XEXP (x, 1));
763
764     default:
765       break;
766     }
767
768   /* If it isn't one of the case above, might be zero.  */
769   return false;
770 }
771
772 /* Return 1 if X refers to a memory location whose address
773    cannot be compared reliably with constant addresses,
774    or if X refers to a BLKmode memory object.
775    FOR_ALIAS is nonzero if we are called from alias analysis; if it is
776    zero, we are slightly more conservative.  */
777
778 bool
779 rtx_addr_varies_p (const_rtx x, bool for_alias)
780 {
781   enum rtx_code code;
782   int i;
783   const char *fmt;
784
785   if (x == 0)
786     return 0;
787
788   code = GET_CODE (x);
789   if (code == MEM)
790     return GET_MODE (x) == BLKmode || rtx_varies_p (XEXP (x, 0), for_alias);
791
792   fmt = GET_RTX_FORMAT (code);
793   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
794     if (fmt[i] == 'e')
795       {
796         if (rtx_addr_varies_p (XEXP (x, i), for_alias))
797           return 1;
798       }
799     else if (fmt[i] == 'E')
800       {
801         int j;
802         for (j = 0; j < XVECLEN (x, i); j++)
803           if (rtx_addr_varies_p (XVECEXP (x, i, j), for_alias))
804             return 1;
805       }
806   return 0;
807 }
808 \f
809 /* Return the CALL in X if there is one.  */
810
811 rtx
812 get_call_rtx_from (rtx x)
813 {
814   if (INSN_P (x))
815     x = PATTERN (x);
816   if (GET_CODE (x) == PARALLEL)
817     x = XVECEXP (x, 0, 0);
818   if (GET_CODE (x) == SET)
819     x = SET_SRC (x);
820   if (GET_CODE (x) == CALL && MEM_P (XEXP (x, 0)))
821     return x;
822   return NULL_RTX;
823 }
824 \f
825 /* Return the value of the integer term in X, if one is apparent;
826    otherwise return 0.
827    Only obvious integer terms are detected.
828    This is used in cse.c with the `related_value' field.  */
829
830 HOST_WIDE_INT
831 get_integer_term (const_rtx x)
832 {
833   if (GET_CODE (x) == CONST)
834     x = XEXP (x, 0);
835
836   if (GET_CODE (x) == MINUS
837       && CONST_INT_P (XEXP (x, 1)))
838     return - INTVAL (XEXP (x, 1));
839   if (GET_CODE (x) == PLUS
840       && CONST_INT_P (XEXP (x, 1)))
841     return INTVAL (XEXP (x, 1));
842   return 0;
843 }
844
845 /* If X is a constant, return the value sans apparent integer term;
846    otherwise return 0.
847    Only obvious integer terms are detected.  */
848
849 rtx
850 get_related_value (const_rtx x)
851 {
852   if (GET_CODE (x) != CONST)
853     return 0;
854   x = XEXP (x, 0);
855   if (GET_CODE (x) == PLUS
856       && CONST_INT_P (XEXP (x, 1)))
857     return XEXP (x, 0);
858   else if (GET_CODE (x) == MINUS
859            && CONST_INT_P (XEXP (x, 1)))
860     return XEXP (x, 0);
861   return 0;
862 }
863 \f
864 /* Return true if SYMBOL is a SYMBOL_REF and OFFSET + SYMBOL points
865    to somewhere in the same object or object_block as SYMBOL.  */
866
867 bool
868 offset_within_block_p (const_rtx symbol, HOST_WIDE_INT offset)
869 {
870   tree decl;
871
872   if (GET_CODE (symbol) != SYMBOL_REF)
873     return false;
874
875   if (offset == 0)
876     return true;
877
878   if (offset > 0)
879     {
880       if (CONSTANT_POOL_ADDRESS_P (symbol)
881           && offset < (int) GET_MODE_SIZE (get_pool_mode (symbol)))
882         return true;
883
884       decl = SYMBOL_REF_DECL (symbol);
885       if (decl && offset < int_size_in_bytes (TREE_TYPE (decl)))
886         return true;
887     }
888
889   if (SYMBOL_REF_HAS_BLOCK_INFO_P (symbol)
890       && SYMBOL_REF_BLOCK (symbol)
891       && SYMBOL_REF_BLOCK_OFFSET (symbol) >= 0
892       && ((unsigned HOST_WIDE_INT) offset + SYMBOL_REF_BLOCK_OFFSET (symbol)
893           < (unsigned HOST_WIDE_INT) SYMBOL_REF_BLOCK (symbol)->size))
894     return true;
895
896   return false;
897 }
898
899 /* Split X into a base and a constant offset, storing them in *BASE_OUT
900    and *OFFSET_OUT respectively.  */
901
902 void
903 split_const (rtx x, rtx *base_out, rtx *offset_out)
904 {
905   if (GET_CODE (x) == CONST)
906     {
907       x = XEXP (x, 0);
908       if (GET_CODE (x) == PLUS && CONST_INT_P (XEXP (x, 1)))
909         {
910           *base_out = XEXP (x, 0);
911           *offset_out = XEXP (x, 1);
912           return;
913         }
914     }
915   *base_out = x;
916   *offset_out = const0_rtx;
917 }
918
919 /* Express integer value X as some value Y plus a polynomial offset,
920    where Y is either const0_rtx, X or something within X (as opposed
921    to a new rtx).  Return the Y and store the offset in *OFFSET_OUT.  */
922
923 rtx
924 strip_offset (rtx x, poly_int64_pod *offset_out)
925 {
926   rtx base = const0_rtx;
927   rtx test = x;
928   if (GET_CODE (test) == CONST)
929     test = XEXP (test, 0);
930   if (GET_CODE (test) == PLUS)
931     {
932       base = XEXP (test, 0);
933       test = XEXP (test, 1);
934     }
935   if (poly_int_rtx_p (test, offset_out))
936     return base;
937   *offset_out = 0;
938   return x;
939 }
940
941 /* Return the argument size in REG_ARGS_SIZE note X.  */
942
943 poly_int64
944 get_args_size (const_rtx x)
945 {
946   gcc_checking_assert (REG_NOTE_KIND (x) == REG_ARGS_SIZE);
947   return rtx_to_poly_int64 (XEXP (x, 0));
948 }
949 \f
950 /* Return the number of places FIND appears within X.  If COUNT_DEST is
951    zero, we do not count occurrences inside the destination of a SET.  */
952
953 int
954 count_occurrences (const_rtx x, const_rtx find, int count_dest)
955 {
956   int i, j;
957   enum rtx_code code;
958   const char *format_ptr;
959   int count;
960
961   if (x == find)
962     return 1;
963
964   code = GET_CODE (x);
965
966   switch (code)
967     {
968     case REG:
969     CASE_CONST_ANY:
970     case SYMBOL_REF:
971     case CODE_LABEL:
972     case PC:
973     case CC0:
974       return 0;
975
976     case EXPR_LIST:
977       count = count_occurrences (XEXP (x, 0), find, count_dest);
978       if (XEXP (x, 1))
979         count += count_occurrences (XEXP (x, 1), find, count_dest);
980       return count;
981
982     case MEM:
983       if (MEM_P (find) && rtx_equal_p (x, find))
984         return 1;
985       break;
986
987     case SET:
988       if (SET_DEST (x) == find && ! count_dest)
989         return count_occurrences (SET_SRC (x), find, count_dest);
990       break;
991
992     default:
993       break;
994     }
995
996   format_ptr = GET_RTX_FORMAT (code);
997   count = 0;
998
999   for (i = 0; i < GET_RTX_LENGTH (code); i++)
1000     {
1001       switch (*format_ptr++)
1002         {
1003         case 'e':
1004           count += count_occurrences (XEXP (x, i), find, count_dest);
1005           break;
1006
1007         case 'E':
1008           for (j = 0; j < XVECLEN (x, i); j++)
1009             count += count_occurrences (XVECEXP (x, i, j), find, count_dest);
1010           break;
1011         }
1012     }
1013   return count;
1014 }
1015
1016 \f
1017 /* Return TRUE if OP is a register or subreg of a register that
1018    holds an unsigned quantity.  Otherwise, return FALSE.  */
1019
1020 bool
1021 unsigned_reg_p (rtx op)
1022 {
1023   if (REG_P (op)
1024       && REG_EXPR (op)
1025       && TYPE_UNSIGNED (TREE_TYPE (REG_EXPR (op))))
1026     return true;
1027
1028   if (GET_CODE (op) == SUBREG
1029       && SUBREG_PROMOTED_SIGN (op))
1030     return true;
1031
1032   return false;
1033 }
1034
1035 \f
1036 /* Nonzero if register REG appears somewhere within IN.
1037    Also works if REG is not a register; in this case it checks
1038    for a subexpression of IN that is Lisp "equal" to REG.  */
1039
1040 int
1041 reg_mentioned_p (const_rtx reg, const_rtx in)
1042 {
1043   const char *fmt;
1044   int i;
1045   enum rtx_code code;
1046
1047   if (in == 0)
1048     return 0;
1049
1050   if (reg == in)
1051     return 1;
1052
1053   if (GET_CODE (in) == LABEL_REF)
1054     return reg == label_ref_label (in);
1055
1056   code = GET_CODE (in);
1057
1058   switch (code)
1059     {
1060       /* Compare registers by number.  */
1061     case REG:
1062       return REG_P (reg) && REGNO (in) == REGNO (reg);
1063
1064       /* These codes have no constituent expressions
1065          and are unique.  */
1066     case SCRATCH:
1067     case CC0:
1068     case PC:
1069       return 0;
1070
1071     CASE_CONST_ANY:
1072       /* These are kept unique for a given value.  */
1073       return 0;
1074
1075     default:
1076       break;
1077     }
1078
1079   if (GET_CODE (reg) == code && rtx_equal_p (reg, in))
1080     return 1;
1081
1082   fmt = GET_RTX_FORMAT (code);
1083
1084   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1085     {
1086       if (fmt[i] == 'E')
1087         {
1088           int j;
1089           for (j = XVECLEN (in, i) - 1; j >= 0; j--)
1090             if (reg_mentioned_p (reg, XVECEXP (in, i, j)))
1091               return 1;
1092         }
1093       else if (fmt[i] == 'e'
1094                && reg_mentioned_p (reg, XEXP (in, i)))
1095         return 1;
1096     }
1097   return 0;
1098 }
1099 \f
1100 /* Return 1 if in between BEG and END, exclusive of BEG and END, there is
1101    no CODE_LABEL insn.  */
1102
1103 int
1104 no_labels_between_p (const rtx_insn *beg, const rtx_insn *end)
1105 {
1106   rtx_insn *p;
1107   if (beg == end)
1108     return 0;
1109   for (p = NEXT_INSN (beg); p != end; p = NEXT_INSN (p))
1110     if (LABEL_P (p))
1111       return 0;
1112   return 1;
1113 }
1114
1115 /* Nonzero if register REG is used in an insn between
1116    FROM_INSN and TO_INSN (exclusive of those two).  */
1117
1118 int
1119 reg_used_between_p (const_rtx reg, const rtx_insn *from_insn,
1120                     const rtx_insn *to_insn)
1121 {
1122   rtx_insn *insn;
1123
1124   if (from_insn == to_insn)
1125     return 0;
1126
1127   for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
1128     if (NONDEBUG_INSN_P (insn)
1129         && (reg_overlap_mentioned_p (reg, PATTERN (insn))
1130            || (CALL_P (insn) && find_reg_fusage (insn, USE, reg))))
1131       return 1;
1132   return 0;
1133 }
1134 \f
1135 /* Nonzero if the old value of X, a register, is referenced in BODY.  If X
1136    is entirely replaced by a new value and the only use is as a SET_DEST,
1137    we do not consider it a reference.  */
1138
1139 int
1140 reg_referenced_p (const_rtx x, const_rtx body)
1141 {
1142   int i;
1143
1144   switch (GET_CODE (body))
1145     {
1146     case SET:
1147       if (reg_overlap_mentioned_p (x, SET_SRC (body)))
1148         return 1;
1149
1150       /* If the destination is anything other than CC0, PC, a REG or a SUBREG
1151          of a REG that occupies all of the REG, the insn references X if
1152          it is mentioned in the destination.  */
1153       if (GET_CODE (SET_DEST (body)) != CC0
1154           && GET_CODE (SET_DEST (body)) != PC
1155           && !REG_P (SET_DEST (body))
1156           && ! (GET_CODE (SET_DEST (body)) == SUBREG
1157                 && REG_P (SUBREG_REG (SET_DEST (body)))
1158                 && !read_modify_subreg_p (SET_DEST (body)))
1159           && reg_overlap_mentioned_p (x, SET_DEST (body)))
1160         return 1;
1161       return 0;
1162
1163     case ASM_OPERANDS:
1164       for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
1165         if (reg_overlap_mentioned_p (x, ASM_OPERANDS_INPUT (body, i)))
1166           return 1;
1167       return 0;
1168
1169     case CALL:
1170     case USE:
1171     case IF_THEN_ELSE:
1172       return reg_overlap_mentioned_p (x, body);
1173
1174     case TRAP_IF:
1175       return reg_overlap_mentioned_p (x, TRAP_CONDITION (body));
1176
1177     case PREFETCH:
1178       return reg_overlap_mentioned_p (x, XEXP (body, 0));
1179
1180     case UNSPEC:
1181     case UNSPEC_VOLATILE:
1182       for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1183         if (reg_overlap_mentioned_p (x, XVECEXP (body, 0, i)))
1184           return 1;
1185       return 0;
1186
1187     case PARALLEL:
1188       for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1189         if (reg_referenced_p (x, XVECEXP (body, 0, i)))
1190           return 1;
1191       return 0;
1192
1193     case CLOBBER:
1194       if (MEM_P (XEXP (body, 0)))
1195         if (reg_overlap_mentioned_p (x, XEXP (XEXP (body, 0), 0)))
1196           return 1;
1197       return 0;
1198
1199     case COND_EXEC:
1200       if (reg_overlap_mentioned_p (x, COND_EXEC_TEST (body)))
1201         return 1;
1202       return reg_referenced_p (x, COND_EXEC_CODE (body));
1203
1204     default:
1205       return 0;
1206     }
1207 }
1208 \f
1209 /* Nonzero if register REG is set or clobbered in an insn between
1210    FROM_INSN and TO_INSN (exclusive of those two).  */
1211
1212 int
1213 reg_set_between_p (const_rtx reg, const rtx_insn *from_insn,
1214                    const rtx_insn *to_insn)
1215 {
1216   const rtx_insn *insn;
1217
1218   if (from_insn == to_insn)
1219     return 0;
1220
1221   for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
1222     if (INSN_P (insn) && reg_set_p (reg, insn))
1223       return 1;
1224   return 0;
1225 }
1226
1227 /* Return true if REG is set or clobbered inside INSN.  */
1228
1229 int
1230 reg_set_p (const_rtx reg, const_rtx insn)
1231 {
1232   /* After delay slot handling, call and branch insns might be in a
1233      sequence.  Check all the elements there.  */
1234   if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
1235     {
1236       for (int i = 0; i < XVECLEN (PATTERN (insn), 0); ++i)
1237         if (reg_set_p (reg, XVECEXP (PATTERN (insn), 0, i)))
1238           return true;
1239
1240       return false;
1241     }
1242
1243   /* We can be passed an insn or part of one.  If we are passed an insn,
1244      check if a side-effect of the insn clobbers REG.  */
1245   if (INSN_P (insn)
1246       && (FIND_REG_INC_NOTE (insn, reg)
1247           || (CALL_P (insn)
1248               && ((REG_P (reg)
1249                    && REGNO (reg) < FIRST_PSEUDO_REGISTER
1250                    && overlaps_hard_reg_set_p (regs_invalidated_by_call,
1251                                                GET_MODE (reg), REGNO (reg)))
1252                   || MEM_P (reg)
1253                   || find_reg_fusage (insn, CLOBBER, reg)))))
1254     return true;
1255
1256   /* There are no REG_INC notes for SP autoinc.  */
1257   if (reg == stack_pointer_rtx && INSN_P (insn))
1258     {
1259       subrtx_var_iterator::array_type array;
1260       FOR_EACH_SUBRTX_VAR (iter, array, PATTERN (insn), NONCONST)
1261         {
1262           rtx mem = *iter;
1263           if (mem
1264               && MEM_P (mem)
1265               && GET_RTX_CLASS (GET_CODE (XEXP (mem, 0))) == RTX_AUTOINC)
1266             {
1267               if (XEXP (XEXP (mem, 0), 0) == stack_pointer_rtx)
1268                 return true;
1269               iter.skip_subrtxes ();
1270             }
1271         }
1272     }
1273
1274   return set_of (reg, insn) != NULL_RTX;
1275 }
1276
1277 /* Similar to reg_set_between_p, but check all registers in X.  Return 0
1278    only if none of them are modified between START and END.  Return 1 if
1279    X contains a MEM; this routine does use memory aliasing.  */
1280
1281 int
1282 modified_between_p (const_rtx x, const rtx_insn *start, const rtx_insn *end)
1283 {
1284   const enum rtx_code code = GET_CODE (x);
1285   const char *fmt;
1286   int i, j;
1287   rtx_insn *insn;
1288
1289   if (start == end)
1290     return 0;
1291
1292   switch (code)
1293     {
1294     CASE_CONST_ANY:
1295     case CONST:
1296     case SYMBOL_REF:
1297     case LABEL_REF:
1298       return 0;
1299
1300     case PC:
1301     case CC0:
1302       return 1;
1303
1304     case MEM:
1305       if (modified_between_p (XEXP (x, 0), start, end))
1306         return 1;
1307       if (MEM_READONLY_P (x))
1308         return 0;
1309       for (insn = NEXT_INSN (start); insn != end; insn = NEXT_INSN (insn))
1310         if (memory_modified_in_insn_p (x, insn))
1311           return 1;
1312       return 0;
1313
1314     case REG:
1315       return reg_set_between_p (x, start, end);
1316
1317     default:
1318       break;
1319     }
1320
1321   fmt = GET_RTX_FORMAT (code);
1322   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1323     {
1324       if (fmt[i] == 'e' && modified_between_p (XEXP (x, i), start, end))
1325         return 1;
1326
1327       else if (fmt[i] == 'E')
1328         for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1329           if (modified_between_p (XVECEXP (x, i, j), start, end))
1330             return 1;
1331     }
1332
1333   return 0;
1334 }
1335
1336 /* Similar to reg_set_p, but check all registers in X.  Return 0 only if none
1337    of them are modified in INSN.  Return 1 if X contains a MEM; this routine
1338    does use memory aliasing.  */
1339
1340 int
1341 modified_in_p (const_rtx x, const_rtx insn)
1342 {
1343   const enum rtx_code code = GET_CODE (x);
1344   const char *fmt;
1345   int i, j;
1346
1347   switch (code)
1348     {
1349     CASE_CONST_ANY:
1350     case CONST:
1351     case SYMBOL_REF:
1352     case LABEL_REF:
1353       return 0;
1354
1355     case PC:
1356     case CC0:
1357       return 1;
1358
1359     case MEM:
1360       if (modified_in_p (XEXP (x, 0), insn))
1361         return 1;
1362       if (MEM_READONLY_P (x))
1363         return 0;
1364       if (memory_modified_in_insn_p (x, insn))
1365         return 1;
1366       return 0;
1367
1368     case REG:
1369       return reg_set_p (x, insn);
1370
1371     default:
1372       break;
1373     }
1374
1375   fmt = GET_RTX_FORMAT (code);
1376   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1377     {
1378       if (fmt[i] == 'e' && modified_in_p (XEXP (x, i), insn))
1379         return 1;
1380
1381       else if (fmt[i] == 'E')
1382         for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1383           if (modified_in_p (XVECEXP (x, i, j), insn))
1384             return 1;
1385     }
1386
1387   return 0;
1388 }
1389
1390 /* Return true if X is a SUBREG and if storing a value to X would
1391    preserve some of its SUBREG_REG.  For example, on a normal 32-bit
1392    target, using a SUBREG to store to one half of a DImode REG would
1393    preserve the other half.  */
1394
1395 bool
1396 read_modify_subreg_p (const_rtx x)
1397 {
1398   if (GET_CODE (x) != SUBREG)
1399     return false;
1400   poly_uint64 isize = GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)));
1401   poly_uint64 osize = GET_MODE_SIZE (GET_MODE (x));
1402   poly_uint64 regsize = REGMODE_NATURAL_SIZE (GET_MODE (SUBREG_REG (x)));
1403   /* The inner and outer modes of a subreg must be ordered, so that we
1404      can tell whether they're paradoxical or partial.  */
1405   gcc_checking_assert (ordered_p (isize, osize));
1406   return (maybe_gt (isize, osize) && maybe_gt (isize, regsize));
1407 }
1408 \f
1409 /* Helper function for set_of.  */
1410 struct set_of_data
1411   {
1412     const_rtx found;
1413     const_rtx pat;
1414   };
1415
1416 static void
1417 set_of_1 (rtx x, const_rtx pat, void *data1)
1418 {
1419   struct set_of_data *const data = (struct set_of_data *) (data1);
1420   if (rtx_equal_p (x, data->pat)
1421       || (!MEM_P (x) && reg_overlap_mentioned_p (data->pat, x)))
1422     data->found = pat;
1423 }
1424
1425 /* Give an INSN, return a SET or CLOBBER expression that does modify PAT
1426    (either directly or via STRICT_LOW_PART and similar modifiers).  */
1427 const_rtx
1428 set_of (const_rtx pat, const_rtx insn)
1429 {
1430   struct set_of_data data;
1431   data.found = NULL_RTX;
1432   data.pat = pat;
1433   note_stores (INSN_P (insn) ? PATTERN (insn) : insn, set_of_1, &data);
1434   return data.found;
1435 }
1436
1437 /* Add all hard register in X to *PSET.  */
1438 void
1439 find_all_hard_regs (const_rtx x, HARD_REG_SET *pset)
1440 {
1441   subrtx_iterator::array_type array;
1442   FOR_EACH_SUBRTX (iter, array, x, NONCONST)
1443     {
1444       const_rtx x = *iter;
1445       if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
1446         add_to_hard_reg_set (pset, GET_MODE (x), REGNO (x));
1447     }
1448 }
1449
1450 /* This function, called through note_stores, collects sets and
1451    clobbers of hard registers in a HARD_REG_SET, which is pointed to
1452    by DATA.  */
1453 void
1454 record_hard_reg_sets (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
1455 {
1456   HARD_REG_SET *pset = (HARD_REG_SET *)data;
1457   if (REG_P (x) && HARD_REGISTER_P (x))
1458     add_to_hard_reg_set (pset, GET_MODE (x), REGNO (x));
1459 }
1460
1461 /* Examine INSN, and compute the set of hard registers written by it.
1462    Store it in *PSET.  Should only be called after reload.  */
1463 void
1464 find_all_hard_reg_sets (const rtx_insn *insn, HARD_REG_SET *pset, bool implicit)
1465 {
1466   rtx link;
1467
1468   CLEAR_HARD_REG_SET (*pset);
1469   note_stores (PATTERN (insn), record_hard_reg_sets, pset);
1470   if (CALL_P (insn))
1471     {
1472       if (implicit)
1473         IOR_HARD_REG_SET (*pset, call_used_reg_set);
1474
1475       for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
1476         record_hard_reg_sets (XEXP (link, 0), NULL, pset);
1477     }
1478   for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1479     if (REG_NOTE_KIND (link) == REG_INC)
1480       record_hard_reg_sets (XEXP (link, 0), NULL, pset);
1481 }
1482
1483 /* Like record_hard_reg_sets, but called through note_uses.  */
1484 void
1485 record_hard_reg_uses (rtx *px, void *data)
1486 {
1487   find_all_hard_regs (*px, (HARD_REG_SET *) data);
1488 }
1489 \f
1490 /* Given an INSN, return a SET expression if this insn has only a single SET.
1491    It may also have CLOBBERs, USEs, or SET whose output
1492    will not be used, which we ignore.  */
1493
1494 rtx
1495 single_set_2 (const rtx_insn *insn, const_rtx pat)
1496 {
1497   rtx set = NULL;
1498   int set_verified = 1;
1499   int i;
1500
1501   if (GET_CODE (pat) == PARALLEL)
1502     {
1503       for (i = 0; i < XVECLEN (pat, 0); i++)
1504         {
1505           rtx sub = XVECEXP (pat, 0, i);
1506           switch (GET_CODE (sub))
1507             {
1508             case USE:
1509             case CLOBBER:
1510               break;
1511
1512             case SET:
1513               /* We can consider insns having multiple sets, where all
1514                  but one are dead as single set insns.  In common case
1515                  only single set is present in the pattern so we want
1516                  to avoid checking for REG_UNUSED notes unless necessary.
1517
1518                  When we reach set first time, we just expect this is
1519                  the single set we are looking for and only when more
1520                  sets are found in the insn, we check them.  */
1521               if (!set_verified)
1522                 {
1523                   if (find_reg_note (insn, REG_UNUSED, SET_DEST (set))
1524                       && !side_effects_p (set))
1525                     set = NULL;
1526                   else
1527                     set_verified = 1;
1528                 }
1529               if (!set)
1530                 set = sub, set_verified = 0;
1531               else if (!find_reg_note (insn, REG_UNUSED, SET_DEST (sub))
1532                        || side_effects_p (sub))
1533                 return NULL_RTX;
1534               break;
1535
1536             default:
1537               return NULL_RTX;
1538             }
1539         }
1540     }
1541   return set;
1542 }
1543
1544 /* Given an INSN, return nonzero if it has more than one SET, else return
1545    zero.  */
1546
1547 int
1548 multiple_sets (const_rtx insn)
1549 {
1550   int found;
1551   int i;
1552
1553   /* INSN must be an insn.  */
1554   if (! INSN_P (insn))
1555     return 0;
1556
1557   /* Only a PARALLEL can have multiple SETs.  */
1558   if (GET_CODE (PATTERN (insn)) == PARALLEL)
1559     {
1560       for (i = 0, found = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1561         if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
1562           {
1563             /* If we have already found a SET, then return now.  */
1564             if (found)
1565               return 1;
1566             else
1567               found = 1;
1568           }
1569     }
1570
1571   /* Either zero or one SET.  */
1572   return 0;
1573 }
1574 \f
1575 /* Return nonzero if the destination of SET equals the source
1576    and there are no side effects.  */
1577
1578 int
1579 set_noop_p (const_rtx set)
1580 {
1581   rtx src = SET_SRC (set);
1582   rtx dst = SET_DEST (set);
1583
1584   if (dst == pc_rtx && src == pc_rtx)
1585     return 1;
1586
1587   if (MEM_P (dst) && MEM_P (src))
1588     return rtx_equal_p (dst, src) && !side_effects_p (dst);
1589
1590   if (GET_CODE (dst) == ZERO_EXTRACT)
1591     return rtx_equal_p (XEXP (dst, 0), src)
1592            && !BITS_BIG_ENDIAN && XEXP (dst, 2) == const0_rtx
1593            && !side_effects_p (src);
1594
1595   if (GET_CODE (dst) == STRICT_LOW_PART)
1596     dst = XEXP (dst, 0);
1597
1598   if (GET_CODE (src) == SUBREG && GET_CODE (dst) == SUBREG)
1599     {
1600       if (maybe_ne (SUBREG_BYTE (src), SUBREG_BYTE (dst)))
1601         return 0;
1602       src = SUBREG_REG (src);
1603       dst = SUBREG_REG (dst);
1604     }
1605
1606   /* It is a NOOP if destination overlaps with selected src vector
1607      elements.  */
1608   if (GET_CODE (src) == VEC_SELECT
1609       && REG_P (XEXP (src, 0)) && REG_P (dst)
1610       && HARD_REGISTER_P (XEXP (src, 0))
1611       && HARD_REGISTER_P (dst))
1612     {
1613       int i;
1614       rtx par = XEXP (src, 1);
1615       rtx src0 = XEXP (src, 0);
1616       int c0 = INTVAL (XVECEXP (par, 0, 0));
1617       HOST_WIDE_INT offset = GET_MODE_UNIT_SIZE (GET_MODE (src0)) * c0;
1618
1619       for (i = 1; i < XVECLEN (par, 0); i++)
1620         if (INTVAL (XVECEXP (par, 0, i)) != c0 + i)
1621           return 0;
1622       return
1623         simplify_subreg_regno (REGNO (src0), GET_MODE (src0),
1624                                offset, GET_MODE (dst)) == (int) REGNO (dst);
1625     }
1626
1627   return (REG_P (src) && REG_P (dst)
1628           && REGNO (src) == REGNO (dst));
1629 }
1630 \f
1631 /* Return nonzero if an insn consists only of SETs, each of which only sets a
1632    value to itself.  */
1633
1634 int
1635 noop_move_p (const rtx_insn *insn)
1636 {
1637   rtx pat = PATTERN (insn);
1638
1639   if (INSN_CODE (insn) == NOOP_MOVE_INSN_CODE)
1640     return 1;
1641
1642   /* Insns carrying these notes are useful later on.  */
1643   if (find_reg_note (insn, REG_EQUAL, NULL_RTX))
1644     return 0;
1645
1646   /* Check the code to be executed for COND_EXEC.  */
1647   if (GET_CODE (pat) == COND_EXEC)
1648     pat = COND_EXEC_CODE (pat);
1649
1650   if (GET_CODE (pat) == SET && set_noop_p (pat))
1651     return 1;
1652
1653   if (GET_CODE (pat) == PARALLEL)
1654     {
1655       int i;
1656       /* If nothing but SETs of registers to themselves,
1657          this insn can also be deleted.  */
1658       for (i = 0; i < XVECLEN (pat, 0); i++)
1659         {
1660           rtx tem = XVECEXP (pat, 0, i);
1661
1662           if (GET_CODE (tem) == USE
1663               || GET_CODE (tem) == CLOBBER)
1664             continue;
1665
1666           if (GET_CODE (tem) != SET || ! set_noop_p (tem))
1667             return 0;
1668         }
1669
1670       return 1;
1671     }
1672   return 0;
1673 }
1674 \f
1675
1676 /* Return nonzero if register in range [REGNO, ENDREGNO)
1677    appears either explicitly or implicitly in X
1678    other than being stored into.
1679
1680    References contained within the substructure at LOC do not count.
1681    LOC may be zero, meaning don't ignore anything.  */
1682
1683 bool
1684 refers_to_regno_p (unsigned int regno, unsigned int endregno, const_rtx x,
1685                    rtx *loc)
1686 {
1687   int i;
1688   unsigned int x_regno;
1689   RTX_CODE code;
1690   const char *fmt;
1691
1692  repeat:
1693   /* The contents of a REG_NONNEG note is always zero, so we must come here
1694      upon repeat in case the last REG_NOTE is a REG_NONNEG note.  */
1695   if (x == 0)
1696     return false;
1697
1698   code = GET_CODE (x);
1699
1700   switch (code)
1701     {
1702     case REG:
1703       x_regno = REGNO (x);
1704
1705       /* If we modifying the stack, frame, or argument pointer, it will
1706          clobber a virtual register.  In fact, we could be more precise,
1707          but it isn't worth it.  */
1708       if ((x_regno == STACK_POINTER_REGNUM
1709            || (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1710                && x_regno == ARG_POINTER_REGNUM)
1711            || x_regno == FRAME_POINTER_REGNUM)
1712           && regno >= FIRST_VIRTUAL_REGISTER && regno <= LAST_VIRTUAL_REGISTER)
1713         return true;
1714
1715       return endregno > x_regno && regno < END_REGNO (x);
1716
1717     case SUBREG:
1718       /* If this is a SUBREG of a hard reg, we can see exactly which
1719          registers are being modified.  Otherwise, handle normally.  */
1720       if (REG_P (SUBREG_REG (x))
1721           && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
1722         {
1723           unsigned int inner_regno = subreg_regno (x);
1724           unsigned int inner_endregno
1725             = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
1726                              ? subreg_nregs (x) : 1);
1727
1728           return endregno > inner_regno && regno < inner_endregno;
1729         }
1730       break;
1731
1732     case CLOBBER:
1733     case SET:
1734       if (&SET_DEST (x) != loc
1735           /* Note setting a SUBREG counts as referring to the REG it is in for
1736              a pseudo but not for hard registers since we can
1737              treat each word individually.  */
1738           && ((GET_CODE (SET_DEST (x)) == SUBREG
1739                && loc != &SUBREG_REG (SET_DEST (x))
1740                && REG_P (SUBREG_REG (SET_DEST (x)))
1741                && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
1742                && refers_to_regno_p (regno, endregno,
1743                                      SUBREG_REG (SET_DEST (x)), loc))
1744               || (!REG_P (SET_DEST (x))
1745                   && refers_to_regno_p (regno, endregno, SET_DEST (x), loc))))
1746         return true;
1747
1748       if (code == CLOBBER || loc == &SET_SRC (x))
1749         return false;
1750       x = SET_SRC (x);
1751       goto repeat;
1752
1753     default:
1754       break;
1755     }
1756
1757   /* X does not match, so try its subexpressions.  */
1758
1759   fmt = GET_RTX_FORMAT (code);
1760   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1761     {
1762       if (fmt[i] == 'e' && loc != &XEXP (x, i))
1763         {
1764           if (i == 0)
1765             {
1766               x = XEXP (x, 0);
1767               goto repeat;
1768             }
1769           else
1770             if (refers_to_regno_p (regno, endregno, XEXP (x, i), loc))
1771               return true;
1772         }
1773       else if (fmt[i] == 'E')
1774         {
1775           int j;
1776           for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1777             if (loc != &XVECEXP (x, i, j)
1778                 && refers_to_regno_p (regno, endregno, XVECEXP (x, i, j), loc))
1779               return true;
1780         }
1781     }
1782   return false;
1783 }
1784
1785 /* Nonzero if modifying X will affect IN.  If X is a register or a SUBREG,
1786    we check if any register number in X conflicts with the relevant register
1787    numbers.  If X is a constant, return 0.  If X is a MEM, return 1 iff IN
1788    contains a MEM (we don't bother checking for memory addresses that can't
1789    conflict because we expect this to be a rare case.  */
1790
1791 int
1792 reg_overlap_mentioned_p (const_rtx x, const_rtx in)
1793 {
1794   unsigned int regno, endregno;
1795
1796   /* If either argument is a constant, then modifying X can not
1797      affect IN.  Here we look at IN, we can profitably combine
1798      CONSTANT_P (x) with the switch statement below.  */
1799   if (CONSTANT_P (in))
1800     return 0;
1801
1802  recurse:
1803   switch (GET_CODE (x))
1804     {
1805     case CLOBBER:
1806     case STRICT_LOW_PART:
1807     case ZERO_EXTRACT:
1808     case SIGN_EXTRACT:
1809       /* Overly conservative.  */
1810       x = XEXP (x, 0);
1811       goto recurse;
1812
1813     case SUBREG:
1814       regno = REGNO (SUBREG_REG (x));
1815       if (regno < FIRST_PSEUDO_REGISTER)
1816         regno = subreg_regno (x);
1817       endregno = regno + (regno < FIRST_PSEUDO_REGISTER
1818                           ? subreg_nregs (x) : 1);
1819       goto do_reg;
1820
1821     case REG:
1822       regno = REGNO (x);
1823       endregno = END_REGNO (x);
1824     do_reg:
1825       return refers_to_regno_p (regno, endregno, in, (rtx*) 0);
1826
1827     case MEM:
1828       {
1829         const char *fmt;
1830         int i;
1831
1832         if (MEM_P (in))
1833           return 1;
1834
1835         fmt = GET_RTX_FORMAT (GET_CODE (in));
1836         for (i = GET_RTX_LENGTH (GET_CODE (in)) - 1; i >= 0; i--)
1837           if (fmt[i] == 'e')
1838             {
1839               if (reg_overlap_mentioned_p (x, XEXP (in, i)))
1840                 return 1;
1841             }
1842           else if (fmt[i] == 'E')
1843             {
1844               int j;
1845               for (j = XVECLEN (in, i) - 1; j >= 0; --j)
1846                 if (reg_overlap_mentioned_p (x, XVECEXP (in, i, j)))
1847                   return 1;
1848             }
1849
1850         return 0;
1851       }
1852
1853     case SCRATCH:
1854     case PC:
1855     case CC0:
1856       return reg_mentioned_p (x, in);
1857
1858     case PARALLEL:
1859       {
1860         int i;
1861
1862         /* If any register in here refers to it we return true.  */
1863         for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1864           if (XEXP (XVECEXP (x, 0, i), 0) != 0
1865               && reg_overlap_mentioned_p (XEXP (XVECEXP (x, 0, i), 0), in))
1866             return 1;
1867         return 0;
1868       }
1869
1870     default:
1871       gcc_assert (CONSTANT_P (x));
1872       return 0;
1873     }
1874 }
1875 \f
1876 /* Call FUN on each register or MEM that is stored into or clobbered by X.
1877    (X would be the pattern of an insn).  DATA is an arbitrary pointer,
1878    ignored by note_stores, but passed to FUN.
1879
1880    FUN receives three arguments:
1881    1. the REG, MEM, CC0 or PC being stored in or clobbered,
1882    2. the SET or CLOBBER rtx that does the store,
1883    3. the pointer DATA provided to note_stores.
1884
1885   If the item being stored in or clobbered is a SUBREG of a hard register,
1886   the SUBREG will be passed.  */
1887
1888 void
1889 note_stores (const_rtx x, void (*fun) (rtx, const_rtx, void *), void *data)
1890 {
1891   int i;
1892
1893   if (GET_CODE (x) == COND_EXEC)
1894     x = COND_EXEC_CODE (x);
1895
1896   if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
1897     {
1898       rtx dest = SET_DEST (x);
1899
1900       while ((GET_CODE (dest) == SUBREG
1901               && (!REG_P (SUBREG_REG (dest))
1902                   || REGNO (SUBREG_REG (dest)) >= FIRST_PSEUDO_REGISTER))
1903              || GET_CODE (dest) == ZERO_EXTRACT
1904              || GET_CODE (dest) == STRICT_LOW_PART)
1905         dest = XEXP (dest, 0);
1906
1907       /* If we have a PARALLEL, SET_DEST is a list of EXPR_LIST expressions,
1908          each of whose first operand is a register.  */
1909       if (GET_CODE (dest) == PARALLEL)
1910         {
1911           for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
1912             if (XEXP (XVECEXP (dest, 0, i), 0) != 0)
1913               (*fun) (XEXP (XVECEXP (dest, 0, i), 0), x, data);
1914         }
1915       else
1916         (*fun) (dest, x, data);
1917     }
1918
1919   else if (GET_CODE (x) == PARALLEL)
1920     for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1921       note_stores (XVECEXP (x, 0, i), fun, data);
1922 }
1923 \f
1924 /* Like notes_stores, but call FUN for each expression that is being
1925    referenced in PBODY, a pointer to the PATTERN of an insn.  We only call
1926    FUN for each expression, not any interior subexpressions.  FUN receives a
1927    pointer to the expression and the DATA passed to this function.
1928
1929    Note that this is not quite the same test as that done in reg_referenced_p
1930    since that considers something as being referenced if it is being
1931    partially set, while we do not.  */
1932
1933 void
1934 note_uses (rtx *pbody, void (*fun) (rtx *, void *), void *data)
1935 {
1936   rtx body = *pbody;
1937   int i;
1938
1939   switch (GET_CODE (body))
1940     {
1941     case COND_EXEC:
1942       (*fun) (&COND_EXEC_TEST (body), data);
1943       note_uses (&COND_EXEC_CODE (body), fun, data);
1944       return;
1945
1946     case PARALLEL:
1947       for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1948         note_uses (&XVECEXP (body, 0, i), fun, data);
1949       return;
1950
1951     case SEQUENCE:
1952       for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1953         note_uses (&PATTERN (XVECEXP (body, 0, i)), fun, data);
1954       return;
1955
1956     case USE:
1957       (*fun) (&XEXP (body, 0), data);
1958       return;
1959
1960     case ASM_OPERANDS:
1961       for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
1962         (*fun) (&ASM_OPERANDS_INPUT (body, i), data);
1963       return;
1964
1965     case TRAP_IF:
1966       (*fun) (&TRAP_CONDITION (body), data);
1967       return;
1968
1969     case PREFETCH:
1970       (*fun) (&XEXP (body, 0), data);
1971       return;
1972
1973     case UNSPEC:
1974     case UNSPEC_VOLATILE:
1975       for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1976         (*fun) (&XVECEXP (body, 0, i), data);
1977       return;
1978
1979     case CLOBBER:
1980       if (MEM_P (XEXP (body, 0)))
1981         (*fun) (&XEXP (XEXP (body, 0), 0), data);
1982       return;
1983
1984     case SET:
1985       {
1986         rtx dest = SET_DEST (body);
1987
1988         /* For sets we replace everything in source plus registers in memory
1989            expression in store and operands of a ZERO_EXTRACT.  */
1990         (*fun) (&SET_SRC (body), data);
1991
1992         if (GET_CODE (dest) == ZERO_EXTRACT)
1993           {
1994             (*fun) (&XEXP (dest, 1), data);
1995             (*fun) (&XEXP (dest, 2), data);
1996           }
1997
1998         while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART)
1999           dest = XEXP (dest, 0);
2000
2001         if (MEM_P (dest))
2002           (*fun) (&XEXP (dest, 0), data);
2003       }
2004       return;
2005
2006     default:
2007       /* All the other possibilities never store.  */
2008       (*fun) (pbody, data);
2009       return;
2010     }
2011 }
2012 \f
2013 /* Return nonzero if X's old contents don't survive after INSN.
2014    This will be true if X is (cc0) or if X is a register and
2015    X dies in INSN or because INSN entirely sets X.
2016
2017    "Entirely set" means set directly and not through a SUBREG, or
2018    ZERO_EXTRACT, so no trace of the old contents remains.
2019    Likewise, REG_INC does not count.
2020
2021    REG may be a hard or pseudo reg.  Renumbering is not taken into account,
2022    but for this use that makes no difference, since regs don't overlap
2023    during their lifetimes.  Therefore, this function may be used
2024    at any time after deaths have been computed.
2025
2026    If REG is a hard reg that occupies multiple machine registers, this
2027    function will only return 1 if each of those registers will be replaced
2028    by INSN.  */
2029
2030 int
2031 dead_or_set_p (const rtx_insn *insn, const_rtx x)
2032 {
2033   unsigned int regno, end_regno;
2034   unsigned int i;
2035
2036   /* Can't use cc0_rtx below since this file is used by genattrtab.c.  */
2037   if (GET_CODE (x) == CC0)
2038     return 1;
2039
2040   gcc_assert (REG_P (x));
2041
2042   regno = REGNO (x);
2043   end_regno = END_REGNO (x);
2044   for (i = regno; i < end_regno; i++)
2045     if (! dead_or_set_regno_p (insn, i))
2046       return 0;
2047
2048   return 1;
2049 }
2050
2051 /* Return TRUE iff DEST is a register or subreg of a register, is a
2052    complete rather than read-modify-write destination, and contains
2053    register TEST_REGNO.  */
2054
2055 static bool
2056 covers_regno_no_parallel_p (const_rtx dest, unsigned int test_regno)
2057 {
2058   unsigned int regno, endregno;
2059
2060   if (GET_CODE (dest) == SUBREG && !read_modify_subreg_p (dest))
2061     dest = SUBREG_REG (dest);
2062
2063   if (!REG_P (dest))
2064     return false;
2065
2066   regno = REGNO (dest);
2067   endregno = END_REGNO (dest);
2068   return (test_regno >= regno && test_regno < endregno);
2069 }
2070
2071 /* Like covers_regno_no_parallel_p, but also handles PARALLELs where
2072    any member matches the covers_regno_no_parallel_p criteria.  */
2073
2074 static bool
2075 covers_regno_p (const_rtx dest, unsigned int test_regno)
2076 {
2077   if (GET_CODE (dest) == PARALLEL)
2078     {
2079       /* Some targets place small structures in registers for return
2080          values of functions, and those registers are wrapped in
2081          PARALLELs that we may see as the destination of a SET.  */
2082       int i;
2083
2084       for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
2085         {
2086           rtx inner = XEXP (XVECEXP (dest, 0, i), 0);
2087           if (inner != NULL_RTX
2088               && covers_regno_no_parallel_p (inner, test_regno))
2089             return true;
2090         }
2091
2092       return false;
2093     }
2094   else
2095     return covers_regno_no_parallel_p (dest, test_regno);
2096 }
2097
2098 /* Utility function for dead_or_set_p to check an individual register. */
2099
2100 int
2101 dead_or_set_regno_p (const rtx_insn *insn, unsigned int test_regno)
2102 {
2103   const_rtx pattern;
2104
2105   /* See if there is a death note for something that includes TEST_REGNO.  */
2106   if (find_regno_note (insn, REG_DEAD, test_regno))
2107     return 1;
2108
2109   if (CALL_P (insn)
2110       && find_regno_fusage (insn, CLOBBER, test_regno))
2111     return 1;
2112
2113   pattern = PATTERN (insn);
2114
2115   /* If a COND_EXEC is not executed, the value survives.  */
2116   if (GET_CODE (pattern) == COND_EXEC)
2117     return 0;
2118
2119   if (GET_CODE (pattern) == SET || GET_CODE (pattern) == CLOBBER)
2120     return covers_regno_p (SET_DEST (pattern), test_regno);
2121   else if (GET_CODE (pattern) == PARALLEL)
2122     {
2123       int i;
2124
2125       for (i = XVECLEN (pattern, 0) - 1; i >= 0; i--)
2126         {
2127           rtx body = XVECEXP (pattern, 0, i);
2128
2129           if (GET_CODE (body) == COND_EXEC)
2130             body = COND_EXEC_CODE (body);
2131
2132           if ((GET_CODE (body) == SET || GET_CODE (body) == CLOBBER)
2133               && covers_regno_p (SET_DEST (body), test_regno))
2134             return 1;
2135         }
2136     }
2137
2138   return 0;
2139 }
2140
2141 /* Return the reg-note of kind KIND in insn INSN, if there is one.
2142    If DATUM is nonzero, look for one whose datum is DATUM.  */
2143
2144 rtx
2145 find_reg_note (const_rtx insn, enum reg_note kind, const_rtx datum)
2146 {
2147   rtx link;
2148
2149   gcc_checking_assert (insn);
2150
2151   /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN.  */
2152   if (! INSN_P (insn))
2153     return 0;
2154   if (datum == 0)
2155     {
2156       for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2157         if (REG_NOTE_KIND (link) == kind)
2158           return link;
2159       return 0;
2160     }
2161
2162   for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2163     if (REG_NOTE_KIND (link) == kind && datum == XEXP (link, 0))
2164       return link;
2165   return 0;
2166 }
2167
2168 /* Return the reg-note of kind KIND in insn INSN which applies to register
2169    number REGNO, if any.  Return 0 if there is no such reg-note.  Note that
2170    the REGNO of this NOTE need not be REGNO if REGNO is a hard register;
2171    it might be the case that the note overlaps REGNO.  */
2172
2173 rtx
2174 find_regno_note (const_rtx insn, enum reg_note kind, unsigned int regno)
2175 {
2176   rtx link;
2177
2178   /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN.  */
2179   if (! INSN_P (insn))
2180     return 0;
2181
2182   for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2183     if (REG_NOTE_KIND (link) == kind
2184         /* Verify that it is a register, so that scratch and MEM won't cause a
2185            problem here.  */
2186         && REG_P (XEXP (link, 0))
2187         && REGNO (XEXP (link, 0)) <= regno
2188         && END_REGNO (XEXP (link, 0)) > regno)
2189       return link;
2190   return 0;
2191 }
2192
2193 /* Return a REG_EQUIV or REG_EQUAL note if insn has only a single set and
2194    has such a note.  */
2195
2196 rtx
2197 find_reg_equal_equiv_note (const_rtx insn)
2198 {
2199   rtx link;
2200
2201   if (!INSN_P (insn))
2202     return 0;
2203
2204   for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2205     if (REG_NOTE_KIND (link) == REG_EQUAL
2206         || REG_NOTE_KIND (link) == REG_EQUIV)
2207       {
2208         /* FIXME: We should never have REG_EQUAL/REG_EQUIV notes on
2209            insns that have multiple sets.  Checking single_set to
2210            make sure of this is not the proper check, as explained
2211            in the comment in set_unique_reg_note.
2212
2213            This should be changed into an assert.  */
2214         if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
2215           return 0;
2216         return link;
2217       }
2218   return NULL;
2219 }
2220
2221 /* Check whether INSN is a single_set whose source is known to be
2222    equivalent to a constant.  Return that constant if so, otherwise
2223    return null.  */
2224
2225 rtx
2226 find_constant_src (const rtx_insn *insn)
2227 {
2228   rtx note, set, x;
2229
2230   set = single_set (insn);
2231   if (set)
2232     {
2233       x = avoid_constant_pool_reference (SET_SRC (set));
2234       if (CONSTANT_P (x))
2235         return x;
2236     }
2237
2238   note = find_reg_equal_equiv_note (insn);
2239   if (note && CONSTANT_P (XEXP (note, 0)))
2240     return XEXP (note, 0);
2241
2242   return NULL_RTX;
2243 }
2244
2245 /* Return true if DATUM, or any overlap of DATUM, of kind CODE is found
2246    in the CALL_INSN_FUNCTION_USAGE information of INSN.  */
2247
2248 int
2249 find_reg_fusage (const_rtx insn, enum rtx_code code, const_rtx datum)
2250 {
2251   /* If it's not a CALL_INSN, it can't possibly have a
2252      CALL_INSN_FUNCTION_USAGE field, so don't bother checking.  */
2253   if (!CALL_P (insn))
2254     return 0;
2255
2256   gcc_assert (datum);
2257
2258   if (!REG_P (datum))
2259     {
2260       rtx link;
2261
2262       for (link = CALL_INSN_FUNCTION_USAGE (insn);
2263            link;
2264            link = XEXP (link, 1))
2265         if (GET_CODE (XEXP (link, 0)) == code
2266             && rtx_equal_p (datum, XEXP (XEXP (link, 0), 0)))
2267           return 1;
2268     }
2269   else
2270     {
2271       unsigned int regno = REGNO (datum);
2272
2273       /* CALL_INSN_FUNCTION_USAGE information cannot contain references
2274          to pseudo registers, so don't bother checking.  */
2275
2276       if (regno < FIRST_PSEUDO_REGISTER)
2277         {
2278           unsigned int end_regno = END_REGNO (datum);
2279           unsigned int i;
2280
2281           for (i = regno; i < end_regno; i++)
2282             if (find_regno_fusage (insn, code, i))
2283               return 1;
2284         }
2285     }
2286
2287   return 0;
2288 }
2289
2290 /* Return true if REGNO, or any overlap of REGNO, of kind CODE is found
2291    in the CALL_INSN_FUNCTION_USAGE information of INSN.  */
2292
2293 int
2294 find_regno_fusage (const_rtx insn, enum rtx_code code, unsigned int regno)
2295 {
2296   rtx link;
2297
2298   /* CALL_INSN_FUNCTION_USAGE information cannot contain references
2299      to pseudo registers, so don't bother checking.  */
2300
2301   if (regno >= FIRST_PSEUDO_REGISTER
2302       || !CALL_P (insn) )
2303     return 0;
2304
2305   for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
2306     {
2307       rtx op, reg;
2308
2309       if (GET_CODE (op = XEXP (link, 0)) == code
2310           && REG_P (reg = XEXP (op, 0))
2311           && REGNO (reg) <= regno
2312           && END_REGNO (reg) > regno)
2313         return 1;
2314     }
2315
2316   return 0;
2317 }
2318
2319 \f
2320 /* Return true if KIND is an integer REG_NOTE.  */
2321
2322 static bool
2323 int_reg_note_p (enum reg_note kind)
2324 {
2325   return kind == REG_BR_PROB;
2326 }
2327
2328 /* Allocate a register note with kind KIND and datum DATUM.  LIST is
2329    stored as the pointer to the next register note.  */
2330
2331 rtx
2332 alloc_reg_note (enum reg_note kind, rtx datum, rtx list)
2333 {
2334   rtx note;
2335
2336   gcc_checking_assert (!int_reg_note_p (kind));
2337   switch (kind)
2338     {
2339     case REG_CC_SETTER:
2340     case REG_CC_USER:
2341     case REG_LABEL_TARGET:
2342     case REG_LABEL_OPERAND:
2343     case REG_TM:
2344       /* These types of register notes use an INSN_LIST rather than an
2345          EXPR_LIST, so that copying is done right and dumps look
2346          better.  */
2347       note = alloc_INSN_LIST (datum, list);
2348       PUT_REG_NOTE_KIND (note, kind);
2349       break;
2350
2351     default:
2352       note = alloc_EXPR_LIST (kind, datum, list);
2353       break;
2354     }
2355
2356   return note;
2357 }
2358
2359 /* Add register note with kind KIND and datum DATUM to INSN.  */
2360
2361 void
2362 add_reg_note (rtx insn, enum reg_note kind, rtx datum)
2363 {
2364   REG_NOTES (insn) = alloc_reg_note (kind, datum, REG_NOTES (insn));
2365 }
2366
2367 /* Add an integer register note with kind KIND and datum DATUM to INSN.  */
2368
2369 void
2370 add_int_reg_note (rtx_insn *insn, enum reg_note kind, int datum)
2371 {
2372   gcc_checking_assert (int_reg_note_p (kind));
2373   REG_NOTES (insn) = gen_rtx_INT_LIST ((machine_mode) kind,
2374                                        datum, REG_NOTES (insn));
2375 }
2376
2377 /* Add a REG_ARGS_SIZE note to INSN with value VALUE.  */
2378
2379 void
2380 add_args_size_note (rtx_insn *insn, poly_int64 value)
2381 {
2382   gcc_checking_assert (!find_reg_note (insn, REG_ARGS_SIZE, NULL_RTX));
2383   add_reg_note (insn, REG_ARGS_SIZE, gen_int_mode (value, Pmode));
2384 }
2385
2386 /* Add a register note like NOTE to INSN.  */
2387
2388 void
2389 add_shallow_copy_of_reg_note (rtx_insn *insn, rtx note)
2390 {
2391   if (GET_CODE (note) == INT_LIST)
2392     add_int_reg_note (insn, REG_NOTE_KIND (note), XINT (note, 0));
2393   else
2394     add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
2395 }
2396
2397 /* Duplicate NOTE and return the copy.  */
2398 rtx
2399 duplicate_reg_note (rtx note)
2400 {
2401   reg_note kind = REG_NOTE_KIND (note);
2402
2403   if (GET_CODE (note) == INT_LIST)
2404     return gen_rtx_INT_LIST ((machine_mode) kind, XINT (note, 0), NULL_RTX);
2405   else if (GET_CODE (note) == EXPR_LIST)
2406     return alloc_reg_note (kind, copy_insn_1 (XEXP (note, 0)), NULL_RTX);
2407   else
2408     return alloc_reg_note (kind, XEXP (note, 0), NULL_RTX);
2409 }
2410
2411 /* Remove register note NOTE from the REG_NOTES of INSN.  */
2412
2413 void
2414 remove_note (rtx_insn *insn, const_rtx note)
2415 {
2416   rtx link;
2417
2418   if (note == NULL_RTX)
2419     return;
2420
2421   if (REG_NOTES (insn) == note)
2422     REG_NOTES (insn) = XEXP (note, 1);
2423   else
2424     for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2425       if (XEXP (link, 1) == note)
2426         {
2427           XEXP (link, 1) = XEXP (note, 1);
2428           break;
2429         }
2430
2431   switch (REG_NOTE_KIND (note))
2432     {
2433     case REG_EQUAL:
2434     case REG_EQUIV:
2435       df_notes_rescan (insn);
2436       break;
2437     default:
2438       break;
2439     }
2440 }
2441
2442 /* Remove REG_EQUAL and/or REG_EQUIV notes if INSN has such notes.
2443    Return true if any note has been removed.  */
2444
2445 bool
2446 remove_reg_equal_equiv_notes (rtx_insn *insn)
2447 {
2448   rtx *loc;
2449   bool ret = false;
2450
2451   loc = &REG_NOTES (insn);
2452   while (*loc)
2453     {
2454       enum reg_note kind = REG_NOTE_KIND (*loc);
2455       if (kind == REG_EQUAL || kind == REG_EQUIV)
2456         {
2457           *loc = XEXP (*loc, 1);
2458           ret = true;
2459         }
2460       else
2461         loc = &XEXP (*loc, 1);
2462     }
2463   return ret;
2464 }
2465
2466 /* Remove all REG_EQUAL and REG_EQUIV notes referring to REGNO.  */
2467
2468 void
2469 remove_reg_equal_equiv_notes_for_regno (unsigned int regno)
2470 {
2471   df_ref eq_use;
2472
2473   if (!df)
2474     return;
2475
2476   /* This loop is a little tricky.  We cannot just go down the chain because
2477      it is being modified by some actions in the loop.  So we just iterate
2478      over the head.  We plan to drain the list anyway.  */
2479   while ((eq_use = DF_REG_EQ_USE_CHAIN (regno)) != NULL)
2480     {
2481       rtx_insn *insn = DF_REF_INSN (eq_use);
2482       rtx note = find_reg_equal_equiv_note (insn);
2483
2484       /* This assert is generally triggered when someone deletes a REG_EQUAL
2485          or REG_EQUIV note by hacking the list manually rather than calling
2486          remove_note.  */
2487       gcc_assert (note);
2488
2489       remove_note (insn, note);
2490     }
2491 }
2492
2493 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
2494    return 1 if it is found.  A simple equality test is used to determine if
2495    NODE matches.  */
2496
2497 bool
2498 in_insn_list_p (const rtx_insn_list *listp, const rtx_insn *node)
2499 {
2500   const_rtx x;
2501
2502   for (x = listp; x; x = XEXP (x, 1))
2503     if (node == XEXP (x, 0))
2504       return true;
2505
2506   return false;
2507 }
2508
2509 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
2510    remove that entry from the list if it is found.
2511
2512    A simple equality test is used to determine if NODE matches.  */
2513
2514 void
2515 remove_node_from_expr_list (const_rtx node, rtx_expr_list **listp)
2516 {
2517   rtx_expr_list *temp = *listp;
2518   rtx_expr_list *prev = NULL;
2519
2520   while (temp)
2521     {
2522       if (node == temp->element ())
2523         {
2524           /* Splice the node out of the list.  */
2525           if (prev)
2526             XEXP (prev, 1) = temp->next ();
2527           else
2528             *listp = temp->next ();
2529
2530           return;
2531         }
2532
2533       prev = temp;
2534       temp = temp->next ();
2535     }
2536 }
2537
2538 /* Search LISTP (an INSN_LIST) for an entry whose first operand is NODE and
2539    remove that entry from the list if it is found.
2540
2541    A simple equality test is used to determine if NODE matches.  */
2542
2543 void
2544 remove_node_from_insn_list (const rtx_insn *node, rtx_insn_list **listp)
2545 {
2546   rtx_insn_list *temp = *listp;
2547   rtx_insn_list *prev = NULL;
2548
2549   while (temp)
2550     {
2551       if (node == temp->insn ())
2552         {
2553           /* Splice the node out of the list.  */
2554           if (prev)
2555             XEXP (prev, 1) = temp->next ();
2556           else
2557             *listp = temp->next ();
2558
2559           return;
2560         }
2561
2562       prev = temp;
2563       temp = temp->next ();
2564     }
2565 }
2566 \f
2567 /* Nonzero if X contains any volatile instructions.  These are instructions
2568    which may cause unpredictable machine state instructions, and thus no
2569    instructions or register uses should be moved or combined across them.
2570    This includes only volatile asms and UNSPEC_VOLATILE instructions.  */
2571
2572 int
2573 volatile_insn_p (const_rtx x)
2574 {
2575   const RTX_CODE code = GET_CODE (x);
2576   switch (code)
2577     {
2578     case LABEL_REF:
2579     case SYMBOL_REF:
2580     case CONST:
2581     CASE_CONST_ANY:
2582     case CC0:
2583     case PC:
2584     case REG:
2585     case SCRATCH:
2586     case CLOBBER:
2587     case ADDR_VEC:
2588     case ADDR_DIFF_VEC:
2589     case CALL:
2590     case MEM:
2591       return 0;
2592
2593     case UNSPEC_VOLATILE:
2594       return 1;
2595
2596     case ASM_INPUT:
2597     case ASM_OPERANDS:
2598       if (MEM_VOLATILE_P (x))
2599         return 1;
2600
2601     default:
2602       break;
2603     }
2604
2605   /* Recursively scan the operands of this expression.  */
2606
2607   {
2608     const char *const fmt = GET_RTX_FORMAT (code);
2609     int i;
2610
2611     for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2612       {
2613         if (fmt[i] == 'e')
2614           {
2615             if (volatile_insn_p (XEXP (x, i)))
2616               return 1;
2617           }
2618         else if (fmt[i] == 'E')
2619           {
2620             int j;
2621             for (j = 0; j < XVECLEN (x, i); j++)
2622               if (volatile_insn_p (XVECEXP (x, i, j)))
2623                 return 1;
2624           }
2625       }
2626   }
2627   return 0;
2628 }
2629
2630 /* Nonzero if X contains any volatile memory references
2631    UNSPEC_VOLATILE operations or volatile ASM_OPERANDS expressions.  */
2632
2633 int
2634 volatile_refs_p (const_rtx x)
2635 {
2636   const RTX_CODE code = GET_CODE (x);
2637   switch (code)
2638     {
2639     case LABEL_REF:
2640     case SYMBOL_REF:
2641     case CONST:
2642     CASE_CONST_ANY:
2643     case CC0:
2644     case PC:
2645     case REG:
2646     case SCRATCH:
2647     case CLOBBER:
2648     case ADDR_VEC:
2649     case ADDR_DIFF_VEC:
2650       return 0;
2651
2652     case UNSPEC_VOLATILE:
2653       return 1;
2654
2655     case MEM:
2656     case ASM_INPUT:
2657     case ASM_OPERANDS:
2658       if (MEM_VOLATILE_P (x))
2659         return 1;
2660
2661     default:
2662       break;
2663     }
2664
2665   /* Recursively scan the operands of this expression.  */
2666
2667   {
2668     const char *const fmt = GET_RTX_FORMAT (code);
2669     int i;
2670
2671     for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2672       {
2673         if (fmt[i] == 'e')
2674           {
2675             if (volatile_refs_p (XEXP (x, i)))
2676               return 1;
2677           }
2678         else if (fmt[i] == 'E')
2679           {
2680             int j;
2681             for (j = 0; j < XVECLEN (x, i); j++)
2682               if (volatile_refs_p (XVECEXP (x, i, j)))
2683                 return 1;
2684           }
2685       }
2686   }
2687   return 0;
2688 }
2689
2690 /* Similar to above, except that it also rejects register pre- and post-
2691    incrementing.  */
2692
2693 int
2694 side_effects_p (const_rtx x)
2695 {
2696   const RTX_CODE code = GET_CODE (x);
2697   switch (code)
2698     {
2699     case LABEL_REF:
2700     case SYMBOL_REF:
2701     case CONST:
2702     CASE_CONST_ANY:
2703     case CC0:
2704     case PC:
2705     case REG:
2706     case SCRATCH:
2707     case ADDR_VEC:
2708     case ADDR_DIFF_VEC:
2709     case VAR_LOCATION:
2710       return 0;
2711
2712     case CLOBBER:
2713       /* Reject CLOBBER with a non-VOID mode.  These are made by combine.c
2714          when some combination can't be done.  If we see one, don't think
2715          that we can simplify the expression.  */
2716       return (GET_MODE (x) != VOIDmode);
2717
2718     case PRE_INC:
2719     case PRE_DEC:
2720     case POST_INC:
2721     case POST_DEC:
2722     case PRE_MODIFY:
2723     case POST_MODIFY:
2724     case CALL:
2725     case UNSPEC_VOLATILE:
2726       return 1;
2727
2728     case MEM:
2729     case ASM_INPUT:
2730     case ASM_OPERANDS:
2731       if (MEM_VOLATILE_P (x))
2732         return 1;
2733
2734     default:
2735       break;
2736     }
2737
2738   /* Recursively scan the operands of this expression.  */
2739
2740   {
2741     const char *fmt = GET_RTX_FORMAT (code);
2742     int i;
2743
2744     for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2745       {
2746         if (fmt[i] == 'e')
2747           {
2748             if (side_effects_p (XEXP (x, i)))
2749               return 1;
2750           }
2751         else if (fmt[i] == 'E')
2752           {
2753             int j;
2754             for (j = 0; j < XVECLEN (x, i); j++)
2755               if (side_effects_p (XVECEXP (x, i, j)))
2756                 return 1;
2757           }
2758       }
2759   }
2760   return 0;
2761 }
2762 \f
2763 /* Return nonzero if evaluating rtx X might cause a trap.
2764    FLAGS controls how to consider MEMs.  A nonzero means the context
2765    of the access may have changed from the original, such that the
2766    address may have become invalid.  */
2767
2768 int
2769 may_trap_p_1 (const_rtx x, unsigned flags)
2770 {
2771   int i;
2772   enum rtx_code code;
2773   const char *fmt;
2774
2775   /* We make no distinction currently, but this function is part of
2776      the internal target-hooks ABI so we keep the parameter as
2777      "unsigned flags".  */
2778   bool code_changed = flags != 0;
2779
2780   if (x == 0)
2781     return 0;
2782   code = GET_CODE (x);
2783   switch (code)
2784     {
2785       /* Handle these cases quickly.  */
2786     CASE_CONST_ANY:
2787     case SYMBOL_REF:
2788     case LABEL_REF:
2789     case CONST:
2790     case PC:
2791     case CC0:
2792     case REG:
2793     case SCRATCH:
2794       return 0;
2795
2796     case UNSPEC:
2797       return targetm.unspec_may_trap_p (x, flags);
2798
2799     case UNSPEC_VOLATILE:
2800     case ASM_INPUT:
2801     case TRAP_IF:
2802       return 1;
2803
2804     case ASM_OPERANDS:
2805       return MEM_VOLATILE_P (x);
2806
2807       /* Memory ref can trap unless it's a static var or a stack slot.  */
2808     case MEM:
2809       /* Recognize specific pattern of stack checking probes.  */
2810       if (flag_stack_check
2811           && MEM_VOLATILE_P (x)
2812           && XEXP (x, 0) == stack_pointer_rtx)
2813         return 1;
2814       if (/* MEM_NOTRAP_P only relates to the actual position of the memory
2815              reference; moving it out of context such as when moving code
2816              when optimizing, might cause its address to become invalid.  */
2817           code_changed
2818           || !MEM_NOTRAP_P (x))
2819         {
2820           poly_int64 size = MEM_SIZE_KNOWN_P (x) ? MEM_SIZE (x) : -1;
2821           return rtx_addr_can_trap_p_1 (XEXP (x, 0), 0, size,
2822                                         GET_MODE (x), code_changed);
2823         }
2824
2825       return 0;
2826
2827       /* Division by a non-constant might trap.  */
2828     case DIV:
2829     case MOD:
2830     case UDIV:
2831     case UMOD:
2832       if (HONOR_SNANS (x))
2833         return 1;
2834       if (SCALAR_FLOAT_MODE_P (GET_MODE (x)))
2835         return flag_trapping_math;
2836       if (!CONSTANT_P (XEXP (x, 1)) || (XEXP (x, 1) == const0_rtx))
2837         return 1;
2838       break;
2839
2840     case EXPR_LIST:
2841       /* An EXPR_LIST is used to represent a function call.  This
2842          certainly may trap.  */
2843       return 1;
2844
2845     case GE:
2846     case GT:
2847     case LE:
2848     case LT:
2849     case LTGT:
2850     case COMPARE:
2851       /* Some floating point comparisons may trap.  */
2852       if (!flag_trapping_math)
2853         break;
2854       /* ??? There is no machine independent way to check for tests that trap
2855          when COMPARE is used, though many targets do make this distinction.
2856          For instance, sparc uses CCFPE for compares which generate exceptions
2857          and CCFP for compares which do not generate exceptions.  */
2858       if (HONOR_NANS (x))
2859         return 1;
2860       /* But often the compare has some CC mode, so check operand
2861          modes as well.  */
2862       if (HONOR_NANS (XEXP (x, 0))
2863           || HONOR_NANS (XEXP (x, 1)))
2864         return 1;
2865       break;
2866
2867     case EQ:
2868     case NE:
2869       if (HONOR_SNANS (x))
2870         return 1;
2871       /* Often comparison is CC mode, so check operand modes.  */
2872       if (HONOR_SNANS (XEXP (x, 0))
2873           || HONOR_SNANS (XEXP (x, 1)))
2874         return 1;
2875       break;
2876
2877     case FIX:
2878       /* Conversion of floating point might trap.  */
2879       if (flag_trapping_math && HONOR_NANS (XEXP (x, 0)))
2880         return 1;
2881       break;
2882
2883     case NEG:
2884     case ABS:
2885     case SUBREG:
2886       /* These operations don't trap even with floating point.  */
2887       break;
2888
2889     default:
2890       /* Any floating arithmetic may trap.  */
2891       if (SCALAR_FLOAT_MODE_P (GET_MODE (x)) && flag_trapping_math)
2892         return 1;
2893     }
2894
2895   fmt = GET_RTX_FORMAT (code);
2896   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2897     {
2898       if (fmt[i] == 'e')
2899         {
2900           if (may_trap_p_1 (XEXP (x, i), flags))
2901             return 1;
2902         }
2903       else if (fmt[i] == 'E')
2904         {
2905           int j;
2906           for (j = 0; j < XVECLEN (x, i); j++)
2907             if (may_trap_p_1 (XVECEXP (x, i, j), flags))
2908               return 1;
2909         }
2910     }
2911   return 0;
2912 }
2913
2914 /* Return nonzero if evaluating rtx X might cause a trap.  */
2915
2916 int
2917 may_trap_p (const_rtx x)
2918 {
2919   return may_trap_p_1 (x, 0);
2920 }
2921
2922 /* Same as above, but additionally return nonzero if evaluating rtx X might
2923    cause a fault.  We define a fault for the purpose of this function as a
2924    erroneous execution condition that cannot be encountered during the normal
2925    execution of a valid program; the typical example is an unaligned memory
2926    access on a strict alignment machine.  The compiler guarantees that it
2927    doesn't generate code that will fault from a valid program, but this
2928    guarantee doesn't mean anything for individual instructions.  Consider
2929    the following example:
2930
2931       struct S { int d; union { char *cp; int *ip; }; };
2932
2933       int foo(struct S *s)
2934       {
2935         if (s->d == 1)
2936           return *s->ip;
2937         else
2938           return *s->cp;
2939       }
2940
2941    on a strict alignment machine.  In a valid program, foo will never be
2942    invoked on a structure for which d is equal to 1 and the underlying
2943    unique field of the union not aligned on a 4-byte boundary, but the
2944    expression *s->ip might cause a fault if considered individually.
2945
2946    At the RTL level, potentially problematic expressions will almost always
2947    verify may_trap_p; for example, the above dereference can be emitted as
2948    (mem:SI (reg:P)) and this expression is may_trap_p for a generic register.
2949    However, suppose that foo is inlined in a caller that causes s->cp to
2950    point to a local character variable and guarantees that s->d is not set
2951    to 1; foo may have been effectively translated into pseudo-RTL as:
2952
2953       if ((reg:SI) == 1)
2954         (set (reg:SI) (mem:SI (%fp - 7)))
2955       else
2956         (set (reg:QI) (mem:QI (%fp - 7)))
2957
2958    Now (mem:SI (%fp - 7)) is considered as not may_trap_p since it is a
2959    memory reference to a stack slot, but it will certainly cause a fault
2960    on a strict alignment machine.  */
2961
2962 int
2963 may_trap_or_fault_p (const_rtx x)
2964 {
2965   return may_trap_p_1 (x, 1);
2966 }
2967 \f
2968 /* Return nonzero if X contains a comparison that is not either EQ or NE,
2969    i.e., an inequality.  */
2970
2971 int
2972 inequality_comparisons_p (const_rtx x)
2973 {
2974   const char *fmt;
2975   int len, i;
2976   const enum rtx_code code = GET_CODE (x);
2977
2978   switch (code)
2979     {
2980     case REG:
2981     case SCRATCH:
2982     case PC:
2983     case CC0:
2984     CASE_CONST_ANY:
2985     case CONST:
2986     case LABEL_REF:
2987     case SYMBOL_REF:
2988       return 0;
2989
2990     case LT:
2991     case LTU:
2992     case GT:
2993     case GTU:
2994     case LE:
2995     case LEU:
2996     case GE:
2997     case GEU:
2998       return 1;
2999
3000     default:
3001       break;
3002     }
3003
3004   len = GET_RTX_LENGTH (code);
3005   fmt = GET_RTX_FORMAT (code);
3006
3007   for (i = 0; i < len; i++)
3008     {
3009       if (fmt[i] == 'e')
3010         {
3011           if (inequality_comparisons_p (XEXP (x, i)))
3012             return 1;
3013         }
3014       else if (fmt[i] == 'E')
3015         {
3016           int j;
3017           for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3018             if (inequality_comparisons_p (XVECEXP (x, i, j)))
3019               return 1;
3020         }
3021     }
3022
3023   return 0;
3024 }
3025 \f
3026 /* Replace any occurrence of FROM in X with TO.  The function does
3027    not enter into CONST_DOUBLE for the replace.
3028
3029    Note that copying is not done so X must not be shared unless all copies
3030    are to be modified.
3031
3032    ALL_REGS is true if we want to replace all REGs equal to FROM, not just
3033    those pointer-equal ones.  */
3034
3035 rtx
3036 replace_rtx (rtx x, rtx from, rtx to, bool all_regs)
3037 {
3038   int i, j;
3039   const char *fmt;
3040
3041   if (x == from)
3042     return to;
3043
3044   /* Allow this function to make replacements in EXPR_LISTs.  */
3045   if (x == 0)
3046     return 0;
3047
3048   if (all_regs
3049       && REG_P (x)
3050       && REG_P (from)
3051       && REGNO (x) == REGNO (from))
3052     {
3053       gcc_assert (GET_MODE (x) == GET_MODE (from));
3054       return to;
3055     }
3056   else if (GET_CODE (x) == SUBREG)
3057     {
3058       rtx new_rtx = replace_rtx (SUBREG_REG (x), from, to, all_regs);
3059
3060       if (CONST_INT_P (new_rtx))
3061         {
3062           x = simplify_subreg (GET_MODE (x), new_rtx,
3063                                GET_MODE (SUBREG_REG (x)),
3064                                SUBREG_BYTE (x));
3065           gcc_assert (x);
3066         }
3067       else
3068         SUBREG_REG (x) = new_rtx;
3069
3070       return x;
3071     }
3072   else if (GET_CODE (x) == ZERO_EXTEND)
3073     {
3074       rtx new_rtx = replace_rtx (XEXP (x, 0), from, to, all_regs);
3075
3076       if (CONST_INT_P (new_rtx))
3077         {
3078           x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
3079                                         new_rtx, GET_MODE (XEXP (x, 0)));
3080           gcc_assert (x);
3081         }
3082       else
3083         XEXP (x, 0) = new_rtx;
3084
3085       return x;
3086     }
3087
3088   fmt = GET_RTX_FORMAT (GET_CODE (x));
3089   for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
3090     {
3091       if (fmt[i] == 'e')
3092         XEXP (x, i) = replace_rtx (XEXP (x, i), from, to, all_regs);
3093       else if (fmt[i] == 'E')
3094         for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3095           XVECEXP (x, i, j) = replace_rtx (XVECEXP (x, i, j),
3096                                            from, to, all_regs);
3097     }
3098
3099   return x;
3100 }
3101 \f
3102 /* Replace occurrences of the OLD_LABEL in *LOC with NEW_LABEL.  Also track
3103    the change in LABEL_NUSES if UPDATE_LABEL_NUSES.  */
3104
3105 void
3106 replace_label (rtx *loc, rtx old_label, rtx new_label, bool update_label_nuses)
3107 {
3108   /* Handle jump tables specially, since ADDR_{DIFF_,}VECs can be long.  */
3109   rtx x = *loc;
3110   if (JUMP_TABLE_DATA_P (x))
3111     {
3112       x = PATTERN (x);
3113       rtvec vec = XVEC (x, GET_CODE (x) == ADDR_DIFF_VEC);
3114       int len = GET_NUM_ELEM (vec);
3115       for (int i = 0; i < len; ++i)
3116         {
3117           rtx ref = RTVEC_ELT (vec, i);
3118           if (XEXP (ref, 0) == old_label)
3119             {
3120               XEXP (ref, 0) = new_label;
3121               if (update_label_nuses)
3122                 {
3123                   ++LABEL_NUSES (new_label);
3124                   --LABEL_NUSES (old_label);
3125                 }
3126             }
3127         }
3128       return;
3129     }
3130
3131   /* If this is a JUMP_INSN, then we also need to fix the JUMP_LABEL
3132      field.  This is not handled by the iterator because it doesn't
3133      handle unprinted ('0') fields.  */
3134   if (JUMP_P (x) && JUMP_LABEL (x) == old_label)
3135     JUMP_LABEL (x) = new_label;
3136
3137   subrtx_ptr_iterator::array_type array;
3138   FOR_EACH_SUBRTX_PTR (iter, array, loc, ALL)
3139     {
3140       rtx *loc = *iter;
3141       if (rtx x = *loc)
3142         {
3143           if (GET_CODE (x) == SYMBOL_REF
3144               && CONSTANT_POOL_ADDRESS_P (x))
3145             {
3146               rtx c = get_pool_constant (x);
3147               if (rtx_referenced_p (old_label, c))
3148                 {
3149                   /* Create a copy of constant C; replace the label inside
3150                      but do not update LABEL_NUSES because uses in constant pool
3151                      are not counted.  */
3152                   rtx new_c = copy_rtx (c);
3153                   replace_label (&new_c, old_label, new_label, false);
3154
3155                   /* Add the new constant NEW_C to constant pool and replace
3156                      the old reference to constant by new reference.  */
3157                   rtx new_mem = force_const_mem (get_pool_mode (x), new_c);
3158                   *loc = replace_rtx (x, x, XEXP (new_mem, 0));
3159                 }
3160             }
3161
3162           if ((GET_CODE (x) == LABEL_REF
3163                || GET_CODE (x) == INSN_LIST)
3164               && XEXP (x, 0) == old_label)
3165             {
3166               XEXP (x, 0) = new_label;
3167               if (update_label_nuses)
3168                 {
3169                   ++LABEL_NUSES (new_label);
3170                   --LABEL_NUSES (old_label);
3171                 }
3172             }
3173         }
3174     }
3175 }
3176
3177 void
3178 replace_label_in_insn (rtx_insn *insn, rtx_insn *old_label,
3179                        rtx_insn *new_label, bool update_label_nuses)
3180 {
3181   rtx insn_as_rtx = insn;
3182   replace_label (&insn_as_rtx, old_label, new_label, update_label_nuses);
3183   gcc_checking_assert (insn_as_rtx == insn);
3184 }
3185
3186 /* Return true if X is referenced in BODY.  */
3187
3188 bool
3189 rtx_referenced_p (const_rtx x, const_rtx body)
3190 {
3191   subrtx_iterator::array_type array;
3192   FOR_EACH_SUBRTX (iter, array, body, ALL)
3193     if (const_rtx y = *iter)
3194       {
3195         /* Check if a label_ref Y refers to label X.  */
3196         if (GET_CODE (y) == LABEL_REF
3197             && LABEL_P (x)
3198             && label_ref_label (y) == x)
3199           return true;
3200
3201         if (rtx_equal_p (x, y))
3202           return true;
3203
3204         /* If Y is a reference to pool constant traverse the constant.  */
3205         if (GET_CODE (y) == SYMBOL_REF
3206             && CONSTANT_POOL_ADDRESS_P (y))
3207           iter.substitute (get_pool_constant (y));
3208       }
3209   return false;
3210 }
3211
3212 /* If INSN is a tablejump return true and store the label (before jump table) to
3213    *LABELP and the jump table to *TABLEP.  LABELP and TABLEP may be NULL.  */
3214
3215 bool
3216 tablejump_p (const rtx_insn *insn, rtx_insn **labelp,
3217              rtx_jump_table_data **tablep)
3218 {
3219   if (!JUMP_P (insn))
3220     return false;
3221
3222   rtx target = JUMP_LABEL (insn);
3223   if (target == NULL_RTX || ANY_RETURN_P (target))
3224     return false;
3225
3226   rtx_insn *label = as_a<rtx_insn *> (target);
3227   rtx_insn *table = next_insn (label);
3228   if (table == NULL_RTX || !JUMP_TABLE_DATA_P (table))
3229     return false;
3230
3231   if (labelp)
3232     *labelp = label;
3233   if (tablep)
3234     *tablep = as_a <rtx_jump_table_data *> (table);
3235   return true;
3236 }
3237
3238 /* A subroutine of computed_jump_p, return 1 if X contains a REG or MEM or
3239    constant that is not in the constant pool and not in the condition
3240    of an IF_THEN_ELSE.  */
3241
3242 static int
3243 computed_jump_p_1 (const_rtx x)
3244 {
3245   const enum rtx_code code = GET_CODE (x);
3246   int i, j;
3247   const char *fmt;
3248
3249   switch (code)
3250     {
3251     case LABEL_REF:
3252     case PC:
3253       return 0;
3254
3255     case CONST:
3256     CASE_CONST_ANY:
3257     case SYMBOL_REF:
3258     case REG:
3259       return 1;
3260
3261     case MEM:
3262       return ! (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
3263                 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)));
3264
3265     case IF_THEN_ELSE:
3266       return (computed_jump_p_1 (XEXP (x, 1))
3267               || computed_jump_p_1 (XEXP (x, 2)));
3268
3269     default:
3270       break;
3271     }
3272
3273   fmt = GET_RTX_FORMAT (code);
3274   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3275     {
3276       if (fmt[i] == 'e'
3277           && computed_jump_p_1 (XEXP (x, i)))
3278         return 1;
3279
3280       else if (fmt[i] == 'E')
3281         for (j = 0; j < XVECLEN (x, i); j++)
3282           if (computed_jump_p_1 (XVECEXP (x, i, j)))
3283             return 1;
3284     }
3285
3286   return 0;
3287 }
3288
3289 /* Return nonzero if INSN is an indirect jump (aka computed jump).
3290
3291    Tablejumps and casesi insns are not considered indirect jumps;
3292    we can recognize them by a (use (label_ref)).  */
3293
3294 int
3295 computed_jump_p (const rtx_insn *insn)
3296 {
3297   int i;
3298   if (JUMP_P (insn))
3299     {
3300       rtx pat = PATTERN (insn);
3301
3302       /* If we have a JUMP_LABEL set, we're not a computed jump.  */
3303       if (JUMP_LABEL (insn) != NULL)
3304         return 0;
3305
3306       if (GET_CODE (pat) == PARALLEL)
3307         {
3308           int len = XVECLEN (pat, 0);
3309           int has_use_labelref = 0;
3310
3311           for (i = len - 1; i >= 0; i--)
3312             if (GET_CODE (XVECEXP (pat, 0, i)) == USE
3313                 && (GET_CODE (XEXP (XVECEXP (pat, 0, i), 0))
3314                     == LABEL_REF))
3315               {
3316                 has_use_labelref = 1;
3317                 break;
3318               }
3319
3320           if (! has_use_labelref)
3321             for (i = len - 1; i >= 0; i--)
3322               if (GET_CODE (XVECEXP (pat, 0, i)) == SET
3323                   && SET_DEST (XVECEXP (pat, 0, i)) == pc_rtx
3324                   && computed_jump_p_1 (SET_SRC (XVECEXP (pat, 0, i))))
3325                 return 1;
3326         }
3327       else if (GET_CODE (pat) == SET
3328                && SET_DEST (pat) == pc_rtx
3329                && computed_jump_p_1 (SET_SRC (pat)))
3330         return 1;
3331     }
3332   return 0;
3333 }
3334
3335 \f
3336
3337 /* MEM has a PRE/POST-INC/DEC/MODIFY address X.  Extract the operands of
3338    the equivalent add insn and pass the result to FN, using DATA as the
3339    final argument.  */
3340
3341 static int
3342 for_each_inc_dec_find_inc_dec (rtx mem, for_each_inc_dec_fn fn, void *data)
3343 {
3344   rtx x = XEXP (mem, 0);
3345   switch (GET_CODE (x))
3346     {
3347     case PRE_INC:
3348     case POST_INC:
3349       {
3350         poly_int64 size = GET_MODE_SIZE (GET_MODE (mem));
3351         rtx r1 = XEXP (x, 0);
3352         rtx c = gen_int_mode (size, GET_MODE (r1));
3353         return fn (mem, x, r1, r1, c, data);
3354       }
3355
3356     case PRE_DEC:
3357     case POST_DEC:
3358       {
3359         poly_int64 size = GET_MODE_SIZE (GET_MODE (mem));
3360         rtx r1 = XEXP (x, 0);
3361         rtx c = gen_int_mode (-size, GET_MODE (r1));
3362         return fn (mem, x, r1, r1, c, data);
3363       }
3364
3365     case PRE_MODIFY:
3366     case POST_MODIFY:
3367       {
3368         rtx r1 = XEXP (x, 0);
3369         rtx add = XEXP (x, 1);
3370         return fn (mem, x, r1, add, NULL, data);
3371       }
3372
3373     default:
3374       gcc_unreachable ();
3375     }
3376 }
3377
3378 /* Traverse *LOC looking for MEMs that have autoinc addresses.
3379    For each such autoinc operation found, call FN, passing it
3380    the innermost enclosing MEM, the operation itself, the RTX modified
3381    by the operation, two RTXs (the second may be NULL) that, once
3382    added, represent the value to be held by the modified RTX
3383    afterwards, and DATA.  FN is to return 0 to continue the
3384    traversal or any other value to have it returned to the caller of
3385    for_each_inc_dec.  */
3386
3387 int
3388 for_each_inc_dec (rtx x,
3389                   for_each_inc_dec_fn fn,
3390                   void *data)
3391 {
3392   subrtx_var_iterator::array_type array;
3393   FOR_EACH_SUBRTX_VAR (iter, array, x, NONCONST)
3394     {
3395       rtx mem = *iter;
3396       if (mem
3397           && MEM_P (mem)
3398           && GET_RTX_CLASS (GET_CODE (XEXP (mem, 0))) == RTX_AUTOINC)
3399         {
3400           int res = for_each_inc_dec_find_inc_dec (mem, fn, data);
3401           if (res != 0)
3402             return res;
3403           iter.skip_subrtxes ();
3404         }
3405     }
3406   return 0;
3407 }
3408
3409 \f
3410 /* Searches X for any reference to REGNO, returning the rtx of the
3411    reference found if any.  Otherwise, returns NULL_RTX.  */
3412
3413 rtx
3414 regno_use_in (unsigned int regno, rtx x)
3415 {
3416   const char *fmt;
3417   int i, j;
3418   rtx tem;
3419
3420   if (REG_P (x) && REGNO (x) == regno)
3421     return x;
3422
3423   fmt = GET_RTX_FORMAT (GET_CODE (x));
3424   for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
3425     {
3426       if (fmt[i] == 'e')
3427         {
3428           if ((tem = regno_use_in (regno, XEXP (x, i))))
3429             return tem;
3430         }
3431       else if (fmt[i] == 'E')
3432         for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3433           if ((tem = regno_use_in (regno , XVECEXP (x, i, j))))
3434             return tem;
3435     }
3436
3437   return NULL_RTX;
3438 }
3439
3440 /* Return a value indicating whether OP, an operand of a commutative
3441    operation, is preferred as the first or second operand.  The more
3442    positive the value, the stronger the preference for being the first
3443    operand.  */
3444
3445 int
3446 commutative_operand_precedence (rtx op)
3447 {
3448   enum rtx_code code = GET_CODE (op);
3449
3450   /* Constants always become the second operand.  Prefer "nice" constants.  */
3451   if (code == CONST_INT)
3452     return -10;
3453   if (code == CONST_WIDE_INT)
3454     return -9;
3455   if (code == CONST_POLY_INT)
3456     return -8;
3457   if (code == CONST_DOUBLE)
3458     return -8;
3459   if (code == CONST_FIXED)
3460     return -8;
3461   op = avoid_constant_pool_reference (op);
3462   code = GET_CODE (op);
3463
3464   switch (GET_RTX_CLASS (code))
3465     {
3466     case RTX_CONST_OBJ:
3467       if (code == CONST_INT)
3468         return -7;
3469       if (code == CONST_WIDE_INT)
3470         return -6;
3471       if (code == CONST_POLY_INT)
3472         return -5;
3473       if (code == CONST_DOUBLE)
3474         return -5;
3475       if (code == CONST_FIXED)
3476         return -5;
3477       return -4;
3478
3479     case RTX_EXTRA:
3480       /* SUBREGs of objects should come second.  */
3481       if (code == SUBREG && OBJECT_P (SUBREG_REG (op)))
3482         return -3;
3483       return 0;
3484
3485     case RTX_OBJ:
3486       /* Complex expressions should be the first, so decrease priority
3487          of objects.  Prefer pointer objects over non pointer objects.  */
3488       if ((REG_P (op) && REG_POINTER (op))
3489           || (MEM_P (op) && MEM_POINTER (op)))
3490         return -1;
3491       return -2;
3492
3493     case RTX_COMM_ARITH:
3494       /* Prefer operands that are themselves commutative to be first.
3495          This helps to make things linear.  In particular,
3496          (and (and (reg) (reg)) (not (reg))) is canonical.  */
3497       return 4;
3498
3499     case RTX_BIN_ARITH:
3500       /* If only one operand is a binary expression, it will be the first
3501          operand.  In particular,  (plus (minus (reg) (reg)) (neg (reg)))
3502          is canonical, although it will usually be further simplified.  */
3503       return 2;
3504
3505     case RTX_UNARY:
3506       /* Then prefer NEG and NOT.  */
3507       if (code == NEG || code == NOT)
3508         return 1;
3509       /* FALLTHRU */
3510
3511     default:
3512       return 0;
3513     }
3514 }
3515
3516 /* Return 1 iff it is necessary to swap operands of commutative operation
3517    in order to canonicalize expression.  */
3518
3519 bool
3520 swap_commutative_operands_p (rtx x, rtx y)
3521 {
3522   return (commutative_operand_precedence (x)
3523           < commutative_operand_precedence (y));
3524 }
3525
3526 /* Return 1 if X is an autoincrement side effect and the register is
3527    not the stack pointer.  */
3528 int
3529 auto_inc_p (const_rtx x)
3530 {
3531   switch (GET_CODE (x))
3532     {
3533     case PRE_INC:
3534     case POST_INC:
3535     case PRE_DEC:
3536     case POST_DEC:
3537     case PRE_MODIFY:
3538     case POST_MODIFY:
3539       /* There are no REG_INC notes for SP.  */
3540       if (XEXP (x, 0) != stack_pointer_rtx)
3541         return 1;
3542     default:
3543       break;
3544     }
3545   return 0;
3546 }
3547
3548 /* Return nonzero if IN contains a piece of rtl that has the address LOC.  */
3549 int
3550 loc_mentioned_in_p (rtx *loc, const_rtx in)
3551 {
3552   enum rtx_code code;
3553   const char *fmt;
3554   int i, j;
3555
3556   if (!in)
3557     return 0;
3558
3559   code = GET_CODE (in);
3560   fmt = GET_RTX_FORMAT (code);
3561   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3562     {
3563       if (fmt[i] == 'e')
3564         {
3565           if (loc == &XEXP (in, i) || loc_mentioned_in_p (loc, XEXP (in, i)))
3566             return 1;
3567         }
3568       else if (fmt[i] == 'E')
3569         for (j = XVECLEN (in, i) - 1; j >= 0; j--)
3570           if (loc == &XVECEXP (in, i, j)
3571               || loc_mentioned_in_p (loc, XVECEXP (in, i, j)))
3572             return 1;
3573     }
3574   return 0;
3575 }
3576
3577 /* Helper function for subreg_lsb.  Given a subreg's OUTER_MODE, INNER_MODE,
3578    and SUBREG_BYTE, return the bit offset where the subreg begins
3579    (counting from the least significant bit of the operand).  */
3580
3581 poly_uint64
3582 subreg_lsb_1 (machine_mode outer_mode,
3583               machine_mode inner_mode,
3584               poly_uint64 subreg_byte)
3585 {
3586   poly_uint64 subreg_end, trailing_bytes, byte_pos;
3587
3588   /* A paradoxical subreg begins at bit position 0.  */
3589   if (paradoxical_subreg_p (outer_mode, inner_mode))
3590     return 0;
3591
3592   subreg_end = subreg_byte + GET_MODE_SIZE (outer_mode);
3593   trailing_bytes = GET_MODE_SIZE (inner_mode) - subreg_end;
3594   if (WORDS_BIG_ENDIAN && BYTES_BIG_ENDIAN)
3595     byte_pos = trailing_bytes;
3596   else if (!WORDS_BIG_ENDIAN && !BYTES_BIG_ENDIAN)
3597     byte_pos = subreg_byte;
3598   else
3599     {
3600       /* When bytes and words have opposite endianness, we must be able
3601          to split offsets into words and bytes at compile time.  */
3602       poly_uint64 leading_word_part
3603         = force_align_down (subreg_byte, UNITS_PER_WORD);
3604       poly_uint64 trailing_word_part
3605         = force_align_down (trailing_bytes, UNITS_PER_WORD);
3606       /* If the subreg crosses a word boundary ensure that
3607          it also begins and ends on a word boundary.  */
3608       gcc_assert (known_le (subreg_end - leading_word_part,
3609                             (unsigned int) UNITS_PER_WORD)
3610                   || (known_eq (leading_word_part, subreg_byte)
3611                       && known_eq (trailing_word_part, trailing_bytes)));
3612       if (WORDS_BIG_ENDIAN)
3613         byte_pos = trailing_word_part + (subreg_byte - leading_word_part);
3614       else
3615         byte_pos = leading_word_part + (trailing_bytes - trailing_word_part);
3616     }
3617
3618   return byte_pos * BITS_PER_UNIT;
3619 }
3620
3621 /* Given a subreg X, return the bit offset where the subreg begins
3622    (counting from the least significant bit of the reg).  */
3623
3624 poly_uint64
3625 subreg_lsb (const_rtx x)
3626 {
3627   return subreg_lsb_1 (GET_MODE (x), GET_MODE (SUBREG_REG (x)),
3628                        SUBREG_BYTE (x));
3629 }
3630
3631 /* Return the subreg byte offset for a subreg whose outer value has
3632    OUTER_BYTES bytes, whose inner value has INNER_BYTES bytes, and where
3633    there are LSB_SHIFT *bits* between the lsb of the outer value and the
3634    lsb of the inner value.  This is the inverse of the calculation
3635    performed by subreg_lsb_1 (which converts byte offsets to bit shifts).  */
3636
3637 poly_uint64
3638 subreg_size_offset_from_lsb (poly_uint64 outer_bytes, poly_uint64 inner_bytes,
3639                              poly_uint64 lsb_shift)
3640 {
3641   /* A paradoxical subreg begins at bit position 0.  */
3642   gcc_checking_assert (ordered_p (outer_bytes, inner_bytes));
3643   if (maybe_gt (outer_bytes, inner_bytes))
3644     {
3645       gcc_checking_assert (known_eq (lsb_shift, 0U));
3646       return 0;
3647     }
3648
3649   poly_uint64 lower_bytes = exact_div (lsb_shift, BITS_PER_UNIT);
3650   poly_uint64 upper_bytes = inner_bytes - (lower_bytes + outer_bytes);
3651   if (WORDS_BIG_ENDIAN && BYTES_BIG_ENDIAN)
3652     return upper_bytes;
3653   else if (!WORDS_BIG_ENDIAN && !BYTES_BIG_ENDIAN)
3654     return lower_bytes;
3655   else
3656     {
3657       /* When bytes and words have opposite endianness, we must be able
3658          to split offsets into words and bytes at compile time.  */
3659       poly_uint64 lower_word_part = force_align_down (lower_bytes,
3660                                                       UNITS_PER_WORD);
3661       poly_uint64 upper_word_part = force_align_down (upper_bytes,
3662                                                       UNITS_PER_WORD);
3663       if (WORDS_BIG_ENDIAN)
3664         return upper_word_part + (lower_bytes - lower_word_part);
3665       else
3666         return lower_word_part + (upper_bytes - upper_word_part);
3667     }
3668 }
3669
3670 /* Fill in information about a subreg of a hard register.
3671    xregno - A regno of an inner hard subreg_reg (or what will become one).
3672    xmode  - The mode of xregno.
3673    offset - The byte offset.
3674    ymode  - The mode of a top level SUBREG (or what may become one).
3675    info   - Pointer to structure to fill in.
3676
3677    Rather than considering one particular inner register (and thus one
3678    particular "outer" register) in isolation, this function really uses
3679    XREGNO as a model for a sequence of isomorphic hard registers.  Thus the
3680    function does not check whether adding INFO->offset to XREGNO gives
3681    a valid hard register; even if INFO->offset + XREGNO is out of range,
3682    there might be another register of the same type that is in range.
3683    Likewise it doesn't check whether targetm.hard_regno_mode_ok accepts
3684    the new register, since that can depend on things like whether the final
3685    register number is even or odd.  Callers that want to check whether
3686    this particular subreg can be replaced by a simple (reg ...) should
3687    use simplify_subreg_regno.  */
3688
3689 void
3690 subreg_get_info (unsigned int xregno, machine_mode xmode,
3691                  poly_uint64 offset, machine_mode ymode,
3692                  struct subreg_info *info)
3693 {
3694   unsigned int nregs_xmode, nregs_ymode;
3695
3696   gcc_assert (xregno < FIRST_PSEUDO_REGISTER);
3697
3698   poly_uint64 xsize = GET_MODE_SIZE (xmode);
3699   poly_uint64 ysize = GET_MODE_SIZE (ymode);
3700
3701   bool rknown = false;
3702
3703   /* If the register representation of a non-scalar mode has holes in it,
3704      we expect the scalar units to be concatenated together, with the holes
3705      distributed evenly among the scalar units.  Each scalar unit must occupy
3706      at least one register.  */
3707   if (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode))
3708     {
3709       /* As a consequence, we must be dealing with a constant number of
3710          scalars, and thus a constant offset and number of units.  */
3711       HOST_WIDE_INT coffset = offset.to_constant ();
3712       HOST_WIDE_INT cysize = ysize.to_constant ();
3713       nregs_xmode = HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode);
3714       unsigned int nunits = GET_MODE_NUNITS (xmode).to_constant ();
3715       scalar_mode xmode_unit = GET_MODE_INNER (xmode);
3716       gcc_assert (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode_unit));
3717       gcc_assert (nregs_xmode
3718                   == (nunits
3719                       * HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode_unit)));
3720       gcc_assert (hard_regno_nregs (xregno, xmode)
3721                   == hard_regno_nregs (xregno, xmode_unit) * nunits);
3722
3723       /* You can only ask for a SUBREG of a value with holes in the middle
3724          if you don't cross the holes.  (Such a SUBREG should be done by
3725          picking a different register class, or doing it in memory if
3726          necessary.)  An example of a value with holes is XCmode on 32-bit
3727          x86 with -m128bit-long-double; it's represented in 6 32-bit registers,
3728          3 for each part, but in memory it's two 128-bit parts.
3729          Padding is assumed to be at the end (not necessarily the 'high part')
3730          of each unit.  */
3731       if ((coffset / GET_MODE_SIZE (xmode_unit) + 1 < nunits)
3732           && (coffset / GET_MODE_SIZE (xmode_unit)
3733               != ((coffset + cysize - 1) / GET_MODE_SIZE (xmode_unit))))
3734         {
3735           info->representable_p = false;
3736           rknown = true;
3737         }
3738     }
3739   else
3740     nregs_xmode = hard_regno_nregs (xregno, xmode);
3741
3742   nregs_ymode = hard_regno_nregs (xregno, ymode);
3743
3744   /* Subreg sizes must be ordered, so that we can tell whether they are
3745      partial, paradoxical or complete.  */
3746   gcc_checking_assert (ordered_p (xsize, ysize));
3747
3748   /* Paradoxical subregs are otherwise valid.  */
3749   if (!rknown && known_eq (offset, 0U) && maybe_gt (ysize, xsize))
3750     {
3751       info->representable_p = true;
3752       /* If this is a big endian paradoxical subreg, which uses more
3753          actual hard registers than the original register, we must
3754          return a negative offset so that we find the proper highpart
3755          of the register.
3756
3757          We assume that the ordering of registers within a multi-register
3758          value has a consistent endianness: if bytes and register words
3759          have different endianness, the hard registers that make up a
3760          multi-register value must be at least word-sized.  */
3761       if (REG_WORDS_BIG_ENDIAN)
3762         info->offset = (int) nregs_xmode - (int) nregs_ymode;
3763       else
3764         info->offset = 0;
3765       info->nregs = nregs_ymode;
3766       return;
3767     }
3768
3769   /* If registers store different numbers of bits in the different
3770      modes, we cannot generally form this subreg.  */
3771   poly_uint64 regsize_xmode, regsize_ymode;
3772   if (!HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode)
3773       && !HARD_REGNO_NREGS_HAS_PADDING (xregno, ymode)
3774       && multiple_p (xsize, nregs_xmode, &regsize_xmode)
3775       && multiple_p (ysize, nregs_ymode, &regsize_ymode))
3776     {
3777       if (!rknown
3778           && ((nregs_ymode > 1 && maybe_gt (regsize_xmode, regsize_ymode))
3779               || (nregs_xmode > 1 && maybe_gt (regsize_ymode, regsize_xmode))))
3780         {
3781           info->representable_p = false;
3782           if (!can_div_away_from_zero_p (ysize, regsize_xmode, &info->nregs)
3783               || !can_div_trunc_p (offset, regsize_xmode, &info->offset))
3784             /* Checked by validate_subreg.  We must know at compile time
3785                which inner registers are being accessed.  */
3786             gcc_unreachable ();
3787           return;
3788         }
3789       /* It's not valid to extract a subreg of mode YMODE at OFFSET that
3790          would go outside of XMODE.  */
3791       if (!rknown && maybe_gt (ysize + offset, xsize))
3792         {
3793           info->representable_p = false;
3794           info->nregs = nregs_ymode;
3795           if (!can_div_trunc_p (offset, regsize_xmode, &info->offset))
3796             /* Checked by validate_subreg.  We must know at compile time
3797                which inner registers are being accessed.  */
3798             gcc_unreachable ();
3799           return;
3800         }
3801       /* Quick exit for the simple and common case of extracting whole
3802          subregisters from a multiregister value.  */
3803       /* ??? It would be better to integrate this into the code below,
3804          if we can generalize the concept enough and figure out how
3805          odd-sized modes can coexist with the other weird cases we support.  */
3806       HOST_WIDE_INT count;
3807       if (!rknown
3808           && WORDS_BIG_ENDIAN == REG_WORDS_BIG_ENDIAN
3809           && known_eq (regsize_xmode, regsize_ymode)
3810           && constant_multiple_p (offset, regsize_ymode, &count))
3811         {
3812           info->representable_p = true;
3813           info->nregs = nregs_ymode;
3814           info->offset = count;
3815           gcc_assert (info->offset + info->nregs <= (int) nregs_xmode);
3816           return;
3817         }
3818     }
3819
3820   /* Lowpart subregs are otherwise valid.  */
3821   if (!rknown && known_eq (offset, subreg_lowpart_offset (ymode, xmode)))
3822     {
3823       info->representable_p = true;
3824       rknown = true;
3825
3826       if (known_eq (offset, 0U) || nregs_xmode == nregs_ymode)
3827         {
3828           info->offset = 0;
3829           info->nregs = nregs_ymode;
3830           return;
3831         }
3832     }
3833
3834   /* Set NUM_BLOCKS to the number of independently-representable YMODE
3835      values there are in (reg:XMODE XREGNO).  We can view the register
3836      as consisting of this number of independent "blocks", where each
3837      block occupies NREGS_YMODE registers and contains exactly one
3838      representable YMODE value.  */
3839   gcc_assert ((nregs_xmode % nregs_ymode) == 0);
3840   unsigned int num_blocks = nregs_xmode / nregs_ymode;
3841
3842   /* Calculate the number of bytes in each block.  This must always
3843      be exact, otherwise we don't know how to verify the constraint.
3844      These conditions may be relaxed but subreg_regno_offset would
3845      need to be redesigned.  */
3846   poly_uint64 bytes_per_block = exact_div (xsize, num_blocks);
3847
3848   /* Get the number of the first block that contains the subreg and the byte
3849      offset of the subreg from the start of that block.  */
3850   unsigned int block_number;
3851   poly_uint64 subblock_offset;
3852   if (!can_div_trunc_p (offset, bytes_per_block, &block_number,
3853                         &subblock_offset))
3854     /* Checked by validate_subreg.  We must know at compile time which
3855        inner registers are being accessed.  */
3856     gcc_unreachable ();
3857
3858   if (!rknown)
3859     {
3860       /* Only the lowpart of each block is representable.  */
3861       info->representable_p
3862         = known_eq (subblock_offset,
3863                     subreg_size_lowpart_offset (ysize, bytes_per_block));
3864       rknown = true;
3865     }
3866
3867   /* We assume that the ordering of registers within a multi-register
3868      value has a consistent endianness: if bytes and register words
3869      have different endianness, the hard registers that make up a
3870      multi-register value must be at least word-sized.  */
3871   if (WORDS_BIG_ENDIAN != REG_WORDS_BIG_ENDIAN)
3872     /* The block number we calculated above followed memory endianness.
3873        Convert it to register endianness by counting back from the end.
3874        (Note that, because of the assumption above, each block must be
3875        at least word-sized.)  */
3876     info->offset = (num_blocks - block_number - 1) * nregs_ymode;
3877   else
3878     info->offset = block_number * nregs_ymode;
3879   info->nregs = nregs_ymode;
3880 }
3881
3882 /* This function returns the regno offset of a subreg expression.
3883    xregno - A regno of an inner hard subreg_reg (or what will become one).
3884    xmode  - The mode of xregno.
3885    offset - The byte offset.
3886    ymode  - The mode of a top level SUBREG (or what may become one).
3887    RETURN - The regno offset which would be used.  */
3888 unsigned int
3889 subreg_regno_offset (unsigned int xregno, machine_mode xmode,
3890                      poly_uint64 offset, machine_mode ymode)
3891 {
3892   struct subreg_info info;
3893   subreg_get_info (xregno, xmode, offset, ymode, &info);
3894   return info.offset;
3895 }
3896
3897 /* This function returns true when the offset is representable via
3898    subreg_offset in the given regno.
3899    xregno - A regno of an inner hard subreg_reg (or what will become one).
3900    xmode  - The mode of xregno.
3901    offset - The byte offset.
3902    ymode  - The mode of a top level SUBREG (or what may become one).
3903    RETURN - Whether the offset is representable.  */
3904 bool
3905 subreg_offset_representable_p (unsigned int xregno, machine_mode xmode,
3906                                poly_uint64 offset, machine_mode ymode)
3907 {
3908   struct subreg_info info;
3909   subreg_get_info (xregno, xmode, offset, ymode, &info);
3910   return info.representable_p;
3911 }
3912
3913 /* Return the number of a YMODE register to which
3914
3915        (subreg:YMODE (reg:XMODE XREGNO) OFFSET)
3916
3917    can be simplified.  Return -1 if the subreg can't be simplified.
3918
3919    XREGNO is a hard register number.  */
3920
3921 int
3922 simplify_subreg_regno (unsigned int xregno, machine_mode xmode,
3923                        poly_uint64 offset, machine_mode ymode)
3924 {
3925   struct subreg_info info;
3926   unsigned int yregno;
3927
3928   /* Give the backend a chance to disallow the mode change.  */
3929   if (GET_MODE_CLASS (xmode) != MODE_COMPLEX_INT
3930       && GET_MODE_CLASS (xmode) != MODE_COMPLEX_FLOAT
3931       && !REG_CAN_CHANGE_MODE_P (xregno, xmode, ymode)
3932       /* We can use mode change in LRA for some transformations.  */
3933       && ! lra_in_progress)
3934     return -1;
3935
3936   /* We shouldn't simplify stack-related registers.  */
3937   if ((!reload_completed || frame_pointer_needed)
3938       && xregno == FRAME_POINTER_REGNUM)
3939     return -1;
3940
3941   if (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3942       && xregno == ARG_POINTER_REGNUM)
3943     return -1;
3944
3945   if (xregno == STACK_POINTER_REGNUM
3946       /* We should convert hard stack register in LRA if it is
3947          possible.  */
3948       && ! lra_in_progress)
3949     return -1;
3950
3951   /* Try to get the register offset.  */
3952   subreg_get_info (xregno, xmode, offset, ymode, &info);
3953   if (!info.representable_p)
3954     return -1;
3955
3956   /* Make sure that the offsetted register value is in range.  */
3957   yregno = xregno + info.offset;
3958   if (!HARD_REGISTER_NUM_P (yregno))
3959     return -1;
3960
3961   /* See whether (reg:YMODE YREGNO) is valid.
3962
3963      ??? We allow invalid registers if (reg:XMODE XREGNO) is also invalid.
3964      This is a kludge to work around how complex FP arguments are passed
3965      on IA-64 and should be fixed.  See PR target/49226.  */
3966   if (!targetm.hard_regno_mode_ok (yregno, ymode)
3967       && targetm.hard_regno_mode_ok (xregno, xmode))
3968     return -1;
3969
3970   return (int) yregno;
3971 }
3972
3973 /* Return the final regno that a subreg expression refers to.  */
3974 unsigned int
3975 subreg_regno (const_rtx x)
3976 {
3977   unsigned int ret;
3978   rtx subreg = SUBREG_REG (x);
3979   int regno = REGNO (subreg);
3980
3981   ret = regno + subreg_regno_offset (regno,
3982                                      GET_MODE (subreg),
3983                                      SUBREG_BYTE (x),
3984                                      GET_MODE (x));
3985   return ret;
3986
3987 }
3988
3989 /* Return the number of registers that a subreg expression refers
3990    to.  */
3991 unsigned int
3992 subreg_nregs (const_rtx x)
3993 {
3994   return subreg_nregs_with_regno (REGNO (SUBREG_REG (x)), x);
3995 }
3996
3997 /* Return the number of registers that a subreg REG with REGNO
3998    expression refers to.  This is a copy of the rtlanal.c:subreg_nregs
3999    changed so that the regno can be passed in. */
4000
4001 unsigned int
4002 subreg_nregs_with_regno (unsigned int regno, const_rtx x)
4003 {
4004   struct subreg_info info;
4005   rtx subreg = SUBREG_REG (x);
4006
4007   subreg_get_info (regno, GET_MODE (subreg), SUBREG_BYTE (x), GET_MODE (x),
4008                    &info);
4009   return info.nregs;
4010 }
4011
4012 struct parms_set_data
4013 {
4014   int nregs;
4015   HARD_REG_SET regs;
4016 };
4017
4018 /* Helper function for noticing stores to parameter registers.  */
4019 static void
4020 parms_set (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
4021 {
4022   struct parms_set_data *const d = (struct parms_set_data *) data;
4023   if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
4024       && TEST_HARD_REG_BIT (d->regs, REGNO (x)))
4025     {
4026       CLEAR_HARD_REG_BIT (d->regs, REGNO (x));
4027       d->nregs--;
4028     }
4029 }
4030
4031 /* Look backward for first parameter to be loaded.
4032    Note that loads of all parameters will not necessarily be
4033    found if CSE has eliminated some of them (e.g., an argument
4034    to the outer function is passed down as a parameter).
4035    Do not skip BOUNDARY.  */
4036 rtx_insn *
4037 find_first_parameter_load (rtx_insn *call_insn, rtx_insn *boundary)
4038 {
4039   struct parms_set_data parm;
4040   rtx p;
4041   rtx_insn *before, *first_set;
4042
4043   /* Since different machines initialize their parameter registers
4044      in different orders, assume nothing.  Collect the set of all
4045      parameter registers.  */
4046   CLEAR_HARD_REG_SET (parm.regs);
4047   parm.nregs = 0;
4048   for (p = CALL_INSN_FUNCTION_USAGE (call_insn); p; p = XEXP (p, 1))
4049     if (GET_CODE (XEXP (p, 0)) == USE
4050         && REG_P (XEXP (XEXP (p, 0), 0))
4051         && !STATIC_CHAIN_REG_P (XEXP (XEXP (p, 0), 0)))
4052       {
4053         gcc_assert (REGNO (XEXP (XEXP (p, 0), 0)) < FIRST_PSEUDO_REGISTER);
4054
4055         /* We only care about registers which can hold function
4056            arguments.  */
4057         if (!FUNCTION_ARG_REGNO_P (REGNO (XEXP (XEXP (p, 0), 0))))
4058           continue;
4059
4060         SET_HARD_REG_BIT (parm.regs, REGNO (XEXP (XEXP (p, 0), 0)));
4061         parm.nregs++;
4062       }
4063   before = call_insn;
4064   first_set = call_insn;
4065
4066   /* Search backward for the first set of a register in this set.  */
4067   while (parm.nregs && before != boundary)
4068     {
4069       before = PREV_INSN (before);
4070
4071       /* It is possible that some loads got CSEed from one call to
4072          another.  Stop in that case.  */
4073       if (CALL_P (before))
4074         break;
4075
4076       /* Our caller needs either ensure that we will find all sets
4077          (in case code has not been optimized yet), or take care
4078          for possible labels in a way by setting boundary to preceding
4079          CODE_LABEL.  */
4080       if (LABEL_P (before))
4081         {
4082           gcc_assert (before == boundary);
4083           break;
4084         }
4085
4086       if (INSN_P (before))
4087         {
4088           int nregs_old = parm.nregs;
4089           note_stores (PATTERN (before), parms_set, &parm);
4090           /* If we found something that did not set a parameter reg,
4091              we're done.  Do not keep going, as that might result
4092              in hoisting an insn before the setting of a pseudo
4093              that is used by the hoisted insn. */
4094           if (nregs_old != parm.nregs)
4095             first_set = before;
4096           else
4097             break;
4098         }
4099     }
4100   return first_set;
4101 }
4102
4103 /* Return true if we should avoid inserting code between INSN and preceding
4104    call instruction.  */
4105
4106 bool
4107 keep_with_call_p (const rtx_insn *insn)
4108 {
4109   rtx set;
4110
4111   if (INSN_P (insn) && (set = single_set (insn)) != NULL)
4112     {
4113       if (REG_P (SET_DEST (set))
4114           && REGNO (SET_DEST (set)) < FIRST_PSEUDO_REGISTER
4115           && fixed_regs[REGNO (SET_DEST (set))]
4116           && general_operand (SET_SRC (set), VOIDmode))
4117         return true;
4118       if (REG_P (SET_SRC (set))
4119           && targetm.calls.function_value_regno_p (REGNO (SET_SRC (set)))
4120           && REG_P (SET_DEST (set))
4121           && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
4122         return true;
4123       /* There may be a stack pop just after the call and before the store
4124          of the return register.  Search for the actual store when deciding
4125          if we can break or not.  */
4126       if (SET_DEST (set) == stack_pointer_rtx)
4127         {
4128           /* This CONST_CAST is okay because next_nonnote_insn just
4129              returns its argument and we assign it to a const_rtx
4130              variable.  */
4131           const rtx_insn *i2
4132             = next_nonnote_insn (const_cast<rtx_insn *> (insn));
4133           if (i2 && keep_with_call_p (i2))
4134             return true;
4135         }
4136     }
4137   return false;
4138 }
4139
4140 /* Return true if LABEL is a target of JUMP_INSN.  This applies only
4141    to non-complex jumps.  That is, direct unconditional, conditional,
4142    and tablejumps, but not computed jumps or returns.  It also does
4143    not apply to the fallthru case of a conditional jump.  */
4144
4145 bool
4146 label_is_jump_target_p (const_rtx label, const rtx_insn *jump_insn)
4147 {
4148   rtx tmp = JUMP_LABEL (jump_insn);
4149   rtx_jump_table_data *table;
4150
4151   if (label == tmp)
4152     return true;
4153
4154   if (tablejump_p (jump_insn, NULL, &table))
4155     {
4156       rtvec vec = table->get_labels ();
4157       int i, veclen = GET_NUM_ELEM (vec);
4158
4159       for (i = 0; i < veclen; ++i)
4160         if (XEXP (RTVEC_ELT (vec, i), 0) == label)
4161           return true;
4162     }
4163
4164   if (find_reg_note (jump_insn, REG_LABEL_TARGET, label))
4165     return true;
4166
4167   return false;
4168 }
4169
4170 \f
4171 /* Return an estimate of the cost of computing rtx X.
4172    One use is in cse, to decide which expression to keep in the hash table.
4173    Another is in rtl generation, to pick the cheapest way to multiply.
4174    Other uses like the latter are expected in the future.
4175
4176    X appears as operand OPNO in an expression with code OUTER_CODE.
4177    SPEED specifies whether costs optimized for speed or size should
4178    be returned.  */
4179
4180 int
4181 rtx_cost (rtx x, machine_mode mode, enum rtx_code outer_code,
4182           int opno, bool speed)
4183 {
4184   int i, j;
4185   enum rtx_code code;
4186   const char *fmt;
4187   int total;
4188   int factor;
4189
4190   if (x == 0)
4191     return 0;
4192
4193   if (GET_MODE (x) != VOIDmode)
4194     mode = GET_MODE (x);
4195
4196   /* A size N times larger than UNITS_PER_WORD likely needs N times as
4197      many insns, taking N times as long.  */
4198   factor = estimated_poly_value (GET_MODE_SIZE (mode)) / UNITS_PER_WORD;
4199   if (factor == 0)
4200     factor = 1;
4201
4202   /* Compute the default costs of certain things.
4203      Note that targetm.rtx_costs can override the defaults.  */
4204
4205   code = GET_CODE (x);
4206   switch (code)
4207     {
4208     case MULT:
4209       /* Multiplication has time-complexity O(N*N), where N is the
4210          number of units (translated from digits) when using
4211          schoolbook long multiplication.  */
4212       total = factor * factor * COSTS_N_INSNS (5);
4213       break;
4214     case DIV:
4215     case UDIV:
4216     case MOD:
4217     case UMOD:
4218       /* Similarly, complexity for schoolbook long division.  */
4219       total = factor * factor * COSTS_N_INSNS (7);
4220       break;
4221     case USE:
4222       /* Used in combine.c as a marker.  */
4223       total = 0;
4224       break;
4225     case SET:
4226       /* A SET doesn't have a mode, so let's look at the SET_DEST to get
4227          the mode for the factor.  */
4228       mode = GET_MODE (SET_DEST (x));
4229       factor = estimated_poly_value (GET_MODE_SIZE (mode)) / UNITS_PER_WORD;
4230       if (factor == 0)
4231         factor = 1;
4232       /* FALLTHRU */
4233     default:
4234       total = factor * COSTS_N_INSNS (1);
4235     }
4236
4237   switch (code)
4238     {
4239     case REG:
4240       return 0;
4241
4242     case SUBREG:
4243       total = 0;
4244       /* If we can't tie these modes, make this expensive.  The larger
4245          the mode, the more expensive it is.  */
4246       if (!targetm.modes_tieable_p (mode, GET_MODE (SUBREG_REG (x))))
4247         return COSTS_N_INSNS (2 + factor);
4248       break;
4249
4250     case TRUNCATE:
4251       if (targetm.modes_tieable_p (mode, GET_MODE (XEXP (x, 0))))
4252         {
4253           total = 0;
4254           break;
4255         }
4256       /* FALLTHRU */
4257     default:
4258       if (targetm.rtx_costs (x, mode, outer_code, opno, &total, speed))
4259         return total;
4260       break;
4261     }
4262
4263   /* Sum the costs of the sub-rtx's, plus cost of this operation,
4264      which is already in total.  */
4265
4266   fmt = GET_RTX_FORMAT (code);
4267   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4268     if (fmt[i] == 'e')
4269       total += rtx_cost (XEXP (x, i), mode, code, i, speed);
4270     else if (fmt[i] == 'E')
4271       for (j = 0; j < XVECLEN (x, i); j++)
4272         total += rtx_cost (XVECEXP (x, i, j), mode, code, i, speed);
4273
4274   return total;
4275 }
4276
4277 /* Fill in the structure C with information about both speed and size rtx
4278    costs for X, which is operand OPNO in an expression with code OUTER.  */
4279
4280 void
4281 get_full_rtx_cost (rtx x, machine_mode mode, enum rtx_code outer, int opno,
4282                    struct full_rtx_costs *c)
4283 {
4284   c->speed = rtx_cost (x, mode, outer, opno, true);
4285   c->size = rtx_cost (x, mode, outer, opno, false);
4286 }
4287
4288 \f
4289 /* Return cost of address expression X.
4290    Expect that X is properly formed address reference.
4291
4292    SPEED parameter specify whether costs optimized for speed or size should
4293    be returned.  */
4294
4295 int
4296 address_cost (rtx x, machine_mode mode, addr_space_t as, bool speed)
4297 {
4298   /* We may be asked for cost of various unusual addresses, such as operands
4299      of push instruction.  It is not worthwhile to complicate writing
4300      of the target hook by such cases.  */
4301
4302   if (!memory_address_addr_space_p (mode, x, as))
4303     return 1000;
4304
4305   return targetm.address_cost (x, mode, as, speed);
4306 }
4307
4308 /* If the target doesn't override, compute the cost as with arithmetic.  */
4309
4310 int
4311 default_address_cost (rtx x, machine_mode, addr_space_t, bool speed)
4312 {
4313   return rtx_cost (x, Pmode, MEM, 0, speed);
4314 }
4315 \f
4316
4317 unsigned HOST_WIDE_INT
4318 nonzero_bits (const_rtx x, machine_mode mode)
4319 {
4320   if (mode == VOIDmode)
4321     mode = GET_MODE (x);
4322   scalar_int_mode int_mode;
4323   if (!is_a <scalar_int_mode> (mode, &int_mode))
4324     return GET_MODE_MASK (mode);
4325   return cached_nonzero_bits (x, int_mode, NULL_RTX, VOIDmode, 0);
4326 }
4327
4328 unsigned int
4329 num_sign_bit_copies (const_rtx x, machine_mode mode)
4330 {
4331   if (mode == VOIDmode)
4332     mode = GET_MODE (x);
4333   scalar_int_mode int_mode;
4334   if (!is_a <scalar_int_mode> (mode, &int_mode))
4335     return 1;
4336   return cached_num_sign_bit_copies (x, int_mode, NULL_RTX, VOIDmode, 0);
4337 }
4338
4339 /* Return true if nonzero_bits1 might recurse into both operands
4340    of X.  */
4341
4342 static inline bool
4343 nonzero_bits_binary_arith_p (const_rtx x)
4344 {
4345   if (!ARITHMETIC_P (x))
4346     return false;
4347   switch (GET_CODE (x))
4348     {
4349     case AND:
4350     case XOR:
4351     case IOR:
4352     case UMIN:
4353     case UMAX:
4354     case SMIN:
4355     case SMAX:
4356     case PLUS:
4357     case MINUS:
4358     case MULT:
4359     case DIV:
4360     case UDIV:
4361     case MOD:
4362     case UMOD:
4363       return true;
4364     default:
4365       return false;
4366     }
4367 }
4368
4369 /* The function cached_nonzero_bits is a wrapper around nonzero_bits1.
4370    It avoids exponential behavior in nonzero_bits1 when X has
4371    identical subexpressions on the first or the second level.  */
4372
4373 static unsigned HOST_WIDE_INT
4374 cached_nonzero_bits (const_rtx x, scalar_int_mode mode, const_rtx known_x,
4375                      machine_mode known_mode,
4376                      unsigned HOST_WIDE_INT known_ret)
4377 {
4378   if (x == known_x && mode == known_mode)
4379     return known_ret;
4380
4381   /* Try to find identical subexpressions.  If found call
4382      nonzero_bits1 on X with the subexpressions as KNOWN_X and the
4383      precomputed value for the subexpression as KNOWN_RET.  */
4384
4385   if (nonzero_bits_binary_arith_p (x))
4386     {
4387       rtx x0 = XEXP (x, 0);
4388       rtx x1 = XEXP (x, 1);
4389
4390       /* Check the first level.  */
4391       if (x0 == x1)
4392         return nonzero_bits1 (x, mode, x0, mode,
4393                               cached_nonzero_bits (x0, mode, known_x,
4394                                                    known_mode, known_ret));
4395
4396       /* Check the second level.  */
4397       if (nonzero_bits_binary_arith_p (x0)
4398           && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
4399         return nonzero_bits1 (x, mode, x1, mode,
4400                               cached_nonzero_bits (x1, mode, known_x,
4401                                                    known_mode, known_ret));
4402
4403       if (nonzero_bits_binary_arith_p (x1)
4404           && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
4405         return nonzero_bits1 (x, mode, x0, mode,
4406                               cached_nonzero_bits (x0, mode, known_x,
4407                                                    known_mode, known_ret));
4408     }
4409
4410   return nonzero_bits1 (x, mode, known_x, known_mode, known_ret);
4411 }
4412
4413 /* We let num_sign_bit_copies recur into nonzero_bits as that is useful.
4414    We don't let nonzero_bits recur into num_sign_bit_copies, because that
4415    is less useful.  We can't allow both, because that results in exponential
4416    run time recursion.  There is a nullstone testcase that triggered
4417    this.  This macro avoids accidental uses of num_sign_bit_copies.  */
4418 #define cached_num_sign_bit_copies sorry_i_am_preventing_exponential_behavior
4419
4420 /* Given an expression, X, compute which bits in X can be nonzero.
4421    We don't care about bits outside of those defined in MODE.
4422
4423    For most X this is simply GET_MODE_MASK (GET_MODE (X)), but if X is
4424    an arithmetic operation, we can do better.  */
4425
4426 static unsigned HOST_WIDE_INT
4427 nonzero_bits1 (const_rtx x, scalar_int_mode mode, const_rtx known_x,
4428                machine_mode known_mode,
4429                unsigned HOST_WIDE_INT known_ret)
4430 {
4431   unsigned HOST_WIDE_INT nonzero = GET_MODE_MASK (mode);
4432   unsigned HOST_WIDE_INT inner_nz;
4433   enum rtx_code code = GET_CODE (x);
4434   machine_mode inner_mode;
4435   unsigned int inner_width;
4436   scalar_int_mode xmode;
4437
4438   unsigned int mode_width = GET_MODE_PRECISION (mode);
4439
4440   if (CONST_INT_P (x))
4441     {
4442       if (SHORT_IMMEDIATES_SIGN_EXTEND
4443           && INTVAL (x) > 0
4444           && mode_width < BITS_PER_WORD
4445           && (UINTVAL (x) & (HOST_WIDE_INT_1U << (mode_width - 1))) != 0)
4446         return UINTVAL (x) | (HOST_WIDE_INT_M1U << mode_width);
4447
4448       return UINTVAL (x);
4449     }
4450
4451   if (!is_a <scalar_int_mode> (GET_MODE (x), &xmode))
4452     return nonzero;
4453   unsigned int xmode_width = GET_MODE_PRECISION (xmode);
4454
4455   /* If X is wider than MODE, use its mode instead.  */
4456   if (xmode_width > mode_width)
4457     {
4458       mode = xmode;
4459       nonzero = GET_MODE_MASK (mode);
4460       mode_width = xmode_width;
4461     }
4462
4463   if (mode_width > HOST_BITS_PER_WIDE_INT)
4464     /* Our only callers in this case look for single bit values.  So
4465        just return the mode mask.  Those tests will then be false.  */
4466     return nonzero;
4467
4468   /* If MODE is wider than X, but both are a single word for both the host
4469      and target machines, we can compute this from which bits of the object
4470      might be nonzero in its own mode, taking into account the fact that, on
4471      CISC machines, accessing an object in a wider mode generally causes the
4472      high-order bits to become undefined, so they are not known to be zero.
4473      We extend this reasoning to RISC machines for operations that might not
4474      operate on the full registers.  */
4475   if (mode_width > xmode_width
4476       && xmode_width <= BITS_PER_WORD
4477       && xmode_width <= HOST_BITS_PER_WIDE_INT
4478       && !(WORD_REGISTER_OPERATIONS && word_register_operation_p (x)))
4479     {
4480       nonzero &= cached_nonzero_bits (x, xmode,
4481                                       known_x, known_mode, known_ret);
4482       nonzero |= GET_MODE_MASK (mode) & ~GET_MODE_MASK (xmode);
4483       return nonzero;
4484     }
4485
4486   /* Please keep nonzero_bits_binary_arith_p above in sync with
4487      the code in the switch below.  */
4488   switch (code)
4489     {
4490     case REG:
4491 #if defined(POINTERS_EXTEND_UNSIGNED)
4492       /* If pointers extend unsigned and this is a pointer in Pmode, say that
4493          all the bits above ptr_mode are known to be zero.  */
4494       /* As we do not know which address space the pointer is referring to,
4495          we can do this only if the target does not support different pointer
4496          or address modes depending on the address space.  */
4497       if (target_default_pointer_address_modes_p ()
4498           && POINTERS_EXTEND_UNSIGNED
4499           && xmode == Pmode
4500           && REG_POINTER (x)
4501           && !targetm.have_ptr_extend ())
4502         nonzero &= GET_MODE_MASK (ptr_mode);
4503 #endif
4504
4505       /* Include declared information about alignment of pointers.  */
4506       /* ??? We don't properly preserve REG_POINTER changes across
4507          pointer-to-integer casts, so we can't trust it except for
4508          things that we know must be pointers.  See execute/960116-1.c.  */
4509       if ((x == stack_pointer_rtx
4510            || x == frame_pointer_rtx
4511            || x == arg_pointer_rtx)
4512           && REGNO_POINTER_ALIGN (REGNO (x)))
4513         {
4514           unsigned HOST_WIDE_INT alignment
4515             = REGNO_POINTER_ALIGN (REGNO (x)) / BITS_PER_UNIT;
4516
4517 #ifdef PUSH_ROUNDING
4518           /* If PUSH_ROUNDING is defined, it is possible for the
4519              stack to be momentarily aligned only to that amount,
4520              so we pick the least alignment.  */
4521           if (x == stack_pointer_rtx && PUSH_ARGS)
4522             {
4523               poly_uint64 rounded_1 = PUSH_ROUNDING (poly_int64 (1));
4524               alignment = MIN (known_alignment (rounded_1), alignment);
4525             }
4526 #endif
4527
4528           nonzero &= ~(alignment - 1);
4529         }
4530
4531       {
4532         unsigned HOST_WIDE_INT nonzero_for_hook = nonzero;
4533         rtx new_rtx = rtl_hooks.reg_nonzero_bits (x, xmode, mode,
4534                                                   &nonzero_for_hook);
4535
4536         if (new_rtx)
4537           nonzero_for_hook &= cached_nonzero_bits (new_rtx, mode, known_x,
4538                                                    known_mode, known_ret);
4539
4540         return nonzero_for_hook;
4541       }
4542
4543     case MEM:
4544       /* In many, if not most, RISC machines, reading a byte from memory
4545          zeros the rest of the register.  Noticing that fact saves a lot
4546          of extra zero-extends.  */
4547       if (load_extend_op (xmode) == ZERO_EXTEND)
4548         nonzero &= GET_MODE_MASK (xmode);
4549       break;
4550
4551     case EQ:  case NE:
4552     case UNEQ:  case LTGT:
4553     case GT:  case GTU:  case UNGT:
4554     case LT:  case LTU:  case UNLT:
4555     case GE:  case GEU:  case UNGE:
4556     case LE:  case LEU:  case UNLE:
4557     case UNORDERED: case ORDERED:
4558       /* If this produces an integer result, we know which bits are set.
4559          Code here used to clear bits outside the mode of X, but that is
4560          now done above.  */
4561       /* Mind that MODE is the mode the caller wants to look at this
4562          operation in, and not the actual operation mode.  We can wind
4563          up with (subreg:DI (gt:V4HI x y)), and we don't have anything
4564          that describes the results of a vector compare.  */
4565       if (GET_MODE_CLASS (xmode) == MODE_INT
4566           && mode_width <= HOST_BITS_PER_WIDE_INT)
4567         nonzero = STORE_FLAG_VALUE;
4568       break;
4569
4570     case NEG:
4571 #if 0
4572       /* Disabled to avoid exponential mutual recursion between nonzero_bits
4573          and num_sign_bit_copies.  */
4574       if (num_sign_bit_copies (XEXP (x, 0), xmode) == xmode_width)
4575         nonzero = 1;
4576 #endif
4577
4578       if (xmode_width < mode_width)
4579         nonzero |= (GET_MODE_MASK (mode) & ~GET_MODE_MASK (xmode));
4580       break;
4581
4582     case ABS:
4583 #if 0
4584       /* Disabled to avoid exponential mutual recursion between nonzero_bits
4585          and num_sign_bit_copies.  */
4586       if (num_sign_bit_copies (XEXP (x, 0), xmode) == xmode_width)
4587         nonzero = 1;
4588 #endif
4589       break;
4590
4591     case TRUNCATE:
4592       nonzero &= (cached_nonzero_bits (XEXP (x, 0), mode,
4593                                        known_x, known_mode, known_ret)
4594                   & GET_MODE_MASK (mode));
4595       break;
4596
4597     case ZERO_EXTEND:
4598       nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
4599                                       known_x, known_mode, known_ret);
4600       if (GET_MODE (XEXP (x, 0)) != VOIDmode)
4601         nonzero &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
4602       break;
4603
4604     case SIGN_EXTEND:
4605       /* If the sign bit is known clear, this is the same as ZERO_EXTEND.
4606          Otherwise, show all the bits in the outer mode but not the inner
4607          may be nonzero.  */
4608       inner_nz = cached_nonzero_bits (XEXP (x, 0), mode,
4609                                       known_x, known_mode, known_ret);
4610       if (GET_MODE (XEXP (x, 0)) != VOIDmode)
4611         {
4612           inner_nz &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
4613           if (val_signbit_known_set_p (GET_MODE (XEXP (x, 0)), inner_nz))
4614             inner_nz |= (GET_MODE_MASK (mode)
4615                          & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0))));
4616         }
4617
4618       nonzero &= inner_nz;
4619       break;
4620
4621     case AND:
4622       nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
4623                                        known_x, known_mode, known_ret)
4624                  & cached_nonzero_bits (XEXP (x, 1), mode,
4625                                         known_x, known_mode, known_ret);
4626       break;
4627
4628     case XOR:   case IOR:
4629     case UMIN:  case UMAX:  case SMIN:  case SMAX:
4630       {
4631         unsigned HOST_WIDE_INT nonzero0
4632            = cached_nonzero_bits (XEXP (x, 0), mode,
4633                                   known_x, known_mode, known_ret);
4634
4635         /* Don't call nonzero_bits for the second time if it cannot change
4636            anything.  */
4637         if ((nonzero & nonzero0) != nonzero)
4638           nonzero &= nonzero0
4639                      | cached_nonzero_bits (XEXP (x, 1), mode,
4640                                             known_x, known_mode, known_ret);
4641       }
4642       break;
4643
4644     case PLUS:  case MINUS:
4645     case MULT:
4646     case DIV:   case UDIV:
4647     case MOD:   case UMOD:
4648       /* We can apply the rules of arithmetic to compute the number of
4649          high- and low-order zero bits of these operations.  We start by
4650          computing the width (position of the highest-order nonzero bit)
4651          and the number of low-order zero bits for each value.  */
4652       {
4653         unsigned HOST_WIDE_INT nz0
4654           = cached_nonzero_bits (XEXP (x, 0), mode,
4655                                  known_x, known_mode, known_ret);
4656         unsigned HOST_WIDE_INT nz1
4657           = cached_nonzero_bits (XEXP (x, 1), mode,
4658                                  known_x, known_mode, known_ret);
4659         int sign_index = xmode_width - 1;
4660         int width0 = floor_log2 (nz0) + 1;
4661         int width1 = floor_log2 (nz1) + 1;
4662         int low0 = ctz_or_zero (nz0);
4663         int low1 = ctz_or_zero (nz1);
4664         unsigned HOST_WIDE_INT op0_maybe_minusp
4665           = nz0 & (HOST_WIDE_INT_1U << sign_index);
4666         unsigned HOST_WIDE_INT op1_maybe_minusp
4667           = nz1 & (HOST_WIDE_INT_1U << sign_index);
4668         unsigned int result_width = mode_width;
4669         int result_low = 0;
4670
4671         switch (code)
4672           {
4673           case PLUS:
4674             result_width = MAX (width0, width1) + 1;
4675             result_low = MIN (low0, low1);
4676             break;
4677           case MINUS:
4678             result_low = MIN (low0, low1);
4679             break;
4680           case MULT:
4681             result_width = width0 + width1;
4682             result_low = low0 + low1;
4683             break;
4684           case DIV:
4685             if (width1 == 0)
4686               break;
4687             if (!op0_maybe_minusp && !op1_maybe_minusp)
4688               result_width = width0;
4689             break;
4690           case UDIV:
4691             if (width1 == 0)
4692               break;
4693             result_width = width0;
4694             break;
4695           case MOD:
4696             if (width1 == 0)
4697               break;
4698             if (!op0_maybe_minusp && !op1_maybe_minusp)
4699               result_width = MIN (width0, width1);
4700             result_low = MIN (low0, low1);
4701             break;
4702           case UMOD:
4703             if (width1 == 0)
4704               break;
4705             result_width = MIN (width0, width1);
4706             result_low = MIN (low0, low1);
4707             break;
4708           default:
4709             gcc_unreachable ();
4710           }
4711
4712         if (result_width < mode_width)
4713           nonzero &= (HOST_WIDE_INT_1U << result_width) - 1;
4714
4715         if (result_low > 0)
4716           nonzero &= ~((HOST_WIDE_INT_1U << result_low) - 1);
4717       }
4718       break;
4719
4720     case ZERO_EXTRACT:
4721       if (CONST_INT_P (XEXP (x, 1))
4722           && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
4723         nonzero &= (HOST_WIDE_INT_1U << INTVAL (XEXP (x, 1))) - 1;
4724       break;
4725
4726     case SUBREG:
4727       /* If this is a SUBREG formed for a promoted variable that has
4728          been zero-extended, we know that at least the high-order bits
4729          are zero, though others might be too.  */
4730       if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_UNSIGNED_P (x))
4731         nonzero = GET_MODE_MASK (xmode)
4732                   & cached_nonzero_bits (SUBREG_REG (x), xmode,
4733                                          known_x, known_mode, known_ret);
4734
4735       /* If the inner mode is a single word for both the host and target
4736          machines, we can compute this from which bits of the inner
4737          object might be nonzero.  */
4738       inner_mode = GET_MODE (SUBREG_REG (x));
4739       if (GET_MODE_PRECISION (inner_mode).is_constant (&inner_width)
4740           && inner_width <= BITS_PER_WORD
4741           && inner_width <= HOST_BITS_PER_WIDE_INT)
4742         {
4743           nonzero &= cached_nonzero_bits (SUBREG_REG (x), mode,
4744                                           known_x, known_mode, known_ret);
4745
4746           /* On a typical CISC machine, accessing an object in a wider mode
4747              causes the high-order bits to become undefined.  So they are
4748              not known to be zero.
4749
4750              On a typical RISC machine, we only have to worry about the way
4751              loads are extended.  Otherwise, if we get a reload for the inner
4752              part, it may be loaded from the stack, and then we may lose all
4753              the zero bits that existed before the store to the stack.  */
4754           rtx_code extend_op;
4755           if ((!WORD_REGISTER_OPERATIONS
4756                || ((extend_op = load_extend_op (inner_mode)) == SIGN_EXTEND
4757                    ? val_signbit_known_set_p (inner_mode, nonzero)
4758                    : extend_op != ZERO_EXTEND)
4759                || (!MEM_P (SUBREG_REG (x)) && !REG_P (SUBREG_REG (x))))
4760               && xmode_width > inner_width)
4761             nonzero
4762               |= (GET_MODE_MASK (GET_MODE (x)) & ~GET_MODE_MASK (inner_mode));
4763         }
4764       break;
4765
4766     case ASHIFT:
4767     case ASHIFTRT:
4768     case LSHIFTRT:
4769     case ROTATE:
4770     case ROTATERT:
4771       /* The nonzero bits are in two classes: any bits within MODE
4772          that aren't in xmode are always significant.  The rest of the
4773          nonzero bits are those that are significant in the operand of
4774          the shift when shifted the appropriate number of bits.  This
4775          shows that high-order bits are cleared by the right shift and
4776          low-order bits by left shifts.  */
4777       if (CONST_INT_P (XEXP (x, 1))
4778           && INTVAL (XEXP (x, 1)) >= 0
4779           && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
4780           && INTVAL (XEXP (x, 1)) < xmode_width)
4781         {
4782           int count = INTVAL (XEXP (x, 1));
4783           unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (xmode);
4784           unsigned HOST_WIDE_INT op_nonzero
4785             = cached_nonzero_bits (XEXP (x, 0), mode,
4786                                    known_x, known_mode, known_ret);
4787           unsigned HOST_WIDE_INT inner = op_nonzero & mode_mask;
4788           unsigned HOST_WIDE_INT outer = 0;
4789
4790           if (mode_width > xmode_width)
4791             outer = (op_nonzero & nonzero & ~mode_mask);
4792
4793           switch (code)
4794             {
4795             case ASHIFT:
4796               inner <<= count;
4797               break;
4798
4799             case LSHIFTRT:
4800               inner >>= count;
4801               break;
4802
4803             case ASHIFTRT:
4804               inner >>= count;
4805
4806               /* If the sign bit may have been nonzero before the shift, we
4807                  need to mark all the places it could have been copied to
4808                  by the shift as possibly nonzero.  */
4809               if (inner & (HOST_WIDE_INT_1U << (xmode_width - 1 - count)))
4810                 inner |= (((HOST_WIDE_INT_1U << count) - 1)
4811                           << (xmode_width - count));
4812               break;
4813
4814             case ROTATE:
4815               inner = (inner << (count % xmode_width)
4816                        | (inner >> (xmode_width - (count % xmode_width))))
4817                       & mode_mask;
4818               break;
4819
4820             case ROTATERT:
4821               inner = (inner >> (count % xmode_width)
4822                        | (inner << (xmode_width - (count % xmode_width))))
4823                       & mode_mask;
4824               break;
4825
4826             default:
4827               gcc_unreachable ();
4828             }
4829
4830           nonzero &= (outer | inner);
4831         }
4832       break;
4833
4834     case FFS:
4835     case POPCOUNT:
4836       /* This is at most the number of bits in the mode.  */
4837       nonzero = ((unsigned HOST_WIDE_INT) 2 << (floor_log2 (mode_width))) - 1;
4838       break;
4839
4840     case CLZ:
4841       /* If CLZ has a known value at zero, then the nonzero bits are
4842          that value, plus the number of bits in the mode minus one.  */
4843       if (CLZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
4844         nonzero
4845           |= (HOST_WIDE_INT_1U << (floor_log2 (mode_width))) - 1;
4846       else
4847         nonzero = -1;
4848       break;
4849
4850     case CTZ:
4851       /* If CTZ has a known value at zero, then the nonzero bits are
4852          that value, plus the number of bits in the mode minus one.  */
4853       if (CTZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
4854         nonzero
4855           |= (HOST_WIDE_INT_1U << (floor_log2 (mode_width))) - 1;
4856       else
4857         nonzero = -1;
4858       break;
4859
4860     case CLRSB:
4861       /* This is at most the number of bits in the mode minus 1.  */
4862       nonzero = (HOST_WIDE_INT_1U << (floor_log2 (mode_width))) - 1;
4863       break;
4864
4865     case PARITY:
4866       nonzero = 1;
4867       break;
4868
4869     case IF_THEN_ELSE:
4870       {
4871         unsigned HOST_WIDE_INT nonzero_true
4872           = cached_nonzero_bits (XEXP (x, 1), mode,
4873                                  known_x, known_mode, known_ret);
4874
4875         /* Don't call nonzero_bits for the second time if it cannot change
4876            anything.  */
4877         if ((nonzero & nonzero_true) != nonzero)
4878           nonzero &= nonzero_true
4879                      | cached_nonzero_bits (XEXP (x, 2), mode,
4880                                             known_x, known_mode, known_ret);
4881       }
4882       break;
4883
4884     default:
4885       break;
4886     }
4887
4888   return nonzero;
4889 }
4890
4891 /* See the macro definition above.  */
4892 #undef cached_num_sign_bit_copies
4893
4894 \f
4895 /* Return true if num_sign_bit_copies1 might recurse into both operands
4896    of X.  */
4897
4898 static inline bool
4899 num_sign_bit_copies_binary_arith_p (const_rtx x)
4900 {
4901   if (!ARITHMETIC_P (x))
4902     return false;
4903   switch (GET_CODE (x))
4904     {
4905     case IOR:
4906     case AND:
4907     case XOR:
4908     case SMIN:
4909     case SMAX:
4910     case UMIN:
4911     case UMAX:
4912     case PLUS:
4913     case MINUS:
4914     case MULT:
4915       return true;
4916     default:
4917       return false;
4918     }
4919 }
4920
4921 /* The function cached_num_sign_bit_copies is a wrapper around
4922    num_sign_bit_copies1.  It avoids exponential behavior in
4923    num_sign_bit_copies1 when X has identical subexpressions on the
4924    first or the second level.  */
4925
4926 static unsigned int
4927 cached_num_sign_bit_copies (const_rtx x, scalar_int_mode mode,
4928                             const_rtx known_x, machine_mode known_mode,
4929                             unsigned int known_ret)
4930 {
4931   if (x == known_x && mode == known_mode)
4932     return known_ret;
4933
4934   /* Try to find identical subexpressions.  If found call
4935      num_sign_bit_copies1 on X with the subexpressions as KNOWN_X and
4936      the precomputed value for the subexpression as KNOWN_RET.  */
4937
4938   if (num_sign_bit_copies_binary_arith_p (x))
4939     {
4940       rtx x0 = XEXP (x, 0);
4941       rtx x1 = XEXP (x, 1);
4942
4943       /* Check the first level.  */
4944       if (x0 == x1)
4945         return
4946           num_sign_bit_copies1 (x, mode, x0, mode,
4947                                 cached_num_sign_bit_copies (x0, mode, known_x,
4948                                                             known_mode,
4949                                                             known_ret));
4950
4951       /* Check the second level.  */
4952       if (num_sign_bit_copies_binary_arith_p (x0)
4953           && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
4954         return
4955           num_sign_bit_copies1 (x, mode, x1, mode,
4956                                 cached_num_sign_bit_copies (x1, mode, known_x,
4957                                                             known_mode,
4958                                                             known_ret));
4959
4960       if (num_sign_bit_copies_binary_arith_p (x1)
4961           && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
4962         return
4963           num_sign_bit_copies1 (x, mode, x0, mode,
4964                                 cached_num_sign_bit_copies (x0, mode, known_x,
4965                                                             known_mode,
4966                                                             known_ret));
4967     }
4968
4969   return num_sign_bit_copies1 (x, mode, known_x, known_mode, known_ret);
4970 }
4971
4972 /* Return the number of bits at the high-order end of X that are known to
4973    be equal to the sign bit.  X will be used in mode MODE.  The returned
4974    value will always be between 1 and the number of bits in MODE.  */
4975
4976 static unsigned int
4977 num_sign_bit_copies1 (const_rtx x, scalar_int_mode mode, const_rtx known_x,
4978                       machine_mode known_mode,
4979                       unsigned int known_ret)
4980 {
4981   enum rtx_code code = GET_CODE (x);
4982   unsigned int bitwidth = GET_MODE_PRECISION (mode);
4983   int num0, num1, result;
4984   unsigned HOST_WIDE_INT nonzero;
4985
4986   if (CONST_INT_P (x))
4987     {
4988       /* If the constant is negative, take its 1's complement and remask.
4989          Then see how many zero bits we have.  */
4990       nonzero = UINTVAL (x) & GET_MODE_MASK (mode);
4991       if (bitwidth <= HOST_BITS_PER_WIDE_INT
4992           && (nonzero & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0)
4993         nonzero = (~nonzero) & GET_MODE_MASK (mode);
4994
4995       return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
4996     }
4997
4998   scalar_int_mode xmode, inner_mode;
4999   if (!is_a <scalar_int_mode> (GET_MODE (x), &xmode))
5000     return 1;
5001
5002   unsigned int xmode_width = GET_MODE_PRECISION (xmode);
5003
5004   /* For a smaller mode, just ignore the high bits.  */
5005   if (bitwidth < xmode_width)
5006     {
5007       num0 = cached_num_sign_bit_copies (x, xmode,
5008                                          known_x, known_mode, known_ret);
5009       return MAX (1, num0 - (int) (xmode_width - bitwidth));
5010     }
5011
5012   if (bitwidth > xmode_width)
5013     {
5014       /* If this machine does not do all register operations on the entire
5015          register and MODE is wider than the mode of X, we can say nothing
5016          at all about the high-order bits.  We extend this reasoning to RISC
5017          machines for operations that might not operate on full registers.  */
5018       if (!(WORD_REGISTER_OPERATIONS && word_register_operation_p (x)))
5019         return 1;
5020
5021       /* Likewise on machines that do, if the mode of the object is smaller
5022          than a word and loads of that size don't sign extend, we can say
5023          nothing about the high order bits.  */
5024       if (xmode_width < BITS_PER_WORD
5025           && load_extend_op (xmode) != SIGN_EXTEND)
5026         return 1;
5027     }
5028
5029   /* Please keep num_sign_bit_copies_binary_arith_p above in sync with
5030      the code in the switch below.  */
5031   switch (code)
5032     {
5033     case REG:
5034
5035 #if defined(POINTERS_EXTEND_UNSIGNED)
5036       /* If pointers extend signed and this is a pointer in Pmode, say that
5037          all the bits above ptr_mode are known to be sign bit copies.  */
5038       /* As we do not know which address space the pointer is referring to,
5039          we can do this only if the target does not support different pointer
5040          or address modes depending on the address space.  */
5041       if (target_default_pointer_address_modes_p ()
5042           && ! POINTERS_EXTEND_UNSIGNED && xmode == Pmode
5043           && mode == Pmode && REG_POINTER (x)
5044           && !targetm.have_ptr_extend ())
5045         return GET_MODE_PRECISION (Pmode) - GET_MODE_PRECISION (ptr_mode) + 1;
5046 #endif
5047
5048       {
5049         unsigned int copies_for_hook = 1, copies = 1;
5050         rtx new_rtx = rtl_hooks.reg_num_sign_bit_copies (x, xmode, mode,
5051                                                          &copies_for_hook);
5052
5053         if (new_rtx)
5054           copies = cached_num_sign_bit_copies (new_rtx, mode, known_x,
5055                                                known_mode, known_ret);
5056
5057         if (copies > 1 || copies_for_hook > 1)
5058           return MAX (copies, copies_for_hook);
5059
5060         /* Else, use nonzero_bits to guess num_sign_bit_copies (see below).  */
5061       }
5062       break;
5063
5064     case MEM:
5065       /* Some RISC machines sign-extend all loads of smaller than a word.  */
5066       if (load_extend_op (xmode) == SIGN_EXTEND)
5067         return MAX (1, ((int) bitwidth - (int) xmode_width + 1));
5068       break;
5069
5070     case SUBREG:
5071       /* If this is a SUBREG for a promoted object that is sign-extended
5072          and we are looking at it in a wider mode, we know that at least the
5073          high-order bits are known to be sign bit copies.  */
5074
5075       if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_SIGNED_P (x))
5076         {
5077           num0 = cached_num_sign_bit_copies (SUBREG_REG (x), mode,
5078                                              known_x, known_mode, known_ret);
5079           return MAX ((int) bitwidth - (int) xmode_width + 1, num0);
5080         }
5081
5082       if (is_a <scalar_int_mode> (GET_MODE (SUBREG_REG (x)), &inner_mode))
5083         {
5084           /* For a smaller object, just ignore the high bits.  */
5085           if (bitwidth <= GET_MODE_PRECISION (inner_mode))
5086             {
5087               num0 = cached_num_sign_bit_copies (SUBREG_REG (x), inner_mode,
5088                                                  known_x, known_mode,
5089                                                  known_ret);
5090               return MAX (1, num0 - (int) (GET_MODE_PRECISION (inner_mode)
5091                                            - bitwidth));
5092             }
5093
5094           /* For paradoxical SUBREGs on machines where all register operations
5095              affect the entire register, just look inside.  Note that we are
5096              passing MODE to the recursive call, so the number of sign bit
5097              copies will remain relative to that mode, not the inner mode.
5098
5099              This works only if loads sign extend.  Otherwise, if we get a
5100              reload for the inner part, it may be loaded from the stack, and
5101              then we lose all sign bit copies that existed before the store
5102              to the stack.  */
5103           if (WORD_REGISTER_OPERATIONS
5104               && load_extend_op (inner_mode) == SIGN_EXTEND
5105               && paradoxical_subreg_p (x)
5106               && MEM_P (SUBREG_REG (x)))
5107             return cached_num_sign_bit_copies (SUBREG_REG (x), mode,
5108                                                known_x, known_mode, known_ret);
5109         }
5110       break;
5111
5112     case SIGN_EXTRACT:
5113       if (CONST_INT_P (XEXP (x, 1)))
5114         return MAX (1, (int) bitwidth - INTVAL (XEXP (x, 1)));
5115       break;
5116
5117     case SIGN_EXTEND:
5118       if (is_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)), &inner_mode))
5119         return (bitwidth - GET_MODE_PRECISION (inner_mode)
5120                 + cached_num_sign_bit_copies (XEXP (x, 0), inner_mode,
5121                                               known_x, known_mode, known_ret));
5122       break;
5123
5124     case TRUNCATE:
5125       /* For a smaller object, just ignore the high bits.  */
5126       inner_mode = as_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)));
5127       num0 = cached_num_sign_bit_copies (XEXP (x, 0), inner_mode,
5128                                          known_x, known_mode, known_ret);
5129       return MAX (1, (num0 - (int) (GET_MODE_PRECISION (inner_mode)
5130                                     - bitwidth)));
5131
5132     case NOT:
5133       return cached_num_sign_bit_copies (XEXP (x, 0), mode,
5134                                          known_x, known_mode, known_ret);
5135
5136     case ROTATE:       case ROTATERT:
5137       /* If we are rotating left by a number of bits less than the number
5138          of sign bit copies, we can just subtract that amount from the
5139          number.  */
5140       if (CONST_INT_P (XEXP (x, 1))
5141           && INTVAL (XEXP (x, 1)) >= 0
5142           && INTVAL (XEXP (x, 1)) < (int) bitwidth)
5143         {
5144           num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5145                                              known_x, known_mode, known_ret);
5146           return MAX (1, num0 - (code == ROTATE ? INTVAL (XEXP (x, 1))
5147                                  : (int) bitwidth - INTVAL (XEXP (x, 1))));
5148         }
5149       break;
5150
5151     case NEG:
5152       /* In general, this subtracts one sign bit copy.  But if the value
5153          is known to be positive, the number of sign bit copies is the
5154          same as that of the input.  Finally, if the input has just one bit
5155          that might be nonzero, all the bits are copies of the sign bit.  */
5156       num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5157                                          known_x, known_mode, known_ret);
5158       if (bitwidth > HOST_BITS_PER_WIDE_INT)
5159         return num0 > 1 ? num0 - 1 : 1;
5160
5161       nonzero = nonzero_bits (XEXP (x, 0), mode);
5162       if (nonzero == 1)
5163         return bitwidth;
5164
5165       if (num0 > 1
5166           && ((HOST_WIDE_INT_1U << (bitwidth - 1)) & nonzero))
5167         num0--;
5168
5169       return num0;
5170
5171     case IOR:   case AND:   case XOR:
5172     case SMIN:  case SMAX:  case UMIN:  case UMAX:
5173       /* Logical operations will preserve the number of sign-bit copies.
5174          MIN and MAX operations always return one of the operands.  */
5175       num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5176                                          known_x, known_mode, known_ret);
5177       num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
5178                                          known_x, known_mode, known_ret);
5179
5180       /* If num1 is clearing some of the top bits then regardless of
5181          the other term, we are guaranteed to have at least that many
5182          high-order zero bits.  */
5183       if (code == AND
5184           && num1 > 1
5185           && bitwidth <= HOST_BITS_PER_WIDE_INT
5186           && CONST_INT_P (XEXP (x, 1))
5187           && (UINTVAL (XEXP (x, 1))
5188               & (HOST_WIDE_INT_1U << (bitwidth - 1))) == 0)
5189         return num1;
5190
5191       /* Similarly for IOR when setting high-order bits.  */
5192       if (code == IOR
5193           && num1 > 1
5194           && bitwidth <= HOST_BITS_PER_WIDE_INT
5195           && CONST_INT_P (XEXP (x, 1))
5196           && (UINTVAL (XEXP (x, 1))
5197               & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0)
5198         return num1;
5199
5200       return MIN (num0, num1);
5201
5202     case PLUS:  case MINUS:
5203       /* For addition and subtraction, we can have a 1-bit carry.  However,
5204          if we are subtracting 1 from a positive number, there will not
5205          be such a carry.  Furthermore, if the positive number is known to
5206          be 0 or 1, we know the result is either -1 or 0.  */
5207
5208       if (code == PLUS && XEXP (x, 1) == constm1_rtx
5209           && bitwidth <= HOST_BITS_PER_WIDE_INT)
5210         {
5211           nonzero = nonzero_bits (XEXP (x, 0), mode);
5212           if (((HOST_WIDE_INT_1U << (bitwidth - 1)) & nonzero) == 0)
5213             return (nonzero == 1 || nonzero == 0 ? bitwidth
5214                     : bitwidth - floor_log2 (nonzero) - 1);
5215         }
5216
5217       num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5218                                          known_x, known_mode, known_ret);
5219       num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
5220                                          known_x, known_mode, known_ret);
5221       result = MAX (1, MIN (num0, num1) - 1);
5222
5223       return result;
5224
5225     case MULT:
5226       /* The number of bits of the product is the sum of the number of
5227          bits of both terms.  However, unless one of the terms if known
5228          to be positive, we must allow for an additional bit since negating
5229          a negative number can remove one sign bit copy.  */
5230
5231       num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5232                                          known_x, known_mode, known_ret);
5233       num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
5234                                          known_x, known_mode, known_ret);
5235
5236       result = bitwidth - (bitwidth - num0) - (bitwidth - num1);
5237       if (result > 0
5238           && (bitwidth > HOST_BITS_PER_WIDE_INT
5239               || (((nonzero_bits (XEXP (x, 0), mode)
5240                     & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0)
5241                   && ((nonzero_bits (XEXP (x, 1), mode)
5242                        & (HOST_WIDE_INT_1U << (bitwidth - 1)))
5243                       != 0))))
5244         result--;
5245
5246       return MAX (1, result);
5247
5248     case UDIV:
5249       /* The result must be <= the first operand.  If the first operand
5250          has the high bit set, we know nothing about the number of sign
5251          bit copies.  */
5252       if (bitwidth > HOST_BITS_PER_WIDE_INT)
5253         return 1;
5254       else if ((nonzero_bits (XEXP (x, 0), mode)
5255                 & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0)
5256         return 1;
5257       else
5258         return cached_num_sign_bit_copies (XEXP (x, 0), mode,
5259                                            known_x, known_mode, known_ret);
5260
5261     case UMOD:
5262       /* The result must be <= the second operand.  If the second operand
5263          has (or just might have) the high bit set, we know nothing about
5264          the number of sign bit copies.  */
5265       if (bitwidth > HOST_BITS_PER_WIDE_INT)
5266         return 1;
5267       else if ((nonzero_bits (XEXP (x, 1), mode)
5268                 & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0)
5269         return 1;
5270       else
5271         return cached_num_sign_bit_copies (XEXP (x, 1), mode,
5272                                            known_x, known_mode, known_ret);
5273
5274     case DIV:
5275       /* Similar to unsigned division, except that we have to worry about
5276          the case where the divisor is negative, in which case we have
5277          to add 1.  */
5278       result = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5279                                            known_x, known_mode, known_ret);
5280       if (result > 1
5281           && (bitwidth > HOST_BITS_PER_WIDE_INT
5282               || (nonzero_bits (XEXP (x, 1), mode)
5283                   & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0))
5284         result--;
5285
5286       return result;
5287
5288     case MOD:
5289       result = cached_num_sign_bit_copies (XEXP (x, 1), mode,
5290                                            known_x, known_mode, known_ret);
5291       if (result > 1
5292           && (bitwidth > HOST_BITS_PER_WIDE_INT
5293               || (nonzero_bits (XEXP (x, 1), mode)
5294                   & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0))
5295         result--;
5296
5297       return result;
5298
5299     case ASHIFTRT:
5300       /* Shifts by a constant add to the number of bits equal to the
5301          sign bit.  */
5302       num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5303                                          known_x, known_mode, known_ret);
5304       if (CONST_INT_P (XEXP (x, 1))
5305           && INTVAL (XEXP (x, 1)) > 0
5306           && INTVAL (XEXP (x, 1)) < xmode_width)
5307         num0 = MIN ((int) bitwidth, num0 + INTVAL (XEXP (x, 1)));
5308
5309       return num0;
5310
5311     case ASHIFT:
5312       /* Left shifts destroy copies.  */
5313       if (!CONST_INT_P (XEXP (x, 1))
5314           || INTVAL (XEXP (x, 1)) < 0
5315           || INTVAL (XEXP (x, 1)) >= (int) bitwidth
5316           || INTVAL (XEXP (x, 1)) >= xmode_width)
5317         return 1;
5318
5319       num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5320                                          known_x, known_mode, known_ret);
5321       return MAX (1, num0 - INTVAL (XEXP (x, 1)));
5322
5323     case IF_THEN_ELSE:
5324       num0 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
5325                                          known_x, known_mode, known_ret);
5326       num1 = cached_num_sign_bit_copies (XEXP (x, 2), mode,
5327                                          known_x, known_mode, known_ret);
5328       return MIN (num0, num1);
5329
5330     case EQ:  case NE:  case GE:  case GT:  case LE:  case LT:
5331     case UNEQ:  case LTGT:  case UNGE:  case UNGT:  case UNLE:  case UNLT:
5332     case GEU: case GTU: case LEU: case LTU:
5333     case UNORDERED: case ORDERED:
5334       /* If the constant is negative, take its 1's complement and remask.
5335          Then see how many zero bits we have.  */
5336       nonzero = STORE_FLAG_VALUE;
5337       if (bitwidth <= HOST_BITS_PER_WIDE_INT
5338           && (nonzero & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0)
5339         nonzero = (~nonzero) & GET_MODE_MASK (mode);
5340
5341       return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
5342
5343     default:
5344       break;
5345     }
5346
5347   /* If we haven't been able to figure it out by one of the above rules,
5348      see if some of the high-order bits are known to be zero.  If so,
5349      count those bits and return one less than that amount.  If we can't
5350      safely compute the mask for this mode, always return BITWIDTH.  */
5351
5352   bitwidth = GET_MODE_PRECISION (mode);
5353   if (bitwidth > HOST_BITS_PER_WIDE_INT)
5354     return 1;
5355
5356   nonzero = nonzero_bits (x, mode);
5357   return nonzero & (HOST_WIDE_INT_1U << (bitwidth - 1))
5358          ? 1 : bitwidth - floor_log2 (nonzero) - 1;
5359 }
5360
5361 /* Calculate the rtx_cost of a single instruction pattern.  A return value of
5362    zero indicates an instruction pattern without a known cost.  */
5363
5364 int
5365 pattern_cost (rtx pat, bool speed)
5366 {
5367   int i, cost;
5368   rtx set;
5369
5370   /* Extract the single set rtx from the instruction pattern.  We
5371      can't use single_set since we only have the pattern.  We also
5372      consider PARALLELs of a normal set and a single comparison.  In
5373      that case we use the cost of the non-comparison SET operation,
5374      which is most-likely to be the real cost of this operation.  */
5375   if (GET_CODE (pat) == SET)
5376     set = pat;
5377   else if (GET_CODE (pat) == PARALLEL)
5378     {
5379       set = NULL_RTX;
5380       rtx comparison = NULL_RTX;
5381
5382       for (i = 0; i < XVECLEN (pat, 0); i++)
5383         {
5384           rtx x = XVECEXP (pat, 0, i);
5385           if (GET_CODE (x) == SET)
5386             {
5387               if (GET_CODE (SET_SRC (x)) == COMPARE)
5388                 {
5389                   if (comparison)
5390                     return 0;
5391                   comparison = x;
5392                 }
5393               else
5394                 {
5395                   if (set)
5396                     return 0;
5397                   set = x;
5398                 }
5399             }
5400         }
5401
5402       if (!set && comparison)
5403         set = comparison;
5404
5405       if (!set)
5406         return 0;
5407     }
5408   else
5409     return 0;
5410
5411   cost = set_src_cost (SET_SRC (set), GET_MODE (SET_DEST (set)), speed);
5412   return cost > 0 ? cost : COSTS_N_INSNS (1);
5413 }
5414
5415 /* Calculate the cost of a single instruction.  A return value of zero
5416    indicates an instruction pattern without a known cost.  */
5417
5418 int
5419 insn_cost (rtx_insn *insn, bool speed)
5420 {
5421   if (targetm.insn_cost)
5422     return targetm.insn_cost (insn, speed);
5423
5424   return pattern_cost (PATTERN (insn), speed);
5425 }
5426
5427 /* Returns estimate on cost of computing SEQ.  */
5428
5429 unsigned
5430 seq_cost (const rtx_insn *seq, bool speed)
5431 {
5432   unsigned cost = 0;
5433   rtx set;
5434
5435   for (; seq; seq = NEXT_INSN (seq))
5436     {
5437       set = single_set (seq);
5438       if (set)
5439         cost += set_rtx_cost (set, speed);
5440       else if (NONDEBUG_INSN_P (seq))
5441         {
5442           int this_cost = insn_cost (CONST_CAST_RTX_INSN (seq), speed);
5443           if (this_cost > 0)
5444             cost += this_cost;
5445           else
5446             cost++;
5447         }
5448     }
5449
5450   return cost;
5451 }
5452
5453 /* Given an insn INSN and condition COND, return the condition in a
5454    canonical form to simplify testing by callers.  Specifically:
5455
5456    (1) The code will always be a comparison operation (EQ, NE, GT, etc.).
5457    (2) Both operands will be machine operands; (cc0) will have been replaced.
5458    (3) If an operand is a constant, it will be the second operand.
5459    (4) (LE x const) will be replaced with (LT x <const+1>) and similarly
5460        for GE, GEU, and LEU.
5461
5462    If the condition cannot be understood, or is an inequality floating-point
5463    comparison which needs to be reversed, 0 will be returned.
5464
5465    If REVERSE is nonzero, then reverse the condition prior to canonizing it.
5466
5467    If EARLIEST is nonzero, it is a pointer to a place where the earliest
5468    insn used in locating the condition was found.  If a replacement test
5469    of the condition is desired, it should be placed in front of that
5470    insn and we will be sure that the inputs are still valid.
5471
5472    If WANT_REG is nonzero, we wish the condition to be relative to that
5473    register, if possible.  Therefore, do not canonicalize the condition
5474    further.  If ALLOW_CC_MODE is nonzero, allow the condition returned
5475    to be a compare to a CC mode register.
5476
5477    If VALID_AT_INSN_P, the condition must be valid at both *EARLIEST
5478    and at INSN.  */
5479
5480 rtx
5481 canonicalize_condition (rtx_insn *insn, rtx cond, int reverse,
5482                         rtx_insn **earliest,
5483                         rtx want_reg, int allow_cc_mode, int valid_at_insn_p)
5484 {
5485   enum rtx_code code;
5486   rtx_insn *prev = insn;
5487   const_rtx set;
5488   rtx tem;
5489   rtx op0, op1;
5490   int reverse_code = 0;
5491   machine_mode mode;
5492   basic_block bb = BLOCK_FOR_INSN (insn);
5493
5494   code = GET_CODE (cond);
5495   mode = GET_MODE (cond);
5496   op0 = XEXP (cond, 0);
5497   op1 = XEXP (cond, 1);
5498
5499   if (reverse)
5500     code = reversed_comparison_code (cond, insn);
5501   if (code == UNKNOWN)
5502     return 0;
5503
5504   if (earliest)
5505     *earliest = insn;
5506
5507   /* If we are comparing a register with zero, see if the register is set
5508      in the previous insn to a COMPARE or a comparison operation.  Perform
5509      the same tests as a function of STORE_FLAG_VALUE as find_comparison_args
5510      in cse.c  */
5511
5512   while ((GET_RTX_CLASS (code) == RTX_COMPARE
5513           || GET_RTX_CLASS (code) == RTX_COMM_COMPARE)
5514          && op1 == CONST0_RTX (GET_MODE (op0))
5515          && op0 != want_reg)
5516     {
5517       /* Set nonzero when we find something of interest.  */
5518       rtx x = 0;
5519
5520       /* If comparison with cc0, import actual comparison from compare
5521          insn.  */
5522       if (op0 == cc0_rtx)
5523         {
5524           if ((prev = prev_nonnote_insn (prev)) == 0
5525               || !NONJUMP_INSN_P (prev)
5526               || (set = single_set (prev)) == 0
5527               || SET_DEST (set) != cc0_rtx)
5528             return 0;
5529
5530           op0 = SET_SRC (set);
5531           op1 = CONST0_RTX (GET_MODE (op0));
5532           if (earliest)
5533             *earliest = prev;
5534         }
5535
5536       /* If this is a COMPARE, pick up the two things being compared.  */
5537       if (GET_CODE (op0) == COMPARE)
5538         {
5539           op1 = XEXP (op0, 1);
5540           op0 = XEXP (op0, 0);
5541           continue;
5542         }
5543       else if (!REG_P (op0))
5544         break;
5545
5546       /* Go back to the previous insn.  Stop if it is not an INSN.  We also
5547          stop if it isn't a single set or if it has a REG_INC note because
5548          we don't want to bother dealing with it.  */
5549
5550       prev = prev_nonnote_nondebug_insn (prev);
5551
5552       if (prev == 0
5553           || !NONJUMP_INSN_P (prev)
5554           || FIND_REG_INC_NOTE (prev, NULL_RTX)
5555           /* In cfglayout mode, there do not have to be labels at the
5556              beginning of a block, or jumps at the end, so the previous
5557              conditions would not stop us when we reach bb boundary.  */
5558           || BLOCK_FOR_INSN (prev) != bb)
5559         break;
5560
5561       set = set_of (op0, prev);
5562
5563       if (set
5564           && (GET_CODE (set) != SET
5565               || !rtx_equal_p (SET_DEST (set), op0)))
5566         break;
5567
5568       /* If this is setting OP0, get what it sets it to if it looks
5569          relevant.  */
5570       if (set)
5571         {
5572           machine_mode inner_mode = GET_MODE (SET_DEST (set));
5573 #ifdef FLOAT_STORE_FLAG_VALUE
5574           REAL_VALUE_TYPE fsfv;
5575 #endif
5576
5577           /* ??? We may not combine comparisons done in a CCmode with
5578              comparisons not done in a CCmode.  This is to aid targets
5579              like Alpha that have an IEEE compliant EQ instruction, and
5580              a non-IEEE compliant BEQ instruction.  The use of CCmode is
5581              actually artificial, simply to prevent the combination, but
5582              should not affect other platforms.
5583
5584              However, we must allow VOIDmode comparisons to match either
5585              CCmode or non-CCmode comparison, because some ports have
5586              modeless comparisons inside branch patterns.
5587
5588              ??? This mode check should perhaps look more like the mode check
5589              in simplify_comparison in combine.  */
5590           if (((GET_MODE_CLASS (mode) == MODE_CC)
5591                != (GET_MODE_CLASS (inner_mode) == MODE_CC))
5592               && mode != VOIDmode
5593               && inner_mode != VOIDmode)
5594             break;
5595           if (GET_CODE (SET_SRC (set)) == COMPARE
5596               || (((code == NE
5597                     || (code == LT
5598                         && val_signbit_known_set_p (inner_mode,
5599                                                     STORE_FLAG_VALUE))
5600 #ifdef FLOAT_STORE_FLAG_VALUE
5601                     || (code == LT
5602                         && SCALAR_FLOAT_MODE_P (inner_mode)
5603                         && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
5604                             REAL_VALUE_NEGATIVE (fsfv)))
5605 #endif
5606                     ))
5607                   && COMPARISON_P (SET_SRC (set))))
5608             x = SET_SRC (set);
5609           else if (((code == EQ
5610                      || (code == GE
5611                          && val_signbit_known_set_p (inner_mode,
5612                                                      STORE_FLAG_VALUE))
5613 #ifdef FLOAT_STORE_FLAG_VALUE
5614                      || (code == GE
5615                          && SCALAR_FLOAT_MODE_P (inner_mode)
5616                          && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
5617                              REAL_VALUE_NEGATIVE (fsfv)))
5618 #endif
5619                      ))
5620                    && COMPARISON_P (SET_SRC (set)))
5621             {
5622               reverse_code = 1;
5623               x = SET_SRC (set);
5624             }
5625           else if ((code == EQ || code == NE)
5626                    && GET_CODE (SET_SRC (set)) == XOR)
5627             /* Handle sequences like:
5628
5629                (set op0 (xor X Y))
5630                ...(eq|ne op0 (const_int 0))...
5631
5632                in which case:
5633
5634                (eq op0 (const_int 0)) reduces to (eq X Y)
5635                (ne op0 (const_int 0)) reduces to (ne X Y)
5636
5637                This is the form used by MIPS16, for example.  */
5638             x = SET_SRC (set);
5639           else
5640             break;
5641         }
5642
5643       else if (reg_set_p (op0, prev))
5644         /* If this sets OP0, but not directly, we have to give up.  */
5645         break;
5646
5647       if (x)
5648         {
5649           /* If the caller is expecting the condition to be valid at INSN,
5650              make sure X doesn't change before INSN.  */
5651           if (valid_at_insn_p)
5652             if (modified_in_p (x, prev) || modified_between_p (x, prev, insn))
5653               break;
5654           if (COMPARISON_P (x))
5655             code = GET_CODE (x);
5656           if (reverse_code)
5657             {
5658               code = reversed_comparison_code (x, prev);
5659               if (code == UNKNOWN)
5660                 return 0;
5661               reverse_code = 0;
5662             }
5663
5664           op0 = XEXP (x, 0), op1 = XEXP (x, 1);
5665           if (earliest)
5666             *earliest = prev;
5667         }
5668     }
5669
5670   /* If constant is first, put it last.  */
5671   if (CONSTANT_P (op0))
5672     code = swap_condition (code), tem = op0, op0 = op1, op1 = tem;
5673
5674   /* If OP0 is the result of a comparison, we weren't able to find what
5675      was really being compared, so fail.  */
5676   if (!allow_cc_mode
5677       && GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
5678     return 0;
5679
5680   /* Canonicalize any ordered comparison with integers involving equality
5681      if we can do computations in the relevant mode and we do not
5682      overflow.  */
5683
5684   scalar_int_mode op0_mode;
5685   if (CONST_INT_P (op1)
5686       && is_a <scalar_int_mode> (GET_MODE (op0), &op0_mode)
5687       && GET_MODE_PRECISION (op0_mode) <= HOST_BITS_PER_WIDE_INT)
5688     {
5689       HOST_WIDE_INT const_val = INTVAL (op1);
5690       unsigned HOST_WIDE_INT uconst_val = const_val;
5691       unsigned HOST_WIDE_INT max_val
5692         = (unsigned HOST_WIDE_INT) GET_MODE_MASK (op0_mode);
5693
5694       switch (code)
5695         {
5696         case LE:
5697           if ((unsigned HOST_WIDE_INT) const_val != max_val >> 1)
5698             code = LT, op1 = gen_int_mode (const_val + 1, op0_mode);
5699           break;
5700
5701         /* When cross-compiling, const_val might be sign-extended from
5702            BITS_PER_WORD to HOST_BITS_PER_WIDE_INT */
5703         case GE:
5704           if ((const_val & max_val)
5705               != (HOST_WIDE_INT_1U << (GET_MODE_PRECISION (op0_mode) - 1)))
5706             code = GT, op1 = gen_int_mode (const_val - 1, op0_mode);
5707           break;
5708
5709         case LEU:
5710           if (uconst_val < max_val)
5711             code = LTU, op1 = gen_int_mode (uconst_val + 1, op0_mode);
5712           break;
5713
5714         case GEU:
5715           if (uconst_val != 0)
5716             code = GTU, op1 = gen_int_mode (uconst_val - 1, op0_mode);
5717           break;
5718
5719         default:
5720           break;
5721         }
5722     }
5723
5724   /* Never return CC0; return zero instead.  */
5725   if (CC0_P (op0))
5726     return 0;
5727
5728   /* We promised to return a comparison.  */
5729   rtx ret = gen_rtx_fmt_ee (code, VOIDmode, op0, op1);
5730   if (COMPARISON_P (ret))
5731     return ret;
5732   return 0;
5733 }
5734
5735 /* Given a jump insn JUMP, return the condition that will cause it to branch
5736    to its JUMP_LABEL.  If the condition cannot be understood, or is an
5737    inequality floating-point comparison which needs to be reversed, 0 will
5738    be returned.
5739
5740    If EARLIEST is nonzero, it is a pointer to a place where the earliest
5741    insn used in locating the condition was found.  If a replacement test
5742    of the condition is desired, it should be placed in front of that
5743    insn and we will be sure that the inputs are still valid.  If EARLIEST
5744    is null, the returned condition will be valid at INSN.
5745
5746    If ALLOW_CC_MODE is nonzero, allow the condition returned to be a
5747    compare CC mode register.
5748
5749    VALID_AT_INSN_P is the same as for canonicalize_condition.  */
5750
5751 rtx
5752 get_condition (rtx_insn *jump, rtx_insn **earliest, int allow_cc_mode,
5753                int valid_at_insn_p)
5754 {
5755   rtx cond;
5756   int reverse;
5757   rtx set;
5758
5759   /* If this is not a standard conditional jump, we can't parse it.  */
5760   if (!JUMP_P (jump)
5761       || ! any_condjump_p (jump))
5762     return 0;
5763   set = pc_set (jump);
5764
5765   cond = XEXP (SET_SRC (set), 0);
5766
5767   /* If this branches to JUMP_LABEL when the condition is false, reverse
5768      the condition.  */
5769   reverse
5770     = GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
5771       && label_ref_label (XEXP (SET_SRC (set), 2)) == JUMP_LABEL (jump);
5772
5773   return canonicalize_condition (jump, cond, reverse, earliest, NULL_RTX,
5774                                  allow_cc_mode, valid_at_insn_p);
5775 }
5776
5777 /* Initialize the table NUM_SIGN_BIT_COPIES_IN_REP based on
5778    TARGET_MODE_REP_EXTENDED.
5779
5780    Note that we assume that the property of
5781    TARGET_MODE_REP_EXTENDED(B, C) is sticky to the integral modes
5782    narrower than mode B.  I.e., if A is a mode narrower than B then in
5783    order to be able to operate on it in mode B, mode A needs to
5784    satisfy the requirements set by the representation of mode B.  */
5785
5786 static void
5787 init_num_sign_bit_copies_in_rep (void)
5788 {
5789   opt_scalar_int_mode in_mode_iter;
5790   scalar_int_mode mode;
5791
5792   FOR_EACH_MODE_IN_CLASS (in_mode_iter, MODE_INT)
5793     FOR_EACH_MODE_UNTIL (mode, in_mode_iter.require ())
5794       {
5795         scalar_int_mode in_mode = in_mode_iter.require ();
5796         scalar_int_mode i;
5797
5798         /* Currently, it is assumed that TARGET_MODE_REP_EXTENDED
5799            extends to the next widest mode.  */
5800         gcc_assert (targetm.mode_rep_extended (mode, in_mode) == UNKNOWN
5801                     || GET_MODE_WIDER_MODE (mode).require () == in_mode);
5802
5803         /* We are in in_mode.  Count how many bits outside of mode
5804            have to be copies of the sign-bit.  */
5805         FOR_EACH_MODE (i, mode, in_mode)
5806           {
5807             /* This must always exist (for the last iteration it will be
5808                IN_MODE).  */
5809             scalar_int_mode wider = GET_MODE_WIDER_MODE (i).require ();
5810
5811             if (targetm.mode_rep_extended (i, wider) == SIGN_EXTEND
5812                 /* We can only check sign-bit copies starting from the
5813                    top-bit.  In order to be able to check the bits we
5814                    have already seen we pretend that subsequent bits
5815                    have to be sign-bit copies too.  */
5816                 || num_sign_bit_copies_in_rep [in_mode][mode])
5817               num_sign_bit_copies_in_rep [in_mode][mode]
5818                 += GET_MODE_PRECISION (wider) - GET_MODE_PRECISION (i);
5819           }
5820       }
5821 }
5822
5823 /* Suppose that truncation from the machine mode of X to MODE is not a
5824    no-op.  See if there is anything special about X so that we can
5825    assume it already contains a truncated value of MODE.  */
5826
5827 bool
5828 truncated_to_mode (machine_mode mode, const_rtx x)
5829 {
5830   /* This register has already been used in MODE without explicit
5831      truncation.  */
5832   if (REG_P (x) && rtl_hooks.reg_truncated_to_mode (mode, x))
5833     return true;
5834
5835   /* See if we already satisfy the requirements of MODE.  If yes we
5836      can just switch to MODE.  */
5837   if (num_sign_bit_copies_in_rep[GET_MODE (x)][mode]
5838       && (num_sign_bit_copies (x, GET_MODE (x))
5839           >= num_sign_bit_copies_in_rep[GET_MODE (x)][mode] + 1))
5840     return true;
5841
5842   return false;
5843 }
5844 \f
5845 /* Return true if RTX code CODE has a single sequence of zero or more
5846    "e" operands and no rtvec operands.  Initialize its rtx_all_subrtx_bounds
5847    entry in that case.  */
5848
5849 static bool
5850 setup_reg_subrtx_bounds (unsigned int code)
5851 {
5852   const char *format = GET_RTX_FORMAT ((enum rtx_code) code);
5853   unsigned int i = 0;
5854   for (; format[i] != 'e'; ++i)
5855     {
5856       if (!format[i])
5857         /* No subrtxes.  Leave start and count as 0.  */
5858         return true;
5859       if (format[i] == 'E' || format[i] == 'V')
5860         return false;
5861     }
5862
5863   /* Record the sequence of 'e's.  */
5864   rtx_all_subrtx_bounds[code].start = i;
5865   do
5866     ++i;
5867   while (format[i] == 'e');
5868   rtx_all_subrtx_bounds[code].count = i - rtx_all_subrtx_bounds[code].start;
5869   /* rtl-iter.h relies on this.  */
5870   gcc_checking_assert (rtx_all_subrtx_bounds[code].count <= 3);
5871
5872   for (; format[i]; ++i)
5873     if (format[i] == 'E' || format[i] == 'V' || format[i] == 'e')
5874       return false;
5875
5876   return true;
5877 }
5878
5879 /* Initialize rtx_all_subrtx_bounds.  */
5880 void
5881 init_rtlanal (void)
5882 {
5883   int i;
5884   for (i = 0; i < NUM_RTX_CODE; i++)
5885     {
5886       if (!setup_reg_subrtx_bounds (i))
5887         rtx_all_subrtx_bounds[i].count = UCHAR_MAX;
5888       if (GET_RTX_CLASS (i) != RTX_CONST_OBJ)
5889         rtx_nonconst_subrtx_bounds[i] = rtx_all_subrtx_bounds[i];
5890     }
5891
5892   init_num_sign_bit_copies_in_rep ();
5893 }
5894 \f
5895 /* Check whether this is a constant pool constant.  */
5896 bool
5897 constant_pool_constant_p (rtx x)
5898 {
5899   x = avoid_constant_pool_reference (x);
5900   return CONST_DOUBLE_P (x);
5901 }
5902 \f
5903 /* If M is a bitmask that selects a field of low-order bits within an item but
5904    not the entire word, return the length of the field.  Return -1 otherwise.
5905    M is used in machine mode MODE.  */
5906
5907 int
5908 low_bitmask_len (machine_mode mode, unsigned HOST_WIDE_INT m)
5909 {
5910   if (mode != VOIDmode)
5911     {
5912       if (!HWI_COMPUTABLE_MODE_P (mode))
5913         return -1;
5914       m &= GET_MODE_MASK (mode);
5915     }
5916
5917   return exact_log2 (m + 1);
5918 }
5919
5920 /* Return the mode of MEM's address.  */
5921
5922 scalar_int_mode
5923 get_address_mode (rtx mem)
5924 {
5925   machine_mode mode;
5926
5927   gcc_assert (MEM_P (mem));
5928   mode = GET_MODE (XEXP (mem, 0));
5929   if (mode != VOIDmode)
5930     return as_a <scalar_int_mode> (mode);
5931   return targetm.addr_space.address_mode (MEM_ADDR_SPACE (mem));
5932 }
5933 \f
5934 /* Split up a CONST_DOUBLE or integer constant rtx
5935    into two rtx's for single words,
5936    storing in *FIRST the word that comes first in memory in the target
5937    and in *SECOND the other.
5938
5939    TODO: This function needs to be rewritten to work on any size
5940    integer.  */
5941
5942 void
5943 split_double (rtx value, rtx *first, rtx *second)
5944 {
5945   if (CONST_INT_P (value))
5946     {
5947       if (HOST_BITS_PER_WIDE_INT >= (2 * BITS_PER_WORD))
5948         {
5949           /* In this case the CONST_INT holds both target words.
5950              Extract the bits from it into two word-sized pieces.
5951              Sign extend each half to HOST_WIDE_INT.  */
5952           unsigned HOST_WIDE_INT low, high;
5953           unsigned HOST_WIDE_INT mask, sign_bit, sign_extend;
5954           unsigned bits_per_word = BITS_PER_WORD;
5955
5956           /* Set sign_bit to the most significant bit of a word.  */
5957           sign_bit = 1;
5958           sign_bit <<= bits_per_word - 1;
5959
5960           /* Set mask so that all bits of the word are set.  We could
5961              have used 1 << BITS_PER_WORD instead of basing the
5962              calculation on sign_bit.  However, on machines where
5963              HOST_BITS_PER_WIDE_INT == BITS_PER_WORD, it could cause a
5964              compiler warning, even though the code would never be
5965              executed.  */
5966           mask = sign_bit << 1;
5967           mask--;
5968
5969           /* Set sign_extend as any remaining bits.  */
5970           sign_extend = ~mask;
5971
5972           /* Pick the lower word and sign-extend it.  */
5973           low = INTVAL (value);
5974           low &= mask;
5975           if (low & sign_bit)
5976             low |= sign_extend;
5977
5978           /* Pick the higher word, shifted to the least significant
5979              bits, and sign-extend it.  */
5980           high = INTVAL (value);
5981           high >>= bits_per_word - 1;
5982           high >>= 1;
5983           high &= mask;
5984           if (high & sign_bit)
5985             high |= sign_extend;
5986
5987           /* Store the words in the target machine order.  */
5988           if (WORDS_BIG_ENDIAN)
5989             {
5990               *first = GEN_INT (high);
5991               *second = GEN_INT (low);
5992             }
5993           else
5994             {
5995               *first = GEN_INT (low);
5996               *second = GEN_INT (high);
5997             }
5998         }
5999       else
6000         {
6001           /* The rule for using CONST_INT for a wider mode
6002              is that we regard the value as signed.
6003              So sign-extend it.  */
6004           rtx high = (INTVAL (value) < 0 ? constm1_rtx : const0_rtx);
6005           if (WORDS_BIG_ENDIAN)
6006             {
6007               *first = high;
6008               *second = value;
6009             }
6010           else
6011             {
6012               *first = value;
6013               *second = high;
6014             }
6015         }
6016     }
6017   else if (GET_CODE (value) == CONST_WIDE_INT)
6018     {
6019       /* All of this is scary code and needs to be converted to
6020          properly work with any size integer.  */
6021       gcc_assert (CONST_WIDE_INT_NUNITS (value) == 2);
6022       if (WORDS_BIG_ENDIAN)
6023         {
6024           *first = GEN_INT (CONST_WIDE_INT_ELT (value, 1));
6025           *second = GEN_INT (CONST_WIDE_INT_ELT (value, 0));
6026         }
6027       else
6028         {
6029           *first = GEN_INT (CONST_WIDE_INT_ELT (value, 0));
6030           *second = GEN_INT (CONST_WIDE_INT_ELT (value, 1));
6031         }
6032     }
6033   else if (!CONST_DOUBLE_P (value))
6034     {
6035       if (WORDS_BIG_ENDIAN)
6036         {
6037           *first = const0_rtx;
6038           *second = value;
6039         }
6040       else
6041         {
6042           *first = value;
6043           *second = const0_rtx;
6044         }
6045     }
6046   else if (GET_MODE (value) == VOIDmode
6047            /* This is the old way we did CONST_DOUBLE integers.  */
6048            || GET_MODE_CLASS (GET_MODE (value)) == MODE_INT)
6049     {
6050       /* In an integer, the words are defined as most and least significant.
6051          So order them by the target's convention.  */
6052       if (WORDS_BIG_ENDIAN)
6053         {
6054           *first = GEN_INT (CONST_DOUBLE_HIGH (value));
6055           *second = GEN_INT (CONST_DOUBLE_LOW (value));
6056         }
6057       else
6058         {
6059           *first = GEN_INT (CONST_DOUBLE_LOW (value));
6060           *second = GEN_INT (CONST_DOUBLE_HIGH (value));
6061         }
6062     }
6063   else
6064     {
6065       long l[2];
6066
6067       /* Note, this converts the REAL_VALUE_TYPE to the target's
6068          format, splits up the floating point double and outputs
6069          exactly 32 bits of it into each of l[0] and l[1] --
6070          not necessarily BITS_PER_WORD bits.  */
6071       REAL_VALUE_TO_TARGET_DOUBLE (*CONST_DOUBLE_REAL_VALUE (value), l);
6072
6073       /* If 32 bits is an entire word for the target, but not for the host,
6074          then sign-extend on the host so that the number will look the same
6075          way on the host that it would on the target.  See for instance
6076          simplify_unary_operation.  The #if is needed to avoid compiler
6077          warnings.  */
6078
6079 #if HOST_BITS_PER_LONG > 32
6080       if (BITS_PER_WORD < HOST_BITS_PER_LONG && BITS_PER_WORD == 32)
6081         {
6082           if (l[0] & ((long) 1 << 31))
6083             l[0] |= ((unsigned long) (-1) << 32);
6084           if (l[1] & ((long) 1 << 31))
6085             l[1] |= ((unsigned long) (-1) << 32);
6086         }
6087 #endif
6088
6089       *first = GEN_INT (l[0]);
6090       *second = GEN_INT (l[1]);
6091     }
6092 }
6093
6094 /* Return true if X is a sign_extract or zero_extract from the least
6095    significant bit.  */
6096
6097 static bool
6098 lsb_bitfield_op_p (rtx x)
6099 {
6100   if (GET_RTX_CLASS (GET_CODE (x)) == RTX_BITFIELD_OPS)
6101     {
6102       machine_mode mode = GET_MODE (XEXP (x, 0));
6103       HOST_WIDE_INT len = INTVAL (XEXP (x, 1));
6104       HOST_WIDE_INT pos = INTVAL (XEXP (x, 2));
6105       poly_int64 remaining_bits = GET_MODE_PRECISION (mode) - len;
6106
6107       return known_eq (pos, BITS_BIG_ENDIAN ? remaining_bits : 0);
6108     }
6109   return false;
6110 }
6111
6112 /* Strip outer address "mutations" from LOC and return a pointer to the
6113    inner value.  If OUTER_CODE is nonnull, store the code of the innermost
6114    stripped expression there.
6115
6116    "Mutations" either convert between modes or apply some kind of
6117    extension, truncation or alignment.  */
6118
6119 rtx *
6120 strip_address_mutations (rtx *loc, enum rtx_code *outer_code)
6121 {
6122   for (;;)
6123     {
6124       enum rtx_code code = GET_CODE (*loc);
6125       if (GET_RTX_CLASS (code) == RTX_UNARY)
6126         /* Things like SIGN_EXTEND, ZERO_EXTEND and TRUNCATE can be
6127            used to convert between pointer sizes.  */
6128         loc = &XEXP (*loc, 0);
6129       else if (lsb_bitfield_op_p (*loc))
6130         /* A [SIGN|ZERO]_EXTRACT from the least significant bit effectively
6131            acts as a combined truncation and extension.  */
6132         loc = &XEXP (*loc, 0);
6133       else if (code == AND && CONST_INT_P (XEXP (*loc, 1)))
6134         /* (and ... (const_int -X)) is used to align to X bytes.  */
6135         loc = &XEXP (*loc, 0);
6136       else if (code == SUBREG
6137                && !OBJECT_P (SUBREG_REG (*loc))
6138                && subreg_lowpart_p (*loc))
6139         /* (subreg (operator ...) ...) inside and is used for mode
6140            conversion too.  */
6141         loc = &SUBREG_REG (*loc);
6142       else
6143         return loc;
6144       if (outer_code)
6145         *outer_code = code;
6146     }
6147 }
6148
6149 /* Return true if CODE applies some kind of scale.  The scaled value is
6150    is the first operand and the scale is the second.  */
6151
6152 static bool
6153 binary_scale_code_p (enum rtx_code code)
6154 {
6155   return (code == MULT
6156           || code == ASHIFT
6157           /* Needed by ARM targets.  */
6158           || code == ASHIFTRT
6159           || code == LSHIFTRT
6160           || code == ROTATE
6161           || code == ROTATERT);
6162 }
6163
6164 /* If *INNER can be interpreted as a base, return a pointer to the inner term
6165    (see address_info).  Return null otherwise.  */
6166
6167 static rtx *
6168 get_base_term (rtx *inner)
6169 {
6170   if (GET_CODE (*inner) == LO_SUM)
6171     inner = strip_address_mutations (&XEXP (*inner, 0));
6172   if (REG_P (*inner)
6173       || MEM_P (*inner)
6174       || GET_CODE (*inner) == SUBREG
6175       || GET_CODE (*inner) == SCRATCH)
6176     return inner;
6177   return 0;
6178 }
6179
6180 /* If *INNER can be interpreted as an index, return a pointer to the inner term
6181    (see address_info).  Return null otherwise.  */
6182
6183 static rtx *
6184 get_index_term (rtx *inner)
6185 {
6186   /* At present, only constant scales are allowed.  */
6187   if (binary_scale_code_p (GET_CODE (*inner)) && CONSTANT_P (XEXP (*inner, 1)))
6188     inner = strip_address_mutations (&XEXP (*inner, 0));
6189   if (REG_P (*inner)
6190       || MEM_P (*inner)
6191       || GET_CODE (*inner) == SUBREG
6192       || GET_CODE (*inner) == SCRATCH)
6193     return inner;
6194   return 0;
6195 }
6196
6197 /* Set the segment part of address INFO to LOC, given that INNER is the
6198    unmutated value.  */
6199
6200 static void
6201 set_address_segment (struct address_info *info, rtx *loc, rtx *inner)
6202 {
6203   gcc_assert (!info->segment);
6204   info->segment = loc;
6205   info->segment_term = inner;
6206 }
6207
6208 /* Set the base part of address INFO to LOC, given that INNER is the
6209    unmutated value.  */
6210
6211 static void
6212 set_address_base (struct address_info *info, rtx *loc, rtx *inner)
6213 {
6214   gcc_assert (!info->base);
6215   info->base = loc;
6216   info->base_term = inner;
6217 }
6218
6219 /* Set the index part of address INFO to LOC, given that INNER is the
6220    unmutated value.  */
6221
6222 static void
6223 set_address_index (struct address_info *info, rtx *loc, rtx *inner)
6224 {
6225   gcc_assert (!info->index);
6226   info->index = loc;
6227   info->index_term = inner;
6228 }
6229
6230 /* Set the displacement part of address INFO to LOC, given that INNER
6231    is the constant term.  */
6232
6233 static void
6234 set_address_disp (struct address_info *info, rtx *loc, rtx *inner)
6235 {
6236   gcc_assert (!info->disp);
6237   info->disp = loc;
6238   info->disp_term = inner;
6239 }
6240
6241 /* INFO->INNER describes a {PRE,POST}_{INC,DEC} address.  Set up the
6242    rest of INFO accordingly.  */
6243
6244 static void
6245 decompose_incdec_address (struct address_info *info)
6246 {
6247   info->autoinc_p = true;
6248
6249   rtx *base = &XEXP (*info->inner, 0);
6250   set_address_base (info, base, base);
6251   gcc_checking_assert (info->base == info->base_term);
6252
6253   /* These addresses are only valid when the size of the addressed
6254      value is known.  */
6255   gcc_checking_assert (info->mode != VOIDmode);
6256 }
6257
6258 /* INFO->INNER describes a {PRE,POST}_MODIFY address.  Set up the rest
6259    of INFO accordingly.  */
6260
6261 static void
6262 decompose_automod_address (struct address_info *info)
6263 {
6264   info->autoinc_p = true;
6265
6266   rtx *base = &XEXP (*info->inner, 0);
6267   set_address_base (info, base, base);
6268   gcc_checking_assert (info->base == info->base_term);
6269
6270   rtx plus = XEXP (*info->inner, 1);
6271   gcc_assert (GET_CODE (plus) == PLUS);
6272
6273   info->base_term2 = &XEXP (plus, 0);
6274   gcc_checking_assert (rtx_equal_p (*info->base_term, *info->base_term2));
6275
6276   rtx *step = &XEXP (plus, 1);
6277   rtx *inner_step = strip_address_mutations (step);
6278   if (CONSTANT_P (*inner_step))
6279     set_address_disp (info, step, inner_step);
6280   else
6281     set_address_index (info, step, inner_step);
6282 }
6283
6284 /* Treat *LOC as a tree of PLUS operands and store pointers to the summed
6285    values in [PTR, END).  Return a pointer to the end of the used array.  */
6286
6287 static rtx **
6288 extract_plus_operands (rtx *loc, rtx **ptr, rtx **end)
6289 {
6290   rtx x = *loc;
6291   if (GET_CODE (x) == PLUS)
6292     {
6293       ptr = extract_plus_operands (&XEXP (x, 0), ptr, end);
6294       ptr = extract_plus_operands (&XEXP (x, 1), ptr, end);
6295     }
6296   else
6297     {
6298       gcc_assert (ptr != end);
6299       *ptr++ = loc;
6300     }
6301   return ptr;
6302 }
6303
6304 /* Evaluate the likelihood of X being a base or index value, returning
6305    positive if it is likely to be a base, negative if it is likely to be
6306    an index, and 0 if we can't tell.  Make the magnitude of the return
6307    value reflect the amount of confidence we have in the answer.
6308
6309    MODE, AS, OUTER_CODE and INDEX_CODE are as for ok_for_base_p_1.  */
6310
6311 static int
6312 baseness (rtx x, machine_mode mode, addr_space_t as,
6313           enum rtx_code outer_code, enum rtx_code index_code)
6314 {
6315   /* Believe *_POINTER unless the address shape requires otherwise.  */
6316   if (REG_P (x) && REG_POINTER (x))
6317     return 2;
6318   if (MEM_P (x) && MEM_POINTER (x))
6319     return 2;
6320
6321   if (REG_P (x) && HARD_REGISTER_P (x))
6322     {
6323       /* X is a hard register.  If it only fits one of the base
6324          or index classes, choose that interpretation.  */
6325       int regno = REGNO (x);
6326       bool base_p = ok_for_base_p_1 (regno, mode, as, outer_code, index_code);
6327       bool index_p = REGNO_OK_FOR_INDEX_P (regno);
6328       if (base_p != index_p)
6329         return base_p ? 1 : -1;
6330     }
6331   return 0;
6332 }
6333
6334 /* INFO->INNER describes a normal, non-automodified address.
6335    Fill in the rest of INFO accordingly.  */
6336
6337 static void
6338 decompose_normal_address (struct address_info *info)
6339 {
6340   /* Treat the address as the sum of up to four values.  */
6341   rtx *ops[4];
6342   size_t n_ops = extract_plus_operands (info->inner, ops,
6343                                         ops + ARRAY_SIZE (ops)) - ops;
6344
6345   /* If there is more than one component, any base component is in a PLUS.  */
6346   if (n_ops > 1)
6347     info->base_outer_code = PLUS;
6348
6349   /* Try to classify each sum operand now.  Leave those that could be
6350      either a base or an index in OPS.  */
6351   rtx *inner_ops[4];
6352   size_t out = 0;
6353   for (size_t in = 0; in < n_ops; ++in)
6354     {
6355       rtx *loc = ops[in];
6356       rtx *inner = strip_address_mutations (loc);
6357       if (CONSTANT_P (*inner))
6358         set_address_disp (info, loc, inner);
6359       else if (GET_CODE (*inner) == UNSPEC)
6360         set_address_segment (info, loc, inner);
6361       else
6362         {
6363           /* The only other possibilities are a base or an index.  */
6364           rtx *base_term = get_base_term (inner);
6365           rtx *index_term = get_index_term (inner);
6366           gcc_assert (base_term || index_term);
6367           if (!base_term)
6368             set_address_index (info, loc, index_term);
6369           else if (!index_term)
6370             set_address_base (info, loc, base_term);
6371           else
6372             {
6373               gcc_assert (base_term == index_term);
6374               ops[out] = loc;
6375               inner_ops[out] = base_term;
6376               ++out;
6377             }
6378         }
6379     }
6380
6381   /* Classify the remaining OPS members as bases and indexes.  */
6382   if (out == 1)
6383     {
6384       /* If we haven't seen a base or an index yet, assume that this is
6385          the base.  If we were confident that another term was the base
6386          or index, treat the remaining operand as the other kind.  */
6387       if (!info->base)
6388         set_address_base (info, ops[0], inner_ops[0]);
6389       else
6390         set_address_index (info, ops[0], inner_ops[0]);
6391     }
6392   else if (out == 2)
6393     {
6394       /* In the event of a tie, assume the base comes first.  */
6395       if (baseness (*inner_ops[0], info->mode, info->as, PLUS,
6396                     GET_CODE (*ops[1]))
6397           >= baseness (*inner_ops[1], info->mode, info->as, PLUS,
6398                        GET_CODE (*ops[0])))
6399         {
6400           set_address_base (info, ops[0], inner_ops[0]);
6401           set_address_index (info, ops[1], inner_ops[1]);
6402         }
6403       else
6404         {
6405           set_address_base (info, ops[1], inner_ops[1]);
6406           set_address_index (info, ops[0], inner_ops[0]);
6407         }
6408     }
6409   else
6410     gcc_assert (out == 0);
6411 }
6412
6413 /* Describe address *LOC in *INFO.  MODE is the mode of the addressed value,
6414    or VOIDmode if not known.  AS is the address space associated with LOC.
6415    OUTER_CODE is MEM if *LOC is a MEM address and ADDRESS otherwise.  */
6416
6417 void
6418 decompose_address (struct address_info *info, rtx *loc, machine_mode mode,
6419                    addr_space_t as, enum rtx_code outer_code)
6420 {
6421   memset (info, 0, sizeof (*info));
6422   info->mode = mode;
6423   info->as = as;
6424   info->addr_outer_code = outer_code;
6425   info->outer = loc;
6426   info->inner = strip_address_mutations (loc, &outer_code);
6427   info->base_outer_code = outer_code;
6428   switch (GET_CODE (*info->inner))
6429     {
6430     case PRE_DEC:
6431     case PRE_INC:
6432     case POST_DEC:
6433     case POST_INC:
6434       decompose_incdec_address (info);
6435       break;
6436
6437     case PRE_MODIFY:
6438     case POST_MODIFY:
6439       decompose_automod_address (info);
6440       break;
6441
6442     default:
6443       decompose_normal_address (info);
6444       break;
6445     }
6446 }
6447
6448 /* Describe address operand LOC in INFO.  */
6449
6450 void
6451 decompose_lea_address (struct address_info *info, rtx *loc)
6452 {
6453   decompose_address (info, loc, VOIDmode, ADDR_SPACE_GENERIC, ADDRESS);
6454 }
6455
6456 /* Describe the address of MEM X in INFO.  */
6457
6458 void
6459 decompose_mem_address (struct address_info *info, rtx x)
6460 {
6461   gcc_assert (MEM_P (x));
6462   decompose_address (info, &XEXP (x, 0), GET_MODE (x),
6463                      MEM_ADDR_SPACE (x), MEM);
6464 }
6465
6466 /* Update INFO after a change to the address it describes.  */
6467
6468 void
6469 update_address (struct address_info *info)
6470 {
6471   decompose_address (info, info->outer, info->mode, info->as,
6472                      info->addr_outer_code);
6473 }
6474
6475 /* Return the scale applied to *INFO->INDEX_TERM, or 0 if the index is
6476    more complicated than that.  */
6477
6478 HOST_WIDE_INT
6479 get_index_scale (const struct address_info *info)
6480 {
6481   rtx index = *info->index;
6482   if (GET_CODE (index) == MULT
6483       && CONST_INT_P (XEXP (index, 1))
6484       && info->index_term == &XEXP (index, 0))
6485     return INTVAL (XEXP (index, 1));
6486
6487   if (GET_CODE (index) == ASHIFT
6488       && CONST_INT_P (XEXP (index, 1))
6489       && info->index_term == &XEXP (index, 0))
6490     return HOST_WIDE_INT_1 << INTVAL (XEXP (index, 1));
6491
6492   if (info->index == info->index_term)
6493     return 1;
6494
6495   return 0;
6496 }
6497
6498 /* Return the "index code" of INFO, in the form required by
6499    ok_for_base_p_1.  */
6500
6501 enum rtx_code
6502 get_index_code (const struct address_info *info)
6503 {
6504   if (info->index)
6505     return GET_CODE (*info->index);
6506
6507   if (info->disp)
6508     return GET_CODE (*info->disp);
6509
6510   return SCRATCH;
6511 }
6512
6513 /* Return true if RTL X contains a SYMBOL_REF.  */
6514
6515 bool
6516 contains_symbol_ref_p (const_rtx x)
6517 {
6518   subrtx_iterator::array_type array;
6519   FOR_EACH_SUBRTX (iter, array, x, ALL)
6520     if (SYMBOL_REF_P (*iter))
6521       return true;
6522
6523   return false;
6524 }
6525
6526 /* Return true if RTL X contains a SYMBOL_REF or LABEL_REF.  */
6527
6528 bool
6529 contains_symbolic_reference_p (const_rtx x)
6530 {
6531   subrtx_iterator::array_type array;
6532   FOR_EACH_SUBRTX (iter, array, x, ALL)
6533     if (SYMBOL_REF_P (*iter) || GET_CODE (*iter) == LABEL_REF)
6534       return true;
6535
6536   return false;
6537 }
6538
6539 /* Return true if X contains a thread-local symbol.  */
6540
6541 bool
6542 tls_referenced_p (const_rtx x)
6543 {
6544   if (!targetm.have_tls)
6545     return false;
6546
6547   subrtx_iterator::array_type array;
6548   FOR_EACH_SUBRTX (iter, array, x, ALL)
6549     if (GET_CODE (*iter) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (*iter) != 0)
6550       return true;
6551   return false;
6552 }