Merge branch 'vendor/LDNS'
[dragonfly.git] / sys / vm / vm_fault.c
1 /*
2  * (MPSAFE)
3  *
4  * Copyright (c) 1991, 1993
5  *      The Regents of the University of California.  All rights reserved.
6  * Copyright (c) 1994 John S. Dyson
7  * All rights reserved.
8  * Copyright (c) 1994 David Greenman
9  * All rights reserved.
10  *
11  *
12  * This code is derived from software contributed to Berkeley by
13  * The Mach Operating System project at Carnegie-Mellon University.
14  *
15  * Redistribution and use in source and binary forms, with or without
16  * modification, are permitted provided that the following conditions
17  * are met:
18  * 1. Redistributions of source code must retain the above copyright
19  *    notice, this list of conditions and the following disclaimer.
20  * 2. Redistributions in binary form must reproduce the above copyright
21  *    notice, this list of conditions and the following disclaimer in the
22  *    documentation and/or other materials provided with the distribution.
23  * 3. Neither the name of the University nor the names of its contributors
24  *    may be used to endorse or promote products derived from this software
25  *    without specific prior written permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
28  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
29  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
30  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
31  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
33  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
34  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
35  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
36  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
37  * SUCH DAMAGE.
38  *
39  *      from: @(#)vm_fault.c    8.4 (Berkeley) 1/12/94
40  *
41  *
42  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
43  * All rights reserved.
44  *
45  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
46  *
47  * Permission to use, copy, modify and distribute this software and
48  * its documentation is hereby granted, provided that both the copyright
49  * notice and this permission notice appear in all copies of the
50  * software, derivative works or modified versions, and any portions
51  * thereof, and that both notices appear in supporting documentation.
52  *
53  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
54  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
55  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
56  *
57  * Carnegie Mellon requests users of this software to return to
58  *
59  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
60  *  School of Computer Science
61  *  Carnegie Mellon University
62  *  Pittsburgh PA 15213-3890
63  *
64  * any improvements or extensions that they make and grant Carnegie the
65  * rights to redistribute these changes.
66  *
67  * $FreeBSD: src/sys/vm/vm_fault.c,v 1.108.2.8 2002/02/26 05:49:27 silby Exp $
68  * $DragonFly: src/sys/vm/vm_fault.c,v 1.47 2008/07/01 02:02:56 dillon Exp $
69  */
70
71 /*
72  *      Page fault handling module.
73  */
74
75 #include <sys/param.h>
76 #include <sys/systm.h>
77 #include <sys/kernel.h>
78 #include <sys/proc.h>
79 #include <sys/vnode.h>
80 #include <sys/resourcevar.h>
81 #include <sys/vmmeter.h>
82 #include <sys/vkernel.h>
83 #include <sys/lock.h>
84 #include <sys/sysctl.h>
85
86 #include <cpu/lwbuf.h>
87
88 #include <vm/vm.h>
89 #include <vm/vm_param.h>
90 #include <vm/pmap.h>
91 #include <vm/vm_map.h>
92 #include <vm/vm_object.h>
93 #include <vm/vm_page.h>
94 #include <vm/vm_pageout.h>
95 #include <vm/vm_kern.h>
96 #include <vm/vm_pager.h>
97 #include <vm/vnode_pager.h>
98 #include <vm/vm_extern.h>
99
100 #include <sys/thread2.h>
101 #include <vm/vm_page2.h>
102
103 struct faultstate {
104         vm_page_t m;
105         vm_object_t object;
106         vm_pindex_t pindex;
107         vm_prot_t prot;
108         vm_page_t first_m;
109         vm_object_t first_object;
110         vm_prot_t first_prot;
111         vm_map_t map;
112         vm_map_entry_t entry;
113         int lookup_still_valid;
114         int hardfault;
115         int fault_flags;
116         int map_generation;
117         int shared;
118         int first_shared;
119         boolean_t wired;
120         struct vnode *vp;
121 };
122
123 static int debug_cluster = 0;
124 SYSCTL_INT(_vm, OID_AUTO, debug_cluster, CTLFLAG_RW, &debug_cluster, 0, "");
125 int vm_shared_fault = 1;
126 TUNABLE_INT("vm.shared_fault", &vm_shared_fault);
127 SYSCTL_INT(_vm, OID_AUTO, shared_fault, CTLFLAG_RW, &vm_shared_fault, 0,
128            "Allow shared token on vm_object");
129 static long vm_shared_hit = 0;
130 SYSCTL_LONG(_vm, OID_AUTO, shared_hit, CTLFLAG_RW, &vm_shared_hit, 0,
131            "Successful shared faults");
132 static long vm_shared_count = 0;
133 SYSCTL_LONG(_vm, OID_AUTO, shared_count, CTLFLAG_RW, &vm_shared_count, 0,
134            "Shared fault attempts");
135 static long vm_shared_miss = 0;
136 SYSCTL_LONG(_vm, OID_AUTO, shared_miss, CTLFLAG_RW, &vm_shared_miss, 0,
137            "Unsuccessful shared faults");
138
139 static int vm_fault_object(struct faultstate *, vm_pindex_t, vm_prot_t, int);
140 static int vm_fault_vpagetable(struct faultstate *, vm_pindex_t *,
141                         vpte_t, int, int);
142 #if 0
143 static int vm_fault_additional_pages (vm_page_t, int, int, vm_page_t *, int *);
144 #endif
145 static void vm_set_nosync(vm_page_t m, vm_map_entry_t entry);
146 static void vm_prefault(pmap_t pmap, vm_offset_t addra,
147                         vm_map_entry_t entry, int prot, int fault_flags);
148 static void vm_prefault_quick(pmap_t pmap, vm_offset_t addra,
149                         vm_map_entry_t entry, int prot, int fault_flags);
150
151 static __inline void
152 release_page(struct faultstate *fs)
153 {
154         vm_page_deactivate(fs->m);
155         vm_page_wakeup(fs->m);
156         fs->m = NULL;
157 }
158
159 /*
160  * NOTE: Once unlocked any cached fs->entry becomes invalid, any reuse
161  *       requires relocking and then checking the timestamp.
162  *
163  * NOTE: vm_map_lock_read() does not bump fs->map->timestamp so we do
164  *       not have to update fs->map_generation here.
165  *
166  * NOTE: This function can fail due to a deadlock against the caller's
167  *       holding of a vm_page BUSY.
168  */
169 static __inline int
170 relock_map(struct faultstate *fs)
171 {
172         int error;
173
174         if (fs->lookup_still_valid == FALSE && fs->map) {
175                 error = vm_map_lock_read_to(fs->map);
176                 if (error == 0)
177                         fs->lookup_still_valid = TRUE;
178         } else {
179                 error = 0;
180         }
181         return error;
182 }
183
184 static __inline void
185 unlock_map(struct faultstate *fs)
186 {
187         if (fs->lookup_still_valid && fs->map) {
188                 vm_map_lookup_done(fs->map, fs->entry, 0);
189                 fs->lookup_still_valid = FALSE;
190         }
191 }
192
193 /*
194  * Clean up after a successful call to vm_fault_object() so another call
195  * to vm_fault_object() can be made.
196  */
197 static void
198 _cleanup_successful_fault(struct faultstate *fs, int relock)
199 {
200         /*
201          * We allocated a junk page for a COW operation that did
202          * not occur, the page must be freed.
203          */
204         if (fs->object != fs->first_object) {
205                 KKASSERT(fs->first_shared == 0);
206                 vm_page_free(fs->first_m);
207                 vm_object_pip_wakeup(fs->object);
208                 fs->first_m = NULL;
209         }
210
211         /*
212          * Reset fs->object.
213          */
214         fs->object = fs->first_object;
215         if (relock && fs->lookup_still_valid == FALSE) {
216                 if (fs->map)
217                         vm_map_lock_read(fs->map);
218                 fs->lookup_still_valid = TRUE;
219         }
220 }
221
222 static void
223 _unlock_things(struct faultstate *fs, int dealloc)
224 {
225         _cleanup_successful_fault(fs, 0);
226         if (dealloc) {
227                 /*vm_object_deallocate(fs->first_object);*/
228                 /*fs->first_object = NULL; drop used later on */
229         }
230         unlock_map(fs); 
231         if (fs->vp != NULL) { 
232                 vput(fs->vp);
233                 fs->vp = NULL;
234         }
235 }
236
237 #define unlock_things(fs) _unlock_things(fs, 0)
238 #define unlock_and_deallocate(fs) _unlock_things(fs, 1)
239 #define cleanup_successful_fault(fs) _cleanup_successful_fault(fs, 1)
240
241 /*
242  * TRYPAGER 
243  *
244  * Determine if the pager for the current object *might* contain the page.
245  *
246  * We only need to try the pager if this is not a default object (default
247  * objects are zero-fill and have no real pager), and if we are not taking
248  * a wiring fault or if the FS entry is wired.
249  */
250 #define TRYPAGER(fs)    \
251                 (fs->object->type != OBJT_DEFAULT && \
252                 (((fs->fault_flags & VM_FAULT_WIRE_MASK) == 0) || fs->wired))
253
254 /*
255  * vm_fault:
256  *
257  * Handle a page fault occuring at the given address, requiring the given
258  * permissions, in the map specified.  If successful, the page is inserted
259  * into the associated physical map.
260  *
261  * NOTE: The given address should be truncated to the proper page address.
262  *
263  * KERN_SUCCESS is returned if the page fault is handled; otherwise,
264  * a standard error specifying why the fault is fatal is returned.
265  *
266  * The map in question must be referenced, and remains so.
267  * The caller may hold no locks.
268  * No other requirements.
269  */
270 int
271 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type, int fault_flags)
272 {
273         int result;
274         vm_pindex_t first_pindex;
275         struct faultstate fs;
276         struct lwp *lp;
277         int growstack;
278         int retry = 0;
279
280         vm_page_pcpu_cache();
281         fs.hardfault = 0;
282         fs.fault_flags = fault_flags;
283         fs.vp = NULL;
284         fs.shared = vm_shared_fault;
285         fs.first_shared = vm_shared_fault;
286         growstack = 1;
287         if (vm_shared_fault)
288                 ++vm_shared_count;
289
290         /*
291          * vm_map interactions
292          */
293         if ((lp = curthread->td_lwp) != NULL)
294                 lp->lwp_flags |= LWP_PAGING;
295         lwkt_gettoken(&map->token);
296
297 RetryFault:
298         /*
299          * Find the vm_map_entry representing the backing store and resolve
300          * the top level object and page index.  This may have the side
301          * effect of executing a copy-on-write on the map entry and/or
302          * creating a shadow object, but will not COW any actual VM pages.
303          *
304          * On success fs.map is left read-locked and various other fields 
305          * are initialized but not otherwise referenced or locked.
306          *
307          * NOTE!  vm_map_lookup will try to upgrade the fault_type to
308          * VM_FAULT_WRITE if the map entry is a virtual page table and also
309          * writable, so we can set the 'A'accessed bit in the virtual page
310          * table entry.
311          */
312         fs.map = map;
313         result = vm_map_lookup(&fs.map, vaddr, fault_type,
314                                &fs.entry, &fs.first_object,
315                                &first_pindex, &fs.first_prot, &fs.wired);
316
317         /*
318          * If the lookup failed or the map protections are incompatible,
319          * the fault generally fails.  However, if the caller is trying
320          * to do a user wiring we have more work to do.
321          */
322         if (result != KERN_SUCCESS) {
323                 if (result != KERN_PROTECTION_FAILURE ||
324                     (fs.fault_flags & VM_FAULT_WIRE_MASK) != VM_FAULT_USER_WIRE)
325                 {
326                         if (result == KERN_INVALID_ADDRESS && growstack &&
327                             map != &kernel_map && curproc != NULL) {
328                                 result = vm_map_growstack(curproc, vaddr);
329                                 if (result == KERN_SUCCESS) {
330                                         growstack = 0;
331                                         ++retry;
332                                         goto RetryFault;
333                                 }
334                                 result = KERN_FAILURE;
335                         }
336                         goto done;
337                 }
338
339                 /*
340                  * If we are user-wiring a r/w segment, and it is COW, then
341                  * we need to do the COW operation.  Note that we don't
342                  * currently COW RO sections now, because it is NOT desirable
343                  * to COW .text.  We simply keep .text from ever being COW'ed
344                  * and take the heat that one cannot debug wired .text sections.
345                  */
346                 result = vm_map_lookup(&fs.map, vaddr,
347                                        VM_PROT_READ|VM_PROT_WRITE|
348                                         VM_PROT_OVERRIDE_WRITE,
349                                        &fs.entry, &fs.first_object,
350                                        &first_pindex, &fs.first_prot,
351                                        &fs.wired);
352                 if (result != KERN_SUCCESS) {
353                         result = KERN_FAILURE;
354                         goto done;
355                 }
356
357                 /*
358                  * If we don't COW now, on a user wire, the user will never
359                  * be able to write to the mapping.  If we don't make this
360                  * restriction, the bookkeeping would be nearly impossible.
361                  *
362                  * XXX We have a shared lock, this will have a MP race but
363                  * I don't see how it can hurt anything.
364                  */
365                 if ((fs.entry->protection & VM_PROT_WRITE) == 0)
366                         fs.entry->max_protection &= ~VM_PROT_WRITE;
367         }
368
369         /*
370          * fs.map is read-locked
371          *
372          * Misc checks.  Save the map generation number to detect races.
373          */
374         fs.map_generation = fs.map->timestamp;
375         fs.lookup_still_valid = TRUE;
376         fs.first_m = NULL;
377         fs.object = fs.first_object;    /* so unlock_and_deallocate works */
378
379         if (fs.entry->eflags & (MAP_ENTRY_NOFAULT | MAP_ENTRY_KSTACK)) {
380                 if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
381                         panic("vm_fault: fault on nofault entry, addr: %p",
382                               (void *)vaddr);
383                 }
384                 if ((fs.entry->eflags & MAP_ENTRY_KSTACK) &&
385                     vaddr >= fs.entry->start &&
386                     vaddr < fs.entry->start + PAGE_SIZE) {
387                         panic("vm_fault: fault on stack guard, addr: %p",
388                               (void *)vaddr);
389                 }
390         }
391
392         /*
393          * A system map entry may return a NULL object.  No object means
394          * no pager means an unrecoverable kernel fault.
395          */
396         if (fs.first_object == NULL) {
397                 panic("vm_fault: unrecoverable fault at %p in entry %p",
398                         (void *)vaddr, fs.entry);
399         }
400
401         /*
402          * Fail here if not a trivial anonymous page fault and TDF_NOFAULT
403          * is set.
404          */
405         if ((curthread->td_flags & TDF_NOFAULT) &&
406             (retry ||
407              fs.first_object->type == OBJT_VNODE ||
408              fs.first_object->backing_object)) {
409                 result = KERN_FAILURE;
410                 unlock_things(&fs);
411                 goto done2;
412         }
413
414         /*
415          * If the entry is wired we cannot change the page protection.
416          */
417         if (fs.wired)
418                 fault_type = fs.first_prot;
419
420         /*
421          * We generally want to avoid unnecessary exclusive modes on backing
422          * and terminal objects because this can seriously interfere with
423          * heavily fork()'d processes (particularly /bin/sh scripts).
424          *
425          * However, we also want to avoid unnecessary retries due to needed
426          * shared->exclusive promotion for common faults.  Exclusive mode is
427          * always needed if any page insertion, rename, or free occurs in an
428          * object (and also indirectly if any I/O is done).
429          *
430          * The main issue here is going to be fs.first_shared.  If the
431          * first_object has a backing object which isn't shadowed and the
432          * process is single-threaded we might as well use an exclusive
433          * lock/chain right off the bat.
434          */
435         if (fs.first_shared && fs.first_object->backing_object &&
436             LIST_EMPTY(&fs.first_object->shadow_head) &&
437             curthread->td_proc && curthread->td_proc->p_nthreads == 1) {
438                 fs.first_shared = 0;
439         }
440
441         /*
442          * swap_pager_unswapped() needs an exclusive object
443          */
444         if (fault_flags & (VM_FAULT_UNSWAP | VM_FAULT_DIRTY)) {
445                 fs.first_shared = 0;
446         }
447
448         /*
449          * Obtain a top-level object lock, shared or exclusive depending
450          * on fs.first_shared.  If a shared lock winds up being insufficient
451          * we will retry with an exclusive lock.
452          *
453          * The vnode pager lock is always shared.
454          */
455         if (fs.first_shared)
456                 vm_object_hold_shared(fs.first_object);
457         else
458                 vm_object_hold(fs.first_object);
459         if (fs.vp == NULL)
460                 fs.vp = vnode_pager_lock(fs.first_object);
461
462         /*
463          * The page we want is at (first_object, first_pindex), but if the
464          * vm_map_entry is VM_MAPTYPE_VPAGETABLE we have to traverse the
465          * page table to figure out the actual pindex.
466          *
467          * NOTE!  DEVELOPMENT IN PROGRESS, THIS IS AN INITIAL IMPLEMENTATION
468          * ONLY
469          */
470         if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) {
471                 result = vm_fault_vpagetable(&fs, &first_pindex,
472                                              fs.entry->aux.master_pde,
473                                              fault_type, 1);
474                 if (result == KERN_TRY_AGAIN) {
475                         vm_object_drop(fs.first_object);
476                         ++retry;
477                         goto RetryFault;
478                 }
479                 if (result != KERN_SUCCESS)
480                         goto done;
481         }
482
483         /*
484          * Now we have the actual (object, pindex), fault in the page.  If
485          * vm_fault_object() fails it will unlock and deallocate the FS
486          * data.   If it succeeds everything remains locked and fs->object
487          * will have an additional PIP count if it is not equal to
488          * fs->first_object
489          *
490          * vm_fault_object will set fs->prot for the pmap operation.  It is
491          * allowed to set VM_PROT_WRITE if fault_type == VM_PROT_READ if the
492          * page can be safely written.  However, it will force a read-only
493          * mapping for a read fault if the memory is managed by a virtual
494          * page table.
495          *
496          * If the fault code uses the shared object lock shortcut
497          * we must not try to burst (we can't allocate VM pages).
498          */
499         result = vm_fault_object(&fs, first_pindex, fault_type, 1);
500         if (result == KERN_TRY_AGAIN) {
501                 vm_object_drop(fs.first_object);
502                 ++retry;
503                 goto RetryFault;
504         }
505         if (result != KERN_SUCCESS)
506                 goto done;
507
508         /*
509          * On success vm_fault_object() does not unlock or deallocate, and fs.m
510          * will contain a busied page.
511          *
512          * Enter the page into the pmap and do pmap-related adjustments.
513          */
514         KKASSERT(fs.lookup_still_valid == TRUE);
515         vm_page_flag_set(fs.m, PG_REFERENCED);
516         pmap_enter(fs.map->pmap, vaddr, fs.m, fs.prot, fs.wired, fs.entry);
517         mycpu->gd_cnt.v_vm_faults++;
518         if (curthread->td_lwp)
519                 ++curthread->td_lwp->lwp_ru.ru_minflt;
520
521         /*KKASSERT(fs.m->queue == PQ_NONE); page-in op may deactivate page */
522         KKASSERT(fs.m->flags & PG_BUSY);
523
524         /*
525          * If the page is not wired down, then put it where the pageout daemon
526          * can find it.
527          */
528         if (fs.fault_flags & VM_FAULT_WIRE_MASK) {
529                 if (fs.wired)
530                         vm_page_wire(fs.m);
531                 else
532                         vm_page_unwire(fs.m, 1);
533         } else {
534                 vm_page_activate(fs.m);
535         }
536         vm_page_wakeup(fs.m);
537
538         /*
539          * Burst in a few more pages if possible.  The fs.map should still
540          * be locked.  To avoid interlocking against a vnode->getblk
541          * operation we had to be sure to unbusy our primary vm_page above
542          * first.
543          *
544          * A normal burst can continue down backing store, only execute
545          * if we are holding an exclusive lock, otherwise the exclusive
546          * locks the burst code gets might cause excessive SMP collisions.
547          *
548          * A quick burst can be utilized when there is no backing object
549          * (i.e. a shared file mmap).
550          */
551         if ((fault_flags & VM_FAULT_BURST) &&
552             (fs.fault_flags & VM_FAULT_WIRE_MASK) == 0 &&
553             fs.wired == 0) {
554                 if (fs.first_shared == 0 && fs.shared == 0) {
555                         vm_prefault(fs.map->pmap, vaddr,
556                                     fs.entry, fs.prot, fault_flags);
557                 } else {
558                         vm_prefault_quick(fs.map->pmap, vaddr,
559                                           fs.entry, fs.prot, fault_flags);
560                 }
561         }
562
563         /*
564          * Unlock everything, and return
565          */
566         unlock_things(&fs);
567
568         if (curthread->td_lwp) {
569                 if (fs.hardfault) {
570                         curthread->td_lwp->lwp_ru.ru_majflt++;
571                 } else {
572                         curthread->td_lwp->lwp_ru.ru_minflt++;
573                 }
574         }
575
576         /*vm_object_deallocate(fs.first_object);*/
577         /*fs.m = NULL; */
578         /*fs.first_object = NULL; must still drop later */
579
580         result = KERN_SUCCESS;
581 done:
582         if (fs.first_object)
583                 vm_object_drop(fs.first_object);
584 done2:
585         lwkt_reltoken(&map->token);
586         if (lp)
587                 lp->lwp_flags &= ~LWP_PAGING;
588         if (vm_shared_fault && fs.shared == 0)
589                 ++vm_shared_miss;
590         return (result);
591 }
592
593 /*
594  * Fault in the specified virtual address in the current process map, 
595  * returning a held VM page or NULL.  See vm_fault_page() for more 
596  * information.
597  *
598  * No requirements.
599  */
600 vm_page_t
601 vm_fault_page_quick(vm_offset_t va, vm_prot_t fault_type, int *errorp)
602 {
603         struct lwp *lp = curthread->td_lwp;
604         vm_page_t m;
605
606         m = vm_fault_page(&lp->lwp_vmspace->vm_map, va, 
607                           fault_type, VM_FAULT_NORMAL, errorp);
608         return(m);
609 }
610
611 /*
612  * Fault in the specified virtual address in the specified map, doing all
613  * necessary manipulation of the object store and all necessary I/O.  Return
614  * a held VM page or NULL, and set *errorp.  The related pmap is not
615  * updated.
616  *
617  * The returned page will be properly dirtied if VM_PROT_WRITE was specified,
618  * and marked PG_REFERENCED as well.
619  *
620  * If the page cannot be faulted writable and VM_PROT_WRITE was specified, an
621  * error will be returned.
622  *
623  * No requirements.
624  */
625 vm_page_t
626 vm_fault_page(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
627               int fault_flags, int *errorp)
628 {
629         vm_pindex_t first_pindex;
630         struct faultstate fs;
631         int result;
632         int retry = 0;
633         vm_prot_t orig_fault_type = fault_type;
634
635         fs.hardfault = 0;
636         fs.fault_flags = fault_flags;
637         KKASSERT((fault_flags & VM_FAULT_WIRE_MASK) == 0);
638
639         /*
640          * Dive the pmap (concurrency possible).  If we find the
641          * appropriate page we can terminate early and quickly.
642          */
643         fs.m = pmap_fault_page_quick(map->pmap, vaddr, fault_type);
644         if (fs.m) {
645                 *errorp = 0;
646                 return(fs.m);
647         }
648
649         /*
650          * Otherwise take a concurrency hit and do a formal page
651          * fault.
652          */
653         fs.shared = vm_shared_fault;
654         fs.first_shared = vm_shared_fault;
655         fs.vp = NULL;
656         lwkt_gettoken(&map->token);
657
658         /*
659          * swap_pager_unswapped() needs an exclusive object
660          */
661         if (fault_flags & (VM_FAULT_UNSWAP | VM_FAULT_DIRTY)) {
662                 fs.first_shared = 0;
663         }
664
665 RetryFault:
666         /*
667          * Find the vm_map_entry representing the backing store and resolve
668          * the top level object and page index.  This may have the side
669          * effect of executing a copy-on-write on the map entry and/or
670          * creating a shadow object, but will not COW any actual VM pages.
671          *
672          * On success fs.map is left read-locked and various other fields 
673          * are initialized but not otherwise referenced or locked.
674          *
675          * NOTE!  vm_map_lookup will upgrade the fault_type to VM_FAULT_WRITE
676          * if the map entry is a virtual page table and also writable,
677          * so we can set the 'A'accessed bit in the virtual page table entry.
678          */
679         fs.map = map;
680         result = vm_map_lookup(&fs.map, vaddr, fault_type,
681                                &fs.entry, &fs.first_object,
682                                &first_pindex, &fs.first_prot, &fs.wired);
683
684         if (result != KERN_SUCCESS) {
685                 *errorp = result;
686                 fs.m = NULL;
687                 goto done;
688         }
689
690         /*
691          * fs.map is read-locked
692          *
693          * Misc checks.  Save the map generation number to detect races.
694          */
695         fs.map_generation = fs.map->timestamp;
696         fs.lookup_still_valid = TRUE;
697         fs.first_m = NULL;
698         fs.object = fs.first_object;    /* so unlock_and_deallocate works */
699
700         if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
701                 panic("vm_fault: fault on nofault entry, addr: %lx",
702                     (u_long)vaddr);
703         }
704
705         /*
706          * A system map entry may return a NULL object.  No object means
707          * no pager means an unrecoverable kernel fault.
708          */
709         if (fs.first_object == NULL) {
710                 panic("vm_fault: unrecoverable fault at %p in entry %p",
711                         (void *)vaddr, fs.entry);
712         }
713
714         /*
715          * Fail here if not a trivial anonymous page fault and TDF_NOFAULT
716          * is set.
717          */
718         if ((curthread->td_flags & TDF_NOFAULT) &&
719             (retry ||
720              fs.first_object->type == OBJT_VNODE ||
721              fs.first_object->backing_object)) {
722                 *errorp = KERN_FAILURE;
723                 unlock_things(&fs);
724                 goto done2;
725         }
726
727         /*
728          * If the entry is wired we cannot change the page protection.
729          */
730         if (fs.wired)
731                 fault_type = fs.first_prot;
732
733         /*
734          * Make a reference to this object to prevent its disposal while we
735          * are messing with it.  Once we have the reference, the map is free
736          * to be diddled.  Since objects reference their shadows (and copies),
737          * they will stay around as well.
738          *
739          * The reference should also prevent an unexpected collapse of the
740          * parent that might move pages from the current object into the
741          * parent unexpectedly, resulting in corruption.
742          *
743          * Bump the paging-in-progress count to prevent size changes (e.g.
744          * truncation operations) during I/O.  This must be done after
745          * obtaining the vnode lock in order to avoid possible deadlocks.
746          */
747         if (fs.first_shared)
748                 vm_object_hold_shared(fs.first_object);
749         else
750                 vm_object_hold(fs.first_object);
751         if (fs.vp == NULL)
752                 fs.vp = vnode_pager_lock(fs.first_object);      /* shared */
753
754         /*
755          * The page we want is at (first_object, first_pindex), but if the
756          * vm_map_entry is VM_MAPTYPE_VPAGETABLE we have to traverse the
757          * page table to figure out the actual pindex.
758          *
759          * NOTE!  DEVELOPMENT IN PROGRESS, THIS IS AN INITIAL IMPLEMENTATION
760          * ONLY
761          */
762         if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) {
763                 result = vm_fault_vpagetable(&fs, &first_pindex,
764                                              fs.entry->aux.master_pde,
765                                              fault_type, 1);
766                 if (result == KERN_TRY_AGAIN) {
767                         vm_object_drop(fs.first_object);
768                         ++retry;
769                         goto RetryFault;
770                 }
771                 if (result != KERN_SUCCESS) {
772                         *errorp = result;
773                         fs.m = NULL;
774                         goto done;
775                 }
776         }
777
778         /*
779          * Now we have the actual (object, pindex), fault in the page.  If
780          * vm_fault_object() fails it will unlock and deallocate the FS
781          * data.   If it succeeds everything remains locked and fs->object
782          * will have an additinal PIP count if it is not equal to
783          * fs->first_object
784          */
785         fs.m = NULL;
786         result = vm_fault_object(&fs, first_pindex, fault_type, 1);
787
788         if (result == KERN_TRY_AGAIN) {
789                 vm_object_drop(fs.first_object);
790                 ++retry;
791                 goto RetryFault;
792         }
793         if (result != KERN_SUCCESS) {
794                 *errorp = result;
795                 fs.m = NULL;
796                 goto done;
797         }
798
799         if ((orig_fault_type & VM_PROT_WRITE) &&
800             (fs.prot & VM_PROT_WRITE) == 0) {
801                 *errorp = KERN_PROTECTION_FAILURE;
802                 unlock_and_deallocate(&fs);
803                 fs.m = NULL;
804                 goto done;
805         }
806
807         /*
808          * DO NOT UPDATE THE PMAP!!!  This function may be called for
809          * a pmap unrelated to the current process pmap, in which case
810          * the current cpu core will not be listed in the pmap's pm_active
811          * mask.  Thus invalidation interlocks will fail to work properly.
812          *
813          * (for example, 'ps' uses procfs to read program arguments from
814          * each process's stack).
815          *
816          * In addition to the above this function will be called to acquire
817          * a page that might already be faulted in, re-faulting it
818          * continuously is a waste of time.
819          *
820          * XXX could this have been the cause of our random seg-fault
821          *     issues?  procfs accesses user stacks.
822          */
823         vm_page_flag_set(fs.m, PG_REFERENCED);
824 #if 0
825         pmap_enter(fs.map->pmap, vaddr, fs.m, fs.prot, fs.wired, NULL);
826         mycpu->gd_cnt.v_vm_faults++;
827         if (curthread->td_lwp)
828                 ++curthread->td_lwp->lwp_ru.ru_minflt;
829 #endif
830
831         /*
832          * On success vm_fault_object() does not unlock or deallocate, and fs.m
833          * will contain a busied page.  So we must unlock here after having
834          * messed with the pmap.
835          */
836         unlock_things(&fs);
837
838         /*
839          * Return a held page.  We are not doing any pmap manipulation so do
840          * not set PG_MAPPED.  However, adjust the page flags according to
841          * the fault type because the caller may not use a managed pmapping
842          * (so we don't want to lose the fact that the page will be dirtied
843          * if a write fault was specified).
844          */
845         vm_page_hold(fs.m);
846         vm_page_activate(fs.m);
847         if (fault_type & VM_PROT_WRITE)
848                 vm_page_dirty(fs.m);
849
850         if (curthread->td_lwp) {
851                 if (fs.hardfault) {
852                         curthread->td_lwp->lwp_ru.ru_majflt++;
853                 } else {
854                         curthread->td_lwp->lwp_ru.ru_minflt++;
855                 }
856         }
857
858         /*
859          * Unlock everything, and return the held page.
860          */
861         vm_page_wakeup(fs.m);
862         /*vm_object_deallocate(fs.first_object);*/
863         /*fs.first_object = NULL; */
864         *errorp = 0;
865
866 done:
867         if (fs.first_object)
868                 vm_object_drop(fs.first_object);
869 done2:
870         lwkt_reltoken(&map->token);
871         return(fs.m);
872 }
873
874 /*
875  * Fault in the specified (object,offset), dirty the returned page as
876  * needed.  If the requested fault_type cannot be done NULL and an
877  * error is returned.
878  *
879  * A held (but not busied) page is returned.
880  *
881  * The passed in object must be held as specified by the shared
882  * argument.
883  */
884 vm_page_t
885 vm_fault_object_page(vm_object_t object, vm_ooffset_t offset,
886                      vm_prot_t fault_type, int fault_flags,
887                      int *sharedp, int *errorp)
888 {
889         int result;
890         vm_pindex_t first_pindex;
891         struct faultstate fs;
892         struct vm_map_entry entry;
893
894         ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
895         bzero(&entry, sizeof(entry));
896         entry.object.vm_object = object;
897         entry.maptype = VM_MAPTYPE_NORMAL;
898         entry.protection = entry.max_protection = fault_type;
899
900         fs.hardfault = 0;
901         fs.fault_flags = fault_flags;
902         fs.map = NULL;
903         fs.shared = vm_shared_fault;
904         fs.first_shared = *sharedp;
905         fs.vp = NULL;
906         KKASSERT((fault_flags & VM_FAULT_WIRE_MASK) == 0);
907
908         /*
909          * Might require swap block adjustments
910          */
911         if (fs.first_shared && (fault_flags & (VM_FAULT_UNSWAP | VM_FAULT_DIRTY))) {
912                 fs.first_shared = 0;
913                 vm_object_upgrade(object);
914         }
915
916         /*
917          * Retry loop as needed (typically for shared->exclusive transitions)
918          */
919 RetryFault:
920         *sharedp = fs.first_shared;
921         first_pindex = OFF_TO_IDX(offset);
922         fs.first_object = object;
923         fs.entry = &entry;
924         fs.first_prot = fault_type;
925         fs.wired = 0;
926         /*fs.map_generation = 0; unused */
927
928         /*
929          * Make a reference to this object to prevent its disposal while we
930          * are messing with it.  Once we have the reference, the map is free
931          * to be diddled.  Since objects reference their shadows (and copies),
932          * they will stay around as well.
933          *
934          * The reference should also prevent an unexpected collapse of the
935          * parent that might move pages from the current object into the
936          * parent unexpectedly, resulting in corruption.
937          *
938          * Bump the paging-in-progress count to prevent size changes (e.g.
939          * truncation operations) during I/O.  This must be done after
940          * obtaining the vnode lock in order to avoid possible deadlocks.
941          */
942         if (fs.vp == NULL)
943                 fs.vp = vnode_pager_lock(fs.first_object);
944
945         fs.lookup_still_valid = TRUE;
946         fs.first_m = NULL;
947         fs.object = fs.first_object;    /* so unlock_and_deallocate works */
948
949 #if 0
950         /* XXX future - ability to operate on VM object using vpagetable */
951         if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) {
952                 result = vm_fault_vpagetable(&fs, &first_pindex,
953                                              fs.entry->aux.master_pde,
954                                              fault_type, 0);
955                 if (result == KERN_TRY_AGAIN) {
956                         if (fs.first_shared == 0 && *sharedp)
957                                 vm_object_upgrade(object);
958                         goto RetryFault;
959                 }
960                 if (result != KERN_SUCCESS) {
961                         *errorp = result;
962                         return (NULL);
963                 }
964         }
965 #endif
966
967         /*
968          * Now we have the actual (object, pindex), fault in the page.  If
969          * vm_fault_object() fails it will unlock and deallocate the FS
970          * data.   If it succeeds everything remains locked and fs->object
971          * will have an additinal PIP count if it is not equal to
972          * fs->first_object
973          *
974          * On KERN_TRY_AGAIN vm_fault_object() leaves fs.first_object intact.
975          * We may have to upgrade its lock to handle the requested fault.
976          */
977         result = vm_fault_object(&fs, first_pindex, fault_type, 0);
978
979         if (result == KERN_TRY_AGAIN) {
980                 if (fs.first_shared == 0 && *sharedp)
981                         vm_object_upgrade(object);
982                 goto RetryFault;
983         }
984         if (result != KERN_SUCCESS) {
985                 *errorp = result;
986                 return(NULL);
987         }
988
989         if ((fault_type & VM_PROT_WRITE) && (fs.prot & VM_PROT_WRITE) == 0) {
990                 *errorp = KERN_PROTECTION_FAILURE;
991                 unlock_and_deallocate(&fs);
992                 return(NULL);
993         }
994
995         /*
996          * On success vm_fault_object() does not unlock or deallocate, so we
997          * do it here.  Note that the returned fs.m will be busied.
998          */
999         unlock_things(&fs);
1000
1001         /*
1002          * Return a held page.  We are not doing any pmap manipulation so do
1003          * not set PG_MAPPED.  However, adjust the page flags according to
1004          * the fault type because the caller may not use a managed pmapping
1005          * (so we don't want to lose the fact that the page will be dirtied
1006          * if a write fault was specified).
1007          */
1008         vm_page_hold(fs.m);
1009         vm_page_activate(fs.m);
1010         if ((fault_type & VM_PROT_WRITE) || (fault_flags & VM_FAULT_DIRTY))
1011                 vm_page_dirty(fs.m);
1012         if (fault_flags & VM_FAULT_UNSWAP)
1013                 swap_pager_unswapped(fs.m);
1014
1015         /*
1016          * Indicate that the page was accessed.
1017          */
1018         vm_page_flag_set(fs.m, PG_REFERENCED);
1019
1020         if (curthread->td_lwp) {
1021                 if (fs.hardfault) {
1022                         curthread->td_lwp->lwp_ru.ru_majflt++;
1023                 } else {
1024                         curthread->td_lwp->lwp_ru.ru_minflt++;
1025                 }
1026         }
1027
1028         /*
1029          * Unlock everything, and return the held page.
1030          */
1031         vm_page_wakeup(fs.m);
1032         /*vm_object_deallocate(fs.first_object);*/
1033         /*fs.first_object = NULL; */
1034
1035         *errorp = 0;
1036         return(fs.m);
1037 }
1038
1039 /*
1040  * Translate the virtual page number (first_pindex) that is relative
1041  * to the address space into a logical page number that is relative to the
1042  * backing object.  Use the virtual page table pointed to by (vpte).
1043  *
1044  * This implements an N-level page table.  Any level can terminate the
1045  * scan by setting VPTE_PS.   A linear mapping is accomplished by setting
1046  * VPTE_PS in the master page directory entry set via mcontrol(MADV_SETMAP).
1047  */
1048 static
1049 int
1050 vm_fault_vpagetable(struct faultstate *fs, vm_pindex_t *pindex,
1051                     vpte_t vpte, int fault_type, int allow_nofault)
1052 {
1053         struct lwbuf *lwb;
1054         struct lwbuf lwb_cache;
1055         int vshift = VPTE_FRAME_END - PAGE_SHIFT; /* index bits remaining */
1056         int result = KERN_SUCCESS;
1057         vpte_t *ptep;
1058
1059         ASSERT_LWKT_TOKEN_HELD(vm_object_token(fs->first_object));
1060         for (;;) {
1061                 /*
1062                  * We cannot proceed if the vpte is not valid, not readable
1063                  * for a read fault, or not writable for a write fault.
1064                  */
1065                 if ((vpte & VPTE_V) == 0) {
1066                         unlock_and_deallocate(fs);
1067                         return (KERN_FAILURE);
1068                 }
1069                 if ((fault_type & VM_PROT_WRITE) && (vpte & VPTE_RW) == 0) {
1070                         unlock_and_deallocate(fs);
1071                         return (KERN_FAILURE);
1072                 }
1073                 if ((vpte & VPTE_PS) || vshift == 0)
1074                         break;
1075                 KKASSERT(vshift >= VPTE_PAGE_BITS);
1076
1077                 /*
1078                  * Get the page table page.  Nominally we only read the page
1079                  * table, but since we are actively setting VPTE_M and VPTE_A,
1080                  * tell vm_fault_object() that we are writing it. 
1081                  *
1082                  * There is currently no real need to optimize this.
1083                  */
1084                 result = vm_fault_object(fs, (vpte & VPTE_FRAME) >> PAGE_SHIFT,
1085                                          VM_PROT_READ|VM_PROT_WRITE,
1086                                          allow_nofault);
1087                 if (result != KERN_SUCCESS)
1088                         return (result);
1089
1090                 /*
1091                  * Process the returned fs.m and look up the page table
1092                  * entry in the page table page.
1093                  */
1094                 vshift -= VPTE_PAGE_BITS;
1095                 lwb = lwbuf_alloc(fs->m, &lwb_cache);
1096                 ptep = ((vpte_t *)lwbuf_kva(lwb) +
1097                         ((*pindex >> vshift) & VPTE_PAGE_MASK));
1098                 vpte = *ptep;
1099
1100                 /*
1101                  * Page table write-back.  If the vpte is valid for the
1102                  * requested operation, do a write-back to the page table.
1103                  *
1104                  * XXX VPTE_M is not set properly for page directory pages.
1105                  * It doesn't get set in the page directory if the page table
1106                  * is modified during a read access.
1107                  */
1108                 vm_page_activate(fs->m);
1109                 if ((fault_type & VM_PROT_WRITE) && (vpte & VPTE_V) &&
1110                     (vpte & VPTE_RW)) {
1111                         if ((vpte & (VPTE_M|VPTE_A)) != (VPTE_M|VPTE_A)) {
1112                                 atomic_set_long(ptep, VPTE_M | VPTE_A);
1113                                 vm_page_dirty(fs->m);
1114                         }
1115                 }
1116                 if ((fault_type & VM_PROT_READ) && (vpte & VPTE_V)) {
1117                         if ((vpte & VPTE_A) == 0) {
1118                                 atomic_set_long(ptep, VPTE_A);
1119                                 vm_page_dirty(fs->m);
1120                         }
1121                 }
1122                 lwbuf_free(lwb);
1123                 vm_page_flag_set(fs->m, PG_REFERENCED);
1124                 vm_page_wakeup(fs->m);
1125                 fs->m = NULL;
1126                 cleanup_successful_fault(fs);
1127         }
1128         /*
1129          * Combine remaining address bits with the vpte.
1130          */
1131         /* JG how many bits from each? */
1132         *pindex = ((vpte & VPTE_FRAME) >> PAGE_SHIFT) +
1133                   (*pindex & ((1L << vshift) - 1));
1134         return (KERN_SUCCESS);
1135 }
1136
1137
1138 /*
1139  * This is the core of the vm_fault code.
1140  *
1141  * Do all operations required to fault-in (fs.first_object, pindex).  Run
1142  * through the shadow chain as necessary and do required COW or virtual
1143  * copy operations.  The caller has already fully resolved the vm_map_entry
1144  * and, if appropriate, has created a copy-on-write layer.  All we need to
1145  * do is iterate the object chain.
1146  *
1147  * On failure (fs) is unlocked and deallocated and the caller may return or
1148  * retry depending on the failure code.  On success (fs) is NOT unlocked or
1149  * deallocated, fs.m will contained a resolved, busied page, and fs.object
1150  * will have an additional PIP count if it is not equal to fs.first_object.
1151  *
1152  * If locks based on fs->first_shared or fs->shared are insufficient,
1153  * clear the appropriate field(s) and return RETRY.  COWs require that
1154  * first_shared be 0, while page allocations (or frees) require that
1155  * shared be 0.  Renames require that both be 0.
1156  *
1157  * fs->first_object must be held on call.
1158  */
1159 static
1160 int
1161 vm_fault_object(struct faultstate *fs, vm_pindex_t first_pindex,
1162                 vm_prot_t fault_type, int allow_nofault)
1163 {
1164         vm_object_t next_object;
1165         vm_pindex_t pindex;
1166         int error;
1167
1168         ASSERT_LWKT_TOKEN_HELD(vm_object_token(fs->first_object));
1169         fs->prot = fs->first_prot;
1170         fs->object = fs->first_object;
1171         pindex = first_pindex;
1172
1173         vm_object_chain_acquire(fs->first_object, fs->shared);
1174         vm_object_pip_add(fs->first_object, 1);
1175
1176         /* 
1177          * If a read fault occurs we try to make the page writable if
1178          * possible.  There are three cases where we cannot make the
1179          * page mapping writable:
1180          *
1181          * (1) The mapping is read-only or the VM object is read-only,
1182          *     fs->prot above will simply not have VM_PROT_WRITE set.
1183          *
1184          * (2) If the mapping is a virtual page table we need to be able
1185          *     to detect writes so we can set VPTE_M in the virtual page
1186          *     table.
1187          *
1188          * (3) If the VM page is read-only or copy-on-write, upgrading would
1189          *     just result in an unnecessary COW fault.
1190          *
1191          * VM_PROT_VPAGED is set if faulting via a virtual page table and
1192          * causes adjustments to the 'M'odify bit to also turn off write
1193          * access to force a re-fault.
1194          */
1195         if (fs->entry->maptype == VM_MAPTYPE_VPAGETABLE) {
1196                 if ((fault_type & VM_PROT_WRITE) == 0)
1197                         fs->prot &= ~VM_PROT_WRITE;
1198         }
1199
1200         if (curthread->td_lwp && curthread->td_lwp->lwp_vmspace &&
1201             pmap_emulate_ad_bits(&curthread->td_lwp->lwp_vmspace->vm_pmap)) {
1202                 if ((fault_type & VM_PROT_WRITE) == 0)
1203                         fs->prot &= ~VM_PROT_WRITE;
1204         }
1205
1206         /* vm_object_hold(fs->object); implied b/c object == first_object */
1207
1208         for (;;) {
1209                 /*
1210                  * The entire backing chain from first_object to object
1211                  * inclusive is chainlocked.
1212                  *
1213                  * If the object is dead, we stop here
1214                  */
1215                 if (fs->object->flags & OBJ_DEAD) {
1216                         vm_object_pip_wakeup(fs->first_object);
1217                         vm_object_chain_release_all(fs->first_object,
1218                                                     fs->object);
1219                         if (fs->object != fs->first_object)
1220                                 vm_object_drop(fs->object);
1221                         unlock_and_deallocate(fs);
1222                         return (KERN_PROTECTION_FAILURE);
1223                 }
1224
1225                 /*
1226                  * See if the page is resident.  Wait/Retry if the page is
1227                  * busy (lots of stuff may have changed so we can't continue
1228                  * in that case).
1229                  *
1230                  * We can theoretically allow the soft-busy case on a read
1231                  * fault if the page is marked valid, but since such
1232                  * pages are typically already pmap'd, putting that
1233                  * special case in might be more effort then it is
1234                  * worth.  We cannot under any circumstances mess
1235                  * around with a vm_page_t->busy page except, perhaps,
1236                  * to pmap it.
1237                  */
1238                 fs->m = vm_page_lookup_busy_try(fs->object, pindex,
1239                                                 TRUE, &error);
1240                 if (error) {
1241                         vm_object_pip_wakeup(fs->first_object);
1242                         vm_object_chain_release_all(fs->first_object,
1243                                                     fs->object);
1244                         if (fs->object != fs->first_object)
1245                                 vm_object_drop(fs->object);
1246                         unlock_things(fs);
1247                         vm_page_sleep_busy(fs->m, TRUE, "vmpfw");
1248                         mycpu->gd_cnt.v_intrans++;
1249                         /*vm_object_deallocate(fs->first_object);*/
1250                         /*fs->first_object = NULL;*/
1251                         fs->m = NULL;
1252                         return (KERN_TRY_AGAIN);
1253                 }
1254                 if (fs->m) {
1255                         /*
1256                          * The page is busied for us.
1257                          *
1258                          * If reactivating a page from PQ_CACHE we may have
1259                          * to rate-limit.
1260                          */
1261                         int queue = fs->m->queue;
1262                         vm_page_unqueue_nowakeup(fs->m);
1263
1264                         if ((queue - fs->m->pc) == PQ_CACHE && 
1265                             vm_page_count_severe()) {
1266                                 vm_page_activate(fs->m);
1267                                 vm_page_wakeup(fs->m);
1268                                 fs->m = NULL;
1269                                 vm_object_pip_wakeup(fs->first_object);
1270                                 vm_object_chain_release_all(fs->first_object,
1271                                                             fs->object);
1272                                 if (fs->object != fs->first_object)
1273                                         vm_object_drop(fs->object);
1274                                 unlock_and_deallocate(fs);
1275                                 if (allow_nofault == 0 ||
1276                                     (curthread->td_flags & TDF_NOFAULT) == 0) {
1277                                         vm_wait_pfault();
1278                                 }
1279                                 return (KERN_TRY_AGAIN);
1280                         }
1281
1282                         /*
1283                          * If it still isn't completely valid (readable),
1284                          * or if a read-ahead-mark is set on the VM page,
1285                          * jump to readrest, else we found the page and
1286                          * can return.
1287                          *
1288                          * We can release the spl once we have marked the
1289                          * page busy.
1290                          */
1291                         if (fs->m->object != &kernel_object) {
1292                                 if ((fs->m->valid & VM_PAGE_BITS_ALL) !=
1293                                     VM_PAGE_BITS_ALL) {
1294                                         goto readrest;
1295                                 }
1296                                 if (fs->m->flags & PG_RAM) {
1297                                         if (debug_cluster)
1298                                                 kprintf("R");
1299                                         vm_page_flag_clear(fs->m, PG_RAM);
1300                                         goto readrest;
1301                                 }
1302                         }
1303                         break; /* break to PAGE HAS BEEN FOUND */
1304                 }
1305
1306                 /*
1307                  * Page is not resident, If this is the search termination
1308                  * or the pager might contain the page, allocate a new page.
1309                  */
1310                 if (TRYPAGER(fs) || fs->object == fs->first_object) {
1311                         /*
1312                          * Allocating, must be exclusive.
1313                          */
1314                         if (fs->object == fs->first_object &&
1315                             fs->first_shared) {
1316                                 fs->first_shared = 0;
1317                                 vm_object_pip_wakeup(fs->first_object);
1318                                 vm_object_chain_release_all(fs->first_object,
1319                                                             fs->object);
1320                                 if (fs->object != fs->first_object)
1321                                         vm_object_drop(fs->object);
1322                                 unlock_and_deallocate(fs);
1323                                 return (KERN_TRY_AGAIN);
1324                         }
1325                         if (fs->object != fs->first_object &&
1326                             fs->shared) {
1327                                 fs->first_shared = 0;
1328                                 fs->shared = 0;
1329                                 vm_object_pip_wakeup(fs->first_object);
1330                                 vm_object_chain_release_all(fs->first_object,
1331                                                             fs->object);
1332                                 if (fs->object != fs->first_object)
1333                                         vm_object_drop(fs->object);
1334                                 unlock_and_deallocate(fs);
1335                                 return (KERN_TRY_AGAIN);
1336                         }
1337
1338                         /*
1339                          * If the page is beyond the object size we fail
1340                          */
1341                         if (pindex >= fs->object->size) {
1342                                 vm_object_pip_wakeup(fs->first_object);
1343                                 vm_object_chain_release_all(fs->first_object,
1344                                                             fs->object);
1345                                 if (fs->object != fs->first_object)
1346                                         vm_object_drop(fs->object);
1347                                 unlock_and_deallocate(fs);
1348                                 return (KERN_PROTECTION_FAILURE);
1349                         }
1350
1351                         /*
1352                          * Allocate a new page for this object/offset pair.
1353                          *
1354                          * It is possible for the allocation to race, so
1355                          * handle the case.
1356                          */
1357                         fs->m = NULL;
1358                         if (!vm_page_count_severe()) {
1359                                 fs->m = vm_page_alloc(fs->object, pindex,
1360                                     ((fs->vp || fs->object->backing_object) ?
1361                                         VM_ALLOC_NULL_OK | VM_ALLOC_NORMAL :
1362                                         VM_ALLOC_NULL_OK | VM_ALLOC_NORMAL |
1363                                         VM_ALLOC_USE_GD | VM_ALLOC_ZERO));
1364                         }
1365                         if (fs->m == NULL) {
1366                                 vm_object_pip_wakeup(fs->first_object);
1367                                 vm_object_chain_release_all(fs->first_object,
1368                                                             fs->object);
1369                                 if (fs->object != fs->first_object)
1370                                         vm_object_drop(fs->object);
1371                                 unlock_and_deallocate(fs);
1372                                 if (allow_nofault == 0 ||
1373                                     (curthread->td_flags & TDF_NOFAULT) == 0) {
1374                                         vm_wait_pfault();
1375                                 }
1376                                 return (KERN_TRY_AGAIN);
1377                         }
1378
1379                         /*
1380                          * Fall through to readrest.  We have a new page which
1381                          * will have to be paged (since m->valid will be 0).
1382                          */
1383                 }
1384
1385 readrest:
1386                 /*
1387                  * We have found an invalid or partially valid page, a
1388                  * page with a read-ahead mark which might be partially or
1389                  * fully valid (and maybe dirty too), or we have allocated
1390                  * a new page.
1391                  *
1392                  * Attempt to fault-in the page if there is a chance that the
1393                  * pager has it, and potentially fault in additional pages
1394                  * at the same time.
1395                  *
1396                  * If TRYPAGER is true then fs.m will be non-NULL and busied
1397                  * for us.
1398                  */
1399                 if (TRYPAGER(fs)) {
1400                         int rv;
1401                         int seqaccess;
1402                         u_char behavior = vm_map_entry_behavior(fs->entry);
1403
1404                         if (behavior == MAP_ENTRY_BEHAV_RANDOM)
1405                                 seqaccess = 0;
1406                         else
1407                                 seqaccess = -1;
1408
1409                         /*
1410                          * Doing I/O may synchronously insert additional
1411                          * pages so we can't be shared at this point either.
1412                          *
1413                          * NOTE: We can't free fs->m here in the allocated
1414                          *       case (fs->object != fs->first_object) as
1415                          *       this would require an exclusively locked
1416                          *       VM object.
1417                          */
1418                         if (fs->object == fs->first_object &&
1419                             fs->first_shared) {
1420                                 vm_page_deactivate(fs->m);
1421                                 vm_page_wakeup(fs->m);
1422                                 fs->m = NULL;
1423                                 fs->first_shared = 0;
1424                                 vm_object_pip_wakeup(fs->first_object);
1425                                 vm_object_chain_release_all(fs->first_object,
1426                                                             fs->object);
1427                                 if (fs->object != fs->first_object)
1428                                         vm_object_drop(fs->object);
1429                                 unlock_and_deallocate(fs);
1430                                 return (KERN_TRY_AGAIN);
1431                         }
1432                         if (fs->object != fs->first_object &&
1433                             fs->shared) {
1434                                 vm_page_deactivate(fs->m);
1435                                 vm_page_wakeup(fs->m);
1436                                 fs->m = NULL;
1437                                 fs->first_shared = 0;
1438                                 fs->shared = 0;
1439                                 vm_object_pip_wakeup(fs->first_object);
1440                                 vm_object_chain_release_all(fs->first_object,
1441                                                             fs->object);
1442                                 if (fs->object != fs->first_object)
1443                                         vm_object_drop(fs->object);
1444                                 unlock_and_deallocate(fs);
1445                                 return (KERN_TRY_AGAIN);
1446                         }
1447
1448                         /*
1449                          * Avoid deadlocking against the map when doing I/O.
1450                          * fs.object and the page is PG_BUSY'd.
1451                          *
1452                          * NOTE: Once unlocked, fs->entry can become stale
1453                          *       so this will NULL it out.
1454                          *
1455                          * NOTE: fs->entry is invalid until we relock the
1456                          *       map and verify that the timestamp has not
1457                          *       changed.
1458                          */
1459                         unlock_map(fs);
1460
1461                         /*
1462                          * Acquire the page data.  We still hold a ref on
1463                          * fs.object and the page has been PG_BUSY's.
1464                          *
1465                          * The pager may replace the page (for example, in
1466                          * order to enter a fictitious page into the
1467                          * object).  If it does so it is responsible for
1468                          * cleaning up the passed page and properly setting
1469                          * the new page PG_BUSY.
1470                          *
1471                          * If we got here through a PG_RAM read-ahead
1472                          * mark the page may be partially dirty and thus
1473                          * not freeable.  Don't bother checking to see
1474                          * if the pager has the page because we can't free
1475                          * it anyway.  We have to depend on the get_page
1476                          * operation filling in any gaps whether there is
1477                          * backing store or not.
1478                          */
1479                         rv = vm_pager_get_page(fs->object, &fs->m, seqaccess);
1480
1481                         if (rv == VM_PAGER_OK) {
1482                                 /*
1483                                  * Relookup in case pager changed page. Pager
1484                                  * is responsible for disposition of old page
1485                                  * if moved.
1486                                  *
1487                                  * XXX other code segments do relookups too.
1488                                  * It's a bad abstraction that needs to be
1489                                  * fixed/removed.
1490                                  */
1491                                 fs->m = vm_page_lookup(fs->object, pindex);
1492                                 if (fs->m == NULL) {
1493                                         vm_object_pip_wakeup(fs->first_object);
1494                                         vm_object_chain_release_all(
1495                                                 fs->first_object, fs->object);
1496                                         if (fs->object != fs->first_object)
1497                                                 vm_object_drop(fs->object);
1498                                         unlock_and_deallocate(fs);
1499                                         return (KERN_TRY_AGAIN);
1500                                 }
1501                                 ++fs->hardfault;
1502                                 break; /* break to PAGE HAS BEEN FOUND */
1503                         }
1504
1505                         /*
1506                          * Remove the bogus page (which does not exist at this
1507                          * object/offset); before doing so, we must get back
1508                          * our object lock to preserve our invariant.
1509                          *
1510                          * Also wake up any other process that may want to bring
1511                          * in this page.
1512                          *
1513                          * If this is the top-level object, we must leave the
1514                          * busy page to prevent another process from rushing
1515                          * past us, and inserting the page in that object at
1516                          * the same time that we are.
1517                          */
1518                         if (rv == VM_PAGER_ERROR) {
1519                                 if (curproc) {
1520                                         kprintf("vm_fault: pager read error, "
1521                                                 "pid %d (%s)\n",
1522                                                 curproc->p_pid,
1523                                                 curproc->p_comm);
1524                                 } else {
1525                                         kprintf("vm_fault: pager read error, "
1526                                                 "thread %p (%s)\n",
1527                                                 curthread,
1528                                                 curproc->p_comm);
1529                                 }
1530                         }
1531
1532                         /*
1533                          * Data outside the range of the pager or an I/O error
1534                          *
1535                          * The page may have been wired during the pagein,
1536                          * e.g. by the buffer cache, and cannot simply be
1537                          * freed.  Call vnode_pager_freepage() to deal with it.
1538                          *
1539                          * Also note that we cannot free the page if we are
1540                          * holding the related object shared. XXX not sure
1541                          * what to do in that case.
1542                          */
1543                         if (fs->object != fs->first_object) {
1544                                 vnode_pager_freepage(fs->m);
1545                                 fs->m = NULL;
1546                                 /*
1547                                  * XXX - we cannot just fall out at this
1548                                  * point, m has been freed and is invalid!
1549                                  */
1550                         }
1551                         /*
1552                          * XXX - the check for kernel_map is a kludge to work
1553                          * around having the machine panic on a kernel space
1554                          * fault w/ I/O error.
1555                          */
1556                         if (((fs->map != &kernel_map) &&
1557                             (rv == VM_PAGER_ERROR)) || (rv == VM_PAGER_BAD)) {
1558                                 if (fs->m) {
1559                                         if (fs->first_shared) {
1560                                                 vm_page_deactivate(fs->m);
1561                                                 vm_page_wakeup(fs->m);
1562                                         } else {
1563                                                 vnode_pager_freepage(fs->m);
1564                                         }
1565                                         fs->m = NULL;
1566                                 }
1567                                 vm_object_pip_wakeup(fs->first_object);
1568                                 vm_object_chain_release_all(fs->first_object,
1569                                                             fs->object);
1570                                 if (fs->object != fs->first_object)
1571                                         vm_object_drop(fs->object);
1572                                 unlock_and_deallocate(fs);
1573                                 if (rv == VM_PAGER_ERROR)
1574                                         return (KERN_FAILURE);
1575                                 else
1576                                         return (KERN_PROTECTION_FAILURE);
1577                                 /* NOT REACHED */
1578                         }
1579                 }
1580
1581                 /*
1582                  * We get here if the object has a default pager (or unwiring) 
1583                  * or the pager doesn't have the page.
1584                  *
1585                  * fs->first_m will be used for the COW unless we find a
1586                  * deeper page to be mapped read-only, in which case the
1587                  * unlock*(fs) will free first_m.
1588                  */
1589                 if (fs->object == fs->first_object)
1590                         fs->first_m = fs->m;
1591
1592                 /*
1593                  * Move on to the next object.  The chain lock should prevent
1594                  * the backing_object from getting ripped out from under us.
1595                  *
1596                  * The object lock for the next object is governed by
1597                  * fs->shared.
1598                  */
1599                 if ((next_object = fs->object->backing_object) != NULL) {
1600                         if (fs->shared)
1601                                 vm_object_hold_shared(next_object);
1602                         else
1603                                 vm_object_hold(next_object);
1604                         vm_object_chain_acquire(next_object, fs->shared);
1605                         KKASSERT(next_object == fs->object->backing_object);
1606                         pindex += OFF_TO_IDX(fs->object->backing_object_offset);
1607                 }
1608
1609                 if (next_object == NULL) {
1610                         /*
1611                          * If there's no object left, fill the page in the top
1612                          * object with zeros.
1613                          */
1614                         if (fs->object != fs->first_object) {
1615 #if 0
1616                                 if (fs->first_object->backing_object !=
1617                                     fs->object) {
1618                                         vm_object_hold(fs->first_object->backing_object);
1619                                 }
1620 #endif
1621                                 vm_object_chain_release_all(
1622                                         fs->first_object->backing_object,
1623                                         fs->object);
1624 #if 0
1625                                 if (fs->first_object->backing_object !=
1626                                     fs->object) {
1627                                         vm_object_drop(fs->first_object->backing_object);
1628                                 }
1629 #endif
1630                                 vm_object_pip_wakeup(fs->object);
1631                                 vm_object_drop(fs->object);
1632                                 fs->object = fs->first_object;
1633                                 pindex = first_pindex;
1634                                 fs->m = fs->first_m;
1635                         }
1636                         fs->first_m = NULL;
1637
1638                         /*
1639                          * Zero the page if necessary and mark it valid.
1640                          */
1641                         if ((fs->m->flags & PG_ZERO) == 0) {
1642                                 vm_page_zero_fill(fs->m);
1643                         } else {
1644 #ifdef PMAP_DEBUG
1645                                 pmap_page_assertzero(VM_PAGE_TO_PHYS(fs->m));
1646 #endif
1647                                 vm_page_flag_clear(fs->m, PG_ZERO);
1648                                 mycpu->gd_cnt.v_ozfod++;
1649                         }
1650                         mycpu->gd_cnt.v_zfod++;
1651                         fs->m->valid = VM_PAGE_BITS_ALL;
1652                         break;  /* break to PAGE HAS BEEN FOUND */
1653                 }
1654                 if (fs->object != fs->first_object) {
1655                         vm_object_pip_wakeup(fs->object);
1656                         vm_object_lock_swap();
1657                         vm_object_drop(fs->object);
1658                 }
1659                 KASSERT(fs->object != next_object,
1660                         ("object loop %p", next_object));
1661                 fs->object = next_object;
1662                 vm_object_pip_add(fs->object, 1);
1663         }
1664
1665         /*
1666          * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
1667          * is held.]
1668          *
1669          * object still held.
1670          *
1671          * local shared variable may be different from fs->shared.
1672          *
1673          * If the page is being written, but isn't already owned by the
1674          * top-level object, we have to copy it into a new page owned by the
1675          * top-level object.
1676          */
1677         KASSERT((fs->m->flags & PG_BUSY) != 0,
1678                 ("vm_fault: not busy after main loop"));
1679
1680         if (fs->object != fs->first_object) {
1681                 /*
1682                  * We only really need to copy if we want to write it.
1683                  */
1684                 if (fault_type & VM_PROT_WRITE) {
1685                         /*
1686                          * This allows pages to be virtually copied from a 
1687                          * backing_object into the first_object, where the 
1688                          * backing object has no other refs to it, and cannot
1689                          * gain any more refs.  Instead of a bcopy, we just 
1690                          * move the page from the backing object to the 
1691                          * first object.  Note that we must mark the page 
1692                          * dirty in the first object so that it will go out 
1693                          * to swap when needed.
1694                          */
1695                         if (
1696                                 /*
1697                                  * Must be holding exclusive locks
1698                                  */
1699                                 fs->first_shared == 0 &&
1700                                 fs->shared == 0 &&
1701                                 /*
1702                                  * Map, if present, has not changed
1703                                  */
1704                                 (fs->map == NULL ||
1705                                 fs->map_generation == fs->map->timestamp) &&
1706                                 /*
1707                                  * Only one shadow object
1708                                  */
1709                                 (fs->object->shadow_count == 1) &&
1710                                 /*
1711                                  * No COW refs, except us
1712                                  */
1713                                 (fs->object->ref_count == 1) &&
1714                                 /*
1715                                  * No one else can look this object up
1716                                  */
1717                                 (fs->object->handle == NULL) &&
1718                                 /*
1719                                  * No other ways to look the object up
1720                                  */
1721                                 ((fs->object->type == OBJT_DEFAULT) ||
1722                                  (fs->object->type == OBJT_SWAP)) &&
1723                                 /*
1724                                  * We don't chase down the shadow chain
1725                                  */
1726                                 (fs->object == fs->first_object->backing_object) &&
1727
1728                                 /*
1729                                  * grab the lock if we need to
1730                                  */
1731                                 (fs->lookup_still_valid ||
1732                                  fs->map == NULL ||
1733                                  lockmgr(&fs->map->lock, LK_EXCLUSIVE|LK_NOWAIT) == 0)
1734                             ) {
1735                                 /*
1736                                  * (first_m) and (m) are both busied.  We have
1737                                  * move (m) into (first_m)'s object/pindex
1738                                  * in an atomic fashion, then free (first_m).
1739                                  *
1740                                  * first_object is held so second remove
1741                                  * followed by the rename should wind
1742                                  * up being atomic.  vm_page_free() might
1743                                  * block so we don't do it until after the
1744                                  * rename.
1745                                  */
1746                                 fs->lookup_still_valid = 1;
1747                                 vm_page_protect(fs->first_m, VM_PROT_NONE);
1748                                 vm_page_remove(fs->first_m);
1749                                 vm_page_rename(fs->m, fs->first_object,
1750                                                first_pindex);
1751                                 vm_page_free(fs->first_m);
1752                                 fs->first_m = fs->m;
1753                                 fs->m = NULL;
1754                                 mycpu->gd_cnt.v_cow_optim++;
1755                         } else {
1756                                 /*
1757                                  * Oh, well, lets copy it.
1758                                  *
1759                                  * Why are we unmapping the original page
1760                                  * here?  Well, in short, not all accessors
1761                                  * of user memory go through the pmap.  The
1762                                  * procfs code doesn't have access user memory
1763                                  * via a local pmap, so vm_fault_page*()
1764                                  * can't call pmap_enter().  And the umtx*()
1765                                  * code may modify the COW'd page via a DMAP
1766                                  * or kernel mapping and not via the pmap,
1767                                  * leaving the original page still mapped
1768                                  * read-only into the pmap.
1769                                  *
1770                                  * So we have to remove the page from at
1771                                  * least the current pmap if it is in it.
1772                                  * Just remove it from all pmaps.
1773                                  */
1774                                 KKASSERT(fs->first_shared == 0);
1775                                 vm_page_copy(fs->m, fs->first_m);
1776                                 vm_page_protect(fs->m, VM_PROT_NONE);
1777                                 vm_page_event(fs->m, VMEVENT_COW);
1778                         }
1779
1780                         /*
1781                          * We no longer need the old page or object.
1782                          */
1783                         if (fs->m)
1784                                 release_page(fs);
1785
1786                         /*
1787                          * We intend to revert to first_object, undo the
1788                          * chain lock through to that.
1789                          */
1790 #if 0
1791                         if (fs->first_object->backing_object != fs->object)
1792                                 vm_object_hold(fs->first_object->backing_object);
1793 #endif
1794                         vm_object_chain_release_all(
1795                                         fs->first_object->backing_object,
1796                                         fs->object);
1797 #if 0
1798                         if (fs->first_object->backing_object != fs->object)
1799                                 vm_object_drop(fs->first_object->backing_object);
1800 #endif
1801
1802                         /*
1803                          * fs->object != fs->first_object due to above 
1804                          * conditional
1805                          */
1806                         vm_object_pip_wakeup(fs->object);
1807                         vm_object_drop(fs->object);
1808
1809                         /*
1810                          * Only use the new page below...
1811                          */
1812                         mycpu->gd_cnt.v_cow_faults++;
1813                         fs->m = fs->first_m;
1814                         fs->object = fs->first_object;
1815                         pindex = first_pindex;
1816                 } else {
1817                         /*
1818                          * If it wasn't a write fault avoid having to copy
1819                          * the page by mapping it read-only.
1820                          */
1821                         fs->prot &= ~VM_PROT_WRITE;
1822                 }
1823         }
1824
1825         /*
1826          * Relock the map if necessary, then check the generation count.
1827          * relock_map() will update fs->timestamp to account for the
1828          * relocking if necessary.
1829          *
1830          * If the count has changed after relocking then all sorts of
1831          * crap may have happened and we have to retry.
1832          *
1833          * NOTE: The relock_map() can fail due to a deadlock against
1834          *       the vm_page we are holding BUSY.
1835          */
1836         if (fs->lookup_still_valid == FALSE && fs->map) {
1837                 if (relock_map(fs) ||
1838                     fs->map->timestamp != fs->map_generation) {
1839                         release_page(fs);
1840                         vm_object_pip_wakeup(fs->first_object);
1841                         vm_object_chain_release_all(fs->first_object,
1842                                                     fs->object);
1843                         if (fs->object != fs->first_object)
1844                                 vm_object_drop(fs->object);
1845                         unlock_and_deallocate(fs);
1846                         return (KERN_TRY_AGAIN);
1847                 }
1848         }
1849
1850         /*
1851          * If the fault is a write, we know that this page is being
1852          * written NOW so dirty it explicitly to save on pmap_is_modified()
1853          * calls later.
1854          *
1855          * If this is a NOSYNC mmap we do not want to set PG_NOSYNC
1856          * if the page is already dirty to prevent data written with
1857          * the expectation of being synced from not being synced.
1858          * Likewise if this entry does not request NOSYNC then make
1859          * sure the page isn't marked NOSYNC.  Applications sharing
1860          * data should use the same flags to avoid ping ponging.
1861          *
1862          * Also tell the backing pager, if any, that it should remove
1863          * any swap backing since the page is now dirty.
1864          */
1865         vm_page_activate(fs->m);
1866         if (fs->prot & VM_PROT_WRITE) {
1867                 vm_object_set_writeable_dirty(fs->m->object);
1868                 vm_set_nosync(fs->m, fs->entry);
1869                 if (fs->fault_flags & VM_FAULT_DIRTY) {
1870                         vm_page_dirty(fs->m);
1871                         swap_pager_unswapped(fs->m);
1872                 }
1873         }
1874
1875         vm_object_pip_wakeup(fs->first_object);
1876         vm_object_chain_release_all(fs->first_object, fs->object);
1877         if (fs->object != fs->first_object)
1878                 vm_object_drop(fs->object);
1879
1880         /*
1881          * Page had better still be busy.  We are still locked up and 
1882          * fs->object will have another PIP reference if it is not equal
1883          * to fs->first_object.
1884          */
1885         KASSERT(fs->m->flags & PG_BUSY,
1886                 ("vm_fault: page %p not busy!", fs->m));
1887
1888         /*
1889          * Sanity check: page must be completely valid or it is not fit to
1890          * map into user space.  vm_pager_get_pages() ensures this.
1891          */
1892         if (fs->m->valid != VM_PAGE_BITS_ALL) {
1893                 vm_page_zero_invalid(fs->m, TRUE);
1894                 kprintf("Warning: page %p partially invalid on fault\n", fs->m);
1895         }
1896         vm_page_flag_clear(fs->m, PG_ZERO);
1897
1898         return (KERN_SUCCESS);
1899 }
1900
1901 /*
1902  * Hold each of the physical pages that are mapped by the specified range of
1903  * virtual addresses, ["addr", "addr" + "len"), if those mappings are valid
1904  * and allow the specified types of access, "prot".  If all of the implied
1905  * pages are successfully held, then the number of held pages is returned
1906  * together with pointers to those pages in the array "ma".  However, if any
1907  * of the pages cannot be held, -1 is returned.
1908  */
1909 int
1910 vm_fault_quick_hold_pages(vm_map_t map, vm_offset_t addr, vm_size_t len,
1911     vm_prot_t prot, vm_page_t *ma, int max_count)
1912 {
1913         vm_offset_t start, end;
1914         int i, npages, error;
1915
1916         start = trunc_page(addr);
1917         end = round_page(addr + len);
1918
1919         npages = howmany(end - start, PAGE_SIZE);
1920
1921         if (npages > max_count)
1922                 return -1;
1923
1924         for (i = 0; i < npages; i++) {
1925                 // XXX error handling
1926                 ma[i] = vm_fault_page_quick(start + (i * PAGE_SIZE),
1927                         prot,
1928                         &error);
1929         }
1930
1931         return npages;
1932 }
1933
1934 /*
1935  * Wire down a range of virtual addresses in a map.  The entry in question
1936  * should be marked in-transition and the map must be locked.  We must
1937  * release the map temporarily while faulting-in the page to avoid a
1938  * deadlock.  Note that the entry may be clipped while we are blocked but
1939  * will never be freed.
1940  *
1941  * No requirements.
1942  */
1943 int
1944 vm_fault_wire(vm_map_t map, vm_map_entry_t entry, boolean_t user_wire)
1945 {
1946         boolean_t fictitious;
1947         vm_offset_t start;
1948         vm_offset_t end;
1949         vm_offset_t va;
1950         vm_paddr_t pa;
1951         vm_page_t m;
1952         pmap_t pmap;
1953         int rv;
1954
1955         lwkt_gettoken(&map->token);
1956
1957         pmap = vm_map_pmap(map);
1958         start = entry->start;
1959         end = entry->end;
1960         fictitious = entry->object.vm_object &&
1961                         ((entry->object.vm_object->type == OBJT_DEVICE) ||
1962                          (entry->object.vm_object->type == OBJT_MGTDEVICE));
1963         if (entry->eflags & MAP_ENTRY_KSTACK)
1964                 start += PAGE_SIZE;
1965         map->timestamp++;
1966         vm_map_unlock(map);
1967
1968         /*
1969          * We simulate a fault to get the page and enter it in the physical
1970          * map.
1971          */
1972         for (va = start; va < end; va += PAGE_SIZE) {
1973                 if (user_wire) {
1974                         rv = vm_fault(map, va, VM_PROT_READ, 
1975                                         VM_FAULT_USER_WIRE);
1976                 } else {
1977                         rv = vm_fault(map, va, VM_PROT_READ|VM_PROT_WRITE,
1978                                         VM_FAULT_CHANGE_WIRING);
1979                 }
1980                 if (rv) {
1981                         while (va > start) {
1982                                 va -= PAGE_SIZE;
1983                                 if ((pa = pmap_extract(pmap, va)) == 0)
1984                                         continue;
1985                                 pmap_change_wiring(pmap, va, FALSE, entry);
1986                                 if (!fictitious) {
1987                                         m = PHYS_TO_VM_PAGE(pa);
1988                                         vm_page_busy_wait(m, FALSE, "vmwrpg");
1989                                         vm_page_unwire(m, 1);
1990                                         vm_page_wakeup(m);
1991                                 }
1992                         }
1993                         goto done;
1994                 }
1995         }
1996         rv = KERN_SUCCESS;
1997 done:
1998         vm_map_lock(map);
1999         lwkt_reltoken(&map->token);
2000         return (rv);
2001 }
2002
2003 /*
2004  * Unwire a range of virtual addresses in a map.  The map should be
2005  * locked.
2006  */
2007 void
2008 vm_fault_unwire(vm_map_t map, vm_map_entry_t entry)
2009 {
2010         boolean_t fictitious;
2011         vm_offset_t start;
2012         vm_offset_t end;
2013         vm_offset_t va;
2014         vm_paddr_t pa;
2015         vm_page_t m;
2016         pmap_t pmap;
2017
2018         lwkt_gettoken(&map->token);
2019
2020         pmap = vm_map_pmap(map);
2021         start = entry->start;
2022         end = entry->end;
2023         fictitious = entry->object.vm_object &&
2024                         ((entry->object.vm_object->type == OBJT_DEVICE) ||
2025                          (entry->object.vm_object->type == OBJT_MGTDEVICE));
2026         if (entry->eflags & MAP_ENTRY_KSTACK)
2027                 start += PAGE_SIZE;
2028
2029         /*
2030          * Since the pages are wired down, we must be able to get their
2031          * mappings from the physical map system.
2032          */
2033         for (va = start; va < end; va += PAGE_SIZE) {
2034                 pa = pmap_extract(pmap, va);
2035                 if (pa != 0) {
2036                         pmap_change_wiring(pmap, va, FALSE, entry);
2037                         if (!fictitious) {
2038                                 m = PHYS_TO_VM_PAGE(pa);
2039                                 vm_page_busy_wait(m, FALSE, "vmwupg");
2040                                 vm_page_unwire(m, 1);
2041                                 vm_page_wakeup(m);
2042                         }
2043                 }
2044         }
2045         lwkt_reltoken(&map->token);
2046 }
2047
2048 /*
2049  * Copy all of the pages from a wired-down map entry to another.
2050  *
2051  * The source and destination maps must be locked for write.
2052  * The source and destination maps token must be held
2053  * The source map entry must be wired down (or be a sharing map
2054  * entry corresponding to a main map entry that is wired down).
2055  *
2056  * No other requirements.
2057  *
2058  * XXX do segment optimization
2059  */
2060 void
2061 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map,
2062                     vm_map_entry_t dst_entry, vm_map_entry_t src_entry)
2063 {
2064         vm_object_t dst_object;
2065         vm_object_t src_object;
2066         vm_ooffset_t dst_offset;
2067         vm_ooffset_t src_offset;
2068         vm_prot_t prot;
2069         vm_offset_t vaddr;
2070         vm_page_t dst_m;
2071         vm_page_t src_m;
2072
2073         src_object = src_entry->object.vm_object;
2074         src_offset = src_entry->offset;
2075
2076         /*
2077          * Create the top-level object for the destination entry. (Doesn't
2078          * actually shadow anything - we copy the pages directly.)
2079          */
2080         vm_map_entry_allocate_object(dst_entry);
2081         dst_object = dst_entry->object.vm_object;
2082
2083         prot = dst_entry->max_protection;
2084
2085         /*
2086          * Loop through all of the pages in the entry's range, copying each
2087          * one from the source object (it should be there) to the destination
2088          * object.
2089          */
2090         vm_object_hold(src_object);
2091         vm_object_hold(dst_object);
2092         for (vaddr = dst_entry->start, dst_offset = 0;
2093             vaddr < dst_entry->end;
2094             vaddr += PAGE_SIZE, dst_offset += PAGE_SIZE) {
2095
2096                 /*
2097                  * Allocate a page in the destination object
2098                  */
2099                 do {
2100                         dst_m = vm_page_alloc(dst_object,
2101                                               OFF_TO_IDX(dst_offset),
2102                                               VM_ALLOC_NORMAL);
2103                         if (dst_m == NULL) {
2104                                 vm_wait(0);
2105                         }
2106                 } while (dst_m == NULL);
2107
2108                 /*
2109                  * Find the page in the source object, and copy it in.
2110                  * (Because the source is wired down, the page will be in
2111                  * memory.)
2112                  */
2113                 src_m = vm_page_lookup(src_object,
2114                                        OFF_TO_IDX(dst_offset + src_offset));
2115                 if (src_m == NULL)
2116                         panic("vm_fault_copy_wired: page missing");
2117
2118                 vm_page_copy(src_m, dst_m);
2119                 vm_page_event(src_m, VMEVENT_COW);
2120
2121                 /*
2122                  * Enter it in the pmap...
2123                  */
2124
2125                 vm_page_flag_clear(dst_m, PG_ZERO);
2126                 pmap_enter(dst_map->pmap, vaddr, dst_m, prot, FALSE, dst_entry);
2127
2128                 /*
2129                  * Mark it no longer busy, and put it on the active list.
2130                  */
2131                 vm_page_activate(dst_m);
2132                 vm_page_wakeup(dst_m);
2133         }
2134         vm_object_drop(dst_object);
2135         vm_object_drop(src_object);
2136 }
2137
2138 #if 0
2139
2140 /*
2141  * This routine checks around the requested page for other pages that
2142  * might be able to be faulted in.  This routine brackets the viable
2143  * pages for the pages to be paged in.
2144  *
2145  * Inputs:
2146  *      m, rbehind, rahead
2147  *
2148  * Outputs:
2149  *  marray (array of vm_page_t), reqpage (index of requested page)
2150  *
2151  * Return value:
2152  *  number of pages in marray
2153  */
2154 static int
2155 vm_fault_additional_pages(vm_page_t m, int rbehind, int rahead,
2156                           vm_page_t *marray, int *reqpage)
2157 {
2158         int i,j;
2159         vm_object_t object;
2160         vm_pindex_t pindex, startpindex, endpindex, tpindex;
2161         vm_page_t rtm;
2162         int cbehind, cahead;
2163
2164         object = m->object;
2165         pindex = m->pindex;
2166
2167         /*
2168          * we don't fault-ahead for device pager
2169          */
2170         if ((object->type == OBJT_DEVICE) ||
2171             (object->type == OBJT_MGTDEVICE)) {
2172                 *reqpage = 0;
2173                 marray[0] = m;
2174                 return 1;
2175         }
2176
2177         /*
2178          * if the requested page is not available, then give up now
2179          */
2180         if (!vm_pager_has_page(object, pindex, &cbehind, &cahead)) {
2181                 *reqpage = 0;   /* not used by caller, fix compiler warn */
2182                 return 0;
2183         }
2184
2185         if ((cbehind == 0) && (cahead == 0)) {
2186                 *reqpage = 0;
2187                 marray[0] = m;
2188                 return 1;
2189         }
2190
2191         if (rahead > cahead) {
2192                 rahead = cahead;
2193         }
2194
2195         if (rbehind > cbehind) {
2196                 rbehind = cbehind;
2197         }
2198
2199         /*
2200          * Do not do any readahead if we have insufficient free memory.
2201          *
2202          * XXX code was broken disabled before and has instability
2203          * with this conditonal fixed, so shortcut for now.
2204          */
2205         if (burst_fault == 0 || vm_page_count_severe()) {
2206                 marray[0] = m;
2207                 *reqpage = 0;
2208                 return 1;
2209         }
2210
2211         /*
2212          * scan backward for the read behind pages -- in memory 
2213          *
2214          * Assume that if the page is not found an interrupt will not
2215          * create it.  Theoretically interrupts can only remove (busy)
2216          * pages, not create new associations.
2217          */
2218         if (pindex > 0) {
2219                 if (rbehind > pindex) {
2220                         rbehind = pindex;
2221                         startpindex = 0;
2222                 } else {
2223                         startpindex = pindex - rbehind;
2224                 }
2225
2226                 vm_object_hold(object);
2227                 for (tpindex = pindex; tpindex > startpindex; --tpindex) {
2228                         if (vm_page_lookup(object, tpindex - 1))
2229                                 break;
2230                 }
2231
2232                 i = 0;
2233                 while (tpindex < pindex) {
2234                         rtm = vm_page_alloc(object, tpindex, VM_ALLOC_SYSTEM |
2235                                                              VM_ALLOC_NULL_OK);
2236                         if (rtm == NULL) {
2237                                 for (j = 0; j < i; j++) {
2238                                         vm_page_free(marray[j]);
2239                                 }
2240                                 vm_object_drop(object);
2241                                 marray[0] = m;
2242                                 *reqpage = 0;
2243                                 return 1;
2244                         }
2245                         marray[i] = rtm;
2246                         ++i;
2247                         ++tpindex;
2248                 }
2249                 vm_object_drop(object);
2250         } else {
2251                 i = 0;
2252         }
2253
2254         /*
2255          * Assign requested page
2256          */
2257         marray[i] = m;
2258         *reqpage = i;
2259         ++i;
2260
2261         /*
2262          * Scan forwards for read-ahead pages
2263          */
2264         tpindex = pindex + 1;
2265         endpindex = tpindex + rahead;
2266         if (endpindex > object->size)
2267                 endpindex = object->size;
2268
2269         vm_object_hold(object);
2270         while (tpindex < endpindex) {
2271                 if (vm_page_lookup(object, tpindex))
2272                         break;
2273                 rtm = vm_page_alloc(object, tpindex, VM_ALLOC_SYSTEM |
2274                                                      VM_ALLOC_NULL_OK);
2275                 if (rtm == NULL)
2276                         break;
2277                 marray[i] = rtm;
2278                 ++i;
2279                 ++tpindex;
2280         }
2281         vm_object_drop(object);
2282
2283         return (i);
2284 }
2285
2286 #endif
2287
2288 /*
2289  * vm_prefault() provides a quick way of clustering pagefaults into a
2290  * processes address space.  It is a "cousin" of pmap_object_init_pt,
2291  * except it runs at page fault time instead of mmap time.
2292  *
2293  * vm.fast_fault        Enables pre-faulting zero-fill pages
2294  *
2295  * vm.prefault_pages    Number of pages (1/2 negative, 1/2 positive) to
2296  *                      prefault.  Scan stops in either direction when
2297  *                      a page is found to already exist.
2298  *
2299  * This code used to be per-platform pmap_prefault().  It is now
2300  * machine-independent and enhanced to also pre-fault zero-fill pages
2301  * (see vm.fast_fault) as well as make them writable, which greatly
2302  * reduces the number of page faults programs incur.
2303  *
2304  * Application performance when pre-faulting zero-fill pages is heavily
2305  * dependent on the application.  Very tiny applications like /bin/echo
2306  * lose a little performance while applications of any appreciable size
2307  * gain performance.  Prefaulting multiple pages also reduces SMP
2308  * congestion and can improve SMP performance significantly.
2309  *
2310  * NOTE!  prot may allow writing but this only applies to the top level
2311  *        object.  If we wind up mapping a page extracted from a backing
2312  *        object we have to make sure it is read-only.
2313  *
2314  * NOTE!  The caller has already handled any COW operations on the
2315  *        vm_map_entry via the normal fault code.  Do NOT call this
2316  *        shortcut unless the normal fault code has run on this entry.
2317  *
2318  * The related map must be locked.
2319  * No other requirements.
2320  */
2321 static int vm_prefault_pages = 8;
2322 SYSCTL_INT(_vm, OID_AUTO, prefault_pages, CTLFLAG_RW, &vm_prefault_pages, 0,
2323            "Maximum number of pages to pre-fault");
2324 static int vm_fast_fault = 1;
2325 SYSCTL_INT(_vm, OID_AUTO, fast_fault, CTLFLAG_RW, &vm_fast_fault, 0,
2326            "Burst fault zero-fill regions");
2327
2328 /*
2329  * Set PG_NOSYNC if the map entry indicates so, but only if the page
2330  * is not already dirty by other means.  This will prevent passive
2331  * filesystem syncing as well as 'sync' from writing out the page.
2332  */
2333 static void
2334 vm_set_nosync(vm_page_t m, vm_map_entry_t entry)
2335 {
2336         if (entry->eflags & MAP_ENTRY_NOSYNC) {
2337                 if (m->dirty == 0)
2338                         vm_page_flag_set(m, PG_NOSYNC);
2339         } else {
2340                 vm_page_flag_clear(m, PG_NOSYNC);
2341         }
2342 }
2343
2344 static void
2345 vm_prefault(pmap_t pmap, vm_offset_t addra, vm_map_entry_t entry, int prot,
2346             int fault_flags)
2347 {
2348         struct lwp *lp;
2349         vm_page_t m;
2350         vm_offset_t addr;
2351         vm_pindex_t index;
2352         vm_pindex_t pindex;
2353         vm_object_t object;
2354         int pprot;
2355         int i;
2356         int noneg;
2357         int nopos;
2358         int maxpages;
2359
2360         /*
2361          * Get stable max count value, disabled if set to 0
2362          */
2363         maxpages = vm_prefault_pages;
2364         cpu_ccfence();
2365         if (maxpages <= 0)
2366                 return;
2367
2368         /*
2369          * We do not currently prefault mappings that use virtual page
2370          * tables.  We do not prefault foreign pmaps.
2371          */
2372         if (entry->maptype == VM_MAPTYPE_VPAGETABLE)
2373                 return;
2374         lp = curthread->td_lwp;
2375         if (lp == NULL || (pmap != vmspace_pmap(lp->lwp_vmspace)))
2376                 return;
2377
2378         /*
2379          * Limit pre-fault count to 1024 pages.
2380          */
2381         if (maxpages > 1024)
2382                 maxpages = 1024;
2383
2384         object = entry->object.vm_object;
2385         KKASSERT(object != NULL);
2386         KKASSERT(object == entry->object.vm_object);
2387         vm_object_hold(object);
2388         vm_object_chain_acquire(object, 0);
2389
2390         noneg = 0;
2391         nopos = 0;
2392         for (i = 0; i < maxpages; ++i) {
2393                 vm_object_t lobject;
2394                 vm_object_t nobject;
2395                 int allocated = 0;
2396                 int error;
2397
2398                 /*
2399                  * This can eat a lot of time on a heavily contended
2400                  * machine so yield on the tick if needed.
2401                  */
2402                 if ((i & 7) == 7)
2403                         lwkt_yield();
2404
2405                 /*
2406                  * Calculate the page to pre-fault, stopping the scan in
2407                  * each direction separately if the limit is reached.
2408                  */
2409                 if (i & 1) {
2410                         if (noneg)
2411                                 continue;
2412                         addr = addra - ((i + 1) >> 1) * PAGE_SIZE;
2413                 } else {
2414                         if (nopos)
2415                                 continue;
2416                         addr = addra + ((i + 2) >> 1) * PAGE_SIZE;
2417                 }
2418                 if (addr < entry->start) {
2419                         noneg = 1;
2420                         if (noneg && nopos)
2421                                 break;
2422                         continue;
2423                 }
2424                 if (addr >= entry->end) {
2425                         nopos = 1;
2426                         if (noneg && nopos)
2427                                 break;
2428                         continue;
2429                 }
2430
2431                 /*
2432                  * Skip pages already mapped, and stop scanning in that
2433                  * direction.  When the scan terminates in both directions
2434                  * we are done.
2435                  */
2436                 if (pmap_prefault_ok(pmap, addr) == 0) {
2437                         if (i & 1)
2438                                 noneg = 1;
2439                         else
2440                                 nopos = 1;
2441                         if (noneg && nopos)
2442                                 break;
2443                         continue;
2444                 }
2445
2446                 /*
2447                  * Follow the VM object chain to obtain the page to be mapped
2448                  * into the pmap.
2449                  *
2450                  * If we reach the terminal object without finding a page
2451                  * and we determine it would be advantageous, then allocate
2452                  * a zero-fill page for the base object.  The base object
2453                  * is guaranteed to be OBJT_DEFAULT for this case.
2454                  *
2455                  * In order to not have to check the pager via *haspage*()
2456                  * we stop if any non-default object is encountered.  e.g.
2457                  * a vnode or swap object would stop the loop.
2458                  */
2459                 index = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
2460                 lobject = object;
2461                 pindex = index;
2462                 pprot = prot;
2463
2464                 KKASSERT(lobject == entry->object.vm_object);
2465                 /*vm_object_hold(lobject); implied */
2466
2467                 while ((m = vm_page_lookup_busy_try(lobject, pindex,
2468                                                     TRUE, &error)) == NULL) {
2469                         if (lobject->type != OBJT_DEFAULT)
2470                                 break;
2471                         if (lobject->backing_object == NULL) {
2472                                 if (vm_fast_fault == 0)
2473                                         break;
2474                                 if ((prot & VM_PROT_WRITE) == 0 ||
2475                                     vm_page_count_min(0)) {
2476                                         break;
2477                                 }
2478
2479                                 /*
2480                                  * NOTE: Allocated from base object
2481                                  */
2482                                 m = vm_page_alloc(object, index,
2483                                                   VM_ALLOC_NORMAL |
2484                                                   VM_ALLOC_ZERO |
2485                                                   VM_ALLOC_USE_GD |
2486                                                   VM_ALLOC_NULL_OK);
2487                                 if (m == NULL)
2488                                         break;
2489                                 allocated = 1;
2490                                 pprot = prot;
2491                                 /* lobject = object .. not needed */
2492                                 break;
2493                         }
2494                         if (lobject->backing_object_offset & PAGE_MASK)
2495                                 break;
2496                         nobject = lobject->backing_object;
2497                         vm_object_hold(nobject);
2498                         KKASSERT(nobject == lobject->backing_object);
2499                         pindex += lobject->backing_object_offset >> PAGE_SHIFT;
2500                         if (lobject != object) {
2501                                 vm_object_lock_swap();
2502                                 vm_object_drop(lobject);
2503                         }
2504                         lobject = nobject;
2505                         pprot &= ~VM_PROT_WRITE;
2506                         vm_object_chain_acquire(lobject, 0);
2507                 }
2508
2509                 /*
2510                  * NOTE: A non-NULL (m) will be associated with lobject if
2511                  *       it was found there, otherwise it is probably a
2512                  *       zero-fill page associated with the base object.
2513                  *
2514                  * Give-up if no page is available.
2515                  */
2516                 if (m == NULL) {
2517                         if (lobject != object) {
2518 #if 0
2519                                 if (object->backing_object != lobject)
2520                                         vm_object_hold(object->backing_object);
2521 #endif
2522                                 vm_object_chain_release_all(
2523                                         object->backing_object, lobject);
2524 #if 0
2525                                 if (object->backing_object != lobject)
2526                                         vm_object_drop(object->backing_object);
2527 #endif
2528                                 vm_object_drop(lobject);
2529                         }
2530                         break;
2531                 }
2532
2533                 /*
2534                  * The object must be marked dirty if we are mapping a
2535                  * writable page.  m->object is either lobject or object,
2536                  * both of which are still held.  Do this before we
2537                  * potentially drop the object.
2538                  */
2539                 if (pprot & VM_PROT_WRITE)
2540                         vm_object_set_writeable_dirty(m->object);
2541
2542                 /*
2543                  * Do not conditionalize on PG_RAM.  If pages are present in
2544                  * the VM system we assume optimal caching.  If caching is
2545                  * not optimal the I/O gravy train will be restarted when we
2546                  * hit an unavailable page.  We do not want to try to restart
2547                  * the gravy train now because we really don't know how much
2548                  * of the object has been cached.  The cost for restarting
2549                  * the gravy train should be low (since accesses will likely
2550                  * be I/O bound anyway).
2551                  */
2552                 if (lobject != object) {
2553 #if 0
2554                         if (object->backing_object != lobject)
2555                                 vm_object_hold(object->backing_object);
2556 #endif
2557                         vm_object_chain_release_all(object->backing_object,
2558                                                     lobject);
2559 #if 0
2560                         if (object->backing_object != lobject)
2561                                 vm_object_drop(object->backing_object);
2562 #endif
2563                         vm_object_drop(lobject);
2564                 }
2565
2566                 /*
2567                  * Enter the page into the pmap if appropriate.  If we had
2568                  * allocated the page we have to place it on a queue.  If not
2569                  * we just have to make sure it isn't on the cache queue
2570                  * (pages on the cache queue are not allowed to be mapped).
2571                  */
2572                 if (allocated) {
2573                         /*
2574                          * Page must be zerod.
2575                          */
2576                         if ((m->flags & PG_ZERO) == 0) {
2577                                 vm_page_zero_fill(m);
2578                         } else {
2579 #ifdef PMAP_DEBUG
2580                                 pmap_page_assertzero(
2581                                                 VM_PAGE_TO_PHYS(m));
2582 #endif
2583                                 vm_page_flag_clear(m, PG_ZERO);
2584                                 mycpu->gd_cnt.v_ozfod++;
2585                         }
2586                         mycpu->gd_cnt.v_zfod++;
2587                         m->valid = VM_PAGE_BITS_ALL;
2588
2589                         /*
2590                          * Handle dirty page case
2591                          */
2592                         if (pprot & VM_PROT_WRITE)
2593                                 vm_set_nosync(m, entry);
2594                         pmap_enter(pmap, addr, m, pprot, 0, entry);
2595                         mycpu->gd_cnt.v_vm_faults++;
2596                         if (curthread->td_lwp)
2597                                 ++curthread->td_lwp->lwp_ru.ru_minflt;
2598                         vm_page_deactivate(m);
2599                         if (pprot & VM_PROT_WRITE) {
2600                                 /*vm_object_set_writeable_dirty(m->object);*/
2601                                 vm_set_nosync(m, entry);
2602                                 if (fault_flags & VM_FAULT_DIRTY) {
2603                                         vm_page_dirty(m);
2604                                         /*XXX*/
2605                                         swap_pager_unswapped(m);
2606                                 }
2607                         }
2608                         vm_page_wakeup(m);
2609                 } else if (error) {
2610                         /* couldn't busy page, no wakeup */
2611                 } else if (
2612                     ((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
2613                     (m->flags & PG_FICTITIOUS) == 0) {
2614                         /*
2615                          * A fully valid page not undergoing soft I/O can
2616                          * be immediately entered into the pmap.
2617                          */
2618                         if ((m->queue - m->pc) == PQ_CACHE)
2619                                 vm_page_deactivate(m);
2620                         if (pprot & VM_PROT_WRITE) {
2621                                 /*vm_object_set_writeable_dirty(m->object);*/
2622                                 vm_set_nosync(m, entry);
2623                                 if (fault_flags & VM_FAULT_DIRTY) {
2624                                         vm_page_dirty(m);
2625                                         /*XXX*/
2626                                         swap_pager_unswapped(m);
2627                                 }
2628                         }
2629                         if (pprot & VM_PROT_WRITE)
2630                                 vm_set_nosync(m, entry);
2631                         pmap_enter(pmap, addr, m, pprot, 0, entry);
2632                         mycpu->gd_cnt.v_vm_faults++;
2633                         if (curthread->td_lwp)
2634                                 ++curthread->td_lwp->lwp_ru.ru_minflt;
2635                         vm_page_wakeup(m);
2636                 } else {
2637                         vm_page_wakeup(m);
2638                 }
2639         }
2640         vm_object_chain_release(object);
2641         vm_object_drop(object);
2642 }
2643
2644 /*
2645  * Object can be held shared
2646  */
2647 static void
2648 vm_prefault_quick(pmap_t pmap, vm_offset_t addra,
2649                   vm_map_entry_t entry, int prot, int fault_flags)
2650 {
2651         struct lwp *lp;
2652         vm_page_t m;
2653         vm_offset_t addr;
2654         vm_pindex_t pindex;
2655         vm_object_t object;
2656         int i;
2657         int noneg;
2658         int nopos;
2659         int maxpages;
2660
2661         /*
2662          * Get stable max count value, disabled if set to 0
2663          */
2664         maxpages = vm_prefault_pages;
2665         cpu_ccfence();
2666         if (maxpages <= 0)
2667                 return;
2668
2669         /*
2670          * We do not currently prefault mappings that use virtual page
2671          * tables.  We do not prefault foreign pmaps.
2672          */
2673         if (entry->maptype == VM_MAPTYPE_VPAGETABLE)
2674                 return;
2675         lp = curthread->td_lwp;
2676         if (lp == NULL || (pmap != vmspace_pmap(lp->lwp_vmspace)))
2677                 return;
2678         object = entry->object.vm_object;
2679         if (object->backing_object != NULL)
2680                 return;
2681         ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
2682
2683         /*
2684          * Limit pre-fault count to 1024 pages.
2685          */
2686         if (maxpages > 1024)
2687                 maxpages = 1024;
2688
2689         noneg = 0;
2690         nopos = 0;
2691         for (i = 0; i < maxpages; ++i) {
2692                 int error;
2693
2694                 /*
2695                  * Calculate the page to pre-fault, stopping the scan in
2696                  * each direction separately if the limit is reached.
2697                  */
2698                 if (i & 1) {
2699                         if (noneg)
2700                                 continue;
2701                         addr = addra - ((i + 1) >> 1) * PAGE_SIZE;
2702                 } else {
2703                         if (nopos)
2704                                 continue;
2705                         addr = addra + ((i + 2) >> 1) * PAGE_SIZE;
2706                 }
2707                 if (addr < entry->start) {
2708                         noneg = 1;
2709                         if (noneg && nopos)
2710                                 break;
2711                         continue;
2712                 }
2713                 if (addr >= entry->end) {
2714                         nopos = 1;
2715                         if (noneg && nopos)
2716                                 break;
2717                         continue;
2718                 }
2719
2720                 /*
2721                  * Skip pages already mapped, and stop scanning in that
2722                  * direction.  When the scan terminates in both directions
2723                  * we are done.
2724                  */
2725                 if (pmap_prefault_ok(pmap, addr) == 0) {
2726                         if (i & 1)
2727                                 noneg = 1;
2728                         else
2729                                 nopos = 1;
2730                         if (noneg && nopos)
2731                                 break;
2732                         continue;
2733                 }
2734
2735                 /*
2736                  * Follow the VM object chain to obtain the page to be mapped
2737                  * into the pmap.  This version of the prefault code only
2738                  * works with terminal objects.
2739                  *
2740                  * WARNING!  We cannot call swap_pager_unswapped() with a
2741                  *           shared token.
2742                  */
2743                 pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
2744
2745                 m = vm_page_lookup_busy_try(object, pindex, TRUE, &error);
2746                 if (m == NULL || error)
2747                         continue;
2748
2749                 if (((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
2750                     (m->flags & PG_FICTITIOUS) == 0 &&
2751                     ((m->flags & PG_SWAPPED) == 0 ||
2752                      (prot & VM_PROT_WRITE) == 0 ||
2753                      (fault_flags & VM_FAULT_DIRTY) == 0)) {
2754                         /*
2755                          * A fully valid page not undergoing soft I/O can
2756                          * be immediately entered into the pmap.
2757                          */
2758                         if ((m->queue - m->pc) == PQ_CACHE)
2759                                 vm_page_deactivate(m);
2760                         if (prot & VM_PROT_WRITE) {
2761                                 vm_object_set_writeable_dirty(m->object);
2762                                 vm_set_nosync(m, entry);
2763                                 if (fault_flags & VM_FAULT_DIRTY) {
2764                                         vm_page_dirty(m);
2765                                         /*XXX*/
2766                                         swap_pager_unswapped(m);
2767                                 }
2768                         }
2769                         pmap_enter(pmap, addr, m, prot, 0, entry);
2770                         mycpu->gd_cnt.v_vm_faults++;
2771                         if (curthread->td_lwp)
2772                                 ++curthread->td_lwp->lwp_ru.ru_minflt;
2773                 }
2774                 vm_page_wakeup(m);
2775         }
2776 }