Merge branch 'vendor/LDNS'
[dragonfly.git] / sys / vm / vm_object.c
1 /*
2  * Copyright (c) 1991, 1993, 2013
3  *      The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *      from: @(#)vm_object.c   8.5 (Berkeley) 3/22/94
33  *
34  *
35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36  * All rights reserved.
37  *
38  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39  *
40  * Permission to use, copy, modify and distribute this software and
41  * its documentation is hereby granted, provided that both the copyright
42  * notice and this permission notice appear in all copies of the
43  * software, derivative works or modified versions, and any portions
44  * thereof, and that both notices appear in supporting documentation.
45  *
46  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49  *
50  * Carnegie Mellon requests users of this software to return to
51  *
52  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53  *  School of Computer Science
54  *  Carnegie Mellon University
55  *  Pittsburgh PA 15213-3890
56  *
57  * any improvements or extensions that they make and grant Carnegie the
58  * rights to redistribute these changes.
59  *
60  * $FreeBSD: src/sys/vm/vm_object.c,v 1.171.2.8 2003/05/26 19:17:56 alc Exp $
61  */
62
63 /*
64  *      Virtual memory object module.
65  */
66
67 #include <sys/param.h>
68 #include <sys/systm.h>
69 #include <sys/proc.h>           /* for curproc, pageproc */
70 #include <sys/thread.h>
71 #include <sys/vnode.h>
72 #include <sys/vmmeter.h>
73 #include <sys/mman.h>
74 #include <sys/mount.h>
75 #include <sys/kernel.h>
76 #include <sys/sysctl.h>
77 #include <sys/refcount.h>
78
79 #include <vm/vm.h>
80 #include <vm/vm_param.h>
81 #include <vm/pmap.h>
82 #include <vm/vm_map.h>
83 #include <vm/vm_object.h>
84 #include <vm/vm_page.h>
85 #include <vm/vm_pageout.h>
86 #include <vm/vm_pager.h>
87 #include <vm/swap_pager.h>
88 #include <vm/vm_kern.h>
89 #include <vm/vm_extern.h>
90 #include <vm/vm_zone.h>
91
92 #include <vm/vm_page2.h>
93
94 #include <machine/specialreg.h>
95
96 #define EASY_SCAN_FACTOR        8
97
98 static void     vm_object_qcollapse(vm_object_t object,
99                                     vm_object_t backing_object);
100 static void     vm_object_page_collect_flush(vm_object_t object, vm_page_t p,
101                                              int pagerflags);
102 static void     vm_object_lock_init(vm_object_t);
103
104
105 /*
106  *      Virtual memory objects maintain the actual data
107  *      associated with allocated virtual memory.  A given
108  *      page of memory exists within exactly one object.
109  *
110  *      An object is only deallocated when all "references"
111  *      are given up.  Only one "reference" to a given
112  *      region of an object should be writeable.
113  *
114  *      Associated with each object is a list of all resident
115  *      memory pages belonging to that object; this list is
116  *      maintained by the "vm_page" module, and locked by the object's
117  *      lock.
118  *
119  *      Each object also records a "pager" routine which is
120  *      used to retrieve (and store) pages to the proper backing
121  *      storage.  In addition, objects may be backed by other
122  *      objects from which they were virtual-copied.
123  *
124  *      The only items within the object structure which are
125  *      modified after time of creation are:
126  *              reference count         locked by object's lock
127  *              pager routine           locked by object's lock
128  *
129  */
130
131 struct object_q vm_object_list;         /* locked by vmobj_token */
132 struct vm_object kernel_object;
133
134 static long vm_object_count;            /* locked by vmobj_token */
135
136 static long object_collapses;
137 static long object_bypasses;
138 static int next_index;
139 static vm_zone_t obj_zone;
140 static struct vm_zone obj_zone_store;
141 #define VM_OBJECTS_INIT 256
142 static struct vm_object vm_objects_init[VM_OBJECTS_INIT];
143
144 /*
145  * Misc low level routines
146  */
147 static void
148 vm_object_lock_init(vm_object_t obj)
149 {
150 #if defined(DEBUG_LOCKS)
151         int i;
152
153         obj->debug_hold_bitmap = 0;
154         obj->debug_hold_ovfl = 0;
155         for (i = 0; i < VMOBJ_DEBUG_ARRAY_SIZE; i++) {
156                 obj->debug_hold_thrs[i] = NULL;
157                 obj->debug_hold_file[i] = NULL;
158                 obj->debug_hold_line[i] = 0;
159         }
160 #endif
161 }
162
163 void
164 vm_object_lock_swap(void)
165 {
166         lwkt_token_swap();
167 }
168
169 void
170 vm_object_lock(vm_object_t obj)
171 {
172         lwkt_gettoken(&obj->token);
173 }
174
175 /*
176  * Returns TRUE on sucesss
177  */
178 static int
179 vm_object_lock_try(vm_object_t obj)
180 {
181         return(lwkt_trytoken(&obj->token));
182 }
183
184 void
185 vm_object_lock_shared(vm_object_t obj)
186 {
187         lwkt_gettoken_shared(&obj->token);
188 }
189
190 void
191 vm_object_unlock(vm_object_t obj)
192 {
193         lwkt_reltoken(&obj->token);
194 }
195
196 void
197 vm_object_upgrade(vm_object_t obj)
198 {
199         lwkt_reltoken(&obj->token);
200         lwkt_gettoken(&obj->token);
201 }
202
203 void
204 vm_object_downgrade(vm_object_t obj)
205 {
206         lwkt_reltoken(&obj->token);
207         lwkt_gettoken_shared(&obj->token);
208 }
209
210 static __inline void
211 vm_object_assert_held(vm_object_t obj)
212 {
213         ASSERT_LWKT_TOKEN_HELD(&obj->token);
214 }
215
216 void
217 #ifndef DEBUG_LOCKS
218 vm_object_hold(vm_object_t obj)
219 #else
220 debugvm_object_hold(vm_object_t obj, char *file, int line)
221 #endif
222 {
223         KKASSERT(obj != NULL);
224
225         /*
226          * Object must be held (object allocation is stable due to callers
227          * context, typically already holding the token on a parent object)
228          * prior to potentially blocking on the lock, otherwise the object
229          * can get ripped away from us.
230          */
231         refcount_acquire(&obj->hold_count);
232         vm_object_lock(obj);
233
234 #if defined(DEBUG_LOCKS)
235         int i;
236         u_int mask;
237
238         for (;;) {
239                 mask = ~obj->debug_hold_bitmap;
240                 cpu_ccfence();
241                 if (mask == 0xFFFFFFFFU) {
242                         if (obj->debug_hold_ovfl == 0)
243                                 obj->debug_hold_ovfl = 1;
244                         break;
245                 }
246                 i = ffs(mask) - 1;
247                 if (atomic_cmpset_int(&obj->debug_hold_bitmap, ~mask,
248                                       ~mask | (1 << i))) {
249                         obj->debug_hold_bitmap |= (1 << i);
250                         obj->debug_hold_thrs[i] = curthread;
251                         obj->debug_hold_file[i] = file;
252                         obj->debug_hold_line[i] = line;
253                         break;
254                 }
255         }
256 #endif
257 }
258
259 int
260 #ifndef DEBUG_LOCKS
261 vm_object_hold_try(vm_object_t obj)
262 #else
263 debugvm_object_hold_try(vm_object_t obj, char *file, int line)
264 #endif
265 {
266         KKASSERT(obj != NULL);
267
268         /*
269          * Object must be held (object allocation is stable due to callers
270          * context, typically already holding the token on a parent object)
271          * prior to potentially blocking on the lock, otherwise the object
272          * can get ripped away from us.
273          */
274         refcount_acquire(&obj->hold_count);
275         if (vm_object_lock_try(obj) == 0) {
276                 if (refcount_release(&obj->hold_count)) {
277                         if (obj->ref_count == 0 && (obj->flags & OBJ_DEAD))
278                                 zfree(obj_zone, obj);
279                 }
280                 return(0);
281         }
282
283 #if defined(DEBUG_LOCKS)
284         int i;
285         u_int mask;
286
287         for (;;) {
288                 mask = ~obj->debug_hold_bitmap;
289                 cpu_ccfence();
290                 if (mask == 0xFFFFFFFFU) {
291                         if (obj->debug_hold_ovfl == 0)
292                                 obj->debug_hold_ovfl = 1;
293                         break;
294                 }
295                 i = ffs(mask) - 1;
296                 if (atomic_cmpset_int(&obj->debug_hold_bitmap, ~mask,
297                                       ~mask | (1 << i))) {
298                         obj->debug_hold_bitmap |= (1 << i);
299                         obj->debug_hold_thrs[i] = curthread;
300                         obj->debug_hold_file[i] = file;
301                         obj->debug_hold_line[i] = line;
302                         break;
303                 }
304         }
305 #endif
306         return(1);
307 }
308
309 void
310 #ifndef DEBUG_LOCKS
311 vm_object_hold_shared(vm_object_t obj)
312 #else
313 debugvm_object_hold_shared(vm_object_t obj, char *file, int line)
314 #endif
315 {
316         KKASSERT(obj != NULL);
317
318         /*
319          * Object must be held (object allocation is stable due to callers
320          * context, typically already holding the token on a parent object)
321          * prior to potentially blocking on the lock, otherwise the object
322          * can get ripped away from us.
323          */
324         refcount_acquire(&obj->hold_count);
325         vm_object_lock_shared(obj);
326
327 #if defined(DEBUG_LOCKS)
328         int i;
329         u_int mask;
330
331         for (;;) {
332                 mask = ~obj->debug_hold_bitmap;
333                 cpu_ccfence();
334                 if (mask == 0xFFFFFFFFU) {
335                         if (obj->debug_hold_ovfl == 0)
336                                 obj->debug_hold_ovfl = 1;
337                         break;
338                 }
339                 i = ffs(mask) - 1;
340                 if (atomic_cmpset_int(&obj->debug_hold_bitmap, ~mask,
341                                       ~mask | (1 << i))) {
342                         obj->debug_hold_bitmap |= (1 << i);
343                         obj->debug_hold_thrs[i] = curthread;
344                         obj->debug_hold_file[i] = file;
345                         obj->debug_hold_line[i] = line;
346                         break;
347                 }
348         }
349 #endif
350 }
351
352 #if 0
353
354 /*
355  * Obtain either a shared or exclusive lock on VM object
356  * based on whether this is a terminal vnode object or not.
357  */
358 int
359 #ifndef DEBUG_LOCKS
360 vm_object_hold_maybe_shared(vm_object_t obj)
361 #else
362 debugvm_object_hold_maybe_shared(vm_object_t obj, char *file, int line)
363 #endif
364 {
365         if (vm_shared_fault &&
366             obj->type == OBJT_VNODE &&
367             obj->backing_object == NULL) {
368                 vm_object_hold_shared(obj);
369                 return(1);
370         } else {
371                 vm_object_hold(obj);
372                 return(0);
373         }
374 }
375
376 #endif
377
378 /*
379  * Drop the token and hold_count on the object.
380  *
381  * WARNING! Token might be shared.
382  */
383 void
384 vm_object_drop(vm_object_t obj)
385 {
386         if (obj == NULL)
387                 return;
388
389 #if defined(DEBUG_LOCKS)
390         int found = 0;
391         int i;
392
393         for (i = 0; i < VMOBJ_DEBUG_ARRAY_SIZE; i++) {
394                 if ((obj->debug_hold_bitmap & (1 << i)) &&
395                     (obj->debug_hold_thrs[i] == curthread)) {
396                         obj->debug_hold_bitmap &= ~(1 << i);
397                         obj->debug_hold_thrs[i] = NULL;
398                         obj->debug_hold_file[i] = NULL;
399                         obj->debug_hold_line[i] = 0;
400                         found = 1;
401                         break;
402                 }
403         }
404
405         if (found == 0 && obj->debug_hold_ovfl == 0)
406                 panic("vm_object: attempt to drop hold on non-self-held obj");
407 #endif
408
409         /*
410          * No new holders should be possible once we drop hold_count 1->0 as
411          * there is no longer any way to reference the object.
412          */
413         KKASSERT(obj->hold_count > 0);
414         if (refcount_release(&obj->hold_count)) {
415                 if (obj->ref_count == 0 && (obj->flags & OBJ_DEAD)) {
416                         vm_object_unlock(obj);
417                         zfree(obj_zone, obj);
418                 } else {
419                         vm_object_unlock(obj);
420                 }
421         } else {
422                 vm_object_unlock(obj);
423         }
424 }
425
426 /*
427  * Initialize a freshly allocated object, returning a held object.
428  *
429  * Used only by vm_object_allocate() and zinitna().
430  *
431  * No requirements.
432  */
433 void
434 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
435 {
436         int incr;
437
438         RB_INIT(&object->rb_memq);
439         LIST_INIT(&object->shadow_head);
440         lwkt_token_init(&object->token, "vmobj");
441
442         object->type = type;
443         object->size = size;
444         object->ref_count = 1;
445         object->memattr = VM_MEMATTR_DEFAULT;
446         object->hold_count = 0;
447         object->flags = 0;
448         if ((object->type == OBJT_DEFAULT) || (object->type == OBJT_SWAP))
449                 vm_object_set_flag(object, OBJ_ONEMAPPING);
450         object->paging_in_progress = 0;
451         object->resident_page_count = 0;
452         object->agg_pv_list_count = 0;
453         object->shadow_count = 0;
454         /* cpu localization twist */
455         object->pg_color = (int)(intptr_t)curthread;
456         if ( size > (PQ_L2_SIZE / 3 + PQ_PRIME1))
457                 incr = PQ_L2_SIZE / 3 + PQ_PRIME1;
458         else
459                 incr = size;
460         next_index = (next_index + incr) & PQ_L2_MASK;
461         object->handle = NULL;
462         object->backing_object = NULL;
463         object->backing_object_offset = (vm_ooffset_t)0;
464
465         object->generation++;
466         object->swblock_count = 0;
467         RB_INIT(&object->swblock_root);
468         vm_object_lock_init(object);
469         pmap_object_init(object);
470
471         vm_object_hold(object);
472         lwkt_gettoken(&vmobj_token);
473         TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
474         vm_object_count++;
475         lwkt_reltoken(&vmobj_token);
476 }
477
478 /*
479  * Initialize the VM objects module.
480  *
481  * Called from the low level boot code only.
482  */
483 void
484 vm_object_init(void)
485 {
486         TAILQ_INIT(&vm_object_list);
487         
488         _vm_object_allocate(OBJT_DEFAULT, OFF_TO_IDX(KvaEnd),
489                             &kernel_object);
490         vm_object_drop(&kernel_object);
491
492         obj_zone = &obj_zone_store;
493         zbootinit(obj_zone, "VM OBJECT", sizeof (struct vm_object),
494                 vm_objects_init, VM_OBJECTS_INIT);
495 }
496
497 void
498 vm_object_init2(void)
499 {
500         zinitna(obj_zone, NULL, NULL, 0, 0, ZONE_PANICFAIL, 1);
501 }
502
503 /*
504  * Allocate and return a new object of the specified type and size.
505  *
506  * No requirements.
507  */
508 vm_object_t
509 vm_object_allocate(objtype_t type, vm_pindex_t size)
510 {
511         vm_object_t result;
512
513         result = (vm_object_t) zalloc(obj_zone);
514
515         _vm_object_allocate(type, size, result);
516         vm_object_drop(result);
517
518         return (result);
519 }
520
521 /*
522  * This version returns a held object, allowing further atomic initialization
523  * of the object.
524  */
525 vm_object_t
526 vm_object_allocate_hold(objtype_t type, vm_pindex_t size)
527 {
528         vm_object_t result;
529
530         result = (vm_object_t) zalloc(obj_zone);
531
532         _vm_object_allocate(type, size, result);
533
534         return (result);
535 }
536
537 /*
538  * Add an additional reference to a vm_object.  The object must already be
539  * held.  The original non-lock version is no longer supported.  The object
540  * must NOT be chain locked by anyone at the time the reference is added.
541  *
542  * Referencing a chain-locked object can blow up the fairly sensitive
543  * ref_count and shadow_count tests in the deallocator.  Most callers
544  * will call vm_object_chain_wait() prior to calling
545  * vm_object_reference_locked() to avoid the case.
546  *
547  * The object must be held, but may be held shared if desired (hence why
548  * we use an atomic op).
549  */
550 void
551 vm_object_reference_locked(vm_object_t object)
552 {
553         KKASSERT(object != NULL);
554         ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
555         KKASSERT((object->chainlk & (CHAINLK_EXCL | CHAINLK_MASK)) == 0);
556         atomic_add_int(&object->ref_count, 1);
557         if (object->type == OBJT_VNODE) {
558                 vref(object->handle);
559                 /* XXX what if the vnode is being destroyed? */
560         }
561 }
562
563 /*
564  * This version is only allowed for vnode objects.
565  */
566 void
567 vm_object_reference_quick(vm_object_t object)
568 {
569         KKASSERT(object->type == OBJT_VNODE);
570         atomic_add_int(&object->ref_count, 1);
571         vref(object->handle);
572 }
573
574 /*
575  * Object OBJ_CHAINLOCK lock handling.
576  *
577  * The caller can chain-lock backing objects recursively and then
578  * use vm_object_chain_release_all() to undo the whole chain.
579  *
580  * Chain locks are used to prevent collapses and are only applicable
581  * to OBJT_DEFAULT and OBJT_SWAP objects.  Chain locking operations
582  * on other object types are ignored.  This is also important because
583  * it allows e.g. the vnode underlying a memory mapping to take concurrent
584  * faults.
585  *
586  * The object must usually be held on entry, though intermediate
587  * objects need not be held on release.  The object must be held exclusively,
588  * NOT shared.  Note that the prefault path checks the shared state and
589  * avoids using the chain functions.
590  */
591 void
592 vm_object_chain_wait(vm_object_t object, int shared)
593 {
594         ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
595         for (;;) {
596                 uint32_t chainlk = object->chainlk;
597
598                 cpu_ccfence();
599                 if (shared) {
600                         if (chainlk & (CHAINLK_EXCL | CHAINLK_EXCLREQ)) {
601                                 tsleep_interlock(object, 0);
602                                 if (atomic_cmpset_int(&object->chainlk,
603                                                       chainlk,
604                                                       chainlk | CHAINLK_WAIT)) {
605                                         tsleep(object, PINTERLOCKED,
606                                                "objchns", 0);
607                                 }
608                                 /* retry */
609                         } else {
610                                 break;
611                         }
612                         /* retry */
613                 } else {
614                         if (chainlk & (CHAINLK_MASK | CHAINLK_EXCL)) {
615                                 tsleep_interlock(object, 0);
616                                 if (atomic_cmpset_int(&object->chainlk,
617                                                       chainlk,
618                                                       chainlk | CHAINLK_WAIT))
619                                 {
620                                         tsleep(object, PINTERLOCKED,
621                                                "objchnx", 0);
622                                 }
623                                 /* retry */
624                         } else {
625                                 if (atomic_cmpset_int(&object->chainlk,
626                                                       chainlk,
627                                                       chainlk & ~CHAINLK_WAIT))
628                                 {
629                                         if (chainlk & CHAINLK_WAIT)
630                                                 wakeup(object);
631                                         break;
632                                 }
633                                 /* retry */
634                         }
635                 }
636                 /* retry */
637         }
638 }
639
640 void
641 vm_object_chain_acquire(vm_object_t object, int shared)
642 {
643         if (object->type != OBJT_DEFAULT && object->type != OBJT_SWAP)
644                 return;
645         if (vm_shared_fault == 0)
646                 shared = 0;
647
648         for (;;) {
649                 uint32_t chainlk = object->chainlk;
650
651                 cpu_ccfence();
652                 if (shared) {
653                         if (chainlk & (CHAINLK_EXCL | CHAINLK_EXCLREQ)) {
654                                 tsleep_interlock(object, 0);
655                                 if (atomic_cmpset_int(&object->chainlk,
656                                                       chainlk,
657                                                       chainlk | CHAINLK_WAIT)) {
658                                         tsleep(object, PINTERLOCKED,
659                                                "objchns", 0);
660                                 }
661                                 /* retry */
662                         } else if (atomic_cmpset_int(&object->chainlk,
663                                               chainlk, chainlk + 1)) {
664                                 break;
665                         }
666                         /* retry */
667                 } else {
668                         if (chainlk & (CHAINLK_MASK | CHAINLK_EXCL)) {
669                                 tsleep_interlock(object, 0);
670                                 if (atomic_cmpset_int(&object->chainlk,
671                                                       chainlk,
672                                                       chainlk |
673                                                        CHAINLK_WAIT |
674                                                        CHAINLK_EXCLREQ)) {
675                                         tsleep(object, PINTERLOCKED,
676                                                "objchnx", 0);
677                                 }
678                                 /* retry */
679                         } else {
680                                 if (atomic_cmpset_int(&object->chainlk,
681                                                       chainlk,
682                                                       (chainlk | CHAINLK_EXCL) &
683                                                       ~(CHAINLK_EXCLREQ |
684                                                         CHAINLK_WAIT))) {
685                                         if (chainlk & CHAINLK_WAIT)
686                                                 wakeup(object);
687                                         break;
688                                 }
689                                 /* retry */
690                         }
691                 }
692                 /* retry */
693         }
694 }
695
696 void
697 vm_object_chain_release(vm_object_t object)
698 {
699         /*ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));*/
700         if (object->type != OBJT_DEFAULT && object->type != OBJT_SWAP)
701                 return;
702         KKASSERT(object->chainlk & (CHAINLK_MASK | CHAINLK_EXCL));
703         for (;;) {
704                 uint32_t chainlk = object->chainlk;
705
706                 cpu_ccfence();
707                 if (chainlk & CHAINLK_MASK) {
708                         if ((chainlk & CHAINLK_MASK) == 1 &&
709                             atomic_cmpset_int(&object->chainlk,
710                                               chainlk,
711                                               (chainlk - 1) & ~CHAINLK_WAIT)) {
712                                 if (chainlk & CHAINLK_WAIT)
713                                         wakeup(object);
714                                 break;
715                         }
716                         if ((chainlk & CHAINLK_MASK) > 1 &&
717                             atomic_cmpset_int(&object->chainlk,
718                                               chainlk, chainlk - 1)) {
719                                 break;
720                         }
721                         /* retry */
722                 } else {
723                         KKASSERT(chainlk & CHAINLK_EXCL);
724                         if (atomic_cmpset_int(&object->chainlk,
725                                               chainlk,
726                                               chainlk & ~(CHAINLK_EXCL |
727                                                           CHAINLK_WAIT))) {
728                                 if (chainlk & CHAINLK_WAIT)
729                                         wakeup(object);
730                                 break;
731                         }
732                 }
733         }
734 }
735
736 /*
737  * Release the chain from first_object through and including stopobj.
738  * The caller is typically holding the first and last object locked
739  * (shared or exclusive) to prevent destruction races.
740  *
741  * We release stopobj first as an optimization as this object is most
742  * likely to be shared across multiple processes.
743  */
744 void
745 vm_object_chain_release_all(vm_object_t first_object, vm_object_t stopobj)
746 {
747         vm_object_t backing_object;
748         vm_object_t object;
749
750         vm_object_chain_release(stopobj);
751         object = first_object;
752
753         while (object != stopobj) {
754                 KKASSERT(object);
755 #if 0
756                 /* shouldn't need this since chain is held */
757                 if (object != first_object)
758                         vm_object_hold(object);
759 #endif
760                 backing_object = object->backing_object;
761                 vm_object_chain_release(object);
762 #if 0
763                 if (object != first_object)
764                         vm_object_drop(object);
765 #endif
766                 object = backing_object;
767         }
768 }
769
770 /*
771  * Dereference an object and its underlying vnode.
772  *
773  * The object must be held exclusively and will remain held on return.
774  * (We don't need an atomic op due to the exclusivity).
775  */
776 static void
777 vm_object_vndeallocate(vm_object_t object)
778 {
779         struct vnode *vp = (struct vnode *) object->handle;
780
781         KASSERT(object->type == OBJT_VNODE,
782             ("vm_object_vndeallocate: not a vnode object"));
783         KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
784         ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
785 #ifdef INVARIANTS
786         if (object->ref_count == 0) {
787                 vprint("vm_object_vndeallocate", vp);
788                 panic("vm_object_vndeallocate: bad object reference count");
789         }
790 #endif
791         atomic_add_int(&object->ref_count, -1);
792         if (object->ref_count == 0)
793                 vclrflags(vp, VTEXT);
794         vrele(vp);
795 }
796
797 /*
798  * Release a reference to the specified object, gained either through a
799  * vm_object_allocate or a vm_object_reference call.  When all references
800  * are gone, storage associated with this object may be relinquished.
801  *
802  * The caller does not have to hold the object locked but must have control
803  * over the reference in question in order to guarantee that the object
804  * does not get ripped out from under us.
805  *
806  * XXX Currently all deallocations require an exclusive lock.
807  */
808 void
809 vm_object_deallocate(vm_object_t object)
810 {
811         struct vnode *vp;
812         int count;
813
814         if (object == NULL)
815                 return;
816         for (;;) {
817                 count = object->ref_count;
818                 cpu_ccfence();
819
820                 /*
821                  * If decrementing the count enters into special handling
822                  * territory (0, 1, or 2) we have to do it the hard way.
823                  * Fortunate though, objects with only a few refs like this
824                  * are not likely to be heavily contended anyway.
825                  */
826                 if (count <= 3) {
827                         vm_object_hold(object);
828                         vm_object_deallocate_locked(object);
829                         vm_object_drop(object);
830                         break;
831                 }
832
833                 /*
834                  * Try to decrement ref_count without acquiring a hold on
835                  * the object.  This is particularly important for the exec*()
836                  * and exit*() code paths because the program binary may
837                  * have a great deal of sharing and an exclusive lock will
838                  * crowbar performance in those circumstances.
839                  */
840                 if (object->type == OBJT_VNODE) {
841                         vp = (struct vnode *)object->handle;
842                         if (atomic_cmpset_int(&object->ref_count,
843                                               count, count - 1)) {
844                                 vrele(vp);
845                                 break;
846                         }
847                         /* retry */
848                 } else {
849                         if (atomic_cmpset_int(&object->ref_count,
850                                               count, count - 1)) {
851                                 break;
852                         }
853                         /* retry */
854                 }
855                 /* retry */
856         }
857 }
858
859 void
860 vm_object_deallocate_locked(vm_object_t object)
861 {
862         struct vm_object_dealloc_list *dlist = NULL;
863         struct vm_object_dealloc_list *dtmp;
864         vm_object_t temp;
865         int must_drop = 0;
866
867         /*
868          * We may chain deallocate object, but additional objects may
869          * collect on the dlist which also have to be deallocated.  We
870          * must avoid a recursion, vm_object chains can get deep.
871          */
872 again:
873         while (object != NULL) {
874                 ASSERT_LWKT_TOKEN_HELD_EXCL(&object->token);
875 #if 0
876                 /*
877                  * Don't rip a ref_count out from under an object undergoing
878                  * collapse, it will confuse the collapse code.
879                  */
880                 vm_object_chain_wait(object);
881 #endif
882                 if (object->type == OBJT_VNODE) {
883                         vm_object_vndeallocate(object);
884                         break;
885                 }
886
887                 if (object->ref_count == 0) {
888                         panic("vm_object_deallocate: object deallocated "
889                               "too many times: %d", object->type);
890                 }
891                 if (object->ref_count > 2) {
892                         atomic_add_int(&object->ref_count, -1);
893                         break;
894                 }
895
896                 /*
897                  * Here on ref_count of one or two, which are special cases for
898                  * objects.
899                  *
900                  * Nominal ref_count > 1 case if the second ref is not from
901                  * a shadow.
902                  *
903                  * (ONEMAPPING only applies to DEFAULT AND SWAP objects)
904                  */
905                 if (object->ref_count == 2 && object->shadow_count == 0) {
906                         if (object->type == OBJT_DEFAULT ||
907                             object->type == OBJT_SWAP) {
908                                 vm_object_set_flag(object, OBJ_ONEMAPPING);
909                         }
910                         atomic_add_int(&object->ref_count, -1);
911                         break;
912                 }
913
914                 /*
915                  * If the second ref is from a shadow we chain along it
916                  * upwards if object's handle is exhausted.
917                  *
918                  * We have to decrement object->ref_count before potentially
919                  * collapsing the first shadow object or the collapse code
920                  * will not be able to handle the degenerate case to remove
921                  * object.  However, if we do it too early the object can
922                  * get ripped out from under us.
923                  */
924                 if (object->ref_count == 2 && object->shadow_count == 1 &&
925                     object->handle == NULL && (object->type == OBJT_DEFAULT ||
926                                                object->type == OBJT_SWAP)) {
927                         temp = LIST_FIRST(&object->shadow_head);
928                         KKASSERT(temp != NULL);
929                         vm_object_hold(temp);
930
931                         /*
932                          * Wait for any paging to complete so the collapse
933                          * doesn't (or isn't likely to) qcollapse.  pip
934                          * waiting must occur before we acquire the
935                          * chainlock.
936                          */
937                         while (
938                                 temp->paging_in_progress ||
939                                 object->paging_in_progress
940                         ) {
941                                 vm_object_pip_wait(temp, "objde1");
942                                 vm_object_pip_wait(object, "objde2");
943                         }
944
945                         /*
946                          * If the parent is locked we have to give up, as
947                          * otherwise we would be acquiring locks in the
948                          * wrong order and potentially deadlock.
949                          */
950                         if (temp->chainlk & (CHAINLK_EXCL | CHAINLK_MASK)) {
951                                 vm_object_drop(temp);
952                                 goto skip;
953                         }
954                         vm_object_chain_acquire(temp, 0);
955
956                         /*
957                          * Recheck/retry after the hold and the paging
958                          * wait, both of which can block us.
959                          */
960                         if (object->ref_count != 2 ||
961                             object->shadow_count != 1 ||
962                             object->handle ||
963                             LIST_FIRST(&object->shadow_head) != temp ||
964                             (object->type != OBJT_DEFAULT &&
965                              object->type != OBJT_SWAP)) {
966                                 vm_object_chain_release(temp);
967                                 vm_object_drop(temp);
968                                 continue;
969                         }
970
971                         /*
972                          * We can safely drop object's ref_count now.
973                          */
974                         KKASSERT(object->ref_count == 2);
975                         atomic_add_int(&object->ref_count, -1);
976
977                         /*
978                          * If our single parent is not collapseable just
979                          * decrement ref_count (2->1) and stop.
980                          */
981                         if (temp->handle || (temp->type != OBJT_DEFAULT &&
982                                              temp->type != OBJT_SWAP)) {
983                                 vm_object_chain_release(temp);
984                                 vm_object_drop(temp);
985                                 break;
986                         }
987
988                         /*
989                          * At this point we have already dropped object's
990                          * ref_count so it is possible for a race to
991                          * deallocate obj out from under us.  Any collapse
992                          * will re-check the situation.  We must not block
993                          * until we are able to collapse.
994                          *
995                          * Bump temp's ref_count to avoid an unwanted
996                          * degenerate recursion (can't call
997                          * vm_object_reference_locked() because it asserts
998                          * that CHAINLOCK is not set).
999                          */
1000                         atomic_add_int(&temp->ref_count, 1);
1001                         KKASSERT(temp->ref_count > 1);
1002
1003                         /*
1004                          * Collapse temp, then deallocate the extra ref
1005                          * formally.
1006                          */
1007                         vm_object_collapse(temp, &dlist);
1008                         vm_object_chain_release(temp);
1009                         if (must_drop) {
1010                                 vm_object_lock_swap();
1011                                 vm_object_drop(object);
1012                         }
1013                         object = temp;
1014                         must_drop = 1;
1015                         continue;
1016                 }
1017
1018                 /*
1019                  * Drop the ref and handle termination on the 1->0 transition.
1020                  * We may have blocked above so we have to recheck.
1021                  */
1022 skip:
1023                 KKASSERT(object->ref_count != 0);
1024                 if (object->ref_count >= 2) {
1025                         atomic_add_int(&object->ref_count, -1);
1026                         break;
1027                 }
1028                 KKASSERT(object->ref_count == 1);
1029
1030                 /*
1031                  * 1->0 transition.  Chain through the backing_object.
1032                  * Maintain the ref until we've located the backing object,
1033                  * then re-check.
1034                  */
1035                 while ((temp = object->backing_object) != NULL) {
1036                         vm_object_hold(temp);
1037                         if (temp == object->backing_object)
1038                                 break;
1039                         vm_object_drop(temp);
1040                 }
1041
1042                 /*
1043                  * 1->0 transition verified, retry if ref_count is no longer
1044                  * 1.  Otherwise disconnect the backing_object (temp) and
1045                  * clean up.
1046                  */
1047                 if (object->ref_count != 1) {
1048                         vm_object_drop(temp);
1049                         continue;
1050                 }
1051
1052                 /*
1053                  * It shouldn't be possible for the object to be chain locked
1054                  * if we're removing the last ref on it.
1055                  */
1056                 KKASSERT((object->chainlk & (CHAINLK_EXCL|CHAINLK_MASK)) == 0);
1057
1058                 if (temp) {
1059                         if (object->flags & OBJ_ONSHADOW) {
1060                                 LIST_REMOVE(object, shadow_list);
1061                                 temp->shadow_count--;
1062                                 temp->generation++;
1063                                 vm_object_clear_flag(object, OBJ_ONSHADOW);
1064                         }
1065                         object->backing_object = NULL;
1066                 }
1067
1068                 atomic_add_int(&object->ref_count, -1);
1069                 if ((object->flags & OBJ_DEAD) == 0)
1070                         vm_object_terminate(object);
1071                 if (must_drop && temp)
1072                         vm_object_lock_swap();
1073                 if (must_drop)
1074                         vm_object_drop(object);
1075                 object = temp;
1076                 must_drop = 1;
1077         }
1078         if (must_drop && object)
1079                 vm_object_drop(object);
1080
1081         /*
1082          * Additional tail recursion on dlist.  Avoid a recursion.  Objects
1083          * on the dlist have a hold count but are not locked.
1084          */
1085         if ((dtmp = dlist) != NULL) {
1086                 dlist = dtmp->next;
1087                 object = dtmp->object;
1088                 kfree(dtmp, M_TEMP);
1089
1090                 vm_object_lock(object); /* already held, add lock */
1091                 must_drop = 1;          /* and we're responsible for it */
1092                 goto again;
1093         }
1094 }
1095
1096 /*
1097  * Destroy the specified object, freeing up related resources.
1098  *
1099  * The object must have zero references.
1100  *
1101  * The object must held.  The caller is responsible for dropping the object
1102  * after terminate returns.  Terminate does NOT drop the object.
1103  */
1104 static int vm_object_terminate_callback(vm_page_t p, void *data);
1105
1106 void
1107 vm_object_terminate(vm_object_t object)
1108 {
1109         /*
1110          * Make sure no one uses us.  Once we set OBJ_DEAD we should be
1111          * able to safely block.
1112          */
1113         ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1114         KKASSERT((object->flags & OBJ_DEAD) == 0);
1115         vm_object_set_flag(object, OBJ_DEAD);
1116
1117         /*
1118          * Wait for the pageout daemon to be done with the object
1119          */
1120         vm_object_pip_wait(object, "objtrm1");
1121
1122         KASSERT(!object->paging_in_progress,
1123                 ("vm_object_terminate: pageout in progress"));
1124
1125         /*
1126          * Clean and free the pages, as appropriate. All references to the
1127          * object are gone, so we don't need to lock it.
1128          */
1129         if (object->type == OBJT_VNODE) {
1130                 struct vnode *vp;
1131
1132                 /*
1133                  * Clean pages and flush buffers.
1134                  *
1135                  * NOTE!  TMPFS buffer flushes do not typically flush the
1136                  *        actual page to swap as this would be highly
1137                  *        inefficient, and normal filesystems usually wrap
1138                  *        page flushes with buffer cache buffers.
1139                  *
1140                  *        To deal with this we have to call vinvalbuf() both
1141                  *        before and after the vm_object_page_clean().
1142                  */
1143                 vp = (struct vnode *) object->handle;
1144                 vinvalbuf(vp, V_SAVE, 0, 0);
1145                 vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
1146                 vinvalbuf(vp, V_SAVE, 0, 0);
1147         }
1148
1149         /*
1150          * Wait for any I/O to complete, after which there had better not
1151          * be any references left on the object.
1152          */
1153         vm_object_pip_wait(object, "objtrm2");
1154
1155         if (object->ref_count != 0) {
1156                 panic("vm_object_terminate: object with references, "
1157                       "ref_count=%d", object->ref_count);
1158         }
1159
1160         /*
1161          * Cleanup any shared pmaps associated with this object.
1162          */
1163         pmap_object_free(object);
1164
1165         /*
1166          * Now free any remaining pages. For internal objects, this also
1167          * removes them from paging queues. Don't free wired pages, just
1168          * remove them from the object. 
1169          */
1170         vm_page_rb_tree_RB_SCAN(&object->rb_memq, NULL,
1171                                 vm_object_terminate_callback, NULL);
1172
1173         /*
1174          * Let the pager know object is dead.
1175          */
1176         vm_pager_deallocate(object);
1177
1178         /*
1179          * Wait for the object hold count to hit 1, clean out pages as
1180          * we go.  vmobj_token interlocks any race conditions that might
1181          * pick the object up from the vm_object_list after we have cleared
1182          * rb_memq.
1183          */
1184         for (;;) {
1185                 if (RB_ROOT(&object->rb_memq) == NULL)
1186                         break;
1187                 kprintf("vm_object_terminate: Warning, object %p "
1188                         "still has %d pages\n",
1189                         object, object->resident_page_count);
1190                 vm_page_rb_tree_RB_SCAN(&object->rb_memq, NULL,
1191                                         vm_object_terminate_callback, NULL);
1192         }
1193
1194         /*
1195          * There had better not be any pages left
1196          */
1197         KKASSERT(object->resident_page_count == 0);
1198
1199         /*
1200          * Remove the object from the global object list.
1201          */
1202         lwkt_gettoken(&vmobj_token);
1203         TAILQ_REMOVE(&vm_object_list, object, object_list);
1204         vm_object_count--;
1205         lwkt_reltoken(&vmobj_token);
1206         vm_object_dead_wakeup(object);
1207
1208         if (object->ref_count != 0) {
1209                 panic("vm_object_terminate2: object with references, "
1210                       "ref_count=%d", object->ref_count);
1211         }
1212
1213         /*
1214          * NOTE: The object hold_count is at least 1, so we cannot zfree()
1215          *       the object here.  See vm_object_drop().
1216          */
1217 }
1218
1219 /*
1220  * The caller must hold the object.
1221  */
1222 static int
1223 vm_object_terminate_callback(vm_page_t p, void *data __unused)
1224 {
1225         vm_object_t object;
1226
1227         object = p->object;
1228         vm_page_busy_wait(p, TRUE, "vmpgtrm");
1229         if (object != p->object) {
1230                 kprintf("vm_object_terminate: Warning: Encountered "
1231                         "busied page %p on queue %d\n", p, p->queue);
1232                 vm_page_wakeup(p);
1233         } else if (p->wire_count == 0) {
1234                 /*
1235                  * NOTE: p->dirty and PG_NEED_COMMIT are ignored.
1236                  */
1237                 vm_page_free(p);
1238                 mycpu->gd_cnt.v_pfree++;
1239         } else {
1240                 if (p->queue != PQ_NONE)
1241                         kprintf("vm_object_terminate: Warning: Encountered "
1242                                 "wired page %p on queue %d\n", p, p->queue);
1243                 vm_page_remove(p);
1244                 vm_page_wakeup(p);
1245         }
1246         lwkt_yield();
1247         return(0);
1248 }
1249
1250 /*
1251  * The object is dead but still has an object<->pager association.  Sleep
1252  * and return.  The caller typically retests the association in a loop.
1253  *
1254  * The caller must hold the object.
1255  */
1256 void
1257 vm_object_dead_sleep(vm_object_t object, const char *wmesg)
1258 {
1259         ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1260         if (object->handle) {
1261                 vm_object_set_flag(object, OBJ_DEADWNT);
1262                 tsleep(object, 0, wmesg, 0);
1263                 /* object may be invalid after this point */
1264         }
1265 }
1266
1267 /*
1268  * Wakeup anyone waiting for the object<->pager disassociation on
1269  * a dead object.
1270  *
1271  * The caller must hold the object.
1272  */
1273 void
1274 vm_object_dead_wakeup(vm_object_t object)
1275 {
1276         ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1277         if (object->flags & OBJ_DEADWNT) {
1278                 vm_object_clear_flag(object, OBJ_DEADWNT);
1279                 wakeup(object);
1280         }
1281 }
1282
1283 /*
1284  * Clean all dirty pages in the specified range of object.  Leaves page
1285  * on whatever queue it is currently on.   If NOSYNC is set then do not
1286  * write out pages with PG_NOSYNC set (originally comes from MAP_NOSYNC),
1287  * leaving the object dirty.
1288  *
1289  * When stuffing pages asynchronously, allow clustering.  XXX we need a
1290  * synchronous clustering mode implementation.
1291  *
1292  * Odd semantics: if start == end, we clean everything.
1293  *
1294  * The object must be locked? XXX
1295  */
1296 static int vm_object_page_clean_pass1(struct vm_page *p, void *data);
1297 static int vm_object_page_clean_pass2(struct vm_page *p, void *data);
1298
1299 void
1300 vm_object_page_clean(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1301                      int flags)
1302 {
1303         struct rb_vm_page_scan_info info;
1304         struct vnode *vp;
1305         int wholescan;
1306         int pagerflags;
1307         int generation;
1308
1309         vm_object_hold(object);
1310         if (object->type != OBJT_VNODE ||
1311             (object->flags & OBJ_MIGHTBEDIRTY) == 0) {
1312                 vm_object_drop(object);
1313                 return;
1314         }
1315
1316         pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) ? 
1317                         VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
1318         pagerflags |= (flags & OBJPC_INVAL) ? VM_PAGER_PUT_INVAL : 0;
1319
1320         vp = object->handle;
1321
1322         /*
1323          * Interlock other major object operations.  This allows us to 
1324          * temporarily clear OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY.
1325          */
1326         vm_object_set_flag(object, OBJ_CLEANING);
1327
1328         /*
1329          * Handle 'entire object' case
1330          */
1331         info.start_pindex = start;
1332         if (end == 0) {
1333                 info.end_pindex = object->size - 1;
1334         } else {
1335                 info.end_pindex = end - 1;
1336         }
1337         wholescan = (start == 0 && info.end_pindex == object->size - 1);
1338         info.limit = flags;
1339         info.pagerflags = pagerflags;
1340         info.object = object;
1341
1342         /*
1343          * If cleaning the entire object do a pass to mark the pages read-only.
1344          * If everything worked out ok, clear OBJ_WRITEABLE and
1345          * OBJ_MIGHTBEDIRTY.
1346          */
1347         if (wholescan) {
1348                 info.error = 0;
1349                 vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
1350                                         vm_object_page_clean_pass1, &info);
1351                 if (info.error == 0) {
1352                         vm_object_clear_flag(object,
1353                                              OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
1354                         if (object->type == OBJT_VNODE &&
1355                             (vp = (struct vnode *)object->handle) != NULL) {
1356                                 if (vp->v_mount &&
1357                                     (vp->v_mount->mnt_kern_flag & MNTK_THR_SYNC)) {
1358                                         vclrobjdirty(vp);
1359                                 } else {
1360                                         vclrflags(vp, VOBJDIRTY);
1361                                 }
1362                         }
1363                 }
1364         }
1365
1366         /*
1367          * Do a pass to clean all the dirty pages we find.
1368          */
1369         do {
1370                 info.error = 0;
1371                 generation = object->generation;
1372                 vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
1373                                         vm_object_page_clean_pass2, &info);
1374         } while (info.error || generation != object->generation);
1375
1376         vm_object_clear_flag(object, OBJ_CLEANING);
1377         vm_object_drop(object);
1378 }
1379
1380 /*
1381  * The caller must hold the object.
1382  */
1383 static 
1384 int
1385 vm_object_page_clean_pass1(struct vm_page *p, void *data)
1386 {
1387         struct rb_vm_page_scan_info *info = data;
1388
1389         vm_page_flag_set(p, PG_CLEANCHK);
1390         if ((info->limit & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) {
1391                 info->error = 1;
1392         } else if (vm_page_busy_try(p, FALSE) == 0) {
1393                 vm_page_protect(p, VM_PROT_READ);       /* must not block */
1394                 vm_page_wakeup(p);
1395         } else {
1396                 info->error = 1;
1397         }
1398         lwkt_yield();
1399         return(0);
1400 }
1401
1402 /*
1403  * The caller must hold the object
1404  */
1405 static 
1406 int
1407 vm_object_page_clean_pass2(struct vm_page *p, void *data)
1408 {
1409         struct rb_vm_page_scan_info *info = data;
1410         int generation;
1411
1412         /*
1413          * Do not mess with pages that were inserted after we started
1414          * the cleaning pass.
1415          */
1416         if ((p->flags & PG_CLEANCHK) == 0)
1417                 goto done;
1418
1419         generation = info->object->generation;
1420         vm_page_busy_wait(p, TRUE, "vpcwai");
1421         if (p->object != info->object ||
1422             info->object->generation != generation) {
1423                 info->error = 1;
1424                 vm_page_wakeup(p);
1425                 goto done;
1426         }
1427
1428         /*
1429          * Before wasting time traversing the pmaps, check for trivial
1430          * cases where the page cannot be dirty.
1431          */
1432         if (p->valid == 0 || (p->queue - p->pc) == PQ_CACHE) {
1433                 KKASSERT((p->dirty & p->valid) == 0 &&
1434                          (p->flags & PG_NEED_COMMIT) == 0);
1435                 vm_page_wakeup(p);
1436                 goto done;
1437         }
1438
1439         /*
1440          * Check whether the page is dirty or not.  The page has been set
1441          * to be read-only so the check will not race a user dirtying the
1442          * page.
1443          */
1444         vm_page_test_dirty(p);
1445         if ((p->dirty & p->valid) == 0 && (p->flags & PG_NEED_COMMIT) == 0) {
1446                 vm_page_flag_clear(p, PG_CLEANCHK);
1447                 vm_page_wakeup(p);
1448                 goto done;
1449         }
1450
1451         /*
1452          * If we have been asked to skip nosync pages and this is a
1453          * nosync page, skip it.  Note that the object flags were
1454          * not cleared in this case (because pass1 will have returned an
1455          * error), so we do not have to set them.
1456          */
1457         if ((info->limit & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) {
1458                 vm_page_flag_clear(p, PG_CLEANCHK);
1459                 vm_page_wakeup(p);
1460                 goto done;
1461         }
1462
1463         /*
1464          * Flush as many pages as we can.  PG_CLEANCHK will be cleared on
1465          * the pages that get successfully flushed.  Set info->error if
1466          * we raced an object modification.
1467          */
1468         vm_object_page_collect_flush(info->object, p, info->pagerflags);
1469         vm_wait_nominal();
1470 done:
1471         lwkt_yield();
1472         return(0);
1473 }
1474
1475 /*
1476  * Collect the specified page and nearby pages and flush them out.
1477  * The number of pages flushed is returned.  The passed page is busied
1478  * by the caller and we are responsible for its disposition.
1479  *
1480  * The caller must hold the object.
1481  */
1482 static void
1483 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags)
1484 {
1485         int error;
1486         int is;
1487         int ib;
1488         int i;
1489         int page_base;
1490         vm_pindex_t pi;
1491         vm_page_t ma[BLIST_MAX_ALLOC];
1492
1493         ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1494
1495         pi = p->pindex;
1496         page_base = pi % BLIST_MAX_ALLOC;
1497         ma[page_base] = p;
1498         ib = page_base - 1;
1499         is = page_base + 1;
1500
1501         while (ib >= 0) {
1502                 vm_page_t tp;
1503
1504                 tp = vm_page_lookup_busy_try(object, pi - page_base + ib,
1505                                              TRUE, &error);
1506                 if (error)
1507                         break;
1508                 if (tp == NULL)
1509                         break;
1510                 if ((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
1511                     (tp->flags & PG_CLEANCHK) == 0) {
1512                         vm_page_wakeup(tp);
1513                         break;
1514                 }
1515                 if ((tp->queue - tp->pc) == PQ_CACHE) {
1516                         vm_page_flag_clear(tp, PG_CLEANCHK);
1517                         vm_page_wakeup(tp);
1518                         break;
1519                 }
1520                 vm_page_test_dirty(tp);
1521                 if ((tp->dirty & tp->valid) == 0 &&
1522                     (tp->flags & PG_NEED_COMMIT) == 0) {
1523                         vm_page_flag_clear(tp, PG_CLEANCHK);
1524                         vm_page_wakeup(tp);
1525                         break;
1526                 }
1527                 ma[ib] = tp;
1528                 --ib;
1529         }
1530         ++ib;   /* fixup */
1531
1532         while (is < BLIST_MAX_ALLOC &&
1533                pi - page_base + is < object->size) {
1534                 vm_page_t tp;
1535
1536                 tp = vm_page_lookup_busy_try(object, pi - page_base + is,
1537                                              TRUE, &error);
1538                 if (error)
1539                         break;
1540                 if (tp == NULL)
1541                         break;
1542                 if ((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
1543                     (tp->flags & PG_CLEANCHK) == 0) {
1544                         vm_page_wakeup(tp);
1545                         break;
1546                 }
1547                 if ((tp->queue - tp->pc) == PQ_CACHE) {
1548                         vm_page_flag_clear(tp, PG_CLEANCHK);
1549                         vm_page_wakeup(tp);
1550                         break;
1551                 }
1552                 vm_page_test_dirty(tp);
1553                 if ((tp->dirty & tp->valid) == 0 &&
1554                     (tp->flags & PG_NEED_COMMIT) == 0) {
1555                         vm_page_flag_clear(tp, PG_CLEANCHK);
1556                         vm_page_wakeup(tp);
1557                         break;
1558                 }
1559                 ma[is] = tp;
1560                 ++is;
1561         }
1562
1563         /*
1564          * All pages in the ma[] array are busied now
1565          */
1566         for (i = ib; i < is; ++i) {
1567                 vm_page_flag_clear(ma[i], PG_CLEANCHK);
1568                 vm_page_hold(ma[i]);    /* XXX need this any more? */
1569         }
1570         vm_pageout_flush(&ma[ib], is - ib, pagerflags);
1571         for (i = ib; i < is; ++i)       /* XXX need this any more? */
1572                 vm_page_unhold(ma[i]);
1573 }
1574
1575 /*
1576  * Same as vm_object_pmap_copy, except range checking really
1577  * works, and is meant for small sections of an object.
1578  *
1579  * This code protects resident pages by making them read-only
1580  * and is typically called on a fork or split when a page
1581  * is converted to copy-on-write.  
1582  *
1583  * NOTE: If the page is already at VM_PROT_NONE, calling
1584  * vm_page_protect will have no effect.
1585  */
1586 void
1587 vm_object_pmap_copy_1(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1588 {
1589         vm_pindex_t idx;
1590         vm_page_t p;
1591
1592         if (object == NULL || (object->flags & OBJ_WRITEABLE) == 0)
1593                 return;
1594
1595         vm_object_hold(object);
1596         for (idx = start; idx < end; idx++) {
1597                 p = vm_page_lookup(object, idx);
1598                 if (p == NULL)
1599                         continue;
1600                 vm_page_protect(p, VM_PROT_READ);
1601         }
1602         vm_object_drop(object);
1603 }
1604
1605 /*
1606  * Removes all physical pages in the specified object range from all
1607  * physical maps.
1608  *
1609  * The object must *not* be locked.
1610  */
1611
1612 static int vm_object_pmap_remove_callback(vm_page_t p, void *data);
1613
1614 void
1615 vm_object_pmap_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1616 {
1617         struct rb_vm_page_scan_info info;
1618
1619         if (object == NULL)
1620                 return;
1621         info.start_pindex = start;
1622         info.end_pindex = end - 1;
1623
1624         vm_object_hold(object);
1625         vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
1626                                 vm_object_pmap_remove_callback, &info);
1627         if (start == 0 && end == object->size)
1628                 vm_object_clear_flag(object, OBJ_WRITEABLE);
1629         vm_object_drop(object);
1630 }
1631
1632 /*
1633  * The caller must hold the object
1634  */
1635 static int
1636 vm_object_pmap_remove_callback(vm_page_t p, void *data __unused)
1637 {
1638         vm_page_protect(p, VM_PROT_NONE);
1639         return(0);
1640 }
1641
1642 /*
1643  * Implements the madvise function at the object/page level.
1644  *
1645  * MADV_WILLNEED        (any object)
1646  *
1647  *      Activate the specified pages if they are resident.
1648  *
1649  * MADV_DONTNEED        (any object)
1650  *
1651  *      Deactivate the specified pages if they are resident.
1652  *
1653  * MADV_FREE    (OBJT_DEFAULT/OBJT_SWAP objects, OBJ_ONEMAPPING only)
1654  *
1655  *      Deactivate and clean the specified pages if they are
1656  *      resident.  This permits the process to reuse the pages
1657  *      without faulting or the kernel to reclaim the pages
1658  *      without I/O.
1659  *
1660  * No requirements.
1661  */
1662 void
1663 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, int count, int advise)
1664 {
1665         vm_pindex_t end, tpindex;
1666         vm_object_t tobject;
1667         vm_object_t xobj;
1668         vm_page_t m;
1669         int error;
1670
1671         if (object == NULL)
1672                 return;
1673
1674         end = pindex + count;
1675
1676         vm_object_hold(object);
1677         tobject = object;
1678
1679         /*
1680          * Locate and adjust resident pages
1681          */
1682         for (; pindex < end; pindex += 1) {
1683 relookup:
1684                 if (tobject != object)
1685                         vm_object_drop(tobject);
1686                 tobject = object;
1687                 tpindex = pindex;
1688 shadowlookup:
1689                 /*
1690                  * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
1691                  * and those pages must be OBJ_ONEMAPPING.
1692                  */
1693                 if (advise == MADV_FREE) {
1694                         if ((tobject->type != OBJT_DEFAULT &&
1695                              tobject->type != OBJT_SWAP) ||
1696                             (tobject->flags & OBJ_ONEMAPPING) == 0) {
1697                                 continue;
1698                         }
1699                 }
1700
1701                 m = vm_page_lookup_busy_try(tobject, tpindex, TRUE, &error);
1702
1703                 if (error) {
1704                         vm_page_sleep_busy(m, TRUE, "madvpo");
1705                         goto relookup;
1706                 }
1707                 if (m == NULL) {
1708                         /*
1709                          * There may be swap even if there is no backing page
1710                          */
1711                         if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1712                                 swap_pager_freespace(tobject, tpindex, 1);
1713
1714                         /*
1715                          * next object
1716                          */
1717                         while ((xobj = tobject->backing_object) != NULL) {
1718                                 KKASSERT(xobj != object);
1719                                 vm_object_hold(xobj);
1720                                 if (xobj == tobject->backing_object)
1721                                         break;
1722                                 vm_object_drop(xobj);
1723                         }
1724                         if (xobj == NULL)
1725                                 continue;
1726                         tpindex += OFF_TO_IDX(tobject->backing_object_offset);
1727                         if (tobject != object) {
1728                                 vm_object_lock_swap();
1729                                 vm_object_drop(tobject);
1730                         }
1731                         tobject = xobj;
1732                         goto shadowlookup;
1733                 }
1734
1735                 /*
1736                  * If the page is not in a normal active state, we skip it.
1737                  * If the page is not managed there are no page queues to
1738                  * mess with.  Things can break if we mess with pages in
1739                  * any of the below states.
1740                  */
1741                 if (m->wire_count ||
1742                     (m->flags & (PG_UNMANAGED | PG_NEED_COMMIT)) ||
1743                     m->valid != VM_PAGE_BITS_ALL
1744                 ) {
1745                         vm_page_wakeup(m);
1746                         continue;
1747                 }
1748
1749                 /*
1750                  * Theoretically once a page is known not to be busy, an
1751                  * interrupt cannot come along and rip it out from under us.
1752                  */
1753
1754                 if (advise == MADV_WILLNEED) {
1755                         vm_page_activate(m);
1756                 } else if (advise == MADV_DONTNEED) {
1757                         vm_page_dontneed(m);
1758                 } else if (advise == MADV_FREE) {
1759                         /*
1760                          * Mark the page clean.  This will allow the page
1761                          * to be freed up by the system.  However, such pages
1762                          * are often reused quickly by malloc()/free()
1763                          * so we do not do anything that would cause
1764                          * a page fault if we can help it.
1765                          *
1766                          * Specifically, we do not try to actually free
1767                          * the page now nor do we try to put it in the
1768                          * cache (which would cause a page fault on reuse).
1769                          *
1770                          * But we do make the page is freeable as we
1771                          * can without actually taking the step of unmapping
1772                          * it.
1773                          */
1774                         pmap_clear_modify(m);
1775                         m->dirty = 0;
1776                         m->act_count = 0;
1777                         vm_page_dontneed(m);
1778                         if (tobject->type == OBJT_SWAP)
1779                                 swap_pager_freespace(tobject, tpindex, 1);
1780                 }
1781                 vm_page_wakeup(m);
1782         }       
1783         if (tobject != object)
1784                 vm_object_drop(tobject);
1785         vm_object_drop(object);
1786 }
1787
1788 /*
1789  * Create a new object which is backed by the specified existing object
1790  * range.  Replace the pointer and offset that was pointing at the existing
1791  * object with the pointer/offset for the new object.
1792  *
1793  * No other requirements.
1794  */
1795 void
1796 vm_object_shadow(vm_object_t *objectp, vm_ooffset_t *offset, vm_size_t length,
1797                  int addref)
1798 {
1799         vm_object_t source;
1800         vm_object_t result;
1801         int useshadowlist;
1802
1803         source = *objectp;
1804
1805         /*
1806          * Don't create the new object if the old object isn't shared.
1807          * We have to chain wait before adding the reference to avoid
1808          * racing a collapse or deallocation.
1809          *
1810          * Add the additional ref to source here to avoid racing a later
1811          * collapse or deallocation. Clear the ONEMAPPING flag whether
1812          * addref is TRUE or not in this case because the original object
1813          * will be shadowed.
1814          */
1815         useshadowlist = 0;
1816         if (source) {
1817                 if (source->type != OBJT_VNODE) {
1818                         useshadowlist = 1;
1819                         vm_object_hold(source);
1820                         vm_object_chain_wait(source, 0);
1821                         if (source->ref_count == 1 &&
1822                             source->handle == NULL &&
1823                             (source->type == OBJT_DEFAULT ||
1824                              source->type == OBJT_SWAP)) {
1825                                 if (addref) {
1826                                         vm_object_reference_locked(source);
1827                                         vm_object_clear_flag(source, OBJ_ONEMAPPING);
1828                                 }
1829                                 vm_object_drop(source);
1830                                 return;
1831                         }
1832                         vm_object_reference_locked(source);
1833                         vm_object_clear_flag(source, OBJ_ONEMAPPING);
1834                 } else {
1835                         vm_object_reference_quick(source);
1836                         vm_object_clear_flag(source, OBJ_ONEMAPPING);
1837                 }
1838         }
1839
1840         /*
1841          * Allocate a new object with the given length.  The new object
1842          * is returned referenced but we may have to add another one.
1843          * If we are adding a second reference we must clear OBJ_ONEMAPPING.
1844          * (typically because the caller is about to clone a vm_map_entry).
1845          *
1846          * The source object currently has an extra reference to prevent
1847          * collapses into it while we mess with its shadow list, which
1848          * we will remove later in this routine.
1849          */
1850         if ((result = vm_object_allocate(OBJT_DEFAULT, length)) == NULL)
1851                 panic("vm_object_shadow: no object for shadowing");
1852         vm_object_hold(result);
1853         if (addref) {
1854                 vm_object_reference_locked(result);
1855                 vm_object_clear_flag(result, OBJ_ONEMAPPING);
1856         }
1857
1858         /*
1859          * The new object shadows the source object.  Chain wait before
1860          * adjusting shadow_count or the shadow list to avoid races.
1861          *
1862          * Try to optimize the result object's page color when shadowing
1863          * in order to maintain page coloring consistency in the combined 
1864          * shadowed object.
1865          *
1866          * SHADOWING IS NOT APPLICABLE TO OBJT_VNODE OBJECTS
1867          */
1868         KKASSERT(result->backing_object == NULL);
1869         result->backing_object = source;
1870         if (source) {
1871                 if (useshadowlist) {
1872                         vm_object_chain_wait(source, 0);
1873                         LIST_INSERT_HEAD(&source->shadow_head,
1874                                          result, shadow_list);
1875                         source->shadow_count++;
1876                         source->generation++;
1877                         vm_object_set_flag(result, OBJ_ONSHADOW);
1878                 }
1879                 /* cpu localization twist */
1880                 result->pg_color = (int)(intptr_t)curthread;
1881         }
1882
1883         /*
1884          * Adjust the return storage.  Drop the ref on source before
1885          * returning.
1886          */
1887         result->backing_object_offset = *offset;
1888         vm_object_drop(result);
1889         *offset = 0;
1890         if (source) {
1891                 if (useshadowlist) {
1892                         vm_object_deallocate_locked(source);
1893                         vm_object_drop(source);
1894                 } else {
1895                         vm_object_deallocate(source);
1896                 }
1897         }
1898
1899         /*
1900          * Return the new things
1901          */
1902         *objectp = result;
1903 }
1904
1905 #define OBSC_TEST_ALL_SHADOWED  0x0001
1906 #define OBSC_COLLAPSE_NOWAIT    0x0002
1907 #define OBSC_COLLAPSE_WAIT      0x0004
1908
1909 static int vm_object_backing_scan_callback(vm_page_t p, void *data);
1910
1911 /*
1912  * The caller must hold the object.
1913  */
1914 static __inline int
1915 vm_object_backing_scan(vm_object_t object, vm_object_t backing_object, int op)
1916 {
1917         struct rb_vm_page_scan_info info;
1918
1919         vm_object_assert_held(object);
1920         vm_object_assert_held(backing_object);
1921
1922         KKASSERT(backing_object == object->backing_object);
1923         info.backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1924
1925         /*
1926          * Initial conditions
1927          */
1928         if (op & OBSC_TEST_ALL_SHADOWED) {
1929                 /*
1930                  * We do not want to have to test for the existence of
1931                  * swap pages in the backing object.  XXX but with the
1932                  * new swapper this would be pretty easy to do.
1933                  *
1934                  * XXX what about anonymous MAP_SHARED memory that hasn't
1935                  * been ZFOD faulted yet?  If we do not test for this, the
1936                  * shadow test may succeed! XXX
1937                  */
1938                 if (backing_object->type != OBJT_DEFAULT)
1939                         return(0);
1940         }
1941         if (op & OBSC_COLLAPSE_WAIT) {
1942                 KKASSERT((backing_object->flags & OBJ_DEAD) == 0);
1943                 vm_object_set_flag(backing_object, OBJ_DEAD);
1944                 lwkt_gettoken(&vmobj_token);
1945                 TAILQ_REMOVE(&vm_object_list, backing_object, object_list);
1946                 vm_object_count--;
1947                 lwkt_reltoken(&vmobj_token);
1948                 vm_object_dead_wakeup(backing_object);
1949         }
1950
1951         /*
1952          * Our scan.   We have to retry if a negative error code is returned,
1953          * otherwise 0 or 1 will be returned in info.error.  0 Indicates that
1954          * the scan had to be stopped because the parent does not completely
1955          * shadow the child.
1956          */
1957         info.object = object;
1958         info.backing_object = backing_object;
1959         info.limit = op;
1960         do {
1961                 info.error = 1;
1962                 vm_page_rb_tree_RB_SCAN(&backing_object->rb_memq, NULL,
1963                                         vm_object_backing_scan_callback,
1964                                         &info);
1965         } while (info.error < 0);
1966
1967         return(info.error);
1968 }
1969
1970 /*
1971  * The caller must hold the object.
1972  */
1973 static int
1974 vm_object_backing_scan_callback(vm_page_t p, void *data)
1975 {
1976         struct rb_vm_page_scan_info *info = data;
1977         vm_object_t backing_object;
1978         vm_object_t object;
1979         vm_pindex_t pindex;
1980         vm_pindex_t new_pindex;
1981         vm_pindex_t backing_offset_index;
1982         int op;
1983
1984         pindex = p->pindex;
1985         new_pindex = pindex - info->backing_offset_index;
1986         op = info->limit;
1987         object = info->object;
1988         backing_object = info->backing_object;
1989         backing_offset_index = info->backing_offset_index;
1990
1991         if (op & OBSC_TEST_ALL_SHADOWED) {
1992                 vm_page_t pp;
1993
1994                 /*
1995                  * Ignore pages outside the parent object's range
1996                  * and outside the parent object's mapping of the 
1997                  * backing object.
1998                  *
1999                  * note that we do not busy the backing object's
2000                  * page.
2001                  */
2002                 if (pindex < backing_offset_index ||
2003                     new_pindex >= object->size
2004                 ) {
2005                         return(0);
2006                 }
2007
2008                 /*
2009                  * See if the parent has the page or if the parent's
2010                  * object pager has the page.  If the parent has the
2011                  * page but the page is not valid, the parent's
2012                  * object pager must have the page.
2013                  *
2014                  * If this fails, the parent does not completely shadow
2015                  * the object and we might as well give up now.
2016                  */
2017                 pp = vm_page_lookup(object, new_pindex);
2018                 if ((pp == NULL || pp->valid == 0) &&
2019                     !vm_pager_has_page(object, new_pindex)
2020                 ) {
2021                         info->error = 0;        /* problemo */
2022                         return(-1);             /* stop the scan */
2023                 }
2024         }
2025
2026         /*
2027          * Check for busy page.  Note that we may have lost (p) when we
2028          * possibly blocked above.
2029          */
2030         if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) {
2031                 vm_page_t pp;
2032
2033                 if (vm_page_busy_try(p, TRUE)) {
2034                         if (op & OBSC_COLLAPSE_NOWAIT) {
2035                                 return(0);
2036                         } else {
2037                                 /*
2038                                  * If we slept, anything could have
2039                                  * happened.   Ask that the scan be restarted.
2040                                  *
2041                                  * Since the object is marked dead, the
2042                                  * backing offset should not have changed.  
2043                                  */
2044                                 vm_page_sleep_busy(p, TRUE, "vmocol");
2045                                 info->error = -1;
2046                                 return(-1);
2047                         }
2048                 }
2049
2050                 /*
2051                  * If (p) is no longer valid restart the scan.
2052                  */
2053                 if (p->object != backing_object || p->pindex != pindex) {
2054                         kprintf("vm_object_backing_scan: Warning: page "
2055                                 "%p ripped out from under us\n", p);
2056                         vm_page_wakeup(p);
2057                         info->error = -1;
2058                         return(-1);
2059                 }
2060
2061                 if (op & OBSC_COLLAPSE_NOWAIT) {
2062                         if (p->valid == 0 ||
2063                             p->wire_count ||
2064                             (p->flags & PG_NEED_COMMIT)) {
2065                                 vm_page_wakeup(p);
2066                                 return(0);
2067                         }
2068                 } else {
2069                         /* XXX what if p->valid == 0 , hold_count, etc? */
2070                 }
2071
2072                 KASSERT(
2073                     p->object == backing_object,
2074                     ("vm_object_qcollapse(): object mismatch")
2075                 );
2076
2077                 /*
2078                  * Destroy any associated swap
2079                  */
2080                 if (backing_object->type == OBJT_SWAP)
2081                         swap_pager_freespace(backing_object, p->pindex, 1);
2082
2083                 if (
2084                     p->pindex < backing_offset_index ||
2085                     new_pindex >= object->size
2086                 ) {
2087                         /*
2088                          * Page is out of the parent object's range, we 
2089                          * can simply destroy it. 
2090                          */
2091                         vm_page_protect(p, VM_PROT_NONE);
2092                         vm_page_free(p);
2093                         return(0);
2094                 }
2095
2096                 pp = vm_page_lookup(object, new_pindex);
2097                 if (pp != NULL || vm_pager_has_page(object, new_pindex)) {
2098                         /*
2099                          * page already exists in parent OR swap exists
2100                          * for this location in the parent.  Destroy 
2101                          * the original page from the backing object.
2102                          *
2103                          * Leave the parent's page alone
2104                          */
2105                         vm_page_protect(p, VM_PROT_NONE);
2106                         vm_page_free(p);
2107                         return(0);
2108                 }
2109
2110                 /*
2111                  * Page does not exist in parent, rename the
2112                  * page from the backing object to the main object. 
2113                  *
2114                  * If the page was mapped to a process, it can remain 
2115                  * mapped through the rename.
2116                  */
2117                 if ((p->queue - p->pc) == PQ_CACHE)
2118                         vm_page_deactivate(p);
2119
2120                 vm_page_rename(p, object, new_pindex);
2121                 vm_page_wakeup(p);
2122                 /* page automatically made dirty by rename */
2123         }
2124         return(0);
2125 }
2126
2127 /*
2128  * This version of collapse allows the operation to occur earlier and
2129  * when paging_in_progress is true for an object...  This is not a complete
2130  * operation, but should plug 99.9% of the rest of the leaks.
2131  *
2132  * The caller must hold the object and backing_object and both must be
2133  * chainlocked.
2134  *
2135  * (only called from vm_object_collapse)
2136  */
2137 static void
2138 vm_object_qcollapse(vm_object_t object, vm_object_t backing_object)
2139 {
2140         if (backing_object->ref_count == 1) {
2141                 atomic_add_int(&backing_object->ref_count, 2);
2142                 vm_object_backing_scan(object, backing_object,
2143                                        OBSC_COLLAPSE_NOWAIT);
2144                 atomic_add_int(&backing_object->ref_count, -2);
2145         }
2146 }
2147
2148 /*
2149  * Collapse an object with the object backing it.  Pages in the backing
2150  * object are moved into the parent, and the backing object is deallocated.
2151  * Any conflict is resolved in favor of the parent's existing pages.
2152  *
2153  * object must be held and chain-locked on call.
2154  *
2155  * The caller must have an extra ref on object to prevent a race from
2156  * destroying it during the collapse.
2157  */
2158 void
2159 vm_object_collapse(vm_object_t object, struct vm_object_dealloc_list **dlistp)
2160 {
2161         struct vm_object_dealloc_list *dlist = NULL;
2162         vm_object_t backing_object;
2163
2164         /*
2165          * Only one thread is attempting a collapse at any given moment.
2166          * There are few restrictions for (object) that callers of this
2167          * function check so reentrancy is likely.
2168          */
2169         KKASSERT(object != NULL);
2170         vm_object_assert_held(object);
2171         KKASSERT(object->chainlk & (CHAINLK_MASK | CHAINLK_EXCL));
2172
2173         for (;;) {
2174                 vm_object_t bbobj;
2175                 int dodealloc;
2176
2177                 /*
2178                  * We can only collapse a DEFAULT/SWAP object with a
2179                  * DEFAULT/SWAP object.
2180                  */
2181                 if (object->type != OBJT_DEFAULT && object->type != OBJT_SWAP) {
2182                         backing_object = NULL;
2183                         break;
2184                 }
2185
2186                 backing_object = object->backing_object;
2187                 if (backing_object == NULL)
2188                         break;
2189                 if (backing_object->type != OBJT_DEFAULT &&
2190                     backing_object->type != OBJT_SWAP) {
2191                         backing_object = NULL;
2192                         break;
2193                 }
2194
2195                 /*
2196                  * Hold the backing_object and check for races
2197                  */
2198                 vm_object_hold(backing_object);
2199                 if (backing_object != object->backing_object ||
2200                     (backing_object->type != OBJT_DEFAULT &&
2201                      backing_object->type != OBJT_SWAP)) {
2202                         vm_object_drop(backing_object);
2203                         continue;
2204                 }
2205
2206                 /*
2207                  * Chain-lock the backing object too because if we
2208                  * successfully merge its pages into the top object we
2209                  * will collapse backing_object->backing_object as the
2210                  * new backing_object.  Re-check that it is still our
2211                  * backing object.
2212                  */
2213                 vm_object_chain_acquire(backing_object, 0);
2214                 if (backing_object != object->backing_object) {
2215                         vm_object_chain_release(backing_object);
2216                         vm_object_drop(backing_object);
2217                         continue;
2218                 }
2219
2220                 /*
2221                  * we check the backing object first, because it is most likely
2222                  * not collapsable.
2223                  */
2224                 if (backing_object->handle != NULL ||
2225                     (backing_object->type != OBJT_DEFAULT &&
2226                      backing_object->type != OBJT_SWAP) ||
2227                     (backing_object->flags & OBJ_DEAD) ||
2228                     object->handle != NULL ||
2229                     (object->type != OBJT_DEFAULT &&
2230                      object->type != OBJT_SWAP) ||
2231                     (object->flags & OBJ_DEAD)) {
2232                         break;
2233                 }
2234
2235                 /*
2236                  * If paging is in progress we can't do a normal collapse.
2237                  */
2238                 if (
2239                     object->paging_in_progress != 0 ||
2240                     backing_object->paging_in_progress != 0
2241                 ) {
2242                         vm_object_qcollapse(object, backing_object);
2243                         break;
2244                 }
2245
2246                 /*
2247                  * We know that we can either collapse the backing object (if
2248                  * the parent is the only reference to it) or (perhaps) have
2249                  * the parent bypass the object if the parent happens to shadow
2250                  * all the resident pages in the entire backing object.
2251                  *
2252                  * This is ignoring pager-backed pages such as swap pages.
2253                  * vm_object_backing_scan fails the shadowing test in this
2254                  * case.
2255                  */
2256                 if (backing_object->ref_count == 1) {
2257                         /*
2258                          * If there is exactly one reference to the backing
2259                          * object, we can collapse it into the parent.  
2260                          */
2261                         KKASSERT(object->backing_object == backing_object);
2262                         vm_object_backing_scan(object, backing_object,
2263                                                OBSC_COLLAPSE_WAIT);
2264
2265                         /*
2266                          * Move the pager from backing_object to object.
2267                          */
2268                         if (backing_object->type == OBJT_SWAP) {
2269                                 vm_object_pip_add(backing_object, 1);
2270
2271                                 /*
2272                                  * scrap the paging_offset junk and do a 
2273                                  * discrete copy.  This also removes major 
2274                                  * assumptions about how the swap-pager 
2275                                  * works from where it doesn't belong.  The
2276                                  * new swapper is able to optimize the
2277                                  * destroy-source case.
2278                                  */
2279                                 vm_object_pip_add(object, 1);
2280                                 swap_pager_copy(backing_object, object,
2281                                     OFF_TO_IDX(object->backing_object_offset),
2282                                     TRUE);
2283                                 vm_object_pip_wakeup(object);
2284                                 vm_object_pip_wakeup(backing_object);
2285                         }
2286
2287                         /*
2288                          * Object now shadows whatever backing_object did.
2289                          * Remove object from backing_object's shadow_list.
2290                          */
2291                         KKASSERT(object->backing_object == backing_object);
2292                         if (object->flags & OBJ_ONSHADOW) {
2293                                 LIST_REMOVE(object, shadow_list);
2294                                 backing_object->shadow_count--;
2295                                 backing_object->generation++;
2296                                 vm_object_clear_flag(object, OBJ_ONSHADOW);
2297                         }
2298
2299                         /*
2300                          * backing_object->backing_object moves from within
2301                          * backing_object to within object.
2302                          *
2303                          * OBJT_VNODE bbobj's should have empty shadow lists.
2304                          */
2305                         while ((bbobj = backing_object->backing_object) != NULL) {
2306                                 if (bbobj->type == OBJT_VNODE)
2307                                         vm_object_hold_shared(bbobj);
2308                                 else
2309                                         vm_object_hold(bbobj);
2310                                 if (bbobj == backing_object->backing_object)
2311                                         break;
2312                                 vm_object_drop(bbobj);
2313                         }
2314                         if (bbobj) {
2315                                 if (backing_object->flags & OBJ_ONSHADOW) {
2316                                         /* not locked exclusively if vnode */
2317                                         KKASSERT(bbobj->type != OBJT_VNODE);
2318                                         LIST_REMOVE(backing_object,
2319                                                     shadow_list);
2320                                         bbobj->shadow_count--;
2321                                         bbobj->generation++;
2322                                         vm_object_clear_flag(backing_object,
2323                                                              OBJ_ONSHADOW);
2324                                 }
2325                                 backing_object->backing_object = NULL;
2326                         }
2327                         object->backing_object = bbobj;
2328                         if (bbobj) {
2329                                 if (bbobj->type != OBJT_VNODE) {
2330                                         LIST_INSERT_HEAD(&bbobj->shadow_head,
2331                                                          object, shadow_list);
2332                                         bbobj->shadow_count++;
2333                                         bbobj->generation++;
2334                                         vm_object_set_flag(object,
2335                                                            OBJ_ONSHADOW);
2336                                 }
2337                         }
2338
2339                         object->backing_object_offset +=
2340                                 backing_object->backing_object_offset;
2341
2342                         vm_object_drop(bbobj);
2343
2344                         /*
2345                          * Discard the old backing_object.  Nothing should be
2346                          * able to ref it, other than a vm_map_split(),
2347                          * and vm_map_split() will stall on our chain lock.
2348                          * And we control the parent so it shouldn't be
2349                          * possible for it to go away either.
2350                          *
2351                          * Since the backing object has no pages, no pager
2352                          * left, and no object references within it, all
2353                          * that is necessary is to dispose of it.
2354                          */
2355                         KASSERT(backing_object->ref_count == 1,
2356                                 ("backing_object %p was somehow "
2357                                  "re-referenced during collapse!",
2358                                  backing_object));
2359                         KASSERT(RB_EMPTY(&backing_object->rb_memq),
2360                                 ("backing_object %p somehow has left "
2361                                  "over pages during collapse!",
2362                                  backing_object));
2363
2364                         /*
2365                          * The object can be destroyed.
2366                          *
2367                          * XXX just fall through and dodealloc instead
2368                          *     of forcing destruction?
2369                          */
2370                         atomic_add_int(&backing_object->ref_count, -1);
2371                         if ((backing_object->flags & OBJ_DEAD) == 0)
2372                                 vm_object_terminate(backing_object);
2373                         object_collapses++;
2374                         dodealloc = 0;
2375                 } else {
2376                         /*
2377                          * If we do not entirely shadow the backing object,
2378                          * there is nothing we can do so we give up.
2379                          */
2380                         if (vm_object_backing_scan(object, backing_object,
2381                                                 OBSC_TEST_ALL_SHADOWED) == 0) {
2382                                 break;
2383                         }
2384
2385                         /*
2386                          * bbobj is backing_object->backing_object.  Since
2387                          * object completely shadows backing_object we can
2388                          * bypass it and become backed by bbobj instead.
2389                          *
2390                          * The shadow list for vnode backing objects is not
2391                          * used and a shared hold is allowed.
2392                          */
2393                         while ((bbobj = backing_object->backing_object) != NULL) {
2394                                 if (bbobj->type == OBJT_VNODE)
2395                                         vm_object_hold_shared(bbobj);
2396                                 else
2397                                         vm_object_hold(bbobj);
2398                                 if (bbobj == backing_object->backing_object)
2399                                         break;
2400                                 vm_object_drop(bbobj);
2401                         }
2402
2403                         /*
2404                          * Make object shadow bbobj instead of backing_object.
2405                          * Remove object from backing_object's shadow list.
2406                          *
2407                          * Deallocating backing_object will not remove
2408                          * it, since its reference count is at least 2.
2409                          */
2410                         KKASSERT(object->backing_object == backing_object);
2411                         if (object->flags & OBJ_ONSHADOW) {
2412                                 LIST_REMOVE(object, shadow_list);
2413                                 backing_object->shadow_count--;
2414                                 backing_object->generation++;
2415                                 vm_object_clear_flag(object, OBJ_ONSHADOW);
2416                         }
2417
2418                         /*
2419                          * Add a ref to bbobj, bbobj now shadows object.
2420                          *
2421                          * NOTE: backing_object->backing_object still points
2422                          *       to bbobj.  That relationship remains intact
2423                          *       because backing_object has > 1 ref, so
2424                          *       someone else is pointing to it (hence why
2425                          *       we can't collapse it into object and can
2426                          *       only handle the all-shadowed bypass case).
2427                          */
2428                         if (bbobj) {
2429                                 if (bbobj->type != OBJT_VNODE) {
2430                                         vm_object_chain_wait(bbobj, 0);
2431                                         vm_object_reference_locked(bbobj);
2432                                         LIST_INSERT_HEAD(&bbobj->shadow_head,
2433                                                          object, shadow_list);
2434                                         bbobj->shadow_count++;
2435                                         bbobj->generation++;
2436                                         vm_object_set_flag(object,
2437                                                            OBJ_ONSHADOW);
2438                                 } else {
2439                                         vm_object_reference_quick(bbobj);
2440                                 }
2441                                 object->backing_object_offset +=
2442                                         backing_object->backing_object_offset;
2443                                 object->backing_object = bbobj;
2444                                 vm_object_drop(bbobj);
2445                         } else {
2446                                 object->backing_object = NULL;
2447                         }
2448
2449                         /*
2450                          * Drop the reference count on backing_object.  To
2451                          * handle ref_count races properly we can't assume
2452                          * that the ref_count is still at least 2 so we
2453                          * have to actually call vm_object_deallocate()
2454                          * (after clearing the chainlock).
2455                          */
2456                         object_bypasses++;
2457                         dodealloc = 1;
2458                 }
2459
2460                 /*
2461                  * Ok, we want to loop on the new object->bbobj association,
2462                  * possibly collapsing it further.  However if dodealloc is
2463                  * non-zero we have to deallocate the backing_object which
2464                  * itself can potentially undergo a collapse, creating a
2465                  * recursion depth issue with the LWKT token subsystem.
2466                  *
2467                  * In the case where we must deallocate the backing_object
2468                  * it is possible now that the backing_object has a single
2469                  * shadow count on some other object (not represented here
2470                  * as yet), since it no longer shadows us.  Thus when we
2471                  * call vm_object_deallocate() it may attempt to collapse
2472                  * itself into its remaining parent.
2473                  */
2474                 if (dodealloc) {
2475                         struct vm_object_dealloc_list *dtmp;
2476
2477                         vm_object_chain_release(backing_object);
2478                         vm_object_unlock(backing_object);
2479                         /* backing_object remains held */
2480
2481                         /*
2482                          * Auto-deallocation list for caller convenience.
2483                          */
2484                         if (dlistp == NULL)
2485                                 dlistp = &dlist;
2486
2487                         dtmp = kmalloc(sizeof(*dtmp), M_TEMP, M_WAITOK);
2488                         dtmp->object = backing_object;
2489                         dtmp->next = *dlistp;
2490                         *dlistp = dtmp;
2491                 } else {
2492                         vm_object_chain_release(backing_object);
2493                         vm_object_drop(backing_object);
2494                 }
2495                 /* backing_object = NULL; not needed */
2496                 /* loop */
2497         }
2498
2499         /*
2500          * Clean up any left over backing_object
2501          */
2502         if (backing_object) {
2503                 vm_object_chain_release(backing_object);
2504                 vm_object_drop(backing_object);
2505         }
2506
2507         /*
2508          * Clean up any auto-deallocation list.  This is a convenience
2509          * for top-level callers so they don't have to pass &dlist.
2510          * Do not clean up any caller-passed dlistp, the caller will
2511          * do that.
2512          */
2513         if (dlist)
2514                 vm_object_deallocate_list(&dlist);
2515
2516 }
2517
2518 /*
2519  * vm_object_collapse() may collect additional objects in need of
2520  * deallocation.  This routine deallocates these objects.  The
2521  * deallocation itself can trigger additional collapses (which the
2522  * deallocate function takes care of).  This procedure is used to
2523  * reduce procedural recursion since these vm_object shadow chains
2524  * can become quite long.
2525  */
2526 void
2527 vm_object_deallocate_list(struct vm_object_dealloc_list **dlistp)
2528 {
2529         struct vm_object_dealloc_list *dlist;
2530
2531         while ((dlist = *dlistp) != NULL) {
2532                 *dlistp = dlist->next;
2533                 vm_object_lock(dlist->object);
2534                 vm_object_deallocate_locked(dlist->object);
2535                 vm_object_drop(dlist->object);
2536                 kfree(dlist, M_TEMP);
2537         }
2538 }
2539
2540 /*
2541  * Removes all physical pages in the specified object range from the
2542  * object's list of pages.
2543  *
2544  * No requirements.
2545  */
2546 static int vm_object_page_remove_callback(vm_page_t p, void *data);
2547
2548 void
2549 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
2550                       boolean_t clean_only)
2551 {
2552         struct rb_vm_page_scan_info info;
2553         int all;
2554
2555         /*
2556          * Degenerate cases and assertions
2557          */
2558         vm_object_hold(object);
2559         if (object == NULL ||
2560             (object->resident_page_count == 0 && object->swblock_count == 0)) {
2561                 vm_object_drop(object);
2562                 return;
2563         }
2564         KASSERT(object->type != OBJT_PHYS, 
2565                 ("attempt to remove pages from a physical object"));
2566
2567         /*
2568          * Indicate that paging is occuring on the object
2569          */
2570         vm_object_pip_add(object, 1);
2571
2572         /*
2573          * Figure out the actual removal range and whether we are removing
2574          * the entire contents of the object or not.  If removing the entire
2575          * contents, be sure to get all pages, even those that might be 
2576          * beyond the end of the object.
2577          */
2578         info.start_pindex = start;
2579         if (end == 0)
2580                 info.end_pindex = (vm_pindex_t)-1;
2581         else
2582                 info.end_pindex = end - 1;
2583         info.limit = clean_only;
2584         all = (start == 0 && info.end_pindex >= object->size - 1);
2585
2586         /*
2587          * Loop until we are sure we have gotten them all.
2588          */
2589         do {
2590                 info.error = 0;
2591                 vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
2592                                         vm_object_page_remove_callback, &info);
2593         } while (info.error);
2594
2595         /*
2596          * Remove any related swap if throwing away pages, or for
2597          * non-swap objects (the swap is a clean copy in that case).
2598          */
2599         if (object->type != OBJT_SWAP || clean_only == FALSE) {
2600                 if (all)
2601                         swap_pager_freespace_all(object);
2602                 else
2603                         swap_pager_freespace(object, info.start_pindex,
2604                              info.end_pindex - info.start_pindex + 1);
2605         }
2606
2607         /*
2608          * Cleanup
2609          */
2610         vm_object_pip_wakeup(object);
2611         vm_object_drop(object);
2612 }
2613
2614 /*
2615  * The caller must hold the object
2616  */
2617 static int
2618 vm_object_page_remove_callback(vm_page_t p, void *data)
2619 {
2620         struct rb_vm_page_scan_info *info = data;
2621
2622         if (vm_page_busy_try(p, TRUE)) {
2623                 vm_page_sleep_busy(p, TRUE, "vmopar");
2624                 info->error = 1;
2625                 return(0);
2626         }
2627
2628         /*
2629          * Wired pages cannot be destroyed, but they can be invalidated
2630          * and we do so if clean_only (limit) is not set.
2631          *
2632          * WARNING!  The page may be wired due to being part of a buffer
2633          *           cache buffer, and the buffer might be marked B_CACHE.
2634          *           This is fine as part of a truncation but VFSs must be
2635          *           sure to fix the buffer up when re-extending the file.
2636          *
2637          * NOTE!     PG_NEED_COMMIT is ignored.
2638          */
2639         if (p->wire_count != 0) {
2640                 vm_page_protect(p, VM_PROT_NONE);
2641                 if (info->limit == 0)
2642                         p->valid = 0;
2643                 vm_page_wakeup(p);
2644                 return(0);
2645         }
2646
2647         /*
2648          * limit is our clean_only flag.  If set and the page is dirty or
2649          * requires a commit, do not free it.  If set and the page is being
2650          * held by someone, do not free it.
2651          */
2652         if (info->limit && p->valid) {
2653                 vm_page_test_dirty(p);
2654                 if ((p->valid & p->dirty) || (p->flags & PG_NEED_COMMIT)) {
2655                         vm_page_wakeup(p);
2656                         return(0);
2657                 }
2658 #if 0
2659                 if (p->hold_count) {
2660                         vm_page_wakeup(p);
2661                         return(0);
2662                 }
2663 #endif
2664         }
2665
2666         /*
2667          * Destroy the page
2668          */
2669         vm_page_protect(p, VM_PROT_NONE);
2670         vm_page_free(p);
2671         return(0);
2672 }
2673
2674 /*
2675  * Coalesces two objects backing up adjoining regions of memory into a
2676  * single object.
2677  *
2678  * returns TRUE if objects were combined.
2679  *
2680  * NOTE: Only works at the moment if the second object is NULL -
2681  *       if it's not, which object do we lock first?
2682  *
2683  * Parameters:
2684  *      prev_object     First object to coalesce
2685  *      prev_offset     Offset into prev_object
2686  *      next_object     Second object into coalesce
2687  *      next_offset     Offset into next_object
2688  *
2689  *      prev_size       Size of reference to prev_object
2690  *      next_size       Size of reference to next_object
2691  *
2692  * The caller does not need to hold (prev_object) but must have a stable
2693  * pointer to it (typically by holding the vm_map locked).
2694  */
2695 boolean_t
2696 vm_object_coalesce(vm_object_t prev_object, vm_pindex_t prev_pindex,
2697                    vm_size_t prev_size, vm_size_t next_size)
2698 {
2699         vm_pindex_t next_pindex;
2700
2701         if (prev_object == NULL)
2702                 return (TRUE);
2703
2704         vm_object_hold(prev_object);
2705
2706         if (prev_object->type != OBJT_DEFAULT &&
2707             prev_object->type != OBJT_SWAP) {
2708                 vm_object_drop(prev_object);
2709                 return (FALSE);
2710         }
2711
2712         /*
2713          * Try to collapse the object first
2714          */
2715         vm_object_chain_acquire(prev_object, 0);
2716         vm_object_collapse(prev_object, NULL);
2717
2718         /*
2719          * Can't coalesce if: . more than one reference . paged out . shadows
2720          * another object . has a copy elsewhere (any of which mean that the
2721          * pages not mapped to prev_entry may be in use anyway)
2722          */
2723
2724         if (prev_object->backing_object != NULL) {
2725                 vm_object_chain_release(prev_object);
2726                 vm_object_drop(prev_object);
2727                 return (FALSE);
2728         }
2729
2730         prev_size >>= PAGE_SHIFT;
2731         next_size >>= PAGE_SHIFT;
2732         next_pindex = prev_pindex + prev_size;
2733
2734         if ((prev_object->ref_count > 1) &&
2735             (prev_object->size != next_pindex)) {
2736                 vm_object_chain_release(prev_object);
2737                 vm_object_drop(prev_object);
2738                 return (FALSE);
2739         }
2740
2741         /*
2742          * Remove any pages that may still be in the object from a previous
2743          * deallocation.
2744          */
2745         if (next_pindex < prev_object->size) {
2746                 vm_object_page_remove(prev_object,
2747                                       next_pindex,
2748                                       next_pindex + next_size, FALSE);
2749                 if (prev_object->type == OBJT_SWAP)
2750                         swap_pager_freespace(prev_object,
2751                                              next_pindex, next_size);
2752         }
2753
2754         /*
2755          * Extend the object if necessary.
2756          */
2757         if (next_pindex + next_size > prev_object->size)
2758                 prev_object->size = next_pindex + next_size;
2759
2760         vm_object_chain_release(prev_object);
2761         vm_object_drop(prev_object);
2762         return (TRUE);
2763 }
2764
2765 /*
2766  * Make the object writable and flag is being possibly dirty.
2767  *
2768  * The object might not be held (or might be held but held shared),
2769  * the related vnode is probably not held either.  Object and vnode are
2770  * stable by virtue of the vm_page busied by the caller preventing
2771  * destruction.
2772  *
2773  * If the related mount is flagged MNTK_THR_SYNC we need to call
2774  * vsetobjdirty().  Filesystems using this option usually shortcut
2775  * synchronization by only scanning the syncer list.
2776  */
2777 void
2778 vm_object_set_writeable_dirty(vm_object_t object)
2779 {
2780         struct vnode *vp;
2781
2782         /*vm_object_assert_held(object);*/
2783         /*
2784          * Avoid contention in vm fault path by checking the state before
2785          * issuing an atomic op on it.
2786          */
2787         if ((object->flags & (OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY)) !=
2788             (OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY)) {
2789                 vm_object_set_flag(object, OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
2790         }
2791         if (object->type == OBJT_VNODE &&
2792             (vp = (struct vnode *)object->handle) != NULL) {
2793                 if ((vp->v_flag & VOBJDIRTY) == 0) {
2794                         if (vp->v_mount &&
2795                             (vp->v_mount->mnt_kern_flag & MNTK_THR_SYNC)) {
2796                                 vsetobjdirty(vp);
2797                         } else {
2798                                 vsetflags(vp, VOBJDIRTY);
2799                         }
2800                 }
2801         }
2802 }
2803
2804 #include "opt_ddb.h"
2805 #ifdef DDB
2806 #include <sys/kernel.h>
2807
2808 #include <sys/cons.h>
2809
2810 #include <ddb/ddb.h>
2811
2812 static int      _vm_object_in_map (vm_map_t map, vm_object_t object,
2813                                        vm_map_entry_t entry);
2814 static int      vm_object_in_map (vm_object_t object);
2815
2816 /*
2817  * The caller must hold the object.
2818  */
2819 static int
2820 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
2821 {
2822         vm_map_t tmpm;
2823         vm_map_entry_t tmpe;
2824         vm_object_t obj, nobj;
2825         int entcount;
2826
2827         if (map == 0)
2828                 return 0;
2829         if (entry == 0) {
2830                 tmpe = map->header.next;
2831                 entcount = map->nentries;
2832                 while (entcount-- && (tmpe != &map->header)) {
2833                         if( _vm_object_in_map(map, object, tmpe)) {
2834                                 return 1;
2835                         }
2836                         tmpe = tmpe->next;
2837                 }
2838                 return (0);
2839         }
2840         switch(entry->maptype) {
2841         case VM_MAPTYPE_SUBMAP:
2842                 tmpm = entry->object.sub_map;
2843                 tmpe = tmpm->header.next;
2844                 entcount = tmpm->nentries;
2845                 while (entcount-- && tmpe != &tmpm->header) {
2846                         if( _vm_object_in_map(tmpm, object, tmpe)) {
2847                                 return 1;
2848                         }
2849                         tmpe = tmpe->next;
2850                 }
2851                 break;
2852         case VM_MAPTYPE_NORMAL:
2853         case VM_MAPTYPE_VPAGETABLE:
2854                 obj = entry->object.vm_object;
2855                 while (obj) {
2856                         if (obj == object) {
2857                                 if (obj != entry->object.vm_object)
2858                                         vm_object_drop(obj);
2859                                 return 1;
2860                         }
2861                         while ((nobj = obj->backing_object) != NULL) {
2862                                 vm_object_hold(nobj);
2863                                 if (nobj == obj->backing_object)
2864                                         break;
2865                                 vm_object_drop(nobj);
2866                         }
2867                         if (obj != entry->object.vm_object) {
2868                                 if (nobj)
2869                                         vm_object_lock_swap();
2870                                 vm_object_drop(obj);
2871                         }
2872                         obj = nobj;
2873                 }
2874                 break;
2875         default:
2876                 break;
2877         }
2878         return 0;
2879 }
2880
2881 static int vm_object_in_map_callback(struct proc *p, void *data);
2882
2883 struct vm_object_in_map_info {
2884         vm_object_t object;
2885         int rv;
2886 };
2887
2888 /*
2889  * Debugging only
2890  */
2891 static int
2892 vm_object_in_map(vm_object_t object)
2893 {
2894         struct vm_object_in_map_info info;
2895
2896         info.rv = 0;
2897         info.object = object;
2898
2899         allproc_scan(vm_object_in_map_callback, &info);
2900         if (info.rv)
2901                 return 1;
2902         if( _vm_object_in_map(&kernel_map, object, 0))
2903                 return 1;
2904         if( _vm_object_in_map(&pager_map, object, 0))
2905                 return 1;
2906         if( _vm_object_in_map(&buffer_map, object, 0))
2907                 return 1;
2908         return 0;
2909 }
2910
2911 /*
2912  * Debugging only
2913  */
2914 static int
2915 vm_object_in_map_callback(struct proc *p, void *data)
2916 {
2917         struct vm_object_in_map_info *info = data;
2918
2919         if (p->p_vmspace) {
2920                 if (_vm_object_in_map(&p->p_vmspace->vm_map, info->object, 0)) {
2921                         info->rv = 1;
2922                         return -1;
2923                 }
2924         }
2925         return (0);
2926 }
2927
2928 DB_SHOW_COMMAND(vmochk, vm_object_check)
2929 {
2930         vm_object_t object;
2931
2932         /*
2933          * make sure that internal objs are in a map somewhere
2934          * and none have zero ref counts.
2935          */
2936         for (object = TAILQ_FIRST(&vm_object_list);
2937                         object != NULL;
2938                         object = TAILQ_NEXT(object, object_list)) {
2939                 if (object->type == OBJT_MARKER)
2940                         continue;
2941                 if (object->handle == NULL &&
2942                     (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
2943                         if (object->ref_count == 0) {
2944                                 db_printf("vmochk: internal obj has zero ref count: %ld\n",
2945                                         (long)object->size);
2946                         }
2947                         if (!vm_object_in_map(object)) {
2948                                 db_printf(
2949                         "vmochk: internal obj is not in a map: "
2950                         "ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
2951                                     object->ref_count, (u_long)object->size, 
2952                                     (u_long)object->size,
2953                                     (void *)object->backing_object);
2954                         }
2955                 }
2956         }
2957 }
2958
2959 /*
2960  * Debugging only
2961  */
2962 DB_SHOW_COMMAND(object, vm_object_print_static)
2963 {
2964         /* XXX convert args. */
2965         vm_object_t object = (vm_object_t)addr;
2966         boolean_t full = have_addr;
2967
2968         vm_page_t p;
2969
2970         /* XXX count is an (unused) arg.  Avoid shadowing it. */
2971 #define count   was_count
2972
2973         int count;
2974
2975         if (object == NULL)
2976                 return;
2977
2978         db_iprintf(
2979             "Object %p: type=%d, size=0x%lx, res=%d, ref=%d, flags=0x%x\n",
2980             object, (int)object->type, (u_long)object->size,
2981             object->resident_page_count, object->ref_count, object->flags);
2982         /*
2983          * XXX no %qd in kernel.  Truncate object->backing_object_offset.
2984          */
2985         db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%lx\n",
2986             object->shadow_count, 
2987             object->backing_object ? object->backing_object->ref_count : 0,
2988             object->backing_object, (long)object->backing_object_offset);
2989
2990         if (!full)
2991                 return;
2992
2993         db_indent += 2;
2994         count = 0;
2995         RB_FOREACH(p, vm_page_rb_tree, &object->rb_memq) {
2996                 if (count == 0)
2997                         db_iprintf("memory:=");
2998                 else if (count == 6) {
2999                         db_printf("\n");
3000                         db_iprintf(" ...");
3001                         count = 0;
3002                 } else
3003                         db_printf(",");
3004                 count++;
3005
3006                 db_printf("(off=0x%lx,page=0x%lx)",
3007                     (u_long) p->pindex, (u_long) VM_PAGE_TO_PHYS(p));
3008         }
3009         if (count != 0)
3010                 db_printf("\n");
3011         db_indent -= 2;
3012 }
3013
3014 /* XXX. */
3015 #undef count
3016
3017 /*
3018  * XXX need this non-static entry for calling from vm_map_print.
3019  *
3020  * Debugging only
3021  */
3022 void
3023 vm_object_print(/* db_expr_t */ long addr,
3024                 boolean_t have_addr,
3025                 /* db_expr_t */ long count,
3026                 char *modif)
3027 {
3028         vm_object_print_static(addr, have_addr, count, modif);
3029 }
3030
3031 /*
3032  * Debugging only
3033  */
3034 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
3035 {
3036         vm_object_t object;
3037         int nl = 0;
3038         int c;
3039         for (object = TAILQ_FIRST(&vm_object_list);
3040                         object != NULL;
3041                         object = TAILQ_NEXT(object, object_list)) {
3042                 vm_pindex_t idx, fidx;
3043                 vm_pindex_t osize;
3044                 vm_paddr_t pa = -1, padiff;
3045                 int rcount;
3046                 vm_page_t m;
3047
3048                 if (object->type == OBJT_MARKER)
3049                         continue;
3050                 db_printf("new object: %p\n", (void *)object);
3051                 if ( nl > 18) {
3052                         c = cngetc();
3053                         if (c != ' ')
3054                                 return;
3055                         nl = 0;
3056                 }
3057                 nl++;
3058                 rcount = 0;
3059                 fidx = 0;
3060                 osize = object->size;
3061                 if (osize > 128)
3062                         osize = 128;
3063                 for (idx = 0; idx < osize; idx++) {
3064                         m = vm_page_lookup(object, idx);
3065                         if (m == NULL) {
3066                                 if (rcount) {
3067                                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
3068                                                 (long)fidx, rcount, (long)pa);
3069                                         if ( nl > 18) {
3070                                                 c = cngetc();
3071                                                 if (c != ' ')
3072                                                         return;
3073                                                 nl = 0;
3074                                         }
3075                                         nl++;
3076                                         rcount = 0;
3077                                 }
3078                                 continue;
3079                         }
3080
3081                                 
3082                         if (rcount &&
3083                                 (VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
3084                                 ++rcount;
3085                                 continue;
3086                         }
3087                         if (rcount) {
3088                                 padiff = pa + rcount * PAGE_SIZE - VM_PAGE_TO_PHYS(m);
3089                                 padiff >>= PAGE_SHIFT;
3090                                 padiff &= PQ_L2_MASK;
3091                                 if (padiff == 0) {
3092                                         pa = VM_PAGE_TO_PHYS(m) - rcount * PAGE_SIZE;
3093                                         ++rcount;
3094                                         continue;
3095                                 }
3096                                 db_printf(" index(%ld)run(%d)pa(0x%lx)",
3097                                         (long)fidx, rcount, (long)pa);
3098                                 db_printf("pd(%ld)\n", (long)padiff);
3099                                 if ( nl > 18) {
3100                                         c = cngetc();
3101                                         if (c != ' ')
3102                                                 return;
3103                                         nl = 0;
3104                                 }
3105                                 nl++;
3106                         }
3107                         fidx = idx;
3108                         pa = VM_PAGE_TO_PHYS(m);
3109                         rcount = 1;
3110                 }
3111                 if (rcount) {
3112                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
3113                                 (long)fidx, rcount, (long)pa);
3114                         if ( nl > 18) {
3115                                 c = cngetc();
3116                                 if (c != ' ')
3117                                         return;
3118                                 nl = 0;
3119                         }
3120                         nl++;
3121                 }
3122         }
3123 }
3124 #endif /* DDB */