drm/i915: Implement GEM GET and SET_CACHING ioctls
[dragonfly.git] / sys / dev / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  * Copyright (c) 2011 The FreeBSD Foundation
27  * All rights reserved.
28  *
29  * This software was developed by Konstantin Belousov under sponsorship from
30  * the FreeBSD Foundation.
31  *
32  * Redistribution and use in source and binary forms, with or without
33  * modification, are permitted provided that the following conditions
34  * are met:
35  * 1. Redistributions of source code must retain the above copyright
36  *    notice, this list of conditions and the following disclaimer.
37  * 2. Redistributions in binary form must reproduce the above copyright
38  *    notice, this list of conditions and the following disclaimer in the
39  *    documentation and/or other materials provided with the distribution.
40  *
41  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
42  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51  * SUCH DAMAGE.
52  *
53  */
54
55 #include <sys/resourcevar.h>
56 #include <sys/sfbuf.h>
57
58 #include <drm/drmP.h>
59 #include <drm/i915_drm.h>
60 #include "i915_drv.h"
61 #include "intel_drv.h"
62 #include "intel_ringbuffer.h"
63 #include <linux/completion.h>
64 #include <linux/jiffies.h>
65 #include <linux/time.h>
66
67 static __must_check int i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj);
68 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
69 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
70 static int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
71     unsigned alignment, bool map_and_fenceable);
72 static int i915_gem_phys_pwrite(struct drm_device *dev,
73     struct drm_i915_gem_object *obj, uint64_t data_ptr, uint64_t offset,
74     uint64_t size, struct drm_file *file_priv);
75
76 static void i915_gem_write_fence(struct drm_device *dev, int reg,
77                                  struct drm_i915_gem_object *obj);
78 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
79                                          struct drm_i915_fence_reg *fence,
80                                          bool enable);
81
82 static uint32_t i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size,
83     int tiling_mode);
84 static uint32_t i915_gem_get_gtt_alignment(struct drm_device *dev,
85     uint32_t size, int tiling_mode);
86 static int i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj,
87     int flags);
88 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj);
89 static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
90
91 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
92 {
93         if (obj->tiling_mode)
94                 i915_gem_release_mmap(obj);
95
96         /* As we do not have an associated fence register, we will force
97          * a tiling change if we ever need to acquire one.
98          */
99         obj->fence_dirty = false;
100         obj->fence_reg = I915_FENCE_REG_NONE;
101 }
102
103 static int i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj);
104 static bool i915_gem_object_is_inactive(struct drm_i915_gem_object *obj);
105 static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj);
106 static vm_page_t i915_gem_wire_page(vm_object_t object, vm_pindex_t pindex);
107 static void i915_gem_process_flushing_list(struct intel_ring_buffer *ring,
108     uint32_t flush_domains);
109 static void i915_gem_reset_fences(struct drm_device *dev);
110 static void i915_gem_lowmem(void *arg);
111
112 static int i915_gem_obj_io(struct drm_device *dev, uint32_t handle, uint64_t data_ptr,
113     uint64_t size, uint64_t offset, enum uio_rw rw, struct drm_file *file);
114
115 MALLOC_DEFINE(DRM_I915_GEM, "i915gem", "Allocations from i915 gem");
116 long i915_gem_wired_pages_cnt;
117
118 /* some bookkeeping */
119 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
120                                   size_t size)
121 {
122
123         dev_priv->mm.object_count++;
124         dev_priv->mm.object_memory += size;
125 }
126
127 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
128                                      size_t size)
129 {
130
131         dev_priv->mm.object_count--;
132         dev_priv->mm.object_memory -= size;
133 }
134
135 static int
136 i915_gem_wait_for_error(struct drm_device *dev)
137 {
138         struct drm_i915_private *dev_priv = dev->dev_private;
139         struct completion *x = &dev_priv->error_completion;
140         int ret;
141
142         if (!atomic_read(&dev_priv->mm.wedged))
143                 return 0;
144
145         /*
146          * Only wait 10 seconds for the gpu reset to complete to avoid hanging
147          * userspace. If it takes that long something really bad is going on and
148          * we should simply try to bail out and fail as gracefully as possible.
149          */
150         ret = wait_for_completion_interruptible_timeout(x, 10*hz);
151         if (ret == 0) {
152                 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
153                 return -EIO;
154         } else if (ret < 0) {
155                 return ret;
156         }
157
158         if (atomic_read(&dev_priv->mm.wedged)) {
159                 /* GPU is hung, bump the completion count to account for
160                  * the token we just consumed so that we never hit zero and
161                  * end up waiting upon a subsequent completion event that
162                  * will never happen.
163                  */
164                 spin_lock(&x->wait.lock);
165                 x->done++;
166                 spin_unlock(&x->wait.lock);
167         }
168         return 0;
169 }
170
171 int i915_mutex_lock_interruptible(struct drm_device *dev)
172 {
173         int ret;
174
175         ret = i915_gem_wait_for_error(dev);
176         if (ret != 0)
177                 return (ret);
178
179         ret = lockmgr(&dev->dev_struct_lock, LK_EXCLUSIVE|LK_SLEEPFAIL);
180         if (ret)
181                 return -EINTR;
182
183         WARN_ON(i915_verify_lists(dev));
184         return 0;
185 }
186
187 static inline bool
188 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
189 {
190         return !obj->active;
191 }
192
193 int
194 i915_gem_init_ioctl(struct drm_device *dev, void *data,
195                     struct drm_file *file)
196 {
197         struct drm_i915_gem_init *args = data;
198
199         if (drm_core_check_feature(dev, DRIVER_MODESET))
200                 return -ENODEV;
201
202         if (args->gtt_start >= args->gtt_end ||
203             (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
204                 return -EINVAL;
205
206         /* GEM with user mode setting was never supported on ilk and later. */
207         if (INTEL_INFO(dev)->gen >= 5)
208                 return -ENODEV;
209
210         /*
211          * XXXKIB. The second-time initialization should be guarded
212          * against.
213          */
214         lockmgr(&dev->dev_lock, LK_EXCLUSIVE|LK_RETRY|LK_CANRECURSE);
215         i915_gem_do_init(dev, args->gtt_start, args->gtt_end, args->gtt_end);
216         lockmgr(&dev->dev_lock, LK_RELEASE);
217
218         return 0;
219 }
220
221 int
222 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
223                             struct drm_file *file)
224 {
225         struct drm_i915_private *dev_priv = dev->dev_private;
226         struct drm_i915_gem_get_aperture *args = data;
227         struct drm_i915_gem_object *obj;
228         size_t pinned;
229
230         pinned = 0;
231         DRM_LOCK(dev);
232         list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list)
233                 if (obj->pin_count)
234                         pinned += obj->gtt_space->size;
235         DRM_UNLOCK(dev);
236
237         args->aper_size = dev_priv->mm.gtt_total;
238         args->aper_available_size = args->aper_size - pinned;
239
240         return 0;
241 }
242
243 static int
244 i915_gem_create(struct drm_file *file, struct drm_device *dev, uint64_t size,
245     uint32_t *handle_p)
246 {
247         struct drm_i915_gem_object *obj;
248         uint32_t handle;
249         int ret;
250
251         size = roundup(size, PAGE_SIZE);
252         if (size == 0)
253                 return (-EINVAL);
254
255         obj = i915_gem_alloc_object(dev, size);
256         if (obj == NULL)
257                 return (-ENOMEM);
258
259         handle = 0;
260         ret = drm_gem_handle_create(file, &obj->base, &handle);
261         if (ret != 0) {
262                 drm_gem_object_release(&obj->base);
263                 i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
264                 drm_free(obj, DRM_I915_GEM);
265                 return (-ret);
266         }
267
268         /* drop reference from allocate - handle holds it now */
269         drm_gem_object_unreference(&obj->base);
270         *handle_p = handle;
271         return (0);
272 }
273
274 int
275 i915_gem_dumb_create(struct drm_file *file,
276                      struct drm_device *dev,
277                      struct drm_mode_create_dumb *args)
278 {
279
280         /* have to work out size/pitch and return them */
281         args->pitch = roundup2(args->width * ((args->bpp + 7) / 8), 64);
282         args->size = args->pitch * args->height;
283         return (i915_gem_create(file, dev, args->size, &args->handle));
284 }
285
286 int i915_gem_dumb_destroy(struct drm_file *file,
287                           struct drm_device *dev,
288                           uint32_t handle)
289 {
290
291         return (drm_gem_handle_delete(file, handle));
292 }
293
294 /**
295  * Creates a new mm object and returns a handle to it.
296  */
297 int
298 i915_gem_create_ioctl(struct drm_device *dev, void *data,
299                       struct drm_file *file)
300 {
301         struct drm_i915_gem_create *args = data;
302
303         return (i915_gem_create(file, dev, args->size, &args->handle));
304 }
305
306 static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
307 {
308         drm_i915_private_t *dev_priv;
309
310         dev_priv = obj->base.dev->dev_private;
311         return (dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
312             obj->tiling_mode != I915_TILING_NONE);
313 }
314
315 /**
316  * Reads data from the object referenced by handle.
317  *
318  * On error, the contents of *data are undefined.
319  */
320 int
321 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
322                      struct drm_file *file)
323 {
324         struct drm_i915_gem_pread *args;
325
326         args = data;
327         return (i915_gem_obj_io(dev, args->handle, args->data_ptr, args->size,
328             args->offset, UIO_READ, file));
329 }
330
331 /**
332  * Writes data to the object referenced by handle.
333  *
334  * On error, the contents of the buffer that were to be modified are undefined.
335  */
336 int
337 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
338                       struct drm_file *file)
339 {
340         struct drm_i915_gem_pwrite *args;
341
342         args = data;
343         return (i915_gem_obj_io(dev, args->handle, args->data_ptr, args->size,
344             args->offset, UIO_WRITE, file));
345 }
346
347 int
348 i915_gem_check_wedge(struct drm_i915_private *dev_priv,
349                      bool interruptible)
350 {
351         if (atomic_read(&dev_priv->mm.wedged)) {
352                 struct completion *x = &dev_priv->error_completion;
353                 bool recovery_complete;
354
355                 /* Give the error handler a chance to run. */
356                 spin_lock(&x->wait.lock);
357                 recovery_complete = x->done > 0;
358                 spin_unlock(&x->wait.lock);
359
360                 /* Non-interruptible callers can't handle -EAGAIN, hence return
361                  * -EIO unconditionally for these. */
362                 if (!interruptible)
363                         return -EIO;
364
365                 /* Recovery complete, but still wedged means reset failure. */
366                 if (recovery_complete)
367                         return -EIO;
368
369                 return -EAGAIN;
370         }
371
372         return 0;
373 }
374
375 /*
376  * Compare seqno against outstanding lazy request. Emit a request if they are
377  * equal.
378  */
379 static int
380 i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
381 {
382         int ret;
383
384         DRM_LOCK_ASSERT(ring->dev);
385
386         ret = 0;
387         if (seqno == ring->outstanding_lazy_request)
388                 ret = i915_add_request(ring, NULL, NULL);
389
390         return ret;
391 }
392
393 /**
394  * __wait_seqno - wait until execution of seqno has finished
395  * @ring: the ring expected to report seqno
396  * @seqno: duh!
397  * @interruptible: do an interruptible wait (normally yes)
398  * @timeout: in - how long to wait (NULL forever); out - how much time remaining
399  *
400  * Returns 0 if the seqno was found within the alloted time. Else returns the
401  * errno with remaining time filled in timeout argument.
402  */
403 static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
404                         bool interruptible, struct timespec *timeout)
405 {
406         drm_i915_private_t *dev_priv = ring->dev->dev_private;
407         struct timespec before, now, wait_time={1,0};
408         unsigned long timeout_jiffies;
409         long end;
410         bool wait_forever = true;
411         int ret;
412
413         if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
414                 return 0;
415
416         if (timeout != NULL) {
417                 wait_time = *timeout;
418                 wait_forever = false;
419         }
420
421         timeout_jiffies = timespec_to_jiffies(&wait_time);
422
423         if (WARN_ON(!ring->irq_get(ring)))
424                 return -ENODEV;
425
426         /* Record current time in case interrupted by signal, or wedged * */
427         getrawmonotonic(&before);
428
429 #define EXIT_COND \
430         (i915_seqno_passed(ring->get_seqno(ring, false), seqno) || \
431         atomic_read(&dev_priv->mm.wedged))
432         do {
433                 if (interruptible)
434                         end = wait_event_interruptible_timeout(ring->irq_queue,
435                                                                EXIT_COND,
436                                                                timeout_jiffies);
437                 else
438                         end = wait_event_timeout(ring->irq_queue, EXIT_COND,
439                                                  timeout_jiffies);
440
441                 ret = i915_gem_check_wedge(dev_priv, interruptible);
442                 if (ret)
443                         end = ret;
444         } while (end == 0 && wait_forever);
445
446         getrawmonotonic(&now);
447
448         ring->irq_put(ring);
449 #undef EXIT_COND
450
451         if (timeout) {
452                 struct timespec sleep_time = timespec_sub(now, before);
453                 *timeout = timespec_sub(*timeout, sleep_time);
454         }
455
456         switch (end) {
457         case -EIO:
458         case -EAGAIN: /* Wedged */
459         case -ERESTARTSYS: /* Signal */
460                 return (int)end;
461         case 0: /* Timeout */
462                 if (timeout)
463                         set_normalized_timespec(timeout, 0, 0);
464                 return -ETIMEDOUT;      /* -ETIME on Linux */
465         default: /* Completed */
466                 WARN_ON(end < 0); /* We're not aware of other errors */
467                 return 0;
468         }
469 }
470
471 /**
472  * Waits for a sequence number to be signaled, and cleans up the
473  * request and object lists appropriately for that event.
474  */
475 int
476 i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
477 {
478         drm_i915_private_t *dev_priv = ring->dev->dev_private;
479         int ret = 0;
480
481         BUG_ON(seqno == 0);
482
483         ret = i915_gem_check_wedge(dev_priv, dev_priv->mm.interruptible);
484         if (ret)
485                 return ret;
486
487         ret = i915_gem_check_olr(ring, seqno);
488         if (ret)
489                 return ret;
490
491         ret = __wait_seqno(ring, seqno, dev_priv->mm.interruptible, NULL);
492
493         return ret;
494 }
495
496 /**
497  * Ensures that all rendering to the object has completed and the object is
498  * safe to unbind from the GTT or access from the CPU.
499  */
500 static __must_check int
501 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
502                                bool readonly)
503 {
504         u32 seqno;
505         int ret;
506
507         if (readonly)
508                 seqno = obj->last_write_seqno;
509         else
510                 seqno = obj->last_read_seqno;
511         if (seqno == 0)
512                 return 0;
513
514         ret = i915_wait_seqno(obj->ring, seqno);
515         if (ret)
516                 return ret;
517
518         /* Manually manage the write flush as we may have not yet retired
519          * the buffer.
520          */
521         if (obj->last_write_seqno &&
522             i915_seqno_passed(seqno, obj->last_write_seqno)) {
523                 obj->last_write_seqno = 0;
524                 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
525         }
526
527         i915_gem_retire_requests_ring(obj->ring);
528         return 0;
529 }
530
531 /**
532  * Ensures that an object will eventually get non-busy by flushing any required
533  * write domains, emitting any outstanding lazy request and retiring and
534  * completed requests.
535  */
536 static int
537 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
538 {
539         int ret;
540
541         if (obj->active) {
542                 ret = i915_gem_object_flush_gpu_write_domain(obj);
543                 if (ret)
544                         return ret;
545
546                 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
547                 if (ret)
548                         return ret;
549
550                 i915_gem_retire_requests_ring(obj->ring);
551         }
552
553         return 0;
554 }
555
556 /**
557  * Called when user space prepares to use an object with the CPU, either
558  * through the mmap ioctl's mapping or a GTT mapping.
559  */
560 int
561 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
562                           struct drm_file *file)
563 {
564         struct drm_i915_gem_set_domain *args = data;
565         struct drm_i915_gem_object *obj;
566         uint32_t read_domains = args->read_domains;
567         uint32_t write_domain = args->write_domain;
568         int ret;
569
570         /* Only handle setting domains to types used by the CPU. */
571         if (write_domain & I915_GEM_GPU_DOMAINS)
572                 return -EINVAL;
573
574         if (read_domains & I915_GEM_GPU_DOMAINS)
575                 return -EINVAL;
576
577         /* Having something in the write domain implies it's in the read
578          * domain, and only that read domain.  Enforce that in the request.
579          */
580         if (write_domain != 0 && read_domains != write_domain)
581                 return -EINVAL;
582
583         ret = i915_mutex_lock_interruptible(dev);
584         if (ret)
585                 return ret;
586
587         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
588         if (&obj->base == NULL) {
589                 ret = -ENOENT;
590                 goto unlock;
591         }
592
593         if (read_domains & I915_GEM_DOMAIN_GTT) {
594                 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
595
596                 /* Silently promote "you're not bound, there was nothing to do"
597                  * to success, since the client was just asking us to
598                  * make sure everything was done.
599                  */
600                 if (ret == -EINVAL)
601                         ret = 0;
602         } else {
603                 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
604         }
605
606         drm_gem_object_unreference(&obj->base);
607 unlock:
608         DRM_UNLOCK(dev);
609         return ret;
610 }
611
612 /**
613  * Called when user space has done writes to this buffer
614  */
615 int
616 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
617                          struct drm_file *file)
618 {
619         struct drm_i915_gem_sw_finish *args = data;
620         struct drm_i915_gem_object *obj;
621         int ret = 0;
622
623         ret = i915_mutex_lock_interruptible(dev);
624         if (ret != 0)
625                 return (ret);
626         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
627         if (&obj->base == NULL) {
628                 ret = -ENOENT;
629                 goto unlock;
630         }
631
632         /* Pinned buffers may be scanout, so flush the cache */
633         if (obj->pin_count != 0)
634                 i915_gem_object_flush_cpu_write_domain(obj);
635
636         drm_gem_object_unreference(&obj->base);
637 unlock:
638         DRM_UNLOCK(dev);
639         return (ret);
640 }
641
642 /**
643  * Maps the contents of an object, returning the address it is mapped
644  * into.
645  *
646  * While the mapping holds a reference on the contents of the object, it doesn't
647  * imply a ref on the object itself.
648  */
649 int
650 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
651                     struct drm_file *file)
652 {
653         struct drm_i915_gem_mmap *args = data;
654         struct drm_gem_object *obj;
655         struct proc *p = curproc;
656         vm_map_t map = &p->p_vmspace->vm_map;
657         vm_offset_t addr;
658         vm_size_t size;
659         int error = 0, rv;
660
661         obj = drm_gem_object_lookup(dev, file, args->handle);
662         if (obj == NULL)
663                 return -ENOENT;
664
665         if (args->size == 0)
666                 goto out;
667
668         size = round_page(args->size);
669         PROC_LOCK(p);
670         if (map->size + size > p->p_rlimit[RLIMIT_VMEM].rlim_cur) {
671                 PROC_UNLOCK(p);
672                 error = ENOMEM;
673                 goto out;
674         }
675         PROC_UNLOCK(p);
676
677         addr = 0;
678         vm_object_hold(obj->vm_obj);
679         vm_object_reference_locked(obj->vm_obj);
680         vm_object_drop(obj->vm_obj);
681         rv = vm_map_find(map, obj->vm_obj, args->offset, &addr, args->size,
682             PAGE_SIZE, /* align */
683             TRUE, /* fitit */
684             VM_MAPTYPE_NORMAL, /* maptype */
685             VM_PROT_READ | VM_PROT_WRITE, /* prot */
686             VM_PROT_READ | VM_PROT_WRITE, /* max */
687             MAP_SHARED /* cow */);
688         if (rv != KERN_SUCCESS) {
689                 vm_object_deallocate(obj->vm_obj);
690                 error = -vm_mmap_to_errno(rv);
691         } else {
692                 args->addr_ptr = (uint64_t)addr;
693         }
694 out:
695         drm_gem_object_unreference(obj);
696         return (error);
697 }
698
699 /**
700  * i915_gem_release_mmap - remove physical page mappings
701  * @obj: obj in question
702  *
703  * Preserve the reservation of the mmapping with the DRM core code, but
704  * relinquish ownership of the pages back to the system.
705  *
706  * It is vital that we remove the page mapping if we have mapped a tiled
707  * object through the GTT and then lose the fence register due to
708  * resource pressure. Similarly if the object has been moved out of the
709  * aperture, than pages mapped into userspace must be revoked. Removing the
710  * mapping will then trigger a page fault on the next user access, allowing
711  * fixup by i915_gem_fault().
712  */
713 void
714 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
715 {
716         vm_object_t devobj;
717         vm_page_t m;
718         int i, page_count;
719
720         if (!obj->fault_mappable)
721                 return;
722
723         devobj = cdev_pager_lookup(obj);
724         if (devobj != NULL) {
725                 page_count = OFF_TO_IDX(obj->base.size);
726
727                 VM_OBJECT_LOCK(devobj);
728                 for (i = 0; i < page_count; i++) {
729                         m = vm_page_lookup_busy_wait(devobj, i, TRUE, "915unm");
730                         if (m == NULL)
731                                 continue;
732                         cdev_pager_free_page(devobj, m);
733                 }
734                 VM_OBJECT_UNLOCK(devobj);
735                 vm_object_deallocate(devobj);
736         }
737
738         obj->fault_mappable = false;
739 }
740
741 static uint32_t
742 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
743 {
744         uint32_t gtt_size;
745
746         if (INTEL_INFO(dev)->gen >= 4 ||
747             tiling_mode == I915_TILING_NONE)
748                 return (size);
749
750         /* Previous chips need a power-of-two fence region when tiling */
751         if (INTEL_INFO(dev)->gen == 3)
752                 gtt_size = 1024*1024;
753         else
754                 gtt_size = 512*1024;
755
756         while (gtt_size < size)
757                 gtt_size <<= 1;
758
759         return (gtt_size);
760 }
761
762 /**
763  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
764  * @obj: object to check
765  *
766  * Return the required GTT alignment for an object, taking into account
767  * potential fence register mapping.
768  */
769 static uint32_t
770 i915_gem_get_gtt_alignment(struct drm_device *dev,
771                            uint32_t size,
772                            int tiling_mode)
773 {
774
775         /*
776          * Minimum alignment is 4k (GTT page size), but might be greater
777          * if a fence register is needed for the object.
778          */
779         if (INTEL_INFO(dev)->gen >= 4 ||
780             tiling_mode == I915_TILING_NONE)
781                 return (4096);
782
783         /*
784          * Previous chips need to be aligned to the size of the smallest
785          * fence register that can contain the object.
786          */
787         return (i915_gem_get_gtt_size(dev, size, tiling_mode));
788 }
789
790 /**
791  * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
792  *                                       unfenced object
793  * @dev: the device
794  * @size: size of the object
795  * @tiling_mode: tiling mode of the object
796  *
797  * Return the required GTT alignment for an object, only taking into account
798  * unfenced tiled surface requirements.
799  */
800 uint32_t
801 i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev,
802                                     uint32_t size,
803                                     int tiling_mode)
804 {
805
806         if (tiling_mode == I915_TILING_NONE)
807                 return (4096);
808
809         /*
810          * Minimum alignment is 4k (GTT page size) for sane hw.
811          */
812         if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev))
813                 return (4096);
814
815         /*
816          * Previous hardware however needs to be aligned to a power-of-two
817          * tile height. The simplest method for determining this is to reuse
818          * the power-of-tile object size.
819          */
820         return (i915_gem_get_gtt_size(dev, size, tiling_mode));
821 }
822
823 int
824 i915_gem_mmap_gtt(struct drm_file *file,
825                   struct drm_device *dev,
826                   uint32_t handle,
827                   uint64_t *offset)
828 {
829         struct drm_i915_private *dev_priv;
830         struct drm_i915_gem_object *obj;
831         int ret;
832
833         dev_priv = dev->dev_private;
834
835         ret = i915_mutex_lock_interruptible(dev);
836         if (ret != 0)
837                 return (ret);
838
839         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
840         if (&obj->base == NULL) {
841                 ret = -ENOENT;
842                 goto unlock;
843         }
844
845         if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
846                 ret = -E2BIG;
847                 goto out;
848         }
849
850         if (obj->madv != I915_MADV_WILLNEED) {
851                 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
852                 ret = -EINVAL;
853                 goto out;
854         }
855
856         ret = drm_gem_create_mmap_offset(&obj->base);
857         if (ret != 0)
858                 goto out;
859
860         *offset = DRM_GEM_MAPPING_OFF(obj->base.map_list.key) |
861             DRM_GEM_MAPPING_KEY;
862 out:
863         drm_gem_object_unreference(&obj->base);
864 unlock:
865         DRM_UNLOCK(dev);
866         return (ret);
867 }
868
869 /**
870  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
871  * @dev: DRM device
872  * @data: GTT mapping ioctl data
873  * @file: GEM object info
874  *
875  * Simply returns the fake offset to userspace so it can mmap it.
876  * The mmap call will end up in drm_gem_mmap(), which will set things
877  * up so we can get faults in the handler above.
878  *
879  * The fault handler will take care of binding the object into the GTT
880  * (since it may have been evicted to make room for something), allocating
881  * a fence register, and mapping the appropriate aperture address into
882  * userspace.
883  */
884 int
885 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
886                         struct drm_file *file)
887 {
888         struct drm_i915_private *dev_priv;
889         struct drm_i915_gem_mmap_gtt *args = data;
890
891         dev_priv = dev->dev_private;
892
893         return (i915_gem_mmap_gtt(file, dev, args->handle, &args->offset));
894 }
895
896 /* Immediately discard the backing storage */
897 static void
898 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
899 {
900         vm_object_t vm_obj;
901
902         vm_obj = obj->base.vm_obj;
903         VM_OBJECT_LOCK(vm_obj);
904         vm_object_page_remove(vm_obj, 0, 0, false);
905         VM_OBJECT_UNLOCK(vm_obj);
906         obj->madv = __I915_MADV_PURGED;
907 }
908
909 static inline int
910 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
911 {
912         return obj->madv == I915_MADV_DONTNEED;
913 }
914
915 static inline void vm_page_reference(vm_page_t m)
916 {
917         vm_page_flag_set(m, PG_REFERENCED);
918 }
919
920 static void
921 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
922 {
923         vm_page_t m;
924         int page_count, i;
925
926         BUG_ON(obj->madv == __I915_MADV_PURGED);
927
928         if (obj->tiling_mode != I915_TILING_NONE)
929                 i915_gem_object_save_bit_17_swizzle(obj);
930         if (obj->madv == I915_MADV_DONTNEED)
931                 obj->dirty = 0;
932         page_count = obj->base.size / PAGE_SIZE;
933         VM_OBJECT_LOCK(obj->base.vm_obj);
934 #if GEM_PARANOID_CHECK_GTT
935         i915_gem_assert_pages_not_mapped(obj->base.dev, obj->pages, page_count);
936 #endif
937         for (i = 0; i < page_count; i++) {
938                 m = obj->pages[i];
939                 if (obj->dirty)
940                         vm_page_dirty(m);
941                 if (obj->madv == I915_MADV_WILLNEED)
942                         vm_page_reference(m);
943                 vm_page_busy_wait(obj->pages[i], FALSE, "i915gem");
944                 vm_page_unwire(obj->pages[i], 1);
945                 vm_page_wakeup(obj->pages[i]);
946                 atomic_add_long(&i915_gem_wired_pages_cnt, -1);
947         }
948         VM_OBJECT_UNLOCK(obj->base.vm_obj);
949         obj->dirty = 0;
950         drm_free(obj->pages, DRM_I915_GEM);
951         obj->pages = NULL;
952 }
953
954 static int
955 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj,
956     int flags)
957 {
958         struct drm_device *dev;
959         vm_object_t vm_obj;
960         vm_page_t m;
961         int page_count, i, j;
962
963         dev = obj->base.dev;
964         KASSERT(obj->pages == NULL, ("Obj already has pages"));
965         page_count = obj->base.size / PAGE_SIZE;
966         obj->pages = kmalloc(page_count * sizeof(vm_page_t), DRM_I915_GEM,
967             M_WAITOK);
968         vm_obj = obj->base.vm_obj;
969         VM_OBJECT_LOCK(vm_obj);
970         for (i = 0; i < page_count; i++) {
971                 if ((obj->pages[i] = i915_gem_wire_page(vm_obj, i)) == NULL)
972                         goto failed;
973         }
974         VM_OBJECT_UNLOCK(vm_obj);
975         if (i915_gem_object_needs_bit17_swizzle(obj))
976                 i915_gem_object_do_bit_17_swizzle(obj);
977         return (0);
978
979 failed:
980         for (j = 0; j < i; j++) {
981                 m = obj->pages[j];
982                 vm_page_busy_wait(m, FALSE, "i915gem");
983                 vm_page_unwire(m, 0);
984                 vm_page_wakeup(m);
985                 atomic_add_long(&i915_gem_wired_pages_cnt, -1);
986         }
987         VM_OBJECT_UNLOCK(vm_obj);
988         drm_free(obj->pages, DRM_I915_GEM);
989         obj->pages = NULL;
990         return (-EIO);
991 }
992
993 void
994 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
995                                struct intel_ring_buffer *ring)
996 {
997         struct drm_device *dev = obj->base.dev;
998         struct drm_i915_private *dev_priv = dev->dev_private;
999         u32 seqno = intel_ring_get_seqno(ring);
1000
1001         BUG_ON(ring == NULL);
1002         obj->ring = ring;
1003
1004         /* Add a reference if we're newly entering the active list. */
1005         if (!obj->active) {
1006                 drm_gem_object_reference(&obj->base);
1007                 obj->active = 1;
1008         }
1009
1010         /* Move from whatever list we were on to the tail of execution. */
1011         list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
1012         list_move_tail(&obj->ring_list, &ring->active_list);
1013
1014         obj->last_read_seqno = seqno;
1015
1016         if (obj->fenced_gpu_access) {
1017                 obj->last_fenced_seqno = seqno;
1018
1019                 /* Bump MRU to take account of the delayed flush */
1020                 if (obj->fence_reg != I915_FENCE_REG_NONE) {
1021                         struct drm_i915_fence_reg *reg;
1022
1023                         reg = &dev_priv->fence_regs[obj->fence_reg];
1024                         list_move_tail(&reg->lru_list,
1025                                        &dev_priv->mm.fence_list);
1026                 }
1027         }
1028 }
1029
1030 static void
1031 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
1032 {
1033         struct drm_device *dev = obj->base.dev;
1034         struct drm_i915_private *dev_priv = dev->dev_private;
1035
1036         BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
1037         BUG_ON(!obj->active);
1038
1039         list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1040
1041         list_del_init(&obj->ring_list);
1042         obj->ring = NULL;
1043
1044         obj->last_read_seqno = 0;
1045         obj->last_write_seqno = 0;
1046         obj->base.write_domain = 0;
1047
1048         obj->last_fenced_seqno = 0;
1049         obj->fenced_gpu_access = false;
1050
1051         obj->active = 0;
1052         drm_gem_object_unreference(&obj->base);
1053
1054         WARN_ON(i915_verify_lists(dev));
1055 }
1056
1057 static int
1058 i915_gem_handle_seqno_wrap(struct drm_device *dev)
1059 {
1060         struct drm_i915_private *dev_priv = dev->dev_private;
1061         struct intel_ring_buffer *ring;
1062         int ret, i, j;
1063
1064         /* The hardware uses various monotonic 32-bit counters, if we
1065          * detect that they will wraparound we need to idle the GPU
1066          * and reset those counters.
1067          */
1068         ret = 0;
1069         for_each_ring(ring, dev_priv, i) {
1070                 for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
1071                         ret |= ring->sync_seqno[j] != 0;
1072         }
1073         if (ret == 0)
1074                 return ret;
1075
1076         ret = i915_gpu_idle(dev);
1077         if (ret)
1078                 return ret;
1079
1080         i915_gem_retire_requests(dev);
1081         for_each_ring(ring, dev_priv, i) {
1082                 for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
1083                         ring->sync_seqno[j] = 0;
1084         }
1085
1086         return 0;
1087 }
1088
1089 int
1090 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
1091 {
1092         struct drm_i915_private *dev_priv = dev->dev_private;
1093
1094         /* reserve 0 for non-seqno */
1095         if (dev_priv->next_seqno == 0) {
1096                 int ret = i915_gem_handle_seqno_wrap(dev);
1097                 if (ret)
1098                         return ret;
1099
1100                 dev_priv->next_seqno = 1;
1101         }
1102
1103         *seqno = dev_priv->next_seqno++;
1104         return 0;
1105 }
1106
1107 int
1108 i915_add_request(struct intel_ring_buffer *ring,
1109                  struct drm_file *file,
1110                  u32 *out_seqno)
1111 {
1112         drm_i915_private_t *dev_priv = ring->dev->dev_private;
1113         struct drm_i915_gem_request *request;
1114         u32 request_ring_position;
1115         int was_empty;
1116         int ret;
1117
1118         /*
1119          * Emit any outstanding flushes - execbuf can fail to emit the flush
1120          * after having emitted the batchbuffer command. Hence we need to fix
1121          * things up similar to emitting the lazy request. The difference here
1122          * is that the flush _must_ happen before the next request, no matter
1123          * what.
1124          */
1125         if (ring->gpu_caches_dirty) {
1126                 ret = i915_gem_flush_ring(ring, 0, I915_GEM_GPU_DOMAINS);
1127                 if (ret)
1128                         return ret;
1129
1130                 ring->gpu_caches_dirty = false;
1131         }
1132
1133         request = kmalloc(sizeof(*request), DRM_I915_GEM, M_WAITOK | M_ZERO);
1134         if (request == NULL)
1135                 return -ENOMEM;
1136
1137         /* Record the position of the start of the request so that
1138          * should we detect the updated seqno part-way through the
1139          * GPU processing the request, we never over-estimate the
1140          * position of the head.
1141          */
1142         request_ring_position = intel_ring_get_tail(ring);
1143
1144         ret = ring->add_request(ring);
1145         if (ret) {
1146                 kfree(request, DRM_I915_GEM);
1147                 return ret;
1148         }
1149
1150         request->seqno = intel_ring_get_seqno(ring);
1151         request->ring = ring;
1152         request->tail = request_ring_position;
1153         request->emitted_jiffies = jiffies;
1154         was_empty = list_empty(&ring->request_list);
1155         list_add_tail(&request->list, &ring->request_list);
1156         request->file_priv = NULL;
1157
1158         if (file) {
1159                 struct drm_i915_file_private *file_priv = file->driver_priv;
1160
1161                 spin_lock(&file_priv->mm.lock);
1162                 request->file_priv = file_priv;
1163                 list_add_tail(&request->client_list,
1164                               &file_priv->mm.request_list);
1165                 spin_unlock(&file_priv->mm.lock);
1166         }
1167
1168         ring->outstanding_lazy_request = 0;
1169
1170         if (!dev_priv->mm.suspended) {
1171                 if (i915_enable_hangcheck) {
1172                         mod_timer(&dev_priv->hangcheck_timer,
1173                                   round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES));
1174                 }
1175                 if (was_empty) {
1176                         queue_delayed_work(dev_priv->wq,
1177                                            &dev_priv->mm.retire_work,
1178                                            round_jiffies_up_relative(hz));
1179                         intel_mark_busy(dev_priv->dev);
1180                 }
1181         }
1182
1183         if (out_seqno)
1184                 *out_seqno = request->seqno;
1185         return 0;
1186 }
1187
1188 static inline void
1189 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1190 {
1191         struct drm_i915_file_private *file_priv = request->file_priv;
1192
1193         if (!file_priv)
1194                 return;
1195
1196         DRM_LOCK_ASSERT(request->ring->dev);
1197
1198         spin_lock(&file_priv->mm.lock);
1199         if (request->file_priv != NULL) {
1200                 list_del(&request->client_list);
1201                 request->file_priv = NULL;
1202         }
1203         spin_unlock(&file_priv->mm.lock);
1204 }
1205
1206 static void
1207 i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
1208     struct intel_ring_buffer *ring)
1209 {
1210
1211         if (ring->dev != NULL)
1212                 DRM_LOCK_ASSERT(ring->dev);
1213
1214         while (!list_empty(&ring->request_list)) {
1215                 struct drm_i915_gem_request *request;
1216
1217                 request = list_first_entry(&ring->request_list,
1218                     struct drm_i915_gem_request, list);
1219
1220                 list_del(&request->list);
1221                 i915_gem_request_remove_from_client(request);
1222                 drm_free(request, DRM_I915_GEM);
1223         }
1224
1225         while (!list_empty(&ring->active_list)) {
1226                 struct drm_i915_gem_object *obj;
1227
1228                 obj = list_first_entry(&ring->active_list,
1229                     struct drm_i915_gem_object, ring_list);
1230
1231                 list_del_init(&obj->gpu_write_list);
1232                 i915_gem_object_move_to_inactive(obj);
1233         }
1234 }
1235
1236 static void i915_gem_reset_fences(struct drm_device *dev)
1237 {
1238         struct drm_i915_private *dev_priv = dev->dev_private;
1239         int i;
1240
1241         for (i = 0; i < dev_priv->num_fence_regs; i++) {
1242                 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
1243
1244                 i915_gem_write_fence(dev, i, NULL);
1245
1246                 if (reg->obj)
1247                         i915_gem_object_fence_lost(reg->obj);
1248
1249                 reg->pin_count = 0;
1250                 reg->obj = NULL;
1251                 INIT_LIST_HEAD(&reg->lru_list);
1252         }
1253
1254         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
1255 }
1256
1257 void i915_gem_reset(struct drm_device *dev)
1258 {
1259         struct drm_i915_private *dev_priv = dev->dev_private;
1260         struct drm_i915_gem_object *obj;
1261         struct intel_ring_buffer *ring;
1262         int i;
1263
1264         for_each_ring(ring, dev_priv, i)
1265                 i915_gem_reset_ring_lists(dev_priv, ring);
1266
1267         /* Move everything out of the GPU domains to ensure we do any
1268          * necessary invalidation upon reuse.
1269          */
1270         list_for_each_entry(obj,
1271                             &dev_priv->mm.inactive_list,
1272                             mm_list)
1273         {
1274                 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
1275         }
1276
1277         /* The fence registers are invalidated so clear them out */
1278         i915_gem_reset_fences(dev);
1279 }
1280
1281 /**
1282  * This function clears the request list as sequence numbers are passed.
1283  */
1284 void
1285 i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
1286 {
1287         uint32_t seqno;
1288
1289         if (list_empty(&ring->request_list))
1290                 return;
1291
1292         WARN_ON(i915_verify_lists(ring->dev));
1293
1294         seqno = ring->get_seqno(ring, true);
1295
1296         while (!list_empty(&ring->request_list)) {
1297                 struct drm_i915_gem_request *request;
1298
1299                 request = list_first_entry(&ring->request_list,
1300                                            struct drm_i915_gem_request,
1301                                            list);
1302
1303                 if (!i915_seqno_passed(seqno, request->seqno))
1304                         break;
1305
1306                 /* We know the GPU must have read the request to have
1307                  * sent us the seqno + interrupt, so use the position
1308                  * of tail of the request to update the last known position
1309                  * of the GPU head.
1310                  */
1311                 ring->last_retired_head = request->tail;
1312
1313                 list_del(&request->list);
1314                 i915_gem_request_remove_from_client(request);
1315                 kfree(request, DRM_I915_GEM);
1316         }
1317
1318         /* Move any buffers on the active list that are no longer referenced
1319          * by the ringbuffer to the flushing/inactive lists as appropriate.
1320          */
1321         while (!list_empty(&ring->active_list)) {
1322                 struct drm_i915_gem_object *obj;
1323
1324                 obj = list_first_entry(&ring->active_list,
1325                                       struct drm_i915_gem_object,
1326                                       ring_list);
1327
1328                 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
1329                         break;
1330
1331                 i915_gem_object_move_to_inactive(obj);
1332         }
1333
1334         if (unlikely(ring->trace_irq_seqno &&
1335                      i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
1336                 ring->irq_put(ring);
1337                 ring->trace_irq_seqno = 0;
1338         }
1339
1340 }
1341
1342 void
1343 i915_gem_retire_requests(struct drm_device *dev)
1344 {
1345         drm_i915_private_t *dev_priv = dev->dev_private;
1346         struct intel_ring_buffer *ring;
1347         int i;
1348
1349         for_each_ring(ring, dev_priv, i)
1350                 i915_gem_retire_requests_ring(ring);
1351 }
1352
1353 static void
1354 i915_gem_retire_work_handler(struct work_struct *work)
1355 {
1356         drm_i915_private_t *dev_priv;
1357         struct drm_device *dev;
1358         struct intel_ring_buffer *ring;
1359         bool idle;
1360         int i;
1361
1362         dev_priv = container_of(work, drm_i915_private_t,
1363                                 mm.retire_work.work);
1364         dev = dev_priv->dev;
1365
1366         /* Come back later if the device is busy... */
1367         if (lockmgr(&dev->dev_struct_lock, LK_EXCLUSIVE|LK_NOWAIT)) {
1368                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
1369                                    round_jiffies_up_relative(hz));
1370                 return;
1371         }
1372
1373         i915_gem_retire_requests(dev);
1374
1375         /* Send a periodic flush down the ring so we don't hold onto GEM
1376          * objects indefinitely.
1377          */
1378         idle = true;
1379         for_each_ring(ring, dev_priv, i) {
1380                 if (ring->gpu_caches_dirty)
1381                         i915_add_request(ring, NULL, NULL);
1382
1383                 idle &= list_empty(&ring->request_list);
1384         }
1385
1386         if (!dev_priv->mm.suspended && !idle)
1387                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
1388                                    round_jiffies_up_relative(hz));
1389         if (idle)
1390                 intel_mark_idle(dev);
1391
1392         DRM_UNLOCK(dev);
1393 }
1394
1395 /**
1396  * i915_gem_object_sync - sync an object to a ring.
1397  *
1398  * @obj: object which may be in use on another ring.
1399  * @to: ring we wish to use the object on. May be NULL.
1400  *
1401  * This code is meant to abstract object synchronization with the GPU.
1402  * Calling with NULL implies synchronizing the object with the CPU
1403  * rather than a particular GPU ring.
1404  *
1405  * Returns 0 if successful, else propagates up the lower layer error.
1406  */
1407 int
1408 i915_gem_object_sync(struct drm_i915_gem_object *obj,
1409                      struct intel_ring_buffer *to)
1410 {
1411         struct intel_ring_buffer *from = obj->ring;
1412         u32 seqno;
1413         int ret, idx;
1414
1415         if (from == NULL || to == from)
1416                 return 0;
1417
1418         if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
1419                 return i915_gem_object_wait_rendering(obj, false);
1420
1421         idx = intel_ring_sync_index(from, to);
1422
1423         seqno = obj->last_read_seqno;
1424         if (seqno <= from->sync_seqno[idx])
1425                 return 0;
1426
1427         ret = i915_gem_check_olr(obj->ring, seqno);
1428         if (ret)
1429                 return ret;
1430
1431         ret = to->sync_to(to, from, seqno);
1432         if (!ret)
1433                 from->sync_seqno[idx] = seqno;
1434
1435         return ret;
1436 }
1437
1438 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
1439 {
1440         u32 old_write_domain, old_read_domains;
1441
1442         /* Act a barrier for all accesses through the GTT */
1443         cpu_mfence();
1444
1445         /* Force a pagefault for domain tracking on next user access */
1446         i915_gem_release_mmap(obj);
1447
1448         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
1449                 return;
1450
1451         old_read_domains = obj->base.read_domains;
1452         old_write_domain = obj->base.write_domain;
1453
1454         obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
1455         obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
1456
1457 }
1458
1459 /**
1460  * Unbinds an object from the GTT aperture.
1461  */
1462 int
1463 i915_gem_object_unbind(struct drm_i915_gem_object *obj)
1464 {
1465         drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
1466         int ret = 0;
1467
1468         if (obj->gtt_space == NULL)
1469                 return 0;
1470
1471         if (obj->pin_count != 0) {
1472                 DRM_ERROR("Attempting to unbind pinned buffer\n");
1473                 return -EINVAL;
1474         }
1475
1476         ret = i915_gem_object_finish_gpu(obj);
1477         if (ret)
1478                 return ret;
1479         /* Continue on if we fail due to EIO, the GPU is hung so we
1480          * should be safe and we need to cleanup or else we might
1481          * cause memory corruption through use-after-free.
1482          */
1483
1484         i915_gem_object_finish_gtt(obj);
1485
1486         /* Move the object to the CPU domain to ensure that
1487          * any possible CPU writes while it's not in the GTT
1488          * are flushed when we go to remap it.
1489          */
1490         if (ret == 0)
1491                 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
1492         if (ret == -ERESTART || ret == -EINTR)
1493                 return ret;
1494         if (ret) {
1495                 /* In the event of a disaster, abandon all caches and
1496                  * hope for the best.
1497                  */
1498                 i915_gem_clflush_object(obj);
1499                 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1500         }
1501
1502         /* release the fence reg _after_ flushing */
1503         ret = i915_gem_object_put_fence(obj);
1504         if (ret)
1505                 return ret;
1506
1507         if (obj->has_global_gtt_mapping)
1508                 i915_gem_gtt_unbind_object(obj);
1509         if (obj->has_aliasing_ppgtt_mapping) {
1510                 i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
1511                 obj->has_aliasing_ppgtt_mapping = 0;
1512         }
1513         i915_gem_gtt_finish_object(obj);
1514
1515         i915_gem_object_put_pages_gtt(obj);
1516
1517         list_del_init(&obj->gtt_list);
1518         list_del_init(&obj->mm_list);
1519         /* Avoid an unnecessary call to unbind on rebind. */
1520         obj->map_and_fenceable = true;
1521
1522         drm_mm_put_block(obj->gtt_space);
1523         obj->gtt_space = NULL;
1524         obj->gtt_offset = 0;
1525
1526         if (i915_gem_object_is_purgeable(obj))
1527                 i915_gem_object_truncate(obj);
1528
1529         return ret;
1530 }
1531
1532 int i915_gpu_idle(struct drm_device *dev)
1533 {
1534         drm_i915_private_t *dev_priv = dev->dev_private;
1535         struct intel_ring_buffer *ring;
1536         int ret, i;
1537
1538         /* Flush everything onto the inactive list. */
1539         for_each_ring(ring, dev_priv, i) {
1540                 ret = intel_ring_idle(ring);
1541                 if (ret)
1542                         return ret;
1543         }
1544
1545         return 0;
1546 }
1547
1548 static void sandybridge_write_fence_reg(struct drm_device *dev, int reg,
1549                                         struct drm_i915_gem_object *obj)
1550 {
1551         drm_i915_private_t *dev_priv = dev->dev_private;
1552         uint64_t val;
1553
1554         if (obj) {
1555                 u32 size = obj->gtt_space->size;
1556
1557                 val = (uint64_t)((obj->gtt_offset + size - 4096) &
1558                                  0xfffff000) << 32;
1559                 val |= obj->gtt_offset & 0xfffff000;
1560                 val |= (uint64_t)((obj->stride / 128) - 1) <<
1561                         SANDYBRIDGE_FENCE_PITCH_SHIFT;
1562
1563                 if (obj->tiling_mode == I915_TILING_Y)
1564                         val |= 1 << I965_FENCE_TILING_Y_SHIFT;
1565                 val |= I965_FENCE_REG_VALID;
1566         } else
1567                 val = 0;
1568
1569         I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + reg * 8, val);
1570         POSTING_READ(FENCE_REG_SANDYBRIDGE_0 + reg * 8);
1571 }
1572
1573 static void i965_write_fence_reg(struct drm_device *dev, int reg,
1574                                  struct drm_i915_gem_object *obj)
1575 {
1576         drm_i915_private_t *dev_priv = dev->dev_private;
1577         uint64_t val;
1578
1579         if (obj) {
1580                 u32 size = obj->gtt_space->size;
1581
1582                 val = (uint64_t)((obj->gtt_offset + size - 4096) &
1583                                  0xfffff000) << 32;
1584                 val |= obj->gtt_offset & 0xfffff000;
1585                 val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
1586                 if (obj->tiling_mode == I915_TILING_Y)
1587                         val |= 1 << I965_FENCE_TILING_Y_SHIFT;
1588                 val |= I965_FENCE_REG_VALID;
1589         } else
1590                 val = 0;
1591
1592         I915_WRITE64(FENCE_REG_965_0 + reg * 8, val);
1593         POSTING_READ(FENCE_REG_965_0 + reg * 8);
1594 }
1595
1596 static void i915_write_fence_reg(struct drm_device *dev, int reg,
1597                                  struct drm_i915_gem_object *obj)
1598 {
1599         drm_i915_private_t *dev_priv = dev->dev_private;
1600         u32 val;
1601
1602         if (obj) {
1603                 u32 size = obj->gtt_space->size;
1604                 int pitch_val;
1605                 int tile_width;
1606
1607                 WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
1608                      (size & -size) != size ||
1609                      (obj->gtt_offset & (size - 1)),
1610                      "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
1611                      obj->gtt_offset, obj->map_and_fenceable, size);
1612
1613                 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
1614                         tile_width = 128;
1615                 else
1616                         tile_width = 512;
1617
1618                 /* Note: pitch better be a power of two tile widths */
1619                 pitch_val = obj->stride / tile_width;
1620                 pitch_val = ffs(pitch_val) - 1;
1621
1622                 val = obj->gtt_offset;
1623                 if (obj->tiling_mode == I915_TILING_Y)
1624                         val |= 1 << I830_FENCE_TILING_Y_SHIFT;
1625                 val |= I915_FENCE_SIZE_BITS(size);
1626                 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
1627                 val |= I830_FENCE_REG_VALID;
1628         } else
1629                 val = 0;
1630
1631         if (reg < 8)
1632                 reg = FENCE_REG_830_0 + reg * 4;
1633         else
1634                 reg = FENCE_REG_945_8 + (reg - 8) * 4;
1635
1636         I915_WRITE(reg, val);
1637         POSTING_READ(reg);
1638 }
1639
1640 static void i830_write_fence_reg(struct drm_device *dev, int reg,
1641                                 struct drm_i915_gem_object *obj)
1642 {
1643         drm_i915_private_t *dev_priv = dev->dev_private;
1644         uint32_t val;
1645
1646         if (obj) {
1647                 u32 size = obj->gtt_space->size;
1648                 uint32_t pitch_val;
1649
1650                 WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
1651                      (size & -size) != size ||
1652                      (obj->gtt_offset & (size - 1)),
1653                      "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
1654                      obj->gtt_offset, size);
1655
1656                 pitch_val = obj->stride / 128;
1657                 pitch_val = ffs(pitch_val) - 1;
1658
1659                 val = obj->gtt_offset;
1660                 if (obj->tiling_mode == I915_TILING_Y)
1661                         val |= 1 << I830_FENCE_TILING_Y_SHIFT;
1662                 val |= I830_FENCE_SIZE_BITS(size);
1663                 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
1664                 val |= I830_FENCE_REG_VALID;
1665         } else
1666                 val = 0;
1667
1668         I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
1669         POSTING_READ(FENCE_REG_830_0 + reg * 4);
1670 }
1671
1672 static void i915_gem_write_fence(struct drm_device *dev, int reg,
1673                                  struct drm_i915_gem_object *obj)
1674 {
1675         switch (INTEL_INFO(dev)->gen) {
1676         case 7:
1677         case 6: sandybridge_write_fence_reg(dev, reg, obj); break;
1678         case 5:
1679         case 4: i965_write_fence_reg(dev, reg, obj); break;
1680         case 3: i915_write_fence_reg(dev, reg, obj); break;
1681         case 2: i830_write_fence_reg(dev, reg, obj); break;
1682         default: break;
1683         }
1684 }
1685
1686 static inline int fence_number(struct drm_i915_private *dev_priv,
1687                                struct drm_i915_fence_reg *fence)
1688 {
1689         return fence - dev_priv->fence_regs;
1690 }
1691
1692 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
1693                                          struct drm_i915_fence_reg *fence,
1694                                          bool enable)
1695 {
1696         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1697         int reg = fence_number(dev_priv, fence);
1698
1699         i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
1700
1701         if (enable) {
1702                 obj->fence_reg = reg;
1703                 fence->obj = obj;
1704                 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
1705         } else {
1706                 obj->fence_reg = I915_FENCE_REG_NONE;
1707                 fence->obj = NULL;
1708                 list_del_init(&fence->lru_list);
1709         }
1710 }
1711
1712 static int
1713 i915_gem_object_flush_fence(struct drm_i915_gem_object *obj)
1714 {
1715         int ret;
1716
1717         if (obj->fenced_gpu_access) {
1718                 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
1719                         ret = i915_gem_flush_ring(obj->ring,
1720                                                   0, obj->base.write_domain);
1721                         if (ret)
1722                                 return ret;
1723                 }
1724
1725                 obj->fenced_gpu_access = false;
1726         }
1727
1728         if (obj->last_fenced_seqno) {
1729                 ret = i915_wait_seqno(obj->ring,
1730                                         obj->last_fenced_seqno);
1731                 if (ret)
1732                         return ret;
1733
1734                 obj->last_fenced_seqno = 0;
1735         }
1736
1737         /* Ensure that all CPU reads are completed before installing a fence
1738          * and all writes before removing the fence.
1739          */
1740         if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
1741                 cpu_mfence();
1742
1743         return 0;
1744 }
1745
1746 int
1747 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
1748 {
1749         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1750         int ret;
1751
1752         ret = i915_gem_object_flush_fence(obj);
1753         if (ret)
1754                 return ret;
1755
1756         if (obj->fence_reg == I915_FENCE_REG_NONE)
1757                 return 0;
1758
1759         i915_gem_object_update_fence(obj,
1760                                      &dev_priv->fence_regs[obj->fence_reg],
1761                                      false);
1762         i915_gem_object_fence_lost(obj);
1763
1764         return 0;
1765 }
1766
1767 static struct drm_i915_fence_reg *
1768 i915_find_fence_reg(struct drm_device *dev)
1769 {
1770         struct drm_i915_private *dev_priv = dev->dev_private;
1771         struct drm_i915_fence_reg *reg, *avail;
1772         int i;
1773
1774         /* First try to find a free reg */
1775         avail = NULL;
1776         for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
1777                 reg = &dev_priv->fence_regs[i];
1778                 if (!reg->obj)
1779                         return reg;
1780
1781                 if (!reg->pin_count)
1782                         avail = reg;
1783         }
1784
1785         if (avail == NULL)
1786                 return NULL;
1787
1788         /* None available, try to steal one or wait for a user to finish */
1789         list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
1790                 if (reg->pin_count)
1791                         continue;
1792
1793                 return reg;
1794         }
1795
1796         return NULL;
1797 }
1798
1799 /**
1800  * i915_gem_object_get_fence - set up fencing for an object
1801  * @obj: object to map through a fence reg
1802  *
1803  * When mapping objects through the GTT, userspace wants to be able to write
1804  * to them without having to worry about swizzling if the object is tiled.
1805  * This function walks the fence regs looking for a free one for @obj,
1806  * stealing one if it can't find any.
1807  *
1808  * It then sets up the reg based on the object's properties: address, pitch
1809  * and tiling format.
1810  *
1811  * For an untiled surface, this removes any existing fence.
1812  */
1813 int
1814 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
1815 {
1816         struct drm_device *dev = obj->base.dev;
1817         struct drm_i915_private *dev_priv = dev->dev_private;
1818         bool enable = obj->tiling_mode != I915_TILING_NONE;
1819         struct drm_i915_fence_reg *reg;
1820         int ret;
1821
1822         /* Have we updated the tiling parameters upon the object and so
1823          * will need to serialise the write to the associated fence register?
1824          */
1825         if (obj->fence_dirty) {
1826                 ret = i915_gem_object_flush_fence(obj);
1827                 if (ret)
1828                         return ret;
1829         }
1830
1831         /* Just update our place in the LRU if our fence is getting reused. */
1832         if (obj->fence_reg != I915_FENCE_REG_NONE) {
1833                 reg = &dev_priv->fence_regs[obj->fence_reg];
1834                 if (!obj->fence_dirty) {
1835                         list_move_tail(&reg->lru_list,
1836                                        &dev_priv->mm.fence_list);
1837                         return 0;
1838                 }
1839         } else if (enable) {
1840                 reg = i915_find_fence_reg(dev);
1841                 if (reg == NULL)
1842                         return -EDEADLK;
1843
1844                 if (reg->obj) {
1845                         struct drm_i915_gem_object *old = reg->obj;
1846
1847                         ret = i915_gem_object_flush_fence(old);
1848                         if (ret)
1849                                 return ret;
1850
1851                         i915_gem_object_fence_lost(old);
1852                 }
1853         } else
1854                 return 0;
1855
1856         i915_gem_object_update_fence(obj, reg, enable);
1857         obj->fence_dirty = false;
1858
1859         return 0;
1860 }
1861
1862 static int
1863 i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
1864     unsigned alignment, bool map_and_fenceable)
1865 {
1866         struct drm_device *dev;
1867         struct drm_i915_private *dev_priv;
1868         struct drm_mm_node *free_space;
1869         uint32_t size, fence_size, fence_alignment, unfenced_alignment;
1870         bool mappable, fenceable;
1871         int ret;
1872         bool nonblocking = false;
1873
1874         dev = obj->base.dev;
1875         dev_priv = dev->dev_private;
1876
1877         if (obj->madv != I915_MADV_WILLNEED) {
1878                 DRM_ERROR("Attempting to bind a purgeable object\n");
1879                 return (-EINVAL);
1880         }
1881
1882         fence_size = i915_gem_get_gtt_size(dev, obj->base.size,
1883             obj->tiling_mode);
1884         fence_alignment = i915_gem_get_gtt_alignment(dev, obj->base.size,
1885             obj->tiling_mode);
1886         unfenced_alignment = i915_gem_get_unfenced_gtt_alignment(dev,
1887             obj->base.size, obj->tiling_mode);
1888         if (alignment == 0)
1889                 alignment = map_and_fenceable ? fence_alignment :
1890                     unfenced_alignment;
1891         if (map_and_fenceable && (alignment & (fence_alignment - 1)) != 0) {
1892                 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
1893                 return (-EINVAL);
1894         }
1895
1896         size = map_and_fenceable ? fence_size : obj->base.size;
1897
1898         /* If the object is bigger than the entire aperture, reject it early
1899          * before evicting everything in a vain attempt to find space.
1900          */
1901         if (obj->base.size > (map_and_fenceable ?
1902             dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
1903                 DRM_ERROR(
1904 "Attempting to bind an object larger than the aperture\n");
1905                 return (-E2BIG);
1906         }
1907
1908  search_free:
1909         if (map_and_fenceable)
1910                 free_space = drm_mm_search_free_in_range(
1911                     &dev_priv->mm.gtt_space, size, alignment, 0,
1912                     dev_priv->mm.gtt_mappable_end, 0);
1913         else
1914                 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
1915                     size, alignment, 0);
1916         if (free_space != NULL) {
1917                 int color = 0;
1918                 if (map_and_fenceable)
1919                         obj->gtt_space = drm_mm_get_block_range_generic(
1920                             free_space, size, alignment, color, 0,
1921                             dev_priv->mm.gtt_mappable_end, 1);
1922                 else
1923                         obj->gtt_space = drm_mm_get_block_generic(free_space,
1924                             size, alignment, color, 1);
1925         }
1926         if (obj->gtt_space == NULL) {
1927                 ret = i915_gem_evict_something(dev, size, alignment,
1928                                                obj->cache_level,
1929                                                map_and_fenceable,
1930                                                nonblocking);
1931                 if (ret != 0)
1932                         return (ret);
1933                 goto search_free;
1934         }
1935
1936         /*
1937          * NOTE: i915_gem_object_get_pages_gtt() cannot
1938          *       return ENOMEM, since we used VM_ALLOC_RETRY.
1939          */
1940         ret = i915_gem_object_get_pages_gtt(obj, 0);
1941         if (ret != 0) {
1942                 drm_mm_put_block(obj->gtt_space);
1943                 obj->gtt_space = NULL;
1944                 return (ret);
1945         }
1946
1947         i915_gem_gtt_bind_object(obj, obj->cache_level);
1948         if (ret != 0) {
1949                 i915_gem_object_put_pages_gtt(obj);
1950                 drm_mm_put_block(obj->gtt_space);
1951                 obj->gtt_space = NULL;
1952                 if (i915_gem_evict_everything(dev))
1953                         return (ret);
1954                 goto search_free;
1955         }
1956
1957         list_add_tail(&obj->gtt_list, &dev_priv->mm.gtt_list);
1958         list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1959
1960         obj->gtt_offset = obj->gtt_space->start;
1961
1962         fenceable =
1963                 obj->gtt_space->size == fence_size &&
1964                 (obj->gtt_space->start & (fence_alignment - 1)) == 0;
1965
1966         mappable =
1967                 obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
1968         obj->map_and_fenceable = mappable && fenceable;
1969
1970         return (0);
1971 }
1972
1973 void
1974 i915_gem_clflush_object(struct drm_i915_gem_object *obj)
1975 {
1976
1977         /* If we don't have a page list set up, then we're not pinned
1978          * to GPU, and we can ignore the cache flush because it'll happen
1979          * again at bind time.
1980          */
1981         if (obj->pages == NULL)
1982                 return;
1983
1984         /* If the GPU is snooping the contents of the CPU cache,
1985          * we do not need to manually clear the CPU cache lines.  However,
1986          * the caches are only snooped when the render cache is
1987          * flushed/invalidated.  As we always have to emit invalidations
1988          * and flushes when moving into and out of the RENDER domain, correct
1989          * snooping behaviour occurs naturally as the result of our domain
1990          * tracking.
1991          */
1992         if (obj->cache_level != I915_CACHE_NONE)
1993                 return;
1994
1995         drm_clflush_pages(obj->pages, obj->base.size / PAGE_SIZE);
1996 }
1997
1998 /** Flushes the GTT write domain for the object if it's dirty. */
1999 static void
2000 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
2001 {
2002         uint32_t old_write_domain;
2003
2004         if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
2005                 return;
2006
2007         /* No actual flushing is required for the GTT write domain.  Writes
2008          * to it immediately go to main memory as far as we know, so there's
2009          * no chipset flush.  It also doesn't land in render cache.
2010          *
2011          * However, we do have to enforce the order so that all writes through
2012          * the GTT land before any writes to the device, such as updates to
2013          * the GATT itself.
2014          */
2015         cpu_sfence();
2016
2017         old_write_domain = obj->base.write_domain;
2018         obj->base.write_domain = 0;
2019 }
2020
2021 /** Flushes the CPU write domain for the object if it's dirty. */
2022 static void
2023 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
2024 {
2025         uint32_t old_write_domain;
2026
2027         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
2028                 return;
2029
2030         i915_gem_clflush_object(obj);
2031         intel_gtt_chipset_flush();
2032         old_write_domain = obj->base.write_domain;
2033         obj->base.write_domain = 0;
2034 }
2035
2036 static int
2037 i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj)
2038 {
2039
2040         if ((obj->base.write_domain & I915_GEM_GPU_DOMAINS) == 0)
2041                 return (0);
2042         return (i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain));
2043 }
2044
2045 /**
2046  * Moves a single object to the GTT read, and possibly write domain.
2047  *
2048  * This function returns when the move is complete, including waiting on
2049  * flushes to occur.
2050  */
2051 int
2052 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2053 {
2054         drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2055         uint32_t old_write_domain, old_read_domains;
2056         int ret;
2057
2058         /* Not valid to be called on unbound objects. */
2059         if (obj->gtt_space == NULL)
2060                 return -EINVAL;
2061
2062         if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
2063                 return 0;
2064
2065         ret = i915_gem_object_flush_gpu_write_domain(obj);
2066         if (ret)
2067                 return ret;
2068
2069         ret = i915_gem_object_wait_rendering(obj, !write);
2070         if (ret)
2071                 return ret;
2072
2073         i915_gem_object_flush_cpu_write_domain(obj);
2074
2075         old_write_domain = obj->base.write_domain;
2076         old_read_domains = obj->base.read_domains;
2077
2078         /* It should now be out of any other write domains, and we can update
2079          * the domain values for our changes.
2080          */
2081         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2082         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
2083         if (write) {
2084                 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
2085                 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
2086                 obj->dirty = 1;
2087         }
2088
2089         /* And bump the LRU for this access */
2090         if (i915_gem_object_is_inactive(obj))
2091                 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
2092
2093         return 0;
2094 }
2095
2096 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
2097                                     enum i915_cache_level cache_level)
2098 {
2099         struct drm_device *dev = obj->base.dev;
2100         drm_i915_private_t *dev_priv = dev->dev_private;
2101         int ret;
2102
2103         if (obj->cache_level == cache_level)
2104                 return 0;
2105
2106         if (obj->pin_count) {
2107                 DRM_DEBUG("can not change the cache level of pinned objects\n");
2108                 return -EBUSY;
2109         }
2110
2111         if (obj->gtt_space) {
2112                 ret = i915_gem_object_finish_gpu(obj);
2113                 if (ret != 0)
2114                         return (ret);
2115
2116                 i915_gem_object_finish_gtt(obj);
2117
2118                 /* Before SandyBridge, you could not use tiling or fence
2119                  * registers with snooped memory, so relinquish any fences
2120                  * currently pointing to our region in the aperture.
2121                  */
2122                 if (INTEL_INFO(obj->base.dev)->gen < 6) {
2123                         ret = i915_gem_object_put_fence(obj);
2124                         if (ret)
2125                                 return ret;
2126                 }
2127
2128                 if (obj->has_global_gtt_mapping)
2129                         i915_gem_gtt_bind_object(obj, cache_level);
2130                 if (obj->has_aliasing_ppgtt_mapping)
2131                         i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
2132                                                obj, cache_level);
2133         }
2134
2135         if (cache_level == I915_CACHE_NONE) {
2136                 u32 old_read_domains, old_write_domain;
2137
2138                 /* If we're coming from LLC cached, then we haven't
2139                  * actually been tracking whether the data is in the
2140                  * CPU cache or not, since we only allow one bit set
2141                  * in obj->write_domain and have been skipping the clflushes.
2142                  * Just set it to the CPU cache for now.
2143                  */
2144                 KASSERT((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) == 0,
2145                     ("obj %p in CPU write domain", obj));
2146                 KASSERT((obj->base.read_domains & ~I915_GEM_DOMAIN_CPU) == 0,
2147                     ("obj %p in CPU read domain", obj));
2148
2149                 old_read_domains = obj->base.read_domains;
2150                 old_write_domain = obj->base.write_domain;
2151
2152                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
2153                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2154
2155         }
2156
2157         obj->cache_level = cache_level;
2158         return 0;
2159 }
2160
2161 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
2162                                struct drm_file *file)
2163 {
2164         struct drm_i915_gem_caching *args = data;
2165         struct drm_i915_gem_object *obj;
2166         int ret;
2167
2168         ret = i915_mutex_lock_interruptible(dev);
2169         if (ret)
2170                 return ret;
2171
2172         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
2173         if (&obj->base == NULL) {
2174                 ret = -ENOENT;
2175                 goto unlock;
2176         }
2177
2178         args->caching = obj->cache_level != I915_CACHE_NONE;
2179
2180         drm_gem_object_unreference(&obj->base);
2181 unlock:
2182         DRM_UNLOCK(dev);
2183         return ret;
2184 }
2185
2186 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
2187                                struct drm_file *file)
2188 {
2189         struct drm_i915_gem_caching *args = data;
2190         struct drm_i915_gem_object *obj;
2191         enum i915_cache_level level;
2192         int ret;
2193
2194         switch (args->caching) {
2195         case I915_CACHING_NONE:
2196                 level = I915_CACHE_NONE;
2197                 break;
2198         case I915_CACHING_CACHED:
2199                 level = I915_CACHE_LLC;
2200                 break;
2201         default:
2202                 return -EINVAL;
2203         }
2204
2205         ret = i915_mutex_lock_interruptible(dev);
2206         if (ret)
2207                 return ret;
2208
2209         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
2210         if (&obj->base == NULL) {
2211                 ret = -ENOENT;
2212                 goto unlock;
2213         }
2214
2215         ret = i915_gem_object_set_cache_level(obj, level);
2216
2217         drm_gem_object_unreference(&obj->base);
2218 unlock:
2219         DRM_UNLOCK(dev);
2220         return ret;
2221 }
2222
2223 /*
2224  * Prepare buffer for display plane (scanout, cursors, etc).
2225  * Can be called from an uninterruptible phase (modesetting) and allows
2226  * any flushes to be pipelined (for pageflips).
2227  */
2228 int
2229 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
2230                                      u32 alignment,
2231                                      struct intel_ring_buffer *pipelined)
2232 {
2233         u32 old_read_domains, old_write_domain;
2234         int ret;
2235
2236         ret = i915_gem_object_flush_gpu_write_domain(obj);
2237         if (ret)
2238                 return ret;
2239
2240         if (pipelined != obj->ring) {
2241                 ret = i915_gem_object_sync(obj, pipelined);
2242                 if (ret)
2243                         return ret;
2244         }
2245
2246         /* The display engine is not coherent with the LLC cache on gen6.  As
2247          * a result, we make sure that the pinning that is about to occur is
2248          * done with uncached PTEs. This is lowest common denominator for all
2249          * chipsets.
2250          *
2251          * However for gen6+, we could do better by using the GFDT bit instead
2252          * of uncaching, which would allow us to flush all the LLC-cached data
2253          * with that bit in the PTE to main memory with just one PIPE_CONTROL.
2254          */
2255         ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
2256         if (ret)
2257                 return ret;
2258
2259         /* As the user may map the buffer once pinned in the display plane
2260          * (e.g. libkms for the bootup splash), we have to ensure that we
2261          * always use map_and_fenceable for all scanout buffers.
2262          */
2263         ret = i915_gem_object_pin(obj, alignment, true);
2264         if (ret)
2265                 return ret;
2266
2267         i915_gem_object_flush_cpu_write_domain(obj);
2268
2269         old_write_domain = obj->base.write_domain;
2270         old_read_domains = obj->base.read_domains;
2271
2272         /* It should now be out of any other write domains, and we can update
2273          * the domain values for our changes.
2274          */
2275         obj->base.write_domain = 0;
2276         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
2277
2278         return 0;
2279 }
2280
2281 int
2282 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
2283 {
2284         int ret;
2285
2286         if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
2287                 return 0;
2288
2289         if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
2290                 ret = i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
2291                 if (ret)
2292                         return ret;
2293         }
2294
2295         ret = i915_gem_object_wait_rendering(obj, false);
2296         if (ret)
2297                 return ret;
2298
2299         /* Ensure that we invalidate the GPU's caches and TLBs. */
2300         obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
2301         return 0;
2302 }
2303
2304 /**
2305  * Moves a single object to the CPU read, and possibly write domain.
2306  *
2307  * This function returns when the move is complete, including waiting on
2308  * flushes to occur.
2309  */
2310 int
2311 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
2312 {
2313         uint32_t old_write_domain, old_read_domains;
2314         int ret;
2315
2316         if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
2317                 return 0;
2318
2319         ret = i915_gem_object_flush_gpu_write_domain(obj);
2320         if (ret)
2321                 return ret;
2322
2323         ret = i915_gem_object_wait_rendering(obj, !write);
2324         if (ret)
2325                 return ret;
2326
2327         i915_gem_object_flush_gtt_write_domain(obj);
2328
2329         old_write_domain = obj->base.write_domain;
2330         old_read_domains = obj->base.read_domains;
2331
2332         /* Flush the CPU cache if it's still invalid. */
2333         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2334                 i915_gem_clflush_object(obj);
2335
2336                 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2337         }
2338
2339         /* It should now be out of any other write domains, and we can update
2340          * the domain values for our changes.
2341          */
2342         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2343
2344         /* If we're writing through the CPU, then the GPU read domains will
2345          * need to be invalidated at next use.
2346          */
2347         if (write) {
2348                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
2349                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2350         }
2351
2352         return 0;
2353 }
2354
2355 /* Throttle our rendering by waiting until the ring has completed our requests
2356  * emitted over 20 msec ago.
2357  *
2358  * Note that if we were to use the current jiffies each time around the loop,
2359  * we wouldn't escape the function with any frames outstanding if the time to
2360  * render a frame was over 20ms.
2361  *
2362  * This should get us reasonable parallelism between CPU and GPU but also
2363  * relatively low latency when blocking on a particular request to finish.
2364  */
2365 static int
2366 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
2367 {
2368         struct drm_i915_private *dev_priv = dev->dev_private;
2369         struct drm_i915_file_private *file_priv = file->driver_priv;
2370         unsigned long recent_enough = ticks - (20 * hz / 1000);
2371         struct drm_i915_gem_request *request;
2372         struct intel_ring_buffer *ring = NULL;
2373         u32 seqno = 0;
2374         int ret;
2375
2376         if (atomic_read(&dev_priv->mm.wedged))
2377                 return -EIO;
2378
2379         spin_lock(&file_priv->mm.lock);
2380         list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
2381                 if (time_after_eq(request->emitted_jiffies, recent_enough))
2382                         break;
2383
2384                 ring = request->ring;
2385                 seqno = request->seqno;
2386         }
2387         spin_unlock(&file_priv->mm.lock);
2388
2389         if (seqno == 0)
2390                 return 0;
2391
2392         ret = __wait_seqno(ring, seqno, true, NULL);
2393
2394         if (ret == 0)
2395                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
2396
2397         return ret;
2398 }
2399
2400 int
2401 i915_gem_object_pin(struct drm_i915_gem_object *obj,
2402                     uint32_t alignment,
2403                     bool map_and_fenceable)
2404 {
2405         int ret;
2406
2407         if (WARN_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
2408                 return -EBUSY;
2409
2410         if (obj->gtt_space != NULL) {
2411                 if ((alignment && obj->gtt_offset & (alignment - 1)) ||
2412                     (map_and_fenceable && !obj->map_and_fenceable)) {
2413                         WARN(obj->pin_count,
2414                              "bo is already pinned with incorrect alignment:"
2415                              " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
2416                              " obj->map_and_fenceable=%d\n",
2417                              obj->gtt_offset, alignment,
2418                              map_and_fenceable,
2419                              obj->map_and_fenceable);
2420                         ret = i915_gem_object_unbind(obj);
2421                         if (ret)
2422                                 return ret;
2423                 }
2424         }
2425
2426         if (obj->gtt_space == NULL) {
2427                 ret = i915_gem_object_bind_to_gtt(obj, alignment,
2428                                                   map_and_fenceable);
2429                 if (ret)
2430                         return ret;
2431         }
2432
2433         if (!obj->has_global_gtt_mapping && map_and_fenceable)
2434                 i915_gem_gtt_bind_object(obj, obj->cache_level);
2435
2436         obj->pin_count++;
2437         obj->pin_mappable |= map_and_fenceable;
2438
2439         return 0;
2440 }
2441
2442 void
2443 i915_gem_object_unpin(struct drm_i915_gem_object *obj)
2444 {
2445         BUG_ON(obj->pin_count == 0);
2446         BUG_ON(obj->gtt_space == NULL);
2447
2448         if (--obj->pin_count == 0)
2449                 obj->pin_mappable = false;
2450 }
2451
2452 int
2453 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
2454     struct drm_file *file)
2455 {
2456         struct drm_i915_gem_pin *args;
2457         struct drm_i915_gem_object *obj;
2458         struct drm_gem_object *gobj;
2459         int ret;
2460
2461         args = data;
2462
2463         ret = i915_mutex_lock_interruptible(dev);
2464         if (ret != 0)
2465                 return ret;
2466
2467         gobj = drm_gem_object_lookup(dev, file, args->handle);
2468         if (gobj == NULL) {
2469                 ret = -ENOENT;
2470                 goto unlock;
2471         }
2472         obj = to_intel_bo(gobj);
2473
2474         if (obj->madv != I915_MADV_WILLNEED) {
2475                 DRM_ERROR("Attempting to pin a purgeable buffer\n");
2476                 ret = -EINVAL;
2477                 goto out;
2478         }
2479
2480         if (obj->pin_filp != NULL && obj->pin_filp != file) {
2481                 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
2482                     args->handle);
2483                 ret = -EINVAL;
2484                 goto out;
2485         }
2486
2487         obj->user_pin_count++;
2488         obj->pin_filp = file;
2489         if (obj->user_pin_count == 1) {
2490                 ret = i915_gem_object_pin(obj, args->alignment, true);
2491                 if (ret != 0)
2492                         goto out;
2493         }
2494
2495         /* XXX - flush the CPU caches for pinned objects
2496          * as the X server doesn't manage domains yet
2497          */
2498         i915_gem_object_flush_cpu_write_domain(obj);
2499         args->offset = obj->gtt_offset;
2500 out:
2501         drm_gem_object_unreference(&obj->base);
2502 unlock:
2503         DRM_UNLOCK(dev);
2504         return (ret);
2505 }
2506
2507 int
2508 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
2509     struct drm_file *file)
2510 {
2511         struct drm_i915_gem_pin *args;
2512         struct drm_i915_gem_object *obj;
2513         int ret;
2514
2515         args = data;
2516         ret = i915_mutex_lock_interruptible(dev);
2517         if (ret != 0)
2518                 return (ret);
2519
2520         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
2521         if (&obj->base == NULL) {
2522                 ret = -ENOENT;
2523                 goto unlock;
2524         }
2525
2526         if (obj->pin_filp != file) {
2527                 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
2528                     args->handle);
2529                 ret = -EINVAL;
2530                 goto out;
2531         }
2532         obj->user_pin_count--;
2533         if (obj->user_pin_count == 0) {
2534                 obj->pin_filp = NULL;
2535                 i915_gem_object_unpin(obj);
2536         }
2537
2538 out:
2539         drm_gem_object_unreference(&obj->base);
2540 unlock:
2541         DRM_UNLOCK(dev);
2542         return (ret);
2543 }
2544
2545 int
2546 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
2547                     struct drm_file *file)
2548 {
2549         struct drm_i915_gem_busy *args = data;
2550         struct drm_i915_gem_object *obj;
2551         int ret;
2552
2553         ret = i915_mutex_lock_interruptible(dev);
2554         if (ret)
2555                 return ret;
2556
2557         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
2558         if (&obj->base == NULL) {
2559                 ret = -ENOENT;
2560                 goto unlock;
2561         }
2562
2563         /* Count all active objects as busy, even if they are currently not used
2564          * by the gpu. Users of this interface expect objects to eventually
2565          * become non-busy without any further actions, therefore emit any
2566          * necessary flushes here.
2567          */
2568         ret = i915_gem_object_flush_active(obj);
2569
2570         args->busy = obj->active;
2571         if (obj->ring) {
2572                 args->busy |= intel_ring_flag(obj->ring) << 17;
2573         }
2574
2575         drm_gem_object_unreference(&obj->base);
2576 unlock:
2577         DRM_UNLOCK(dev);
2578         return ret;
2579 }
2580
2581 int
2582 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
2583     struct drm_file *file_priv)
2584 {
2585
2586         return (i915_gem_ring_throttle(dev, file_priv));
2587 }
2588
2589 int
2590 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
2591                        struct drm_file *file_priv)
2592 {
2593         struct drm_i915_gem_madvise *args = data;
2594         struct drm_i915_gem_object *obj;
2595         int ret;
2596
2597         switch (args->madv) {
2598         case I915_MADV_DONTNEED:
2599         case I915_MADV_WILLNEED:
2600             break;
2601         default:
2602             return -EINVAL;
2603         }
2604
2605         ret = i915_mutex_lock_interruptible(dev);
2606         if (ret)
2607                 return ret;
2608
2609         obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
2610         if (&obj->base == NULL) {
2611                 ret = -ENOENT;
2612                 goto unlock;
2613         }
2614
2615         if (obj->pin_count) {
2616                 ret = -EINVAL;
2617                 goto out;
2618         }
2619
2620         if (obj->madv != __I915_MADV_PURGED)
2621                 obj->madv = args->madv;
2622
2623         /* if the object is no longer attached, discard its backing storage */
2624         if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
2625                 i915_gem_object_truncate(obj);
2626
2627         args->retained = obj->madv != __I915_MADV_PURGED;
2628
2629 out:
2630         drm_gem_object_unreference(&obj->base);
2631 unlock:
2632         DRM_UNLOCK(dev);
2633         return ret;
2634 }
2635
2636 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
2637                                                   size_t size)
2638 {
2639         struct drm_i915_private *dev_priv;
2640         struct drm_i915_gem_object *obj;
2641
2642         dev_priv = dev->dev_private;
2643
2644         obj = kmalloc(sizeof(*obj), DRM_I915_GEM, M_WAITOK | M_ZERO);
2645
2646         if (drm_gem_object_init(dev, &obj->base, size) != 0) {
2647                 drm_free(obj, DRM_I915_GEM);
2648                 return (NULL);
2649         }
2650
2651         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2652         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
2653
2654         if (HAS_LLC(dev))
2655                 obj->cache_level = I915_CACHE_LLC;
2656         else
2657                 obj->cache_level = I915_CACHE_NONE;
2658         obj->base.driver_private = NULL;
2659         obj->fence_reg = I915_FENCE_REG_NONE;
2660         INIT_LIST_HEAD(&obj->mm_list);
2661         INIT_LIST_HEAD(&obj->gtt_list);
2662         INIT_LIST_HEAD(&obj->ring_list);
2663         INIT_LIST_HEAD(&obj->exec_list);
2664         INIT_LIST_HEAD(&obj->gpu_write_list);
2665         obj->madv = I915_MADV_WILLNEED;
2666         /* Avoid an unnecessary call to unbind on the first bind. */
2667         obj->map_and_fenceable = true;
2668
2669         i915_gem_info_add_obj(dev_priv, size);
2670
2671         return (obj);
2672 }
2673
2674 int i915_gem_init_object(struct drm_gem_object *obj)
2675 {
2676         BUG();
2677
2678         return 0;
2679 }
2680
2681 void i915_gem_free_object(struct drm_gem_object *gem_obj)
2682 {
2683         struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
2684         struct drm_device *dev = obj->base.dev;
2685         drm_i915_private_t *dev_priv = dev->dev_private;
2686
2687         if (obj->phys_obj)
2688                 i915_gem_detach_phys_object(dev, obj);
2689
2690         obj->pin_count = 0;
2691         if (WARN_ON(i915_gem_object_unbind(obj) == -ERESTARTSYS)) {
2692                 bool was_interruptible;
2693
2694                 was_interruptible = dev_priv->mm.interruptible;
2695                 dev_priv->mm.interruptible = false;
2696
2697                 WARN_ON(i915_gem_object_unbind(obj));
2698
2699                 dev_priv->mm.interruptible = was_interruptible;
2700         }
2701
2702         drm_gem_free_mmap_offset(&obj->base);
2703
2704         drm_gem_object_release(&obj->base);
2705         i915_gem_info_remove_obj(dev_priv, obj->base.size);
2706
2707         drm_free(obj->bit_17, DRM_I915_GEM);
2708         drm_free(obj, DRM_I915_GEM);
2709 }
2710
2711 int
2712 i915_gem_do_init(struct drm_device *dev, unsigned long start,
2713     unsigned long mappable_end, unsigned long end)
2714 {
2715         drm_i915_private_t *dev_priv;
2716         unsigned long mappable;
2717         int error;
2718
2719         dev_priv = dev->dev_private;
2720         mappable = min(end, mappable_end) - start;
2721
2722         drm_mm_init(&dev_priv->mm.gtt_space, start, end - start);
2723
2724         dev_priv->mm.gtt_start = start;
2725         dev_priv->mm.gtt_mappable_end = mappable_end;
2726         dev_priv->mm.gtt_end = end;
2727         dev_priv->mm.gtt_total = end - start;
2728         dev_priv->mm.mappable_gtt_total = mappable;
2729
2730         /* Take over this portion of the GTT */
2731         intel_gtt_clear_range(start / PAGE_SIZE, (end-start) / PAGE_SIZE);
2732         device_printf(dev->dev,
2733             "taking over the fictitious range 0x%lx-0x%lx\n",
2734             dev->agp->base + start, dev->agp->base + start + mappable);
2735         error = -vm_phys_fictitious_reg_range(dev->agp->base + start,
2736             dev->agp->base + start + mappable, VM_MEMATTR_WRITE_COMBINING);
2737         return (error);
2738 }
2739
2740 int
2741 i915_gem_idle(struct drm_device *dev)
2742 {
2743         drm_i915_private_t *dev_priv = dev->dev_private;
2744         int ret;
2745
2746         DRM_LOCK(dev);
2747
2748         if (dev_priv->mm.suspended) {
2749                 DRM_UNLOCK(dev);
2750                 return 0;
2751         }
2752
2753         ret = i915_gpu_idle(dev);
2754         if (ret) {
2755                 DRM_UNLOCK(dev);
2756                 return ret;
2757         }
2758         i915_gem_retire_requests(dev);
2759
2760         /* Under UMS, be paranoid and evict. */
2761         if (!drm_core_check_feature(dev, DRIVER_MODESET))
2762                 i915_gem_evict_everything(dev);
2763
2764         i915_gem_reset_fences(dev);
2765
2766         /* Hack!  Don't let anybody do execbuf while we don't control the chip.
2767          * We need to replace this with a semaphore, or something.
2768          * And not confound mm.suspended!
2769          */
2770         dev_priv->mm.suspended = 1;
2771         del_timer_sync(&dev_priv->hangcheck_timer);
2772
2773         i915_kernel_lost_context(dev);
2774         i915_gem_cleanup_ringbuffer(dev);
2775
2776         DRM_UNLOCK(dev);
2777
2778         /* Cancel the retire work handler, which should be idle now. */
2779         cancel_delayed_work_sync(&dev_priv->mm.retire_work);
2780
2781         return 0;
2782 }
2783
2784 void i915_gem_l3_remap(struct drm_device *dev)
2785 {
2786         drm_i915_private_t *dev_priv = dev->dev_private;
2787         u32 misccpctl;
2788         int i;
2789
2790         if (!HAS_L3_GPU_CACHE(dev))
2791                 return;
2792
2793         if (!dev_priv->l3_parity.remap_info)
2794                 return;
2795
2796         misccpctl = I915_READ(GEN7_MISCCPCTL);
2797         I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
2798         POSTING_READ(GEN7_MISCCPCTL);
2799
2800         for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
2801                 u32 remap = I915_READ(GEN7_L3LOG_BASE + i);
2802                 if (remap && remap != dev_priv->l3_parity.remap_info[i/4])
2803                         DRM_DEBUG("0x%x was already programmed to %x\n",
2804                                   GEN7_L3LOG_BASE + i, remap);
2805                 if (remap && !dev_priv->l3_parity.remap_info[i/4])
2806                         DRM_DEBUG_DRIVER("Clearing remapped register\n");
2807                 I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->l3_parity.remap_info[i/4]);
2808         }
2809
2810         /* Make sure all the writes land before disabling dop clock gating */
2811         POSTING_READ(GEN7_L3LOG_BASE);
2812
2813         I915_WRITE(GEN7_MISCCPCTL, misccpctl);
2814 }
2815
2816 void
2817 i915_gem_init_swizzling(struct drm_device *dev)
2818 {
2819         drm_i915_private_t *dev_priv;
2820
2821         dev_priv = dev->dev_private;
2822
2823         if (INTEL_INFO(dev)->gen < 5 ||
2824             dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
2825                 return;
2826
2827         I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
2828                                  DISP_TILE_SURFACE_SWIZZLING);
2829
2830         if (IS_GEN5(dev))
2831                 return;
2832
2833         I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
2834         if (IS_GEN6(dev))
2835                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
2836         else
2837                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
2838 }
2839
2840 static bool
2841 intel_enable_blt(struct drm_device *dev)
2842 {
2843         int revision;
2844
2845         if (!HAS_BLT(dev))
2846                 return false;
2847
2848         /* The blitter was dysfunctional on early prototypes */
2849         revision = pci_read_config(dev->dev, PCIR_REVID, 1);
2850         if (IS_GEN6(dev) && revision < 8) {
2851                 DRM_INFO("BLT not supported on this pre-production hardware;"
2852                          " graphics performance will be degraded.\n");
2853                 return false;
2854         }
2855
2856         return true;
2857 }
2858
2859 int
2860 i915_gem_init_hw(struct drm_device *dev)
2861 {
2862         drm_i915_private_t *dev_priv = dev->dev_private;
2863         int ret;
2864
2865         if (IS_HASWELL(dev) && (I915_READ(0x120010) == 1))
2866                 I915_WRITE(0x9008, I915_READ(0x9008) | 0xf0000);
2867
2868         i915_gem_l3_remap(dev);
2869
2870         i915_gem_init_swizzling(dev);
2871
2872         ret = intel_init_render_ring_buffer(dev);
2873         if (ret)
2874                 return ret;
2875
2876         if (HAS_BSD(dev)) {
2877                 ret = intel_init_bsd_ring_buffer(dev);
2878                 if (ret)
2879                         goto cleanup_render_ring;
2880         }
2881
2882         if (intel_enable_blt(dev)) {
2883                 ret = intel_init_blt_ring_buffer(dev);
2884                 if (ret)
2885                         goto cleanup_bsd_ring;
2886         }
2887
2888         dev_priv->next_seqno = 1;
2889
2890         /*
2891          * XXX: There was some w/a described somewhere suggesting loading
2892          * contexts before PPGTT.
2893          */
2894 #if 0   /* XXX: HW context support */
2895         i915_gem_context_init(dev);
2896 #endif
2897         i915_gem_init_ppgtt(dev);
2898
2899         return 0;
2900
2901 cleanup_bsd_ring:
2902         intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
2903 cleanup_render_ring:
2904         intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
2905         return ret;
2906 }
2907
2908 static bool
2909 intel_enable_ppgtt(struct drm_device *dev)
2910 {
2911         if (i915_enable_ppgtt >= 0)
2912                 return i915_enable_ppgtt;
2913
2914         /* Disable ppgtt on SNB if VT-d is on. */
2915         if (INTEL_INFO(dev)->gen == 6 && intel_iommu_enabled)
2916                 return false;
2917
2918         return true;
2919 }
2920
2921 int i915_gem_init(struct drm_device *dev)
2922 {
2923         struct drm_i915_private *dev_priv = dev->dev_private;
2924         unsigned long prealloc_size, gtt_size, mappable_size;
2925         int ret;
2926
2927         prealloc_size = dev_priv->mm.gtt->stolen_size;
2928         gtt_size = dev_priv->mm.gtt->gtt_total_entries << PAGE_SHIFT;
2929         mappable_size = dev_priv->mm.gtt->gtt_mappable_entries << PAGE_SHIFT;
2930
2931         /* Basic memrange allocator for stolen space */
2932         drm_mm_init(&dev_priv->mm.stolen, 0, prealloc_size);
2933
2934         DRM_LOCK(dev);
2935         if (intel_enable_ppgtt(dev) && HAS_ALIASING_PPGTT(dev)) {
2936                 /* PPGTT pdes are stolen from global gtt ptes, so shrink the
2937                  * aperture accordingly when using aliasing ppgtt. */
2938                 gtt_size -= I915_PPGTT_PD_ENTRIES*PAGE_SIZE;
2939                 /* For paranoia keep the guard page in between. */
2940                 gtt_size -= PAGE_SIZE;
2941
2942                 i915_gem_do_init(dev, 0, mappable_size, gtt_size);
2943
2944                 ret = i915_gem_init_aliasing_ppgtt(dev);
2945                 if (ret) {
2946                         DRM_UNLOCK(dev);
2947                         return ret;
2948                 }
2949         } else {
2950                 /* Let GEM Manage all of the aperture.
2951                  *
2952                  * However, leave one page at the end still bound to the scratch
2953                  * page.  There are a number of places where the hardware
2954                  * apparently prefetches past the end of the object, and we've
2955                  * seen multiple hangs with the GPU head pointer stuck in a
2956                  * batchbuffer bound at the last page of the aperture.  One page
2957                  * should be enough to keep any prefetching inside of the
2958                  * aperture.
2959                  */
2960                 i915_gem_do_init(dev, 0, mappable_size, gtt_size - PAGE_SIZE);
2961         }
2962
2963         ret = i915_gem_init_hw(dev);
2964         DRM_UNLOCK(dev);
2965         if (ret != 0) {
2966                 i915_gem_cleanup_aliasing_ppgtt(dev);
2967                 return (ret);
2968         }
2969
2970 #if 0
2971         /* Try to set up FBC with a reasonable compressed buffer size */
2972         if (I915_HAS_FBC(dev) && i915_powersave) {
2973                 int cfb_size;
2974
2975                 /* Leave 1M for line length buffer & misc. */
2976
2977                 /* Try to get a 32M buffer... */
2978                 if (prealloc_size > (36*1024*1024))
2979                         cfb_size = 32*1024*1024;
2980                 else /* fall back to 7/8 of the stolen space */
2981                         cfb_size = prealloc_size * 7 / 8;
2982                 i915_setup_compression(dev, cfb_size);
2983         }
2984 #endif
2985
2986         /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
2987         if (!drm_core_check_feature(dev, DRIVER_MODESET))
2988                 dev_priv->dri1.allow_batchbuffer = 1;
2989         return 0;
2990 }
2991
2992 void
2993 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
2994 {
2995         drm_i915_private_t *dev_priv;
2996         int i;
2997
2998         dev_priv = dev->dev_private;
2999         for (i = 0; i < I915_NUM_RINGS; i++)
3000                 intel_cleanup_ring_buffer(&dev_priv->ring[i]);
3001 }
3002
3003 int
3004 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
3005                        struct drm_file *file_priv)
3006 {
3007         drm_i915_private_t *dev_priv = dev->dev_private;
3008         int ret;
3009
3010         if (drm_core_check_feature(dev, DRIVER_MODESET))
3011                 return 0;
3012
3013         if (atomic_read(&dev_priv->mm.wedged)) {
3014                 DRM_ERROR("Reenabling wedged hardware, good luck\n");
3015                 atomic_set(&dev_priv->mm.wedged, 0);
3016         }
3017
3018         DRM_LOCK(dev);
3019         dev_priv->mm.suspended = 0;
3020
3021         ret = i915_gem_init_hw(dev);
3022         if (ret != 0) {
3023                 DRM_UNLOCK(dev);
3024                 return ret;
3025         }
3026
3027         KASSERT(list_empty(&dev_priv->mm.active_list), ("active list"));
3028         DRM_UNLOCK(dev);
3029
3030         ret = drm_irq_install(dev);
3031         if (ret)
3032                 goto cleanup_ringbuffer;
3033
3034         return 0;
3035
3036 cleanup_ringbuffer:
3037         DRM_LOCK(dev);
3038         i915_gem_cleanup_ringbuffer(dev);
3039         dev_priv->mm.suspended = 1;
3040         DRM_UNLOCK(dev);
3041
3042         return ret;
3043 }
3044
3045 int
3046 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
3047     struct drm_file *file_priv)
3048 {
3049
3050         if (drm_core_check_feature(dev, DRIVER_MODESET))
3051                 return 0;
3052
3053         drm_irq_uninstall(dev);
3054         return (i915_gem_idle(dev));
3055 }
3056
3057 void
3058 i915_gem_lastclose(struct drm_device *dev)
3059 {
3060         int ret;
3061
3062         if (drm_core_check_feature(dev, DRIVER_MODESET))
3063                 return;
3064
3065         ret = i915_gem_idle(dev);
3066         if (ret != 0)
3067                 DRM_ERROR("failed to idle hardware: %d\n", ret);
3068 }
3069
3070 static void
3071 init_ring_lists(struct intel_ring_buffer *ring)
3072 {
3073
3074         INIT_LIST_HEAD(&ring->active_list);
3075         INIT_LIST_HEAD(&ring->request_list);
3076         INIT_LIST_HEAD(&ring->gpu_write_list);
3077 }
3078
3079 void
3080 i915_gem_load(struct drm_device *dev)
3081 {
3082         int i;
3083         drm_i915_private_t *dev_priv = dev->dev_private;
3084
3085         INIT_LIST_HEAD(&dev_priv->mm.active_list);
3086         INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
3087         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
3088         INIT_LIST_HEAD(&dev_priv->mm.gtt_list);
3089         for (i = 0; i < I915_NUM_RINGS; i++)
3090                 init_ring_lists(&dev_priv->ring[i]);
3091         for (i = 0; i < I915_MAX_NUM_FENCES; i++)
3092                 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
3093         INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
3094                           i915_gem_retire_work_handler);
3095         init_completion(&dev_priv->error_completion);
3096
3097         /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
3098         if (IS_GEN3(dev)) {
3099                 I915_WRITE(MI_ARB_STATE,
3100                            _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
3101         }
3102
3103         dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
3104
3105         /* Old X drivers will take 0-2 for front, back, depth buffers */
3106         if (!drm_core_check_feature(dev, DRIVER_MODESET))
3107                 dev_priv->fence_reg_start = 3;
3108
3109         if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
3110                 dev_priv->num_fence_regs = 16;
3111         else
3112                 dev_priv->num_fence_regs = 8;
3113
3114         /* Initialize fence registers to zero */
3115         i915_gem_reset_fences(dev);
3116
3117         i915_gem_detect_bit_6_swizzle(dev);
3118         init_waitqueue_head(&dev_priv->pending_flip_queue);
3119
3120         dev_priv->mm.interruptible = true;
3121
3122 #if 0
3123         dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
3124         dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
3125         register_shrinker(&dev_priv->mm.inactive_shrinker);
3126 #else
3127         dev_priv->mm.i915_lowmem = EVENTHANDLER_REGISTER(vm_lowmem,
3128             i915_gem_lowmem, dev, EVENTHANDLER_PRI_ANY);
3129 #endif
3130 }
3131
3132 static int
3133 i915_gem_init_phys_object(struct drm_device *dev, int id, int size, int align)
3134 {
3135         drm_i915_private_t *dev_priv;
3136         struct drm_i915_gem_phys_object *phys_obj;
3137         int ret;
3138
3139         dev_priv = dev->dev_private;
3140         if (dev_priv->mm.phys_objs[id - 1] != NULL || size == 0)
3141                 return (0);
3142
3143         phys_obj = kmalloc(sizeof(struct drm_i915_gem_phys_object), DRM_I915_GEM,
3144             M_WAITOK | M_ZERO);
3145
3146         phys_obj->id = id;
3147
3148         phys_obj->handle = drm_pci_alloc(dev, size, align, ~0);
3149         if (phys_obj->handle == NULL) {
3150                 ret = -ENOMEM;
3151                 goto free_obj;
3152         }
3153         pmap_change_attr((vm_offset_t)phys_obj->handle->vaddr,
3154             size / PAGE_SIZE, PAT_WRITE_COMBINING);
3155
3156         dev_priv->mm.phys_objs[id - 1] = phys_obj;
3157
3158         return (0);
3159
3160 free_obj:
3161         drm_free(phys_obj, DRM_I915_GEM);
3162         return (ret);
3163 }
3164
3165 static void
3166 i915_gem_free_phys_object(struct drm_device *dev, int id)
3167 {
3168         drm_i915_private_t *dev_priv;
3169         struct drm_i915_gem_phys_object *phys_obj;
3170
3171         dev_priv = dev->dev_private;
3172         if (dev_priv->mm.phys_objs[id - 1] == NULL)
3173                 return;
3174
3175         phys_obj = dev_priv->mm.phys_objs[id - 1];
3176         if (phys_obj->cur_obj != NULL)
3177                 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
3178
3179         drm_pci_free(dev, phys_obj->handle);
3180         drm_free(phys_obj, DRM_I915_GEM);
3181         dev_priv->mm.phys_objs[id - 1] = NULL;
3182 }
3183
3184 void
3185 i915_gem_free_all_phys_object(struct drm_device *dev)
3186 {
3187         int i;
3188
3189         for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
3190                 i915_gem_free_phys_object(dev, i);
3191 }
3192
3193 void
3194 i915_gem_detach_phys_object(struct drm_device *dev,
3195     struct drm_i915_gem_object *obj)
3196 {
3197         vm_page_t m;
3198         struct sf_buf *sf;
3199         char *vaddr, *dst;
3200         int i, page_count;
3201
3202         if (obj->phys_obj == NULL)
3203                 return;
3204         vaddr = obj->phys_obj->handle->vaddr;
3205
3206         page_count = obj->base.size / PAGE_SIZE;
3207         VM_OBJECT_LOCK(obj->base.vm_obj);
3208         for (i = 0; i < page_count; i++) {
3209                 m = i915_gem_wire_page(obj->base.vm_obj, i);
3210                 if (m == NULL)
3211                         continue; /* XXX */
3212
3213                 VM_OBJECT_UNLOCK(obj->base.vm_obj);
3214                 sf = sf_buf_alloc(m);
3215                 if (sf != NULL) {
3216                         dst = (char *)sf_buf_kva(sf);
3217                         memcpy(dst, vaddr + IDX_TO_OFF(i), PAGE_SIZE);
3218                         sf_buf_free(sf);
3219                 }
3220                 drm_clflush_pages(&m, 1);
3221
3222                 VM_OBJECT_LOCK(obj->base.vm_obj);
3223                 vm_page_reference(m);
3224                 vm_page_dirty(m);
3225                 vm_page_busy_wait(m, FALSE, "i915gem");
3226                 vm_page_unwire(m, 0);
3227                 vm_page_wakeup(m);
3228                 atomic_add_long(&i915_gem_wired_pages_cnt, -1);
3229         }
3230         VM_OBJECT_UNLOCK(obj->base.vm_obj);
3231         intel_gtt_chipset_flush();
3232
3233         obj->phys_obj->cur_obj = NULL;
3234         obj->phys_obj = NULL;
3235 }
3236
3237 int
3238 i915_gem_attach_phys_object(struct drm_device *dev,
3239                             struct drm_i915_gem_object *obj,
3240                             int id,
3241                             int align)
3242 {
3243         drm_i915_private_t *dev_priv;
3244         vm_page_t m;
3245         struct sf_buf *sf;
3246         char *dst, *src;
3247         int i, page_count, ret;
3248
3249         if (id > I915_MAX_PHYS_OBJECT)
3250                 return (-EINVAL);
3251
3252         if (obj->phys_obj != NULL) {
3253                 if (obj->phys_obj->id == id)
3254                         return (0);
3255                 i915_gem_detach_phys_object(dev, obj);
3256         }
3257
3258         dev_priv = dev->dev_private;
3259         if (dev_priv->mm.phys_objs[id - 1] == NULL) {
3260                 ret = i915_gem_init_phys_object(dev, id, obj->base.size, align);
3261                 if (ret != 0) {
3262                         DRM_ERROR("failed to init phys object %d size: %zu\n",
3263                                   id, obj->base.size);
3264                         return (ret);
3265                 }
3266         }
3267
3268         /* bind to the object */
3269         obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
3270         obj->phys_obj->cur_obj = obj;
3271
3272         page_count = obj->base.size / PAGE_SIZE;
3273
3274         VM_OBJECT_LOCK(obj->base.vm_obj);
3275         ret = 0;
3276         for (i = 0; i < page_count; i++) {
3277                 m = i915_gem_wire_page(obj->base.vm_obj, i);
3278                 if (m == NULL) {
3279                         ret = -EIO;
3280                         break;
3281                 }
3282                 VM_OBJECT_UNLOCK(obj->base.vm_obj);
3283                 sf = sf_buf_alloc(m);
3284                 src = (char *)sf_buf_kva(sf);
3285                 dst = (char *)obj->phys_obj->handle->vaddr + IDX_TO_OFF(i);
3286                 memcpy(dst, src, PAGE_SIZE);
3287                 sf_buf_free(sf);
3288
3289                 VM_OBJECT_LOCK(obj->base.vm_obj);
3290
3291                 vm_page_reference(m);
3292                 vm_page_busy_wait(m, FALSE, "i915gem");
3293                 vm_page_unwire(m, 0);
3294                 vm_page_wakeup(m);
3295                 atomic_add_long(&i915_gem_wired_pages_cnt, -1);
3296         }
3297         VM_OBJECT_UNLOCK(obj->base.vm_obj);
3298
3299         return (0);
3300 }
3301
3302 static int
3303 i915_gem_phys_pwrite(struct drm_device *dev, struct drm_i915_gem_object *obj,
3304     uint64_t data_ptr, uint64_t offset, uint64_t size,
3305     struct drm_file *file_priv)
3306 {
3307         char *user_data, *vaddr;
3308         int ret;
3309
3310         vaddr = (char *)obj->phys_obj->handle->vaddr + offset;
3311         user_data = (char *)(uintptr_t)data_ptr;
3312
3313         if (copyin_nofault(user_data, vaddr, size) != 0) {
3314                 /* The physical object once assigned is fixed for the lifetime
3315                  * of the obj, so we can safely drop the lock and continue
3316                  * to access vaddr.
3317                  */
3318                 DRM_UNLOCK(dev);
3319                 ret = -copyin(user_data, vaddr, size);
3320                 DRM_LOCK(dev);
3321                 if (ret != 0)
3322                         return (ret);
3323         }
3324
3325         intel_gtt_chipset_flush();
3326         return (0);
3327 }
3328
3329 void
3330 i915_gem_release(struct drm_device *dev, struct drm_file *file)
3331 {
3332         struct drm_i915_file_private *file_priv;
3333         struct drm_i915_gem_request *request;
3334
3335         file_priv = file->driver_priv;
3336
3337         /* Clean up our request list when the client is going away, so that
3338          * later retire_requests won't dereference our soon-to-be-gone
3339          * file_priv.
3340          */
3341         spin_lock(&file_priv->mm.lock);
3342         while (!list_empty(&file_priv->mm.request_list)) {
3343                 request = list_first_entry(&file_priv->mm.request_list,
3344                                            struct drm_i915_gem_request,
3345                                            client_list);
3346                 list_del(&request->client_list);
3347                 request->file_priv = NULL;
3348         }
3349         spin_unlock(&file_priv->mm.lock);
3350 }
3351
3352 static int
3353 i915_gem_swap_io(struct drm_device *dev, struct drm_i915_gem_object *obj,
3354     uint64_t data_ptr, uint64_t size, uint64_t offset, enum uio_rw rw,
3355     struct drm_file *file)
3356 {
3357         vm_object_t vm_obj;
3358         vm_page_t m;
3359         struct sf_buf *sf;
3360         vm_offset_t mkva;
3361         vm_pindex_t obj_pi;
3362         int cnt, do_bit17_swizzling, length, obj_po, ret, swizzled_po;
3363
3364         if (obj->gtt_offset != 0 && rw == UIO_READ)
3365                 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
3366         else
3367                 do_bit17_swizzling = 0;
3368
3369         obj->dirty = 1;
3370         vm_obj = obj->base.vm_obj;
3371         ret = 0;
3372
3373         VM_OBJECT_LOCK(vm_obj);
3374         vm_object_pip_add(vm_obj, 1);
3375         while (size > 0) {
3376                 obj_pi = OFF_TO_IDX(offset);
3377                 obj_po = offset & PAGE_MASK;
3378
3379                 m = i915_gem_wire_page(vm_obj, obj_pi);
3380                 VM_OBJECT_UNLOCK(vm_obj);
3381
3382                 sf = sf_buf_alloc(m);
3383                 mkva = sf_buf_kva(sf);
3384                 length = min(size, PAGE_SIZE - obj_po);
3385                 while (length > 0) {
3386                         if (do_bit17_swizzling &&
3387                             (VM_PAGE_TO_PHYS(m) & (1 << 17)) != 0) {
3388                                 cnt = roundup2(obj_po + 1, 64);
3389                                 cnt = min(cnt - obj_po, length);
3390                                 swizzled_po = obj_po ^ 64;
3391                         } else {
3392                                 cnt = length;
3393                                 swizzled_po = obj_po;
3394                         }
3395                         if (rw == UIO_READ)
3396                                 ret = -copyout_nofault(
3397                                     (char *)mkva + swizzled_po,
3398                                     (void *)(uintptr_t)data_ptr, cnt);
3399                         else
3400                                 ret = -copyin_nofault(
3401                                     (void *)(uintptr_t)data_ptr,
3402                                     (char *)mkva + swizzled_po, cnt);
3403                         if (ret != 0)
3404                                 break;
3405                         data_ptr += cnt;
3406                         size -= cnt;
3407                         length -= cnt;
3408                         offset += cnt;
3409                         obj_po += cnt;
3410                 }
3411                 sf_buf_free(sf);
3412                 VM_OBJECT_LOCK(vm_obj);
3413                 if (rw == UIO_WRITE)
3414                         vm_page_dirty(m);
3415                 vm_page_reference(m);
3416                 vm_page_busy_wait(m, FALSE, "i915gem");
3417                 vm_page_unwire(m, 1);
3418                 vm_page_wakeup(m);
3419                 atomic_add_long(&i915_gem_wired_pages_cnt, -1);
3420
3421                 if (ret != 0)
3422                         break;
3423         }
3424         vm_object_pip_wakeup(vm_obj);
3425         VM_OBJECT_UNLOCK(vm_obj);
3426
3427         return (ret);
3428 }
3429
3430 static int
3431 i915_gem_gtt_write(struct drm_device *dev, struct drm_i915_gem_object *obj,
3432     uint64_t data_ptr, uint64_t size, uint64_t offset, struct drm_file *file)
3433 {
3434         vm_offset_t mkva;
3435         int ret;
3436
3437         /*
3438          * Pass the unaligned physical address and size to pmap_mapdev_attr()
3439          * so it can properly calculate whether an extra page needs to be
3440          * mapped or not to cover the requested range.  The function will
3441          * add the page offset into the returned mkva for us.
3442          */
3443         mkva = (vm_offset_t)pmap_mapdev_attr(dev->agp->base + obj->gtt_offset +
3444             offset, size, PAT_WRITE_COMBINING);
3445         ret = -copyin_nofault((void *)(uintptr_t)data_ptr, (char *)mkva, size);
3446         pmap_unmapdev(mkva, size);
3447         return (ret);
3448 }
3449
3450 static int
3451 i915_gem_obj_io(struct drm_device *dev, uint32_t handle, uint64_t data_ptr,
3452     uint64_t size, uint64_t offset, enum uio_rw rw, struct drm_file *file)
3453 {
3454         struct drm_i915_gem_object *obj;
3455         vm_page_t *ma;
3456         vm_offset_t start, end;
3457         int npages, ret;
3458
3459         if (size == 0)
3460                 return (0);
3461         start = trunc_page(data_ptr);
3462         end = round_page(data_ptr + size);
3463         npages = howmany(end - start, PAGE_SIZE);
3464         ma = kmalloc(npages * sizeof(vm_page_t), DRM_I915_GEM, M_WAITOK |
3465             M_ZERO);
3466         npages = vm_fault_quick_hold_pages(&curproc->p_vmspace->vm_map,
3467             (vm_offset_t)data_ptr, size,
3468             (rw == UIO_READ ? VM_PROT_WRITE : 0 ) | VM_PROT_READ, ma, npages);
3469         if (npages == -1) {
3470                 ret = -EFAULT;
3471                 goto free_ma;
3472         }
3473
3474         ret = i915_mutex_lock_interruptible(dev);
3475         if (ret != 0)
3476                 goto unlocked;
3477
3478         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
3479         if (&obj->base == NULL) {
3480                 ret = -ENOENT;
3481                 goto unlock;
3482         }
3483         if (offset > obj->base.size || size > obj->base.size - offset) {
3484                 ret = -EINVAL;
3485                 goto out;
3486         }
3487
3488         if (rw == UIO_READ) {
3489                 ret = i915_gem_swap_io(dev, obj, data_ptr, size, offset,
3490                     UIO_READ, file);
3491         } else {
3492                 if (obj->phys_obj) {
3493                         ret = i915_gem_phys_pwrite(dev, obj, data_ptr, offset,
3494                             size, file);
3495                 } else if (obj->gtt_space &&
3496                     obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
3497                         ret = i915_gem_object_pin(obj, 0, true);
3498                         if (ret != 0)
3499                                 goto out;
3500                         ret = i915_gem_object_set_to_gtt_domain(obj, true);
3501                         if (ret != 0)
3502                                 goto out_unpin;
3503                         ret = i915_gem_object_put_fence(obj);
3504                         if (ret != 0)
3505                                 goto out_unpin;
3506                         ret = i915_gem_gtt_write(dev, obj, data_ptr, size,
3507                             offset, file);
3508 out_unpin:
3509                         i915_gem_object_unpin(obj);
3510                 } else {
3511                         ret = i915_gem_object_set_to_cpu_domain(obj, true);
3512                         if (ret != 0)
3513                                 goto out;
3514                         ret = i915_gem_swap_io(dev, obj, data_ptr, size, offset,
3515                             UIO_WRITE, file);
3516                 }
3517         }
3518 out:
3519         drm_gem_object_unreference(&obj->base);
3520 unlock:
3521         DRM_UNLOCK(dev);
3522 unlocked:
3523         vm_page_unhold_pages(ma, npages);
3524 free_ma:
3525         drm_free(ma, DRM_I915_GEM);
3526         return (ret);
3527 }
3528
3529 static int
3530 i915_gem_pager_ctor(void *handle, vm_ooffset_t size, vm_prot_t prot,
3531     vm_ooffset_t foff, struct ucred *cred, u_short *color)
3532 {
3533
3534         *color = 0; /* XXXKIB */
3535         return (0);
3536 }
3537
3538 int i915_intr_pf;
3539
3540 static int
3541 i915_gem_pager_fault(vm_object_t vm_obj, vm_ooffset_t offset, int prot,
3542     vm_page_t *mres)
3543 {
3544         struct drm_gem_object *gem_obj;
3545         struct drm_i915_gem_object *obj;
3546         struct drm_device *dev;
3547         drm_i915_private_t *dev_priv;
3548         vm_page_t m, oldm;
3549         int cause, ret;
3550         bool write;
3551
3552         gem_obj = vm_obj->handle;
3553         obj = to_intel_bo(gem_obj);
3554         dev = obj->base.dev;
3555         dev_priv = dev->dev_private;
3556 #if 0
3557         write = (prot & VM_PROT_WRITE) != 0;
3558 #else
3559         write = true;
3560 #endif
3561         vm_object_pip_add(vm_obj, 1);
3562
3563         /*
3564          * Remove the placeholder page inserted by vm_fault() from the
3565          * object before dropping the object lock. If
3566          * i915_gem_release_mmap() is active in parallel on this gem
3567          * object, then it owns the drm device sx and might find the
3568          * placeholder already. Then, since the page is busy,
3569          * i915_gem_release_mmap() sleeps waiting for the busy state
3570          * of the page cleared. We will be not able to acquire drm
3571          * device lock until i915_gem_release_mmap() is able to make a
3572          * progress.
3573          */
3574         if (*mres != NULL) {
3575                 oldm = *mres;
3576                 vm_page_remove(oldm);
3577                 *mres = NULL;
3578         } else
3579                 oldm = NULL;
3580 retry:
3581         VM_OBJECT_UNLOCK(vm_obj);
3582 unlocked_vmobj:
3583         cause = ret = 0;
3584         m = NULL;
3585
3586         if (i915_intr_pf) {
3587                 ret = i915_mutex_lock_interruptible(dev);
3588                 if (ret != 0) {
3589                         cause = 10;
3590                         goto out;
3591                 }
3592         } else
3593                 DRM_LOCK(dev);
3594
3595         /*
3596          * Since the object lock was dropped, other thread might have
3597          * faulted on the same GTT address and instantiated the
3598          * mapping for the page.  Recheck.
3599          */
3600         VM_OBJECT_LOCK(vm_obj);
3601         m = vm_page_lookup(vm_obj, OFF_TO_IDX(offset));
3602         if (m != NULL) {
3603                 if ((m->flags & PG_BUSY) != 0) {
3604                         DRM_UNLOCK(dev);
3605 #if 0 /* XXX */
3606                         vm_page_sleep(m, "915pee");
3607 #endif
3608                         goto retry;
3609                 }
3610                 goto have_page;
3611         } else
3612                 VM_OBJECT_UNLOCK(vm_obj);
3613
3614         /* Now bind it into the GTT if needed */
3615         if (!obj->map_and_fenceable) {
3616                 ret = i915_gem_object_unbind(obj);
3617                 if (ret != 0) {
3618                         cause = 20;
3619                         goto unlock;
3620                 }
3621         }
3622         if (!obj->gtt_space) {
3623                 ret = i915_gem_object_bind_to_gtt(obj, 0, true);
3624                 if (ret != 0) {
3625                         cause = 30;
3626                         goto unlock;
3627                 }
3628
3629                 ret = i915_gem_object_set_to_gtt_domain(obj, write);
3630                 if (ret != 0) {
3631                         cause = 40;
3632                         goto unlock;
3633                 }
3634         }
3635
3636         if (obj->tiling_mode == I915_TILING_NONE)
3637                 ret = i915_gem_object_put_fence(obj);
3638         else
3639                 ret = i915_gem_object_get_fence(obj);
3640         if (ret != 0) {
3641                 cause = 50;
3642                 goto unlock;
3643         }
3644
3645         if (i915_gem_object_is_inactive(obj))
3646                 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
3647
3648         obj->fault_mappable = true;
3649         VM_OBJECT_LOCK(vm_obj);
3650         m = vm_phys_fictitious_to_vm_page(dev->agp->base + obj->gtt_offset +
3651             offset);
3652         if (m == NULL) {
3653                 cause = 60;
3654                 ret = -EFAULT;
3655                 goto unlock;
3656         }
3657         KASSERT((m->flags & PG_FICTITIOUS) != 0,
3658             ("not fictitious %p", m));
3659         KASSERT(m->wire_count == 1, ("wire_count not 1 %p", m));
3660
3661         if ((m->flags & PG_BUSY) != 0) {
3662                 DRM_UNLOCK(dev);
3663 #if 0 /* XXX */
3664                 vm_page_sleep(m, "915pbs");
3665 #endif
3666                 goto retry;
3667         }
3668         m->valid = VM_PAGE_BITS_ALL;
3669         vm_page_insert(m, vm_obj, OFF_TO_IDX(offset));
3670 have_page:
3671         *mres = m;
3672         vm_page_busy_try(m, false);
3673
3674         DRM_UNLOCK(dev);
3675         if (oldm != NULL) {
3676                 vm_page_free(oldm);
3677         }
3678         vm_object_pip_wakeup(vm_obj);
3679         return (VM_PAGER_OK);
3680
3681 unlock:
3682         DRM_UNLOCK(dev);
3683 out:
3684         KASSERT(ret != 0, ("i915_gem_pager_fault: wrong return"));
3685         if (ret == -EAGAIN || ret == -EIO || ret == -EINTR) {
3686                 goto unlocked_vmobj;
3687         }
3688         VM_OBJECT_LOCK(vm_obj);
3689         vm_object_pip_wakeup(vm_obj);
3690         return (VM_PAGER_ERROR);
3691 }
3692
3693 static void
3694 i915_gem_pager_dtor(void *handle)
3695 {
3696         struct drm_gem_object *obj;
3697         struct drm_device *dev;
3698
3699         obj = handle;
3700         dev = obj->dev;
3701
3702         DRM_LOCK(dev);
3703         drm_gem_free_mmap_offset(obj);
3704         i915_gem_release_mmap(to_intel_bo(obj));
3705         drm_gem_object_unreference(obj);
3706         DRM_UNLOCK(dev);
3707 }
3708
3709 struct cdev_pager_ops i915_gem_pager_ops = {
3710         .cdev_pg_fault  = i915_gem_pager_fault,
3711         .cdev_pg_ctor   = i915_gem_pager_ctor,
3712         .cdev_pg_dtor   = i915_gem_pager_dtor
3713 };
3714
3715 #define GEM_PARANOID_CHECK_GTT 0
3716 #if GEM_PARANOID_CHECK_GTT
3717 static void
3718 i915_gem_assert_pages_not_mapped(struct drm_device *dev, vm_page_t *ma,
3719     int page_count)
3720 {
3721         struct drm_i915_private *dev_priv;
3722         vm_paddr_t pa;
3723         unsigned long start, end;
3724         u_int i;
3725         int j;
3726
3727         dev_priv = dev->dev_private;
3728         start = OFF_TO_IDX(dev_priv->mm.gtt_start);
3729         end = OFF_TO_IDX(dev_priv->mm.gtt_end);
3730         for (i = start; i < end; i++) {
3731                 pa = intel_gtt_read_pte_paddr(i);
3732                 for (j = 0; j < page_count; j++) {
3733                         if (pa == VM_PAGE_TO_PHYS(ma[j])) {
3734                                 panic("Page %p in GTT pte index %d pte %x",
3735                                     ma[i], i, intel_gtt_read_pte(i));
3736                         }
3737                 }
3738         }
3739 }
3740 #endif
3741
3742 static void
3743 i915_gem_process_flushing_list(struct intel_ring_buffer *ring,
3744     uint32_t flush_domains)
3745 {
3746         struct drm_i915_gem_object *obj, *next;
3747         uint32_t old_write_domain;
3748
3749         list_for_each_entry_safe(obj, next, &ring->gpu_write_list,
3750             gpu_write_list) {
3751                 if (obj->base.write_domain & flush_domains) {
3752                         old_write_domain = obj->base.write_domain;
3753                         obj->base.write_domain = 0;
3754                         list_del_init(&obj->gpu_write_list);
3755                         i915_gem_object_move_to_active(obj, ring);
3756                 }
3757         }
3758 }
3759
3760 #define VM_OBJECT_LOCK_ASSERT_OWNED(object)
3761
3762 static vm_page_t
3763 i915_gem_wire_page(vm_object_t object, vm_pindex_t pindex)
3764 {
3765         vm_page_t m;
3766         int rv;
3767
3768         VM_OBJECT_LOCK_ASSERT_OWNED(object);
3769         m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
3770         if (m->valid != VM_PAGE_BITS_ALL) {
3771                 if (vm_pager_has_page(object, pindex)) {
3772                         rv = vm_pager_get_page(object, &m, 1);
3773                         m = vm_page_lookup(object, pindex);
3774                         if (m == NULL)
3775                                 return (NULL);
3776                         if (rv != VM_PAGER_OK) {
3777                                 vm_page_free(m);
3778                                 return (NULL);
3779                         }
3780                 } else {
3781                         pmap_zero_page(VM_PAGE_TO_PHYS(m));
3782                         m->valid = VM_PAGE_BITS_ALL;
3783                         m->dirty = 0;
3784                 }
3785         }
3786         vm_page_wire(m);
3787         vm_page_wakeup(m);
3788         atomic_add_long(&i915_gem_wired_pages_cnt, 1);
3789         return (m);
3790 }
3791
3792 int
3793 i915_gem_flush_ring(struct intel_ring_buffer *ring, uint32_t invalidate_domains,
3794     uint32_t flush_domains)
3795 {
3796         int ret;
3797
3798         if (((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) == 0)
3799                 return 0;
3800
3801         ret = ring->flush(ring, invalidate_domains, flush_domains);
3802         if (ret)
3803                 return ret;
3804
3805         if (flush_domains & I915_GEM_GPU_DOMAINS)
3806                 i915_gem_process_flushing_list(ring, flush_domains);
3807         return 0;
3808 }
3809
3810 static int
3811 i915_gpu_is_active(struct drm_device *dev)
3812 {
3813         drm_i915_private_t *dev_priv = dev->dev_private;
3814
3815         return !list_empty(&dev_priv->mm.active_list);
3816 }
3817
3818 static void
3819 i915_gem_lowmem(void *arg)
3820 {
3821         struct drm_device *dev;
3822         struct drm_i915_private *dev_priv;
3823         struct drm_i915_gem_object *obj, *next;
3824         int cnt, cnt_fail, cnt_total;
3825
3826         dev = arg;
3827         dev_priv = dev->dev_private;
3828
3829         if (lockmgr(&dev->dev_struct_lock, LK_EXCLUSIVE|LK_NOWAIT))
3830                 return;
3831
3832 rescan:
3833         /* first scan for clean buffers */
3834         i915_gem_retire_requests(dev);
3835
3836         cnt_total = cnt_fail = cnt = 0;
3837
3838         list_for_each_entry_safe(obj, next, &dev_priv->mm.inactive_list,
3839             mm_list) {
3840                 if (i915_gem_object_is_purgeable(obj)) {
3841                         if (i915_gem_object_unbind(obj) != 0)
3842                                 cnt_total++;
3843                 } else
3844                         cnt_total++;
3845         }
3846
3847         /* second pass, evict/count anything still on the inactive list */
3848         list_for_each_entry_safe(obj, next, &dev_priv->mm.inactive_list,
3849             mm_list) {
3850                 if (i915_gem_object_unbind(obj) == 0)
3851                         cnt++;
3852                 else
3853                         cnt_fail++;
3854         }
3855
3856         if (cnt_fail > cnt_total / 100 && i915_gpu_is_active(dev)) {
3857                 /*
3858                  * We are desperate for pages, so as a last resort, wait
3859                  * for the GPU to finish and discard whatever we can.
3860                  * This has a dramatic impact to reduce the number of
3861                  * OOM-killer events whilst running the GPU aggressively.
3862                  */
3863                 if (i915_gpu_idle(dev) == 0)
3864                         goto rescan;
3865         }
3866         DRM_UNLOCK(dev);
3867 }
3868
3869 void
3870 i915_gem_unload(struct drm_device *dev)
3871 {
3872         struct drm_i915_private *dev_priv;
3873
3874         dev_priv = dev->dev_private;
3875         EVENTHANDLER_DEREGISTER(vm_lowmem, dev_priv->mm.i915_lowmem);
3876 }