Merge from vendor branch LIBPCAP:
[dragonfly.git] / lib / msun / src / e_jn.c
1 /* @(#)e_jn.c 5.1 93/09/24 */
2 /*
3  * ====================================================
4  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5  *
6  * Developed at SunPro, a Sun Microsystems, Inc. business.
7  * Permission to use, copy, modify, and distribute this
8  * software is freely granted, provided that this notice
9  * is preserved.
10  * ====================================================
11  *
12  * $FreeBSD: src/lib/msun/src/e_jn.c,v 1.6 1999/08/28 00:06:33 peter Exp $
13  * $DragonFly: src/lib/msun/src/Attic/e_jn.c,v 1.2 2003/06/17 04:26:52 dillon Exp $
14  */
15
16 /*
17  * __ieee754_jn(n, x), __ieee754_yn(n, x)
18  * floating point Bessel's function of the 1st and 2nd kind
19  * of order n
20  *
21  * Special cases:
22  *      y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal;
23  *      y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal.
24  * Note 2. About jn(n,x), yn(n,x)
25  *      For n=0, j0(x) is called,
26  *      for n=1, j1(x) is called,
27  *      for n<x, forward recursion us used starting
28  *      from values of j0(x) and j1(x).
29  *      for n>x, a continued fraction approximation to
30  *      j(n,x)/j(n-1,x) is evaluated and then backward
31  *      recursion is used starting from a supposed value
32  *      for j(n,x). The resulting value of j(0,x) is
33  *      compared with the actual value to correct the
34  *      supposed value of j(n,x).
35  *
36  *      yn(n,x) is similar in all respects, except
37  *      that forward recursion is used for all
38  *      values of n>1.
39  *
40  */
41
42 #include "math.h"
43 #include "math_private.h"
44
45 #ifdef __STDC__
46 static const double
47 #else
48 static double
49 #endif
50 invsqrtpi=  5.64189583547756279280e-01, /* 0x3FE20DD7, 0x50429B6D */
51 two   =  2.00000000000000000000e+00, /* 0x40000000, 0x00000000 */
52 one   =  1.00000000000000000000e+00; /* 0x3FF00000, 0x00000000 */
53
54 #ifdef __STDC__
55 static const double zero  =  0.00000000000000000000e+00;
56 #else
57 static double zero  =  0.00000000000000000000e+00;
58 #endif
59
60 #ifdef __STDC__
61         double __ieee754_jn(int n, double x)
62 #else
63         double __ieee754_jn(n,x)
64         int n; double x;
65 #endif
66 {
67         int32_t i,hx,ix,lx, sgn;
68         double a, b, temp, di;
69         double z, w;
70
71     /* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x)
72      * Thus, J(-n,x) = J(n,-x)
73      */
74         EXTRACT_WORDS(hx,lx,x);
75         ix = 0x7fffffff&hx;
76     /* if J(n,NaN) is NaN */
77         if((ix|((u_int32_t)(lx|-lx))>>31)>0x7ff00000) return x+x;
78         if(n<0){
79                 n = -n;
80                 x = -x;
81                 hx ^= 0x80000000;
82         }
83         if(n==0) return(__ieee754_j0(x));
84         if(n==1) return(__ieee754_j1(x));
85         sgn = (n&1)&(hx>>31);   /* even n -- 0, odd n -- sign(x) */
86         x = fabs(x);
87         if((ix|lx)==0||ix>=0x7ff00000)  /* if x is 0 or inf */
88             b = zero;
89         else if((double)n<=x) {
90                 /* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
91             if(ix>=0x52D00000) { /* x > 2**302 */
92     /* (x >> n**2)
93      *      Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
94      *      Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
95      *      Let s=sin(x), c=cos(x),
96      *          xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
97      *
98      *             n    sin(xn)*sqt2    cos(xn)*sqt2
99      *          ----------------------------------
100      *             0     s-c             c+s
101      *             1    -s-c            -c+s
102      *             2    -s+c            -c-s
103      *             3     s+c             c-s
104      */
105                 switch(n&3) {
106                     case 0: temp =  cos(x)+sin(x); break;
107                     case 1: temp = -cos(x)+sin(x); break;
108                     case 2: temp = -cos(x)-sin(x); break;
109                     case 3: temp =  cos(x)-sin(x); break;
110                 }
111                 b = invsqrtpi*temp/sqrt(x);
112             } else {
113                 a = __ieee754_j0(x);
114                 b = __ieee754_j1(x);
115                 for(i=1;i<n;i++){
116                     temp = b;
117                     b = b*((double)(i+i)/x) - a; /* avoid underflow */
118                     a = temp;
119                 }
120             }
121         } else {
122             if(ix<0x3e100000) { /* x < 2**-29 */
123     /* x is tiny, return the first Taylor expansion of J(n,x)
124      * J(n,x) = 1/n!*(x/2)^n  - ...
125      */
126                 if(n>33)        /* underflow */
127                     b = zero;
128                 else {
129                     temp = x*0.5; b = temp;
130                     for (a=one,i=2;i<=n;i++) {
131                         a *= (double)i;         /* a = n! */
132                         b *= temp;              /* b = (x/2)^n */
133                     }
134                     b = b/a;
135                 }
136             } else {
137                 /* use backward recurrence */
138                 /*                      x      x^2      x^2
139                  *  J(n,x)/J(n-1,x) =  ----   ------   ------   .....
140                  *                      2n  - 2(n+1) - 2(n+2)
141                  *
142                  *                      1      1        1
143                  *  (for large x)   =  ----  ------   ------   .....
144                  *                      2n   2(n+1)   2(n+2)
145                  *                      -- - ------ - ------ -
146                  *                       x     x         x
147                  *
148                  * Let w = 2n/x and h=2/x, then the above quotient
149                  * is equal to the continued fraction:
150                  *                  1
151                  *      = -----------------------
152                  *                     1
153                  *         w - -----------------
154                  *                        1
155                  *              w+h - ---------
156                  *                     w+2h - ...
157                  *
158                  * To determine how many terms needed, let
159                  * Q(0) = w, Q(1) = w(w+h) - 1,
160                  * Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
161                  * When Q(k) > 1e4      good for single
162                  * When Q(k) > 1e9      good for double
163                  * When Q(k) > 1e17     good for quadruple
164                  */
165             /* determine k */
166                 double t,v;
167                 double q0,q1,h,tmp; int32_t k,m;
168                 w  = (n+n)/(double)x; h = 2.0/(double)x;
169                 q0 = w;  z = w+h; q1 = w*z - 1.0; k=1;
170                 while(q1<1.0e9) {
171                         k += 1; z += h;
172                         tmp = z*q1 - q0;
173                         q0 = q1;
174                         q1 = tmp;
175                 }
176                 m = n+n;
177                 for(t=zero, i = 2*(n+k); i>=m; i -= 2) t = one/(i/x-t);
178                 a = t;
179                 b = one;
180                 /*  estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
181                  *  Hence, if n*(log(2n/x)) > ...
182                  *  single 8.8722839355e+01
183                  *  double 7.09782712893383973096e+02
184                  *  long double 1.1356523406294143949491931077970765006170e+04
185                  *  then recurrent value may overflow and the result is
186                  *  likely underflow to zero
187                  */
188                 tmp = n;
189                 v = two/x;
190                 tmp = tmp*__ieee754_log(fabs(v*tmp));
191                 if(tmp<7.09782712893383973096e+02) {
192                     for(i=n-1,di=(double)(i+i);i>0;i--){
193                         temp = b;
194                         b *= di;
195                         b  = b/x - a;
196                         a = temp;
197                         di -= two;
198                     }
199                 } else {
200                     for(i=n-1,di=(double)(i+i);i>0;i--){
201                         temp = b;
202                         b *= di;
203                         b  = b/x - a;
204                         a = temp;
205                         di -= two;
206                     /* scale b to avoid spurious overflow */
207                         if(b>1e100) {
208                             a /= b;
209                             t /= b;
210                             b  = one;
211                         }
212                     }
213                 }
214                 b = (t*__ieee754_j0(x)/b);
215             }
216         }
217         if(sgn==1) return -b; else return b;
218 }
219
220 #ifdef __STDC__
221         double __ieee754_yn(int n, double x)
222 #else
223         double __ieee754_yn(n,x)
224         int n; double x;
225 #endif
226 {
227         int32_t i,hx,ix,lx;
228         int32_t sign;
229         double a, b, temp;
230
231         EXTRACT_WORDS(hx,lx,x);
232         ix = 0x7fffffff&hx;
233     /* if Y(n,NaN) is NaN */
234         if((ix|((u_int32_t)(lx|-lx))>>31)>0x7ff00000) return x+x;
235         if((ix|lx)==0) return -one/zero;
236         if(hx<0) return zero/zero;
237         sign = 1;
238         if(n<0){
239                 n = -n;
240                 sign = 1 - ((n&1)<<1);
241         }
242         if(n==0) return(__ieee754_y0(x));
243         if(n==1) return(sign*__ieee754_y1(x));
244         if(ix==0x7ff00000) return zero;
245         if(ix>=0x52D00000) { /* x > 2**302 */
246     /* (x >> n**2)
247      *      Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
248      *      Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
249      *      Let s=sin(x), c=cos(x),
250      *          xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
251      *
252      *             n    sin(xn)*sqt2    cos(xn)*sqt2
253      *          ----------------------------------
254      *             0     s-c             c+s
255      *             1    -s-c            -c+s
256      *             2    -s+c            -c-s
257      *             3     s+c             c-s
258      */
259                 switch(n&3) {
260                     case 0: temp =  sin(x)-cos(x); break;
261                     case 1: temp = -sin(x)-cos(x); break;
262                     case 2: temp = -sin(x)+cos(x); break;
263                     case 3: temp =  sin(x)+cos(x); break;
264                 }
265                 b = invsqrtpi*temp/sqrt(x);
266         } else {
267             u_int32_t high;
268             a = __ieee754_y0(x);
269             b = __ieee754_y1(x);
270         /* quit if b is -inf */
271             GET_HIGH_WORD(high,b);
272             for(i=1;i<n&&high!=0xfff00000;i++){
273                 temp = b;
274                 b = ((double)(i+i)/x)*b - a;
275                 GET_HIGH_WORD(high,b);
276                 a = temp;
277             }
278         }
279         if(sign>0) return b; else return -b;
280 }