Since intr has been setup in the last step of vr_attach(), mii_phy_probe()
[dragonfly.git] / sys / vm / vm_object.c
1 /*
2  * Copyright (c) 1991, 1993
3  *      The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *      This product includes software developed by the University of
19  *      California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *      from: @(#)vm_object.c   8.5 (Berkeley) 3/22/94
37  *
38  *
39  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40  * All rights reserved.
41  *
42  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43  *
44  * Permission to use, copy, modify and distribute this software and
45  * its documentation is hereby granted, provided that both the copyright
46  * notice and this permission notice appear in all copies of the
47  * software, derivative works or modified versions, and any portions
48  * thereof, and that both notices appear in supporting documentation.
49  *
50  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53  *
54  * Carnegie Mellon requests users of this software to return to
55  *
56  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57  *  School of Computer Science
58  *  Carnegie Mellon University
59  *  Pittsburgh PA 15213-3890
60  *
61  * any improvements or extensions that they make and grant Carnegie the
62  * rights to redistribute these changes.
63  *
64  * $FreeBSD: src/sys/vm/vm_object.c,v 1.171.2.8 2003/05/26 19:17:56 alc Exp $
65  * $DragonFly: src/sys/vm/vm_object.c,v 1.22 2005/06/02 20:57:21 swildner Exp $
66  */
67
68 /*
69  *      Virtual memory object module.
70  */
71
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/proc.h>           /* for curproc, pageproc */
75 #include <sys/vnode.h>
76 #include <sys/vmmeter.h>
77 #include <sys/mman.h>
78 #include <sys/mount.h>
79 #include <sys/kernel.h>
80 #include <sys/sysctl.h>
81
82 #include <vm/vm.h>
83 #include <vm/vm_param.h>
84 #include <vm/pmap.h>
85 #include <vm/vm_map.h>
86 #include <vm/vm_object.h>
87 #include <vm/vm_page.h>
88 #include <vm/vm_pageout.h>
89 #include <vm/vm_pager.h>
90 #include <vm/swap_pager.h>
91 #include <vm/vm_kern.h>
92 #include <vm/vm_extern.h>
93 #include <vm/vm_zone.h>
94
95 #define EASY_SCAN_FACTOR        8
96
97 #define MSYNC_FLUSH_HARDSEQ     0x01
98 #define MSYNC_FLUSH_SOFTSEQ     0x02
99
100 static int msync_flush_flags = MSYNC_FLUSH_HARDSEQ | MSYNC_FLUSH_SOFTSEQ;
101 SYSCTL_INT(_vm, OID_AUTO, msync_flush_flags,
102         CTLFLAG_RW, &msync_flush_flags, 0, "");
103
104 static void     vm_object_qcollapse (vm_object_t object);
105 static int      vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int curgeneration, int pagerflags);
106
107 /*
108  *      Virtual memory objects maintain the actual data
109  *      associated with allocated virtual memory.  A given
110  *      page of memory exists within exactly one object.
111  *
112  *      An object is only deallocated when all "references"
113  *      are given up.  Only one "reference" to a given
114  *      region of an object should be writeable.
115  *
116  *      Associated with each object is a list of all resident
117  *      memory pages belonging to that object; this list is
118  *      maintained by the "vm_page" module, and locked by the object's
119  *      lock.
120  *
121  *      Each object also records a "pager" routine which is
122  *      used to retrieve (and store) pages to the proper backing
123  *      storage.  In addition, objects may be backed by other
124  *      objects from which they were virtual-copied.
125  *
126  *      The only items within the object structure which are
127  *      modified after time of creation are:
128  *              reference count         locked by object's lock
129  *              pager routine           locked by object's lock
130  *
131  */
132
133 struct object_q vm_object_list;
134 static long vm_object_count;            /* count of all objects */
135 vm_object_t kernel_object;
136 vm_object_t kmem_object;
137 static struct vm_object kernel_object_store;
138 static struct vm_object kmem_object_store;
139 extern int vm_pageout_page_count;
140
141 static long object_collapses;
142 static long object_bypasses;
143 static int next_index;
144 static vm_zone_t obj_zone;
145 static struct vm_zone obj_zone_store;
146 static int object_hash_rand;
147 #define VM_OBJECTS_INIT 256
148 static struct vm_object vm_objects_init[VM_OBJECTS_INIT];
149
150 void
151 _vm_object_allocate(objtype_t type, vm_size_t size, vm_object_t object)
152 {
153         int incr;
154         TAILQ_INIT(&object->memq);
155         LIST_INIT(&object->shadow_head);
156
157         object->type = type;
158         object->size = size;
159         object->ref_count = 1;
160         object->flags = 0;
161         if ((object->type == OBJT_DEFAULT) || (object->type == OBJT_SWAP))
162                 vm_object_set_flag(object, OBJ_ONEMAPPING);
163         object->paging_in_progress = 0;
164         object->resident_page_count = 0;
165         object->shadow_count = 0;
166         object->pg_color = next_index;
167         if ( size > (PQ_L2_SIZE / 3 + PQ_PRIME1))
168                 incr = PQ_L2_SIZE / 3 + PQ_PRIME1;
169         else
170                 incr = size;
171         next_index = (next_index + incr) & PQ_L2_MASK;
172         object->handle = NULL;
173         object->backing_object = NULL;
174         object->backing_object_offset = (vm_ooffset_t) 0;
175         /*
176          * Try to generate a number that will spread objects out in the
177          * hash table.  We 'wipe' new objects across the hash in 128 page
178          * increments plus 1 more to offset it a little more by the time
179          * it wraps around.
180          */
181         object->hash_rand = object_hash_rand - 129;
182
183         object->generation++;
184
185         crit_enter();
186         TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
187         vm_object_count++;
188         object_hash_rand = object->hash_rand;
189         crit_exit();
190 }
191
192 /*
193  *      vm_object_init:
194  *
195  *      Initialize the VM objects module.
196  */
197 void
198 vm_object_init(void)
199 {
200         TAILQ_INIT(&vm_object_list);
201         
202         kernel_object = &kernel_object_store;
203         _vm_object_allocate(OBJT_DEFAULT, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
204             kernel_object);
205
206         kmem_object = &kmem_object_store;
207         _vm_object_allocate(OBJT_DEFAULT, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
208             kmem_object);
209
210         obj_zone = &obj_zone_store;
211         zbootinit(obj_zone, "VM OBJECT", sizeof (struct vm_object),
212                 vm_objects_init, VM_OBJECTS_INIT);
213 }
214
215 void
216 vm_object_init2(void)
217 {
218         zinitna(obj_zone, NULL, NULL, 0, 0, ZONE_PANICFAIL, 1);
219 }
220
221 /*
222  *      vm_object_allocate:
223  *
224  *      Returns a new object with the given size.
225  */
226
227 vm_object_t
228 vm_object_allocate(objtype_t type, vm_size_t size)
229 {
230         vm_object_t result;
231
232         result = (vm_object_t) zalloc(obj_zone);
233
234         _vm_object_allocate(type, size, result);
235
236         return (result);
237 }
238
239
240 /*
241  *      vm_object_reference:
242  *
243  *      Gets another reference to the given object.
244  */
245 void
246 vm_object_reference(vm_object_t object)
247 {
248         if (object == NULL)
249                 return;
250
251 #if 0
252         /* object can be re-referenced during final cleaning */
253         KASSERT(!(object->flags & OBJ_DEAD),
254             ("vm_object_reference: attempting to reference dead obj"));
255 #endif
256
257         object->ref_count++;
258         if (object->type == OBJT_VNODE) {
259                 vref(object->handle);
260                 /* XXX what if the vnode is being destroyed? */
261 #if 0
262                 while (vget((struct vnode *) object->handle, 
263                     LK_RETRY|LK_NOOBJ, curthread)) {
264                         printf("vm_object_reference: delay in getting object\n");
265                 }
266 #endif
267         }
268 }
269
270 void
271 vm_object_vndeallocate(vm_object_t object)
272 {
273         struct vnode *vp = (struct vnode *) object->handle;
274
275         KASSERT(object->type == OBJT_VNODE,
276             ("vm_object_vndeallocate: not a vnode object"));
277         KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
278 #ifdef INVARIANTS
279         if (object->ref_count == 0) {
280                 vprint("vm_object_vndeallocate", vp);
281                 panic("vm_object_vndeallocate: bad object reference count");
282         }
283 #endif
284
285         object->ref_count--;
286         if (object->ref_count == 0) {
287                 vp->v_flag &= ~VTEXT;
288                 vm_object_clear_flag(object, OBJ_OPT);
289         }
290         vrele(vp);
291 }
292
293 /*
294  *      vm_object_deallocate:
295  *
296  *      Release a reference to the specified object,
297  *      gained either through a vm_object_allocate
298  *      or a vm_object_reference call.  When all references
299  *      are gone, storage associated with this object
300  *      may be relinquished.
301  *
302  *      No object may be locked.
303  */
304 void
305 vm_object_deallocate(vm_object_t object)
306 {
307         vm_object_t temp;
308
309         while (object != NULL) {
310
311                 if (object->type == OBJT_VNODE) {
312                         vm_object_vndeallocate(object);
313                         return;
314                 }
315
316                 if (object->ref_count == 0) {
317                         panic("vm_object_deallocate: object deallocated too many times: %d", object->type);
318                 } else if (object->ref_count > 2) {
319                         object->ref_count--;
320                         return;
321                 }
322
323                 /*
324                  * Here on ref_count of one or two, which are special cases for
325                  * objects.
326                  */
327                 if ((object->ref_count == 2) && (object->shadow_count == 0)) {
328                         vm_object_set_flag(object, OBJ_ONEMAPPING);
329                         object->ref_count--;
330                         return;
331                 } else if ((object->ref_count == 2) && (object->shadow_count == 1)) {
332                         object->ref_count--;
333                         if ((object->handle == NULL) &&
334                             (object->type == OBJT_DEFAULT ||
335                              object->type == OBJT_SWAP)) {
336                                 vm_object_t robject;
337
338                                 robject = LIST_FIRST(&object->shadow_head);
339                                 KASSERT(robject != NULL,
340                                     ("vm_object_deallocate: ref_count: %d, shadow_count: %d",
341                                          object->ref_count,
342                                          object->shadow_count));
343                                 if ((robject->handle == NULL) &&
344                                     (robject->type == OBJT_DEFAULT ||
345                                      robject->type == OBJT_SWAP)) {
346
347                                         robject->ref_count++;
348
349                                         while (
350                                                 robject->paging_in_progress ||
351                                                 object->paging_in_progress
352                                         ) {
353                                                 vm_object_pip_sleep(robject, "objde1");
354                                                 vm_object_pip_sleep(object, "objde2");
355                                         }
356
357                                         if (robject->ref_count == 1) {
358                                                 robject->ref_count--;
359                                                 object = robject;
360                                                 goto doterm;
361                                         }
362
363                                         object = robject;
364                                         vm_object_collapse(object);
365                                         continue;
366                                 }
367                         }
368
369                         return;
370
371                 } else {
372                         object->ref_count--;
373                         if (object->ref_count != 0)
374                                 return;
375                 }
376
377 doterm:
378
379                 temp = object->backing_object;
380                 if (temp) {
381                         LIST_REMOVE(object, shadow_list);
382                         temp->shadow_count--;
383                         if (temp->ref_count == 0)
384                                 vm_object_clear_flag(temp, OBJ_OPT);
385                         temp->generation++;
386                         object->backing_object = NULL;
387                 }
388
389                 /*
390                  * Don't double-terminate, we could be in a termination
391                  * recursion due to the terminate having to sync data
392                  * to disk.
393                  */
394                 if ((object->flags & OBJ_DEAD) == 0)
395                         vm_object_terminate(object);
396                 object = temp;
397         }
398 }
399
400 /*
401  *      vm_object_terminate actually destroys the specified object, freeing
402  *      up all previously used resources.
403  *
404  *      The object must be locked.
405  *      This routine may block.
406  */
407 void
408 vm_object_terminate(vm_object_t object)
409 {
410         vm_page_t p;
411
412         /*
413          * Make sure no one uses us.
414          */
415         vm_object_set_flag(object, OBJ_DEAD);
416
417         /*
418          * wait for the pageout daemon to be done with the object
419          */
420         vm_object_pip_wait(object, "objtrm");
421
422         KASSERT(!object->paging_in_progress,
423                 ("vm_object_terminate: pageout in progress"));
424
425         /*
426          * Clean and free the pages, as appropriate. All references to the
427          * object are gone, so we don't need to lock it.
428          */
429         if (object->type == OBJT_VNODE) {
430                 struct vnode *vp;
431
432                 /*
433                  * Freeze optimized copies.
434                  */
435                 vm_freeze_copyopts(object, 0, object->size);
436
437                 /*
438                  * Clean pages and flush buffers.
439                  */
440                 vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
441
442                 vp = (struct vnode *) object->handle;
443                 vinvalbuf(vp, V_SAVE, NULL, 0, 0);
444         }
445
446         /*
447          * Wait for any I/O to complete, after which there had better not
448          * be any references left on the object.
449          */
450         vm_object_pip_wait(object, "objtrm");
451
452         if (object->ref_count != 0)
453                 panic("vm_object_terminate: object with references, ref_count=%d", object->ref_count);
454
455         /*
456          * Now free any remaining pages. For internal objects, this also
457          * removes them from paging queues. Don't free wired pages, just
458          * remove them from the object. 
459          */
460         crit_enter();
461         while ((p = TAILQ_FIRST(&object->memq)) != NULL) {
462                 if (p->busy || (p->flags & PG_BUSY))
463                         panic("vm_object_terminate: freeing busy page %p", p);
464                 if (p->wire_count == 0) {
465                         vm_page_busy(p);
466                         vm_page_free(p);
467                         mycpu->gd_cnt.v_pfree++;
468                 } else {
469                         vm_page_busy(p);
470                         vm_page_remove(p);
471                         vm_page_wakeup(p);
472                 }
473         }
474         crit_exit();
475
476         /*
477          * Let the pager know object is dead.
478          */
479         vm_pager_deallocate(object);
480
481         /*
482          * Remove the object from the global object list.
483          */
484         crit_enter();
485         TAILQ_REMOVE(&vm_object_list, object, object_list);
486         vm_object_count--;
487         crit_exit();
488
489         wakeup(object);
490         if (object->ref_count != 0)
491                 panic("vm_object_terminate2: object with references, ref_count=%d", object->ref_count);
492
493         /*
494          * Free the space for the object.
495          */
496         zfree(obj_zone, object);
497 }
498
499 /*
500  *      vm_object_page_clean
501  *
502  *      Clean all dirty pages in the specified range of object.  Leaves page 
503  *      on whatever queue it is currently on.   If NOSYNC is set then do not
504  *      write out pages with PG_NOSYNC set (originally comes from MAP_NOSYNC),
505  *      leaving the object dirty.
506  *
507  *      When stuffing pages asynchronously, allow clustering.  XXX we need a
508  *      synchronous clustering mode implementation.
509  *
510  *      Odd semantics: if start == end, we clean everything.
511  */
512
513 void
514 vm_object_page_clean(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
515     int flags)
516 {
517         vm_page_t p, np;
518         vm_offset_t tstart, tend;
519         vm_pindex_t pi;
520         struct vnode *vp;
521         int clearobjflags;
522         int pagerflags;
523         int curgeneration;
524
525         if (object->type != OBJT_VNODE ||
526                 (object->flags & OBJ_MIGHTBEDIRTY) == 0)
527                 return;
528
529         pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) ? VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
530         pagerflags |= (flags & OBJPC_INVAL) ? VM_PAGER_PUT_INVAL : 0;
531
532         vp = object->handle;
533
534         vm_object_set_flag(object, OBJ_CLEANING);
535
536         /*
537          * Handle 'entire object' case
538          */
539         tstart = start;
540         if (end == 0) {
541                 tend = object->size;
542         } else {
543                 tend = end;
544         }
545
546         /*
547          * If the caller is smart and only msync()s a range he knows is
548          * dirty, we may be able to avoid an object scan.  This results in
549          * a phenominal improvement in performance.  We cannot do this
550          * as a matter of course because the object may be huge - e.g.
551          * the size might be in the gigabytes or terrabytes.
552          */
553         if (msync_flush_flags & MSYNC_FLUSH_HARDSEQ) {
554                 vm_offset_t tscan;
555                 int scanlimit;
556                 int scanreset;
557
558                 scanreset = object->resident_page_count / EASY_SCAN_FACTOR;
559                 if (scanreset < 16)
560                         scanreset = 16;
561                 pagerflags |= VM_PAGER_IGNORE_CLEANCHK;
562
563                 scanlimit = scanreset;
564                 tscan = tstart;
565
566                 /*
567                  * spl protection is required despite the obj generation
568                  * tracking because we cannot safely call vm_page_test_dirty()
569                  * or avoid page field tests against an interrupt unbusy/free
570                  * race that might occur prior to the busy check in
571                  * vm_object_page_collect_flush().
572                  */
573                 crit_enter();
574                 while (tscan < tend) {
575                         curgeneration = object->generation;
576                         p = vm_page_lookup(object, tscan);
577                         if (p == NULL || p->valid == 0 ||
578                             (p->queue - p->pc) == PQ_CACHE) {
579                                 if (--scanlimit == 0)
580                                         break;
581                                 ++tscan;
582                                 continue;
583                         }
584                         vm_page_test_dirty(p);
585                         if ((p->dirty & p->valid) == 0) {
586                                 if (--scanlimit == 0)
587                                         break;
588                                 ++tscan;
589                                 continue;
590                         }
591                         /*
592                          * If we have been asked to skip nosync pages and 
593                          * this is a nosync page, we can't continue.
594                          */
595                         if ((flags & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) {
596                                 if (--scanlimit == 0)
597                                         break;
598                                 ++tscan;
599                                 continue;
600                         }
601                         scanlimit = scanreset;
602
603                         /*
604                          * This returns 0 if it was unable to busy the first
605                          * page (i.e. had to sleep).
606                          */
607                         tscan += vm_object_page_collect_flush(object, p, 
608                                                 curgeneration, pagerflags);
609                 }
610                 crit_exit();
611
612                 /*
613                  * If everything was dirty and we flushed it successfully,
614                  * and the requested range is not the entire object, we
615                  * don't have to mess with CLEANCHK or MIGHTBEDIRTY and can
616                  * return immediately.
617                  */
618                 if (tscan >= tend && (tstart || tend < object->size)) {
619                         vm_object_clear_flag(object, OBJ_CLEANING);
620                         return;
621                 }
622                 pagerflags &= ~VM_PAGER_IGNORE_CLEANCHK;
623         }
624
625         /*
626          * Generally set CLEANCHK interlock and make the page read-only so
627          * we can then clear the object flags.
628          *
629          * However, if this is a nosync mmap then the object is likely to 
630          * stay dirty so do not mess with the page and do not clear the
631          * object flags.
632          *
633          * spl protection is required because an interrupt can remove page
634          * from the object.
635          */
636         clearobjflags = 1;
637
638         crit_enter();
639         for (p = TAILQ_FIRST(&object->memq); p; p = TAILQ_NEXT(p, listq)) {
640                 vm_page_flag_set(p, PG_CLEANCHK);
641                 if ((flags & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC))
642                         clearobjflags = 0;
643                 else
644                         vm_page_protect(p, VM_PROT_READ);
645         }
646         crit_exit();
647
648         if (clearobjflags && (tstart == 0) && (tend == object->size)) {
649                 struct vnode *vp;
650
651                 vm_object_clear_flag(object, OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
652                 if (object->type == OBJT_VNODE &&
653                     (vp = (struct vnode *)object->handle) != NULL) {
654                         if (vp->v_flag & VOBJDIRTY) 
655                                 vclrflags(vp, VOBJDIRTY);
656                 }
657         }
658
659         /*
660          * spl protection is required both to avoid an interrupt unbusy/free
661          * race against a vm_page_lookup(), and also to ensure that the
662          * memq is consistent.  We do not want a busy page to be ripped out
663          * from under us.
664          */
665         crit_enter();
666 rescan:
667         crit_exit();
668         crit_enter();
669         curgeneration = object->generation;
670
671         for (p = TAILQ_FIRST(&object->memq); p; p = np) {
672                 int n;
673
674                 np = TAILQ_NEXT(p, listq);
675
676 again:
677                 pi = p->pindex;
678                 if (((p->flags & PG_CLEANCHK) == 0) ||
679                         (pi < tstart) || (pi >= tend) ||
680                         (p->valid == 0) ||
681                         ((p->queue - p->pc) == PQ_CACHE)) {
682                         vm_page_flag_clear(p, PG_CLEANCHK);
683                         continue;
684                 }
685
686                 vm_page_test_dirty(p);
687                 if ((p->dirty & p->valid) == 0) {
688                         vm_page_flag_clear(p, PG_CLEANCHK);
689                         continue;
690                 }
691
692                 /*
693                  * If we have been asked to skip nosync pages and this is a
694                  * nosync page, skip it.  Note that the object flags were
695                  * not cleared in this case so we do not have to set them.
696                  */
697                 if ((flags & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) {
698                         vm_page_flag_clear(p, PG_CLEANCHK);
699                         continue;
700                 }
701
702                 n = vm_object_page_collect_flush(object, p,
703                         curgeneration, pagerflags);
704                 if (n == 0)
705                         goto rescan;
706                 if (object->generation != curgeneration)
707                         goto rescan;
708
709                 /*
710                  * Try to optimize the next page.  If we can't we pick up
711                  * our (random) scan where we left off.
712                  */
713                 if (msync_flush_flags & MSYNC_FLUSH_SOFTSEQ) {
714                         if ((p = vm_page_lookup(object, pi + n)) != NULL)
715                                 goto again;
716                 }
717         }
718         crit_exit();
719
720 #if 0
721         VOP_FSYNC(vp, NULL, (pagerflags & VM_PAGER_PUT_SYNC)?MNT_WAIT:0, curproc);
722 #endif
723
724         vm_object_clear_flag(object, OBJ_CLEANING);
725         return;
726 }
727
728 /*
729  * This routine must be called within a critical section to properly avoid
730  * an interrupt unbusy/free race that can occur prior to the busy check.
731  *
732  * Using the object generation number here to detect page ripout is not
733  * the best idea in the world. XXX
734  *
735  * NOTE: we operate under the assumption that a page found to not be busy
736  * will not be ripped out from under us by an interrupt.  XXX we should
737  * recode this to explicitly busy the pages.
738  */
739 static int
740 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int curgeneration, int pagerflags)
741 {
742         int runlen;
743         int maxf;
744         int chkb;
745         int maxb;
746         int i;
747         vm_pindex_t pi;
748         vm_page_t maf[vm_pageout_page_count];
749         vm_page_t mab[vm_pageout_page_count];
750         vm_page_t ma[vm_pageout_page_count];
751
752         pi = p->pindex;
753         while (vm_page_sleep_busy(p, TRUE, "vpcwai")) {
754                 if (object->generation != curgeneration) {
755                         return(0);
756                 }
757         }
758
759         maxf = 0;
760         for(i = 1; i < vm_pageout_page_count; i++) {
761                 vm_page_t tp;
762
763                 if ((tp = vm_page_lookup(object, pi + i)) != NULL) {
764                         if ((tp->flags & PG_BUSY) ||
765                                 ((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 && 
766                                  (tp->flags & PG_CLEANCHK) == 0) ||
767                                 (tp->busy != 0))
768                                 break;
769                         if((tp->queue - tp->pc) == PQ_CACHE) {
770                                 vm_page_flag_clear(tp, PG_CLEANCHK);
771                                 break;
772                         }
773                         vm_page_test_dirty(tp);
774                         if ((tp->dirty & tp->valid) == 0) {
775                                 vm_page_flag_clear(tp, PG_CLEANCHK);
776                                 break;
777                         }
778                         maf[ i - 1 ] = tp;
779                         maxf++;
780                         continue;
781                 }
782                 break;
783         }
784
785         maxb = 0;
786         chkb = vm_pageout_page_count -  maxf;
787         if (chkb) {
788                 for(i = 1; i < chkb;i++) {
789                         vm_page_t tp;
790
791                         if ((tp = vm_page_lookup(object, pi - i)) != NULL) {
792                                 if ((tp->flags & PG_BUSY) ||
793                                         ((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 && 
794                                          (tp->flags & PG_CLEANCHK) == 0) ||
795                                         (tp->busy != 0))
796                                         break;
797                                 if((tp->queue - tp->pc) == PQ_CACHE) {
798                                         vm_page_flag_clear(tp, PG_CLEANCHK);
799                                         break;
800                                 }
801                                 vm_page_test_dirty(tp);
802                                 if ((tp->dirty & tp->valid) == 0) {
803                                         vm_page_flag_clear(tp, PG_CLEANCHK);
804                                         break;
805                                 }
806                                 mab[ i - 1 ] = tp;
807                                 maxb++;
808                                 continue;
809                         }
810                         break;
811                 }
812         }
813
814         for(i = 0; i < maxb; i++) {
815                 int index = (maxb - i) - 1;
816                 ma[index] = mab[i];
817                 vm_page_flag_clear(ma[index], PG_CLEANCHK);
818         }
819         vm_page_flag_clear(p, PG_CLEANCHK);
820         ma[maxb] = p;
821         for(i = 0; i < maxf; i++) {
822                 int index = (maxb + i) + 1;
823                 ma[index] = maf[i];
824                 vm_page_flag_clear(ma[index], PG_CLEANCHK);
825         }
826         runlen = maxb + maxf + 1;
827
828         vm_pageout_flush(ma, runlen, pagerflags);
829         for (i = 0; i < runlen; i++) {
830                 if (ma[i]->valid & ma[i]->dirty) {
831                         vm_page_protect(ma[i], VM_PROT_READ);
832                         vm_page_flag_set(ma[i], PG_CLEANCHK);
833
834                         /*
835                          * maxf will end up being the actual number of pages
836                          * we wrote out contiguously, non-inclusive of the
837                          * first page.  We do not count look-behind pages.
838                          */
839                         if (i >= maxb + 1 && (maxf > i - maxb - 1))
840                                 maxf = i - maxb - 1;
841                 }
842         }
843         return(maxf + 1);
844 }
845
846 #ifdef not_used
847 /* XXX I cannot tell if this should be an exported symbol */
848 /*
849  *      vm_object_deactivate_pages
850  *
851  *      Deactivate all pages in the specified object.  (Keep its pages
852  *      in memory even though it is no longer referenced.)
853  *
854  *      The object must be locked.
855  */
856 static void
857 vm_object_deactivate_pages(vm_object_t object)
858 {
859         vm_page_t p, next;
860
861         crit_enter();
862         for (p = TAILQ_FIRST(&object->memq); p != NULL; p = next) {
863                 next = TAILQ_NEXT(p, listq);
864                 vm_page_deactivate(p);
865         }
866         crit_exit();
867 }
868 #endif
869
870 /*
871  * Same as vm_object_pmap_copy, except range checking really
872  * works, and is meant for small sections of an object.
873  *
874  * This code protects resident pages by making them read-only
875  * and is typically called on a fork or split when a page
876  * is converted to copy-on-write.  
877  *
878  * NOTE: If the page is already at VM_PROT_NONE, calling
879  * vm_page_protect will have no effect.
880  */
881 void
882 vm_object_pmap_copy_1(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
883 {
884         vm_pindex_t idx;
885         vm_page_t p;
886
887         if (object == NULL || (object->flags & OBJ_WRITEABLE) == 0)
888                 return;
889
890         /*
891          * spl protection needed to prevent races between the lookup,
892          * an interrupt unbusy/free, and our protect call.
893          */
894         crit_enter();
895         for (idx = start; idx < end; idx++) {
896                 p = vm_page_lookup(object, idx);
897                 if (p == NULL)
898                         continue;
899                 vm_page_protect(p, VM_PROT_READ);
900         }
901         crit_exit();
902 }
903
904 /*
905  *      vm_object_pmap_remove:
906  *
907  *      Removes all physical pages in the specified
908  *      object range from all physical maps.
909  *
910  *      The object must *not* be locked.
911  */
912 void
913 vm_object_pmap_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
914 {
915         vm_page_t p;
916
917         if (object == NULL)
918                 return;
919
920         /*
921          * spl protection is required because an interrupt can unbusy/free
922          * a page.
923          */
924         crit_enter();
925         for (p = TAILQ_FIRST(&object->memq);
926             p != NULL;
927             p = TAILQ_NEXT(p, listq)
928         ) {
929                 if (p->pindex >= start && p->pindex < end)
930                         vm_page_protect(p, VM_PROT_NONE);
931         }
932         crit_exit();
933         if ((start == 0) && (object->size == end))
934                 vm_object_clear_flag(object, OBJ_WRITEABLE);
935 }
936
937 /*
938  *      vm_object_madvise:
939  *
940  *      Implements the madvise function at the object/page level.
941  *
942  *      MADV_WILLNEED   (any object)
943  *
944  *          Activate the specified pages if they are resident.
945  *
946  *      MADV_DONTNEED   (any object)
947  *
948  *          Deactivate the specified pages if they are resident.
949  *
950  *      MADV_FREE       (OBJT_DEFAULT/OBJT_SWAP objects,
951  *                       OBJ_ONEMAPPING only)
952  *
953  *          Deactivate and clean the specified pages if they are
954  *          resident.  This permits the process to reuse the pages
955  *          without faulting or the kernel to reclaim the pages
956  *          without I/O.
957  */
958 void
959 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, int count, int advise)
960 {
961         vm_pindex_t end, tpindex;
962         vm_object_t tobject;
963         vm_page_t m;
964
965         if (object == NULL)
966                 return;
967
968         end = pindex + count;
969
970         /*
971          * Locate and adjust resident pages
972          */
973
974         for (; pindex < end; pindex += 1) {
975 relookup:
976                 tobject = object;
977                 tpindex = pindex;
978 shadowlookup:
979                 /*
980                  * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
981                  * and those pages must be OBJ_ONEMAPPING.
982                  */
983                 if (advise == MADV_FREE) {
984                         if ((tobject->type != OBJT_DEFAULT &&
985                              tobject->type != OBJT_SWAP) ||
986                             (tobject->flags & OBJ_ONEMAPPING) == 0) {
987                                 continue;
988                         }
989                 }
990
991                 /*
992                  * spl protection is required to avoid a race between the
993                  * lookup, an interrupt unbusy/free, and our busy check.
994                  */
995
996                 crit_enter();
997                 m = vm_page_lookup(tobject, tpindex);
998
999                 if (m == NULL) {
1000                         /*
1001                          * There may be swap even if there is no backing page
1002                          */
1003                         if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1004                                 swap_pager_freespace(tobject, tpindex, 1);
1005
1006                         /*
1007                          * next object
1008                          */
1009                         crit_exit();
1010                         if (tobject->backing_object == NULL)
1011                                 continue;
1012                         tpindex += OFF_TO_IDX(tobject->backing_object_offset);
1013                         tobject = tobject->backing_object;
1014                         goto shadowlookup;
1015                 }
1016
1017                 /*
1018                  * If the page is busy or not in a normal active state,
1019                  * we skip it.  If the page is not managed there are no
1020                  * page queues to mess with.  Things can break if we mess
1021                  * with pages in any of the below states.
1022                  */
1023                 if (
1024                     m->hold_count ||
1025                     m->wire_count ||
1026                     (m->flags & PG_UNMANAGED) ||
1027                     m->valid != VM_PAGE_BITS_ALL
1028                 ) {
1029                         crit_exit();
1030                         continue;
1031                 }
1032
1033                 if (vm_page_sleep_busy(m, TRUE, "madvpo")) {
1034                         crit_exit();
1035                         goto relookup;
1036                 }
1037                 crit_exit();
1038
1039                 /*
1040                  * Theoretically once a page is known not to be busy, an
1041                  * interrupt cannot come along and rip it out from under us.
1042                  */
1043
1044                 if (advise == MADV_WILLNEED) {
1045                         vm_page_activate(m);
1046                 } else if (advise == MADV_DONTNEED) {
1047                         vm_page_dontneed(m);
1048                 } else if (advise == MADV_FREE) {
1049                         /*
1050                          * Mark the page clean.  This will allow the page
1051                          * to be freed up by the system.  However, such pages
1052                          * are often reused quickly by malloc()/free()
1053                          * so we do not do anything that would cause
1054                          * a page fault if we can help it.
1055                          *
1056                          * Specifically, we do not try to actually free
1057                          * the page now nor do we try to put it in the
1058                          * cache (which would cause a page fault on reuse).
1059                          *
1060                          * But we do make the page is freeable as we
1061                          * can without actually taking the step of unmapping
1062                          * it.
1063                          */
1064                         pmap_clear_modify(m);
1065                         m->dirty = 0;
1066                         m->act_count = 0;
1067                         vm_page_dontneed(m);
1068                         if (tobject->type == OBJT_SWAP)
1069                                 swap_pager_freespace(tobject, tpindex, 1);
1070                 }
1071         }       
1072 }
1073
1074 /*
1075  *      vm_object_shadow:
1076  *
1077  *      Create a new object which is backed by the
1078  *      specified existing object range.  The source
1079  *      object reference is deallocated.
1080  *
1081  *      The new object and offset into that object
1082  *      are returned in the source parameters.
1083  */
1084
1085 void
1086 vm_object_shadow(vm_object_t *object,   /* IN/OUT */
1087                  vm_ooffset_t *offset,  /* IN/OUT */
1088                  vm_size_t length)
1089 {
1090         vm_object_t source;
1091         vm_object_t result;
1092
1093         source = *object;
1094
1095         /*
1096          * Don't create the new object if the old object isn't shared.
1097          */
1098
1099         if (source != NULL &&
1100             source->ref_count == 1 &&
1101             source->handle == NULL &&
1102             (source->type == OBJT_DEFAULT ||
1103              source->type == OBJT_SWAP))
1104                 return;
1105
1106         /*
1107          * Allocate a new object with the given length
1108          */
1109
1110         if ((result = vm_object_allocate(OBJT_DEFAULT, length)) == NULL)
1111                 panic("vm_object_shadow: no object for shadowing");
1112
1113         /*
1114          * The new object shadows the source object, adding a reference to it.
1115          * Our caller changes his reference to point to the new object,
1116          * removing a reference to the source object.  Net result: no change
1117          * of reference count.
1118          *
1119          * Try to optimize the result object's page color when shadowing
1120          * in order to maintain page coloring consistency in the combined 
1121          * shadowed object.
1122          */
1123         result->backing_object = source;
1124         if (source) {
1125                 LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list);
1126                 source->shadow_count++;
1127                 source->generation++;
1128                 result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) & PQ_L2_MASK;
1129         }
1130
1131         /*
1132          * Store the offset into the source object, and fix up the offset into
1133          * the new object.
1134          */
1135
1136         result->backing_object_offset = *offset;
1137
1138         /*
1139          * Return the new things
1140          */
1141
1142         *offset = 0;
1143         *object = result;
1144 }
1145
1146 #define OBSC_TEST_ALL_SHADOWED  0x0001
1147 #define OBSC_COLLAPSE_NOWAIT    0x0002
1148 #define OBSC_COLLAPSE_WAIT      0x0004
1149
1150 static __inline int
1151 vm_object_backing_scan(vm_object_t object, int op)
1152 {
1153         int r = 1;
1154         vm_page_t p;
1155         vm_object_t backing_object;
1156         vm_pindex_t backing_offset_index;
1157
1158         /*
1159          * spl protection is required to avoid races between the memq/lookup,
1160          * an interrupt doing an unbusy/free, and our busy check.  Amoung
1161          * other things.
1162          */
1163         crit_enter();
1164
1165         backing_object = object->backing_object;
1166         backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1167
1168         /*
1169          * Initial conditions
1170          */
1171
1172         if (op & OBSC_TEST_ALL_SHADOWED) {
1173                 /*
1174                  * We do not want to have to test for the existence of
1175                  * swap pages in the backing object.  XXX but with the
1176                  * new swapper this would be pretty easy to do.
1177                  *
1178                  * XXX what about anonymous MAP_SHARED memory that hasn't
1179                  * been ZFOD faulted yet?  If we do not test for this, the
1180                  * shadow test may succeed! XXX
1181                  */
1182                 if (backing_object->type != OBJT_DEFAULT) {
1183                         crit_exit();
1184                         return(0);
1185                 }
1186         }
1187         if (op & OBSC_COLLAPSE_WAIT) {
1188                 KKASSERT((backing_object->flags & OBJ_DEAD) == 0);
1189                 vm_object_set_flag(backing_object, OBJ_DEAD);
1190         }
1191
1192         /*
1193          * Our scan
1194          */
1195
1196         p = TAILQ_FIRST(&backing_object->memq);
1197         while (p) {
1198                 vm_page_t next = TAILQ_NEXT(p, listq);
1199                 vm_pindex_t new_pindex = p->pindex - backing_offset_index;
1200
1201                 if (op & OBSC_TEST_ALL_SHADOWED) {
1202                         vm_page_t pp;
1203
1204                         /*
1205                          * Ignore pages outside the parent object's range
1206                          * and outside the parent object's mapping of the 
1207                          * backing object.
1208                          *
1209                          * note that we do not busy the backing object's
1210                          * page.
1211                          */
1212
1213                         if (
1214                             p->pindex < backing_offset_index ||
1215                             new_pindex >= object->size
1216                         ) {
1217                                 p = next;
1218                                 continue;
1219                         }
1220
1221                         /*
1222                          * See if the parent has the page or if the parent's
1223                          * object pager has the page.  If the parent has the
1224                          * page but the page is not valid, the parent's
1225                          * object pager must have the page.
1226                          *
1227                          * If this fails, the parent does not completely shadow
1228                          * the object and we might as well give up now.
1229                          */
1230
1231                         pp = vm_page_lookup(object, new_pindex);
1232                         if (
1233                             (pp == NULL || pp->valid == 0) &&
1234                             !vm_pager_has_page(object, new_pindex, NULL, NULL)
1235                         ) {
1236                                 r = 0;
1237                                 break;
1238                         }
1239                 }
1240
1241                 /*
1242                  * Check for busy page
1243                  */
1244
1245                 if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) {
1246                         vm_page_t pp;
1247
1248                         if (op & OBSC_COLLAPSE_NOWAIT) {
1249                                 if (
1250                                     (p->flags & PG_BUSY) ||
1251                                     !p->valid || 
1252                                     p->hold_count || 
1253                                     p->wire_count ||
1254                                     p->busy
1255                                 ) {
1256                                         p = next;
1257                                         continue;
1258                                 }
1259                         } else if (op & OBSC_COLLAPSE_WAIT) {
1260                                 if (vm_page_sleep_busy(p, TRUE, "vmocol")) {
1261                                         /*
1262                                          * If we slept, anything could have
1263                                          * happened.  Since the object is
1264                                          * marked dead, the backing offset
1265                                          * should not have changed so we
1266                                          * just restart our scan.
1267                                          */
1268                                         p = TAILQ_FIRST(&backing_object->memq);
1269                                         continue;
1270                                 }
1271                         }
1272
1273                         /* 
1274                          * Busy the page
1275                          */
1276                         vm_page_busy(p);
1277
1278                         KASSERT(
1279                             p->object == backing_object,
1280                             ("vm_object_qcollapse(): object mismatch")
1281                         );
1282
1283                         /*
1284                          * Destroy any associated swap
1285                          */
1286                         if (backing_object->type == OBJT_SWAP) {
1287                                 swap_pager_freespace(
1288                                     backing_object, 
1289                                     p->pindex,
1290                                     1
1291                                 );
1292                         }
1293
1294                         if (
1295                             p->pindex < backing_offset_index ||
1296                             new_pindex >= object->size
1297                         ) {
1298                                 /*
1299                                  * Page is out of the parent object's range, we 
1300                                  * can simply destroy it. 
1301                                  */
1302                                 vm_page_protect(p, VM_PROT_NONE);
1303                                 vm_page_free(p);
1304                                 p = next;
1305                                 continue;
1306                         }
1307
1308                         pp = vm_page_lookup(object, new_pindex);
1309                         if (
1310                             pp != NULL ||
1311                             vm_pager_has_page(object, new_pindex, NULL, NULL)
1312                         ) {
1313                                 /*
1314                                  * page already exists in parent OR swap exists
1315                                  * for this location in the parent.  Destroy 
1316                                  * the original page from the backing object.
1317                                  *
1318                                  * Leave the parent's page alone
1319                                  */
1320                                 vm_page_protect(p, VM_PROT_NONE);
1321                                 vm_page_free(p);
1322                                 p = next;
1323                                 continue;
1324                         }
1325
1326                         /*
1327                          * Page does not exist in parent, rename the
1328                          * page from the backing object to the main object. 
1329                          *
1330                          * If the page was mapped to a process, it can remain 
1331                          * mapped through the rename.
1332                          */
1333                         if ((p->queue - p->pc) == PQ_CACHE)
1334                                 vm_page_deactivate(p);
1335
1336                         vm_page_rename(p, object, new_pindex);
1337                         /* page automatically made dirty by rename */
1338                 }
1339                 p = next;
1340         }
1341         crit_exit();
1342         return(r);
1343 }
1344
1345
1346 /*
1347  * this version of collapse allows the operation to occur earlier and
1348  * when paging_in_progress is true for an object...  This is not a complete
1349  * operation, but should plug 99.9% of the rest of the leaks.
1350  */
1351 static void
1352 vm_object_qcollapse(vm_object_t object)
1353 {
1354         vm_object_t backing_object = object->backing_object;
1355
1356         if (backing_object->ref_count != 1)
1357                 return;
1358
1359         backing_object->ref_count += 2;
1360
1361         vm_object_backing_scan(object, OBSC_COLLAPSE_NOWAIT);
1362
1363         backing_object->ref_count -= 2;
1364 }
1365
1366 /*
1367  *      vm_object_collapse:
1368  *
1369  *      Collapse an object with the object backing it.
1370  *      Pages in the backing object are moved into the
1371  *      parent, and the backing object is deallocated.
1372  */
1373 void
1374 vm_object_collapse(vm_object_t object)
1375 {
1376         while (TRUE) {
1377                 vm_object_t backing_object;
1378
1379                 /*
1380                  * Verify that the conditions are right for collapse:
1381                  *
1382                  * The object exists and the backing object exists.
1383                  */
1384                 if (object == NULL)
1385                         break;
1386
1387                 if ((backing_object = object->backing_object) == NULL)
1388                         break;
1389
1390                 /*
1391                  * we check the backing object first, because it is most likely
1392                  * not collapsable.
1393                  */
1394                 if (backing_object->handle != NULL ||
1395                     (backing_object->type != OBJT_DEFAULT &&
1396                      backing_object->type != OBJT_SWAP) ||
1397                     (backing_object->flags & OBJ_DEAD) ||
1398                     object->handle != NULL ||
1399                     (object->type != OBJT_DEFAULT &&
1400                      object->type != OBJT_SWAP) ||
1401                     (object->flags & OBJ_DEAD)) {
1402                         break;
1403                 }
1404
1405                 if (
1406                     object->paging_in_progress != 0 ||
1407                     backing_object->paging_in_progress != 0
1408                 ) {
1409                         vm_object_qcollapse(object);
1410                         break;
1411                 }
1412
1413                 /*
1414                  * We know that we can either collapse the backing object (if
1415                  * the parent is the only reference to it) or (perhaps) have
1416                  * the parent bypass the object if the parent happens to shadow
1417                  * all the resident pages in the entire backing object.
1418                  *
1419                  * This is ignoring pager-backed pages such as swap pages.
1420                  * vm_object_backing_scan fails the shadowing test in this
1421                  * case.
1422                  */
1423
1424                 if (backing_object->ref_count == 1) {
1425                         /*
1426                          * If there is exactly one reference to the backing
1427                          * object, we can collapse it into the parent.  
1428                          */
1429                         vm_object_backing_scan(object, OBSC_COLLAPSE_WAIT);
1430
1431                         /*
1432                          * Move the pager from backing_object to object.
1433                          */
1434
1435                         if (backing_object->type == OBJT_SWAP) {
1436                                 vm_object_pip_add(backing_object, 1);
1437
1438                                 /*
1439                                  * scrap the paging_offset junk and do a 
1440                                  * discrete copy.  This also removes major 
1441                                  * assumptions about how the swap-pager 
1442                                  * works from where it doesn't belong.  The
1443                                  * new swapper is able to optimize the
1444                                  * destroy-source case.
1445                                  */
1446
1447                                 vm_object_pip_add(object, 1);
1448                                 swap_pager_copy(
1449                                     backing_object,
1450                                     object,
1451                                     OFF_TO_IDX(object->backing_object_offset), TRUE);
1452                                 vm_object_pip_wakeup(object);
1453
1454                                 vm_object_pip_wakeup(backing_object);
1455                         }
1456                         /*
1457                          * Object now shadows whatever backing_object did.
1458                          * Note that the reference to 
1459                          * backing_object->backing_object moves from within 
1460                          * backing_object to within object.
1461                          */
1462
1463                         LIST_REMOVE(object, shadow_list);
1464                         object->backing_object->shadow_count--;
1465                         object->backing_object->generation++;
1466                         if (backing_object->backing_object) {
1467                                 LIST_REMOVE(backing_object, shadow_list);
1468                                 backing_object->backing_object->shadow_count--;
1469                                 backing_object->backing_object->generation++;
1470                         }
1471                         object->backing_object = backing_object->backing_object;
1472                         if (object->backing_object) {
1473                                 LIST_INSERT_HEAD(
1474                                     &object->backing_object->shadow_head,
1475                                     object, 
1476                                     shadow_list
1477                                 );
1478                                 object->backing_object->shadow_count++;
1479                                 object->backing_object->generation++;
1480                         }
1481
1482                         object->backing_object_offset +=
1483                             backing_object->backing_object_offset;
1484
1485                         /*
1486                          * Discard backing_object.
1487                          *
1488                          * Since the backing object has no pages, no pager left,
1489                          * and no object references within it, all that is
1490                          * necessary is to dispose of it.
1491                          */
1492
1493                         KASSERT(backing_object->ref_count == 1, ("backing_object %p was somehow re-referenced during collapse!", backing_object));
1494                         KASSERT(TAILQ_FIRST(&backing_object->memq) == NULL, ("backing_object %p somehow has left over pages during collapse!", backing_object));
1495                         crit_enter();
1496                         TAILQ_REMOVE(
1497                             &vm_object_list, 
1498                             backing_object,
1499                             object_list
1500                         );
1501                         vm_object_count--;
1502                         crit_exit();
1503
1504                         zfree(obj_zone, backing_object);
1505
1506                         object_collapses++;
1507                 } else {
1508                         vm_object_t new_backing_object;
1509
1510                         /*
1511                          * If we do not entirely shadow the backing object,
1512                          * there is nothing we can do so we give up.
1513                          */
1514
1515                         if (vm_object_backing_scan(object, OBSC_TEST_ALL_SHADOWED) == 0) {
1516                                 break;
1517                         }
1518
1519                         /*
1520                          * Make the parent shadow the next object in the
1521                          * chain.  Deallocating backing_object will not remove
1522                          * it, since its reference count is at least 2.
1523                          */
1524
1525                         LIST_REMOVE(object, shadow_list);
1526                         backing_object->shadow_count--;
1527                         backing_object->generation++;
1528
1529                         new_backing_object = backing_object->backing_object;
1530                         if ((object->backing_object = new_backing_object) != NULL) {
1531                                 vm_object_reference(new_backing_object);
1532                                 LIST_INSERT_HEAD(
1533                                     &new_backing_object->shadow_head,
1534                                     object,
1535                                     shadow_list
1536                                 );
1537                                 new_backing_object->shadow_count++;
1538                                 new_backing_object->generation++;
1539                                 object->backing_object_offset +=
1540                                         backing_object->backing_object_offset;
1541                         }
1542
1543                         /*
1544                          * Drop the reference count on backing_object. Since
1545                          * its ref_count was at least 2, it will not vanish;
1546                          * so we don't need to call vm_object_deallocate, but
1547                          * we do anyway.
1548                          */
1549                         vm_object_deallocate(backing_object);
1550                         object_bypasses++;
1551                 }
1552
1553                 /*
1554                  * Try again with this object's new backing object.
1555                  */
1556         }
1557 }
1558
1559 /*
1560  *      vm_object_page_remove: [internal]
1561  *
1562  *      Removes all physical pages in the specified
1563  *      object range from the object's list of pages.
1564  */
1565 void
1566 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1567     boolean_t clean_only)
1568 {
1569         vm_page_t p, next;
1570         unsigned int size;
1571         int all;
1572
1573         if (object == NULL || object->resident_page_count == 0)
1574                 return;
1575
1576         all = ((end == 0) && (start == 0));
1577
1578         /*
1579          * Since physically-backed objects do not use managed pages, we can't
1580          * remove pages from the object (we must instead remove the page
1581          * references, and then destroy the object).
1582          */
1583         KASSERT(object->type != OBJT_PHYS, 
1584                 ("attempt to remove pages from a physical object"));
1585
1586         /*
1587          * Indicating that the object is undergoing paging.
1588          *
1589          * spl protection is required to avoid a race between the memq scan,
1590          * an interrupt unbusy/free, and the busy check.
1591          */
1592         vm_object_pip_add(object, 1);
1593         crit_enter();
1594 again:
1595         size = end - start;
1596         if (all || size > object->resident_page_count / 4) {
1597                 for (p = TAILQ_FIRST(&object->memq); p != NULL; p = next) {
1598                         next = TAILQ_NEXT(p, listq);
1599                         if (all || ((start <= p->pindex) && (p->pindex < end))) {
1600                                 if (p->wire_count != 0) {
1601                                         vm_page_protect(p, VM_PROT_NONE);
1602                                         if (!clean_only)
1603                                                 p->valid = 0;
1604                                         continue;
1605                                 }
1606
1607                                 /*
1608                                  * The busy flags are only cleared at
1609                                  * interrupt -- minimize the spl transitions
1610                                  */
1611
1612                                 if (vm_page_sleep_busy(p, TRUE, "vmopar"))
1613                                         goto again;
1614
1615                                 if (clean_only && p->valid) {
1616                                         vm_page_test_dirty(p);
1617                                         if (p->valid & p->dirty)
1618                                                 continue;
1619                                 }
1620
1621                                 vm_page_busy(p);
1622                                 vm_page_protect(p, VM_PROT_NONE);
1623                                 vm_page_free(p);
1624                         }
1625                 }
1626         } else {
1627                 while (size > 0) {
1628                         if ((p = vm_page_lookup(object, start)) != 0) {
1629                                 if (p->wire_count != 0) {
1630                                         vm_page_protect(p, VM_PROT_NONE);
1631                                         if (!clean_only)
1632                                                 p->valid = 0;
1633                                         start += 1;
1634                                         size -= 1;
1635                                         continue;
1636                                 }
1637
1638                                 /*
1639                                  * The busy flags are only cleared at
1640                                  * interrupt -- minimize the spl transitions
1641                                  */
1642                                 if (vm_page_sleep_busy(p, TRUE, "vmopar"))
1643                                         goto again;
1644
1645                                 if (clean_only && p->valid) {
1646                                         vm_page_test_dirty(p);
1647                                         if (p->valid & p->dirty) {
1648                                                 start += 1;
1649                                                 size -= 1;
1650                                                 continue;
1651                                         }
1652                                 }
1653
1654                                 vm_page_busy(p);
1655                                 vm_page_protect(p, VM_PROT_NONE);
1656                                 vm_page_free(p);
1657                         }
1658                         start += 1;
1659                         size -= 1;
1660                 }
1661         }
1662         crit_exit();
1663         vm_object_pip_wakeup(object);
1664 }
1665
1666 /*
1667  *      Routine:        vm_object_coalesce
1668  *      Function:       Coalesces two objects backing up adjoining
1669  *                      regions of memory into a single object.
1670  *
1671  *      returns TRUE if objects were combined.
1672  *
1673  *      NOTE:   Only works at the moment if the second object is NULL -
1674  *              if it's not, which object do we lock first?
1675  *
1676  *      Parameters:
1677  *              prev_object     First object to coalesce
1678  *              prev_offset     Offset into prev_object
1679  *              next_object     Second object into coalesce
1680  *              next_offset     Offset into next_object
1681  *
1682  *              prev_size       Size of reference to prev_object
1683  *              next_size       Size of reference to next_object
1684  *
1685  *      Conditions:
1686  *      The object must *not* be locked.
1687  */
1688 boolean_t
1689 vm_object_coalesce(vm_object_t prev_object, vm_pindex_t prev_pindex,
1690     vm_size_t prev_size, vm_size_t next_size)
1691 {
1692         vm_pindex_t next_pindex;
1693
1694         if (prev_object == NULL) {
1695                 return (TRUE);
1696         }
1697
1698         if (prev_object->type != OBJT_DEFAULT &&
1699             prev_object->type != OBJT_SWAP) {
1700                 return (FALSE);
1701         }
1702
1703         /*
1704          * Try to collapse the object first
1705          */
1706         vm_object_collapse(prev_object);
1707
1708         /*
1709          * Can't coalesce if: . more than one reference . paged out . shadows
1710          * another object . has a copy elsewhere (any of which mean that the
1711          * pages not mapped to prev_entry may be in use anyway)
1712          */
1713
1714         if (prev_object->backing_object != NULL) {
1715                 return (FALSE);
1716         }
1717
1718         prev_size >>= PAGE_SHIFT;
1719         next_size >>= PAGE_SHIFT;
1720         next_pindex = prev_pindex + prev_size;
1721
1722         if ((prev_object->ref_count > 1) &&
1723             (prev_object->size != next_pindex)) {
1724                 return (FALSE);
1725         }
1726
1727         /*
1728          * Remove any pages that may still be in the object from a previous
1729          * deallocation.
1730          */
1731         if (next_pindex < prev_object->size) {
1732                 vm_object_page_remove(prev_object,
1733                                       next_pindex,
1734                                       next_pindex + next_size, FALSE);
1735                 if (prev_object->type == OBJT_SWAP)
1736                         swap_pager_freespace(prev_object,
1737                                              next_pindex, next_size);
1738         }
1739
1740         /*
1741          * Extend the object if necessary.
1742          */
1743         if (next_pindex + next_size > prev_object->size)
1744                 prev_object->size = next_pindex + next_size;
1745
1746         return (TRUE);
1747 }
1748
1749 void
1750 vm_object_set_writeable_dirty(vm_object_t object)
1751 {
1752         struct vnode *vp;
1753
1754         vm_object_set_flag(object, OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
1755         if (object->type == OBJT_VNODE &&
1756             (vp = (struct vnode *)object->handle) != NULL) {
1757                 if ((vp->v_flag & VOBJDIRTY) == 0) {
1758                         vsetflags(vp, VOBJDIRTY);
1759                 }
1760         }
1761 }
1762
1763
1764
1765 #include "opt_ddb.h"
1766 #ifdef DDB
1767 #include <sys/kernel.h>
1768
1769 #include <sys/cons.h>
1770
1771 #include <ddb/ddb.h>
1772
1773 static int      _vm_object_in_map (vm_map_t map, vm_object_t object,
1774                                        vm_map_entry_t entry);
1775 static int      vm_object_in_map (vm_object_t object);
1776
1777 static int
1778 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
1779 {
1780         vm_map_t tmpm;
1781         vm_map_entry_t tmpe;
1782         vm_object_t obj;
1783         int entcount;
1784
1785         if (map == 0)
1786                 return 0;
1787
1788         if (entry == 0) {
1789                 tmpe = map->header.next;
1790                 entcount = map->nentries;
1791                 while (entcount-- && (tmpe != &map->header)) {
1792                         if( _vm_object_in_map(map, object, tmpe)) {
1793                                 return 1;
1794                         }
1795                         tmpe = tmpe->next;
1796                 }
1797         } else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
1798                 tmpm = entry->object.sub_map;
1799                 tmpe = tmpm->header.next;
1800                 entcount = tmpm->nentries;
1801                 while (entcount-- && tmpe != &tmpm->header) {
1802                         if( _vm_object_in_map(tmpm, object, tmpe)) {
1803                                 return 1;
1804                         }
1805                         tmpe = tmpe->next;
1806                 }
1807         } else if ((obj = entry->object.vm_object) != NULL) {
1808                 for(; obj; obj=obj->backing_object)
1809                         if( obj == object) {
1810                                 return 1;
1811                         }
1812         }
1813         return 0;
1814 }
1815
1816 static int
1817 vm_object_in_map(vm_object_t object)
1818 {
1819         struct proc *p;
1820         for (p = allproc.lh_first; p != 0; p = p->p_list.le_next) {
1821                 if( !p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
1822                         continue;
1823                 if( _vm_object_in_map(&p->p_vmspace->vm_map, object, 0))
1824                         return 1;
1825         }
1826         if( _vm_object_in_map( kernel_map, object, 0))
1827                 return 1;
1828         if( _vm_object_in_map( pager_map, object, 0))
1829                 return 1;
1830         if( _vm_object_in_map( buffer_map, object, 0))
1831                 return 1;
1832         return 0;
1833 }
1834
1835 DB_SHOW_COMMAND(vmochk, vm_object_check)
1836 {
1837         vm_object_t object;
1838
1839         /*
1840          * make sure that internal objs are in a map somewhere
1841          * and none have zero ref counts.
1842          */
1843         for (object = TAILQ_FIRST(&vm_object_list);
1844                         object != NULL;
1845                         object = TAILQ_NEXT(object, object_list)) {
1846                 if (object->handle == NULL &&
1847                     (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
1848                         if (object->ref_count == 0) {
1849                                 db_printf("vmochk: internal obj has zero ref count: %ld\n",
1850                                         (long)object->size);
1851                         }
1852                         if (!vm_object_in_map(object)) {
1853                                 db_printf(
1854                         "vmochk: internal obj is not in a map: "
1855                         "ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
1856                                     object->ref_count, (u_long)object->size, 
1857                                     (u_long)object->size,
1858                                     (void *)object->backing_object);
1859                         }
1860                 }
1861         }
1862 }
1863
1864 /*
1865  *      vm_object_print:        [ debug ]
1866  */
1867 DB_SHOW_COMMAND(object, vm_object_print_static)
1868 {
1869         /* XXX convert args. */
1870         vm_object_t object = (vm_object_t)addr;
1871         boolean_t full = have_addr;
1872
1873         vm_page_t p;
1874
1875         /* XXX count is an (unused) arg.  Avoid shadowing it. */
1876 #define count   was_count
1877
1878         int count;
1879
1880         if (object == NULL)
1881                 return;
1882
1883         db_iprintf(
1884             "Object %p: type=%d, size=0x%lx, res=%d, ref=%d, flags=0x%x\n",
1885             object, (int)object->type, (u_long)object->size,
1886             object->resident_page_count, object->ref_count, object->flags);
1887         /*
1888          * XXX no %qd in kernel.  Truncate object->backing_object_offset.
1889          */
1890         db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%lx\n",
1891             object->shadow_count, 
1892             object->backing_object ? object->backing_object->ref_count : 0,
1893             object->backing_object, (long)object->backing_object_offset);
1894
1895         if (!full)
1896                 return;
1897
1898         db_indent += 2;
1899         count = 0;
1900         for (p = TAILQ_FIRST(&object->memq); p != NULL; p = TAILQ_NEXT(p, listq)) {
1901                 if (count == 0)
1902                         db_iprintf("memory:=");
1903                 else if (count == 6) {
1904                         db_printf("\n");
1905                         db_iprintf(" ...");
1906                         count = 0;
1907                 } else
1908                         db_printf(",");
1909                 count++;
1910
1911                 db_printf("(off=0x%lx,page=0x%lx)",
1912                     (u_long) p->pindex, (u_long) VM_PAGE_TO_PHYS(p));
1913         }
1914         if (count != 0)
1915                 db_printf("\n");
1916         db_indent -= 2;
1917 }
1918
1919 /* XXX. */
1920 #undef count
1921
1922 /* XXX need this non-static entry for calling from vm_map_print. */
1923 void
1924 vm_object_print(/* db_expr_t */ long addr,
1925                 boolean_t have_addr,
1926                 /* db_expr_t */ long count,
1927                 char *modif)
1928 {
1929         vm_object_print_static(addr, have_addr, count, modif);
1930 }
1931
1932 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
1933 {
1934         vm_object_t object;
1935         int nl = 0;
1936         int c;
1937         for (object = TAILQ_FIRST(&vm_object_list);
1938                         object != NULL;
1939                         object = TAILQ_NEXT(object, object_list)) {
1940                 vm_pindex_t idx, fidx;
1941                 vm_pindex_t osize;
1942                 vm_paddr_t pa = -1, padiff;
1943                 int rcount;
1944                 vm_page_t m;
1945
1946                 db_printf("new object: %p\n", (void *)object);
1947                 if ( nl > 18) {
1948                         c = cngetc();
1949                         if (c != ' ')
1950                                 return;
1951                         nl = 0;
1952                 }
1953                 nl++;
1954                 rcount = 0;
1955                 fidx = 0;
1956                 osize = object->size;
1957                 if (osize > 128)
1958                         osize = 128;
1959                 for (idx = 0; idx < osize; idx++) {
1960                         m = vm_page_lookup(object, idx);
1961                         if (m == NULL) {
1962                                 if (rcount) {
1963                                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
1964                                                 (long)fidx, rcount, (long)pa);
1965                                         if ( nl > 18) {
1966                                                 c = cngetc();
1967                                                 if (c != ' ')
1968                                                         return;
1969                                                 nl = 0;
1970                                         }
1971                                         nl++;
1972                                         rcount = 0;
1973                                 }
1974                                 continue;
1975                         }
1976
1977                                 
1978                         if (rcount &&
1979                                 (VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
1980                                 ++rcount;
1981                                 continue;
1982                         }
1983                         if (rcount) {
1984                                 padiff = pa + rcount * PAGE_SIZE - VM_PAGE_TO_PHYS(m);
1985                                 padiff >>= PAGE_SHIFT;
1986                                 padiff &= PQ_L2_MASK;
1987                                 if (padiff == 0) {
1988                                         pa = VM_PAGE_TO_PHYS(m) - rcount * PAGE_SIZE;
1989                                         ++rcount;
1990                                         continue;
1991                                 }
1992                                 db_printf(" index(%ld)run(%d)pa(0x%lx)",
1993                                         (long)fidx, rcount, (long)pa);
1994                                 db_printf("pd(%ld)\n", (long)padiff);
1995                                 if ( nl > 18) {
1996                                         c = cngetc();
1997                                         if (c != ' ')
1998                                                 return;
1999                                         nl = 0;
2000                                 }
2001                                 nl++;
2002                         }
2003                         fidx = idx;
2004                         pa = VM_PAGE_TO_PHYS(m);
2005                         rcount = 1;
2006                 }
2007                 if (rcount) {
2008                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2009                                 (long)fidx, rcount, (long)pa);
2010                         if ( nl > 18) {
2011                                 c = cngetc();
2012                                 if (c != ' ')
2013                                         return;
2014                                 nl = 0;
2015                         }
2016                         nl++;
2017                 }
2018         }
2019 }
2020 #endif /* DDB */