Merge branch 'vendor/OPENSSL'
[dragonfly.git] / sys / dev / netif / igb / if_igb.c
1 /*
2  * Copyright (c) 2001-2011, Intel Corporation 
3  * All rights reserved.
4  * 
5  * Redistribution and use in source and binary forms, with or without 
6  * modification, are permitted provided that the following conditions are met:
7  * 
8  *  1. Redistributions of source code must retain the above copyright notice, 
9  *     this list of conditions and the following disclaimer.
10  * 
11  *  2. Redistributions in binary form must reproduce the above copyright 
12  *     notice, this list of conditions and the following disclaimer in the 
13  *     documentation and/or other materials provided with the distribution.
14  * 
15  *  3. Neither the name of the Intel Corporation nor the names of its 
16  *     contributors may be used to endorse or promote products derived from 
17  *     this software without specific prior written permission.
18  * 
19  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
20  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 
22  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 
23  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31
32 #include "opt_ifpoll.h"
33 #include "opt_igb.h"
34
35 #include <sys/param.h>
36 #include <sys/bus.h>
37 #include <sys/endian.h>
38 #include <sys/interrupt.h>
39 #include <sys/kernel.h>
40 #include <sys/malloc.h>
41 #include <sys/mbuf.h>
42 #include <sys/proc.h>
43 #include <sys/rman.h>
44 #include <sys/serialize.h>
45 #include <sys/serialize2.h>
46 #include <sys/socket.h>
47 #include <sys/sockio.h>
48 #include <sys/sysctl.h>
49 #include <sys/systm.h>
50
51 #include <net/bpf.h>
52 #include <net/ethernet.h>
53 #include <net/if.h>
54 #include <net/if_arp.h>
55 #include <net/if_dl.h>
56 #include <net/if_media.h>
57 #include <net/ifq_var.h>
58 #include <net/toeplitz.h>
59 #include <net/toeplitz2.h>
60 #include <net/vlan/if_vlan_var.h>
61 #include <net/vlan/if_vlan_ether.h>
62 #include <net/if_poll.h>
63
64 #include <netinet/in_systm.h>
65 #include <netinet/in.h>
66 #include <netinet/ip.h>
67
68 #include <bus/pci/pcivar.h>
69 #include <bus/pci/pcireg.h>
70
71 #include <dev/netif/ig_hal/e1000_api.h>
72 #include <dev/netif/ig_hal/e1000_82575.h>
73 #include <dev/netif/ig_hal/e1000_dragonfly.h>
74 #include <dev/netif/igb/if_igb.h>
75
76 #ifdef IGB_RSS_DEBUG
77 #define IGB_RSS_DPRINTF(sc, lvl, fmt, ...) \
78 do { \
79         if (sc->rss_debug >= lvl) \
80                 if_printf(&sc->arpcom.ac_if, fmt, __VA_ARGS__); \
81 } while (0)
82 #else   /* !IGB_RSS_DEBUG */
83 #define IGB_RSS_DPRINTF(sc, lvl, fmt, ...)      ((void)0)
84 #endif  /* IGB_RSS_DEBUG */
85
86 #define IGB_NAME        "Intel(R) PRO/1000 "
87 #define IGB_DEVICE(id)  \
88         { IGB_VENDOR_ID, E1000_DEV_ID_##id, IGB_NAME #id }
89 #define IGB_DEVICE_NULL { 0, 0, NULL }
90
91 static struct igb_device {
92         uint16_t        vid;
93         uint16_t        did;
94         const char      *desc;
95 } igb_devices[] = {
96         IGB_DEVICE(82575EB_COPPER),
97         IGB_DEVICE(82575EB_FIBER_SERDES),
98         IGB_DEVICE(82575GB_QUAD_COPPER),
99         IGB_DEVICE(82576),
100         IGB_DEVICE(82576_NS),
101         IGB_DEVICE(82576_NS_SERDES),
102         IGB_DEVICE(82576_FIBER),
103         IGB_DEVICE(82576_SERDES),
104         IGB_DEVICE(82576_SERDES_QUAD),
105         IGB_DEVICE(82576_QUAD_COPPER),
106         IGB_DEVICE(82576_QUAD_COPPER_ET2),
107         IGB_DEVICE(82576_VF),
108         IGB_DEVICE(82580_COPPER),
109         IGB_DEVICE(82580_FIBER),
110         IGB_DEVICE(82580_SERDES),
111         IGB_DEVICE(82580_SGMII),
112         IGB_DEVICE(82580_COPPER_DUAL),
113         IGB_DEVICE(82580_QUAD_FIBER),
114         IGB_DEVICE(DH89XXCC_SERDES),
115         IGB_DEVICE(DH89XXCC_SGMII),
116         IGB_DEVICE(DH89XXCC_SFP),
117         IGB_DEVICE(DH89XXCC_BACKPLANE),
118         IGB_DEVICE(I350_COPPER),
119         IGB_DEVICE(I350_FIBER),
120         IGB_DEVICE(I350_SERDES),
121         IGB_DEVICE(I350_SGMII),
122         IGB_DEVICE(I350_VF),
123         IGB_DEVICE(I210_COPPER),
124         IGB_DEVICE(I210_COPPER_IT),
125         IGB_DEVICE(I210_COPPER_OEM1),
126         IGB_DEVICE(I210_COPPER_FLASHLESS),
127         IGB_DEVICE(I210_SERDES_FLASHLESS),
128         IGB_DEVICE(I210_FIBER),
129         IGB_DEVICE(I210_SERDES),
130         IGB_DEVICE(I210_SGMII),
131         IGB_DEVICE(I211_COPPER),
132         IGB_DEVICE(I354_BACKPLANE_1GBPS),
133         IGB_DEVICE(I354_SGMII),
134
135         /* required last entry */
136         IGB_DEVICE_NULL
137 };
138
139 static int      igb_probe(device_t);
140 static int      igb_attach(device_t);
141 static int      igb_detach(device_t);
142 static int      igb_shutdown(device_t);
143 static int      igb_suspend(device_t);
144 static int      igb_resume(device_t);
145
146 static boolean_t igb_is_valid_ether_addr(const uint8_t *);
147 static void     igb_setup_ifp(struct igb_softc *);
148 static boolean_t igb_txcsum_ctx(struct igb_tx_ring *, struct mbuf *);
149 static int      igb_tso_pullup(struct igb_tx_ring *, struct mbuf **);
150 static void     igb_tso_ctx(struct igb_tx_ring *, struct mbuf *, uint32_t *);
151 static void     igb_add_sysctl(struct igb_softc *);
152 static int      igb_sysctl_intr_rate(SYSCTL_HANDLER_ARGS);
153 static int      igb_sysctl_msix_rate(SYSCTL_HANDLER_ARGS);
154 static int      igb_sysctl_tx_intr_nsegs(SYSCTL_HANDLER_ARGS);
155 static int      igb_sysctl_tx_wreg_nsegs(SYSCTL_HANDLER_ARGS);
156 static int      igb_sysctl_rx_wreg_nsegs(SYSCTL_HANDLER_ARGS);
157 static void     igb_set_ring_inuse(struct igb_softc *, boolean_t);
158 static int      igb_get_rxring_inuse(const struct igb_softc *, boolean_t);
159 static int      igb_get_txring_inuse(const struct igb_softc *, boolean_t);
160 static void     igb_set_timer_cpuid(struct igb_softc *, boolean_t);
161 #ifdef IFPOLL_ENABLE
162 static int      igb_sysctl_npoll_rxoff(SYSCTL_HANDLER_ARGS);
163 static int      igb_sysctl_npoll_txoff(SYSCTL_HANDLER_ARGS);
164 #endif
165
166 static void     igb_vf_init_stats(struct igb_softc *);
167 static void     igb_reset(struct igb_softc *);
168 static void     igb_update_stats_counters(struct igb_softc *);
169 static void     igb_update_vf_stats_counters(struct igb_softc *);
170 static void     igb_update_link_status(struct igb_softc *);
171 static void     igb_init_tx_unit(struct igb_softc *);
172 static void     igb_init_rx_unit(struct igb_softc *);
173
174 static void     igb_set_vlan(struct igb_softc *);
175 static void     igb_set_multi(struct igb_softc *);
176 static void     igb_set_promisc(struct igb_softc *);
177 static void     igb_disable_promisc(struct igb_softc *);
178
179 static int      igb_alloc_rings(struct igb_softc *);
180 static void     igb_free_rings(struct igb_softc *);
181 static int      igb_create_tx_ring(struct igb_tx_ring *);
182 static int      igb_create_rx_ring(struct igb_rx_ring *);
183 static void     igb_free_tx_ring(struct igb_tx_ring *);
184 static void     igb_free_rx_ring(struct igb_rx_ring *);
185 static void     igb_destroy_tx_ring(struct igb_tx_ring *, int);
186 static void     igb_destroy_rx_ring(struct igb_rx_ring *, int);
187 static void     igb_init_tx_ring(struct igb_tx_ring *);
188 static int      igb_init_rx_ring(struct igb_rx_ring *);
189 static int      igb_newbuf(struct igb_rx_ring *, int, boolean_t);
190 static int      igb_encap(struct igb_tx_ring *, struct mbuf **, int *, int *);
191 static void     igb_rx_refresh(struct igb_rx_ring *, int);
192 static void     igb_setup_serializer(struct igb_softc *);
193
194 static void     igb_stop(struct igb_softc *);
195 static void     igb_init(void *);
196 static int      igb_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
197 static void     igb_media_status(struct ifnet *, struct ifmediareq *);
198 static int      igb_media_change(struct ifnet *);
199 static void     igb_timer(void *);
200 static void     igb_watchdog(struct ifaltq_subque *);
201 static void     igb_start(struct ifnet *, struct ifaltq_subque *);
202 #ifdef IFPOLL_ENABLE
203 static void     igb_npoll(struct ifnet *, struct ifpoll_info *);
204 static void     igb_npoll_rx(struct ifnet *, void *, int);
205 static void     igb_npoll_tx(struct ifnet *, void *, int);
206 static void     igb_npoll_status(struct ifnet *);
207 #endif
208 static void     igb_serialize(struct ifnet *, enum ifnet_serialize);
209 static void     igb_deserialize(struct ifnet *, enum ifnet_serialize);
210 static int      igb_tryserialize(struct ifnet *, enum ifnet_serialize);
211 #ifdef INVARIANTS
212 static void     igb_serialize_assert(struct ifnet *, enum ifnet_serialize,
213                     boolean_t);
214 #endif
215
216 static void     igb_intr(void *);
217 static void     igb_intr_shared(void *);
218 static void     igb_rxeof(struct igb_rx_ring *, int);
219 static void     igb_txeof(struct igb_tx_ring *);
220 static void     igb_set_eitr(struct igb_softc *, int, int);
221 static void     igb_enable_intr(struct igb_softc *);
222 static void     igb_disable_intr(struct igb_softc *);
223 static void     igb_init_unshared_intr(struct igb_softc *);
224 static void     igb_init_intr(struct igb_softc *);
225 static int      igb_setup_intr(struct igb_softc *);
226 static void     igb_set_txintr_mask(struct igb_tx_ring *, int *, int);
227 static void     igb_set_rxintr_mask(struct igb_rx_ring *, int *, int);
228 static void     igb_set_intr_mask(struct igb_softc *);
229 static int      igb_alloc_intr(struct igb_softc *);
230 static void     igb_free_intr(struct igb_softc *);
231 static void     igb_teardown_intr(struct igb_softc *);
232 static void     igb_msix_try_alloc(struct igb_softc *);
233 static void     igb_msix_rx_conf(struct igb_softc *, int, int *, int);
234 static void     igb_msix_tx_conf(struct igb_softc *, int, int *, int);
235 static void     igb_msix_free(struct igb_softc *, boolean_t);
236 static int      igb_msix_setup(struct igb_softc *);
237 static void     igb_msix_teardown(struct igb_softc *, int);
238 static void     igb_msix_rx(void *);
239 static void     igb_msix_tx(void *);
240 static void     igb_msix_status(void *);
241 static void     igb_msix_rxtx(void *);
242
243 /* Management and WOL Support */
244 static void     igb_get_mgmt(struct igb_softc *);
245 static void     igb_rel_mgmt(struct igb_softc *);
246 static void     igb_get_hw_control(struct igb_softc *);
247 static void     igb_rel_hw_control(struct igb_softc *);
248 static void     igb_enable_wol(device_t);
249
250 static device_method_t igb_methods[] = {
251         /* Device interface */
252         DEVMETHOD(device_probe,         igb_probe),
253         DEVMETHOD(device_attach,        igb_attach),
254         DEVMETHOD(device_detach,        igb_detach),
255         DEVMETHOD(device_shutdown,      igb_shutdown),
256         DEVMETHOD(device_suspend,       igb_suspend),
257         DEVMETHOD(device_resume,        igb_resume),
258         DEVMETHOD_END
259 };
260
261 static driver_t igb_driver = {
262         "igb",
263         igb_methods,
264         sizeof(struct igb_softc),
265 };
266
267 static devclass_t igb_devclass;
268
269 DECLARE_DUMMY_MODULE(if_igb);
270 MODULE_DEPEND(igb, ig_hal, 1, 1, 1);
271 DRIVER_MODULE(if_igb, pci, igb_driver, igb_devclass, NULL, NULL);
272
273 static int      igb_rxd = IGB_DEFAULT_RXD;
274 static int      igb_txd = IGB_DEFAULT_TXD;
275 static int      igb_rxr = 0;
276 static int      igb_txr = 0;
277 static int      igb_msi_enable = 1;
278 static int      igb_msix_enable = 1;
279 static int      igb_eee_disabled = 1;   /* Energy Efficient Ethernet */
280
281 static char     igb_flowctrl[IFM_ETH_FC_STRLEN] = IFM_ETH_FC_RXPAUSE;
282
283 /*
284  * DMA Coalescing, only for i350 - default to off,
285  * this feature is for power savings
286  */
287 static int      igb_dma_coalesce = 0;
288
289 TUNABLE_INT("hw.igb.rxd", &igb_rxd);
290 TUNABLE_INT("hw.igb.txd", &igb_txd);
291 TUNABLE_INT("hw.igb.rxr", &igb_rxr);
292 TUNABLE_INT("hw.igb.txr", &igb_txr);
293 TUNABLE_INT("hw.igb.msi.enable", &igb_msi_enable);
294 TUNABLE_INT("hw.igb.msix.enable", &igb_msix_enable);
295 TUNABLE_STR("hw.igb.flow_ctrl", igb_flowctrl, sizeof(igb_flowctrl));
296
297 /* i350 specific */
298 TUNABLE_INT("hw.igb.eee_disabled", &igb_eee_disabled);
299 TUNABLE_INT("hw.igb.dma_coalesce", &igb_dma_coalesce);
300
301 static __inline void
302 igb_rxcsum(uint32_t staterr, struct mbuf *mp)
303 {
304         /* Ignore Checksum bit is set */
305         if (staterr & E1000_RXD_STAT_IXSM)
306                 return;
307
308         if ((staterr & (E1000_RXD_STAT_IPCS | E1000_RXDEXT_STATERR_IPE)) ==
309             E1000_RXD_STAT_IPCS)
310                 mp->m_pkthdr.csum_flags |= CSUM_IP_CHECKED | CSUM_IP_VALID;
311
312         if (staterr & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)) {
313                 if ((staterr & E1000_RXDEXT_STATERR_TCPE) == 0) {
314                         mp->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
315                             CSUM_PSEUDO_HDR | CSUM_FRAG_NOT_CHECKED;
316                         mp->m_pkthdr.csum_data = htons(0xffff);
317                 }
318         }
319 }
320
321 static __inline struct pktinfo *
322 igb_rssinfo(struct mbuf *m, struct pktinfo *pi,
323     uint32_t hash, uint32_t hashtype, uint32_t staterr)
324 {
325         switch (hashtype) {
326         case E1000_RXDADV_RSSTYPE_IPV4_TCP:
327                 pi->pi_netisr = NETISR_IP;
328                 pi->pi_flags = 0;
329                 pi->pi_l3proto = IPPROTO_TCP;
330                 break;
331
332         case E1000_RXDADV_RSSTYPE_IPV4:
333                 if (staterr & E1000_RXD_STAT_IXSM)
334                         return NULL;
335
336                 if ((staterr &
337                      (E1000_RXD_STAT_TCPCS | E1000_RXDEXT_STATERR_TCPE)) ==
338                     E1000_RXD_STAT_TCPCS) {
339                         pi->pi_netisr = NETISR_IP;
340                         pi->pi_flags = 0;
341                         pi->pi_l3proto = IPPROTO_UDP;
342                         break;
343                 }
344                 /* FALL THROUGH */
345         default:
346                 return NULL;
347         }
348
349         m->m_flags |= M_HASH;
350         m->m_pkthdr.hash = toeplitz_hash(hash);
351         return pi;
352 }
353
354 static int
355 igb_probe(device_t dev)
356 {
357         const struct igb_device *d;
358         uint16_t vid, did;
359
360         vid = pci_get_vendor(dev);
361         did = pci_get_device(dev);
362
363         for (d = igb_devices; d->desc != NULL; ++d) {
364                 if (vid == d->vid && did == d->did) {
365                         device_set_desc(dev, d->desc);
366                         return 0;
367                 }
368         }
369         return ENXIO;
370 }
371
372 static int
373 igb_attach(device_t dev)
374 {
375         struct igb_softc *sc = device_get_softc(dev);
376         uint16_t eeprom_data;
377         int error = 0, ring_max;
378         char flowctrl[IFM_ETH_FC_STRLEN];
379 #ifdef IFPOLL_ENABLE
380         int offset, offset_def;
381 #endif
382
383 #ifdef notyet
384         /* SYSCTL stuff */
385         SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
386             SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
387             OID_AUTO, "nvm", CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
388             igb_sysctl_nvm_info, "I", "NVM Information");
389 #endif
390
391         ifmedia_init(&sc->media, IFM_IMASK | IFM_ETH_FCMASK,
392             igb_media_change, igb_media_status);
393         callout_init_mp(&sc->timer);
394         lwkt_serialize_init(&sc->main_serialize);
395
396         if_initname(&sc->arpcom.ac_if, device_get_name(dev),
397             device_get_unit(dev));
398         sc->dev = sc->osdep.dev = dev;
399
400         /*
401          * Determine hardware and mac type
402          */
403         sc->hw.vendor_id = pci_get_vendor(dev);
404         sc->hw.device_id = pci_get_device(dev);
405         sc->hw.revision_id = pci_read_config(dev, PCIR_REVID, 1);
406         sc->hw.subsystem_vendor_id = pci_read_config(dev, PCIR_SUBVEND_0, 2);
407         sc->hw.subsystem_device_id = pci_read_config(dev, PCIR_SUBDEV_0, 2);
408
409         if (e1000_set_mac_type(&sc->hw))
410                 return ENXIO;
411
412         /* Are we a VF device? */
413         if (sc->hw.mac.type == e1000_vfadapt ||
414             sc->hw.mac.type == e1000_vfadapt_i350)
415                 sc->vf_ifp = 1;
416         else
417                 sc->vf_ifp = 0;
418
419         /*
420          * Configure total supported RX/TX ring count
421          */
422         switch (sc->hw.mac.type) {
423         case e1000_82575:
424                 ring_max = IGB_MAX_RING_82575;
425                 break;
426
427         case e1000_82576:
428                 ring_max = IGB_MAX_RING_82576;
429                 break;
430
431         case e1000_82580:
432                 ring_max = IGB_MAX_RING_82580;
433                 break;
434
435         case e1000_i350:
436                 ring_max = IGB_MAX_RING_I350;
437                 break;
438
439         case e1000_i354:
440                 ring_max = IGB_MAX_RING_I354;
441                 break;
442
443         case e1000_i210:
444                 ring_max = IGB_MAX_RING_I210;
445                 break;
446
447         case e1000_i211:
448                 ring_max = IGB_MAX_RING_I211;
449                 break;
450
451         default:
452                 ring_max = IGB_MIN_RING;
453                 break;
454         }
455
456         sc->rx_ring_cnt = device_getenv_int(dev, "rxr", igb_rxr);
457         sc->rx_ring_cnt = if_ring_count2(sc->rx_ring_cnt, ring_max);
458 #ifdef IGB_RSS_DEBUG
459         sc->rx_ring_cnt = device_getenv_int(dev, "rxr_debug", sc->rx_ring_cnt);
460 #endif
461         sc->rx_ring_inuse = sc->rx_ring_cnt;
462
463         sc->tx_ring_cnt = device_getenv_int(dev, "txr", igb_txr);
464         sc->tx_ring_cnt = if_ring_count2(sc->tx_ring_cnt, ring_max);
465 #ifdef IGB_TSS_DEBUG
466         sc->tx_ring_cnt = device_getenv_int(dev, "txr_debug", sc->tx_ring_cnt);
467 #endif
468         sc->tx_ring_inuse = sc->tx_ring_cnt;
469
470         /* Setup flow control. */
471         device_getenv_string(dev, "flow_ctrl", flowctrl, sizeof(flowctrl),
472             igb_flowctrl);
473         sc->ifm_flowctrl = ifmedia_str2ethfc(flowctrl);
474
475         /* Enable bus mastering */
476         pci_enable_busmaster(dev);
477
478         /*
479          * Allocate IO memory
480          */
481         sc->mem_rid = PCIR_BAR(0);
482         sc->mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid,
483             RF_ACTIVE);
484         if (sc->mem_res == NULL) {
485                 device_printf(dev, "Unable to allocate bus resource: memory\n");
486                 error = ENXIO;
487                 goto failed;
488         }
489         sc->osdep.mem_bus_space_tag = rman_get_bustag(sc->mem_res);
490         sc->osdep.mem_bus_space_handle = rman_get_bushandle(sc->mem_res);
491
492         sc->hw.hw_addr = (uint8_t *)&sc->osdep.mem_bus_space_handle;
493
494         /* Save PCI command register for Shared Code */
495         sc->hw.bus.pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2);
496         sc->hw.back = &sc->osdep;
497
498         /* Do Shared Code initialization */
499         if (e1000_setup_init_funcs(&sc->hw, TRUE)) {
500                 device_printf(dev, "Setup of Shared code failed\n");
501                 error = ENXIO;
502                 goto failed;
503         }
504
505         e1000_get_bus_info(&sc->hw);
506
507         sc->hw.mac.autoneg = DO_AUTO_NEG;
508         sc->hw.phy.autoneg_wait_to_complete = FALSE;
509         sc->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
510
511         /* Copper options */
512         if (sc->hw.phy.media_type == e1000_media_type_copper) {
513                 sc->hw.phy.mdix = AUTO_ALL_MODES;
514                 sc->hw.phy.disable_polarity_correction = FALSE;
515                 sc->hw.phy.ms_type = IGB_MASTER_SLAVE;
516         }
517
518         /* Set the frame limits assuming  standard ethernet sized frames. */
519         sc->max_frame_size = ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN;
520
521         /* Allocate RX/TX rings */
522         error = igb_alloc_rings(sc);
523         if (error)
524                 goto failed;
525
526 #ifdef IFPOLL_ENABLE
527         /*
528          * NPOLLING RX CPU offset
529          */
530         if (sc->rx_ring_cnt == ncpus2) {
531                 offset = 0;
532         } else {
533                 offset_def = (sc->rx_ring_cnt * device_get_unit(dev)) % ncpus2;
534                 offset = device_getenv_int(dev, "npoll.rxoff", offset_def);
535                 if (offset >= ncpus2 ||
536                     offset % sc->rx_ring_cnt != 0) {
537                         device_printf(dev, "invalid npoll.rxoff %d, use %d\n",
538                             offset, offset_def);
539                         offset = offset_def;
540                 }
541         }
542         sc->rx_npoll_off = offset;
543
544         /*
545          * NPOLLING TX CPU offset
546          */
547         if (sc->tx_ring_cnt == ncpus2) {
548                 offset = 0;
549         } else {
550                 offset_def = (sc->tx_ring_cnt * device_get_unit(dev)) % ncpus2;
551                 offset = device_getenv_int(dev, "npoll.txoff", offset_def);
552                 if (offset >= ncpus2 ||
553                     offset % sc->tx_ring_cnt != 0) {
554                         device_printf(dev, "invalid npoll.txoff %d, use %d\n",
555                             offset, offset_def);
556                         offset = offset_def;
557                 }
558         }
559         sc->tx_npoll_off = offset;
560 #endif
561
562         /* Allocate interrupt */
563         error = igb_alloc_intr(sc);
564         if (error)
565                 goto failed;
566
567         /* Setup serializers */
568         igb_setup_serializer(sc);
569
570         /* Allocate the appropriate stats memory */
571         if (sc->vf_ifp) {
572                 sc->stats = kmalloc(sizeof(struct e1000_vf_stats), M_DEVBUF,
573                     M_WAITOK | M_ZERO);
574                 igb_vf_init_stats(sc);
575         } else {
576                 sc->stats = kmalloc(sizeof(struct e1000_hw_stats), M_DEVBUF,
577                     M_WAITOK | M_ZERO);
578         }
579
580         /* Allocate multicast array memory. */
581         sc->mta = kmalloc(ETHER_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES,
582             M_DEVBUF, M_WAITOK);
583
584         /* Some adapter-specific advanced features */
585         if (sc->hw.mac.type >= e1000_i350) {
586 #ifdef notyet
587                 igb_set_sysctl_value(adapter, "dma_coalesce",
588                     "configure dma coalesce",
589                     &adapter->dma_coalesce, igb_dma_coalesce);
590                 igb_set_sysctl_value(adapter, "eee_disabled",
591                     "enable Energy Efficient Ethernet",
592                     &adapter->hw.dev_spec._82575.eee_disable,
593                     igb_eee_disabled);
594 #else
595                 sc->dma_coalesce = igb_dma_coalesce;
596                 sc->hw.dev_spec._82575.eee_disable = igb_eee_disabled;
597 #endif
598                 if (sc->hw.phy.media_type == e1000_media_type_copper) {
599                         if (sc->hw.mac.type == e1000_i354)
600                                 e1000_set_eee_i354(&sc->hw);
601                         else
602                                 e1000_set_eee_i350(&sc->hw);
603                 }
604         }
605
606         /*
607          * Start from a known state, this is important in reading the nvm and
608          * mac from that.
609          */
610         e1000_reset_hw(&sc->hw);
611
612         /* Make sure we have a good EEPROM before we read from it */
613         if (sc->hw.mac.type != e1000_i210 && sc->hw.mac.type != e1000_i211 &&
614             e1000_validate_nvm_checksum(&sc->hw) < 0) {
615                 /*
616                  * Some PCI-E parts fail the first check due to
617                  * the link being in sleep state, call it again,
618                  * if it fails a second time its a real issue.
619                  */
620                 if (e1000_validate_nvm_checksum(&sc->hw) < 0) {
621                         device_printf(dev,
622                             "The EEPROM Checksum Is Not Valid\n");
623                         error = EIO;
624                         goto failed;
625                 }
626         }
627
628         /* Copy the permanent MAC address out of the EEPROM */
629         if (e1000_read_mac_addr(&sc->hw) < 0) {
630                 device_printf(dev, "EEPROM read error while reading MAC"
631                     " address\n");
632                 error = EIO;
633                 goto failed;
634         }
635         if (!igb_is_valid_ether_addr(sc->hw.mac.addr)) {
636                 device_printf(dev, "Invalid MAC address\n");
637                 error = EIO;
638                 goto failed;
639         }
640
641         /* Setup OS specific network interface */
642         igb_setup_ifp(sc);
643
644         /* Add sysctl tree, must after igb_setup_ifp() */
645         igb_add_sysctl(sc);
646
647         /* Now get a good starting state */
648         igb_reset(sc);
649
650         /* Initialize statistics */
651         igb_update_stats_counters(sc);
652
653         sc->hw.mac.get_link_status = 1;
654         igb_update_link_status(sc);
655
656         /* Indicate SOL/IDER usage */
657         if (e1000_check_reset_block(&sc->hw)) {
658                 device_printf(dev,
659                     "PHY reset is blocked due to SOL/IDER session.\n");
660         }
661
662         /* Determine if we have to control management hardware */
663         if (e1000_enable_mng_pass_thru(&sc->hw))
664                 sc->flags |= IGB_FLAG_HAS_MGMT;
665
666         /*
667          * Setup Wake-on-Lan
668          */
669         /* APME bit in EEPROM is mapped to WUC.APME */
670         eeprom_data = E1000_READ_REG(&sc->hw, E1000_WUC) & E1000_WUC_APME;
671         if (eeprom_data)
672                 sc->wol = E1000_WUFC_MAG;
673         /* XXX disable WOL */
674         sc->wol = 0; 
675
676 #ifdef notyet
677         /* Register for VLAN events */
678         adapter->vlan_attach = EVENTHANDLER_REGISTER(vlan_config,
679              igb_register_vlan, adapter, EVENTHANDLER_PRI_FIRST);
680         adapter->vlan_detach = EVENTHANDLER_REGISTER(vlan_unconfig,
681              igb_unregister_vlan, adapter, EVENTHANDLER_PRI_FIRST);
682 #endif
683
684 #ifdef notyet
685         igb_add_hw_stats(adapter);
686 #endif
687
688         /*
689          * Disable interrupt to prevent spurious interrupts (line based
690          * interrupt, MSI or even MSI-X), which had been observed on
691          * several types of LOMs, from being handled.
692          */
693         igb_disable_intr(sc);
694
695         error = igb_setup_intr(sc);
696         if (error) {
697                 ether_ifdetach(&sc->arpcom.ac_if);
698                 goto failed;
699         }
700         return 0;
701
702 failed:
703         igb_detach(dev);
704         return error;
705 }
706
707 static int
708 igb_detach(device_t dev)
709 {
710         struct igb_softc *sc = device_get_softc(dev);
711
712         if (device_is_attached(dev)) {
713                 struct ifnet *ifp = &sc->arpcom.ac_if;
714
715                 ifnet_serialize_all(ifp);
716
717                 igb_stop(sc);
718
719                 e1000_phy_hw_reset(&sc->hw);
720
721                 /* Give control back to firmware */
722                 igb_rel_mgmt(sc);
723                 igb_rel_hw_control(sc);
724
725                 if (sc->wol) {
726                         E1000_WRITE_REG(&sc->hw, E1000_WUC, E1000_WUC_PME_EN);
727                         E1000_WRITE_REG(&sc->hw, E1000_WUFC, sc->wol);
728                         igb_enable_wol(dev);
729                 }
730
731                 igb_teardown_intr(sc);
732
733                 ifnet_deserialize_all(ifp);
734
735                 ether_ifdetach(ifp);
736         } else if (sc->mem_res != NULL) {
737                 igb_rel_hw_control(sc);
738         }
739
740         ifmedia_removeall(&sc->media);
741         bus_generic_detach(dev);
742
743         igb_free_intr(sc);
744
745         if (sc->msix_mem_res != NULL) {
746                 bus_release_resource(dev, SYS_RES_MEMORY, sc->msix_mem_rid,
747                     sc->msix_mem_res);
748         }
749         if (sc->mem_res != NULL) {
750                 bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid,
751                     sc->mem_res);
752         }
753
754         igb_free_rings(sc);
755
756         if (sc->mta != NULL)
757                 kfree(sc->mta, M_DEVBUF);
758         if (sc->stats != NULL)
759                 kfree(sc->stats, M_DEVBUF);
760         if (sc->serializes != NULL)
761                 kfree(sc->serializes, M_DEVBUF);
762
763         return 0;
764 }
765
766 static int
767 igb_shutdown(device_t dev)
768 {
769         return igb_suspend(dev);
770 }
771
772 static int
773 igb_suspend(device_t dev)
774 {
775         struct igb_softc *sc = device_get_softc(dev);
776         struct ifnet *ifp = &sc->arpcom.ac_if;
777
778         ifnet_serialize_all(ifp);
779
780         igb_stop(sc);
781
782         igb_rel_mgmt(sc);
783         igb_rel_hw_control(sc);
784
785         if (sc->wol) {
786                 E1000_WRITE_REG(&sc->hw, E1000_WUC, E1000_WUC_PME_EN);
787                 E1000_WRITE_REG(&sc->hw, E1000_WUFC, sc->wol);
788                 igb_enable_wol(dev);
789         }
790
791         ifnet_deserialize_all(ifp);
792
793         return bus_generic_suspend(dev);
794 }
795
796 static int
797 igb_resume(device_t dev)
798 {
799         struct igb_softc *sc = device_get_softc(dev);
800         struct ifnet *ifp = &sc->arpcom.ac_if;
801         int i;
802
803         ifnet_serialize_all(ifp);
804
805         igb_init(sc);
806         igb_get_mgmt(sc);
807
808         for (i = 0; i < sc->tx_ring_inuse; ++i)
809                 ifsq_devstart_sched(sc->tx_rings[i].ifsq);
810
811         ifnet_deserialize_all(ifp);
812
813         return bus_generic_resume(dev);
814 }
815
816 static int
817 igb_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
818 {
819         struct igb_softc *sc = ifp->if_softc;
820         struct ifreq *ifr = (struct ifreq *)data;
821         int max_frame_size, mask, reinit;
822         int error = 0;
823
824         ASSERT_IFNET_SERIALIZED_ALL(ifp);
825
826         switch (command) {
827         case SIOCSIFMTU:
828                 max_frame_size = 9234;
829                 if (ifr->ifr_mtu > max_frame_size - ETHER_HDR_LEN -
830                     ETHER_CRC_LEN) {
831                         error = EINVAL;
832                         break;
833                 }
834
835                 ifp->if_mtu = ifr->ifr_mtu;
836                 sc->max_frame_size = ifp->if_mtu + ETHER_HDR_LEN +
837                     ETHER_CRC_LEN;
838
839                 if (ifp->if_flags & IFF_RUNNING)
840                         igb_init(sc);
841                 break;
842
843         case SIOCSIFFLAGS:
844                 if (ifp->if_flags & IFF_UP) {
845                         if (ifp->if_flags & IFF_RUNNING) {
846                                 if ((ifp->if_flags ^ sc->if_flags) &
847                                     (IFF_PROMISC | IFF_ALLMULTI)) {
848                                         igb_disable_promisc(sc);
849                                         igb_set_promisc(sc);
850                                 }
851                         } else {
852                                 igb_init(sc);
853                         }
854                 } else if (ifp->if_flags & IFF_RUNNING) {
855                         igb_stop(sc);
856                 }
857                 sc->if_flags = ifp->if_flags;
858                 break;
859
860         case SIOCADDMULTI:
861         case SIOCDELMULTI:
862                 if (ifp->if_flags & IFF_RUNNING) {
863                         igb_disable_intr(sc);
864                         igb_set_multi(sc);
865 #ifdef IFPOLL_ENABLE
866                         if (!(ifp->if_flags & IFF_NPOLLING))
867 #endif
868                                 igb_enable_intr(sc);
869                 }
870                 break;
871
872         case SIOCSIFMEDIA:
873                 /* Check SOL/IDER usage */
874                 if (e1000_check_reset_block(&sc->hw)) {
875                         if_printf(ifp, "Media change is "
876                             "blocked due to SOL/IDER session.\n");
877                         break;
878                 }
879                 /* FALL THROUGH */
880
881         case SIOCGIFMEDIA:
882                 error = ifmedia_ioctl(ifp, ifr, &sc->media, command);
883                 break;
884
885         case SIOCSIFCAP:
886                 reinit = 0;
887                 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
888                 if (mask & IFCAP_RXCSUM) {
889                         ifp->if_capenable ^= IFCAP_RXCSUM;
890                         reinit = 1;
891                 }
892                 if (mask & IFCAP_VLAN_HWTAGGING) {
893                         ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
894                         reinit = 1;
895                 }
896                 if (mask & IFCAP_TXCSUM) {
897                         ifp->if_capenable ^= IFCAP_TXCSUM;
898                         if (ifp->if_capenable & IFCAP_TXCSUM)
899                                 ifp->if_hwassist |= IGB_CSUM_FEATURES;
900                         else
901                                 ifp->if_hwassist &= ~IGB_CSUM_FEATURES;
902                 }
903                 if (mask & IFCAP_TSO) {
904                         ifp->if_capenable ^= IFCAP_TSO;
905                         if (ifp->if_capenable & IFCAP_TSO)
906                                 ifp->if_hwassist |= CSUM_TSO;
907                         else
908                                 ifp->if_hwassist &= ~CSUM_TSO;
909                 }
910                 if (mask & IFCAP_RSS)
911                         ifp->if_capenable ^= IFCAP_RSS;
912                 if (reinit && (ifp->if_flags & IFF_RUNNING))
913                         igb_init(sc);
914                 break;
915
916         default:
917                 error = ether_ioctl(ifp, command, data);
918                 break;
919         }
920         return error;
921 }
922
923 static void
924 igb_init(void *xsc)
925 {
926         struct igb_softc *sc = xsc;
927         struct ifnet *ifp = &sc->arpcom.ac_if;
928         boolean_t polling;
929         int i;
930
931         ASSERT_IFNET_SERIALIZED_ALL(ifp);
932
933         igb_stop(sc);
934
935         /* Get the latest mac address, User can use a LAA */
936         bcopy(IF_LLADDR(ifp), sc->hw.mac.addr, ETHER_ADDR_LEN);
937
938         /* Put the address into the Receive Address Array */
939         e1000_rar_set(&sc->hw, sc->hw.mac.addr, 0);
940
941         igb_reset(sc);
942         igb_update_link_status(sc);
943
944         E1000_WRITE_REG(&sc->hw, E1000_VET, ETHERTYPE_VLAN);
945
946         /* Configure for OS presence */
947         igb_get_mgmt(sc);
948
949         polling = FALSE;
950 #ifdef IFPOLL_ENABLE
951         if (ifp->if_flags & IFF_NPOLLING)
952                 polling = TRUE;
953 #endif
954
955         /* Configured used RX/TX rings */
956         igb_set_ring_inuse(sc, polling);
957         ifq_set_subq_mask(&ifp->if_snd, sc->tx_ring_inuse - 1);
958
959         /* Initialize interrupt */
960         igb_init_intr(sc);
961
962         /* Prepare transmit descriptors and buffers */
963         for (i = 0; i < sc->tx_ring_inuse; ++i)
964                 igb_init_tx_ring(&sc->tx_rings[i]);
965         igb_init_tx_unit(sc);
966
967         /* Setup Multicast table */
968         igb_set_multi(sc);
969
970 #if 0
971         /*
972          * Figure out the desired mbuf pool
973          * for doing jumbo/packetsplit
974          */
975         if (adapter->max_frame_size <= 2048)
976                 adapter->rx_mbuf_sz = MCLBYTES;
977         else if (adapter->max_frame_size <= 4096)
978                 adapter->rx_mbuf_sz = MJUMPAGESIZE;
979         else
980                 adapter->rx_mbuf_sz = MJUM9BYTES;
981 #endif
982
983         /* Prepare receive descriptors and buffers */
984         for (i = 0; i < sc->rx_ring_inuse; ++i) {
985                 int error;
986
987                 error = igb_init_rx_ring(&sc->rx_rings[i]);
988                 if (error) {
989                         if_printf(ifp, "Could not setup receive structures\n");
990                         igb_stop(sc);
991                         return;
992                 }
993         }
994         igb_init_rx_unit(sc);
995
996         /* Enable VLAN support */
997         if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
998                 igb_set_vlan(sc);
999
1000         /* Don't lose promiscuous settings */
1001         igb_set_promisc(sc);
1002
1003         ifp->if_flags |= IFF_RUNNING;
1004         for (i = 0; i < sc->tx_ring_inuse; ++i) {
1005                 ifsq_clr_oactive(sc->tx_rings[i].ifsq);
1006                 ifsq_watchdog_start(&sc->tx_rings[i].tx_watchdog);
1007         }
1008
1009         igb_set_timer_cpuid(sc, polling);
1010         callout_reset_bycpu(&sc->timer, hz, igb_timer, sc, sc->timer_cpuid);
1011         e1000_clear_hw_cntrs_base_generic(&sc->hw);
1012
1013         /* This clears any pending interrupts */
1014         E1000_READ_REG(&sc->hw, E1000_ICR);
1015
1016         /*
1017          * Only enable interrupts if we are not polling, make sure
1018          * they are off otherwise.
1019          */
1020         if (polling) {
1021                 igb_disable_intr(sc);
1022         } else {
1023                 igb_enable_intr(sc);
1024                 E1000_WRITE_REG(&sc->hw, E1000_ICS, E1000_ICS_LSC);
1025         }
1026
1027         /* Set Energy Efficient Ethernet */
1028         if (sc->hw.phy.media_type == e1000_media_type_copper) {
1029                 if (sc->hw.mac.type == e1000_i354)
1030                         e1000_set_eee_i354(&sc->hw);
1031                 else
1032                         e1000_set_eee_i350(&sc->hw);
1033         }
1034 }
1035
1036 static void
1037 igb_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
1038 {
1039         struct igb_softc *sc = ifp->if_softc;
1040
1041         ASSERT_IFNET_SERIALIZED_ALL(ifp);
1042
1043         if ((ifp->if_flags & IFF_RUNNING) == 0)
1044                 sc->hw.mac.get_link_status = 1;
1045         igb_update_link_status(sc);
1046
1047         ifmr->ifm_status = IFM_AVALID;
1048         ifmr->ifm_active = IFM_ETHER;
1049
1050         if (!sc->link_active) {
1051                 if (sc->hw.mac.autoneg)
1052                         ifmr->ifm_active |= IFM_NONE;
1053                 else
1054                         ifmr->ifm_active |= sc->media.ifm_media;
1055                 return;
1056         }
1057
1058         ifmr->ifm_status |= IFM_ACTIVE;
1059         if (sc->ifm_flowctrl & IFM_ETH_FORCEPAUSE)
1060                 ifmr->ifm_active |= sc->ifm_flowctrl;
1061
1062         switch (sc->link_speed) {
1063         case 10:
1064                 ifmr->ifm_active |= IFM_10_T;
1065                 break;
1066
1067         case 100:
1068                 /*
1069                  * Support for 100Mb SFP - these are Fiber 
1070                  * but the media type appears as serdes
1071                  */
1072                 if (sc->hw.phy.media_type == e1000_media_type_fiber ||
1073                     sc->hw.phy.media_type == e1000_media_type_internal_serdes)
1074                         ifmr->ifm_active |= IFM_100_FX;
1075                 else
1076                         ifmr->ifm_active |= IFM_100_TX;
1077                 break;
1078
1079         case 1000:
1080                 if (sc->hw.phy.media_type == e1000_media_type_fiber ||
1081                     sc->hw.phy.media_type == e1000_media_type_internal_serdes)
1082                         ifmr->ifm_active |= IFM_1000_SX;
1083                 else
1084                         ifmr->ifm_active |= IFM_1000_T;
1085                 break;
1086         }
1087
1088         if (sc->link_duplex == FULL_DUPLEX)
1089                 ifmr->ifm_active |= IFM_FDX;
1090         else
1091                 ifmr->ifm_active |= IFM_HDX;
1092
1093         if (sc->link_duplex == FULL_DUPLEX)
1094                 ifmr->ifm_active |= e1000_fc2ifmedia(sc->hw.fc.current_mode);
1095 }
1096
1097 static int
1098 igb_media_change(struct ifnet *ifp)
1099 {
1100         struct igb_softc *sc = ifp->if_softc;
1101         struct ifmedia *ifm = &sc->media;
1102
1103         ASSERT_IFNET_SERIALIZED_ALL(ifp);
1104
1105         if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
1106                 return EINVAL;
1107
1108         switch (IFM_SUBTYPE(ifm->ifm_media)) {
1109         case IFM_AUTO:
1110                 sc->hw.mac.autoneg = DO_AUTO_NEG;
1111                 sc->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
1112                 break;
1113
1114         case IFM_1000_SX:
1115         case IFM_1000_T:
1116                 sc->hw.mac.autoneg = DO_AUTO_NEG;
1117                 sc->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
1118                 break;
1119
1120         case IFM_100_TX:
1121                 if (IFM_OPTIONS(ifm->ifm_media) & IFM_FDX) {
1122                         sc->hw.mac.forced_speed_duplex = ADVERTISE_100_FULL;
1123                 } else {
1124                         if (IFM_OPTIONS(ifm->ifm_media) &
1125                             (IFM_ETH_RXPAUSE | IFM_ETH_TXPAUSE)) {
1126                                 if (bootverbose) {
1127                                         if_printf(ifp, "Flow control is not "
1128                                             "allowed for half-duplex\n");
1129                                 }
1130                                 return EINVAL;
1131                         }
1132                         sc->hw.mac.forced_speed_duplex = ADVERTISE_100_HALF;
1133                 }
1134                 sc->hw.mac.autoneg = FALSE;
1135                 sc->hw.phy.autoneg_advertised = 0;
1136                 break;
1137
1138         case IFM_10_T:
1139                 if (IFM_OPTIONS(ifm->ifm_media) & IFM_FDX) {
1140                         sc->hw.mac.forced_speed_duplex = ADVERTISE_10_FULL;
1141                 } else {
1142                         if (IFM_OPTIONS(ifm->ifm_media) &
1143                             (IFM_ETH_RXPAUSE | IFM_ETH_TXPAUSE)) {
1144                                 if (bootverbose) {
1145                                         if_printf(ifp, "Flow control is not "
1146                                             "allowed for half-duplex\n");
1147                                 }
1148                                 return EINVAL;
1149                         }
1150                         sc->hw.mac.forced_speed_duplex = ADVERTISE_10_HALF;
1151                 }
1152                 sc->hw.mac.autoneg = FALSE;
1153                 sc->hw.phy.autoneg_advertised = 0;
1154                 break;
1155
1156         default:
1157                 if (bootverbose) {
1158                         if_printf(ifp, "Unsupported media type %d\n",
1159                             IFM_SUBTYPE(ifm->ifm_media));
1160                 }
1161                 return EINVAL;
1162         }
1163         sc->ifm_flowctrl = ifm->ifm_media & IFM_ETH_FCMASK;
1164
1165         if (ifp->if_flags & IFF_RUNNING)
1166                 igb_init(sc);
1167
1168         return 0;
1169 }
1170
1171 static void
1172 igb_set_promisc(struct igb_softc *sc)
1173 {
1174         struct ifnet *ifp = &sc->arpcom.ac_if;
1175         struct e1000_hw *hw = &sc->hw;
1176         uint32_t reg;
1177
1178         if (sc->vf_ifp) {
1179                 e1000_promisc_set_vf(hw, e1000_promisc_enabled);
1180                 return;
1181         }
1182
1183         reg = E1000_READ_REG(hw, E1000_RCTL);
1184         if (ifp->if_flags & IFF_PROMISC) {
1185                 reg |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1186                 E1000_WRITE_REG(hw, E1000_RCTL, reg);
1187         } else if (ifp->if_flags & IFF_ALLMULTI) {
1188                 reg |= E1000_RCTL_MPE;
1189                 reg &= ~E1000_RCTL_UPE;
1190                 E1000_WRITE_REG(hw, E1000_RCTL, reg);
1191         }
1192 }
1193
1194 static void
1195 igb_disable_promisc(struct igb_softc *sc)
1196 {
1197         struct e1000_hw *hw = &sc->hw;
1198         struct ifnet *ifp = &sc->arpcom.ac_if;
1199         uint32_t reg;
1200         int mcnt = 0;
1201
1202         if (sc->vf_ifp) {
1203                 e1000_promisc_set_vf(hw, e1000_promisc_disabled);
1204                 return;
1205         }
1206         reg = E1000_READ_REG(hw, E1000_RCTL);
1207         reg &= ~E1000_RCTL_UPE;
1208         if (ifp->if_flags & IFF_ALLMULTI) {
1209                 mcnt = MAX_NUM_MULTICAST_ADDRESSES;
1210         } else {
1211                 struct  ifmultiaddr *ifma;
1212                 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1213                         if (ifma->ifma_addr->sa_family != AF_LINK)
1214                                 continue;
1215                         if (mcnt == MAX_NUM_MULTICAST_ADDRESSES)
1216                                 break;
1217                         mcnt++;
1218                 }
1219         }
1220         /* Don't disable if in MAX groups */
1221         if (mcnt < MAX_NUM_MULTICAST_ADDRESSES)
1222                 reg &= ~E1000_RCTL_MPE;
1223         E1000_WRITE_REG(hw, E1000_RCTL, reg);
1224 }
1225
1226 static void
1227 igb_set_multi(struct igb_softc *sc)
1228 {
1229         struct ifnet *ifp = &sc->arpcom.ac_if;
1230         struct ifmultiaddr *ifma;
1231         uint32_t reg_rctl = 0;
1232         uint8_t *mta;
1233         int mcnt = 0;
1234
1235         mta = sc->mta;
1236         bzero(mta, ETH_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES);
1237
1238         TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1239                 if (ifma->ifma_addr->sa_family != AF_LINK)
1240                         continue;
1241
1242                 if (mcnt == MAX_NUM_MULTICAST_ADDRESSES)
1243                         break;
1244
1245                 bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1246                     &mta[mcnt * ETH_ADDR_LEN], ETH_ADDR_LEN);
1247                 mcnt++;
1248         }
1249
1250         if (mcnt >= MAX_NUM_MULTICAST_ADDRESSES) {
1251                 reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
1252                 reg_rctl |= E1000_RCTL_MPE;
1253                 E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1254         } else {
1255                 e1000_update_mc_addr_list(&sc->hw, mta, mcnt);
1256         }
1257 }
1258
1259 static void
1260 igb_timer(void *xsc)
1261 {
1262         struct igb_softc *sc = xsc;
1263
1264         lwkt_serialize_enter(&sc->main_serialize);
1265
1266         igb_update_link_status(sc);
1267         igb_update_stats_counters(sc);
1268
1269         callout_reset_bycpu(&sc->timer, hz, igb_timer, sc, sc->timer_cpuid);
1270
1271         lwkt_serialize_exit(&sc->main_serialize);
1272 }
1273
1274 static void
1275 igb_update_link_status(struct igb_softc *sc)
1276 {
1277         struct ifnet *ifp = &sc->arpcom.ac_if;
1278         struct e1000_hw *hw = &sc->hw;
1279         uint32_t link_check, thstat, ctrl;
1280
1281         link_check = thstat = ctrl = 0;
1282
1283         /* Get the cached link value or read for real */
1284         switch (hw->phy.media_type) {
1285         case e1000_media_type_copper:
1286                 if (hw->mac.get_link_status) {
1287                         /* Do the work to read phy */
1288                         e1000_check_for_link(hw);
1289                         link_check = !hw->mac.get_link_status;
1290                 } else {
1291                         link_check = TRUE;
1292                 }
1293                 break;
1294
1295         case e1000_media_type_fiber:
1296                 e1000_check_for_link(hw);
1297                 link_check = E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU;
1298                 break;
1299
1300         case e1000_media_type_internal_serdes:
1301                 e1000_check_for_link(hw);
1302                 link_check = hw->mac.serdes_has_link;
1303                 break;
1304
1305         /* VF device is type_unknown */
1306         case e1000_media_type_unknown:
1307                 e1000_check_for_link(hw);
1308                 link_check = !hw->mac.get_link_status;
1309                 /* Fall thru */
1310         default:
1311                 break;
1312         }
1313
1314         /* Check for thermal downshift or shutdown */
1315         if (hw->mac.type == e1000_i350) {
1316                 thstat = E1000_READ_REG(hw, E1000_THSTAT);
1317                 ctrl = E1000_READ_REG(hw, E1000_CTRL_EXT);
1318         }
1319
1320         /* Now we check if a transition has happened */
1321         if (link_check && sc->link_active == 0) {
1322                 e1000_get_speed_and_duplex(hw, 
1323                     &sc->link_speed, &sc->link_duplex);
1324                 if (bootverbose) {
1325                         char flowctrl[IFM_ETH_FC_STRLEN];
1326
1327                         /* Get the flow control for display */
1328                         e1000_fc2str(hw->fc.current_mode, flowctrl,
1329                             sizeof(flowctrl));
1330
1331                         if_printf(ifp, "Link is up %d Mbps %s, "
1332                             "Flow control: %s\n",
1333                             sc->link_speed,
1334                             sc->link_duplex == FULL_DUPLEX ?
1335                             "Full Duplex" : "Half Duplex",
1336                             flowctrl);
1337                 }
1338                 if (sc->ifm_flowctrl & IFM_ETH_FORCEPAUSE)
1339                         e1000_force_flowctrl(hw, sc->ifm_flowctrl);
1340                 sc->link_active = 1;
1341
1342                 ifp->if_baudrate = sc->link_speed * 1000000;
1343                 if ((ctrl & E1000_CTRL_EXT_LINK_MODE_GMII) &&
1344                     (thstat & E1000_THSTAT_LINK_THROTTLE))
1345                         if_printf(ifp, "Link: thermal downshift\n");
1346                 /* Delay Link Up for Phy update */
1347                 if ((hw->mac.type == e1000_i210 ||
1348                      hw->mac.type == e1000_i211) &&
1349                     hw->phy.id == I210_I_PHY_ID)
1350                         msec_delay(IGB_I210_LINK_DELAY);
1351                 /* This can sleep */
1352                 ifp->if_link_state = LINK_STATE_UP;
1353                 if_link_state_change(ifp);
1354         } else if (!link_check && sc->link_active == 1) {
1355                 ifp->if_baudrate = sc->link_speed = 0;
1356                 sc->link_duplex = 0;
1357                 if (bootverbose)
1358                         if_printf(ifp, "Link is Down\n");
1359                 if ((ctrl & E1000_CTRL_EXT_LINK_MODE_GMII) &&
1360                     (thstat & E1000_THSTAT_PWR_DOWN))
1361                         if_printf(ifp, "Link: thermal shutdown\n");
1362                 sc->link_active = 0;
1363                 /* This can sleep */
1364                 ifp->if_link_state = LINK_STATE_DOWN;
1365                 if_link_state_change(ifp);
1366         }
1367 }
1368
1369 static void
1370 igb_stop(struct igb_softc *sc)
1371 {
1372         struct ifnet *ifp = &sc->arpcom.ac_if;
1373         int i;
1374
1375         ASSERT_IFNET_SERIALIZED_ALL(ifp);
1376
1377         igb_disable_intr(sc);
1378
1379         callout_stop(&sc->timer);
1380
1381         ifp->if_flags &= ~IFF_RUNNING;
1382         for (i = 0; i < sc->tx_ring_cnt; ++i) {
1383                 ifsq_clr_oactive(sc->tx_rings[i].ifsq);
1384                 ifsq_watchdog_stop(&sc->tx_rings[i].tx_watchdog);
1385                 sc->tx_rings[i].tx_flags &= ~IGB_TXFLAG_ENABLED;
1386         }
1387
1388         e1000_reset_hw(&sc->hw);
1389         E1000_WRITE_REG(&sc->hw, E1000_WUC, 0);
1390
1391         e1000_led_off(&sc->hw);
1392         e1000_cleanup_led(&sc->hw);
1393
1394         for (i = 0; i < sc->tx_ring_cnt; ++i)
1395                 igb_free_tx_ring(&sc->tx_rings[i]);
1396         for (i = 0; i < sc->rx_ring_cnt; ++i)
1397                 igb_free_rx_ring(&sc->rx_rings[i]);
1398 }
1399
1400 static void
1401 igb_reset(struct igb_softc *sc)
1402 {
1403         struct ifnet *ifp = &sc->arpcom.ac_if;
1404         struct e1000_hw *hw = &sc->hw;
1405         struct e1000_fc_info *fc = &hw->fc;
1406         uint32_t pba = 0;
1407         uint16_t hwm;
1408
1409         /* Let the firmware know the OS is in control */
1410         igb_get_hw_control(sc);
1411
1412         /*
1413          * Packet Buffer Allocation (PBA)
1414          * Writing PBA sets the receive portion of the buffer
1415          * the remainder is used for the transmit buffer.
1416          */
1417         switch (hw->mac.type) {
1418         case e1000_82575:
1419                 pba = E1000_PBA_32K;
1420                 break;
1421
1422         case e1000_82576:
1423         case e1000_vfadapt:
1424                 pba = E1000_READ_REG(hw, E1000_RXPBS);
1425                 pba &= E1000_RXPBS_SIZE_MASK_82576;
1426                 break;
1427
1428         case e1000_82580:
1429         case e1000_i350:
1430         case e1000_i354:
1431         case e1000_vfadapt_i350:
1432                 pba = E1000_READ_REG(hw, E1000_RXPBS);
1433                 pba = e1000_rxpbs_adjust_82580(pba);
1434                 break;
1435
1436         case e1000_i210:
1437         case e1000_i211:
1438                 pba = E1000_PBA_34K;
1439                 break;
1440
1441         default:
1442                 break;
1443         }
1444
1445         /* Special needs in case of Jumbo frames */
1446         if (hw->mac.type == e1000_82575 && ifp->if_mtu > ETHERMTU) {
1447                 uint32_t tx_space, min_tx, min_rx;
1448
1449                 pba = E1000_READ_REG(hw, E1000_PBA);
1450                 tx_space = pba >> 16;
1451                 pba &= 0xffff;
1452
1453                 min_tx = (sc->max_frame_size +
1454                     sizeof(struct e1000_tx_desc) - ETHER_CRC_LEN) * 2;
1455                 min_tx = roundup2(min_tx, 1024);
1456                 min_tx >>= 10;
1457                 min_rx = sc->max_frame_size;
1458                 min_rx = roundup2(min_rx, 1024);
1459                 min_rx >>= 10;
1460                 if (tx_space < min_tx && (min_tx - tx_space) < pba) {
1461                         pba = pba - (min_tx - tx_space);
1462                         /*
1463                          * if short on rx space, rx wins
1464                          * and must trump tx adjustment
1465                          */
1466                         if (pba < min_rx)
1467                                 pba = min_rx;
1468                 }
1469                 E1000_WRITE_REG(hw, E1000_PBA, pba);
1470         }
1471
1472         /*
1473          * These parameters control the automatic generation (Tx) and
1474          * response (Rx) to Ethernet PAUSE frames.
1475          * - High water mark should allow for at least two frames to be
1476          *   received after sending an XOFF.
1477          * - Low water mark works best when it is very near the high water mark.
1478          *   This allows the receiver to restart by sending XON when it has
1479          *   drained a bit.
1480          */
1481         hwm = min(((pba << 10) * 9 / 10),
1482             ((pba << 10) - 2 * sc->max_frame_size));
1483
1484         if (hw->mac.type < e1000_82576) {
1485                 fc->high_water = hwm & 0xFFF8; /* 8-byte granularity */
1486                 fc->low_water = fc->high_water - 8;
1487         } else {
1488                 fc->high_water = hwm & 0xFFF0; /* 16-byte granularity */
1489                 fc->low_water = fc->high_water - 16;
1490         }
1491         fc->pause_time = IGB_FC_PAUSE_TIME;
1492         fc->send_xon = TRUE;
1493         fc->requested_mode = e1000_ifmedia2fc(sc->ifm_flowctrl);
1494
1495         /* Issue a global reset */
1496         e1000_reset_hw(hw);
1497         E1000_WRITE_REG(hw, E1000_WUC, 0);
1498
1499         if (e1000_init_hw(hw) < 0)
1500                 if_printf(ifp, "Hardware Initialization Failed\n");
1501
1502         /* Setup DMA Coalescing */
1503         if (hw->mac.type > e1000_82580 && hw->mac.type != e1000_i211) {
1504                 uint32_t dmac;
1505                 uint32_t reg;
1506
1507                 if (sc->dma_coalesce == 0) {
1508                         /*
1509                          * Disabled
1510                          */
1511                         reg = E1000_READ_REG(hw, E1000_DMACR);
1512                         reg &= ~E1000_DMACR_DMAC_EN;
1513                         E1000_WRITE_REG(hw, E1000_DMACR, reg);
1514                         goto reset_out;
1515                 }
1516
1517                 /* Set starting thresholds */
1518                 E1000_WRITE_REG(hw, E1000_DMCTXTH, 0);
1519                 E1000_WRITE_REG(hw, E1000_DMCRTRH, 0);
1520
1521                 hwm = 64 * pba - sc->max_frame_size / 16;
1522                 if (hwm < 64 * (pba - 6))
1523                         hwm = 64 * (pba - 6);
1524                 reg = E1000_READ_REG(hw, E1000_FCRTC);
1525                 reg &= ~E1000_FCRTC_RTH_COAL_MASK;
1526                 reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
1527                     & E1000_FCRTC_RTH_COAL_MASK);
1528                 E1000_WRITE_REG(hw, E1000_FCRTC, reg);
1529
1530                 dmac = pba - sc->max_frame_size / 512;
1531                 if (dmac < pba - 10)
1532                         dmac = pba - 10;
1533                 reg = E1000_READ_REG(hw, E1000_DMACR);
1534                 reg &= ~E1000_DMACR_DMACTHR_MASK;
1535                 reg = ((dmac << E1000_DMACR_DMACTHR_SHIFT)
1536                     & E1000_DMACR_DMACTHR_MASK);
1537                 /* Transition to L0x or L1 if available.. */
1538                 reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
1539                 /* timer = value in sc->dma_coalesce in 32usec intervals */
1540                 reg |= (sc->dma_coalesce >> 5);
1541                 E1000_WRITE_REG(hw, E1000_DMACR, reg);
1542
1543                 /* Set the interval before transition */
1544                 reg = E1000_READ_REG(hw, E1000_DMCTLX);
1545                 reg |= 0x80000004;
1546                 E1000_WRITE_REG(hw, E1000_DMCTLX, reg);
1547
1548                 /* Free space in tx packet buffer to wake from DMA coal */
1549                 E1000_WRITE_REG(hw, E1000_DMCTXTH,
1550                     (20480 - (2 * sc->max_frame_size)) >> 6);
1551
1552                 /* Make low power state decision controlled by DMA coal */
1553                 reg = E1000_READ_REG(hw, E1000_PCIEMISC);
1554                 reg &= ~E1000_PCIEMISC_LX_DECISION;
1555                 E1000_WRITE_REG(hw, E1000_PCIEMISC, reg);
1556                 if_printf(ifp, "DMA Coalescing enabled\n");
1557         } else if (hw->mac.type == e1000_82580) {
1558                 uint32_t reg = E1000_READ_REG(hw, E1000_PCIEMISC);
1559
1560                 E1000_WRITE_REG(hw, E1000_DMACR, 0);
1561                 E1000_WRITE_REG(hw, E1000_PCIEMISC,
1562                     reg & ~E1000_PCIEMISC_LX_DECISION);
1563         }
1564
1565 reset_out:
1566         E1000_WRITE_REG(&sc->hw, E1000_VET, ETHERTYPE_VLAN);
1567         e1000_get_phy_info(hw);
1568         e1000_check_for_link(hw);
1569 }
1570
1571 static void
1572 igb_setup_ifp(struct igb_softc *sc)
1573 {
1574         struct ifnet *ifp = &sc->arpcom.ac_if;
1575         int i;
1576
1577         ifp->if_softc = sc;
1578         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1579         ifp->if_init = igb_init;
1580         ifp->if_ioctl = igb_ioctl;
1581         ifp->if_start = igb_start;
1582         ifp->if_serialize = igb_serialize;
1583         ifp->if_deserialize = igb_deserialize;
1584         ifp->if_tryserialize = igb_tryserialize;
1585 #ifdef INVARIANTS
1586         ifp->if_serialize_assert = igb_serialize_assert;
1587 #endif
1588 #ifdef IFPOLL_ENABLE
1589         ifp->if_npoll = igb_npoll;
1590 #endif
1591
1592         ifp->if_nmbclusters = sc->rx_ring_cnt * sc->rx_rings[0].num_rx_desc;
1593
1594         ifq_set_maxlen(&ifp->if_snd, sc->tx_rings[0].num_tx_desc - 1);
1595         ifq_set_ready(&ifp->if_snd);
1596         ifq_set_subq_cnt(&ifp->if_snd, sc->tx_ring_cnt);
1597
1598         ifp->if_mapsubq = ifq_mapsubq_mask;
1599         ifq_set_subq_mask(&ifp->if_snd, 0);
1600
1601         ether_ifattach(ifp, sc->hw.mac.addr, NULL);
1602
1603         ifp->if_capabilities =
1604             IFCAP_HWCSUM | IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU | IFCAP_TSO;
1605         if (IGB_ENABLE_HWRSS(sc))
1606                 ifp->if_capabilities |= IFCAP_RSS;
1607         ifp->if_capenable = ifp->if_capabilities;
1608         ifp->if_hwassist = IGB_CSUM_FEATURES | CSUM_TSO;
1609
1610         /*
1611          * Tell the upper layer(s) we support long frames
1612          */
1613         ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1614
1615         /* Setup TX rings and subqueues */
1616         for (i = 0; i < sc->tx_ring_cnt; ++i) {
1617                 struct ifaltq_subque *ifsq = ifq_get_subq(&ifp->if_snd, i);
1618                 struct igb_tx_ring *txr = &sc->tx_rings[i];
1619
1620                 ifsq_set_cpuid(ifsq, txr->tx_intr_cpuid);
1621                 ifsq_set_priv(ifsq, txr);
1622                 ifsq_set_hw_serialize(ifsq, &txr->tx_serialize);
1623                 txr->ifsq = ifsq;
1624
1625                 ifsq_watchdog_init(&txr->tx_watchdog, ifsq, igb_watchdog);
1626         }
1627
1628         /*
1629          * Specify the media types supported by this adapter and register
1630          * callbacks to update media and link information
1631          */
1632         if (sc->hw.phy.media_type == e1000_media_type_fiber ||
1633             sc->hw.phy.media_type == e1000_media_type_internal_serdes) {
1634                 ifmedia_add(&sc->media, IFM_ETHER | IFM_1000_SX | IFM_FDX,
1635                     0, NULL);
1636         } else {
1637                 ifmedia_add(&sc->media, IFM_ETHER | IFM_10_T, 0, NULL);
1638                 ifmedia_add(&sc->media, IFM_ETHER | IFM_10_T | IFM_FDX,
1639                     0, NULL);
1640                 ifmedia_add(&sc->media, IFM_ETHER | IFM_100_TX, 0, NULL);
1641                 ifmedia_add(&sc->media, IFM_ETHER | IFM_100_TX | IFM_FDX,
1642                     0, NULL);
1643                 if (sc->hw.phy.type != e1000_phy_ife) {
1644                         ifmedia_add(&sc->media,
1645                             IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
1646                 }
1647         }
1648         ifmedia_add(&sc->media, IFM_ETHER | IFM_AUTO, 0, NULL);
1649         ifmedia_set(&sc->media, IFM_ETHER | IFM_AUTO | sc->ifm_flowctrl);
1650 }
1651
1652 static void
1653 igb_add_sysctl(struct igb_softc *sc)
1654 {
1655         struct sysctl_ctx_list *ctx;
1656         struct sysctl_oid *tree;
1657         char node[32];
1658         int i;
1659
1660         ctx = device_get_sysctl_ctx(sc->dev);
1661         tree = device_get_sysctl_tree(sc->dev);
1662         SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree),
1663             OID_AUTO, "rxr", CTLFLAG_RD, &sc->rx_ring_cnt, 0, "# of RX rings");
1664         SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree),
1665             OID_AUTO, "rxr_inuse", CTLFLAG_RD, &sc->rx_ring_inuse, 0,
1666             "# of RX rings used");
1667         SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree),
1668             OID_AUTO, "txr", CTLFLAG_RD, &sc->tx_ring_cnt, 0, "# of TX rings");
1669         SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree),
1670             OID_AUTO, "txr_inuse", CTLFLAG_RD, &sc->tx_ring_inuse, 0,
1671             "# of TX rings used");
1672         SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree),
1673             OID_AUTO, "rxd", CTLFLAG_RD, &sc->rx_rings[0].num_rx_desc, 0,
1674             "# of RX descs");
1675         SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree),
1676             OID_AUTO, "txd", CTLFLAG_RD, &sc->tx_rings[0].num_tx_desc, 0,
1677             "# of TX descs");
1678
1679         if (sc->intr_type != PCI_INTR_TYPE_MSIX) {
1680                 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
1681                     OID_AUTO, "intr_rate", CTLTYPE_INT | CTLFLAG_RW,
1682                     sc, 0, igb_sysctl_intr_rate, "I", "interrupt rate");
1683         } else {
1684                 for (i = 0; i < sc->msix_cnt; ++i) {
1685                         struct igb_msix_data *msix = &sc->msix_data[i];
1686
1687                         ksnprintf(node, sizeof(node), "msix%d_rate", i);
1688                         SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
1689                             OID_AUTO, node, CTLTYPE_INT | CTLFLAG_RW,
1690                             msix, 0, igb_sysctl_msix_rate, "I",
1691                             msix->msix_rate_desc);
1692                 }
1693         }
1694
1695         SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
1696             OID_AUTO, "tx_intr_nsegs", CTLTYPE_INT | CTLFLAG_RW,
1697             sc, 0, igb_sysctl_tx_intr_nsegs, "I",
1698             "# of segments per TX interrupt");
1699
1700         SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
1701             OID_AUTO, "tx_wreg_nsegs", CTLTYPE_INT | CTLFLAG_RW,
1702             sc, 0, igb_sysctl_tx_wreg_nsegs, "I",
1703             "# of segments sent before write to hardware register");
1704
1705         SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
1706             OID_AUTO, "rx_wreg_nsegs", CTLTYPE_INT | CTLFLAG_RW,
1707             sc, 0, igb_sysctl_rx_wreg_nsegs, "I",
1708             "# of segments received before write to hardware register");
1709
1710 #ifdef IFPOLL_ENABLE
1711         SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
1712             OID_AUTO, "npoll_rxoff", CTLTYPE_INT|CTLFLAG_RW,
1713             sc, 0, igb_sysctl_npoll_rxoff, "I", "NPOLLING RX cpu offset");
1714         SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
1715             OID_AUTO, "npoll_txoff", CTLTYPE_INT|CTLFLAG_RW,
1716             sc, 0, igb_sysctl_npoll_txoff, "I", "NPOLLING TX cpu offset");
1717 #endif
1718
1719 #ifdef IGB_RSS_DEBUG
1720         SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree),
1721             OID_AUTO, "rss_debug", CTLFLAG_RW, &sc->rss_debug, 0,
1722             "RSS debug level");
1723         for (i = 0; i < sc->rx_ring_cnt; ++i) {
1724                 ksnprintf(node, sizeof(node), "rx%d_pkt", i);
1725                 SYSCTL_ADD_ULONG(ctx,
1726                     SYSCTL_CHILDREN(tree), OID_AUTO, node,
1727                     CTLFLAG_RW, &sc->rx_rings[i].rx_packets, "RXed packets");
1728         }
1729 #endif
1730 #ifdef IGB_TSS_DEBUG
1731         for  (i = 0; i < sc->tx_ring_cnt; ++i) {
1732                 ksnprintf(node, sizeof(node), "tx%d_pkt", i);
1733                 SYSCTL_ADD_ULONG(ctx,
1734                     SYSCTL_CHILDREN(tree), OID_AUTO, node,
1735                     CTLFLAG_RW, &sc->tx_rings[i].tx_packets, "TXed packets");
1736         }
1737 #endif
1738 }
1739
1740 static int
1741 igb_alloc_rings(struct igb_softc *sc)
1742 {
1743         int error, i;
1744
1745         /*
1746          * Create top level busdma tag
1747          */
1748         error = bus_dma_tag_create(NULL, 1, 0,
1749             BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
1750             BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT, 0,
1751             &sc->parent_tag);
1752         if (error) {
1753                 device_printf(sc->dev, "could not create top level DMA tag\n");
1754                 return error;
1755         }
1756
1757         /*
1758          * Allocate TX descriptor rings and buffers
1759          */
1760         sc->tx_rings = kmalloc_cachealign(
1761             sizeof(struct igb_tx_ring) * sc->tx_ring_cnt,
1762             M_DEVBUF, M_WAITOK | M_ZERO);
1763         for (i = 0; i < sc->tx_ring_cnt; ++i) {
1764                 struct igb_tx_ring *txr = &sc->tx_rings[i];
1765
1766                 /* Set up some basics */
1767                 txr->sc = sc;
1768                 txr->me = i;
1769                 lwkt_serialize_init(&txr->tx_serialize);
1770
1771                 error = igb_create_tx_ring(txr);
1772                 if (error)
1773                         return error;
1774         }
1775
1776         /*
1777          * Allocate RX descriptor rings and buffers
1778          */ 
1779         sc->rx_rings = kmalloc_cachealign(
1780             sizeof(struct igb_rx_ring) * sc->rx_ring_cnt,
1781             M_DEVBUF, M_WAITOK | M_ZERO);
1782         for (i = 0; i < sc->rx_ring_cnt; ++i) {
1783                 struct igb_rx_ring *rxr = &sc->rx_rings[i];
1784
1785                 /* Set up some basics */
1786                 rxr->sc = sc;
1787                 rxr->me = i;
1788                 lwkt_serialize_init(&rxr->rx_serialize);
1789
1790                 error = igb_create_rx_ring(rxr);
1791                 if (error)
1792                         return error;
1793         }
1794
1795         return 0;
1796 }
1797
1798 static void
1799 igb_free_rings(struct igb_softc *sc)
1800 {
1801         int i;
1802
1803         if (sc->tx_rings != NULL) {
1804                 for (i = 0; i < sc->tx_ring_cnt; ++i) {
1805                         struct igb_tx_ring *txr = &sc->tx_rings[i];
1806
1807                         igb_destroy_tx_ring(txr, txr->num_tx_desc);
1808                 }
1809                 kfree(sc->tx_rings, M_DEVBUF);
1810         }
1811
1812         if (sc->rx_rings != NULL) {
1813                 for (i = 0; i < sc->rx_ring_cnt; ++i) {
1814                         struct igb_rx_ring *rxr = &sc->rx_rings[i];
1815
1816                         igb_destroy_rx_ring(rxr, rxr->num_rx_desc);
1817                 }
1818                 kfree(sc->rx_rings, M_DEVBUF);
1819         }
1820 }
1821
1822 static int
1823 igb_create_tx_ring(struct igb_tx_ring *txr)
1824 {
1825         int tsize, error, i, ntxd;
1826
1827         /*
1828          * Validate number of transmit descriptors. It must not exceed
1829          * hardware maximum, and must be multiple of IGB_DBA_ALIGN.
1830          */
1831         ntxd = device_getenv_int(txr->sc->dev, "txd", igb_txd);
1832         if ((ntxd * sizeof(struct e1000_tx_desc)) % IGB_DBA_ALIGN != 0 ||
1833             ntxd > IGB_MAX_TXD || ntxd < IGB_MIN_TXD) {
1834                 device_printf(txr->sc->dev,
1835                     "Using %d TX descriptors instead of %d!\n",
1836                     IGB_DEFAULT_TXD, ntxd);
1837                 txr->num_tx_desc = IGB_DEFAULT_TXD;
1838         } else {
1839                 txr->num_tx_desc = ntxd;
1840         }
1841
1842         /*
1843          * Allocate TX descriptor ring
1844          */
1845         tsize = roundup2(txr->num_tx_desc * sizeof(union e1000_adv_tx_desc),
1846             IGB_DBA_ALIGN);
1847         txr->txdma.dma_vaddr = bus_dmamem_coherent_any(txr->sc->parent_tag,
1848             IGB_DBA_ALIGN, tsize, BUS_DMA_WAITOK,
1849             &txr->txdma.dma_tag, &txr->txdma.dma_map, &txr->txdma.dma_paddr);
1850         if (txr->txdma.dma_vaddr == NULL) {
1851                 device_printf(txr->sc->dev,
1852                     "Unable to allocate TX Descriptor memory\n");
1853                 return ENOMEM;
1854         }
1855         txr->tx_base = txr->txdma.dma_vaddr;
1856         bzero(txr->tx_base, tsize);
1857
1858         tsize = __VM_CACHELINE_ALIGN(
1859             sizeof(struct igb_tx_buf) * txr->num_tx_desc);
1860         txr->tx_buf = kmalloc_cachealign(tsize, M_DEVBUF, M_WAITOK | M_ZERO);
1861
1862         /*
1863          * Allocate TX head write-back buffer
1864          */
1865         txr->tx_hdr = bus_dmamem_coherent_any(txr->sc->parent_tag,
1866             __VM_CACHELINE_SIZE, __VM_CACHELINE_SIZE, BUS_DMA_WAITOK,
1867             &txr->tx_hdr_dtag, &txr->tx_hdr_dmap, &txr->tx_hdr_paddr);
1868         if (txr->tx_hdr == NULL) {
1869                 device_printf(txr->sc->dev,
1870                     "Unable to allocate TX head write-back buffer\n");
1871                 return ENOMEM;
1872         }
1873
1874         /*
1875          * Create DMA tag for TX buffers
1876          */
1877         error = bus_dma_tag_create(txr->sc->parent_tag,
1878             1, 0,               /* alignment, bounds */
1879             BUS_SPACE_MAXADDR,  /* lowaddr */
1880             BUS_SPACE_MAXADDR,  /* highaddr */
1881             NULL, NULL,         /* filter, filterarg */
1882             IGB_TSO_SIZE,       /* maxsize */
1883             IGB_MAX_SCATTER,    /* nsegments */
1884             PAGE_SIZE,          /* maxsegsize */
1885             BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW |
1886             BUS_DMA_ONEBPAGE,   /* flags */
1887             &txr->tx_tag);
1888         if (error) {
1889                 device_printf(txr->sc->dev, "Unable to allocate TX DMA tag\n");
1890                 kfree(txr->tx_buf, M_DEVBUF);
1891                 txr->tx_buf = NULL;
1892                 return error;
1893         }
1894
1895         /*
1896          * Create DMA maps for TX buffers
1897          */
1898         for (i = 0; i < txr->num_tx_desc; ++i) {
1899                 struct igb_tx_buf *txbuf = &txr->tx_buf[i];
1900
1901                 error = bus_dmamap_create(txr->tx_tag,
1902                     BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE, &txbuf->map);
1903                 if (error) {
1904                         device_printf(txr->sc->dev,
1905                             "Unable to create TX DMA map\n");
1906                         igb_destroy_tx_ring(txr, i);
1907                         return error;
1908                 }
1909         }
1910
1911         if (txr->sc->hw.mac.type == e1000_82575)
1912                 txr->tx_flags |= IGB_TXFLAG_TSO_IPLEN0;
1913
1914         /*
1915          * Initialize various watermark
1916          */
1917         txr->spare_desc = IGB_TX_SPARE;
1918         txr->intr_nsegs = txr->num_tx_desc / 16;
1919         txr->wreg_nsegs = IGB_DEF_TXWREG_NSEGS;
1920         txr->oact_hi_desc = txr->num_tx_desc / 2;
1921         txr->oact_lo_desc = txr->num_tx_desc / 8;
1922         if (txr->oact_lo_desc > IGB_TX_OACTIVE_MAX)
1923                 txr->oact_lo_desc = IGB_TX_OACTIVE_MAX;
1924         if (txr->oact_lo_desc < txr->spare_desc + IGB_TX_RESERVED)
1925                 txr->oact_lo_desc = txr->spare_desc + IGB_TX_RESERVED;
1926
1927         return 0;
1928 }
1929
1930 static void
1931 igb_free_tx_ring(struct igb_tx_ring *txr)
1932 {
1933         int i;
1934
1935         for (i = 0; i < txr->num_tx_desc; ++i) {
1936                 struct igb_tx_buf *txbuf = &txr->tx_buf[i];
1937
1938                 if (txbuf->m_head != NULL) {
1939                         bus_dmamap_unload(txr->tx_tag, txbuf->map);
1940                         m_freem(txbuf->m_head);
1941                         txbuf->m_head = NULL;
1942                 }
1943         }
1944 }
1945
1946 static void
1947 igb_destroy_tx_ring(struct igb_tx_ring *txr, int ndesc)
1948 {
1949         int i;
1950
1951         if (txr->txdma.dma_vaddr != NULL) {
1952                 bus_dmamap_unload(txr->txdma.dma_tag, txr->txdma.dma_map);
1953                 bus_dmamem_free(txr->txdma.dma_tag, txr->txdma.dma_vaddr,
1954                     txr->txdma.dma_map);
1955                 bus_dma_tag_destroy(txr->txdma.dma_tag);
1956                 txr->txdma.dma_vaddr = NULL;
1957         }
1958
1959         if (txr->tx_hdr != NULL) {
1960                 bus_dmamap_unload(txr->tx_hdr_dtag, txr->tx_hdr_dmap);
1961                 bus_dmamem_free(txr->tx_hdr_dtag, txr->tx_hdr,
1962                     txr->tx_hdr_dmap);
1963                 bus_dma_tag_destroy(txr->tx_hdr_dtag);
1964                 txr->tx_hdr = NULL;
1965         }
1966
1967         if (txr->tx_buf == NULL)
1968                 return;
1969
1970         for (i = 0; i < ndesc; ++i) {
1971                 struct igb_tx_buf *txbuf = &txr->tx_buf[i];
1972
1973                 KKASSERT(txbuf->m_head == NULL);
1974                 bus_dmamap_destroy(txr->tx_tag, txbuf->map);
1975         }
1976         bus_dma_tag_destroy(txr->tx_tag);
1977
1978         kfree(txr->tx_buf, M_DEVBUF);
1979         txr->tx_buf = NULL;
1980 }
1981
1982 static void
1983 igb_init_tx_ring(struct igb_tx_ring *txr)
1984 {
1985         /* Clear the old descriptor contents */
1986         bzero(txr->tx_base,
1987             sizeof(union e1000_adv_tx_desc) * txr->num_tx_desc);
1988
1989         /* Clear TX head write-back buffer */
1990         *(txr->tx_hdr) = 0;
1991
1992         /* Reset indices */
1993         txr->next_avail_desc = 0;
1994         txr->next_to_clean = 0;
1995         txr->tx_nsegs = 0;
1996
1997         /* Set number of descriptors available */
1998         txr->tx_avail = txr->num_tx_desc;
1999
2000         /* Enable this TX ring */
2001         txr->tx_flags |= IGB_TXFLAG_ENABLED;
2002 }
2003
2004 static void
2005 igb_init_tx_unit(struct igb_softc *sc)
2006 {
2007         struct e1000_hw *hw = &sc->hw;
2008         uint32_t tctl;
2009         int i;
2010
2011         /* Setup the Tx Descriptor Rings */
2012         for (i = 0; i < sc->tx_ring_inuse; ++i) {
2013                 struct igb_tx_ring *txr = &sc->tx_rings[i];
2014                 uint64_t bus_addr = txr->txdma.dma_paddr;
2015                 uint64_t hdr_paddr = txr->tx_hdr_paddr;
2016                 uint32_t txdctl = 0;
2017                 uint32_t dca_txctrl;
2018
2019                 E1000_WRITE_REG(hw, E1000_TDLEN(i),
2020                     txr->num_tx_desc * sizeof(struct e1000_tx_desc));
2021                 E1000_WRITE_REG(hw, E1000_TDBAH(i),
2022                     (uint32_t)(bus_addr >> 32));
2023                 E1000_WRITE_REG(hw, E1000_TDBAL(i),
2024                     (uint32_t)bus_addr);
2025
2026                 /* Setup the HW Tx Head and Tail descriptor pointers */
2027                 E1000_WRITE_REG(hw, E1000_TDT(i), 0);
2028                 E1000_WRITE_REG(hw, E1000_TDH(i), 0);
2029
2030                 dca_txctrl = E1000_READ_REG(hw, E1000_DCA_TXCTRL(i));
2031                 dca_txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
2032                 E1000_WRITE_REG(hw, E1000_DCA_TXCTRL(i), dca_txctrl);
2033
2034                 /*
2035                  * Don't set WB_on_EITR:
2036                  * - 82575 does not have it
2037                  * - It almost has no effect on 82576, see:
2038                  *   82576 specification update errata #26
2039                  * - It causes unnecessary bus traffic
2040                  */
2041                 E1000_WRITE_REG(hw, E1000_TDWBAH(i),
2042                     (uint32_t)(hdr_paddr >> 32));
2043                 E1000_WRITE_REG(hw, E1000_TDWBAL(i),
2044                     ((uint32_t)hdr_paddr) | E1000_TX_HEAD_WB_ENABLE);
2045
2046                 /*
2047                  * WTHRESH is ignored by the hardware, since header
2048                  * write back mode is used.
2049                  */
2050                 txdctl |= IGB_TX_PTHRESH;
2051                 txdctl |= IGB_TX_HTHRESH << 8;
2052                 txdctl |= IGB_TX_WTHRESH << 16;
2053                 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
2054                 E1000_WRITE_REG(hw, E1000_TXDCTL(i), txdctl);
2055         }
2056
2057         if (sc->vf_ifp)
2058                 return;
2059
2060         e1000_config_collision_dist(hw);
2061
2062         /* Program the Transmit Control Register */
2063         tctl = E1000_READ_REG(hw, E1000_TCTL);
2064         tctl &= ~E1000_TCTL_CT;
2065         tctl |= (E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
2066             (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT));
2067
2068         /* This write will effectively turn on the transmit unit. */
2069         E1000_WRITE_REG(hw, E1000_TCTL, tctl);
2070 }
2071
2072 static boolean_t
2073 igb_txcsum_ctx(struct igb_tx_ring *txr, struct mbuf *mp)
2074 {
2075         struct e1000_adv_tx_context_desc *TXD;
2076         uint32_t vlan_macip_lens, type_tucmd_mlhl, mss_l4len_idx;
2077         int ehdrlen, ctxd, ip_hlen = 0;
2078         boolean_t offload = TRUE;
2079
2080         if ((mp->m_pkthdr.csum_flags & IGB_CSUM_FEATURES) == 0)
2081                 offload = FALSE;
2082
2083         vlan_macip_lens = type_tucmd_mlhl = mss_l4len_idx = 0;
2084
2085         ctxd = txr->next_avail_desc;
2086         TXD = (struct e1000_adv_tx_context_desc *)&txr->tx_base[ctxd];
2087
2088         /*
2089          * In advanced descriptors the vlan tag must 
2090          * be placed into the context descriptor, thus
2091          * we need to be here just for that setup.
2092          */
2093         if (mp->m_flags & M_VLANTAG) {
2094                 uint16_t vlantag;
2095
2096                 vlantag = htole16(mp->m_pkthdr.ether_vlantag);
2097                 vlan_macip_lens |= (vlantag << E1000_ADVTXD_VLAN_SHIFT);
2098         } else if (!offload) {
2099                 return FALSE;
2100         }
2101
2102         ehdrlen = mp->m_pkthdr.csum_lhlen;
2103         KASSERT(ehdrlen > 0, ("invalid ether hlen"));
2104
2105         /* Set the ether header length */
2106         vlan_macip_lens |= ehdrlen << E1000_ADVTXD_MACLEN_SHIFT;
2107         if (mp->m_pkthdr.csum_flags & CSUM_IP) {
2108                 type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_IPV4;
2109                 ip_hlen = mp->m_pkthdr.csum_iphlen;
2110                 KASSERT(ip_hlen > 0, ("invalid ip hlen"));
2111         }
2112         vlan_macip_lens |= ip_hlen;
2113
2114         type_tucmd_mlhl |= E1000_ADVTXD_DCMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
2115         if (mp->m_pkthdr.csum_flags & CSUM_TCP)
2116                 type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_TCP;
2117         else if (mp->m_pkthdr.csum_flags & CSUM_UDP)
2118                 type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_UDP;
2119
2120         /*
2121          * 82575 needs the TX context index added; the queue
2122          * index is used as TX context index here.
2123          */
2124         if (txr->sc->hw.mac.type == e1000_82575)
2125                 mss_l4len_idx = txr->me << 4;
2126
2127         /* Now copy bits into descriptor */
2128         TXD->vlan_macip_lens = htole32(vlan_macip_lens);
2129         TXD->type_tucmd_mlhl = htole32(type_tucmd_mlhl);
2130         TXD->seqnum_seed = htole32(0);
2131         TXD->mss_l4len_idx = htole32(mss_l4len_idx);
2132
2133         /* We've consumed the first desc, adjust counters */
2134         if (++ctxd == txr->num_tx_desc)
2135                 ctxd = 0;
2136         txr->next_avail_desc = ctxd;
2137         --txr->tx_avail;
2138
2139         return offload;
2140 }
2141
2142 static void
2143 igb_txeof(struct igb_tx_ring *txr)
2144 {
2145         int first, hdr, avail;
2146
2147         if (txr->tx_avail == txr->num_tx_desc)
2148                 return;
2149
2150         first = txr->next_to_clean;
2151         hdr = *(txr->tx_hdr);
2152
2153         if (first == hdr)
2154                 return;
2155
2156         avail = txr->tx_avail;
2157         while (first != hdr) {
2158                 struct igb_tx_buf *txbuf = &txr->tx_buf[first];
2159
2160                 ++avail;
2161                 if (txbuf->m_head) {
2162                         bus_dmamap_unload(txr->tx_tag, txbuf->map);
2163                         m_freem(txbuf->m_head);
2164                         txbuf->m_head = NULL;
2165                 }
2166                 if (++first == txr->num_tx_desc)
2167                         first = 0;
2168         }
2169         txr->next_to_clean = first;
2170         txr->tx_avail = avail;
2171
2172         /*
2173          * If we have a minimum free, clear OACTIVE
2174          * to tell the stack that it is OK to send packets.
2175          */
2176         if (IGB_IS_NOT_OACTIVE(txr)) {
2177                 ifsq_clr_oactive(txr->ifsq);
2178
2179                 /*
2180                  * We have enough TX descriptors, turn off
2181                  * the watchdog.  We allow small amount of
2182                  * packets (roughly intr_nsegs) pending on
2183                  * the transmit ring.
2184                  */
2185                 txr->tx_watchdog.wd_timer = 0;
2186         }
2187 }
2188
2189 static int
2190 igb_create_rx_ring(struct igb_rx_ring *rxr)
2191 {
2192         int rsize, i, error, nrxd;
2193
2194         /*
2195          * Validate number of receive descriptors. It must not exceed
2196          * hardware maximum, and must be multiple of IGB_DBA_ALIGN.
2197          */
2198         nrxd = device_getenv_int(rxr->sc->dev, "rxd", igb_rxd);
2199         if ((nrxd * sizeof(struct e1000_rx_desc)) % IGB_DBA_ALIGN != 0 ||
2200             nrxd > IGB_MAX_RXD || nrxd < IGB_MIN_RXD) {
2201                 device_printf(rxr->sc->dev,
2202                     "Using %d RX descriptors instead of %d!\n",
2203                     IGB_DEFAULT_RXD, nrxd);
2204                 rxr->num_rx_desc = IGB_DEFAULT_RXD;
2205         } else {
2206                 rxr->num_rx_desc = nrxd;
2207         }
2208
2209         /*
2210          * Allocate RX descriptor ring
2211          */
2212         rsize = roundup2(rxr->num_rx_desc * sizeof(union e1000_adv_rx_desc),
2213             IGB_DBA_ALIGN);
2214         rxr->rxdma.dma_vaddr = bus_dmamem_coherent_any(rxr->sc->parent_tag,
2215             IGB_DBA_ALIGN, rsize, BUS_DMA_WAITOK,
2216             &rxr->rxdma.dma_tag, &rxr->rxdma.dma_map,
2217             &rxr->rxdma.dma_paddr);
2218         if (rxr->rxdma.dma_vaddr == NULL) {
2219                 device_printf(rxr->sc->dev,
2220                     "Unable to allocate RxDescriptor memory\n");
2221                 return ENOMEM;
2222         }
2223         rxr->rx_base = rxr->rxdma.dma_vaddr;
2224         bzero(rxr->rx_base, rsize);
2225
2226         rsize = __VM_CACHELINE_ALIGN(
2227             sizeof(struct igb_rx_buf) * rxr->num_rx_desc);
2228         rxr->rx_buf = kmalloc_cachealign(rsize, M_DEVBUF, M_WAITOK | M_ZERO);
2229
2230         /*
2231          * Create DMA tag for RX buffers
2232          */
2233         error = bus_dma_tag_create(rxr->sc->parent_tag,
2234             1, 0,               /* alignment, bounds */
2235             BUS_SPACE_MAXADDR,  /* lowaddr */
2236             BUS_SPACE_MAXADDR,  /* highaddr */
2237             NULL, NULL,         /* filter, filterarg */
2238             MCLBYTES,           /* maxsize */
2239             1,                  /* nsegments */
2240             MCLBYTES,           /* maxsegsize */
2241             BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, /* flags */
2242             &rxr->rx_tag);
2243         if (error) {
2244                 device_printf(rxr->sc->dev,
2245                     "Unable to create RX payload DMA tag\n");
2246                 kfree(rxr->rx_buf, M_DEVBUF);
2247                 rxr->rx_buf = NULL;
2248                 return error;
2249         }
2250
2251         /*
2252          * Create spare DMA map for RX buffers
2253          */
2254         error = bus_dmamap_create(rxr->rx_tag, BUS_DMA_WAITOK,
2255             &rxr->rx_sparemap);
2256         if (error) {
2257                 device_printf(rxr->sc->dev,
2258                     "Unable to create spare RX DMA maps\n");
2259                 bus_dma_tag_destroy(rxr->rx_tag);
2260                 kfree(rxr->rx_buf, M_DEVBUF);
2261                 rxr->rx_buf = NULL;
2262                 return error;
2263         }
2264
2265         /*
2266          * Create DMA maps for RX buffers
2267          */
2268         for (i = 0; i < rxr->num_rx_desc; i++) {
2269                 struct igb_rx_buf *rxbuf = &rxr->rx_buf[i];
2270
2271                 error = bus_dmamap_create(rxr->rx_tag,
2272                     BUS_DMA_WAITOK, &rxbuf->map);
2273                 if (error) {
2274                         device_printf(rxr->sc->dev,
2275                             "Unable to create RX DMA maps\n");
2276                         igb_destroy_rx_ring(rxr, i);
2277                         return error;
2278                 }
2279         }
2280
2281         /*
2282          * Initialize various watermark
2283          */
2284         rxr->wreg_nsegs = IGB_DEF_RXWREG_NSEGS;
2285
2286         return 0;
2287 }
2288
2289 static void
2290 igb_free_rx_ring(struct igb_rx_ring *rxr)
2291 {
2292         int i;
2293
2294         for (i = 0; i < rxr->num_rx_desc; ++i) {
2295                 struct igb_rx_buf *rxbuf = &rxr->rx_buf[i];
2296
2297                 if (rxbuf->m_head != NULL) {
2298                         bus_dmamap_unload(rxr->rx_tag, rxbuf->map);
2299                         m_freem(rxbuf->m_head);
2300                         rxbuf->m_head = NULL;
2301                 }
2302         }
2303
2304         if (rxr->fmp != NULL)
2305                 m_freem(rxr->fmp);
2306         rxr->fmp = NULL;
2307         rxr->lmp = NULL;
2308 }
2309
2310 static void
2311 igb_destroy_rx_ring(struct igb_rx_ring *rxr, int ndesc)
2312 {
2313         int i;
2314
2315         if (rxr->rxdma.dma_vaddr != NULL) {
2316                 bus_dmamap_unload(rxr->rxdma.dma_tag, rxr->rxdma.dma_map);
2317                 bus_dmamem_free(rxr->rxdma.dma_tag, rxr->rxdma.dma_vaddr,
2318                     rxr->rxdma.dma_map);
2319                 bus_dma_tag_destroy(rxr->rxdma.dma_tag);
2320                 rxr->rxdma.dma_vaddr = NULL;
2321         }
2322
2323         if (rxr->rx_buf == NULL)
2324                 return;
2325
2326         for (i = 0; i < ndesc; ++i) {
2327                 struct igb_rx_buf *rxbuf = &rxr->rx_buf[i];
2328
2329                 KKASSERT(rxbuf->m_head == NULL);
2330                 bus_dmamap_destroy(rxr->rx_tag, rxbuf->map);
2331         }
2332         bus_dmamap_destroy(rxr->rx_tag, rxr->rx_sparemap);
2333         bus_dma_tag_destroy(rxr->rx_tag);
2334
2335         kfree(rxr->rx_buf, M_DEVBUF);
2336         rxr->rx_buf = NULL;
2337 }
2338
2339 static void
2340 igb_setup_rxdesc(union e1000_adv_rx_desc *rxd, const struct igb_rx_buf *rxbuf)
2341 {
2342         rxd->read.pkt_addr = htole64(rxbuf->paddr);
2343         rxd->wb.upper.status_error = 0;
2344 }
2345
2346 static int
2347 igb_newbuf(struct igb_rx_ring *rxr, int i, boolean_t wait)
2348 {
2349         struct mbuf *m;
2350         bus_dma_segment_t seg;
2351         bus_dmamap_t map;
2352         struct igb_rx_buf *rxbuf;
2353         int error, nseg;
2354
2355         m = m_getcl(wait ? M_WAITOK : M_NOWAIT, MT_DATA, M_PKTHDR);
2356         if (m == NULL) {
2357                 if (wait) {
2358                         if_printf(&rxr->sc->arpcom.ac_if,
2359                             "Unable to allocate RX mbuf\n");
2360                 }
2361                 return ENOBUFS;
2362         }
2363         m->m_len = m->m_pkthdr.len = MCLBYTES;
2364
2365         if (rxr->sc->max_frame_size <= MCLBYTES - ETHER_ALIGN)
2366                 m_adj(m, ETHER_ALIGN);
2367
2368         error = bus_dmamap_load_mbuf_segment(rxr->rx_tag,
2369             rxr->rx_sparemap, m, &seg, 1, &nseg, BUS_DMA_NOWAIT);
2370         if (error) {
2371                 m_freem(m);
2372                 if (wait) {
2373                         if_printf(&rxr->sc->arpcom.ac_if,
2374                             "Unable to load RX mbuf\n");
2375                 }
2376                 return error;
2377         }
2378
2379         rxbuf = &rxr->rx_buf[i];
2380         if (rxbuf->m_head != NULL)
2381                 bus_dmamap_unload(rxr->rx_tag, rxbuf->map);
2382
2383         map = rxbuf->map;
2384         rxbuf->map = rxr->rx_sparemap;
2385         rxr->rx_sparemap = map;
2386
2387         rxbuf->m_head = m;
2388         rxbuf->paddr = seg.ds_addr;
2389
2390         igb_setup_rxdesc(&rxr->rx_base[i], rxbuf);
2391         return 0;
2392 }
2393
2394 static int
2395 igb_init_rx_ring(struct igb_rx_ring *rxr)
2396 {
2397         int i;
2398
2399         /* Clear the ring contents */
2400         bzero(rxr->rx_base,
2401             rxr->num_rx_desc * sizeof(union e1000_adv_rx_desc));
2402
2403         /* Now replenish the ring mbufs */
2404         for (i = 0; i < rxr->num_rx_desc; ++i) {
2405                 int error;
2406
2407                 error = igb_newbuf(rxr, i, TRUE);
2408                 if (error)
2409                         return error;
2410         }
2411
2412         /* Setup our descriptor indices */
2413         rxr->next_to_check = 0;
2414
2415         rxr->fmp = NULL;
2416         rxr->lmp = NULL;
2417         rxr->discard = FALSE;
2418
2419         return 0;
2420 }
2421
2422 static void
2423 igb_init_rx_unit(struct igb_softc *sc)
2424 {
2425         struct ifnet *ifp = &sc->arpcom.ac_if;
2426         struct e1000_hw *hw = &sc->hw;
2427         uint32_t rctl, rxcsum, srrctl = 0;
2428         int i;
2429
2430         /*
2431          * Make sure receives are disabled while setting
2432          * up the descriptor ring
2433          */
2434         rctl = E1000_READ_REG(hw, E1000_RCTL);
2435         E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
2436
2437 #if 0
2438         /*
2439         ** Set up for header split
2440         */
2441         if (igb_header_split) {
2442                 /* Use a standard mbuf for the header */
2443                 srrctl |= IGB_HDR_BUF << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
2444                 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
2445         } else
2446 #endif
2447                 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
2448
2449         /*
2450         ** Set up for jumbo frames
2451         */
2452         if (ifp->if_mtu > ETHERMTU) {
2453                 rctl |= E1000_RCTL_LPE;
2454 #if 0
2455                 if (adapter->rx_mbuf_sz == MJUMPAGESIZE) {
2456                         srrctl |= 4096 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
2457                         rctl |= E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX;
2458                 } else if (adapter->rx_mbuf_sz > MJUMPAGESIZE) {
2459                         srrctl |= 8192 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
2460                         rctl |= E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX;
2461                 }
2462                 /* Set maximum packet len */
2463                 psize = adapter->max_frame_size;
2464                 /* are we on a vlan? */
2465                 if (adapter->ifp->if_vlantrunk != NULL)
2466                         psize += VLAN_TAG_SIZE;
2467                 E1000_WRITE_REG(&adapter->hw, E1000_RLPML, psize);
2468 #else
2469                 srrctl |= 2048 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
2470                 rctl |= E1000_RCTL_SZ_2048;
2471 #endif
2472         } else {
2473                 rctl &= ~E1000_RCTL_LPE;
2474                 srrctl |= 2048 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
2475                 rctl |= E1000_RCTL_SZ_2048;
2476         }
2477
2478         /* Setup the Base and Length of the Rx Descriptor Rings */
2479         for (i = 0; i < sc->rx_ring_inuse; ++i) {
2480                 struct igb_rx_ring *rxr = &sc->rx_rings[i];
2481                 uint64_t bus_addr = rxr->rxdma.dma_paddr;
2482                 uint32_t rxdctl;
2483
2484                 E1000_WRITE_REG(hw, E1000_RDLEN(i),
2485                     rxr->num_rx_desc * sizeof(struct e1000_rx_desc));
2486                 E1000_WRITE_REG(hw, E1000_RDBAH(i),
2487                     (uint32_t)(bus_addr >> 32));
2488                 E1000_WRITE_REG(hw, E1000_RDBAL(i),
2489                     (uint32_t)bus_addr);
2490                 E1000_WRITE_REG(hw, E1000_SRRCTL(i), srrctl);
2491                 /* Enable this Queue */
2492                 rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(i));
2493                 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
2494                 rxdctl &= 0xFFF00000;
2495                 rxdctl |= IGB_RX_PTHRESH;
2496                 rxdctl |= IGB_RX_HTHRESH << 8;
2497                 /*
2498                  * Don't set WTHRESH to a value above 1 on 82576, see:
2499                  * 82576 specification update errata #26
2500                  */
2501                 rxdctl |= IGB_RX_WTHRESH << 16;
2502                 E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl);
2503         }
2504
2505         rxcsum = E1000_READ_REG(&sc->hw, E1000_RXCSUM);
2506         rxcsum &= ~(E1000_RXCSUM_PCSS_MASK | E1000_RXCSUM_IPPCSE);
2507
2508         /*
2509          * Receive Checksum Offload for TCP and UDP
2510          *
2511          * Checksum offloading is also enabled if multiple receive
2512          * queue is to be supported, since we need it to figure out
2513          * fragments.
2514          */
2515         if ((ifp->if_capenable & IFCAP_RXCSUM) || IGB_ENABLE_HWRSS(sc)) {
2516                 /*
2517                  * NOTE:
2518                  * PCSD must be enabled to enable multiple
2519                  * receive queues.
2520                  */
2521                 rxcsum |= E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL |
2522                     E1000_RXCSUM_PCSD;
2523         } else {
2524                 rxcsum &= ~(E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL |
2525                     E1000_RXCSUM_PCSD);
2526         }
2527         E1000_WRITE_REG(&sc->hw, E1000_RXCSUM, rxcsum);
2528
2529         if (IGB_ENABLE_HWRSS(sc)) {
2530                 uint8_t key[IGB_NRSSRK * IGB_RSSRK_SIZE];
2531                 uint32_t reta_shift;
2532                 int j, r;
2533
2534                 /*
2535                  * NOTE:
2536                  * When we reach here, RSS has already been disabled
2537                  * in igb_stop(), so we could safely configure RSS key
2538                  * and redirect table.
2539                  */
2540
2541                 /*
2542                  * Configure RSS key
2543                  */
2544                 toeplitz_get_key(key, sizeof(key));
2545                 for (i = 0; i < IGB_NRSSRK; ++i) {
2546                         uint32_t rssrk;
2547
2548                         rssrk = IGB_RSSRK_VAL(key, i);
2549                         IGB_RSS_DPRINTF(sc, 1, "rssrk%d 0x%08x\n", i, rssrk);
2550
2551                         E1000_WRITE_REG(hw, E1000_RSSRK(i), rssrk);
2552                 }
2553
2554                 /*
2555                  * Configure RSS redirect table in following fashion:
2556                  * (hash & ring_cnt_mask) == rdr_table[(hash & rdr_table_mask)]
2557                  */
2558                 reta_shift = IGB_RETA_SHIFT;
2559                 if (hw->mac.type == e1000_82575)
2560                         reta_shift = IGB_RETA_SHIFT_82575;
2561
2562                 r = 0;
2563                 for (j = 0; j < IGB_NRETA; ++j) {
2564                         uint32_t reta = 0;
2565
2566                         for (i = 0; i < IGB_RETA_SIZE; ++i) {
2567                                 uint32_t q;
2568
2569                                 q = (r % sc->rx_ring_inuse) << reta_shift;
2570                                 reta |= q << (8 * i);
2571                                 ++r;
2572                         }
2573                         IGB_RSS_DPRINTF(sc, 1, "reta 0x%08x\n", reta);
2574                         E1000_WRITE_REG(hw, E1000_RETA(j), reta);
2575                 }
2576
2577                 /*
2578                  * Enable multiple receive queues.
2579                  * Enable IPv4 RSS standard hash functions.
2580                  * Disable RSS interrupt on 82575
2581                  */
2582                 E1000_WRITE_REG(&sc->hw, E1000_MRQC,
2583                                 E1000_MRQC_ENABLE_RSS_4Q |
2584                                 E1000_MRQC_RSS_FIELD_IPV4_TCP |
2585                                 E1000_MRQC_RSS_FIELD_IPV4);
2586         }
2587
2588         /* Setup the Receive Control Register */
2589         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2590         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
2591             E1000_RCTL_RDMTS_HALF |
2592             (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2593         /* Strip CRC bytes. */
2594         rctl |= E1000_RCTL_SECRC;
2595         /* Make sure VLAN Filters are off */
2596         rctl &= ~E1000_RCTL_VFE;
2597         /* Don't store bad packets */
2598         rctl &= ~E1000_RCTL_SBP;
2599
2600         /* Enable Receives */
2601         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
2602
2603         /*
2604          * Setup the HW Rx Head and Tail Descriptor Pointers
2605          *   - needs to be after enable
2606          */
2607         for (i = 0; i < sc->rx_ring_inuse; ++i) {
2608                 struct igb_rx_ring *rxr = &sc->rx_rings[i];
2609
2610                 E1000_WRITE_REG(hw, E1000_RDH(i), rxr->next_to_check);
2611                 E1000_WRITE_REG(hw, E1000_RDT(i), rxr->num_rx_desc - 1);
2612         }
2613 }
2614
2615 static void
2616 igb_rx_refresh(struct igb_rx_ring *rxr, int i)
2617 {
2618         if (--i < 0)
2619                 i = rxr->num_rx_desc - 1;
2620         E1000_WRITE_REG(&rxr->sc->hw, E1000_RDT(rxr->me), i);
2621 }
2622
2623 static void
2624 igb_rxeof(struct igb_rx_ring *rxr, int count)
2625 {
2626         struct ifnet *ifp = &rxr->sc->arpcom.ac_if;
2627         union e1000_adv_rx_desc *cur;
2628         uint32_t staterr;
2629         int i, ncoll = 0, cpuid = mycpuid;
2630
2631         i = rxr->next_to_check;
2632         cur = &rxr->rx_base[i];
2633         staterr = le32toh(cur->wb.upper.status_error);
2634
2635         if ((staterr & E1000_RXD_STAT_DD) == 0)
2636                 return;
2637
2638         while ((staterr & E1000_RXD_STAT_DD) && count != 0) {
2639                 struct pktinfo *pi = NULL, pi0;
2640                 struct igb_rx_buf *rxbuf = &rxr->rx_buf[i];
2641                 struct mbuf *m = NULL;
2642                 boolean_t eop;
2643
2644                 eop = (staterr & E1000_RXD_STAT_EOP) ? TRUE : FALSE;
2645                 if (eop)
2646                         --count;
2647
2648                 ++ncoll;
2649                 if ((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) == 0 &&
2650                     !rxr->discard) {
2651                         struct mbuf *mp = rxbuf->m_head;
2652                         uint32_t hash, hashtype;
2653                         uint16_t vlan;
2654                         int len;
2655
2656                         len = le16toh(cur->wb.upper.length);
2657                         if ((rxr->sc->hw.mac.type == e1000_i350 ||
2658                              rxr->sc->hw.mac.type == e1000_i354) &&
2659                             (staterr & E1000_RXDEXT_STATERR_LB))
2660                                 vlan = be16toh(cur->wb.upper.vlan);
2661                         else
2662                                 vlan = le16toh(cur->wb.upper.vlan);
2663
2664                         hash = le32toh(cur->wb.lower.hi_dword.rss);
2665                         hashtype = le32toh(cur->wb.lower.lo_dword.data) &
2666                             E1000_RXDADV_RSSTYPE_MASK;
2667
2668                         IGB_RSS_DPRINTF(rxr->sc, 10,
2669                             "ring%d, hash 0x%08x, hashtype %u\n",
2670                             rxr->me, hash, hashtype);
2671
2672                         bus_dmamap_sync(rxr->rx_tag, rxbuf->map,
2673                             BUS_DMASYNC_POSTREAD);
2674
2675                         if (igb_newbuf(rxr, i, FALSE) != 0) {
2676                                 IFNET_STAT_INC(ifp, iqdrops, 1);
2677                                 goto discard;
2678                         }
2679
2680                         mp->m_len = len;
2681                         if (rxr->fmp == NULL) {
2682                                 mp->m_pkthdr.len = len;
2683                                 rxr->fmp = mp;
2684                                 rxr->lmp = mp;
2685                         } else {
2686                                 rxr->lmp->m_next = mp;
2687                                 rxr->lmp = rxr->lmp->m_next;
2688                                 rxr->fmp->m_pkthdr.len += len;
2689                         }
2690
2691                         if (eop) {
2692                                 m = rxr->fmp;
2693                                 rxr->fmp = NULL;
2694                                 rxr->lmp = NULL;
2695
2696                                 m->m_pkthdr.rcvif = ifp;
2697                                 IFNET_STAT_INC(ifp, ipackets, 1);
2698
2699                                 if (ifp->if_capenable & IFCAP_RXCSUM)
2700                                         igb_rxcsum(staterr, m);
2701
2702                                 if (staterr & E1000_RXD_STAT_VP) {
2703                                         m->m_pkthdr.ether_vlantag = vlan;
2704                                         m->m_flags |= M_VLANTAG;
2705                                 }
2706
2707                                 if (ifp->if_capenable & IFCAP_RSS) {
2708                                         pi = igb_rssinfo(m, &pi0,
2709                                             hash, hashtype, staterr);
2710                                 }
2711 #ifdef IGB_RSS_DEBUG
2712                                 rxr->rx_packets++;
2713 #endif
2714                         }
2715                 } else {
2716                         IFNET_STAT_INC(ifp, ierrors, 1);
2717 discard:
2718                         igb_setup_rxdesc(cur, rxbuf);
2719                         if (!eop)
2720                                 rxr->discard = TRUE;
2721                         else
2722                                 rxr->discard = FALSE;
2723                         if (rxr->fmp != NULL) {
2724                                 m_freem(rxr->fmp);
2725                                 rxr->fmp = NULL;
2726                                 rxr->lmp = NULL;
2727                         }
2728                         m = NULL;
2729                 }
2730
2731                 if (m != NULL)
2732                         ifp->if_input(ifp, m, pi, cpuid);
2733
2734                 /* Advance our pointers to the next descriptor. */
2735                 if (++i == rxr->num_rx_desc)
2736                         i = 0;
2737
2738                 if (ncoll >= rxr->wreg_nsegs) {
2739                         igb_rx_refresh(rxr, i);
2740                         ncoll = 0;
2741                 }
2742
2743                 cur = &rxr->rx_base[i];
2744                 staterr = le32toh(cur->wb.upper.status_error);
2745         }
2746         rxr->next_to_check = i;
2747
2748         if (ncoll > 0)
2749                 igb_rx_refresh(rxr, i);
2750 }
2751
2752
2753 static void
2754 igb_set_vlan(struct igb_softc *sc)
2755 {
2756         struct e1000_hw *hw = &sc->hw;
2757         uint32_t reg;
2758 #if 0
2759         struct ifnet *ifp = sc->arpcom.ac_if;
2760 #endif
2761
2762         if (sc->vf_ifp) {
2763                 e1000_rlpml_set_vf(hw, sc->max_frame_size + VLAN_TAG_SIZE);
2764                 return;
2765         }
2766
2767         reg = E1000_READ_REG(hw, E1000_CTRL);
2768         reg |= E1000_CTRL_VME;
2769         E1000_WRITE_REG(hw, E1000_CTRL, reg);
2770
2771 #if 0
2772         /* Enable the Filter Table */
2773         if (ifp->if_capenable & IFCAP_VLAN_HWFILTER) {
2774                 reg = E1000_READ_REG(hw, E1000_RCTL);
2775                 reg &= ~E1000_RCTL_CFIEN;
2776                 reg |= E1000_RCTL_VFE;
2777                 E1000_WRITE_REG(hw, E1000_RCTL, reg);
2778         }
2779 #endif
2780
2781         /* Update the frame size */
2782         E1000_WRITE_REG(&sc->hw, E1000_RLPML,
2783             sc->max_frame_size + VLAN_TAG_SIZE);
2784
2785 #if 0
2786         /* Don't bother with table if no vlans */
2787         if ((adapter->num_vlans == 0) ||
2788             ((ifp->if_capenable & IFCAP_VLAN_HWFILTER) == 0))
2789                 return;
2790         /*
2791         ** A soft reset zero's out the VFTA, so
2792         ** we need to repopulate it now.
2793         */
2794         for (int i = 0; i < IGB_VFTA_SIZE; i++)
2795                 if (adapter->shadow_vfta[i] != 0) {
2796                         if (adapter->vf_ifp)
2797                                 e1000_vfta_set_vf(hw,
2798                                     adapter->shadow_vfta[i], TRUE);
2799                         else
2800                                 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA,
2801                                  i, adapter->shadow_vfta[i]);
2802                 }
2803 #endif
2804 }
2805
2806 static void
2807 igb_enable_intr(struct igb_softc *sc)
2808 {
2809         if (sc->intr_type != PCI_INTR_TYPE_MSIX) {
2810                 lwkt_serialize_handler_enable(&sc->main_serialize);
2811         } else {
2812                 int i;
2813
2814                 for (i = 0; i < sc->msix_cnt; ++i) {
2815                         lwkt_serialize_handler_enable(
2816                             sc->msix_data[i].msix_serialize);
2817                 }
2818         }
2819
2820         if ((sc->flags & IGB_FLAG_SHARED_INTR) == 0) {
2821                 if (sc->intr_type == PCI_INTR_TYPE_MSIX)
2822                         E1000_WRITE_REG(&sc->hw, E1000_EIAC, sc->intr_mask);
2823                 else
2824                         E1000_WRITE_REG(&sc->hw, E1000_EIAC, 0);
2825                 E1000_WRITE_REG(&sc->hw, E1000_EIAM, sc->intr_mask);
2826                 E1000_WRITE_REG(&sc->hw, E1000_EIMS, sc->intr_mask);
2827                 E1000_WRITE_REG(&sc->hw, E1000_IMS, E1000_IMS_LSC);
2828         } else {
2829                 E1000_WRITE_REG(&sc->hw, E1000_IMS, IMS_ENABLE_MASK);
2830         }
2831         E1000_WRITE_FLUSH(&sc->hw);
2832 }
2833
2834 static void
2835 igb_disable_intr(struct igb_softc *sc)
2836 {
2837         if ((sc->flags & IGB_FLAG_SHARED_INTR) == 0) {
2838                 E1000_WRITE_REG(&sc->hw, E1000_EIMC, 0xffffffff);
2839                 E1000_WRITE_REG(&sc->hw, E1000_EIAC, 0);
2840         }
2841         E1000_WRITE_REG(&sc->hw, E1000_IMC, 0xffffffff);
2842         E1000_WRITE_FLUSH(&sc->hw);
2843
2844         if (sc->intr_type != PCI_INTR_TYPE_MSIX) {
2845                 lwkt_serialize_handler_disable(&sc->main_serialize);
2846         } else {
2847                 int i;
2848
2849                 for (i = 0; i < sc->msix_cnt; ++i) {
2850                         lwkt_serialize_handler_disable(
2851                             sc->msix_data[i].msix_serialize);
2852                 }
2853         }
2854 }
2855
2856 /*
2857  * Bit of a misnomer, what this really means is
2858  * to enable OS management of the system... aka
2859  * to disable special hardware management features 
2860  */
2861 static void
2862 igb_get_mgmt(struct igb_softc *sc)
2863 {
2864         if (sc->flags & IGB_FLAG_HAS_MGMT) {
2865                 int manc2h = E1000_READ_REG(&sc->hw, E1000_MANC2H);
2866                 int manc = E1000_READ_REG(&sc->hw, E1000_MANC);
2867
2868                 /* disable hardware interception of ARP */
2869                 manc &= ~E1000_MANC_ARP_EN;
2870
2871                 /* enable receiving management packets to the host */
2872                 manc |= E1000_MANC_EN_MNG2HOST;
2873                 manc2h |= 1 << 5; /* Mng Port 623 */
2874                 manc2h |= 1 << 6; /* Mng Port 664 */
2875                 E1000_WRITE_REG(&sc->hw, E1000_MANC2H, manc2h);
2876                 E1000_WRITE_REG(&sc->hw, E1000_MANC, manc);
2877         }
2878 }
2879
2880 /*
2881  * Give control back to hardware management controller
2882  * if there is one.
2883  */
2884 static void
2885 igb_rel_mgmt(struct igb_softc *sc)
2886 {
2887         if (sc->flags & IGB_FLAG_HAS_MGMT) {
2888                 int manc = E1000_READ_REG(&sc->hw, E1000_MANC);
2889
2890                 /* Re-enable hardware interception of ARP */
2891                 manc |= E1000_MANC_ARP_EN;
2892                 manc &= ~E1000_MANC_EN_MNG2HOST;
2893
2894                 E1000_WRITE_REG(&sc->hw, E1000_MANC, manc);
2895         }
2896 }
2897
2898 /*
2899  * Sets CTRL_EXT:DRV_LOAD bit.
2900  *
2901  * For ASF and Pass Through versions of f/w this means that
2902  * the driver is loaded. 
2903  */
2904 static void
2905 igb_get_hw_control(struct igb_softc *sc)
2906 {
2907         uint32_t ctrl_ext;
2908
2909         if (sc->vf_ifp)
2910                 return;
2911
2912         /* Let firmware know the driver has taken over */
2913         ctrl_ext = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
2914         E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT,
2915             ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
2916 }
2917
2918 /*
2919  * Resets CTRL_EXT:DRV_LOAD bit.
2920  *
2921  * For ASF and Pass Through versions of f/w this means that the
2922  * driver is no longer loaded.
2923  */
2924 static void
2925 igb_rel_hw_control(struct igb_softc *sc)
2926 {
2927         uint32_t ctrl_ext;
2928
2929         if (sc->vf_ifp)
2930                 return;
2931
2932         /* Let firmware taken over control of h/w */
2933         ctrl_ext = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
2934         E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT,
2935             ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
2936 }
2937
2938 static boolean_t
2939 igb_is_valid_ether_addr(const uint8_t *addr)
2940 {
2941         uint8_t zero_addr[ETHER_ADDR_LEN] = { 0, 0, 0, 0, 0, 0 };
2942
2943         if ((addr[0] & 1) || !bcmp(addr, zero_addr, ETHER_ADDR_LEN))
2944                 return FALSE;
2945         return TRUE;
2946 }
2947
2948 /*
2949  * Enable PCI Wake On Lan capability
2950  */
2951 static void
2952 igb_enable_wol(device_t dev)
2953 {
2954         uint16_t cap, status;
2955         uint8_t id;
2956
2957         /* First find the capabilities pointer*/
2958         cap = pci_read_config(dev, PCIR_CAP_PTR, 2);
2959
2960         /* Read the PM Capabilities */
2961         id = pci_read_config(dev, cap, 1);
2962         if (id != PCIY_PMG)     /* Something wrong */
2963                 return;
2964
2965         /*
2966          * OK, we have the power capabilities,
2967          * so now get the status register
2968          */
2969         cap += PCIR_POWER_STATUS;
2970         status = pci_read_config(dev, cap, 2);
2971         status |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
2972         pci_write_config(dev, cap, status, 2);
2973 }
2974
2975 static void
2976 igb_update_stats_counters(struct igb_softc *sc)
2977 {
2978         struct e1000_hw *hw = &sc->hw;
2979         struct e1000_hw_stats *stats;
2980         struct ifnet *ifp = &sc->arpcom.ac_if;
2981
2982         /* 
2983          * The virtual function adapter has only a
2984          * small controlled set of stats, do only 
2985          * those and return.
2986          */
2987         if (sc->vf_ifp) {
2988                 igb_update_vf_stats_counters(sc);
2989                 return;
2990         }
2991         stats = sc->stats;
2992
2993         if (sc->hw.phy.media_type == e1000_media_type_copper ||
2994             (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) {
2995                 stats->symerrs +=
2996                     E1000_READ_REG(hw,E1000_SYMERRS);
2997                 stats->sec += E1000_READ_REG(hw, E1000_SEC);
2998         }
2999
3000         stats->crcerrs += E1000_READ_REG(hw, E1000_CRCERRS);
3001         stats->mpc += E1000_READ_REG(hw, E1000_MPC);
3002         stats->scc += E1000_READ_REG(hw, E1000_SCC);
3003         stats->ecol += E1000_READ_REG(hw, E1000_ECOL);
3004
3005         stats->mcc += E1000_READ_REG(hw, E1000_MCC);
3006         stats->latecol += E1000_READ_REG(hw, E1000_LATECOL);
3007         stats->colc += E1000_READ_REG(hw, E1000_COLC);
3008         stats->dc += E1000_READ_REG(hw, E1000_DC);
3009         stats->rlec += E1000_READ_REG(hw, E1000_RLEC);
3010         stats->xonrxc += E1000_READ_REG(hw, E1000_XONRXC);
3011         stats->xontxc += E1000_READ_REG(hw, E1000_XONTXC);
3012
3013         /*
3014          * For watchdog management we need to know if we have been
3015          * paused during the last interval, so capture that here.
3016          */ 
3017         sc->pause_frames = E1000_READ_REG(hw, E1000_XOFFRXC);
3018         stats->xoffrxc += sc->pause_frames;
3019         stats->xofftxc += E1000_READ_REG(hw, E1000_XOFFTXC);
3020         stats->fcruc += E1000_READ_REG(hw, E1000_FCRUC);
3021         stats->prc64 += E1000_READ_REG(hw, E1000_PRC64);
3022         stats->prc127 += E1000_READ_REG(hw, E1000_PRC127);
3023         stats->prc255 += E1000_READ_REG(hw, E1000_PRC255);
3024         stats->prc511 += E1000_READ_REG(hw, E1000_PRC511);
3025         stats->prc1023 += E1000_READ_REG(hw, E1000_PRC1023);
3026         stats->prc1522 += E1000_READ_REG(hw, E1000_PRC1522);
3027         stats->gprc += E1000_READ_REG(hw, E1000_GPRC);
3028         stats->bprc += E1000_READ_REG(hw, E1000_BPRC);
3029         stats->mprc += E1000_READ_REG(hw, E1000_MPRC);
3030         stats->gptc += E1000_READ_REG(hw, E1000_GPTC);
3031
3032         /* For the 64-bit byte counters the low dword must be read first. */
3033         /* Both registers clear on the read of the high dword */
3034
3035         stats->gorc += E1000_READ_REG(hw, E1000_GORCL) +
3036             ((uint64_t)E1000_READ_REG(hw, E1000_GORCH) << 32);
3037         stats->gotc += E1000_READ_REG(hw, E1000_GOTCL) +
3038             ((uint64_t)E1000_READ_REG(hw, E1000_GOTCH) << 32);
3039
3040         stats->rnbc += E1000_READ_REG(hw, E1000_RNBC);
3041         stats->ruc += E1000_READ_REG(hw, E1000_RUC);
3042         stats->rfc += E1000_READ_REG(hw, E1000_RFC);
3043         stats->roc += E1000_READ_REG(hw, E1000_ROC);
3044         stats->rjc += E1000_READ_REG(hw, E1000_RJC);
3045
3046         stats->tor += E1000_READ_REG(hw, E1000_TORH);
3047         stats->tot += E1000_READ_REG(hw, E1000_TOTH);
3048
3049         stats->tpr += E1000_READ_REG(hw, E1000_TPR);
3050         stats->tpt += E1000_READ_REG(hw, E1000_TPT);
3051         stats->ptc64 += E1000_READ_REG(hw, E1000_PTC64);
3052         stats->ptc127 += E1000_READ_REG(hw, E1000_PTC127);
3053         stats->ptc255 += E1000_READ_REG(hw, E1000_PTC255);
3054         stats->ptc511 += E1000_READ_REG(hw, E1000_PTC511);
3055         stats->ptc1023 += E1000_READ_REG(hw, E1000_PTC1023);
3056         stats->ptc1522 += E1000_READ_REG(hw, E1000_PTC1522);
3057         stats->mptc += E1000_READ_REG(hw, E1000_MPTC);
3058         stats->bptc += E1000_READ_REG(hw, E1000_BPTC);
3059
3060         /* Interrupt Counts */
3061
3062         stats->iac += E1000_READ_REG(hw, E1000_IAC);
3063         stats->icrxptc += E1000_READ_REG(hw, E1000_ICRXPTC);
3064         stats->icrxatc += E1000_READ_REG(hw, E1000_ICRXATC);
3065         stats->ictxptc += E1000_READ_REG(hw, E1000_ICTXPTC);
3066         stats->ictxatc += E1000_READ_REG(hw, E1000_ICTXATC);
3067         stats->ictxqec += E1000_READ_REG(hw, E1000_ICTXQEC);
3068         stats->ictxqmtc += E1000_READ_REG(hw, E1000_ICTXQMTC);
3069         stats->icrxdmtc += E1000_READ_REG(hw, E1000_ICRXDMTC);
3070         stats->icrxoc += E1000_READ_REG(hw, E1000_ICRXOC);
3071
3072         /* Host to Card Statistics */
3073
3074         stats->cbtmpc += E1000_READ_REG(hw, E1000_CBTMPC);
3075         stats->htdpmc += E1000_READ_REG(hw, E1000_HTDPMC);
3076         stats->cbrdpc += E1000_READ_REG(hw, E1000_CBRDPC);
3077         stats->cbrmpc += E1000_READ_REG(hw, E1000_CBRMPC);
3078         stats->rpthc += E1000_READ_REG(hw, E1000_RPTHC);
3079         stats->hgptc += E1000_READ_REG(hw, E1000_HGPTC);
3080         stats->htcbdpc += E1000_READ_REG(hw, E1000_HTCBDPC);
3081         stats->hgorc += (E1000_READ_REG(hw, E1000_HGORCL) +
3082             ((uint64_t)E1000_READ_REG(hw, E1000_HGORCH) << 32));
3083         stats->hgotc += (E1000_READ_REG(hw, E1000_HGOTCL) +
3084             ((uint64_t)E1000_READ_REG(hw, E1000_HGOTCH) << 32));
3085         stats->lenerrs += E1000_READ_REG(hw, E1000_LENERRS);
3086         stats->scvpc += E1000_READ_REG(hw, E1000_SCVPC);
3087         stats->hrmpc += E1000_READ_REG(hw, E1000_HRMPC);
3088
3089         stats->algnerrc += E1000_READ_REG(hw, E1000_ALGNERRC);
3090         stats->rxerrc += E1000_READ_REG(hw, E1000_RXERRC);
3091         stats->tncrs += E1000_READ_REG(hw, E1000_TNCRS);
3092         stats->cexterr += E1000_READ_REG(hw, E1000_CEXTERR);
3093         stats->tsctc += E1000_READ_REG(hw, E1000_TSCTC);
3094         stats->tsctfc += E1000_READ_REG(hw, E1000_TSCTFC);
3095
3096         IFNET_STAT_SET(ifp, collisions, stats->colc);
3097
3098         /* Rx Errors */
3099         IFNET_STAT_SET(ifp, ierrors,
3100             stats->rxerrc + stats->crcerrs + stats->algnerrc +
3101             stats->ruc + stats->roc + stats->mpc + stats->cexterr);
3102
3103         /* Tx Errors */
3104         IFNET_STAT_SET(ifp, oerrors,
3105             stats->ecol + stats->latecol + sc->watchdog_events);
3106
3107         /* Driver specific counters */
3108         sc->device_control = E1000_READ_REG(hw, E1000_CTRL);
3109         sc->rx_control = E1000_READ_REG(hw, E1000_RCTL);
3110         sc->int_mask = E1000_READ_REG(hw, E1000_IMS);
3111         sc->eint_mask = E1000_READ_REG(hw, E1000_EIMS);
3112         sc->packet_buf_alloc_tx =
3113             ((E1000_READ_REG(hw, E1000_PBA) & 0xffff0000) >> 16);
3114         sc->packet_buf_alloc_rx =
3115             (E1000_READ_REG(hw, E1000_PBA) & 0xffff);
3116 }
3117
3118 static void
3119 igb_vf_init_stats(struct igb_softc *sc)
3120 {
3121         struct e1000_hw *hw = &sc->hw;
3122         struct e1000_vf_stats *stats;
3123
3124         stats = sc->stats;
3125         stats->last_gprc = E1000_READ_REG(hw, E1000_VFGPRC);
3126         stats->last_gorc = E1000_READ_REG(hw, E1000_VFGORC);
3127         stats->last_gptc = E1000_READ_REG(hw, E1000_VFGPTC);
3128         stats->last_gotc = E1000_READ_REG(hw, E1000_VFGOTC);
3129         stats->last_mprc = E1000_READ_REG(hw, E1000_VFMPRC);
3130 }
3131  
3132 static void
3133 igb_update_vf_stats_counters(struct igb_softc *sc)
3134 {
3135         struct e1000_hw *hw = &sc->hw;
3136         struct e1000_vf_stats *stats;
3137
3138         if (sc->link_speed == 0)
3139                 return;
3140
3141         stats = sc->stats;
3142         UPDATE_VF_REG(E1000_VFGPRC, stats->last_gprc, stats->gprc);
3143         UPDATE_VF_REG(E1000_VFGORC, stats->last_gorc, stats->gorc);
3144         UPDATE_VF_REG(E1000_VFGPTC, stats->last_gptc, stats->gptc);
3145         UPDATE_VF_REG(E1000_VFGOTC, stats->last_gotc, stats->gotc);
3146         UPDATE_VF_REG(E1000_VFMPRC, stats->last_mprc, stats->mprc);
3147 }
3148
3149 #ifdef IFPOLL_ENABLE
3150
3151 static void
3152 igb_npoll_status(struct ifnet *ifp)
3153 {
3154         struct igb_softc *sc = ifp->if_softc;
3155         uint32_t reg_icr;
3156
3157         ASSERT_SERIALIZED(&sc->main_serialize);
3158
3159         reg_icr = E1000_READ_REG(&sc->hw, E1000_ICR);
3160         if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3161                 sc->hw.mac.get_link_status = 1;
3162                 igb_update_link_status(sc);
3163         }
3164 }
3165
3166 static void
3167 igb_npoll_tx(struct ifnet *ifp, void *arg, int cycle __unused)
3168 {
3169         struct igb_tx_ring *txr = arg;
3170
3171         ASSERT_SERIALIZED(&txr->tx_serialize);
3172
3173         igb_txeof(txr);
3174         if (!ifsq_is_empty(txr->ifsq))
3175                 ifsq_devstart(txr->ifsq);
3176 }
3177
3178 static void
3179 igb_npoll_rx(struct ifnet *ifp __unused, void *arg, int cycle)
3180 {
3181         struct igb_rx_ring *rxr = arg;
3182
3183         ASSERT_SERIALIZED(&rxr->rx_serialize);
3184
3185         igb_rxeof(rxr, cycle);
3186 }
3187
3188 static void
3189 igb_npoll(struct ifnet *ifp, struct ifpoll_info *info)
3190 {
3191         struct igb_softc *sc = ifp->if_softc;
3192         int i, txr_cnt, rxr_cnt;
3193
3194         ASSERT_IFNET_SERIALIZED_ALL(ifp);
3195
3196         if (info) {
3197                 int off;
3198
3199                 info->ifpi_status.status_func = igb_npoll_status;
3200                 info->ifpi_status.serializer = &sc->main_serialize;
3201
3202                 txr_cnt = igb_get_txring_inuse(sc, TRUE);
3203                 off = sc->tx_npoll_off;
3204                 for (i = 0; i < txr_cnt; ++i) {
3205                         struct igb_tx_ring *txr = &sc->tx_rings[i];
3206                         int idx = i + off;
3207
3208                         KKASSERT(idx < ncpus2);
3209                         info->ifpi_tx[idx].poll_func = igb_npoll_tx;
3210                         info->ifpi_tx[idx].arg = txr;
3211                         info->ifpi_tx[idx].serializer = &txr->tx_serialize;
3212                         ifsq_set_cpuid(txr->ifsq, idx);
3213                 }
3214
3215                 rxr_cnt = igb_get_rxring_inuse(sc, TRUE);
3216                 off = sc->rx_npoll_off;
3217                 for (i = 0; i < rxr_cnt; ++i) {
3218                         struct igb_rx_ring *rxr = &sc->rx_rings[i];
3219                         int idx = i + off;
3220
3221                         KKASSERT(idx < ncpus2);
3222                         info->ifpi_rx[idx].poll_func = igb_npoll_rx;
3223                         info->ifpi_rx[idx].arg = rxr;
3224                         info->ifpi_rx[idx].serializer = &rxr->rx_serialize;
3225                 }
3226
3227                 if (ifp->if_flags & IFF_RUNNING) {
3228                         if (rxr_cnt == sc->rx_ring_inuse &&
3229                             txr_cnt == sc->tx_ring_inuse) {
3230                                 igb_set_timer_cpuid(sc, TRUE);
3231                                 igb_disable_intr(sc);
3232                         } else {
3233                                 igb_init(sc);
3234                         }
3235                 }
3236         } else {
3237                 for (i = 0; i < sc->tx_ring_cnt; ++i) {
3238                         struct igb_tx_ring *txr = &sc->tx_rings[i];
3239
3240                         ifsq_set_cpuid(txr->ifsq, txr->tx_intr_cpuid);
3241                 }
3242
3243                 if (ifp->if_flags & IFF_RUNNING) {
3244                         txr_cnt = igb_get_txring_inuse(sc, FALSE);
3245                         rxr_cnt = igb_get_rxring_inuse(sc, FALSE);
3246
3247                         if (rxr_cnt == sc->rx_ring_inuse &&
3248                             txr_cnt == sc->tx_ring_inuse) {
3249                                 igb_set_timer_cpuid(sc, FALSE);
3250                                 igb_enable_intr(sc);
3251                         } else {
3252                                 igb_init(sc);
3253                         }
3254                 }
3255         }
3256 }
3257
3258 #endif /* IFPOLL_ENABLE */
3259
3260 static void
3261 igb_intr(void *xsc)
3262 {
3263         struct igb_softc *sc = xsc;
3264         struct ifnet *ifp = &sc->arpcom.ac_if;
3265         uint32_t eicr;
3266
3267         ASSERT_SERIALIZED(&sc->main_serialize);
3268
3269         eicr = E1000_READ_REG(&sc->hw, E1000_EICR);
3270
3271         if (eicr == 0)
3272                 return;
3273
3274         if (ifp->if_flags & IFF_RUNNING) {
3275                 struct igb_tx_ring *txr = &sc->tx_rings[0];
3276                 int i;
3277
3278                 for (i = 0; i < sc->rx_ring_inuse; ++i) {
3279                         struct igb_rx_ring *rxr = &sc->rx_rings[i];
3280
3281                         if (eicr & rxr->rx_intr_mask) {
3282                                 lwkt_serialize_enter(&rxr->rx_serialize);
3283                                 igb_rxeof(rxr, -1);
3284                                 lwkt_serialize_exit(&rxr->rx_serialize);
3285                         }
3286                 }
3287
3288                 if (eicr & txr->tx_intr_mask) {
3289                         lwkt_serialize_enter(&txr->tx_serialize);
3290                         igb_txeof(txr);
3291                         if (!ifsq_is_empty(txr->ifsq))
3292                                 ifsq_devstart(txr->ifsq);
3293                         lwkt_serialize_exit(&txr->tx_serialize);
3294                 }
3295         }
3296
3297         if (eicr & E1000_EICR_OTHER) {
3298                 uint32_t icr = E1000_READ_REG(&sc->hw, E1000_ICR);
3299
3300                 /* Link status change */
3301                 if (icr & E1000_ICR_LSC) {
3302                         sc->hw.mac.get_link_status = 1;
3303                         igb_update_link_status(sc);
3304                 }
3305         }
3306
3307         /*
3308          * Reading EICR has the side effect to clear interrupt mask,
3309          * so all interrupts need to be enabled here.
3310          */
3311         E1000_WRITE_REG(&sc->hw, E1000_EIMS, sc->intr_mask);
3312 }
3313
3314 static void
3315 igb_intr_shared(void *xsc)
3316 {
3317         struct igb_softc *sc = xsc;
3318         struct ifnet *ifp = &sc->arpcom.ac_if;
3319         uint32_t reg_icr;
3320
3321         ASSERT_SERIALIZED(&sc->main_serialize);
3322
3323         reg_icr = E1000_READ_REG(&sc->hw, E1000_ICR);
3324
3325         /* Hot eject?  */
3326         if (reg_icr == 0xffffffff)
3327                 return;
3328
3329         /* Definitely not our interrupt.  */
3330         if (reg_icr == 0x0)
3331                 return;
3332
3333         if ((reg_icr & E1000_ICR_INT_ASSERTED) == 0)
3334                 return;
3335
3336         if (ifp->if_flags & IFF_RUNNING) {
3337                 if (reg_icr &
3338                     (E1000_ICR_RXT0 | E1000_ICR_RXDMT0 | E1000_ICR_RXO)) {
3339                         int i;
3340
3341                         for (i = 0; i < sc->rx_ring_inuse; ++i) {
3342                                 struct igb_rx_ring *rxr = &sc->rx_rings[i];
3343
3344                                 lwkt_serialize_enter(&rxr->rx_serialize);
3345                                 igb_rxeof(rxr, -1);
3346                                 lwkt_serialize_exit(&rxr->rx_serialize);
3347                         }
3348                 }
3349
3350                 if (reg_icr & E1000_ICR_TXDW) {
3351                         struct igb_tx_ring *txr = &sc->tx_rings[0];
3352
3353                         lwkt_serialize_enter(&txr->tx_serialize);
3354                         igb_txeof(txr);
3355                         if (!ifsq_is_empty(txr->ifsq))
3356                                 ifsq_devstart(txr->ifsq);
3357                         lwkt_serialize_exit(&txr->tx_serialize);
3358                 }
3359         }
3360
3361         /* Link status change */
3362         if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3363                 sc->hw.mac.get_link_status = 1;
3364                 igb_update_link_status(sc);
3365         }
3366
3367         if (reg_icr & E1000_ICR_RXO)
3368                 sc->rx_overruns++;
3369 }
3370
3371 static int
3372 igb_encap(struct igb_tx_ring *txr, struct mbuf **m_headp,
3373     int *segs_used, int *idx)
3374 {
3375         bus_dma_segment_t segs[IGB_MAX_SCATTER];
3376         bus_dmamap_t map;
3377         struct igb_tx_buf *tx_buf, *tx_buf_mapped;
3378         union e1000_adv_tx_desc *txd = NULL;
3379         struct mbuf *m_head = *m_headp;
3380         uint32_t olinfo_status = 0, cmd_type_len = 0, cmd_rs = 0;
3381         int maxsegs, nsegs, i, j, error;
3382         uint32_t hdrlen = 0;
3383
3384         if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
3385                 error = igb_tso_pullup(txr, m_headp);
3386                 if (error)
3387                         return error;
3388                 m_head = *m_headp;
3389         }
3390
3391         /* Set basic descriptor constants */
3392         cmd_type_len |= E1000_ADVTXD_DTYP_DATA;
3393         cmd_type_len |= E1000_ADVTXD_DCMD_IFCS | E1000_ADVTXD_DCMD_DEXT;
3394         if (m_head->m_flags & M_VLANTAG)
3395                 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
3396
3397         /*
3398          * Map the packet for DMA.
3399          */
3400         tx_buf = &txr->tx_buf[txr->next_avail_desc];
3401         tx_buf_mapped = tx_buf;
3402         map = tx_buf->map;
3403
3404         maxsegs = txr->tx_avail - IGB_TX_RESERVED;
3405         KASSERT(maxsegs >= txr->spare_desc, ("not enough spare TX desc\n"));
3406         if (maxsegs > IGB_MAX_SCATTER)
3407                 maxsegs = IGB_MAX_SCATTER;
3408
3409         error = bus_dmamap_load_mbuf_defrag(txr->tx_tag, map, m_headp,
3410             segs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
3411         if (error) {
3412                 if (error == ENOBUFS)
3413                         txr->sc->mbuf_defrag_failed++;
3414                 else
3415                         txr->sc->no_tx_dma_setup++;
3416
3417                 m_freem(*m_headp);
3418                 *m_headp = NULL;
3419                 return error;
3420         }
3421         bus_dmamap_sync(txr->tx_tag, map, BUS_DMASYNC_PREWRITE);
3422
3423         m_head = *m_headp;
3424
3425         /*
3426          * Set up the TX context descriptor, if any hardware offloading is
3427          * needed.  This includes CSUM, VLAN, and TSO.  It will consume one
3428          * TX descriptor.
3429          *
3430          * Unlike these chips' predecessors (em/emx), TX context descriptor
3431          * will _not_ interfere TX data fetching pipelining.
3432          */
3433         if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
3434                 igb_tso_ctx(txr, m_head, &hdrlen);
3435                 cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
3436                 olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
3437                 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
3438                 txr->tx_nsegs++;
3439                 (*segs_used)++;
3440         } else if (igb_txcsum_ctx(txr, m_head)) {
3441                 if (m_head->m_pkthdr.csum_flags & CSUM_IP)
3442                         olinfo_status |= (E1000_TXD_POPTS_IXSM << 8);
3443                 if (m_head->m_pkthdr.csum_flags & (CSUM_UDP | CSUM_TCP))
3444                         olinfo_status |= (E1000_TXD_POPTS_TXSM << 8);
3445                 txr->tx_nsegs++;
3446                 (*segs_used)++;
3447         }
3448
3449         *segs_used += nsegs;
3450         txr->tx_nsegs += nsegs;
3451         if (txr->tx_nsegs >= txr->intr_nsegs) {
3452                 /*
3453                  * Report Status (RS) is turned on every intr_nsegs
3454                  * descriptors (roughly).
3455                  */
3456                 txr->tx_nsegs = 0;
3457                 cmd_rs = E1000_ADVTXD_DCMD_RS;
3458         }
3459
3460         /* Calculate payload length */
3461         olinfo_status |= ((m_head->m_pkthdr.len - hdrlen)
3462             << E1000_ADVTXD_PAYLEN_SHIFT);
3463
3464         /*
3465          * 82575 needs the TX context index added; the queue
3466          * index is used as TX context index here.
3467          */
3468         if (txr->sc->hw.mac.type == e1000_82575)
3469                 olinfo_status |= txr->me << 4;
3470
3471         /* Set up our transmit descriptors */
3472         i = txr->next_avail_desc;
3473         for (j = 0; j < nsegs; j++) {
3474                 bus_size_t seg_len;
3475                 bus_addr_t seg_addr;
3476
3477                 tx_buf = &txr->tx_buf[i];
3478                 txd = (union e1000_adv_tx_desc *)&txr->tx_base[i];
3479                 seg_addr = segs[j].ds_addr;
3480                 seg_len = segs[j].ds_len;
3481
3482                 txd->read.buffer_addr = htole64(seg_addr);
3483                 txd->read.cmd_type_len = htole32(cmd_type_len | seg_len);
3484                 txd->read.olinfo_status = htole32(olinfo_status);
3485                 if (++i == txr->num_tx_desc)
3486                         i = 0;
3487                 tx_buf->m_head = NULL;
3488         }
3489
3490         KASSERT(txr->tx_avail > nsegs, ("invalid avail TX desc\n"));
3491         txr->next_avail_desc = i;
3492         txr->tx_avail -= nsegs;
3493
3494         tx_buf->m_head = m_head;
3495         tx_buf_mapped->map = tx_buf->map;
3496         tx_buf->map = map;
3497
3498         /*
3499          * Last Descriptor of Packet needs End Of Packet (EOP)
3500          */
3501         txd->read.cmd_type_len |= htole32(E1000_ADVTXD_DCMD_EOP | cmd_rs);
3502
3503         /*
3504          * Defer TDT updating, until enough descrptors are setup
3505          */
3506         *idx = i;
3507 #ifdef IGB_TSS_DEBUG
3508         ++txr->tx_packets;
3509 #endif
3510
3511         return 0;
3512 }
3513
3514 static void
3515 igb_start(struct ifnet *ifp, struct ifaltq_subque *ifsq)
3516 {
3517         struct igb_softc *sc = ifp->if_softc;
3518         struct igb_tx_ring *txr = ifsq_get_priv(ifsq);
3519         struct mbuf *m_head;
3520         int idx = -1, nsegs = 0;
3521
3522         KKASSERT(txr->ifsq == ifsq);
3523         ASSERT_SERIALIZED(&txr->tx_serialize);
3524
3525         if ((ifp->if_flags & IFF_RUNNING) == 0 || ifsq_is_oactive(ifsq))
3526                 return;
3527
3528         if (!sc->link_active || (txr->tx_flags & IGB_TXFLAG_ENABLED) == 0) {
3529                 ifsq_purge(ifsq);
3530                 return;
3531         }
3532
3533         if (!IGB_IS_NOT_OACTIVE(txr))
3534                 igb_txeof(txr);
3535
3536         while (!ifsq_is_empty(ifsq)) {
3537                 if (IGB_IS_OACTIVE(txr)) {
3538                         ifsq_set_oactive(ifsq);
3539                         /* Set watchdog on */
3540                         txr->tx_watchdog.wd_timer = 5;
3541                         break;
3542                 }
3543
3544                 m_head = ifsq_dequeue(ifsq);
3545                 if (m_head == NULL)
3546                         break;
3547
3548                 if (igb_encap(txr, &m_head, &nsegs, &idx)) {
3549                         IFNET_STAT_INC(ifp, oerrors, 1);
3550                         continue;
3551                 }
3552
3553                 /*
3554                  * TX interrupt are aggressively aggregated, so increasing
3555                  * opackets at TX interrupt time will make the opackets
3556                  * statistics vastly inaccurate; we do the opackets increment
3557                  * now.
3558                  */
3559                 IFNET_STAT_INC(ifp, opackets, 1);
3560
3561                 if (nsegs >= txr->wreg_nsegs) {
3562                         E1000_WRITE_REG(&txr->sc->hw, E1000_TDT(txr->me), idx);
3563                         idx = -1;
3564                         nsegs = 0;
3565                 }
3566
3567                 /* Send a copy of the frame to the BPF listener */
3568                 ETHER_BPF_MTAP(ifp, m_head);
3569         }
3570         if (idx >= 0)
3571                 E1000_WRITE_REG(&txr->sc->hw, E1000_TDT(txr->me), idx);
3572 }
3573
3574 static void
3575 igb_watchdog(struct ifaltq_subque *ifsq)
3576 {
3577         struct igb_tx_ring *txr = ifsq_get_priv(ifsq);
3578         struct ifnet *ifp = ifsq_get_ifp(ifsq);
3579         struct igb_softc *sc = ifp->if_softc;
3580         int i;
3581
3582         KKASSERT(txr->ifsq == ifsq);
3583         ASSERT_IFNET_SERIALIZED_ALL(ifp);
3584
3585         /* 
3586          * If flow control has paused us since last checking
3587          * it invalidates the watchdog timing, so dont run it.
3588          */
3589         if (sc->pause_frames) {
3590                 sc->pause_frames = 0;
3591                 txr->tx_watchdog.wd_timer = 5;
3592                 return;
3593         }
3594
3595         if_printf(ifp, "Watchdog timeout -- resetting\n");
3596         if_printf(ifp, "Queue(%d) tdh = %d, hw tdt = %d\n", txr->me,
3597             E1000_READ_REG(&sc->hw, E1000_TDH(txr->me)),
3598             E1000_READ_REG(&sc->hw, E1000_TDT(txr->me)));
3599         if_printf(ifp, "TX(%d) desc avail = %d, "
3600             "Next TX to Clean = %d\n",
3601             txr->me, txr->tx_avail, txr->next_to_clean);
3602
3603         IFNET_STAT_INC(ifp, oerrors, 1);
3604         sc->watchdog_events++;
3605
3606         igb_init(sc);
3607         for (i = 0; i < sc->tx_ring_inuse; ++i)
3608                 ifsq_devstart_sched(sc->tx_rings[i].ifsq);
3609 }
3610
3611 static void
3612 igb_set_eitr(struct igb_softc *sc, int idx, int rate)
3613 {
3614         uint32_t eitr = 0;
3615
3616         if (rate > 0) {
3617                 if (sc->hw.mac.type == e1000_82575) {
3618                         eitr = 1000000000 / 256 / rate;
3619                         /*
3620                          * NOTE:
3621                          * Document is wrong on the 2 bits left shift
3622                          */
3623                 } else {
3624                         eitr = 1000000 / rate;
3625                         eitr <<= IGB_EITR_INTVL_SHIFT;
3626                 }
3627
3628                 if (eitr == 0) {
3629                         /* Don't disable it */
3630                         eitr = 1 << IGB_EITR_INTVL_SHIFT;
3631                 } else if (eitr > IGB_EITR_INTVL_MASK) {
3632                         /* Don't allow it to be too large */
3633                         eitr = IGB_EITR_INTVL_MASK;
3634                 }
3635         }
3636         if (sc->hw.mac.type == e1000_82575)
3637                 eitr |= eitr << 16;
3638         else
3639                 eitr |= E1000_EITR_CNT_IGNR;
3640         E1000_WRITE_REG(&sc->hw, E1000_EITR(idx), eitr);
3641 }
3642
3643 static int
3644 igb_sysctl_intr_rate(SYSCTL_HANDLER_ARGS)
3645 {
3646         struct igb_softc *sc = (void *)arg1;
3647         struct ifnet *ifp = &sc->arpcom.ac_if;
3648         int error, intr_rate;
3649
3650         intr_rate = sc->intr_rate;
3651         error = sysctl_handle_int(oidp, &intr_rate, 0, req);
3652         if (error || req->newptr == NULL)
3653                 return error;
3654         if (intr_rate < 0)
3655                 return EINVAL;
3656
3657         ifnet_serialize_all(ifp);
3658
3659         sc->intr_rate = intr_rate;
3660         if (ifp->if_flags & IFF_RUNNING)
3661                 igb_set_eitr(sc, 0, sc->intr_rate);
3662
3663         if (bootverbose)
3664                 if_printf(ifp, "interrupt rate set to %d/sec\n", sc->intr_rate);
3665
3666         ifnet_deserialize_all(ifp);
3667
3668         return 0;
3669 }
3670
3671 static int
3672 igb_sysctl_msix_rate(SYSCTL_HANDLER_ARGS)
3673 {
3674         struct igb_msix_data *msix = (void *)arg1;
3675         struct igb_softc *sc = msix->msix_sc;
3676         struct ifnet *ifp = &sc->arpcom.ac_if;
3677         int error, msix_rate;
3678
3679         msix_rate = msix->msix_rate;
3680         error = sysctl_handle_int(oidp, &msix_rate, 0, req);
3681         if (error || req->newptr == NULL)
3682                 return error;
3683         if (msix_rate < 0)
3684                 return EINVAL;
3685
3686         lwkt_serialize_enter(msix->msix_serialize);
3687
3688         msix->msix_rate = msix_rate;
3689         if (ifp->if_flags & IFF_RUNNING)
3690                 igb_set_eitr(sc, msix->msix_vector, msix->msix_rate);
3691
3692         if (bootverbose) {
3693                 if_printf(ifp, "%s set to %d/sec\n", msix->msix_rate_desc,
3694                     msix->msix_rate);
3695         }
3696
3697         lwkt_serialize_exit(msix->msix_serialize);
3698
3699         return 0;
3700 }
3701
3702 static int
3703 igb_sysctl_tx_intr_nsegs(SYSCTL_HANDLER_ARGS)
3704 {
3705         struct igb_softc *sc = (void *)arg1;
3706         struct ifnet *ifp = &sc->arpcom.ac_if;
3707         struct igb_tx_ring *txr = &sc->tx_rings[0];
3708         int error, nsegs;
3709
3710         nsegs = txr->intr_nsegs;
3711         error = sysctl_handle_int(oidp, &nsegs, 0, req);
3712         if (error || req->newptr == NULL)
3713                 return error;
3714         if (nsegs <= 0)
3715                 return EINVAL;
3716
3717         ifnet_serialize_all(ifp);
3718
3719         if (nsegs >= txr->num_tx_desc - txr->oact_lo_desc ||
3720             nsegs >= txr->oact_hi_desc - IGB_MAX_SCATTER) {
3721                 error = EINVAL;
3722         } else {
3723                 int i;
3724
3725                 error = 0;
3726                 for (i = 0; i < sc->tx_ring_cnt; ++i)
3727                         sc->tx_rings[i].intr_nsegs = nsegs;
3728         }
3729
3730         ifnet_deserialize_all(ifp);
3731
3732         return error;
3733 }
3734
3735 static int
3736 igb_sysctl_rx_wreg_nsegs(SYSCTL_HANDLER_ARGS)
3737 {
3738         struct igb_softc *sc = (void *)arg1;
3739         struct ifnet *ifp = &sc->arpcom.ac_if;
3740         int error, nsegs, i;
3741
3742         nsegs = sc->rx_rings[0].wreg_nsegs;
3743         error = sysctl_handle_int(oidp, &nsegs, 0, req);
3744         if (error || req->newptr == NULL)
3745                 return error;
3746
3747         ifnet_serialize_all(ifp);
3748         for (i = 0; i < sc->rx_ring_cnt; ++i)
3749                 sc->rx_rings[i].wreg_nsegs =nsegs;
3750         ifnet_deserialize_all(ifp);
3751
3752         return 0;
3753 }
3754
3755 static int
3756 igb_sysctl_tx_wreg_nsegs(SYSCTL_HANDLER_ARGS)
3757 {
3758         struct igb_softc *sc = (void *)arg1;
3759         struct ifnet *ifp = &sc->arpcom.ac_if;
3760         int error, nsegs, i;
3761
3762         nsegs = sc->tx_rings[0].wreg_nsegs;
3763         error = sysctl_handle_int(oidp, &nsegs, 0, req);
3764         if (error || req->newptr == NULL)
3765                 return error;
3766
3767         ifnet_serialize_all(ifp);
3768         for (i = 0; i < sc->tx_ring_cnt; ++i)
3769                 sc->tx_rings[i].wreg_nsegs =nsegs;
3770         ifnet_deserialize_all(ifp);
3771
3772         return 0;
3773 }
3774
3775 #ifdef IFPOLL_ENABLE
3776
3777 static int
3778 igb_sysctl_npoll_rxoff(SYSCTL_HANDLER_ARGS)
3779 {
3780         struct igb_softc *sc = (void *)arg1;
3781         struct ifnet *ifp = &sc->arpcom.ac_if;
3782         int error, off;
3783
3784         off = sc->rx_npoll_off;
3785         error = sysctl_handle_int(oidp, &off, 0, req);
3786         if (error || req->newptr == NULL)
3787                 return error;
3788         if (off < 0)
3789                 return EINVAL;
3790
3791         ifnet_serialize_all(ifp);
3792         if (off >= ncpus2 || off % sc->rx_ring_cnt != 0) {
3793                 error = EINVAL;
3794         } else {
3795                 error = 0;
3796                 sc->rx_npoll_off = off;
3797         }
3798         ifnet_deserialize_all(ifp);
3799
3800         return error;
3801 }
3802
3803 static int
3804 igb_sysctl_npoll_txoff(SYSCTL_HANDLER_ARGS)
3805 {
3806         struct igb_softc *sc = (void *)arg1;
3807         struct ifnet *ifp = &sc->arpcom.ac_if;
3808         int error, off;
3809
3810         off = sc->tx_npoll_off;
3811         error = sysctl_handle_int(oidp, &off, 0, req);
3812         if (error || req->newptr == NULL)
3813                 return error;
3814         if (off < 0)
3815                 return EINVAL;
3816
3817         ifnet_serialize_all(ifp);
3818         if (off >= ncpus2 || off % sc->tx_ring_cnt != 0) {
3819                 error = EINVAL;
3820         } else {
3821                 error = 0;
3822                 sc->tx_npoll_off = off;
3823         }
3824         ifnet_deserialize_all(ifp);
3825
3826         return error;
3827 }
3828
3829 #endif  /* IFPOLL_ENABLE */
3830
3831 static void
3832 igb_init_intr(struct igb_softc *sc)
3833 {
3834         igb_set_intr_mask(sc);
3835
3836         if ((sc->flags & IGB_FLAG_SHARED_INTR) == 0)
3837                 igb_init_unshared_intr(sc);
3838
3839         if (sc->intr_type != PCI_INTR_TYPE_MSIX) {
3840                 igb_set_eitr(sc, 0, sc->intr_rate);
3841         } else {
3842                 int i;
3843
3844                 for (i = 0; i < sc->msix_cnt; ++i)
3845                         igb_set_eitr(sc, i, sc->msix_data[i].msix_rate);
3846         }
3847 }
3848
3849 static void
3850 igb_init_unshared_intr(struct igb_softc *sc)
3851 {
3852         struct e1000_hw *hw = &sc->hw;
3853         const struct igb_rx_ring *rxr;
3854         const struct igb_tx_ring *txr;
3855         uint32_t ivar, index;
3856         int i;
3857
3858         /*
3859          * Enable extended mode
3860          */
3861         if (sc->hw.mac.type != e1000_82575) {
3862                 uint32_t gpie;
3863                 int ivar_max;
3864
3865                 gpie = E1000_GPIE_NSICR;
3866                 if (sc->intr_type == PCI_INTR_TYPE_MSIX) {
3867                         gpie |= E1000_GPIE_MSIX_MODE |
3868                             E1000_GPIE_EIAME |
3869                             E1000_GPIE_PBA;
3870                 }
3871                 E1000_WRITE_REG(hw, E1000_GPIE, gpie);
3872
3873                 /*
3874                  * Clear IVARs
3875                  */
3876                 switch (sc->hw.mac.type) {
3877                 case e1000_82576:
3878                         ivar_max = IGB_MAX_IVAR_82576;
3879                         break;
3880
3881                 case e1000_82580:
3882                         ivar_max = IGB_MAX_IVAR_82580;
3883                         break;
3884
3885                 case e1000_i350:
3886                         ivar_max = IGB_MAX_IVAR_I350;
3887                         break;
3888
3889                 case e1000_i354:
3890                         ivar_max = IGB_MAX_IVAR_I354;
3891                         break;
3892
3893                 case e1000_vfadapt:
3894                 case e1000_vfadapt_i350:
3895                         ivar_max = IGB_MAX_IVAR_VF;
3896                         break;
3897
3898                 case e1000_i210:
3899                         ivar_max = IGB_MAX_IVAR_I210;
3900                         break;
3901
3902                 case e1000_i211:
3903                         ivar_max = IGB_MAX_IVAR_I211;
3904                         break;
3905
3906                 default:
3907                         panic("unknown mac type %d\n", sc->hw.mac.type);
3908                 }
3909                 for (i = 0; i < ivar_max; ++i)
3910                         E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, i, 0);
3911                 E1000_WRITE_REG(hw, E1000_IVAR_MISC, 0);
3912         } else {
3913                 uint32_t tmp;
3914
3915                 KASSERT(sc->intr_type != PCI_INTR_TYPE_MSIX,
3916                     ("82575 w/ MSI-X"));
3917                 tmp = E1000_READ_REG(hw, E1000_CTRL_EXT);
3918                 tmp |= E1000_CTRL_EXT_IRCA;
3919                 E1000_WRITE_REG(hw, E1000_CTRL_EXT, tmp);
3920         }
3921
3922         /*
3923          * Map TX/RX interrupts to EICR
3924          */
3925         switch (sc->hw.mac.type) {
3926         case e1000_82580:
3927         case e1000_i350:
3928         case e1000_i354:
3929         case e1000_vfadapt:
3930         case e1000_vfadapt_i350:
3931         case e1000_i210:
3932         case e1000_i211:
3933                 /* RX entries */
3934                 for (i = 0; i < sc->rx_ring_inuse; ++i) {
3935                         rxr = &sc->rx_rings[i];
3936
3937                         index = i >> 1;
3938                         ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
3939
3940                         if (i & 1) {
3941                                 ivar &= 0xff00ffff;
3942                                 ivar |=
3943                                 (rxr->rx_intr_bit | E1000_IVAR_VALID) << 16;
3944                         } else {
3945                                 ivar &= 0xffffff00;
3946                                 ivar |=
3947                                 (rxr->rx_intr_bit | E1000_IVAR_VALID);
3948                         }
3949                         E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
3950                 }
3951                 /* TX entries */
3952                 for (i = 0; i < sc->tx_ring_inuse; ++i) {
3953                         txr = &sc->tx_rings[i];
3954
3955                         index = i >> 1;
3956                         ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
3957
3958                         if (i & 1) {
3959                                 ivar &= 0x00ffffff;
3960                                 ivar |=
3961                                 (txr->tx_intr_bit | E1000_IVAR_VALID) << 24;
3962                         } else {
3963                                 ivar &= 0xffff00ff;
3964                                 ivar |=
3965                                 (txr->tx_intr_bit | E1000_IVAR_VALID) << 8;
3966                         }
3967                         E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
3968                 }
3969                 if (sc->intr_type == PCI_INTR_TYPE_MSIX) {
3970                         ivar = (sc->sts_intr_bit | E1000_IVAR_VALID) << 8;
3971                         E1000_WRITE_REG(hw, E1000_IVAR_MISC, ivar);
3972                 }
3973                 break;
3974
3975         case e1000_82576:
3976                 /* RX entries */
3977                 for (i = 0; i < sc->rx_ring_inuse; ++i) {
3978                         rxr = &sc->rx_rings[i];
3979
3980                         index = i & 0x7; /* Each IVAR has two entries */
3981                         ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
3982
3983                         if (i < 8) {
3984                                 ivar &= 0xffffff00;
3985                                 ivar |=
3986                                 (rxr->rx_intr_bit | E1000_IVAR_VALID);
3987                         } else {
3988                                 ivar &= 0xff00ffff;
3989                                 ivar |=
3990                                 (rxr->rx_intr_bit | E1000_IVAR_VALID) << 16;
3991                         }
3992                         E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
3993                 }
3994                 /* TX entries */
3995                 for (i = 0; i < sc->tx_ring_inuse; ++i) {
3996                         txr = &sc->tx_rings[i];
3997
3998                         index = i & 0x7; /* Each IVAR has two entries */
3999                         ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
4000
4001                         if (i < 8) {
4002                                 ivar &= 0xffff00ff;
4003                                 ivar |=
4004                                 (txr->tx_intr_bit | E1000_IVAR_VALID) << 8;
4005                         } else {
4006                                 ivar &= 0x00ffffff;
4007                                 ivar |=
4008                                 (txr->tx_intr_bit | E1000_IVAR_VALID) << 24;
4009                         }
4010                         E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
4011                 }
4012                 if (sc->intr_type == PCI_INTR_TYPE_MSIX) {
4013                         ivar = (sc->sts_intr_bit | E1000_IVAR_VALID) << 8;
4014                         E1000_WRITE_REG(hw, E1000_IVAR_MISC, ivar);
4015                 }
4016                 break;
4017
4018         case e1000_82575:
4019                 /*
4020                  * Enable necessary interrupt bits.
4021                  *
4022                  * The name of the register is confusing; in addition to
4023                  * configuring the first vector of MSI-X, it also configures
4024                  * which bits of EICR could be set by the hardware even when
4025                  * MSI or line interrupt is used; it thus controls interrupt
4026                  * generation.  It MUST be configured explicitly; the default
4027                  * value mentioned in the datasheet is wrong: RX queue0 and
4028                  * TX queue0 are NOT enabled by default.
4029                  */
4030                 E1000_WRITE_REG(&sc->hw, E1000_MSIXBM(0), sc->intr_mask);
4031                 break;
4032
4033         default:
4034                 panic("unknown mac type %d\n", sc->hw.mac.type);
4035         }
4036 }
4037
4038 static int
4039 igb_setup_intr(struct igb_softc *sc)
4040 {
4041         int error;
4042
4043         if (sc->intr_type == PCI_INTR_TYPE_MSIX)
4044                 return igb_msix_setup(sc);
4045
4046         error = bus_setup_intr(sc->dev, sc->intr_res, INTR_MPSAFE,
4047             (sc->flags & IGB_FLAG_SHARED_INTR) ? igb_intr_shared : igb_intr,
4048             sc, &sc->intr_tag, &sc->main_serialize);
4049         if (error) {
4050                 device_printf(sc->dev, "Failed to register interrupt handler");
4051                 return error;
4052         }
4053         return 0;
4054 }
4055
4056 static void
4057 igb_set_txintr_mask(struct igb_tx_ring *txr, int *intr_bit0, int intr_bitmax)
4058 {
4059         if (txr->sc->hw.mac.type == e1000_82575) {
4060                 txr->tx_intr_bit = 0;   /* unused */
4061                 switch (txr->me) {
4062                 case 0:
4063                         txr->tx_intr_mask = E1000_EICR_TX_QUEUE0;
4064                         break;
4065                 case 1:
4066                         txr->tx_intr_mask = E1000_EICR_TX_QUEUE1;
4067                         break;
4068                 case 2:
4069                         txr->tx_intr_mask = E1000_EICR_TX_QUEUE2;
4070                         break;
4071                 case 3:
4072                         txr->tx_intr_mask = E1000_EICR_TX_QUEUE3;
4073                         break;
4074                 default:
4075                         panic("unsupported # of TX ring, %d\n", txr->me);
4076                 }
4077         } else {
4078                 int intr_bit = *intr_bit0;
4079
4080                 txr->tx_intr_bit = intr_bit % intr_bitmax;
4081                 txr->tx_intr_mask = 1 << txr->tx_intr_bit;
4082
4083                 *intr_bit0 = intr_bit + 1;
4084         }
4085 }
4086
4087 static void
4088 igb_set_rxintr_mask(struct igb_rx_ring *rxr, int *intr_bit0, int intr_bitmax)
4089 {
4090         if (rxr->sc->hw.mac.type == e1000_82575) {
4091                 rxr->rx_intr_bit = 0;   /* unused */
4092                 switch (rxr->me) {
4093                 case 0:
4094                         rxr->rx_intr_mask = E1000_EICR_RX_QUEUE0;
4095                         break;
4096                 case 1:
4097                         rxr->rx_intr_mask = E1000_EICR_RX_QUEUE1;
4098                         break;
4099                 case 2:
4100                         rxr->rx_intr_mask = E1000_EICR_RX_QUEUE2;
4101                         break;
4102                 case 3:
4103                         rxr->rx_intr_mask = E1000_EICR_RX_QUEUE3;
4104                         break;
4105                 default:
4106                         panic("unsupported # of RX ring, %d\n", rxr->me);
4107                 }
4108         } else {
4109                 int intr_bit = *intr_bit0;
4110
4111                 rxr->rx_intr_bit = intr_bit % intr_bitmax;
4112                 rxr->rx_intr_mask = 1 << rxr->rx_intr_bit;
4113
4114                 *intr_bit0 = intr_bit + 1;
4115         }
4116 }
4117
4118 static void
4119 igb_serialize(struct ifnet *ifp, enum ifnet_serialize slz)
4120 {
4121         struct igb_softc *sc = ifp->if_softc;
4122
4123         ifnet_serialize_array_enter(sc->serializes, sc->serialize_cnt, slz);
4124 }
4125
4126 static void
4127 igb_deserialize(struct ifnet *ifp, enum ifnet_serialize slz)
4128 {
4129         struct igb_softc *sc = ifp->if_softc;
4130
4131         ifnet_serialize_array_exit(sc->serializes, sc->serialize_cnt, slz);
4132 }
4133
4134 static int
4135 igb_tryserialize(struct ifnet *ifp, enum ifnet_serialize slz)
4136 {
4137         struct igb_softc *sc = ifp->if_softc;
4138
4139         return ifnet_serialize_array_try(sc->serializes, sc->serialize_cnt,
4140             slz);
4141 }
4142
4143 #ifdef INVARIANTS
4144
4145 static void
4146 igb_serialize_assert(struct ifnet *ifp, enum ifnet_serialize slz,
4147     boolean_t serialized)
4148 {
4149         struct igb_softc *sc = ifp->if_softc;
4150
4151         ifnet_serialize_array_assert(sc->serializes, sc->serialize_cnt,
4152             slz, serialized);
4153 }
4154
4155 #endif  /* INVARIANTS */
4156
4157 static void
4158 igb_set_intr_mask(struct igb_softc *sc)
4159 {
4160         int i;
4161
4162         sc->intr_mask = sc->sts_intr_mask;
4163         for (i = 0; i < sc->rx_ring_inuse; ++i)
4164                 sc->intr_mask |= sc->rx_rings[i].rx_intr_mask;
4165         for (i = 0; i < sc->tx_ring_inuse; ++i)
4166                 sc->intr_mask |= sc->tx_rings[i].tx_intr_mask;
4167         if (bootverbose) {
4168                 if_printf(&sc->arpcom.ac_if, "intr mask 0x%08x\n",
4169                     sc->intr_mask);
4170         }
4171 }
4172
4173 static int
4174 igb_alloc_intr(struct igb_softc *sc)
4175 {
4176         int i, intr_bit, intr_bitmax;
4177         u_int intr_flags;
4178
4179         igb_msix_try_alloc(sc);
4180         if (sc->intr_type == PCI_INTR_TYPE_MSIX)
4181                 goto done;
4182
4183         /*
4184          * Allocate MSI/legacy interrupt resource
4185          */
4186         sc->intr_type = pci_alloc_1intr(sc->dev, igb_msi_enable,
4187             &sc->intr_rid, &intr_flags);
4188
4189         if (sc->intr_type == PCI_INTR_TYPE_LEGACY) {
4190                 int unshared;
4191
4192                 unshared = device_getenv_int(sc->dev, "irq.unshared", 0);
4193                 if (!unshared) {
4194                         sc->flags |= IGB_FLAG_SHARED_INTR;
4195                         if (bootverbose)
4196                                 device_printf(sc->dev, "IRQ shared\n");
4197                 } else {
4198                         intr_flags &= ~RF_SHAREABLE;
4199                         if (bootverbose)
4200                                 device_printf(sc->dev, "IRQ unshared\n");
4201                 }
4202         }
4203
4204         sc->intr_res = bus_alloc_resource_any(sc->dev, SYS_RES_IRQ,
4205             &sc->intr_rid, intr_flags);
4206         if (sc->intr_res == NULL) {
4207                 device_printf(sc->dev, "Unable to allocate bus resource: "
4208                     "interrupt\n");
4209                 return ENXIO;
4210         }
4211
4212         for (i = 0; i < sc->tx_ring_cnt; ++i)
4213                 sc->tx_rings[i].tx_intr_cpuid = rman_get_cpuid(sc->intr_res);
4214
4215         /*
4216          * Setup MSI/legacy interrupt mask
4217          */
4218         switch (sc->hw.mac.type) {
4219         case e1000_82575:
4220                 intr_bitmax = IGB_MAX_TXRXINT_82575;
4221                 break;
4222
4223         case e1000_82576:
4224                 intr_bitmax = IGB_MAX_TXRXINT_82576;
4225                 break;
4226
4227         case e1000_82580:
4228                 intr_bitmax = IGB_MAX_TXRXINT_82580;
4229                 break;
4230
4231         case e1000_i350:
4232                 intr_bitmax = IGB_MAX_TXRXINT_I350;
4233                 break;
4234
4235         case e1000_i354:
4236                 intr_bitmax = IGB_MAX_TXRXINT_I354;
4237                 break;
4238
4239         case e1000_i210:
4240                 intr_bitmax = IGB_MAX_TXRXINT_I210;
4241                 break;
4242
4243         case e1000_i211:
4244                 intr_bitmax = IGB_MAX_TXRXINT_I211;
4245                 break;
4246
4247         default:
4248                 intr_bitmax = IGB_MIN_TXRXINT;
4249                 break;
4250         }
4251         intr_bit = 0;
4252         for (i = 0; i < sc->tx_ring_cnt; ++i)
4253                 igb_set_txintr_mask(&sc->tx_rings[i], &intr_bit, intr_bitmax);
4254         for (i = 0; i < sc->rx_ring_cnt; ++i)
4255                 igb_set_rxintr_mask(&sc->rx_rings[i], &intr_bit, intr_bitmax);
4256         sc->sts_intr_bit = 0;
4257         sc->sts_intr_mask = E1000_EICR_OTHER;
4258
4259         /* Initialize interrupt rate */
4260         sc->intr_rate = IGB_INTR_RATE;
4261 done:
4262         igb_set_ring_inuse(sc, FALSE);
4263         igb_set_intr_mask(sc);
4264         return 0;
4265 }
4266
4267 static void
4268 igb_free_intr(struct igb_softc *sc)
4269 {
4270         if (sc->intr_type != PCI_INTR_TYPE_MSIX) {
4271                 if (sc->intr_res != NULL) {
4272                         bus_release_resource(sc->dev, SYS_RES_IRQ, sc->intr_rid,
4273                             sc->intr_res);
4274                 }
4275                 if (sc->intr_type == PCI_INTR_TYPE_MSI)
4276                         pci_release_msi(sc->dev);
4277         } else {
4278                 igb_msix_free(sc, TRUE);
4279         }
4280 }
4281
4282 static void
4283 igb_teardown_intr(struct igb_softc *sc)
4284 {
4285         if (sc->intr_type != PCI_INTR_TYPE_MSIX)
4286                 bus_teardown_intr(sc->dev, sc->intr_res, sc->intr_tag);
4287         else
4288                 igb_msix_teardown(sc, sc->msix_cnt);
4289 }
4290
4291 static void
4292 igb_msix_try_alloc(struct igb_softc *sc)
4293 {
4294         int msix_enable, msix_cnt, msix_cnt2, alloc_cnt;
4295         int i, x, error;
4296         int offset, offset_def;
4297         struct igb_msix_data *msix;
4298         boolean_t aggregate, setup = FALSE;
4299
4300         /*
4301          * Don't enable MSI-X on 82575, see:
4302          * 82575 specification update errata #25
4303          */
4304         if (sc->hw.mac.type == e1000_82575)
4305                 return;
4306
4307         /* Don't enable MSI-X on VF */
4308         if (sc->vf_ifp)
4309                 return;
4310
4311         msix_enable = device_getenv_int(sc->dev, "msix.enable",
4312             igb_msix_enable);
4313         if (!msix_enable)
4314                 return;
4315
4316         msix_cnt = pci_msix_count(sc->dev);
4317 #ifdef IGB_MSIX_DEBUG
4318         msix_cnt = device_getenv_int(sc->dev, "msix.count", msix_cnt);
4319 #endif
4320         if (msix_cnt <= 1) {
4321                 /* One MSI-X model does not make sense */
4322                 return;
4323         }
4324
4325         i = 0;
4326         while ((1 << (i + 1)) <= msix_cnt)
4327                 ++i;
4328         msix_cnt2 = 1 << i;
4329
4330         if (bootverbose) {
4331                 device_printf(sc->dev, "MSI-X count %d/%d\n",
4332                     msix_cnt2, msix_cnt);
4333         }
4334
4335         KKASSERT(msix_cnt2 <= msix_cnt);
4336         if (msix_cnt == msix_cnt2) {
4337                 /* We need at least one MSI-X for link status */
4338                 msix_cnt2 >>= 1;
4339                 if (msix_cnt2 <= 1) {
4340                         /* One MSI-X for RX/TX does not make sense */
4341                         device_printf(sc->dev, "not enough MSI-X for TX/RX, "
4342                             "MSI-X count %d/%d\n", msix_cnt2, msix_cnt);
4343                         return;
4344                 }
4345                 KKASSERT(msix_cnt > msix_cnt2);
4346
4347                 if (bootverbose) {
4348                         device_printf(sc->dev, "MSI-X count fixup %d/%d\n",
4349                             msix_cnt2, msix_cnt);
4350                 }
4351         }
4352
4353         sc->rx_ring_msix = sc->rx_ring_cnt;
4354         if (sc->rx_ring_msix > msix_cnt2)
4355                 sc->rx_ring_msix = msix_cnt2;
4356
4357         sc->tx_ring_msix = sc->tx_ring_cnt;
4358         if (sc->tx_ring_msix > msix_cnt2)
4359                 sc->tx_ring_msix = msix_cnt2;
4360
4361         if (msix_cnt >= sc->tx_ring_msix + sc->rx_ring_msix + 1) {
4362                 /*
4363                  * Independent TX/RX MSI-X
4364                  */
4365                 aggregate = FALSE;
4366                 if (bootverbose)
4367                         device_printf(sc->dev, "independent TX/RX MSI-X\n");
4368                 alloc_cnt = sc->tx_ring_msix + sc->rx_ring_msix;
4369         } else {
4370                 /*
4371                  * Aggregate TX/RX MSI-X
4372                  */
4373                 aggregate = TRUE;
4374                 if (bootverbose)
4375                         device_printf(sc->dev, "aggregate TX/RX MSI-X\n");
4376                 alloc_cnt = msix_cnt2;
4377                 if (alloc_cnt > ncpus2)
4378                         alloc_cnt = ncpus2;
4379                 if (sc->rx_ring_msix > alloc_cnt)
4380                         sc->rx_ring_msix = alloc_cnt;
4381                 if (sc->tx_ring_msix > alloc_cnt)
4382                         sc->tx_ring_msix = alloc_cnt;
4383         }
4384         ++alloc_cnt;    /* For link status */
4385
4386         if (bootverbose) {
4387                 device_printf(sc->dev, "MSI-X alloc %d, "
4388                     "RX ring %d, TX ring %d\n", alloc_cnt,
4389                     sc->rx_ring_msix, sc->tx_ring_msix);
4390         }
4391
4392         sc->msix_mem_rid = PCIR_BAR(IGB_MSIX_BAR);
4393         sc->msix_mem_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY,
4394             &sc->msix_mem_rid, RF_ACTIVE);
4395         if (sc->msix_mem_res == NULL) {
4396                 sc->msix_mem_rid = PCIR_BAR(IGB_MSIX_BAR_ALT);
4397                 sc->msix_mem_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY,
4398                     &sc->msix_mem_rid, RF_ACTIVE);
4399                 if (sc->msix_mem_res == NULL) {
4400                         device_printf(sc->dev, "Unable to map MSI-X table\n");
4401                         return;
4402                 }
4403         }
4404
4405         sc->msix_cnt = alloc_cnt;
4406         sc->msix_data = kmalloc_cachealign(
4407             sizeof(struct igb_msix_data) * sc->msix_cnt,
4408             M_DEVBUF, M_WAITOK | M_ZERO);
4409         for (x = 0; x < sc->msix_cnt; ++x) {
4410                 msix = &sc->msix_data[x];
4411
4412                 lwkt_serialize_init(&msix->msix_serialize0);
4413                 msix->msix_sc = sc;
4414                 msix->msix_rid = -1;
4415                 msix->msix_vector = x;
4416                 msix->msix_mask = 1 << msix->msix_vector;
4417                 msix->msix_rate = IGB_INTR_RATE;
4418         }
4419
4420         x = 0;
4421         if (!aggregate) {
4422                 /*
4423                  * RX rings
4424                  */
4425                 if (sc->rx_ring_msix == ncpus2) {
4426                         offset = 0;
4427                 } else {
4428                         offset_def = (sc->rx_ring_msix *
4429                             device_get_unit(sc->dev)) % ncpus2;
4430
4431                         offset = device_getenv_int(sc->dev,
4432                             "msix.rxoff", offset_def);
4433                         if (offset >= ncpus2 ||
4434                             offset % sc->rx_ring_msix != 0) {
4435                                 device_printf(sc->dev,
4436                                     "invalid msix.rxoff %d, use %d\n",
4437                                     offset, offset_def);
4438                                 offset = offset_def;
4439                         }
4440                 }
4441                 igb_msix_rx_conf(sc, 0, &x, offset);
4442
4443                 /*
4444                  * TX rings
4445                  */
4446                 if (sc->tx_ring_msix == ncpus2) {
4447                         offset = 0;
4448                 } else {
4449                         offset_def = (sc->tx_ring_msix *
4450                             device_get_unit(sc->dev)) % ncpus2;
4451
4452                         offset = device_getenv_int(sc->dev,
4453                             "msix.txoff", offset_def);
4454                         if (offset >= ncpus2 ||
4455                             offset % sc->tx_ring_msix != 0) {
4456                                 device_printf(sc->dev,
4457                                     "invalid msix.txoff %d, use %d\n",
4458                                     offset, offset_def);
4459                                 offset = offset_def;
4460                         }
4461                 }
4462                 igb_msix_tx_conf(sc, 0, &x, offset);
4463         } else {
4464                 int ring_agg, ring_max;
4465
4466                 ring_agg = sc->rx_ring_msix;
4467                 if (ring_agg > sc->tx_ring_msix)
4468                         ring_agg = sc->tx_ring_msix;
4469
4470                 ring_max = sc->rx_ring_msix;
4471                 if (ring_max < sc->tx_ring_msix)
4472                         ring_max = sc->tx_ring_msix;
4473
4474                 if (ring_max == ncpus2) {
4475                         offset = 0;
4476                 } else {
4477                         offset_def = (ring_max * device_get_unit(sc->dev)) %
4478                             ncpus2;
4479
4480                         offset = device_getenv_int(sc->dev, "msix.off",
4481                             offset_def);
4482                         if (offset >= ncpus2 || offset % ring_max != 0) {
4483                                 device_printf(sc->dev,
4484                                     "invalid msix.off %d, use %d\n",
4485                                     offset, offset_def);
4486                                 offset = offset_def;
4487                         }
4488                 }
4489
4490                 for (i = 0; i < ring_agg; ++i) {
4491                         struct igb_tx_ring *txr = &sc->tx_rings[i];
4492                         struct igb_rx_ring *rxr = &sc->rx_rings[i];
4493
4494                         KKASSERT(x < sc->msix_cnt);
4495                         msix = &sc->msix_data[x++];
4496
4497                         txr->tx_intr_bit = msix->msix_vector;
4498                         txr->tx_intr_mask = msix->msix_mask;
4499                         rxr->rx_intr_bit = msix->msix_vector;
4500                         rxr->rx_intr_mask = msix->msix_mask;
4501
4502                         msix->msix_serialize = &msix->msix_serialize0;
4503                         msix->msix_func = igb_msix_rxtx;
4504                         msix->msix_arg = msix;
4505                         msix->msix_rx = rxr;
4506                         msix->msix_tx = txr;
4507
4508                         msix->msix_cpuid = i + offset;
4509                         KKASSERT(msix->msix_cpuid < ncpus2);
4510                         txr->tx_intr_cpuid = msix->msix_cpuid;
4511
4512                         ksnprintf(msix->msix_desc, sizeof(msix->msix_desc),
4513                             "%s rxtx%d", device_get_nameunit(sc->dev), i);
4514                         msix->msix_rate = IGB_MSIX_RX_RATE;
4515                         ksnprintf(msix->msix_rate_desc,
4516                             sizeof(msix->msix_rate_desc),
4517                             "RXTX%d interrupt rate", i);
4518                 }
4519
4520                 if (ring_agg != ring_max) {
4521                         if (ring_max == sc->tx_ring_msix)
4522                                 igb_msix_tx_conf(sc, i, &x, offset);
4523                         else
4524                                 igb_msix_rx_conf(sc, i, &x, offset);
4525                 }
4526         }
4527
4528         /*
4529          * Link status
4530          */
4531         KKASSERT(x < sc->msix_cnt);
4532         msix = &sc->msix_data[x++];
4533         sc->sts_intr_bit = msix->msix_vector;
4534         sc->sts_intr_mask = msix->msix_mask;
4535
4536         msix->msix_serialize = &sc->main_serialize;
4537         msix->msix_func = igb_msix_status;
4538         msix->msix_arg = sc;
4539         msix->msix_cpuid = 0;
4540         ksnprintf(msix->msix_desc, sizeof(msix->msix_desc), "%s sts",
4541             device_get_nameunit(sc->dev));
4542         ksnprintf(msix->msix_rate_desc, sizeof(msix->msix_rate_desc),
4543             "status interrupt rate");
4544
4545         KKASSERT(x == sc->msix_cnt);
4546
4547         error = pci_setup_msix(sc->dev);
4548         if (error) {
4549                 device_printf(sc->dev, "Setup MSI-X failed\n");
4550                 goto back;
4551         }
4552         setup = TRUE;
4553
4554         for (i = 0; i < sc->msix_cnt; ++i) {
4555                 msix = &sc->msix_data[i];
4556
4557                 error = pci_alloc_msix_vector(sc->dev, msix->msix_vector,
4558                     &msix->msix_rid, msix->msix_cpuid);
4559                 if (error) {
4560                         device_printf(sc->dev,
4561                             "Unable to allocate MSI-X %d on cpu%d\n",
4562                             msix->msix_vector, msix->msix_cpuid);
4563                         goto back;
4564                 }
4565
4566                 msix->msix_res = bus_alloc_resource_any(sc->dev, SYS_RES_IRQ,
4567                     &msix->msix_rid, RF_ACTIVE);
4568                 if (msix->msix_res == NULL) {
4569                         device_printf(sc->dev,
4570                             "Unable to allocate MSI-X %d resource\n",
4571                             msix->msix_vector);
4572                         error = ENOMEM;
4573                         goto back;
4574                 }
4575         }
4576
4577         pci_enable_msix(sc->dev);
4578         sc->intr_type = PCI_INTR_TYPE_MSIX;
4579 back:
4580         if (error)
4581                 igb_msix_free(sc, setup);
4582 }
4583
4584 static void
4585 igb_msix_free(struct igb_softc *sc, boolean_t setup)
4586 {
4587         int i;
4588
4589         KKASSERT(sc->msix_cnt > 1);
4590
4591         for (i = 0; i < sc->msix_cnt; ++i) {
4592                 struct igb_msix_data *msix = &sc->msix_data[i];
4593
4594                 if (msix->msix_res != NULL) {
4595                         bus_release_resource(sc->dev, SYS_RES_IRQ,
4596                             msix->msix_rid, msix->msix_res);
4597                 }
4598                 if (msix->msix_rid >= 0)
4599                         pci_release_msix_vector(sc->dev, msix->msix_rid);
4600         }
4601         if (setup)
4602                 pci_teardown_msix(sc->dev);
4603
4604         sc->msix_cnt = 0;
4605         kfree(sc->msix_data, M_DEVBUF);
4606         sc->msix_data = NULL;
4607 }
4608
4609 static int
4610 igb_msix_setup(struct igb_softc *sc)
4611 {
4612         int i;
4613
4614         for (i = 0; i < sc->msix_cnt; ++i) {
4615                 struct igb_msix_data *msix = &sc->msix_data[i];
4616                 int error;
4617
4618                 error = bus_setup_intr_descr(sc->dev, msix->msix_res,
4619                     INTR_MPSAFE, msix->msix_func, msix->msix_arg,
4620                     &msix->msix_handle, msix->msix_serialize, msix->msix_desc);
4621                 if (error) {
4622                         device_printf(sc->dev, "could not set up %s "
4623                             "interrupt handler.\n", msix->msix_desc);
4624                         igb_msix_teardown(sc, i);
4625                         return error;
4626                 }
4627         }
4628         return 0;
4629 }
4630
4631 static void
4632 igb_msix_teardown(struct igb_softc *sc, int msix_cnt)
4633 {
4634         int i;
4635
4636         for (i = 0; i < msix_cnt; ++i) {
4637                 struct igb_msix_data *msix = &sc->msix_data[i];
4638
4639                 bus_teardown_intr(sc->dev, msix->msix_res, msix->msix_handle);
4640         }
4641 }
4642
4643 static void
4644 igb_msix_rx(void *arg)
4645 {
4646         struct igb_rx_ring *rxr = arg;
4647
4648         ASSERT_SERIALIZED(&rxr->rx_serialize);
4649         igb_rxeof(rxr, -1);
4650
4651         E1000_WRITE_REG(&rxr->sc->hw, E1000_EIMS, rxr->rx_intr_mask);
4652 }
4653
4654 static void
4655 igb_msix_tx(void *arg)
4656 {
4657         struct igb_tx_ring *txr = arg;
4658
4659         ASSERT_SERIALIZED(&txr->tx_serialize);
4660
4661         igb_txeof(txr);
4662         if (!ifsq_is_empty(txr->ifsq))
4663                 ifsq_devstart(txr->ifsq);
4664
4665         E1000_WRITE_REG(&txr->sc->hw, E1000_EIMS, txr->tx_intr_mask);
4666 }
4667
4668 static void
4669 igb_msix_status(void *arg)
4670 {
4671         struct igb_softc *sc = arg;
4672         uint32_t icr;
4673
4674         ASSERT_SERIALIZED(&sc->main_serialize);
4675
4676         icr = E1000_READ_REG(&sc->hw, E1000_ICR);
4677         if (icr & E1000_ICR_LSC) {
4678                 sc->hw.mac.get_link_status = 1;
4679                 igb_update_link_status(sc);
4680         }
4681
4682         E1000_WRITE_REG(&sc->hw, E1000_EIMS, sc->sts_intr_mask);
4683 }
4684
4685 static void
4686 igb_set_ring_inuse(struct igb_softc *sc, boolean_t polling)
4687 {
4688         sc->rx_ring_inuse = igb_get_rxring_inuse(sc, polling);
4689         sc->tx_ring_inuse = igb_get_txring_inuse(sc, polling);
4690         if (bootverbose) {
4691                 if_printf(&sc->arpcom.ac_if, "RX rings %d/%d, TX rings %d/%d\n",
4692                     sc->rx_ring_inuse, sc->rx_ring_cnt,
4693                     sc->tx_ring_inuse, sc->tx_ring_cnt);
4694         }
4695 }
4696
4697 static int
4698 igb_get_rxring_inuse(const struct igb_softc *sc, boolean_t polling)
4699 {
4700         if (!IGB_ENABLE_HWRSS(sc))
4701                 return 1;
4702
4703         if (polling)
4704                 return sc->rx_ring_cnt;
4705         else if (sc->intr_type != PCI_INTR_TYPE_MSIX)
4706                 return IGB_MIN_RING_RSS;
4707         else
4708                 return sc->rx_ring_msix;
4709 }
4710
4711 static int
4712 igb_get_txring_inuse(const struct igb_softc *sc, boolean_t polling)
4713 {
4714         if (!IGB_ENABLE_HWTSS(sc))
4715                 return 1;
4716
4717         if (polling)
4718                 return sc->tx_ring_cnt;
4719         else if (sc->intr_type != PCI_INTR_TYPE_MSIX)
4720                 return IGB_MIN_RING;
4721         else
4722                 return sc->tx_ring_msix;
4723 }
4724
4725 static int
4726 igb_tso_pullup(struct igb_tx_ring *txr, struct mbuf **mp)
4727 {
4728         int hoff, iphlen, thoff;
4729         struct mbuf *m;
4730
4731         m = *mp;
4732         KASSERT(M_WRITABLE(m), ("TSO mbuf not writable"));
4733
4734         iphlen = m->m_pkthdr.csum_iphlen;
4735         thoff = m->m_pkthdr.csum_thlen;
4736         hoff = m->m_pkthdr.csum_lhlen;
4737
4738         KASSERT(iphlen > 0, ("invalid ip hlen"));
4739         KASSERT(thoff > 0, ("invalid tcp hlen"));
4740         KASSERT(hoff > 0, ("invalid ether hlen"));
4741
4742         if (__predict_false(m->m_len < hoff + iphlen + thoff)) {
4743                 m = m_pullup(m, hoff + iphlen + thoff);
4744                 if (m == NULL) {
4745                         *mp = NULL;
4746                         return ENOBUFS;
4747                 }
4748                 *mp = m;
4749         }
4750         if (txr->tx_flags & IGB_TXFLAG_TSO_IPLEN0) {
4751                 struct ip *ip;
4752
4753                 ip = mtodoff(m, struct ip *, hoff);
4754                 ip->ip_len = 0;
4755         }
4756
4757         return 0;
4758 }
4759
4760 static void
4761 igb_tso_ctx(struct igb_tx_ring *txr, struct mbuf *m, uint32_t *hlen)
4762 {
4763         struct e1000_adv_tx_context_desc *TXD;
4764         uint32_t vlan_macip_lens, type_tucmd_mlhl, mss_l4len_idx;
4765         int hoff, ctxd, iphlen, thoff;
4766
4767         iphlen = m->m_pkthdr.csum_iphlen;
4768         thoff = m->m_pkthdr.csum_thlen;
4769         hoff = m->m_pkthdr.csum_lhlen;
4770
4771         vlan_macip_lens = type_tucmd_mlhl = mss_l4len_idx = 0;
4772
4773         ctxd = txr->next_avail_desc;
4774         TXD = (struct e1000_adv_tx_context_desc *)&txr->tx_base[ctxd];
4775
4776         if (m->m_flags & M_VLANTAG) {
4777                 uint16_t vlantag;
4778
4779                 vlantag = htole16(m->m_pkthdr.ether_vlantag);
4780                 vlan_macip_lens |= (vlantag << E1000_ADVTXD_VLAN_SHIFT);
4781         }
4782
4783         vlan_macip_lens |= (hoff << E1000_ADVTXD_MACLEN_SHIFT);
4784         vlan_macip_lens |= iphlen;
4785
4786         type_tucmd_mlhl |= E1000_ADVTXD_DCMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
4787         type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_TCP;
4788         type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_IPV4;
4789
4790         mss_l4len_idx |= (m->m_pkthdr.tso_segsz << E1000_ADVTXD_MSS_SHIFT);
4791         mss_l4len_idx |= (thoff << E1000_ADVTXD_L4LEN_SHIFT);
4792
4793         /*
4794          * 82575 needs the TX context index added; the queue
4795          * index is used as TX context index here.
4796          */
4797         if (txr->sc->hw.mac.type == e1000_82575)
4798                 mss_l4len_idx |= txr->me << 4;
4799
4800         TXD->vlan_macip_lens = htole32(vlan_macip_lens);
4801         TXD->type_tucmd_mlhl = htole32(type_tucmd_mlhl);
4802         TXD->seqnum_seed = htole32(0);
4803         TXD->mss_l4len_idx = htole32(mss_l4len_idx);
4804
4805         /* We've consumed the first desc, adjust counters */
4806         if (++ctxd == txr->num_tx_desc)
4807                 ctxd = 0;
4808         txr->next_avail_desc = ctxd;
4809         --txr->tx_avail;
4810
4811         *hlen = hoff + iphlen + thoff;
4812 }
4813
4814 static void
4815 igb_setup_serializer(struct igb_softc *sc)
4816 {
4817         const struct igb_msix_data *msix;
4818         int i, j;
4819
4820         /*
4821          * Allocate serializer array
4822          */
4823
4824         /* Main + TX + RX */
4825         sc->serialize_cnt = 1 + sc->tx_ring_cnt + sc->rx_ring_cnt;
4826
4827         /* Aggregate TX/RX MSI-X */
4828         for (i = 0; i < sc->msix_cnt; ++i) {
4829                 msix = &sc->msix_data[i];
4830                 if (msix->msix_serialize == &msix->msix_serialize0)
4831                         sc->serialize_cnt++;
4832         }
4833
4834         sc->serializes =
4835             kmalloc(sc->serialize_cnt * sizeof(struct lwkt_serialize *),
4836                 M_DEVBUF, M_WAITOK | M_ZERO);
4837
4838         /*
4839          * Setup serializers
4840          *
4841          * NOTE: Order is critical
4842          */
4843
4844         i = 0;
4845
4846         KKASSERT(i < sc->serialize_cnt);
4847         sc->serializes[i++] = &sc->main_serialize;
4848
4849         for (j = 0; j < sc->msix_cnt; ++j) {
4850                 msix = &sc->msix_data[j];
4851                 if (msix->msix_serialize == &msix->msix_serialize0) {
4852                         KKASSERT(i < sc->serialize_cnt);
4853                         sc->serializes[i++] = msix->msix_serialize;
4854                 }
4855         }
4856
4857         for (j = 0; j < sc->tx_ring_cnt; ++j) {
4858                 KKASSERT(i < sc->serialize_cnt);
4859                 sc->serializes[i++] = &sc->tx_rings[j].tx_serialize;
4860         }
4861
4862         for (j = 0; j < sc->rx_ring_cnt; ++j) {
4863                 KKASSERT(i < sc->serialize_cnt);
4864                 sc->serializes[i++] = &sc->rx_rings[j].rx_serialize;
4865         }
4866
4867         KKASSERT(i == sc->serialize_cnt);
4868 }
4869
4870 static void
4871 igb_msix_rx_conf(struct igb_softc *sc, int i, int *x0, int offset)
4872 {
4873         int x = *x0;
4874
4875         for (; i < sc->rx_ring_msix; ++i) {
4876                 struct igb_rx_ring *rxr = &sc->rx_rings[i];
4877                 struct igb_msix_data *msix;
4878
4879                 KKASSERT(x < sc->msix_cnt);
4880                 msix = &sc->msix_data[x++];
4881
4882                 rxr->rx_intr_bit = msix->msix_vector;
4883                 rxr->rx_intr_mask = msix->msix_mask;
4884
4885                 msix->msix_serialize = &rxr->rx_serialize;
4886                 msix->msix_func = igb_msix_rx;
4887                 msix->msix_arg = rxr;
4888
4889                 msix->msix_cpuid = i + offset;
4890                 KKASSERT(msix->msix_cpuid < ncpus2);
4891
4892                 ksnprintf(msix->msix_desc, sizeof(msix->msix_desc), "%s rx%d",
4893                     device_get_nameunit(sc->dev), i);
4894
4895                 msix->msix_rate = IGB_MSIX_RX_RATE;
4896                 ksnprintf(msix->msix_rate_desc, sizeof(msix->msix_rate_desc),
4897                     "RX%d interrupt rate", i);
4898         }
4899         *x0 = x;
4900 }
4901
4902 static void
4903 igb_msix_tx_conf(struct igb_softc *sc, int i, int *x0, int offset)
4904 {
4905         int x = *x0;
4906
4907         for (; i < sc->tx_ring_msix; ++i) {
4908                 struct igb_tx_ring *txr = &sc->tx_rings[i];
4909                 struct igb_msix_data *msix;
4910
4911                 KKASSERT(x < sc->msix_cnt);
4912                 msix = &sc->msix_data[x++];
4913
4914                 txr->tx_intr_bit = msix->msix_vector;
4915                 txr->tx_intr_mask = msix->msix_mask;
4916
4917                 msix->msix_serialize = &txr->tx_serialize;
4918                 msix->msix_func = igb_msix_tx;
4919                 msix->msix_arg = txr;
4920
4921                 msix->msix_cpuid = i + offset;
4922                 KKASSERT(msix->msix_cpuid < ncpus2);
4923                 txr->tx_intr_cpuid = msix->msix_cpuid;
4924
4925                 ksnprintf(msix->msix_desc, sizeof(msix->msix_desc), "%s tx%d",
4926                     device_get_nameunit(sc->dev), i);
4927
4928                 msix->msix_rate = IGB_MSIX_TX_RATE;
4929                 ksnprintf(msix->msix_rate_desc, sizeof(msix->msix_rate_desc),
4930                     "TX%d interrupt rate", i);
4931         }
4932         *x0 = x;
4933 }
4934
4935 static void
4936 igb_msix_rxtx(void *arg)
4937 {
4938         struct igb_msix_data *msix = arg;
4939         struct igb_rx_ring *rxr = msix->msix_rx;
4940         struct igb_tx_ring *txr = msix->msix_tx;
4941
4942         ASSERT_SERIALIZED(&msix->msix_serialize0);
4943
4944         lwkt_serialize_enter(&rxr->rx_serialize);
4945         igb_rxeof(rxr, -1);
4946         lwkt_serialize_exit(&rxr->rx_serialize);
4947
4948         lwkt_serialize_enter(&txr->tx_serialize);
4949         igb_txeof(txr);
4950         if (!ifsq_is_empty(txr->ifsq))
4951                 ifsq_devstart(txr->ifsq);
4952         lwkt_serialize_exit(&txr->tx_serialize);
4953
4954         E1000_WRITE_REG(&msix->msix_sc->hw, E1000_EIMS, msix->msix_mask);
4955 }
4956
4957 static void
4958 igb_set_timer_cpuid(struct igb_softc *sc, boolean_t polling)
4959 {
4960         if (polling || sc->intr_type == PCI_INTR_TYPE_MSIX)
4961                 sc->timer_cpuid = 0; /* XXX fixed */
4962         else
4963                 sc->timer_cpuid = rman_get_cpuid(sc->intr_res);
4964 }