Merge branch 'vendor/OPENSSL'
[dragonfly.git] / sys / vfs / hammer2 / hammer2_freemap.c
1 /*
2  * Copyright (c) 2011-2014 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@dragonflybsd.org>
6  * by Venkatesh Srinivas <vsrinivas@dragonflybsd.org>
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  *
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in
16  *    the documentation and/or other materials provided with the
17  *    distribution.
18  * 3. Neither the name of The DragonFly Project nor the names of its
19  *    contributors may be used to endorse or promote products derived
20  *    from this software without specific, prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
25  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
26  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
28  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
29  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
30  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
31  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
32  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  */
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/kernel.h>
38 #include <sys/fcntl.h>
39 #include <sys/buf.h>
40 #include <sys/proc.h>
41 #include <sys/namei.h>
42 #include <sys/mount.h>
43 #include <sys/vnode.h>
44 #include <sys/mountctl.h>
45
46 #include "hammer2.h"
47
48 #define FREEMAP_DEBUG   0
49
50 struct hammer2_fiterate {
51         hammer2_off_t   bpref;
52         hammer2_off_t   bnext;
53         int             loops;
54 };
55
56 typedef struct hammer2_fiterate hammer2_fiterate_t;
57
58 static int hammer2_freemap_try_alloc(hammer2_trans_t *trans,
59                         hammer2_chain_t **parentp, hammer2_blockref_t *bref,
60                         int radix, hammer2_fiterate_t *iter);
61 static void hammer2_freemap_init(hammer2_trans_t *trans, hammer2_mount_t *hmp,
62                         hammer2_key_t key, hammer2_chain_t *chain);
63 static int hammer2_bmap_alloc(hammer2_trans_t *trans, hammer2_mount_t *hmp,
64                         hammer2_bmap_data_t *bmap, uint16_t class,
65                         int n, int radix, hammer2_key_t *basep);
66 static int hammer2_freemap_iterate(hammer2_trans_t *trans,
67                         hammer2_chain_t **parentp, hammer2_chain_t **chainp,
68                         hammer2_fiterate_t *iter);
69
70 static __inline
71 int
72 hammer2_freemapradix(int radix)
73 {
74         return(radix);
75 }
76
77 /*
78  * Calculate the device offset for the specified FREEMAP_NODE or FREEMAP_LEAF
79  * bref.  Return a combined media offset and physical size radix.  Freemap
80  * chains use fixed storage offsets in the 4MB reserved area at the
81  * beginning of each 2GB zone
82  *
83  * Rotate between four possibilities.  Theoretically this means we have three
84  * good freemaps in case of a crash which we can use as a base for the fixup
85  * scan at mount-time.
86  */
87 #define H2FMBASE(key, radix)    ((key) & ~(((hammer2_off_t)1 << (radix)) - 1))
88 #define H2FMSHIFT(radix)        ((hammer2_off_t)1 << (radix))
89
90 static
91 int
92 hammer2_freemap_reserve(hammer2_trans_t *trans, hammer2_chain_t *chain,
93                         int radix)
94 {
95         hammer2_blockref_t *bref = &chain->bref;
96         hammer2_off_t off;
97         int index;
98         size_t bytes;
99
100         /*
101          * Physical allocation size -> radix.  Typically either 256 for
102          * a level 0 freemap leaf or 65536 for a level N freemap node.
103          *
104          * NOTE: A 256 byte bitmap represents 256 x 8 x 1024 = 2MB of storage.
105          *       Do not use hammer2_allocsize() here as it has a min cap.
106          */
107         bytes = 1 << radix;
108
109         /*
110          * Calculate block selection index 0..7 of current block.  If this
111          * is the first allocation of the block (verses a modification of an
112          * existing block), we use index 0, otherwise we use the next rotating
113          * index.
114          *
115          * NORMAL transactions use FREEMAP sections 0-5, while FREEBATCH
116          * transactions use sections 6 and 7.  FREEBATCH transactions are
117          * used by the batch freeing code to spool-off in-memory structures
118          * used to track the batch free scan.
119          */
120         if (trans->flags & HAMMER2_TRANS_FREEBATCH) {
121                 if ((bref->data_off & ~HAMMER2_OFF_MASK_RADIX) == 0) {
122                         index = (HAMMER2_ZONE_FREEMAP_06 -
123                                  HAMMER2_ZONE_FREEMAP_00) / 4;
124                 } else {
125                         off = bref->data_off & ~HAMMER2_OFF_MASK_RADIX &
126                               (((hammer2_off_t)1 <<
127                                 HAMMER2_FREEMAP_LEVEL1_RADIX) - 1);
128                         off = off / HAMMER2_PBUFSIZE;
129                         KKASSERT(off >= HAMMER2_ZONE_FREEMAP_06 &&
130                                  off < HAMMER2_ZONE_FREEMAP_08);
131                         index = (int)(off - HAMMER2_ZONE_FREEMAP_00) / 4;
132                         KKASSERT(index >= 6 && index < 8);
133                         if (++index == 8)
134                                 index = 6;
135                 }
136         } else {
137                 if ((bref->data_off & ~HAMMER2_OFF_MASK_RADIX) == 0) {
138                         index = 0;
139                 } else {
140                         off = bref->data_off & ~HAMMER2_OFF_MASK_RADIX &
141                               (((hammer2_off_t)1 <<
142                                 HAMMER2_FREEMAP_LEVEL1_RADIX) - 1);
143                         off = off / HAMMER2_PBUFSIZE;
144                         KKASSERT(off >= HAMMER2_ZONE_FREEMAP_00 &&
145                                  off < HAMMER2_ZONE_FREEMAP_06);
146                         index = (int)(off - HAMMER2_ZONE_FREEMAP_00) / 4;
147                         KKASSERT(index >= 0 && index < 6);
148                         if (++index == 6)
149                                 index = 0;
150                 }
151         }
152
153         /*
154          * Calculate the block offset of the reserved block.  This will
155          * point into the 4MB reserved area at the base of the appropriate
156          * 2GB zone, once added to the FREEMAP_x selection above.
157          */
158         switch(bref->keybits) {
159         /* case HAMMER2_FREEMAP_LEVEL5_RADIX: not applicable */
160         case HAMMER2_FREEMAP_LEVEL4_RADIX:      /* 2EB */
161                 KKASSERT(bref->type == HAMMER2_BREF_TYPE_FREEMAP_NODE);
162                 KKASSERT(bytes == HAMMER2_FREEMAP_LEVELN_PSIZE);
163                 off = H2FMBASE(bref->key, HAMMER2_FREEMAP_LEVEL4_RADIX) +
164                       (index * 4 + HAMMER2_ZONE_FREEMAP_00 +
165                        HAMMER2_ZONEFM_LEVEL4) * HAMMER2_PBUFSIZE;
166                 break;
167         case HAMMER2_FREEMAP_LEVEL3_RADIX:      /* 2PB */
168                 KKASSERT(bref->type == HAMMER2_BREF_TYPE_FREEMAP_NODE);
169                 KKASSERT(bytes == HAMMER2_FREEMAP_LEVELN_PSIZE);
170                 off = H2FMBASE(bref->key, HAMMER2_FREEMAP_LEVEL3_RADIX) +
171                       (index * 4 + HAMMER2_ZONE_FREEMAP_00 +
172                        HAMMER2_ZONEFM_LEVEL3) * HAMMER2_PBUFSIZE;
173                 break;
174         case HAMMER2_FREEMAP_LEVEL2_RADIX:      /* 2TB */
175                 KKASSERT(bref->type == HAMMER2_BREF_TYPE_FREEMAP_NODE);
176                 KKASSERT(bytes == HAMMER2_FREEMAP_LEVELN_PSIZE);
177                 off = H2FMBASE(bref->key, HAMMER2_FREEMAP_LEVEL2_RADIX) +
178                       (index * 4 + HAMMER2_ZONE_FREEMAP_00 +
179                        HAMMER2_ZONEFM_LEVEL2) * HAMMER2_PBUFSIZE;
180                 break;
181         case HAMMER2_FREEMAP_LEVEL1_RADIX:      /* 2GB */
182                 KKASSERT(bref->type == HAMMER2_BREF_TYPE_FREEMAP_LEAF);
183                 KKASSERT(bytes == HAMMER2_FREEMAP_LEVELN_PSIZE);
184                 off = H2FMBASE(bref->key, HAMMER2_FREEMAP_LEVEL1_RADIX) +
185                       (index * 4 + HAMMER2_ZONE_FREEMAP_00 +
186                        HAMMER2_ZONEFM_LEVEL1) * HAMMER2_PBUFSIZE;
187                 break;
188         default:
189                 panic("freemap: bad radix(2) %p %d\n", bref, bref->keybits);
190                 /* NOT REACHED */
191                 off = (hammer2_off_t)-1;
192                 break;
193         }
194         bref->data_off = off | radix;
195 #if FREEMAP_DEBUG
196         kprintf("FREEMAP BLOCK TYPE %d %016jx/%d DATA_OFF=%016jx\n",
197                 bref->type, bref->key, bref->keybits, bref->data_off);
198 #endif
199         return (0);
200 }
201
202 /*
203  * Normal freemap allocator
204  *
205  * Use available hints to allocate space using the freemap.  Create missing
206  * freemap infrastructure on-the-fly as needed (including marking initial
207  * allocations using the iterator as allocated, instantiating new 2GB zones,
208  * and dealing with the end-of-media edge case).
209  *
210  * ip and bpref are only used as a heuristic to determine locality of
211  * reference.  bref->key may also be used heuristically.
212  */
213 int
214 hammer2_freemap_alloc(hammer2_trans_t *trans, hammer2_chain_t *chain,
215                       size_t bytes)
216 {
217         hammer2_mount_t *hmp = chain->hmp;
218         hammer2_blockref_t *bref = &chain->bref;
219         hammer2_chain_t *parent;
220         int radix;
221         int error;
222         unsigned int hindex;
223         hammer2_fiterate_t iter;
224
225         /*
226          * Validate the allocation size.  It must be a power of 2.
227          *
228          * For now require that the caller be aware of the minimum
229          * allocation (1K).
230          */
231         radix = hammer2_getradix(bytes);
232         KKASSERT((size_t)1 << radix == bytes);
233
234         if (bref->type == HAMMER2_BREF_TYPE_FREEMAP_NODE ||
235             bref->type == HAMMER2_BREF_TYPE_FREEMAP_LEAF) {
236                 /*
237                  * Freemap blocks themselves are assigned from the reserve
238                  * area, not allocated from the freemap.
239                  */
240                 error = hammer2_freemap_reserve(trans, chain, radix);
241                 return error;
242         }
243
244         KKASSERT(bytes >= HAMMER2_ALLOC_MIN && bytes <= HAMMER2_ALLOC_MAX);
245
246         if (trans->flags & (HAMMER2_TRANS_ISFLUSH | HAMMER2_TRANS_PREFLUSH))
247                 ++trans->sync_xid;
248
249         /*
250          * Calculate the starting point for our allocation search.
251          *
252          * Each freemap leaf is dedicated to a specific freemap_radix.
253          * The freemap_radix can be more fine-grained than the device buffer
254          * radix which results in inodes being grouped together in their
255          * own segment, terminal-data (16K or less) and initial indirect
256          * block being grouped together, and then full-indirect and full-data
257          * blocks (64K) being grouped together.
258          *
259          * The single most important aspect of this is the inode grouping
260          * because that is what allows 'find' and 'ls' and other filesystem
261          * topology operations to run fast.
262          */
263 #if 0
264         if (bref->data_off & ~HAMMER2_OFF_MASK_RADIX)
265                 bpref = bref->data_off & ~HAMMER2_OFF_MASK_RADIX;
266         else if (trans->tmp_bpref)
267                 bpref = trans->tmp_bpref;
268         else if (trans->tmp_ip)
269                 bpref = trans->tmp_ip->chain->bref.data_off;
270         else
271 #endif
272         /*
273          * Heuristic tracking index.  We would like one for each distinct
274          * bref type if possible.  heur_freemap[] has room for two classes
275          * for each type.  At a minimum we have to break-up our heuristic
276          * by device block sizes.
277          */
278         hindex = hammer2_devblkradix(radix) - HAMMER2_MINIORADIX;
279         KKASSERT(hindex < HAMMER2_FREEMAP_HEUR_NRADIX);
280         hindex += bref->type * HAMMER2_FREEMAP_HEUR_NRADIX;
281         hindex &= HAMMER2_FREEMAP_HEUR_TYPES * HAMMER2_FREEMAP_HEUR_NRADIX - 1;
282         KKASSERT(hindex < HAMMER2_FREEMAP_HEUR);
283
284         iter.bpref = hmp->heur_freemap[hindex];
285
286         /*
287          * Make sure bpref is in-bounds.  It's ok if bpref covers a zone's
288          * reserved area, the try code will iterate past it.
289          */
290         if (iter.bpref > hmp->voldata.volu_size)
291                 iter.bpref = hmp->voldata.volu_size - 1;
292
293         /*
294          * Iterate the freemap looking for free space before and after.
295          */
296         parent = &hmp->fchain;
297         hammer2_chain_lock(parent, HAMMER2_RESOLVE_ALWAYS);
298         error = EAGAIN;
299         iter.bnext = iter.bpref;
300         iter.loops = 0;
301
302         while (error == EAGAIN) {
303                 error = hammer2_freemap_try_alloc(trans, &parent, bref,
304                                                   radix, &iter);
305         }
306         hmp->heur_freemap[hindex] = iter.bnext;
307         hammer2_chain_unlock(parent);
308
309         if (trans->flags & (HAMMER2_TRANS_ISFLUSH | HAMMER2_TRANS_PREFLUSH))
310                 --trans->sync_xid;
311
312         return (error);
313 }
314
315 static int
316 hammer2_freemap_try_alloc(hammer2_trans_t *trans, hammer2_chain_t **parentp,
317                           hammer2_blockref_t *bref, int radix,
318                           hammer2_fiterate_t *iter)
319 {
320         hammer2_mount_t *hmp = (*parentp)->hmp;
321         hammer2_off_t l0size;
322         hammer2_off_t l1size;
323         hammer2_off_t l1mask;
324         hammer2_key_t key_dummy;
325         hammer2_chain_t *chain;
326         hammer2_off_t key;
327         size_t bytes;
328         uint16_t class;
329         int error = 0;
330         int cache_index = -1;
331         int ddflag;
332
333
334         /*
335          * Calculate the number of bytes being allocated, the number
336          * of contiguous bits of bitmap being allocated, and the bitmap
337          * mask.
338          *
339          * WARNING! cpu hardware may mask bits == 64 -> 0 and blow up the
340          *          mask calculation.
341          */
342         bytes = (size_t)1 << radix;
343         class = (bref->type << 8) | hammer2_devblkradix(radix);
344
345         /*
346          * Lookup the level1 freemap chain, creating and initializing one
347          * if necessary.  Intermediate levels will be created automatically
348          * when necessary by hammer2_chain_create().
349          */
350         key = H2FMBASE(iter->bnext, HAMMER2_FREEMAP_LEVEL1_RADIX);
351         l0size = H2FMSHIFT(HAMMER2_FREEMAP_LEVEL0_RADIX);
352         l1size = H2FMSHIFT(HAMMER2_FREEMAP_LEVEL1_RADIX);
353         l1mask = l1size - 1;
354
355         chain = hammer2_chain_lookup(parentp, &key_dummy, key, key + l1mask,
356                                      &cache_index,
357                                      HAMMER2_LOOKUP_ALWAYS |
358                                      HAMMER2_LOOKUP_MATCHIND, &ddflag);
359
360         if (chain == NULL) {
361                 /*
362                  * Create the missing leaf, be sure to initialize
363                  * the auxillary freemap tracking information in
364                  * the bref.check.freemap structure.
365                  */
366 #if 0
367                 kprintf("freemap create L1 @ %016jx bpref %016jx\n",
368                         key, iter->bpref);
369 #endif
370                 error = hammer2_chain_create(trans, parentp, &chain, hmp->spmp,
371                                      key, HAMMER2_FREEMAP_LEVEL1_RADIX,
372                                      HAMMER2_BREF_TYPE_FREEMAP_LEAF,
373                                      HAMMER2_FREEMAP_LEVELN_PSIZE,
374                                      0);
375                 KKASSERT(error == 0);
376                 if (error == 0) {
377                         hammer2_chain_modify(trans, chain, 0);
378                         bzero(&chain->data->bmdata[0],
379                               HAMMER2_FREEMAP_LEVELN_PSIZE);
380                         chain->bref.check.freemap.bigmask = (uint32_t)-1;
381                         chain->bref.check.freemap.avail = l1size;
382                         /* bref.methods should already be inherited */
383
384                         hammer2_freemap_init(trans, hmp, key, chain);
385                 }
386         } else if ((chain->bref.check.freemap.bigmask & (1 << radix)) == 0) {
387                 /*
388                  * Already flagged as not having enough space
389                  */
390                 error = ENOSPC;
391         } else {
392                 /*
393                  * Modify existing chain to setup for adjustment.
394                  */
395                 hammer2_chain_modify(trans, chain, 0);
396         }
397
398         /*
399          * Scan 2MB entries.
400          */
401         if (error == 0) {
402                 hammer2_bmap_data_t *bmap;
403                 hammer2_key_t base_key;
404                 int count;
405                 int start;
406                 int n;
407
408                 KKASSERT(chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP_LEAF);
409                 start = (int)((iter->bnext - key) >>
410                               HAMMER2_FREEMAP_LEVEL0_RADIX);
411                 KKASSERT(start >= 0 && start < HAMMER2_FREEMAP_COUNT);
412                 hammer2_chain_modify(trans, chain, 0);
413
414                 error = ENOSPC;
415                 for (count = 0; count < HAMMER2_FREEMAP_COUNT; ++count) {
416                         if (start + count >= HAMMER2_FREEMAP_COUNT &&
417                             start - count < 0) {
418                                 break;
419                         }
420                         n = start + count;
421                         bmap = &chain->data->bmdata[n];
422                         if (n < HAMMER2_FREEMAP_COUNT && bmap->avail &&
423                             (bmap->class == 0 || bmap->class == class)) {
424                                 base_key = key + n * l0size;
425                                 error = hammer2_bmap_alloc(trans, hmp, bmap,
426                                                            class, n, radix,
427                                                            &base_key);
428                                 if (error != ENOSPC) {
429                                         key = base_key;
430                                         break;
431                                 }
432                         }
433                         n = start - count;
434                         bmap = &chain->data->bmdata[n];
435                         if (n >= 0 && bmap->avail &&
436                             (bmap->class == 0 || bmap->class == class)) {
437                                 base_key = key + n * l0size;
438                                 error = hammer2_bmap_alloc(trans, hmp, bmap,
439                                                            class, n, radix,
440                                                            &base_key);
441                                 if (error != ENOSPC) {
442                                         key = base_key;
443                                         break;
444                                 }
445                         }
446                 }
447                 if (error == ENOSPC)
448                         chain->bref.check.freemap.bigmask &= ~(1 << radix);
449                 /* XXX also scan down from original count */
450         }
451
452         if (error == 0) {
453                 /*
454                  * Assert validity.  Must be beyond the static allocator used
455                  * by newfs_hammer2 (and thus also beyond the aux area),
456                  * not go past the volume size, and must not be in the
457                  * reserved segment area for a zone.
458                  */
459                 KKASSERT(key >= hmp->voldata.allocator_beg &&
460                          key + bytes <= hmp->voldata.volu_size);
461                 KKASSERT((key & HAMMER2_ZONE_MASK64) >= HAMMER2_ZONE_SEG);
462                 bref->data_off = key | radix;
463
464 #if 0
465                 kprintf("alloc cp=%p %016jx %016jx using %016jx\n",
466                         chain,
467                         bref->key, bref->data_off, chain->bref.data_off);
468 #endif
469         } else if (error == ENOSPC) {
470                 /*
471                  * Return EAGAIN with next iteration in iter->bnext, or
472                  * return ENOSPC if the allocation map has been exhausted.
473                  */
474                 error = hammer2_freemap_iterate(trans, parentp, &chain, iter);
475         }
476
477         /*
478          * Cleanup
479          */
480         if (chain)
481                 hammer2_chain_unlock(chain);
482         return (error);
483 }
484
485 /*
486  * Allocate (1<<radix) bytes from the bmap whos base data offset is (*basep).
487  *
488  * If the linear iterator is mid-block we use it directly (the bitmap should
489  * already be marked allocated), otherwise we search for a block in the bitmap
490  * that fits the allocation request.
491  *
492  * A partial bitmap allocation sets the minimum bitmap granularity (16KB)
493  * to fully allocated and adjusts the linear allocator to allow the
494  * remaining space to be allocated.
495  */
496 static
497 int
498 hammer2_bmap_alloc(hammer2_trans_t *trans, hammer2_mount_t *hmp,
499                    hammer2_bmap_data_t *bmap,
500                    uint16_t class, int n, int radix, hammer2_key_t *basep)
501 {
502         hammer2_io_t *dio;
503         size_t size;
504         size_t bsize;
505         int bmradix;
506         uint32_t bmmask;
507         int offset;
508         int error;
509         int i;
510         int j;
511
512         /*
513          * Take into account 2-bits per block when calculating bmradix.
514          */
515         size = (size_t)1 << radix;
516
517         if (radix <= HAMMER2_FREEMAP_BLOCK_RADIX) {
518                 bmradix = 2;
519                 bsize = HAMMER2_FREEMAP_BLOCK_SIZE;
520                 /* (16K) 2 bits per allocation block */
521         } else {
522                 bmradix = 2 << (radix - HAMMER2_FREEMAP_BLOCK_RADIX);
523                 bsize = size;
524                 /* (32K-256K) 4, 8, 16, 32 bits per allocation block */
525         }
526
527         /*
528          * Use the linear iterator to pack small allocations, otherwise
529          * fall-back to finding a free 16KB chunk.  The linear iterator
530          * is only valid when *NOT* on a freemap chunking boundary (16KB).
531          * If it is the bitmap must be scanned.  It can become invalid
532          * once we pack to the boundary.  We adjust it after a bitmap
533          * allocation only for sub-16KB allocations (so the perfectly good
534          * previous value can still be used for fragments when 16KB+
535          * allocations are made).
536          *
537          * Beware of hardware artifacts when bmradix == 32 (intermediate
538          * result can wind up being '1' instead of '0' if hardware masks
539          * bit-count & 31).
540          *
541          * NOTE: j needs to be even in the j= calculation.  As an artifact
542          *       of the /2 division, our bitmask has to clear bit 0.
543          *
544          * NOTE: TODO this can leave little unallocatable fragments lying
545          *       around.
546          */
547         if (((uint32_t)bmap->linear & HAMMER2_FREEMAP_BLOCK_MASK) + size <=
548             HAMMER2_FREEMAP_BLOCK_SIZE &&
549             (bmap->linear & HAMMER2_FREEMAP_BLOCK_MASK) &&
550             bmap->linear < HAMMER2_SEGSIZE) {
551                 KKASSERT(bmap->linear >= 0 &&
552                          bmap->linear + size <= HAMMER2_SEGSIZE &&
553                          (bmap->linear & (HAMMER2_ALLOC_MIN - 1)) == 0);
554                 offset = bmap->linear;
555                 i = offset / (HAMMER2_SEGSIZE / 8);
556                 j = (offset / (HAMMER2_FREEMAP_BLOCK_SIZE / 2)) & 30;
557                 bmmask = (bmradix == 32) ?
558                          0xFFFFFFFFU : (1 << bmradix) - 1;
559                 bmmask <<= j;
560                 bmap->linear = offset + size;
561         } else {
562                 for (i = 0; i < 8; ++i) {
563                         bmmask = (bmradix == 32) ?
564                                  0xFFFFFFFFU : (1 << bmradix) - 1;
565                         for (j = 0; j < 32; j += bmradix) {
566                                 if ((bmap->bitmap[i] & bmmask) == 0)
567                                         goto success;
568                                 bmmask <<= bmradix;
569                         }
570                 }
571                 /*fragments might remain*/
572                 /*KKASSERT(bmap->avail == 0);*/
573                 return (ENOSPC);
574 success:
575                 offset = i * (HAMMER2_SEGSIZE / 8) +
576                          (j * (HAMMER2_FREEMAP_BLOCK_SIZE / 2));
577                 if (size & HAMMER2_FREEMAP_BLOCK_MASK)
578                         bmap->linear = offset + size;
579         }
580
581         KKASSERT(i >= 0 && i < 8);      /* 8 x 16 -> 128 x 16K -> 2MB */
582
583         /*
584          * Optimize the buffer cache to avoid unnecessary read-before-write
585          * operations.
586          *
587          * The device block size could be larger than the allocation size
588          * so the actual bitmap test is somewhat more involved.  We have
589          * to use a compatible buffer size for this operation.
590          */
591         if ((bmap->bitmap[i] & bmmask) == 0 &&
592             hammer2_devblksize(size) != size) {
593                 size_t psize = hammer2_devblksize(size);
594                 hammer2_off_t pmask = (hammer2_off_t)psize - 1;
595                 int pbmradix = 2 << (hammer2_devblkradix(radix) -
596                                      HAMMER2_FREEMAP_BLOCK_RADIX);
597                 uint32_t pbmmask;
598                 int pradix = hammer2_getradix(psize);
599
600                 pbmmask = (pbmradix == 32) ? 0xFFFFFFFFU : (1 << pbmradix) - 1;
601                 while ((pbmmask & bmmask) == 0)
602                         pbmmask <<= pbmradix;
603
604 #if 0
605                 kprintf("%016jx mask %08x %08x %08x (%zd/%zd)\n",
606                         *basep + offset, bmap->bitmap[i],
607                         pbmmask, bmmask, size, psize);
608 #endif
609
610                 if ((bmap->bitmap[i] & pbmmask) == 0) {
611                         error = hammer2_io_newq(hmp,
612                                                 (*basep + (offset & ~pmask)) |
613                                                  pradix,
614                                                 psize, &dio);
615                         hammer2_io_bqrelse(&dio);
616                 }
617         }
618
619 #if 0
620         /*
621          * When initializing a new inode segment also attempt to initialize
622          * an adjacent segment.  Be careful not to index beyond the array
623          * bounds.
624          *
625          * We do this to try to localize inode accesses to improve
626          * directory scan rates.  XXX doesn't improve scan rates.
627          */
628         if (size == HAMMER2_INODE_BYTES) {
629                 if (n & 1) {
630                         if (bmap[-1].radix == 0 && bmap[-1].avail)
631                                 bmap[-1].radix = radix;
632                 } else {
633                         if (bmap[1].radix == 0 && bmap[1].avail)
634                                 bmap[1].radix = radix;
635                 }
636         }
637 #endif
638
639         /*
640          * Adjust the linear iterator, set the radix if necessary (might as
641          * well just set it unconditionally), adjust *basep to return the
642          * allocated data offset.
643          */
644         bmap->bitmap[i] |= bmmask;
645         bmap->class = class;
646         bmap->avail -= size;
647         *basep += offset;
648
649         hammer2_voldata_lock(hmp);
650         hammer2_voldata_modify(hmp);
651         hmp->voldata.allocator_free -= size;  /* XXX */
652         hammer2_voldata_unlock(hmp);
653
654         return(0);
655 }
656
657 static
658 void
659 hammer2_freemap_init(hammer2_trans_t *trans, hammer2_mount_t *hmp,
660                      hammer2_key_t key, hammer2_chain_t *chain)
661 {
662         hammer2_off_t l1size;
663         hammer2_off_t lokey;
664         hammer2_off_t hikey;
665         hammer2_bmap_data_t *bmap;
666         int count;
667
668         l1size = H2FMSHIFT(HAMMER2_FREEMAP_LEVEL1_RADIX);
669
670         /*
671          * Calculate the portion of the 2GB map that should be initialized
672          * as free.  Portions below or after will be initialized as allocated.
673          * SEGMASK-align the areas so we don't have to worry about sub-scans
674          * or endianess when using memset.
675          *
676          * (1) Ensure that all statically allocated space from newfs_hammer2
677          *     is marked allocated.
678          *
679          * (2) Ensure that the reserved area is marked allocated (typically
680          *     the first 4MB of the 2GB area being represented).
681          *
682          * (3) Ensure that any trailing space at the end-of-volume is marked
683          *     allocated.
684          *
685          * WARNING! It is possible for lokey to be larger than hikey if the
686          *          entire 2GB segment is within the static allocation.
687          */
688         lokey = (hmp->voldata.allocator_beg + HAMMER2_SEGMASK64) &
689                 ~HAMMER2_SEGMASK64;
690
691         if (lokey < H2FMBASE(key, HAMMER2_FREEMAP_LEVEL1_RADIX) +
692                   HAMMER2_ZONE_SEG64) {
693                 lokey = H2FMBASE(key, HAMMER2_FREEMAP_LEVEL1_RADIX) +
694                         HAMMER2_ZONE_SEG64;
695         }
696
697         hikey = key + H2FMSHIFT(HAMMER2_FREEMAP_LEVEL1_RADIX);
698         if (hikey > hmp->voldata.volu_size) {
699                 hikey = hmp->voldata.volu_size & ~HAMMER2_SEGMASK64;
700         }
701
702         chain->bref.check.freemap.avail =
703                 H2FMSHIFT(HAMMER2_FREEMAP_LEVEL1_RADIX);
704         bmap = &chain->data->bmdata[0];
705
706         for (count = 0; count < HAMMER2_FREEMAP_COUNT; ++count) {
707                 if (key < lokey || key >= hikey) {
708                         memset(bmap->bitmap, -1,
709                                sizeof(bmap->bitmap));
710                         bmap->avail = 0;
711                         bmap->linear = HAMMER2_SEGSIZE;
712                         chain->bref.check.freemap.avail -=
713                                 H2FMSHIFT(HAMMER2_FREEMAP_LEVEL0_RADIX);
714                 } else {
715                         bmap->avail = H2FMSHIFT(HAMMER2_FREEMAP_LEVEL0_RADIX);
716                 }
717                 key += H2FMSHIFT(HAMMER2_FREEMAP_LEVEL0_RADIX);
718                 ++bmap;
719         }
720 }
721
722 /*
723  * The current Level 1 freemap has been exhausted, iterate to the next
724  * one, return ENOSPC if no freemaps remain.
725  *
726  * XXX this should rotate back to the beginning to handle freed-up space
727  * XXX or use intermediate entries to locate free space. TODO
728  */
729 static int
730 hammer2_freemap_iterate(hammer2_trans_t *trans, hammer2_chain_t **parentp,
731                         hammer2_chain_t **chainp, hammer2_fiterate_t *iter)
732 {
733         hammer2_mount_t *hmp = (*parentp)->hmp;
734
735         iter->bnext &= ~(H2FMSHIFT(HAMMER2_FREEMAP_LEVEL1_RADIX) - 1);
736         iter->bnext += H2FMSHIFT(HAMMER2_FREEMAP_LEVEL1_RADIX);
737         if (iter->bnext >= hmp->voldata.volu_size) {
738                 iter->bnext = 0;
739                 if (++iter->loops == 2)
740                         return (ENOSPC);
741         }
742         return(EAGAIN);
743 }
744
745 /*
746  * Adjust the bit-pattern for data in the freemap bitmap according to
747  * (how).  This code is called from on-mount recovery to fixup (mark
748  * as allocated) blocks whos freemap upates might not have been committed
749  * in the last crash and is used by the bulk freemap scan to stage frees.
750  *
751  * XXX currently disabled when how == 0 (the normal real-time case).  At
752  * the moment we depend on the bulk freescan to actually free blocks.  It
753  * will still call this routine with a non-zero how to stage possible frees
754  * and to do the actual free.
755  */
756 void
757 hammer2_freemap_adjust(hammer2_trans_t *trans, hammer2_mount_t *hmp,
758                        hammer2_blockref_t *bref, int how)
759 {
760         hammer2_off_t data_off = bref->data_off;
761         hammer2_chain_t *chain;
762         hammer2_chain_t *parent;
763         hammer2_bmap_data_t *bmap;
764         hammer2_key_t key;
765         hammer2_key_t key_dummy;
766         hammer2_off_t l0size;
767         hammer2_off_t l1size;
768         hammer2_off_t l1mask;
769         uint32_t *bitmap;
770         const uint32_t bmmask00 = 0;
771         uint32_t bmmask01;
772         uint32_t bmmask10;
773         uint32_t bmmask11;
774         size_t bytes;
775         uint16_t class;
776         int radix;
777         int start;
778         int count;
779         int modified = 0;
780         int cache_index = -1;
781         int error;
782         int ddflag;
783
784         radix = (int)data_off & HAMMER2_OFF_MASK_RADIX;
785         data_off &= ~HAMMER2_OFF_MASK_RADIX;
786         KKASSERT(radix <= HAMMER2_RADIX_MAX);
787
788         bytes = (size_t)1 << radix;
789         class = (bref->type << 8) | hammer2_devblkradix(radix);
790
791         /*
792          * We can't adjust thre freemap for data allocations made by
793          * newfs_hammer2.
794          */
795         if (data_off < hmp->voldata.allocator_beg)
796                 return;
797
798         KKASSERT((data_off & HAMMER2_ZONE_MASK64) >= HAMMER2_ZONE_SEG);
799
800         /*
801          * Lookup the level1 freemap chain.  The chain must exist.
802          */
803         key = H2FMBASE(data_off, HAMMER2_FREEMAP_LEVEL1_RADIX);
804         l0size = H2FMSHIFT(HAMMER2_FREEMAP_LEVEL0_RADIX);
805         l1size = H2FMSHIFT(HAMMER2_FREEMAP_LEVEL1_RADIX);
806         l1mask = l1size - 1;
807
808         parent = &hmp->fchain;
809         hammer2_chain_lock(parent, HAMMER2_RESOLVE_ALWAYS);
810
811         chain = hammer2_chain_lookup(&parent, &key_dummy, key, key + l1mask,
812                                      &cache_index,
813                                      HAMMER2_LOOKUP_ALWAYS |
814                                      HAMMER2_LOOKUP_MATCHIND, &ddflag);
815
816         /*
817          * Stop early if we are trying to free something but no leaf exists.
818          */
819         if (chain == NULL && how != HAMMER2_FREEMAP_DORECOVER) {
820                 kprintf("hammer2_freemap_adjust: %016jx: no chain\n",
821                         (intmax_t)bref->data_off);
822                 goto done;
823         }
824
825         /*
826          * Create any missing leaf(s) if we are doing a recovery (marking
827          * the block(s) as being allocated instead of being freed).  Be sure
828          * to initialize the auxillary freemap tracking info in the
829          * bref.check.freemap structure.
830          */
831         if (chain == NULL && how == HAMMER2_FREEMAP_DORECOVER) {
832                 error = hammer2_chain_create(trans, &parent, &chain, hmp->spmp,
833                                      key, HAMMER2_FREEMAP_LEVEL1_RADIX,
834                                      HAMMER2_BREF_TYPE_FREEMAP_LEAF,
835                                      HAMMER2_FREEMAP_LEVELN_PSIZE,
836                                      0);
837
838                 if (hammer2_debug & 0x0040) {
839                         kprintf("fixup create chain %p %016jx:%d\n",
840                                 chain, chain->bref.key, chain->bref.keybits);
841                 }
842
843                 if (error == 0) {
844                         hammer2_chain_modify(trans, chain, 0);
845                         bzero(&chain->data->bmdata[0],
846                               HAMMER2_FREEMAP_LEVELN_PSIZE);
847                         chain->bref.check.freemap.bigmask = (uint32_t)-1;
848                         chain->bref.check.freemap.avail = l1size;
849                         /* bref.methods should already be inherited */
850
851                         hammer2_freemap_init(trans, hmp, key, chain);
852                 }
853                 /* XXX handle error */
854         }
855
856 #if FREEMAP_DEBUG
857         kprintf("FREEMAP ADJUST TYPE %d %016jx/%d DATA_OFF=%016jx\n",
858                 chain->bref.type, chain->bref.key,
859                 chain->bref.keybits, chain->bref.data_off);
860 #endif
861
862         /*
863          * Calculate the bitmask (runs in 2-bit pairs).
864          */
865         start = ((int)(data_off >> HAMMER2_FREEMAP_BLOCK_RADIX) & 15) * 2;
866         bmmask01 = 1 << start;
867         bmmask10 = 2 << start;
868         bmmask11 = 3 << start;
869
870         /*
871          * Fixup the bitmap.  Partial blocks cannot be fully freed unless
872          * a bulk scan is able to roll them up.
873          */
874         if (radix < HAMMER2_FREEMAP_BLOCK_RADIX) {
875                 count = 1;
876                 if (how == HAMMER2_FREEMAP_DOREALFREE)
877                         how = HAMMER2_FREEMAP_DOMAYFREE;
878         } else {
879                 count = 1 << (radix - HAMMER2_FREEMAP_BLOCK_RADIX);
880         }
881
882         /*
883          * [re]load the bmap and bitmap pointers.  Each bmap entry covers
884          * a 2MB swath.  The bmap itself (LEVEL1) covers 2GB.
885          *
886          * Be sure to reset the linear iterator to ensure that the adjustment
887          * is not ignored.
888          */
889 again:
890         bmap = &chain->data->bmdata[(int)(data_off >> HAMMER2_SEGRADIX) &
891                                     (HAMMER2_FREEMAP_COUNT - 1)];
892         bitmap = &bmap->bitmap[(int)(data_off >> (HAMMER2_SEGRADIX - 3)) & 7];
893
894         if (modified)
895                 bmap->linear = 0;
896
897         while (count) {
898                 KKASSERT(bmmask11);
899                 if (how == HAMMER2_FREEMAP_DORECOVER) {
900                         /*
901                          * Recovery request, mark as allocated.
902                          */
903                         if ((*bitmap & bmmask11) != bmmask11) {
904                                 if (modified == 0) {
905                                         hammer2_chain_modify(trans, chain, 0);
906                                         modified = 1;
907                                         goto again;
908                                 }
909                                 if ((*bitmap & bmmask11) == bmmask00)
910                                         bmap->avail -= 1 << radix;
911                                 if (bmap->class == 0)
912                                         bmap->class = class;
913                                 *bitmap |= bmmask11;
914                                 if (hammer2_debug & 0x0040) {
915                                         kprintf("hammer2_freemap_recover: "
916                                                 "fixup type=%02x "
917                                                 "block=%016jx/%zd\n",
918                                                 bref->type, data_off, bytes);
919                                 }
920                         } else {
921                                 /*
922                                 kprintf("hammer2_freemap_recover:  good "
923                                         "type=%02x block=%016jx/%zd\n",
924                                         bref->type, data_off, bytes);
925                                 */
926                         }
927                 } else if ((*bitmap & bmmask11) == bmmask11) {
928                         /*
929                          * Mayfree/Realfree request and bitmap is currently
930                          * marked as being fully allocated.
931                          */
932                         if (!modified) {
933                                 hammer2_chain_modify(trans, chain, 0);
934                                 modified = 1;
935                                 goto again;
936                         }
937                         if (how == HAMMER2_FREEMAP_DOREALFREE)
938                                 *bitmap &= ~bmmask11;
939                         else
940                                 *bitmap = (*bitmap & ~bmmask11) | bmmask10;
941                 } else if ((*bitmap & bmmask11) == bmmask10) {
942                         /*
943                          * Mayfree/Realfree request and bitmap is currently
944                          * marked as being possibly freeable.
945                          */
946                         if (how == HAMMER2_FREEMAP_DOREALFREE) {
947                                 if (!modified) {
948                                         hammer2_chain_modify(trans, chain, 0);
949                                         modified = 1;
950                                         goto again;
951                                 }
952                                 *bitmap &= ~bmmask11;
953                         }
954                 } else {
955                         /*
956                          * 01 - Not implemented, currently illegal state
957                          * 00 - Not allocated at all, illegal free.
958                          */
959                         panic("hammer2_freemap_adjust: "
960                               "Illegal state %08x(%08x)",
961                               *bitmap, *bitmap & bmmask11);
962                 }
963                 --count;
964                 bmmask01 <<= 2;
965                 bmmask10 <<= 2;
966                 bmmask11 <<= 2;
967         }
968         if (how == HAMMER2_FREEMAP_DOREALFREE && modified) {
969                 bmap->avail += 1 << radix;
970                 KKASSERT(bmap->avail <= HAMMER2_SEGSIZE);
971                 if (bmap->avail == HAMMER2_SEGSIZE &&
972                     bmap->bitmap[0] == 0 &&
973                     bmap->bitmap[1] == 0 &&
974                     bmap->bitmap[2] == 0 &&
975                     bmap->bitmap[3] == 0 &&
976                     bmap->bitmap[4] == 0 &&
977                     bmap->bitmap[5] == 0 &&
978                     bmap->bitmap[6] == 0 &&
979                     bmap->bitmap[7] == 0) {
980                         key = H2FMBASE(data_off, HAMMER2_FREEMAP_LEVEL0_RADIX);
981                         kprintf("Freeseg %016jx\n", (intmax_t)key);
982                         bmap->class = 0;
983                 }
984         }
985
986         /*
987          * chain->bref.check.freemap.bigmask (XXX)
988          *
989          * Setting bigmask is a hint to the allocation code that there might
990          * be something allocatable.  We also set this in recovery... it
991          * doesn't hurt and we might want to use the hint for other validation
992          * operations later on.
993          */
994         if (modified)
995                 chain->bref.check.freemap.bigmask |= 1 << radix;
996
997         hammer2_chain_unlock(chain);
998 done:
999         hammer2_chain_unlock(parent);
1000 }
1001
1002 /*
1003  * Validate the freemap, in three stages.
1004  *
1005  * stage-1      ALLOCATED     -> POSSIBLY FREE
1006  *              POSSIBLY FREE -> POSSIBLY FREE (type corrected)
1007  *
1008  *      This transitions bitmap entries from ALLOCATED to POSSIBLY FREE.
1009  *      The POSSIBLY FREE state does not mean that a block is actually free
1010  *      and may be transitioned back to ALLOCATED in stage-2.
1011  *
1012  *      This is typically done during normal filesystem operations when
1013  *      something is deleted or a block is replaced.
1014  *
1015  *      This is done by bulkfree in-bulk after a memory-bounded meta-data
1016  *      scan to try to determine what might be freeable.
1017  *
1018  *      This can be done unconditionally through a freemap scan when the
1019  *      intention is to brute-force recover the proper state of the freemap.
1020  *
1021  * stage-2      POSSIBLY FREE -> ALLOCATED      (scan metadata topology)
1022  *
1023  *      This is done by bulkfree during a meta-data scan to ensure that
1024  *      all blocks still actually allocated by the filesystem are marked
1025  *      as such.
1026  *
1027  *      NOTE! Live filesystem transitions to POSSIBLY FREE can occur while
1028  *            the bulkfree stage-2 and stage-3 is running.  The live filesystem
1029  *            will use the alternative POSSIBLY FREE type (2) to prevent
1030  *            stage-3 from improperly transitioning unvetted possibly-free
1031  *            blocks to FREE.
1032  *
1033  * stage-3      POSSIBLY FREE (type 1) -> FREE  (scan freemap)
1034  *
1035  *      This is done by bulkfree to finalize POSSIBLY FREE states.
1036  *
1037  */