kernel: Remove newlines from the panic messages that have one.
[dragonfly.git] / sys / dev / netif / em / if_em.c
1 /*
2  * Copyright (c) 2004 Joerg Sonnenberger <joerg@bec.de>.  All rights reserved.
3  *
4  * Copyright (c) 2001-2008, Intel Corporation
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions are met:
9  *
10  *  1. Redistributions of source code must retain the above copyright notice,
11  *     this list of conditions and the following disclaimer.
12  *
13  *  2. Redistributions in binary form must reproduce the above copyright
14  *     notice, this list of conditions and the following disclaimer in the
15  *     documentation and/or other materials provided with the distribution.
16  *
17  *  3. Neither the name of the Intel Corporation nor the names of its
18  *     contributors may be used to endorse or promote products derived from
19  *     this software without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
22  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
25  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31  * POSSIBILITY OF SUCH DAMAGE.
32  *
33  *
34  * Copyright (c) 2005 The DragonFly Project.  All rights reserved.
35  *
36  * This code is derived from software contributed to The DragonFly Project
37  * by Matthew Dillon <dillon@backplane.com>
38  *
39  * Redistribution and use in source and binary forms, with or without
40  * modification, are permitted provided that the following conditions
41  * are met:
42  *
43  * 1. Redistributions of source code must retain the above copyright
44  *    notice, this list of conditions and the following disclaimer.
45  * 2. Redistributions in binary form must reproduce the above copyright
46  *    notice, this list of conditions and the following disclaimer in
47  *    the documentation and/or other materials provided with the
48  *    distribution.
49  * 3. Neither the name of The DragonFly Project nor the names of its
50  *    contributors may be used to endorse or promote products derived
51  *    from this software without specific, prior written permission.
52  *
53  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
54  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
55  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
56  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
57  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
58  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
59  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
60  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
61  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
62  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
63  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64  * SUCH DAMAGE.
65  *
66  */
67 /*
68  * SERIALIZATION API RULES:
69  *
70  * - If the driver uses the same serializer for the interrupt as for the
71  *   ifnet, most of the serialization will be done automatically for the
72  *   driver.
73  *
74  * - ifmedia entry points will be serialized by the ifmedia code using the
75  *   ifnet serializer.
76  *
77  * - if_* entry points except for if_input will be serialized by the IF
78  *   and protocol layers.
79  *
80  * - The device driver must be sure to serialize access from timeout code
81  *   installed by the device driver.
82  *
83  * - The device driver typically holds the serializer at the time it wishes
84  *   to call if_input.
85  *
86  * - We must call lwkt_serialize_handler_enable() prior to enabling the
87  *   hardware interrupt and lwkt_serialize_handler_disable() after disabling
88  *   the hardware interrupt in order to avoid handler execution races from
89  *   scheduled interrupt threads.
90  *
91  *   NOTE!  Since callers into the device driver hold the ifnet serializer,
92  *   the device driver may be holding a serializer at the time it calls
93  *   if_input even if it is not serializer-aware.
94  */
95
96 /*
97  * NOTE:
98  *
99  * MSI-X MUST NOT be enabled on 82574:
100  *   <<82574 specification update>> errata #15
101  */
102
103 #include "opt_polling.h"
104
105 #include <sys/param.h>
106 #include <sys/bus.h>
107 #include <sys/endian.h>
108 #include <sys/interrupt.h>
109 #include <sys/kernel.h>
110 #include <sys/ktr.h>
111 #include <sys/malloc.h>
112 #include <sys/mbuf.h>
113 #include <sys/proc.h>
114 #include <sys/rman.h>
115 #include <sys/serialize.h>
116 #include <sys/socket.h>
117 #include <sys/sockio.h>
118 #include <sys/sysctl.h>
119 #include <sys/systm.h>
120
121 #include <net/bpf.h>
122 #include <net/ethernet.h>
123 #include <net/if.h>
124 #include <net/if_arp.h>
125 #include <net/if_dl.h>
126 #include <net/if_media.h>
127 #include <net/ifq_var.h>
128 #include <net/vlan/if_vlan_var.h>
129 #include <net/vlan/if_vlan_ether.h>
130
131 #include <netinet/in_systm.h>
132 #include <netinet/in.h>
133 #include <netinet/ip.h>
134 #include <netinet/tcp.h>
135 #include <netinet/udp.h>
136
137 #include <bus/pci/pcivar.h>
138 #include <bus/pci/pcireg.h>
139
140 #include <dev/netif/ig_hal/e1000_api.h>
141 #include <dev/netif/ig_hal/e1000_82571.h>
142 #include <dev/netif/em/if_em.h>
143
144 #define EM_NAME "Intel(R) PRO/1000 Network Connection "
145 #define EM_VER  " 7.2.4"
146
147 #define _EM_DEVICE(id, ret)     \
148         { EM_VENDOR_ID, E1000_DEV_ID_##id, ret, EM_NAME #id EM_VER }
149 #define EM_EMX_DEVICE(id)       _EM_DEVICE(id, -100)
150 #define EM_DEVICE(id)           _EM_DEVICE(id, 0)
151 #define EM_DEVICE_NULL  { 0, 0, 0, NULL }
152
153 static const struct em_vendor_info em_vendor_info_array[] = {
154         EM_DEVICE(82540EM),
155         EM_DEVICE(82540EM_LOM),
156         EM_DEVICE(82540EP),
157         EM_DEVICE(82540EP_LOM),
158         EM_DEVICE(82540EP_LP),
159
160         EM_DEVICE(82541EI),
161         EM_DEVICE(82541ER),
162         EM_DEVICE(82541ER_LOM),
163         EM_DEVICE(82541EI_MOBILE),
164         EM_DEVICE(82541GI),
165         EM_DEVICE(82541GI_LF),
166         EM_DEVICE(82541GI_MOBILE),
167
168         EM_DEVICE(82542),
169
170         EM_DEVICE(82543GC_FIBER),
171         EM_DEVICE(82543GC_COPPER),
172
173         EM_DEVICE(82544EI_COPPER),
174         EM_DEVICE(82544EI_FIBER),
175         EM_DEVICE(82544GC_COPPER),
176         EM_DEVICE(82544GC_LOM),
177
178         EM_DEVICE(82545EM_COPPER),
179         EM_DEVICE(82545EM_FIBER),
180         EM_DEVICE(82545GM_COPPER),
181         EM_DEVICE(82545GM_FIBER),
182         EM_DEVICE(82545GM_SERDES),
183
184         EM_DEVICE(82546EB_COPPER),
185         EM_DEVICE(82546EB_FIBER),
186         EM_DEVICE(82546EB_QUAD_COPPER),
187         EM_DEVICE(82546GB_COPPER),
188         EM_DEVICE(82546GB_FIBER),
189         EM_DEVICE(82546GB_SERDES),
190         EM_DEVICE(82546GB_PCIE),
191         EM_DEVICE(82546GB_QUAD_COPPER),
192         EM_DEVICE(82546GB_QUAD_COPPER_KSP3),
193
194         EM_DEVICE(82547EI),
195         EM_DEVICE(82547EI_MOBILE),
196         EM_DEVICE(82547GI),
197
198         EM_EMX_DEVICE(82571EB_COPPER),
199         EM_EMX_DEVICE(82571EB_FIBER),
200         EM_EMX_DEVICE(82571EB_SERDES),
201         EM_EMX_DEVICE(82571EB_SERDES_DUAL),
202         EM_EMX_DEVICE(82571EB_SERDES_QUAD),
203         EM_EMX_DEVICE(82571EB_QUAD_COPPER),
204         EM_EMX_DEVICE(82571EB_QUAD_COPPER_BP),
205         EM_EMX_DEVICE(82571EB_QUAD_COPPER_LP),
206         EM_EMX_DEVICE(82571EB_QUAD_FIBER),
207         EM_EMX_DEVICE(82571PT_QUAD_COPPER),
208
209         EM_EMX_DEVICE(82572EI_COPPER),
210         EM_EMX_DEVICE(82572EI_FIBER),
211         EM_EMX_DEVICE(82572EI_SERDES),
212         EM_EMX_DEVICE(82572EI),
213
214         EM_EMX_DEVICE(82573E),
215         EM_EMX_DEVICE(82573E_IAMT),
216         EM_EMX_DEVICE(82573L),
217
218         EM_DEVICE(82583V),
219
220         EM_EMX_DEVICE(80003ES2LAN_COPPER_SPT),
221         EM_EMX_DEVICE(80003ES2LAN_SERDES_SPT),
222         EM_EMX_DEVICE(80003ES2LAN_COPPER_DPT),
223         EM_EMX_DEVICE(80003ES2LAN_SERDES_DPT),
224
225         EM_DEVICE(ICH8_IGP_M_AMT),
226         EM_DEVICE(ICH8_IGP_AMT),
227         EM_DEVICE(ICH8_IGP_C),
228         EM_DEVICE(ICH8_IFE),
229         EM_DEVICE(ICH8_IFE_GT),
230         EM_DEVICE(ICH8_IFE_G),
231         EM_DEVICE(ICH8_IGP_M),
232         EM_DEVICE(ICH8_82567V_3),
233
234         EM_DEVICE(ICH9_IGP_M_AMT),
235         EM_DEVICE(ICH9_IGP_AMT),
236         EM_DEVICE(ICH9_IGP_C),
237         EM_DEVICE(ICH9_IGP_M),
238         EM_DEVICE(ICH9_IGP_M_V),
239         EM_DEVICE(ICH9_IFE),
240         EM_DEVICE(ICH9_IFE_GT),
241         EM_DEVICE(ICH9_IFE_G),
242         EM_DEVICE(ICH9_BM),
243
244         EM_EMX_DEVICE(82574L),
245         EM_EMX_DEVICE(82574LA),
246
247         EM_DEVICE(ICH10_R_BM_LM),
248         EM_DEVICE(ICH10_R_BM_LF),
249         EM_DEVICE(ICH10_R_BM_V),
250         EM_DEVICE(ICH10_D_BM_LM),
251         EM_DEVICE(ICH10_D_BM_LF),
252         EM_DEVICE(ICH10_D_BM_V),
253
254         EM_DEVICE(PCH_M_HV_LM),
255         EM_DEVICE(PCH_M_HV_LC),
256         EM_DEVICE(PCH_D_HV_DM),
257         EM_DEVICE(PCH_D_HV_DC),
258
259         EM_DEVICE(PCH2_LV_LM),
260         EM_DEVICE(PCH2_LV_V),
261
262         /* required last entry */
263         EM_DEVICE_NULL
264 };
265
266 static int      em_probe(device_t);
267 static int      em_attach(device_t);
268 static int      em_detach(device_t);
269 static int      em_shutdown(device_t);
270 static int      em_suspend(device_t);
271 static int      em_resume(device_t);
272
273 static void     em_init(void *);
274 static void     em_stop(struct adapter *);
275 static int      em_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
276 static void     em_start(struct ifnet *);
277 #ifdef DEVICE_POLLING
278 static void     em_poll(struct ifnet *, enum poll_cmd, int);
279 #endif
280 static void     em_watchdog(struct ifnet *);
281 static void     em_media_status(struct ifnet *, struct ifmediareq *);
282 static int      em_media_change(struct ifnet *);
283 static void     em_timer(void *);
284
285 static void     em_intr(void *);
286 static void     em_rxeof(struct adapter *, int);
287 static void     em_txeof(struct adapter *);
288 static void     em_tx_collect(struct adapter *);
289 static void     em_tx_purge(struct adapter *);
290 static void     em_enable_intr(struct adapter *);
291 static void     em_disable_intr(struct adapter *);
292
293 static int      em_dma_malloc(struct adapter *, bus_size_t,
294                     struct em_dma_alloc *);
295 static void     em_dma_free(struct adapter *, struct em_dma_alloc *);
296 static void     em_init_tx_ring(struct adapter *);
297 static int      em_init_rx_ring(struct adapter *);
298 static int      em_create_tx_ring(struct adapter *);
299 static int      em_create_rx_ring(struct adapter *);
300 static void     em_destroy_tx_ring(struct adapter *, int);
301 static void     em_destroy_rx_ring(struct adapter *, int);
302 static int      em_newbuf(struct adapter *, int, int);
303 static int      em_encap(struct adapter *, struct mbuf **);
304 static void     em_rxcsum(struct adapter *, struct e1000_rx_desc *,
305                     struct mbuf *);
306 static int      em_txcsum_pullup(struct adapter *, struct mbuf **);
307 static int      em_txcsum(struct adapter *, struct mbuf *,
308                     uint32_t *, uint32_t *);
309
310 static int      em_get_hw_info(struct adapter *);
311 static int      em_is_valid_eaddr(const uint8_t *);
312 static int      em_alloc_pci_res(struct adapter *);
313 static void     em_free_pci_res(struct adapter *);
314 static int      em_reset(struct adapter *);
315 static void     em_setup_ifp(struct adapter *);
316 static void     em_init_tx_unit(struct adapter *);
317 static void     em_init_rx_unit(struct adapter *);
318 static void     em_update_stats(struct adapter *);
319 static void     em_set_promisc(struct adapter *);
320 static void     em_disable_promisc(struct adapter *);
321 static void     em_set_multi(struct adapter *);
322 static void     em_update_link_status(struct adapter *);
323 static void     em_smartspeed(struct adapter *);
324 static void     em_set_itr(struct adapter *, uint32_t);
325 static void     em_disable_aspm(struct adapter *);
326
327 /* Hardware workarounds */
328 static int      em_82547_fifo_workaround(struct adapter *, int);
329 static void     em_82547_update_fifo_head(struct adapter *, int);
330 static int      em_82547_tx_fifo_reset(struct adapter *);
331 static void     em_82547_move_tail(void *);
332 static void     em_82547_move_tail_serialized(struct adapter *);
333 static uint32_t em_82544_fill_desc(bus_addr_t, uint32_t, PDESC_ARRAY);
334
335 static void     em_print_debug_info(struct adapter *);
336 static void     em_print_nvm_info(struct adapter *);
337 static void     em_print_hw_stats(struct adapter *);
338
339 static int      em_sysctl_stats(SYSCTL_HANDLER_ARGS);
340 static int      em_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
341 static int      em_sysctl_int_throttle(SYSCTL_HANDLER_ARGS);
342 static int      em_sysctl_int_tx_nsegs(SYSCTL_HANDLER_ARGS);
343 static void     em_add_sysctl(struct adapter *adapter);
344
345 /* Management and WOL Support */
346 static void     em_get_mgmt(struct adapter *);
347 static void     em_rel_mgmt(struct adapter *);
348 static void     em_get_hw_control(struct adapter *);
349 static void     em_rel_hw_control(struct adapter *);
350 static void     em_enable_wol(device_t);
351
352 static device_method_t em_methods[] = {
353         /* Device interface */
354         DEVMETHOD(device_probe,         em_probe),
355         DEVMETHOD(device_attach,        em_attach),
356         DEVMETHOD(device_detach,        em_detach),
357         DEVMETHOD(device_shutdown,      em_shutdown),
358         DEVMETHOD(device_suspend,       em_suspend),
359         DEVMETHOD(device_resume,        em_resume),
360         { 0, 0 }
361 };
362
363 static driver_t em_driver = {
364         "em",
365         em_methods,
366         sizeof(struct adapter),
367 };
368
369 static devclass_t em_devclass;
370
371 DECLARE_DUMMY_MODULE(if_em);
372 MODULE_DEPEND(em, ig_hal, 1, 1, 1);
373 DRIVER_MODULE(if_em, pci, em_driver, em_devclass, NULL, NULL);
374
375 /*
376  * Tunables
377  */
378 static int      em_int_throttle_ceil = EM_DEFAULT_ITR;
379 static int      em_rxd = EM_DEFAULT_RXD;
380 static int      em_txd = EM_DEFAULT_TXD;
381 static int      em_smart_pwr_down = 0;
382
383 /* Controls whether promiscuous also shows bad packets */
384 static int      em_debug_sbp = FALSE;
385
386 static int      em_82573_workaround = 1;
387 static int      em_msi_enable = 1;
388
389 TUNABLE_INT("hw.em.int_throttle_ceil", &em_int_throttle_ceil);
390 TUNABLE_INT("hw.em.rxd", &em_rxd);
391 TUNABLE_INT("hw.em.txd", &em_txd);
392 TUNABLE_INT("hw.em.smart_pwr_down", &em_smart_pwr_down);
393 TUNABLE_INT("hw.em.sbp", &em_debug_sbp);
394 TUNABLE_INT("hw.em.82573_workaround", &em_82573_workaround);
395 TUNABLE_INT("hw.em.msi.enable", &em_msi_enable);
396
397 /* Global used in WOL setup with multiport cards */
398 static int      em_global_quad_port_a = 0;
399
400 /* Set this to one to display debug statistics */
401 static int      em_display_debug_stats = 0;
402
403 #if !defined(KTR_IF_EM)
404 #define KTR_IF_EM       KTR_ALL
405 #endif
406 KTR_INFO_MASTER(if_em);
407 KTR_INFO(KTR_IF_EM, if_em, intr_beg, 0, "intr begin");
408 KTR_INFO(KTR_IF_EM, if_em, intr_end, 1, "intr end");
409 KTR_INFO(KTR_IF_EM, if_em, pkt_receive, 4, "rx packet");
410 KTR_INFO(KTR_IF_EM, if_em, pkt_txqueue, 5, "tx packet");
411 KTR_INFO(KTR_IF_EM, if_em, pkt_txclean, 6, "tx clean");
412 #define logif(name)     KTR_LOG(if_em_ ## name)
413
414 static int
415 em_probe(device_t dev)
416 {
417         const struct em_vendor_info *ent;
418         uint16_t vid, did;
419
420         vid = pci_get_vendor(dev);
421         did = pci_get_device(dev);
422
423         for (ent = em_vendor_info_array; ent->desc != NULL; ++ent) {
424                 if (vid == ent->vendor_id && did == ent->device_id) {
425                         device_set_desc(dev, ent->desc);
426                         device_set_async_attach(dev, TRUE);
427                         return (ent->ret);
428                 }
429         }
430         return (ENXIO);
431 }
432
433 static int
434 em_attach(device_t dev)
435 {
436         struct adapter *adapter = device_get_softc(dev);
437         struct ifnet *ifp = &adapter->arpcom.ac_if;
438         int tsize, rsize;
439         int error = 0;
440         uint16_t eeprom_data, device_id, apme_mask;
441
442         adapter->dev = adapter->osdep.dev = dev;
443
444         callout_init_mp(&adapter->timer);
445         callout_init_mp(&adapter->tx_fifo_timer);
446
447         /* Determine hardware and mac info */
448         error = em_get_hw_info(adapter);
449         if (error) {
450                 device_printf(dev, "Identify hardware failed\n");
451                 goto fail;
452         }
453
454         /* Setup PCI resources */
455         error = em_alloc_pci_res(adapter);
456         if (error) {
457                 device_printf(dev, "Allocation of PCI resources failed\n");
458                 goto fail;
459         }
460
461         /*
462          * For ICH8 and family we need to map the flash memory,
463          * and this must happen after the MAC is identified.
464          */
465         if (adapter->hw.mac.type == e1000_ich8lan ||
466             adapter->hw.mac.type == e1000_ich9lan ||
467             adapter->hw.mac.type == e1000_ich10lan ||
468             adapter->hw.mac.type == e1000_pchlan ||
469             adapter->hw.mac.type == e1000_pch2lan) {
470                 adapter->flash_rid = EM_BAR_FLASH;
471
472                 adapter->flash = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
473                                         &adapter->flash_rid, RF_ACTIVE);
474                 if (adapter->flash == NULL) {
475                         device_printf(dev, "Mapping of Flash failed\n");
476                         error = ENXIO;
477                         goto fail;
478                 }
479                 adapter->osdep.flash_bus_space_tag =
480                     rman_get_bustag(adapter->flash);
481                 adapter->osdep.flash_bus_space_handle =
482                     rman_get_bushandle(adapter->flash);
483
484                 /*
485                  * This is used in the shared code
486                  * XXX this goof is actually not used.
487                  */
488                 adapter->hw.flash_address = (uint8_t *)adapter->flash;
489         }
490
491         /* Do Shared Code initialization */
492         if (e1000_setup_init_funcs(&adapter->hw, TRUE)) {
493                 device_printf(dev, "Setup of Shared code failed\n");
494                 error = ENXIO;
495                 goto fail;
496         }
497
498         e1000_get_bus_info(&adapter->hw);
499
500         /*
501          * Validate number of transmit and receive descriptors.  It
502          * must not exceed hardware maximum, and must be multiple
503          * of E1000_DBA_ALIGN.
504          */
505         if ((em_txd * sizeof(struct e1000_tx_desc)) % EM_DBA_ALIGN != 0 ||
506             (adapter->hw.mac.type >= e1000_82544 && em_txd > EM_MAX_TXD) ||
507             (adapter->hw.mac.type < e1000_82544 && em_txd > EM_MAX_TXD_82543) ||
508             em_txd < EM_MIN_TXD) {
509                 device_printf(dev, "Using %d TX descriptors instead of %d!\n",
510                     EM_DEFAULT_TXD, em_txd);
511                 adapter->num_tx_desc = EM_DEFAULT_TXD;
512         } else {
513                 adapter->num_tx_desc = em_txd;
514         }
515         if ((em_rxd * sizeof(struct e1000_rx_desc)) % EM_DBA_ALIGN != 0 ||
516             (adapter->hw.mac.type >= e1000_82544 && em_rxd > EM_MAX_RXD) ||
517             (adapter->hw.mac.type < e1000_82544 && em_rxd > EM_MAX_RXD_82543) ||
518             em_rxd < EM_MIN_RXD) {
519                 device_printf(dev, "Using %d RX descriptors instead of %d!\n",
520                     EM_DEFAULT_RXD, em_rxd);
521                 adapter->num_rx_desc = EM_DEFAULT_RXD;
522         } else {
523                 adapter->num_rx_desc = em_rxd;
524         }
525
526         adapter->hw.mac.autoneg = DO_AUTO_NEG;
527         adapter->hw.phy.autoneg_wait_to_complete = FALSE;
528         adapter->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
529         adapter->rx_buffer_len = MCLBYTES;
530
531         /*
532          * Interrupt throttle rate
533          */
534         if (em_int_throttle_ceil == 0) {
535                 adapter->int_throttle_ceil = 0;
536         } else {
537                 int throttle = em_int_throttle_ceil;
538
539                 if (throttle < 0)
540                         throttle = EM_DEFAULT_ITR;
541
542                 /* Recalculate the tunable value to get the exact frequency. */
543                 throttle = 1000000000 / 256 / throttle;
544
545                 /* Upper 16bits of ITR is reserved and should be zero */
546                 if (throttle & 0xffff0000)
547                         throttle = 1000000000 / 256 / EM_DEFAULT_ITR;
548
549                 adapter->int_throttle_ceil = 1000000000 / 256 / throttle;
550         }
551
552         e1000_init_script_state_82541(&adapter->hw, TRUE);
553         e1000_set_tbi_compatibility_82543(&adapter->hw, TRUE);
554
555         /* Copper options */
556         if (adapter->hw.phy.media_type == e1000_media_type_copper) {
557                 adapter->hw.phy.mdix = AUTO_ALL_MODES;
558                 adapter->hw.phy.disable_polarity_correction = FALSE;
559                 adapter->hw.phy.ms_type = EM_MASTER_SLAVE;
560         }
561
562         /* Set the frame limits assuming standard ethernet sized frames. */
563         adapter->max_frame_size = ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN;
564         adapter->min_frame_size = ETH_ZLEN + ETHER_CRC_LEN;
565
566         /* This controls when hardware reports transmit completion status. */
567         adapter->hw.mac.report_tx_early = 1;
568
569         /*
570          * Create top level busdma tag
571          */
572         error = bus_dma_tag_create(NULL, 1, 0,
573                         BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
574                         NULL, NULL,
575                         BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT,
576                         0, &adapter->parent_dtag);
577         if (error) {
578                 device_printf(dev, "could not create top level DMA tag\n");
579                 goto fail;
580         }
581
582         /*
583          * Allocate Transmit Descriptor ring
584          */
585         tsize = roundup2(adapter->num_tx_desc * sizeof(struct e1000_tx_desc),
586                          EM_DBA_ALIGN);
587         error = em_dma_malloc(adapter, tsize, &adapter->txdma);
588         if (error) {
589                 device_printf(dev, "Unable to allocate tx_desc memory\n");
590                 goto fail;
591         }
592         adapter->tx_desc_base = adapter->txdma.dma_vaddr;
593
594         /*
595          * Allocate Receive Descriptor ring
596          */
597         rsize = roundup2(adapter->num_rx_desc * sizeof(struct e1000_rx_desc),
598                          EM_DBA_ALIGN);
599         error = em_dma_malloc(adapter, rsize, &adapter->rxdma);
600         if (error) {
601                 device_printf(dev, "Unable to allocate rx_desc memory\n");
602                 goto fail;
603         }
604         adapter->rx_desc_base = adapter->rxdma.dma_vaddr;
605
606         /* Allocate multicast array memory. */
607         adapter->mta = kmalloc(ETH_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES,
608             M_DEVBUF, M_WAITOK);
609
610         /* Indicate SOL/IDER usage */
611         if (e1000_check_reset_block(&adapter->hw)) {
612                 device_printf(dev,
613                     "PHY reset is blocked due to SOL/IDER session.\n");
614         }
615
616         /*
617          * Start from a known state, this is important in reading the
618          * nvm and mac from that.
619          */
620         e1000_reset_hw(&adapter->hw);
621
622         /* Make sure we have a good EEPROM before we read from it */
623         if (e1000_validate_nvm_checksum(&adapter->hw) < 0) {
624                 /*
625                  * Some PCI-E parts fail the first check due to
626                  * the link being in sleep state, call it again,
627                  * if it fails a second time its a real issue.
628                  */
629                 if (e1000_validate_nvm_checksum(&adapter->hw) < 0) {
630                         device_printf(dev,
631                             "The EEPROM Checksum Is Not Valid\n");
632                         error = EIO;
633                         goto fail;
634                 }
635         }
636
637         /* Copy the permanent MAC address out of the EEPROM */
638         if (e1000_read_mac_addr(&adapter->hw) < 0) {
639                 device_printf(dev, "EEPROM read error while reading MAC"
640                     " address\n");
641                 error = EIO;
642                 goto fail;
643         }
644         if (!em_is_valid_eaddr(adapter->hw.mac.addr)) {
645                 device_printf(dev, "Invalid MAC address\n");
646                 error = EIO;
647                 goto fail;
648         }
649
650         /* Allocate transmit descriptors and buffers */
651         error = em_create_tx_ring(adapter);
652         if (error) {
653                 device_printf(dev, "Could not setup transmit structures\n");
654                 goto fail;
655         }
656
657         /* Allocate receive descriptors and buffers */
658         error = em_create_rx_ring(adapter);
659         if (error) {
660                 device_printf(dev, "Could not setup receive structures\n");
661                 goto fail;
662         }
663
664         /* Manually turn off all interrupts */
665         E1000_WRITE_REG(&adapter->hw, E1000_IMC, 0xffffffff);
666
667         /* Determine if we have to control management hardware */
668         adapter->has_manage = e1000_enable_mng_pass_thru(&adapter->hw);
669
670         /*
671          * Setup Wake-on-Lan
672          */
673         apme_mask = EM_EEPROM_APME;
674         eeprom_data = 0;
675         switch (adapter->hw.mac.type) {
676         case e1000_82542:
677         case e1000_82543:
678                 break;
679
680         case e1000_82573:
681         case e1000_82583:
682                 adapter->has_amt = 1;
683                 /* FALL THROUGH */
684
685         case e1000_82546:
686         case e1000_82546_rev_3:
687         case e1000_82571:
688         case e1000_82572:
689         case e1000_80003es2lan:
690                 if (adapter->hw.bus.func == 1) {
691                         e1000_read_nvm(&adapter->hw,
692                             NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
693                 } else {
694                         e1000_read_nvm(&adapter->hw,
695                             NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
696                 }
697                 break;
698
699         case e1000_ich8lan:
700         case e1000_ich9lan:
701         case e1000_ich10lan:
702         case e1000_pchlan:
703         case e1000_pch2lan:
704                 apme_mask = E1000_WUC_APME;
705                 adapter->has_amt = TRUE;
706                 eeprom_data = E1000_READ_REG(&adapter->hw, E1000_WUC);
707                 break;
708
709         default:
710                 e1000_read_nvm(&adapter->hw,
711                     NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
712                 break;
713         }
714         if (eeprom_data & apme_mask)
715                 adapter->wol = E1000_WUFC_MAG | E1000_WUFC_MC;
716
717         /*
718          * We have the eeprom settings, now apply the special cases
719          * where the eeprom may be wrong or the board won't support
720          * wake on lan on a particular port
721          */
722         device_id = pci_get_device(dev);
723         switch (device_id) {
724         case E1000_DEV_ID_82546GB_PCIE:
725                 adapter->wol = 0;
726                 break;
727
728         case E1000_DEV_ID_82546EB_FIBER:
729         case E1000_DEV_ID_82546GB_FIBER:
730         case E1000_DEV_ID_82571EB_FIBER:
731                 /*
732                  * Wake events only supported on port A for dual fiber
733                  * regardless of eeprom setting
734                  */
735                 if (E1000_READ_REG(&adapter->hw, E1000_STATUS) &
736                     E1000_STATUS_FUNC_1)
737                         adapter->wol = 0;
738                 break;
739
740         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
741         case E1000_DEV_ID_82571EB_QUAD_COPPER:
742         case E1000_DEV_ID_82571EB_QUAD_FIBER:
743         case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
744                 /* if quad port adapter, disable WoL on all but port A */
745                 if (em_global_quad_port_a != 0)
746                         adapter->wol = 0;
747                 /* Reset for multiple quad port adapters */
748                 if (++em_global_quad_port_a == 4)
749                         em_global_quad_port_a = 0;
750                 break;
751         }
752
753         /* XXX disable wol */
754         adapter->wol = 0;
755
756         /* Setup OS specific network interface */
757         em_setup_ifp(adapter);
758
759         /* Add sysctl tree, must after em_setup_ifp() */
760         em_add_sysctl(adapter);
761
762         /* Reset the hardware */
763         error = em_reset(adapter);
764         if (error) {
765                 device_printf(dev, "Unable to reset the hardware\n");
766                 goto fail;
767         }
768
769         /* Initialize statistics */
770         em_update_stats(adapter);
771
772         adapter->hw.mac.get_link_status = 1;
773         em_update_link_status(adapter);
774
775         /* Do we need workaround for 82544 PCI-X adapter? */
776         if (adapter->hw.bus.type == e1000_bus_type_pcix &&
777             adapter->hw.mac.type == e1000_82544)
778                 adapter->pcix_82544 = TRUE;
779         else
780                 adapter->pcix_82544 = FALSE;
781
782         if (adapter->pcix_82544) {
783                 /*
784                  * 82544 on PCI-X may split one TX segment
785                  * into two TX descs, so we double its number
786                  * of spare TX desc here.
787                  */
788                 adapter->spare_tx_desc = 2 * EM_TX_SPARE;
789         } else {
790                 adapter->spare_tx_desc = EM_TX_SPARE;
791         }
792
793         /*
794          * Keep following relationship between spare_tx_desc, oact_tx_desc
795          * and tx_int_nsegs:
796          * (spare_tx_desc + EM_TX_RESERVED) <=
797          * oact_tx_desc <= EM_TX_OACTIVE_MAX <= tx_int_nsegs
798          */
799         adapter->oact_tx_desc = adapter->num_tx_desc / 8;
800         if (adapter->oact_tx_desc > EM_TX_OACTIVE_MAX)
801                 adapter->oact_tx_desc = EM_TX_OACTIVE_MAX;
802         if (adapter->oact_tx_desc < adapter->spare_tx_desc + EM_TX_RESERVED)
803                 adapter->oact_tx_desc = adapter->spare_tx_desc + EM_TX_RESERVED;
804
805         adapter->tx_int_nsegs = adapter->num_tx_desc / 16;
806         if (adapter->tx_int_nsegs < adapter->oact_tx_desc)
807                 adapter->tx_int_nsegs = adapter->oact_tx_desc;
808
809         /* Non-AMT based hardware can now take control from firmware */
810         if (adapter->has_manage && !adapter->has_amt &&
811             adapter->hw.mac.type >= e1000_82571)
812                 em_get_hw_control(adapter);
813
814         error = bus_setup_intr(dev, adapter->intr_res, INTR_MPSAFE,
815                                em_intr, adapter, &adapter->intr_tag,
816                                ifp->if_serializer);
817         if (error) {
818                 device_printf(dev, "Failed to register interrupt handler");
819                 ether_ifdetach(&adapter->arpcom.ac_if);
820                 goto fail;
821         }
822
823         ifp->if_cpuid = rman_get_cpuid(adapter->intr_res);
824         KKASSERT(ifp->if_cpuid >= 0 && ifp->if_cpuid < ncpus);
825         return (0);
826 fail:
827         em_detach(dev);
828         return (error);
829 }
830
831 static int
832 em_detach(device_t dev)
833 {
834         struct adapter *adapter = device_get_softc(dev);
835
836         if (device_is_attached(dev)) {
837                 struct ifnet *ifp = &adapter->arpcom.ac_if;
838
839                 lwkt_serialize_enter(ifp->if_serializer);
840
841                 em_stop(adapter);
842
843                 e1000_phy_hw_reset(&adapter->hw);
844
845                 em_rel_mgmt(adapter);
846                 em_rel_hw_control(adapter);
847
848                 if (adapter->wol) {
849                         E1000_WRITE_REG(&adapter->hw, E1000_WUC,
850                                         E1000_WUC_PME_EN);
851                         E1000_WRITE_REG(&adapter->hw, E1000_WUFC, adapter->wol);
852                         em_enable_wol(dev);
853                 }
854
855                 bus_teardown_intr(dev, adapter->intr_res, adapter->intr_tag);
856
857                 lwkt_serialize_exit(ifp->if_serializer);
858
859                 ether_ifdetach(ifp);
860         } else {
861                 em_rel_hw_control(adapter);
862         }
863         bus_generic_detach(dev);
864
865         em_free_pci_res(adapter);
866
867         em_destroy_tx_ring(adapter, adapter->num_tx_desc);
868         em_destroy_rx_ring(adapter, adapter->num_rx_desc);
869
870         /* Free Transmit Descriptor ring */
871         if (adapter->tx_desc_base)
872                 em_dma_free(adapter, &adapter->txdma);
873
874         /* Free Receive Descriptor ring */
875         if (adapter->rx_desc_base)
876                 em_dma_free(adapter, &adapter->rxdma);
877
878         /* Free top level busdma tag */
879         if (adapter->parent_dtag != NULL)
880                 bus_dma_tag_destroy(adapter->parent_dtag);
881
882         /* Free sysctl tree */
883         if (adapter->sysctl_tree != NULL)
884                 sysctl_ctx_free(&adapter->sysctl_ctx);
885
886         return (0);
887 }
888
889 static int
890 em_shutdown(device_t dev)
891 {
892         return em_suspend(dev);
893 }
894
895 static int
896 em_suspend(device_t dev)
897 {
898         struct adapter *adapter = device_get_softc(dev);
899         struct ifnet *ifp = &adapter->arpcom.ac_if;
900
901         lwkt_serialize_enter(ifp->if_serializer);
902
903         em_stop(adapter);
904
905         em_rel_mgmt(adapter);
906         em_rel_hw_control(adapter);
907
908         if (adapter->wol) {
909                 E1000_WRITE_REG(&adapter->hw, E1000_WUC, E1000_WUC_PME_EN);
910                 E1000_WRITE_REG(&adapter->hw, E1000_WUFC, adapter->wol);
911                 em_enable_wol(dev);
912         }
913
914         lwkt_serialize_exit(ifp->if_serializer);
915
916         return bus_generic_suspend(dev);
917 }
918
919 static int
920 em_resume(device_t dev)
921 {
922         struct adapter *adapter = device_get_softc(dev);
923         struct ifnet *ifp = &adapter->arpcom.ac_if;
924
925         lwkt_serialize_enter(ifp->if_serializer);
926
927         em_init(adapter);
928         em_get_mgmt(adapter);
929         if_devstart(ifp);
930
931         lwkt_serialize_exit(ifp->if_serializer);
932
933         return bus_generic_resume(dev);
934 }
935
936 static void
937 em_start(struct ifnet *ifp)
938 {
939         struct adapter *adapter = ifp->if_softc;
940         struct mbuf *m_head;
941
942         ASSERT_SERIALIZED(ifp->if_serializer);
943
944         if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
945                 return;
946
947         if (!adapter->link_active) {
948                 ifq_purge(&ifp->if_snd);
949                 return;
950         }
951
952         while (!ifq_is_empty(&ifp->if_snd)) {
953                 /* Now do we at least have a minimal? */
954                 if (EM_IS_OACTIVE(adapter)) {
955                         em_tx_collect(adapter);
956                         if (EM_IS_OACTIVE(adapter)) {
957                                 ifp->if_flags |= IFF_OACTIVE;
958                                 adapter->no_tx_desc_avail1++;
959                                 break;
960                         }
961                 }
962
963                 logif(pkt_txqueue);
964                 m_head = ifq_dequeue(&ifp->if_snd, NULL);
965                 if (m_head == NULL)
966                         break;
967
968                 if (em_encap(adapter, &m_head)) {
969                         ifp->if_oerrors++;
970                         em_tx_collect(adapter);
971                         continue;
972                 }
973
974                 /* Send a copy of the frame to the BPF listener */
975                 ETHER_BPF_MTAP(ifp, m_head);
976
977                 /* Set timeout in case hardware has problems transmitting. */
978                 ifp->if_timer = EM_TX_TIMEOUT;
979         }
980 }
981
982 static int
983 em_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
984 {
985         struct adapter *adapter = ifp->if_softc;
986         struct ifreq *ifr = (struct ifreq *)data;
987         uint16_t eeprom_data = 0;
988         int max_frame_size, mask, reinit;
989         int error = 0;
990
991         ASSERT_SERIALIZED(ifp->if_serializer);
992
993         switch (command) {
994         case SIOCSIFMTU:
995                 switch (adapter->hw.mac.type) {
996                 case e1000_82573:
997                         /*
998                          * 82573 only supports jumbo frames
999                          * if ASPM is disabled.
1000                          */
1001                         e1000_read_nvm(&adapter->hw,
1002                             NVM_INIT_3GIO_3, 1, &eeprom_data);
1003                         if (eeprom_data & NVM_WORD1A_ASPM_MASK) {
1004                                 max_frame_size = ETHER_MAX_LEN;
1005                                 break;
1006                         }
1007                         /* FALL THROUGH */
1008
1009                 /* Limit Jumbo Frame size */
1010                 case e1000_82571:
1011                 case e1000_82572:
1012                 case e1000_ich9lan:
1013                 case e1000_ich10lan:
1014                 case e1000_pch2lan:
1015                 case e1000_82574:
1016                 case e1000_82583:
1017                 case e1000_80003es2lan:
1018                         max_frame_size = 9234;
1019                         break;
1020
1021                 case e1000_pchlan:
1022                         max_frame_size = 4096;
1023                         break;
1024
1025                 /* Adapters that do not support jumbo frames */
1026                 case e1000_82542:
1027                 case e1000_ich8lan:
1028                         max_frame_size = ETHER_MAX_LEN;
1029                         break;
1030
1031                 default:
1032                         max_frame_size = MAX_JUMBO_FRAME_SIZE;
1033                         break;
1034                 }
1035                 if (ifr->ifr_mtu > max_frame_size - ETHER_HDR_LEN -
1036                     ETHER_CRC_LEN) {
1037                         error = EINVAL;
1038                         break;
1039                 }
1040
1041                 ifp->if_mtu = ifr->ifr_mtu;
1042                 adapter->max_frame_size =
1043                     ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
1044
1045                 if (ifp->if_flags & IFF_RUNNING)
1046                         em_init(adapter);
1047                 break;
1048
1049         case SIOCSIFFLAGS:
1050                 if (ifp->if_flags & IFF_UP) {
1051                         if ((ifp->if_flags & IFF_RUNNING)) {
1052                                 if ((ifp->if_flags ^ adapter->if_flags) &
1053                                     (IFF_PROMISC | IFF_ALLMULTI)) {
1054                                         em_disable_promisc(adapter);
1055                                         em_set_promisc(adapter);
1056                                 }
1057                         } else {
1058                                 em_init(adapter);
1059                         }
1060                 } else if (ifp->if_flags & IFF_RUNNING) {
1061                         em_stop(adapter);
1062                 }
1063                 adapter->if_flags = ifp->if_flags;
1064                 break;
1065
1066         case SIOCADDMULTI:
1067         case SIOCDELMULTI:
1068                 if (ifp->if_flags & IFF_RUNNING) {
1069                         em_disable_intr(adapter);
1070                         em_set_multi(adapter);
1071                         if (adapter->hw.mac.type == e1000_82542 &&
1072                             adapter->hw.revision_id == E1000_REVISION_2)
1073                                 em_init_rx_unit(adapter);
1074 #ifdef DEVICE_POLLING
1075                         if (!(ifp->if_flags & IFF_POLLING))
1076 #endif
1077                                 em_enable_intr(adapter);
1078                 }
1079                 break;
1080
1081         case SIOCSIFMEDIA:
1082                 /* Check SOL/IDER usage */
1083                 if (e1000_check_reset_block(&adapter->hw)) {
1084                         device_printf(adapter->dev, "Media change is"
1085                             " blocked due to SOL/IDER session.\n");
1086                         break;
1087                 }
1088                 /* FALL THROUGH */
1089
1090         case SIOCGIFMEDIA:
1091                 error = ifmedia_ioctl(ifp, ifr, &adapter->media, command);
1092                 break;
1093
1094         case SIOCSIFCAP:
1095                 reinit = 0;
1096                 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1097                 if (mask & IFCAP_HWCSUM) {
1098                         ifp->if_capenable ^= (mask & IFCAP_HWCSUM);
1099                         reinit = 1;
1100                 }
1101                 if (mask & IFCAP_VLAN_HWTAGGING) {
1102                         ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
1103                         reinit = 1;
1104                 }
1105                 if (reinit && (ifp->if_flags & IFF_RUNNING))
1106                         em_init(adapter);
1107                 break;
1108
1109         default:
1110                 error = ether_ioctl(ifp, command, data);
1111                 break;
1112         }
1113         return (error);
1114 }
1115
1116 static void
1117 em_watchdog(struct ifnet *ifp)
1118 {
1119         struct adapter *adapter = ifp->if_softc;
1120
1121         ASSERT_SERIALIZED(ifp->if_serializer);
1122
1123         /*
1124          * The timer is set to 5 every time start queues a packet.
1125          * Then txeof keeps resetting it as long as it cleans at
1126          * least one descriptor.
1127          * Finally, anytime all descriptors are clean the timer is
1128          * set to 0.
1129          */
1130
1131         if (E1000_READ_REG(&adapter->hw, E1000_TDT(0)) ==
1132             E1000_READ_REG(&adapter->hw, E1000_TDH(0))) {
1133                 /*
1134                  * If we reach here, all TX jobs are completed and
1135                  * the TX engine should have been idled for some time.
1136                  * We don't need to call if_devstart() here.
1137                  */
1138                 ifp->if_flags &= ~IFF_OACTIVE;
1139                 ifp->if_timer = 0;
1140                 return;
1141         }
1142
1143         /*
1144          * If we are in this routine because of pause frames, then
1145          * don't reset the hardware.
1146          */
1147         if (E1000_READ_REG(&adapter->hw, E1000_STATUS) &
1148             E1000_STATUS_TXOFF) {
1149                 ifp->if_timer = EM_TX_TIMEOUT;
1150                 return;
1151         }
1152
1153         if (e1000_check_for_link(&adapter->hw) == 0)
1154                 if_printf(ifp, "watchdog timeout -- resetting\n");
1155
1156         ifp->if_oerrors++;
1157         adapter->watchdog_events++;
1158
1159         em_init(adapter);
1160
1161         if (!ifq_is_empty(&ifp->if_snd))
1162                 if_devstart(ifp);
1163 }
1164
1165 static void
1166 em_init(void *xsc)
1167 {
1168         struct adapter *adapter = xsc;
1169         struct ifnet *ifp = &adapter->arpcom.ac_if;
1170         device_t dev = adapter->dev;
1171         uint32_t pba;
1172
1173         ASSERT_SERIALIZED(ifp->if_serializer);
1174
1175         em_stop(adapter);
1176
1177         /*
1178          * Packet Buffer Allocation (PBA)
1179          * Writing PBA sets the receive portion of the buffer
1180          * the remainder is used for the transmit buffer.
1181          *
1182          * Devices before the 82547 had a Packet Buffer of 64K.
1183          *   Default allocation: PBA=48K for Rx, leaving 16K for Tx.
1184          * After the 82547 the buffer was reduced to 40K.
1185          *   Default allocation: PBA=30K for Rx, leaving 10K for Tx.
1186          *   Note: default does not leave enough room for Jumbo Frame >10k.
1187          */
1188         switch (adapter->hw.mac.type) {
1189         case e1000_82547:
1190         case e1000_82547_rev_2: /* 82547: Total Packet Buffer is 40K */
1191                 if (adapter->max_frame_size > 8192)
1192                         pba = E1000_PBA_22K; /* 22K for Rx, 18K for Tx */
1193                 else
1194                         pba = E1000_PBA_30K; /* 30K for Rx, 10K for Tx */
1195                 adapter->tx_fifo_head = 0;
1196                 adapter->tx_head_addr = pba << EM_TX_HEAD_ADDR_SHIFT;
1197                 adapter->tx_fifo_size =
1198                     (E1000_PBA_40K - pba) << EM_PBA_BYTES_SHIFT;
1199                 break;
1200
1201         /* Total Packet Buffer on these is 48K */
1202         case e1000_82571:
1203         case e1000_82572:
1204         case e1000_80003es2lan:
1205                 pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
1206                 break;
1207
1208         case e1000_82573: /* 82573: Total Packet Buffer is 32K */
1209                 pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */
1210                 break;
1211
1212         case e1000_82574:
1213         case e1000_82583:
1214                 pba = E1000_PBA_20K; /* 20K for Rx, 20K for Tx */
1215                 break;
1216
1217         case e1000_ich8lan:
1218                 pba = E1000_PBA_8K;
1219                 break;
1220
1221         case e1000_ich9lan:
1222         case e1000_ich10lan:
1223 #define E1000_PBA_10K   0x000A
1224                 pba = E1000_PBA_10K;
1225                 break;
1226
1227         case e1000_pchlan:
1228         case e1000_pch2lan:
1229                 pba = E1000_PBA_26K;
1230                 break;
1231
1232         default:
1233                 /* Devices before 82547 had a Packet Buffer of 64K.   */
1234                 if (adapter->max_frame_size > 8192)
1235                         pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */
1236                 else
1237                         pba = E1000_PBA_48K; /* 48K for Rx, 16K for Tx */
1238         }
1239         E1000_WRITE_REG(&adapter->hw, E1000_PBA, pba);
1240
1241         /* Get the latest mac address, User can use a LAA */
1242         bcopy(IF_LLADDR(ifp), adapter->hw.mac.addr, ETHER_ADDR_LEN);
1243
1244         /* Put the address into the Receive Address Array */
1245         e1000_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
1246
1247         /*
1248          * With the 82571 adapter, RAR[0] may be overwritten
1249          * when the other port is reset, we make a duplicate
1250          * in RAR[14] for that eventuality, this assures
1251          * the interface continues to function.
1252          */
1253         if (adapter->hw.mac.type == e1000_82571) {
1254                 e1000_set_laa_state_82571(&adapter->hw, TRUE);
1255                 e1000_rar_set(&adapter->hw, adapter->hw.mac.addr,
1256                     E1000_RAR_ENTRIES - 1);
1257         }
1258
1259         /* Reset the hardware */
1260         if (em_reset(adapter)) {
1261                 device_printf(dev, "Unable to reset the hardware\n");
1262                 /* XXX em_stop()? */
1263                 return;
1264         }
1265         em_update_link_status(adapter);
1266
1267         /* Setup VLAN support, basic and offload if available */
1268         E1000_WRITE_REG(&adapter->hw, E1000_VET, ETHERTYPE_VLAN);
1269
1270         if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) {
1271                 uint32_t ctrl;
1272
1273                 ctrl = E1000_READ_REG(&adapter->hw, E1000_CTRL);
1274                 ctrl |= E1000_CTRL_VME;
1275                 E1000_WRITE_REG(&adapter->hw, E1000_CTRL, ctrl);
1276         }
1277
1278         /* Set hardware offload abilities */
1279         if (ifp->if_capenable & IFCAP_TXCSUM)
1280                 ifp->if_hwassist = EM_CSUM_FEATURES;
1281         else
1282                 ifp->if_hwassist = 0;
1283
1284         /* Configure for OS presence */
1285         em_get_mgmt(adapter);
1286
1287         /* Prepare transmit descriptors and buffers */
1288         em_init_tx_ring(adapter);
1289         em_init_tx_unit(adapter);
1290
1291         /* Setup Multicast table */
1292         em_set_multi(adapter);
1293
1294         /* Prepare receive descriptors and buffers */
1295         if (em_init_rx_ring(adapter)) {
1296                 device_printf(dev, "Could not setup receive structures\n");
1297                 em_stop(adapter);
1298                 return;
1299         }
1300         em_init_rx_unit(adapter);
1301
1302         /* Don't lose promiscuous settings */
1303         em_set_promisc(adapter);
1304
1305         ifp->if_flags |= IFF_RUNNING;
1306         ifp->if_flags &= ~IFF_OACTIVE;
1307
1308         callout_reset(&adapter->timer, hz, em_timer, adapter);
1309         e1000_clear_hw_cntrs_base_generic(&adapter->hw);
1310
1311         /* MSI/X configuration for 82574 */
1312         if (adapter->hw.mac.type == e1000_82574) {
1313                 int tmp;
1314
1315                 tmp = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
1316                 tmp |= E1000_CTRL_EXT_PBA_CLR;
1317                 E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT, tmp);
1318                 /*
1319                  * XXX MSIX
1320                  * Set the IVAR - interrupt vector routing.
1321                  * Each nibble represents a vector, high bit
1322                  * is enable, other 3 bits are the MSIX table
1323                  * entry, we map RXQ0 to 0, TXQ0 to 1, and
1324                  * Link (other) to 2, hence the magic number.
1325                  */
1326                 E1000_WRITE_REG(&adapter->hw, E1000_IVAR, 0x800A0908);
1327         }
1328
1329 #ifdef DEVICE_POLLING
1330         /*
1331          * Only enable interrupts if we are not polling, make sure
1332          * they are off otherwise.
1333          */
1334         if (ifp->if_flags & IFF_POLLING)
1335                 em_disable_intr(adapter);
1336         else
1337 #endif /* DEVICE_POLLING */
1338                 em_enable_intr(adapter);
1339
1340         /* AMT based hardware can now take control from firmware */
1341         if (adapter->has_manage && adapter->has_amt &&
1342             adapter->hw.mac.type >= e1000_82571)
1343                 em_get_hw_control(adapter);
1344
1345         /* Don't reset the phy next time init gets called */
1346         adapter->hw.phy.reset_disable = TRUE;
1347 }
1348
1349 #ifdef DEVICE_POLLING
1350
1351 static void
1352 em_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1353 {
1354         struct adapter *adapter = ifp->if_softc;
1355         uint32_t reg_icr;
1356
1357         ASSERT_SERIALIZED(ifp->if_serializer);
1358
1359         switch (cmd) {
1360         case POLL_REGISTER:
1361                 em_disable_intr(adapter);
1362                 break;
1363
1364         case POLL_DEREGISTER:
1365                 em_enable_intr(adapter);
1366                 break;
1367
1368         case POLL_AND_CHECK_STATUS:
1369                 reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR);
1370                 if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1371                         callout_stop(&adapter->timer);
1372                         adapter->hw.mac.get_link_status = 1;
1373                         em_update_link_status(adapter);
1374                         callout_reset(&adapter->timer, hz, em_timer, adapter);
1375                 }
1376                 /* FALL THROUGH */
1377         case POLL_ONLY:
1378                 if (ifp->if_flags & IFF_RUNNING) {
1379                         em_rxeof(adapter, count);
1380                         em_txeof(adapter);
1381
1382                         if (!ifq_is_empty(&ifp->if_snd))
1383                                 if_devstart(ifp);
1384                 }
1385                 break;
1386         }
1387 }
1388
1389 #endif /* DEVICE_POLLING */
1390
1391 static void
1392 em_intr(void *xsc)
1393 {
1394         struct adapter *adapter = xsc;
1395         struct ifnet *ifp = &adapter->arpcom.ac_if;
1396         uint32_t reg_icr;
1397
1398         logif(intr_beg);
1399         ASSERT_SERIALIZED(ifp->if_serializer);
1400
1401         reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR);
1402
1403         if ((adapter->hw.mac.type >= e1000_82571 &&
1404              (reg_icr & E1000_ICR_INT_ASSERTED) == 0) ||
1405             reg_icr == 0) {
1406                 logif(intr_end);
1407                 return;
1408         }
1409
1410         /*
1411          * XXX: some laptops trigger several spurious interrupts
1412          * on em(4) when in the resume cycle. The ICR register
1413          * reports all-ones value in this case. Processing such
1414          * interrupts would lead to a freeze. I don't know why.
1415          */
1416         if (reg_icr == 0xffffffff) {
1417                 logif(intr_end);
1418                 return;
1419         }
1420
1421         if (ifp->if_flags & IFF_RUNNING) {
1422                 if (reg_icr &
1423                     (E1000_ICR_RXT0 | E1000_ICR_RXDMT0 | E1000_ICR_RXO))
1424                         em_rxeof(adapter, -1);
1425                 if (reg_icr & E1000_ICR_TXDW) {
1426                         em_txeof(adapter);
1427                         if (!ifq_is_empty(&ifp->if_snd))
1428                                 if_devstart(ifp);
1429                 }
1430         }
1431
1432         /* Link status change */
1433         if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1434                 callout_stop(&adapter->timer);
1435                 adapter->hw.mac.get_link_status = 1;
1436                 em_update_link_status(adapter);
1437
1438                 /* Deal with TX cruft when link lost */
1439                 em_tx_purge(adapter);
1440
1441                 callout_reset(&adapter->timer, hz, em_timer, adapter);
1442         }
1443
1444         if (reg_icr & E1000_ICR_RXO)
1445                 adapter->rx_overruns++;
1446
1447         logif(intr_end);
1448 }
1449
1450 static void
1451 em_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
1452 {
1453         struct adapter *adapter = ifp->if_softc;
1454         u_char fiber_type = IFM_1000_SX;
1455
1456         ASSERT_SERIALIZED(ifp->if_serializer);
1457
1458         em_update_link_status(adapter);
1459
1460         ifmr->ifm_status = IFM_AVALID;
1461         ifmr->ifm_active = IFM_ETHER;
1462
1463         if (!adapter->link_active)
1464                 return;
1465
1466         ifmr->ifm_status |= IFM_ACTIVE;
1467
1468         if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
1469             adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
1470                 if (adapter->hw.mac.type == e1000_82545)
1471                         fiber_type = IFM_1000_LX;
1472                 ifmr->ifm_active |= fiber_type | IFM_FDX;
1473         } else {
1474                 switch (adapter->link_speed) {
1475                 case 10:
1476                         ifmr->ifm_active |= IFM_10_T;
1477                         break;
1478                 case 100:
1479                         ifmr->ifm_active |= IFM_100_TX;
1480                         break;
1481
1482                 case 1000:
1483                         ifmr->ifm_active |= IFM_1000_T;
1484                         break;
1485                 }
1486                 if (adapter->link_duplex == FULL_DUPLEX)
1487                         ifmr->ifm_active |= IFM_FDX;
1488                 else
1489                         ifmr->ifm_active |= IFM_HDX;
1490         }
1491 }
1492
1493 static int
1494 em_media_change(struct ifnet *ifp)
1495 {
1496         struct adapter *adapter = ifp->if_softc;
1497         struct ifmedia *ifm = &adapter->media;
1498
1499         ASSERT_SERIALIZED(ifp->if_serializer);
1500
1501         if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
1502                 return (EINVAL);
1503
1504         switch (IFM_SUBTYPE(ifm->ifm_media)) {
1505         case IFM_AUTO:
1506                 adapter->hw.mac.autoneg = DO_AUTO_NEG;
1507                 adapter->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
1508                 break;
1509
1510         case IFM_1000_LX:
1511         case IFM_1000_SX:
1512         case IFM_1000_T:
1513                 adapter->hw.mac.autoneg = DO_AUTO_NEG;
1514                 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
1515                 break;
1516
1517         case IFM_100_TX:
1518                 adapter->hw.mac.autoneg = FALSE;
1519                 adapter->hw.phy.autoneg_advertised = 0;
1520                 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1521                         adapter->hw.mac.forced_speed_duplex = ADVERTISE_100_FULL;
1522                 else
1523                         adapter->hw.mac.forced_speed_duplex = ADVERTISE_100_HALF;
1524                 break;
1525
1526         case IFM_10_T:
1527                 adapter->hw.mac.autoneg = FALSE;
1528                 adapter->hw.phy.autoneg_advertised = 0;
1529                 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1530                         adapter->hw.mac.forced_speed_duplex = ADVERTISE_10_FULL;
1531                 else
1532                         adapter->hw.mac.forced_speed_duplex = ADVERTISE_10_HALF;
1533                 break;
1534
1535         default:
1536                 if_printf(ifp, "Unsupported media type\n");
1537                 break;
1538         }
1539
1540         /*
1541          * As the speed/duplex settings my have changed we need to
1542          * reset the PHY.
1543          */
1544         adapter->hw.phy.reset_disable = FALSE;
1545
1546         em_init(adapter);
1547
1548         return (0);
1549 }
1550
1551 static int
1552 em_encap(struct adapter *adapter, struct mbuf **m_headp)
1553 {
1554         bus_dma_segment_t segs[EM_MAX_SCATTER];
1555         bus_dmamap_t map;
1556         struct em_buffer *tx_buffer, *tx_buffer_mapped;
1557         struct e1000_tx_desc *ctxd = NULL;
1558         struct mbuf *m_head = *m_headp;
1559         uint32_t txd_upper, txd_lower, txd_used, cmd = 0;
1560         int maxsegs, nsegs, i, j, first, last = 0, error;
1561
1562         if (m_head->m_len < EM_TXCSUM_MINHL &&
1563             (m_head->m_flags & EM_CSUM_FEATURES)) {
1564                 /*
1565                  * Make sure that ethernet header and ip.ip_hl are in
1566                  * contiguous memory, since if TXCSUM is enabled, later
1567                  * TX context descriptor's setup need to access ip.ip_hl.
1568                  */
1569                 error = em_txcsum_pullup(adapter, m_headp);
1570                 if (error) {
1571                         KKASSERT(*m_headp == NULL);
1572                         return error;
1573                 }
1574                 m_head = *m_headp;
1575         }
1576
1577         txd_upper = txd_lower = 0;
1578         txd_used = 0;
1579
1580         /*
1581          * Capture the first descriptor index, this descriptor
1582          * will have the index of the EOP which is the only one
1583          * that now gets a DONE bit writeback.
1584          */
1585         first = adapter->next_avail_tx_desc;
1586         tx_buffer = &adapter->tx_buffer_area[first];
1587         tx_buffer_mapped = tx_buffer;
1588         map = tx_buffer->map;
1589
1590         maxsegs = adapter->num_tx_desc_avail - EM_TX_RESERVED;
1591         KASSERT(maxsegs >= adapter->spare_tx_desc,
1592                 ("not enough spare TX desc"));
1593         if (adapter->pcix_82544) {
1594                 /* Half it; see the comment in em_attach() */
1595                 maxsegs >>= 1;
1596         }
1597         if (maxsegs > EM_MAX_SCATTER)
1598                 maxsegs = EM_MAX_SCATTER;
1599
1600         error = bus_dmamap_load_mbuf_defrag(adapter->txtag, map, m_headp,
1601                         segs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
1602         if (error) {
1603                 if (error == ENOBUFS)
1604                         adapter->mbuf_alloc_failed++;
1605                 else
1606                         adapter->no_tx_dma_setup++;
1607
1608                 m_freem(*m_headp);
1609                 *m_headp = NULL;
1610                 return error;
1611         }
1612         bus_dmamap_sync(adapter->txtag, map, BUS_DMASYNC_PREWRITE);
1613
1614         m_head = *m_headp;
1615         adapter->tx_nsegs += nsegs;
1616
1617         if (m_head->m_pkthdr.csum_flags & EM_CSUM_FEATURES) {
1618                 /* TX csum offloading will consume one TX desc */
1619                 adapter->tx_nsegs += em_txcsum(adapter, m_head,
1620                                                &txd_upper, &txd_lower);
1621         }
1622         i = adapter->next_avail_tx_desc;
1623
1624         /* Set up our transmit descriptors */
1625         for (j = 0; j < nsegs; j++) {
1626                 /* If adapter is 82544 and on PCIX bus */
1627                 if(adapter->pcix_82544) {
1628                         DESC_ARRAY desc_array;
1629                         uint32_t array_elements, counter;
1630
1631                         /*
1632                          * Check the Address and Length combination and
1633                          * split the data accordingly
1634                          */
1635                         array_elements = em_82544_fill_desc(segs[j].ds_addr,
1636                                                 segs[j].ds_len, &desc_array);
1637                         for (counter = 0; counter < array_elements; counter++) {
1638                                 KKASSERT(txd_used < adapter->num_tx_desc_avail);
1639
1640                                 tx_buffer = &adapter->tx_buffer_area[i];
1641                                 ctxd = &adapter->tx_desc_base[i];
1642
1643                                 ctxd->buffer_addr = htole64(
1644                                     desc_array.descriptor[counter].address);
1645                                 ctxd->lower.data = htole32(
1646                                     E1000_TXD_CMD_IFCS | txd_lower |
1647                                     desc_array.descriptor[counter].length);
1648                                 ctxd->upper.data = htole32(txd_upper);
1649
1650                                 last = i;
1651                                 if (++i == adapter->num_tx_desc)
1652                                         i = 0;
1653
1654                                 txd_used++;
1655                         }
1656                 } else {
1657                         tx_buffer = &adapter->tx_buffer_area[i];
1658                         ctxd = &adapter->tx_desc_base[i];
1659
1660                         ctxd->buffer_addr = htole64(segs[j].ds_addr);
1661                         ctxd->lower.data = htole32(E1000_TXD_CMD_IFCS |
1662                                                    txd_lower | segs[j].ds_len);
1663                         ctxd->upper.data = htole32(txd_upper);
1664
1665                         last = i;
1666                         if (++i == adapter->num_tx_desc)
1667                                 i = 0;
1668                 }
1669         }
1670
1671         adapter->next_avail_tx_desc = i;
1672         if (adapter->pcix_82544) {
1673                 KKASSERT(adapter->num_tx_desc_avail > txd_used);
1674                 adapter->num_tx_desc_avail -= txd_used;
1675         } else {
1676                 KKASSERT(adapter->num_tx_desc_avail > nsegs);
1677                 adapter->num_tx_desc_avail -= nsegs;
1678         }
1679
1680         /* Handle VLAN tag */
1681         if (m_head->m_flags & M_VLANTAG) {
1682                 /* Set the vlan id. */
1683                 ctxd->upper.fields.special =
1684                     htole16(m_head->m_pkthdr.ether_vlantag);
1685
1686                 /* Tell hardware to add tag */
1687                 ctxd->lower.data |= htole32(E1000_TXD_CMD_VLE);
1688         }
1689
1690         tx_buffer->m_head = m_head;
1691         tx_buffer_mapped->map = tx_buffer->map;
1692         tx_buffer->map = map;
1693
1694         if (adapter->tx_nsegs >= adapter->tx_int_nsegs) {
1695                 adapter->tx_nsegs = 0;
1696
1697                 /*
1698                  * Report Status (RS) is turned on
1699                  * every tx_int_nsegs descriptors.
1700                  */
1701                 cmd = E1000_TXD_CMD_RS;
1702
1703                 /*
1704                  * Keep track of the descriptor, which will
1705                  * be written back by hardware.
1706                  */
1707                 adapter->tx_dd[adapter->tx_dd_tail] = last;
1708                 EM_INC_TXDD_IDX(adapter->tx_dd_tail);
1709                 KKASSERT(adapter->tx_dd_tail != adapter->tx_dd_head);
1710         }
1711
1712         /*
1713          * Last Descriptor of Packet needs End Of Packet (EOP)
1714          */
1715         ctxd->lower.data |= htole32(E1000_TXD_CMD_EOP | cmd);
1716
1717         /*
1718          * Advance the Transmit Descriptor Tail (TDT), this tells the E1000
1719          * that this frame is available to transmit.
1720          */
1721         if (adapter->hw.mac.type == e1000_82547 &&
1722             adapter->link_duplex == HALF_DUPLEX) {
1723                 em_82547_move_tail_serialized(adapter);
1724         } else {
1725                 E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), i);
1726                 if (adapter->hw.mac.type == e1000_82547) {
1727                         em_82547_update_fifo_head(adapter,
1728                             m_head->m_pkthdr.len);
1729                 }
1730         }
1731         return (0);
1732 }
1733
1734 /*
1735  * 82547 workaround to avoid controller hang in half-duplex environment.
1736  * The workaround is to avoid queuing a large packet that would span
1737  * the internal Tx FIFO ring boundary.  We need to reset the FIFO pointers
1738  * in this case.  We do that only when FIFO is quiescent.
1739  */
1740 static void
1741 em_82547_move_tail_serialized(struct adapter *adapter)
1742 {
1743         struct e1000_tx_desc *tx_desc;
1744         uint16_t hw_tdt, sw_tdt, length = 0;
1745         bool eop = 0;
1746
1747         ASSERT_SERIALIZED(adapter->arpcom.ac_if.if_serializer);
1748
1749         hw_tdt = E1000_READ_REG(&adapter->hw, E1000_TDT(0));
1750         sw_tdt = adapter->next_avail_tx_desc;
1751
1752         while (hw_tdt != sw_tdt) {
1753                 tx_desc = &adapter->tx_desc_base[hw_tdt];
1754                 length += tx_desc->lower.flags.length;
1755                 eop = tx_desc->lower.data & E1000_TXD_CMD_EOP;
1756                 if (++hw_tdt == adapter->num_tx_desc)
1757                         hw_tdt = 0;
1758
1759                 if (eop) {
1760                         if (em_82547_fifo_workaround(adapter, length)) {
1761                                 adapter->tx_fifo_wrk_cnt++;
1762                                 callout_reset(&adapter->tx_fifo_timer, 1,
1763                                         em_82547_move_tail, adapter);
1764                                 break;
1765                         }
1766                         E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), hw_tdt);
1767                         em_82547_update_fifo_head(adapter, length);
1768                         length = 0;
1769                 }
1770         }
1771 }
1772
1773 static void
1774 em_82547_move_tail(void *xsc)
1775 {
1776         struct adapter *adapter = xsc;
1777         struct ifnet *ifp = &adapter->arpcom.ac_if;
1778
1779         lwkt_serialize_enter(ifp->if_serializer);
1780         em_82547_move_tail_serialized(adapter);
1781         lwkt_serialize_exit(ifp->if_serializer);
1782 }
1783
1784 static int
1785 em_82547_fifo_workaround(struct adapter *adapter, int len)
1786 {       
1787         int fifo_space, fifo_pkt_len;
1788
1789         fifo_pkt_len = roundup2(len + EM_FIFO_HDR, EM_FIFO_HDR);
1790
1791         if (adapter->link_duplex == HALF_DUPLEX) {
1792                 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
1793
1794                 if (fifo_pkt_len >= (EM_82547_PKT_THRESH + fifo_space)) {
1795                         if (em_82547_tx_fifo_reset(adapter))
1796                                 return (0);
1797                         else
1798                                 return (1);
1799                 }
1800         }
1801         return (0);
1802 }
1803
1804 static void
1805 em_82547_update_fifo_head(struct adapter *adapter, int len)
1806 {
1807         int fifo_pkt_len = roundup2(len + EM_FIFO_HDR, EM_FIFO_HDR);
1808
1809         /* tx_fifo_head is always 16 byte aligned */
1810         adapter->tx_fifo_head += fifo_pkt_len;
1811         if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
1812                 adapter->tx_fifo_head -= adapter->tx_fifo_size;
1813 }
1814
1815 static int
1816 em_82547_tx_fifo_reset(struct adapter *adapter)
1817 {
1818         uint32_t tctl;
1819
1820         if ((E1000_READ_REG(&adapter->hw, E1000_TDT(0)) ==
1821              E1000_READ_REG(&adapter->hw, E1000_TDH(0))) &&
1822             (E1000_READ_REG(&adapter->hw, E1000_TDFT) == 
1823              E1000_READ_REG(&adapter->hw, E1000_TDFH)) &&
1824             (E1000_READ_REG(&adapter->hw, E1000_TDFTS) ==
1825              E1000_READ_REG(&adapter->hw, E1000_TDFHS)) &&
1826             (E1000_READ_REG(&adapter->hw, E1000_TDFPC) == 0)) {
1827                 /* Disable TX unit */
1828                 tctl = E1000_READ_REG(&adapter->hw, E1000_TCTL);
1829                 E1000_WRITE_REG(&adapter->hw, E1000_TCTL,
1830                     tctl & ~E1000_TCTL_EN);
1831
1832                 /* Reset FIFO pointers */
1833                 E1000_WRITE_REG(&adapter->hw, E1000_TDFT,
1834                     adapter->tx_head_addr);
1835                 E1000_WRITE_REG(&adapter->hw, E1000_TDFH,
1836                     adapter->tx_head_addr);
1837                 E1000_WRITE_REG(&adapter->hw, E1000_TDFTS,
1838                     adapter->tx_head_addr);
1839                 E1000_WRITE_REG(&adapter->hw, E1000_TDFHS,
1840                     adapter->tx_head_addr);
1841
1842                 /* Re-enable TX unit */
1843                 E1000_WRITE_REG(&adapter->hw, E1000_TCTL, tctl);
1844                 E1000_WRITE_FLUSH(&adapter->hw);
1845
1846                 adapter->tx_fifo_head = 0;
1847                 adapter->tx_fifo_reset_cnt++;
1848
1849                 return (TRUE);
1850         } else {
1851                 return (FALSE);
1852         }
1853 }
1854
1855 static void
1856 em_set_promisc(struct adapter *adapter)
1857 {
1858         struct ifnet *ifp = &adapter->arpcom.ac_if;
1859         uint32_t reg_rctl;
1860
1861         reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1862
1863         if (ifp->if_flags & IFF_PROMISC) {
1864                 reg_rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1865                 /* Turn this on if you want to see bad packets */
1866                 if (em_debug_sbp)
1867                         reg_rctl |= E1000_RCTL_SBP;
1868                 E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1869         } else if (ifp->if_flags & IFF_ALLMULTI) {
1870                 reg_rctl |= E1000_RCTL_MPE;
1871                 reg_rctl &= ~E1000_RCTL_UPE;
1872                 E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1873         }
1874 }
1875
1876 static void
1877 em_disable_promisc(struct adapter *adapter)
1878 {
1879         uint32_t reg_rctl;
1880
1881         reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1882
1883         reg_rctl &= ~E1000_RCTL_UPE;
1884         reg_rctl &= ~E1000_RCTL_MPE;
1885         reg_rctl &= ~E1000_RCTL_SBP;
1886         E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1887 }
1888
1889 static void
1890 em_set_multi(struct adapter *adapter)
1891 {
1892         struct ifnet *ifp = &adapter->arpcom.ac_if;
1893         struct ifmultiaddr *ifma;
1894         uint32_t reg_rctl = 0;
1895         uint8_t *mta;
1896         int mcnt = 0;
1897
1898         mta = adapter->mta;
1899         bzero(mta, ETH_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES);
1900
1901         if (adapter->hw.mac.type == e1000_82542 && 
1902             adapter->hw.revision_id == E1000_REVISION_2) {
1903                 reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1904                 if (adapter->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
1905                         e1000_pci_clear_mwi(&adapter->hw);
1906                 reg_rctl |= E1000_RCTL_RST;
1907                 E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1908                 msec_delay(5);
1909         }
1910
1911         TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1912                 if (ifma->ifma_addr->sa_family != AF_LINK)
1913                         continue;
1914
1915                 if (mcnt == MAX_NUM_MULTICAST_ADDRESSES)
1916                         break;
1917
1918                 bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1919                     &mta[mcnt * ETHER_ADDR_LEN], ETHER_ADDR_LEN);
1920                 mcnt++;
1921         }
1922
1923         if (mcnt >= MAX_NUM_MULTICAST_ADDRESSES) {
1924                 reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1925                 reg_rctl |= E1000_RCTL_MPE;
1926                 E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1927         } else {
1928                 e1000_update_mc_addr_list(&adapter->hw, mta, mcnt);
1929         }
1930
1931         if (adapter->hw.mac.type == e1000_82542 && 
1932             adapter->hw.revision_id == E1000_REVISION_2) {
1933                 reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1934                 reg_rctl &= ~E1000_RCTL_RST;
1935                 E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1936                 msec_delay(5);
1937                 if (adapter->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
1938                         e1000_pci_set_mwi(&adapter->hw);
1939         }
1940 }
1941
1942 /*
1943  * This routine checks for link status and updates statistics.
1944  */
1945 static void
1946 em_timer(void *xsc)
1947 {
1948         struct adapter *adapter = xsc;
1949         struct ifnet *ifp = &adapter->arpcom.ac_if;
1950
1951         lwkt_serialize_enter(ifp->if_serializer);
1952
1953         em_update_link_status(adapter);
1954         em_update_stats(adapter);
1955
1956         /* Reset LAA into RAR[0] on 82571 */
1957         if (e1000_get_laa_state_82571(&adapter->hw) == TRUE)
1958                 e1000_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
1959
1960         if (em_display_debug_stats && (ifp->if_flags & IFF_RUNNING))
1961                 em_print_hw_stats(adapter);
1962
1963         em_smartspeed(adapter);
1964
1965         callout_reset(&adapter->timer, hz, em_timer, adapter);
1966
1967         lwkt_serialize_exit(ifp->if_serializer);
1968 }
1969
1970 static void
1971 em_update_link_status(struct adapter *adapter)
1972 {
1973         struct e1000_hw *hw = &adapter->hw;
1974         struct ifnet *ifp = &adapter->arpcom.ac_if;
1975         device_t dev = adapter->dev;
1976         uint32_t link_check = 0;
1977
1978         /* Get the cached link value or read phy for real */
1979         switch (hw->phy.media_type) {
1980         case e1000_media_type_copper:
1981                 if (hw->mac.get_link_status) {
1982                         /* Do the work to read phy */
1983                         e1000_check_for_link(hw);
1984                         link_check = !hw->mac.get_link_status;
1985                         if (link_check) /* ESB2 fix */
1986                                 e1000_cfg_on_link_up(hw);
1987                 } else {
1988                         link_check = TRUE;
1989                 }
1990                 break;
1991
1992         case e1000_media_type_fiber:
1993                 e1000_check_for_link(hw);
1994                 link_check =
1995                         E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU;
1996                 break;
1997
1998         case e1000_media_type_internal_serdes:
1999                 e1000_check_for_link(hw);
2000                 link_check = adapter->hw.mac.serdes_has_link;
2001                 break;
2002
2003         case e1000_media_type_unknown:
2004         default:
2005                 break;
2006         }
2007
2008         /* Now check for a transition */
2009         if (link_check && adapter->link_active == 0) {
2010                 e1000_get_speed_and_duplex(hw, &adapter->link_speed,
2011                     &adapter->link_duplex);
2012
2013                 /*
2014                  * Check if we should enable/disable SPEED_MODE bit on
2015                  * 82571/82572
2016                  */
2017                 if (adapter->link_speed != SPEED_1000 &&
2018                     (hw->mac.type == e1000_82571 ||
2019                      hw->mac.type == e1000_82572)) {
2020                         int tarc0;
2021
2022                         tarc0 = E1000_READ_REG(hw, E1000_TARC(0));
2023                         tarc0 &= ~SPEED_MODE_BIT;
2024                         E1000_WRITE_REG(hw, E1000_TARC(0), tarc0);
2025                 }
2026                 if (bootverbose) {
2027                         device_printf(dev, "Link is up %d Mbps %s\n",
2028                             adapter->link_speed,
2029                             ((adapter->link_duplex == FULL_DUPLEX) ?
2030                             "Full Duplex" : "Half Duplex"));
2031                 }
2032                 adapter->link_active = 1;
2033                 adapter->smartspeed = 0;
2034                 ifp->if_baudrate = adapter->link_speed * 1000000;
2035                 ifp->if_link_state = LINK_STATE_UP;
2036                 if_link_state_change(ifp);
2037         } else if (!link_check && adapter->link_active == 1) {
2038                 ifp->if_baudrate = adapter->link_speed = 0;
2039                 adapter->link_duplex = 0;
2040                 if (bootverbose)
2041                         device_printf(dev, "Link is Down\n");
2042                 adapter->link_active = 0;
2043 #if 0
2044                 /* Link down, disable watchdog */
2045                 if->if_timer = 0;
2046 #endif
2047                 ifp->if_link_state = LINK_STATE_DOWN;
2048                 if_link_state_change(ifp);
2049         }
2050 }
2051
2052 static void
2053 em_stop(struct adapter *adapter)
2054 {
2055         struct ifnet *ifp = &adapter->arpcom.ac_if;
2056         int i;
2057
2058         ASSERT_SERIALIZED(ifp->if_serializer);
2059
2060         em_disable_intr(adapter);
2061
2062         callout_stop(&adapter->timer);
2063         callout_stop(&adapter->tx_fifo_timer);
2064
2065         ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2066         ifp->if_timer = 0;
2067
2068         e1000_reset_hw(&adapter->hw);
2069         if (adapter->hw.mac.type >= e1000_82544)
2070                 E1000_WRITE_REG(&adapter->hw, E1000_WUC, 0);
2071
2072         for (i = 0; i < adapter->num_tx_desc; i++) {
2073                 struct em_buffer *tx_buffer = &adapter->tx_buffer_area[i];
2074
2075                 if (tx_buffer->m_head != NULL) {
2076                         bus_dmamap_unload(adapter->txtag, tx_buffer->map);
2077                         m_freem(tx_buffer->m_head);
2078                         tx_buffer->m_head = NULL;
2079                 }
2080         }
2081
2082         for (i = 0; i < adapter->num_rx_desc; i++) {
2083                 struct em_buffer *rx_buffer = &adapter->rx_buffer_area[i];
2084
2085                 if (rx_buffer->m_head != NULL) {
2086                         bus_dmamap_unload(adapter->rxtag, rx_buffer->map);
2087                         m_freem(rx_buffer->m_head);
2088                         rx_buffer->m_head = NULL;
2089                 }
2090         }
2091
2092         if (adapter->fmp != NULL)
2093                 m_freem(adapter->fmp);
2094         adapter->fmp = NULL;
2095         adapter->lmp = NULL;
2096
2097         adapter->csum_flags = 0;
2098         adapter->csum_ehlen = 0;
2099         adapter->csum_iphlen = 0;
2100
2101         adapter->tx_dd_head = 0;
2102         adapter->tx_dd_tail = 0;
2103         adapter->tx_nsegs = 0;
2104 }
2105
2106 static int
2107 em_get_hw_info(struct adapter *adapter)
2108 {
2109         device_t dev = adapter->dev;
2110
2111         /* Save off the information about this board */
2112         adapter->hw.vendor_id = pci_get_vendor(dev);
2113         adapter->hw.device_id = pci_get_device(dev);
2114         adapter->hw.revision_id = pci_get_revid(dev);
2115         adapter->hw.subsystem_vendor_id = pci_get_subvendor(dev);
2116         adapter->hw.subsystem_device_id = pci_get_subdevice(dev);
2117
2118         /* Do Shared Code Init and Setup */
2119         if (e1000_set_mac_type(&adapter->hw))
2120                 return ENXIO;
2121         return 0;
2122 }
2123
2124 static int
2125 em_alloc_pci_res(struct adapter *adapter)
2126 {
2127         device_t dev = adapter->dev;
2128         u_int intr_flags;
2129         int val, rid;
2130
2131         /* Enable bus mastering */
2132         pci_enable_busmaster(dev);
2133
2134         adapter->memory_rid = EM_BAR_MEM;
2135         adapter->memory = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
2136                                 &adapter->memory_rid, RF_ACTIVE);
2137         if (adapter->memory == NULL) {
2138                 device_printf(dev, "Unable to allocate bus resource: memory\n");
2139                 return (ENXIO);
2140         }
2141         adapter->osdep.mem_bus_space_tag =
2142             rman_get_bustag(adapter->memory);
2143         adapter->osdep.mem_bus_space_handle =
2144             rman_get_bushandle(adapter->memory);
2145
2146         /* XXX This is quite goofy, it is not actually used */
2147         adapter->hw.hw_addr = (uint8_t *)&adapter->osdep.mem_bus_space_handle;
2148
2149         /* Only older adapters use IO mapping */
2150         if (adapter->hw.mac.type > e1000_82543 &&
2151             adapter->hw.mac.type < e1000_82571) {
2152                 /* Figure our where our IO BAR is ? */
2153                 for (rid = PCIR_BAR(0); rid < PCIR_CARDBUSCIS;) {
2154                         val = pci_read_config(dev, rid, 4);
2155                         if (EM_BAR_TYPE(val) == EM_BAR_TYPE_IO) {
2156                                 adapter->io_rid = rid;
2157                                 break;
2158                         }
2159                         rid += 4;
2160                         /* check for 64bit BAR */
2161                         if (EM_BAR_MEM_TYPE(val) == EM_BAR_MEM_TYPE_64BIT)
2162                                 rid += 4;
2163                 }
2164                 if (rid >= PCIR_CARDBUSCIS) {
2165                         device_printf(dev, "Unable to locate IO BAR\n");
2166                         return (ENXIO);
2167                 }
2168                 adapter->ioport = bus_alloc_resource_any(dev, SYS_RES_IOPORT,
2169                                         &adapter->io_rid, RF_ACTIVE);
2170                 if (adapter->ioport == NULL) {
2171                         device_printf(dev, "Unable to allocate bus resource: "
2172                             "ioport\n");
2173                         return (ENXIO);
2174                 }
2175                 adapter->hw.io_base = 0;
2176                 adapter->osdep.io_bus_space_tag =
2177                     rman_get_bustag(adapter->ioport);
2178                 adapter->osdep.io_bus_space_handle =
2179                     rman_get_bushandle(adapter->ioport);
2180         }
2181
2182         adapter->intr_type = pci_alloc_1intr(dev, em_msi_enable,
2183             &adapter->intr_rid, &intr_flags);
2184
2185         adapter->intr_res = bus_alloc_resource_any(dev, SYS_RES_IRQ,
2186             &adapter->intr_rid, intr_flags);
2187         if (adapter->intr_res == NULL) {
2188                 device_printf(dev, "Unable to allocate bus resource: "
2189                     "interrupt\n");
2190                 return (ENXIO);
2191         }
2192
2193         adapter->hw.bus.pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2);
2194         adapter->hw.back = &adapter->osdep;
2195         return (0);
2196 }
2197
2198 static void
2199 em_free_pci_res(struct adapter *adapter)
2200 {
2201         device_t dev = adapter->dev;
2202
2203         if (adapter->intr_res != NULL) {
2204                 bus_release_resource(dev, SYS_RES_IRQ,
2205                     adapter->intr_rid, adapter->intr_res);
2206         }
2207
2208         if (adapter->intr_type == PCI_INTR_TYPE_MSI)
2209                 pci_release_msi(dev);
2210
2211         if (adapter->memory != NULL) {
2212                 bus_release_resource(dev, SYS_RES_MEMORY,
2213                     adapter->memory_rid, adapter->memory);
2214         }
2215
2216         if (adapter->flash != NULL) {
2217                 bus_release_resource(dev, SYS_RES_MEMORY,
2218                     adapter->flash_rid, adapter->flash);
2219         }
2220
2221         if (adapter->ioport != NULL) {
2222                 bus_release_resource(dev, SYS_RES_IOPORT,
2223                     adapter->io_rid, adapter->ioport);
2224         }
2225 }
2226
2227 static int
2228 em_reset(struct adapter *adapter)
2229 {
2230         device_t dev = adapter->dev;
2231         uint16_t rx_buffer_size;
2232
2233         /* When hardware is reset, fifo_head is also reset */
2234         adapter->tx_fifo_head = 0;
2235
2236         /* Set up smart power down as default off on newer adapters. */
2237         if (!em_smart_pwr_down &&
2238             (adapter->hw.mac.type == e1000_82571 ||
2239              adapter->hw.mac.type == e1000_82572)) {
2240                 uint16_t phy_tmp = 0;
2241
2242                 /* Speed up time to link by disabling smart power down. */
2243                 e1000_read_phy_reg(&adapter->hw,
2244                     IGP02E1000_PHY_POWER_MGMT, &phy_tmp);
2245                 phy_tmp &= ~IGP02E1000_PM_SPD;
2246                 e1000_write_phy_reg(&adapter->hw,
2247                     IGP02E1000_PHY_POWER_MGMT, phy_tmp);
2248         }
2249
2250         /*
2251          * These parameters control the automatic generation (Tx) and
2252          * response (Rx) to Ethernet PAUSE frames.
2253          * - High water mark should allow for at least two frames to be
2254          *   received after sending an XOFF.
2255          * - Low water mark works best when it is very near the high water mark.
2256          *   This allows the receiver to restart by sending XON when it has
2257          *   drained a bit. Here we use an arbitary value of 1500 which will
2258          *   restart after one full frame is pulled from the buffer. There
2259          *   could be several smaller frames in the buffer and if so they will
2260          *   not trigger the XON until their total number reduces the buffer
2261          *   by 1500.
2262          * - The pause time is fairly large at 1000 x 512ns = 512 usec.
2263          */
2264         rx_buffer_size =
2265                 (E1000_READ_REG(&adapter->hw, E1000_PBA) & 0xffff) << 10;
2266
2267         adapter->hw.fc.high_water = rx_buffer_size -
2268                                     roundup2(adapter->max_frame_size, 1024);
2269         adapter->hw.fc.low_water = adapter->hw.fc.high_water - 1500;
2270
2271         if (adapter->hw.mac.type == e1000_80003es2lan)
2272                 adapter->hw.fc.pause_time = 0xFFFF;
2273         else
2274                 adapter->hw.fc.pause_time = EM_FC_PAUSE_TIME;
2275
2276         adapter->hw.fc.send_xon = TRUE;
2277
2278         adapter->hw.fc.requested_mode = e1000_fc_full;
2279
2280         /* Workaround: no TX flow ctrl for PCH */
2281         if (adapter->hw.mac.type == e1000_pchlan)
2282                 adapter->hw.fc.requested_mode = e1000_fc_rx_pause;
2283
2284         /* Override - settings for PCH2LAN, ya its magic :) */
2285         if (adapter->hw.mac.type == e1000_pch2lan) {
2286                 adapter->hw.fc.high_water = 0x5C20;
2287                 adapter->hw.fc.low_water = 0x5048;
2288                 adapter->hw.fc.pause_time = 0x0650;
2289                 adapter->hw.fc.refresh_time = 0x0400;
2290
2291                 /* Jumbos need adjusted PBA */
2292                 if (adapter->arpcom.ac_if.if_mtu > ETHERMTU)
2293                         E1000_WRITE_REG(&adapter->hw, E1000_PBA, 12);
2294                 else
2295                         E1000_WRITE_REG(&adapter->hw, E1000_PBA, 26);
2296         }
2297
2298         /* Issue a global reset */
2299         e1000_reset_hw(&adapter->hw);
2300         if (adapter->hw.mac.type >= e1000_82544)
2301                 E1000_WRITE_REG(&adapter->hw, E1000_WUC, 0);
2302         em_disable_aspm(adapter);
2303
2304         if (e1000_init_hw(&adapter->hw) < 0) {
2305                 device_printf(dev, "Hardware Initialization Failed\n");
2306                 return (EIO);
2307         }
2308
2309         E1000_WRITE_REG(&adapter->hw, E1000_VET, ETHERTYPE_VLAN);
2310         e1000_get_phy_info(&adapter->hw);
2311         e1000_check_for_link(&adapter->hw);
2312
2313         return (0);
2314 }
2315
2316 static void
2317 em_setup_ifp(struct adapter *adapter)
2318 {
2319         struct ifnet *ifp = &adapter->arpcom.ac_if;
2320
2321         if_initname(ifp, device_get_name(adapter->dev),
2322                     device_get_unit(adapter->dev));
2323         ifp->if_softc = adapter;
2324         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2325         ifp->if_init =  em_init;
2326         ifp->if_ioctl = em_ioctl;
2327         ifp->if_start = em_start;
2328 #ifdef DEVICE_POLLING
2329         ifp->if_poll = em_poll;
2330 #endif
2331         ifp->if_watchdog = em_watchdog;
2332         ifq_set_maxlen(&ifp->if_snd, adapter->num_tx_desc - 1);
2333         ifq_set_ready(&ifp->if_snd);
2334
2335         ether_ifattach(ifp, adapter->hw.mac.addr, NULL);
2336
2337         if (adapter->hw.mac.type >= e1000_82543)
2338                 ifp->if_capabilities = IFCAP_HWCSUM;
2339
2340         ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU;
2341         ifp->if_capenable = ifp->if_capabilities;
2342
2343         if (ifp->if_capenable & IFCAP_TXCSUM)
2344                 ifp->if_hwassist = EM_CSUM_FEATURES;
2345
2346         /*
2347          * Tell the upper layer(s) we support long frames.
2348          */
2349         ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
2350
2351         /*
2352          * Specify the media types supported by this adapter and register
2353          * callbacks to update media and link information
2354          */
2355         ifmedia_init(&adapter->media, IFM_IMASK,
2356                      em_media_change, em_media_status);
2357         if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
2358             adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
2359                 u_char fiber_type = IFM_1000_SX; /* default type */
2360
2361                 if (adapter->hw.mac.type == e1000_82545)
2362                         fiber_type = IFM_1000_LX;
2363                 ifmedia_add(&adapter->media, IFM_ETHER | fiber_type | IFM_FDX, 
2364                             0, NULL);
2365                 ifmedia_add(&adapter->media, IFM_ETHER | fiber_type, 0, NULL);
2366         } else {
2367                 ifmedia_add(&adapter->media, IFM_ETHER | IFM_10_T, 0, NULL);
2368                 ifmedia_add(&adapter->media, IFM_ETHER | IFM_10_T | IFM_FDX,
2369                             0, NULL);
2370                 ifmedia_add(&adapter->media, IFM_ETHER | IFM_100_TX,
2371                             0, NULL);
2372                 ifmedia_add(&adapter->media, IFM_ETHER | IFM_100_TX | IFM_FDX,
2373                             0, NULL);
2374                 if (adapter->hw.phy.type != e1000_phy_ife) {
2375                         ifmedia_add(&adapter->media,
2376                                 IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
2377                         ifmedia_add(&adapter->media,
2378                                 IFM_ETHER | IFM_1000_T, 0, NULL);
2379                 }
2380         }
2381         ifmedia_add(&adapter->media, IFM_ETHER | IFM_AUTO, 0, NULL);
2382         ifmedia_set(&adapter->media, IFM_ETHER | IFM_AUTO);
2383 }
2384
2385
2386 /*
2387  * Workaround for SmartSpeed on 82541 and 82547 controllers
2388  */
2389 static void
2390 em_smartspeed(struct adapter *adapter)
2391 {
2392         uint16_t phy_tmp;
2393
2394         if (adapter->link_active || adapter->hw.phy.type != e1000_phy_igp ||
2395             adapter->hw.mac.autoneg == 0 ||
2396             (adapter->hw.phy.autoneg_advertised & ADVERTISE_1000_FULL) == 0)
2397                 return;
2398
2399         if (adapter->smartspeed == 0) {
2400                 /*
2401                  * If Master/Slave config fault is asserted twice,
2402                  * we assume back-to-back
2403                  */
2404                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp);
2405                 if (!(phy_tmp & SR_1000T_MS_CONFIG_FAULT))
2406                         return;
2407                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp);
2408                 if (phy_tmp & SR_1000T_MS_CONFIG_FAULT) {
2409                         e1000_read_phy_reg(&adapter->hw,
2410                             PHY_1000T_CTRL, &phy_tmp);
2411                         if (phy_tmp & CR_1000T_MS_ENABLE) {
2412                                 phy_tmp &= ~CR_1000T_MS_ENABLE;
2413                                 e1000_write_phy_reg(&adapter->hw,
2414                                     PHY_1000T_CTRL, phy_tmp);
2415                                 adapter->smartspeed++;
2416                                 if (adapter->hw.mac.autoneg &&
2417                                     !e1000_phy_setup_autoneg(&adapter->hw) &&
2418                                     !e1000_read_phy_reg(&adapter->hw,
2419                                      PHY_CONTROL, &phy_tmp)) {
2420                                         phy_tmp |= MII_CR_AUTO_NEG_EN |
2421                                                    MII_CR_RESTART_AUTO_NEG;
2422                                         e1000_write_phy_reg(&adapter->hw,
2423                                             PHY_CONTROL, phy_tmp);
2424                                 }
2425                         }
2426                 }
2427                 return;
2428         } else if (adapter->smartspeed == EM_SMARTSPEED_DOWNSHIFT) {
2429                 /* If still no link, perhaps using 2/3 pair cable */
2430                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_tmp);
2431                 phy_tmp |= CR_1000T_MS_ENABLE;
2432                 e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_tmp);
2433                 if (adapter->hw.mac.autoneg &&
2434                     !e1000_phy_setup_autoneg(&adapter->hw) &&
2435                     !e1000_read_phy_reg(&adapter->hw, PHY_CONTROL, &phy_tmp)) {
2436                         phy_tmp |= MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG;
2437                         e1000_write_phy_reg(&adapter->hw, PHY_CONTROL, phy_tmp);
2438                 }
2439         }
2440
2441         /* Restart process after EM_SMARTSPEED_MAX iterations */
2442         if (adapter->smartspeed++ == EM_SMARTSPEED_MAX)
2443                 adapter->smartspeed = 0;
2444 }
2445
2446 static int
2447 em_dma_malloc(struct adapter *adapter, bus_size_t size,
2448               struct em_dma_alloc *dma)
2449 {
2450         dma->dma_vaddr = bus_dmamem_coherent_any(adapter->parent_dtag,
2451                                 EM_DBA_ALIGN, size, BUS_DMA_WAITOK,
2452                                 &dma->dma_tag, &dma->dma_map,
2453                                 &dma->dma_paddr);
2454         if (dma->dma_vaddr == NULL)
2455                 return ENOMEM;
2456         else
2457                 return 0;
2458 }
2459
2460 static void
2461 em_dma_free(struct adapter *adapter, struct em_dma_alloc *dma)
2462 {
2463         if (dma->dma_tag == NULL)
2464                 return;
2465         bus_dmamap_unload(dma->dma_tag, dma->dma_map);
2466         bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
2467         bus_dma_tag_destroy(dma->dma_tag);
2468 }
2469
2470 static int
2471 em_create_tx_ring(struct adapter *adapter)
2472 {
2473         device_t dev = adapter->dev;
2474         struct em_buffer *tx_buffer;
2475         int error, i;
2476
2477         adapter->tx_buffer_area =
2478                 kmalloc(sizeof(struct em_buffer) * adapter->num_tx_desc,
2479                         M_DEVBUF, M_WAITOK | M_ZERO);
2480
2481         /*
2482          * Create DMA tags for tx buffers
2483          */
2484         error = bus_dma_tag_create(adapter->parent_dtag, /* parent */
2485                         1, 0,                   /* alignment, bounds */
2486                         BUS_SPACE_MAXADDR,      /* lowaddr */
2487                         BUS_SPACE_MAXADDR,      /* highaddr */
2488                         NULL, NULL,             /* filter, filterarg */
2489                         EM_TSO_SIZE,            /* maxsize */
2490                         EM_MAX_SCATTER,         /* nsegments */
2491                         EM_MAX_SEGSIZE,         /* maxsegsize */
2492                         BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW |
2493                         BUS_DMA_ONEBPAGE,       /* flags */
2494                         &adapter->txtag);
2495         if (error) {
2496                 device_printf(dev, "Unable to allocate TX DMA tag\n");
2497                 kfree(adapter->tx_buffer_area, M_DEVBUF);
2498                 adapter->tx_buffer_area = NULL;
2499                 return error;
2500         }
2501
2502         /*
2503          * Create DMA maps for tx buffers
2504          */
2505         for (i = 0; i < adapter->num_tx_desc; i++) {
2506                 tx_buffer = &adapter->tx_buffer_area[i];
2507
2508                 error = bus_dmamap_create(adapter->txtag,
2509                                           BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
2510                                           &tx_buffer->map);
2511                 if (error) {
2512                         device_printf(dev, "Unable to create TX DMA map\n");
2513                         em_destroy_tx_ring(adapter, i);
2514                         return error;
2515                 }
2516         }
2517         return (0);
2518 }
2519
2520 static void
2521 em_init_tx_ring(struct adapter *adapter)
2522 {
2523         /* Clear the old ring contents */
2524         bzero(adapter->tx_desc_base,
2525             (sizeof(struct e1000_tx_desc)) * adapter->num_tx_desc);
2526
2527         /* Reset state */
2528         adapter->next_avail_tx_desc = 0;
2529         adapter->next_tx_to_clean = 0;
2530         adapter->num_tx_desc_avail = adapter->num_tx_desc;
2531 }
2532
2533 static void
2534 em_init_tx_unit(struct adapter *adapter)
2535 {
2536         uint32_t tctl, tarc, tipg = 0;
2537         uint64_t bus_addr;
2538
2539         /* Setup the Base and Length of the Tx Descriptor Ring */
2540         bus_addr = adapter->txdma.dma_paddr;
2541         E1000_WRITE_REG(&adapter->hw, E1000_TDLEN(0),
2542             adapter->num_tx_desc * sizeof(struct e1000_tx_desc));
2543         E1000_WRITE_REG(&adapter->hw, E1000_TDBAH(0),
2544             (uint32_t)(bus_addr >> 32));
2545         E1000_WRITE_REG(&adapter->hw, E1000_TDBAL(0),
2546             (uint32_t)bus_addr);
2547         /* Setup the HW Tx Head and Tail descriptor pointers */
2548         E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), 0);
2549         E1000_WRITE_REG(&adapter->hw, E1000_TDH(0), 0);
2550
2551         /* Set the default values for the Tx Inter Packet Gap timer */
2552         switch (adapter->hw.mac.type) {
2553         case e1000_82542:
2554                 tipg = DEFAULT_82542_TIPG_IPGT;
2555                 tipg |= DEFAULT_82542_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
2556                 tipg |= DEFAULT_82542_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
2557                 break;
2558
2559         case e1000_80003es2lan:
2560                 tipg = DEFAULT_82543_TIPG_IPGR1;
2561                 tipg |= DEFAULT_80003ES2LAN_TIPG_IPGR2 <<
2562                     E1000_TIPG_IPGR2_SHIFT;
2563                 break;
2564
2565         default:
2566                 if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
2567                     adapter->hw.phy.media_type ==
2568                     e1000_media_type_internal_serdes)
2569                         tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
2570                 else
2571                         tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
2572                 tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
2573                 tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
2574                 break;
2575         }
2576
2577         E1000_WRITE_REG(&adapter->hw, E1000_TIPG, tipg);
2578
2579         /* NOTE: 0 is not allowed for TIDV */
2580         E1000_WRITE_REG(&adapter->hw, E1000_TIDV, 1);
2581         if(adapter->hw.mac.type >= e1000_82540)
2582                 E1000_WRITE_REG(&adapter->hw, E1000_TADV, 0);
2583
2584         if (adapter->hw.mac.type == e1000_82571 ||
2585             adapter->hw.mac.type == e1000_82572) {
2586                 tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(0));
2587                 tarc |= SPEED_MODE_BIT;
2588                 E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc);
2589         } else if (adapter->hw.mac.type == e1000_80003es2lan) {
2590                 tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(0));
2591                 tarc |= 1;
2592                 E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc);
2593                 tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(1));
2594                 tarc |= 1;
2595                 E1000_WRITE_REG(&adapter->hw, E1000_TARC(1), tarc);
2596         }
2597
2598         /* Program the Transmit Control Register */
2599         tctl = E1000_READ_REG(&adapter->hw, E1000_TCTL);
2600         tctl &= ~E1000_TCTL_CT;
2601         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
2602                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2603
2604         if (adapter->hw.mac.type >= e1000_82571)
2605                 tctl |= E1000_TCTL_MULR;
2606
2607         /* This write will effectively turn on the transmit unit. */
2608         E1000_WRITE_REG(&adapter->hw, E1000_TCTL, tctl);
2609 }
2610
2611 static void
2612 em_destroy_tx_ring(struct adapter *adapter, int ndesc)
2613 {
2614         struct em_buffer *tx_buffer;
2615         int i;
2616
2617         if (adapter->tx_buffer_area == NULL)
2618                 return;
2619
2620         for (i = 0; i < ndesc; i++) {
2621                 tx_buffer = &adapter->tx_buffer_area[i];
2622
2623                 KKASSERT(tx_buffer->m_head == NULL);
2624                 bus_dmamap_destroy(adapter->txtag, tx_buffer->map);
2625         }
2626         bus_dma_tag_destroy(adapter->txtag);
2627
2628         kfree(adapter->tx_buffer_area, M_DEVBUF);
2629         adapter->tx_buffer_area = NULL;
2630 }
2631
2632 /*
2633  * The offload context needs to be set when we transfer the first
2634  * packet of a particular protocol (TCP/UDP).  This routine has been
2635  * enhanced to deal with inserted VLAN headers.
2636  *
2637  * If the new packet's ether header length, ip header length and
2638  * csum offloading type are same as the previous packet, we should
2639  * avoid allocating a new csum context descriptor; mainly to take
2640  * advantage of the pipeline effect of the TX data read request.
2641  *
2642  * This function returns number of TX descrptors allocated for
2643  * csum context.
2644  */
2645 static int
2646 em_txcsum(struct adapter *adapter, struct mbuf *mp,
2647           uint32_t *txd_upper, uint32_t *txd_lower)
2648 {
2649         struct e1000_context_desc *TXD;
2650         struct em_buffer *tx_buffer;
2651         struct ether_vlan_header *eh;
2652         struct ip *ip;
2653         int curr_txd, ehdrlen, csum_flags;
2654         uint32_t cmd, hdr_len, ip_hlen;
2655         uint16_t etype;
2656
2657         /*
2658          * Determine where frame payload starts.
2659          * Jump over vlan headers if already present,
2660          * helpful for QinQ too.
2661          */
2662         KASSERT(mp->m_len >= ETHER_HDR_LEN,
2663                 ("em_txcsum_pullup is not called (eh)?"));
2664         eh = mtod(mp, struct ether_vlan_header *);
2665         if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
2666                 KASSERT(mp->m_len >= ETHER_HDR_LEN + EVL_ENCAPLEN,
2667                         ("em_txcsum_pullup is not called (evh)?"));
2668                 etype = ntohs(eh->evl_proto);
2669                 ehdrlen = ETHER_HDR_LEN + EVL_ENCAPLEN;
2670         } else {
2671                 etype = ntohs(eh->evl_encap_proto);
2672                 ehdrlen = ETHER_HDR_LEN;
2673         }
2674
2675         /*
2676          * We only support TCP/UDP for IPv4 for the moment.
2677          * TODO: Support SCTP too when it hits the tree.
2678          */
2679         if (etype != ETHERTYPE_IP)
2680                 return 0;
2681
2682         KASSERT(mp->m_len >= ehdrlen + EM_IPVHL_SIZE,
2683                 ("em_txcsum_pullup is not called (eh+ip_vhl)?"));
2684
2685         /* NOTE: We could only safely access ip.ip_vhl part */
2686         ip = (struct ip *)(mp->m_data + ehdrlen);
2687         ip_hlen = ip->ip_hl << 2;
2688
2689         csum_flags = mp->m_pkthdr.csum_flags & EM_CSUM_FEATURES;
2690
2691         if (adapter->csum_ehlen == ehdrlen &&
2692             adapter->csum_iphlen == ip_hlen &&
2693             adapter->csum_flags == csum_flags) {
2694                 /*
2695                  * Same csum offload context as the previous packets;
2696                  * just return.
2697                  */
2698                 *txd_upper = adapter->csum_txd_upper;
2699                 *txd_lower = adapter->csum_txd_lower;
2700                 return 0;
2701         }
2702
2703         /*
2704          * Setup a new csum offload context.
2705          */
2706
2707         curr_txd = adapter->next_avail_tx_desc;
2708         tx_buffer = &adapter->tx_buffer_area[curr_txd];
2709         TXD = (struct e1000_context_desc *)&adapter->tx_desc_base[curr_txd];
2710
2711         cmd = 0;
2712
2713         /* Setup of IP header checksum. */
2714         if (csum_flags & CSUM_IP) {
2715                 /*
2716                  * Start offset for header checksum calculation.
2717                  * End offset for header checksum calculation.
2718                  * Offset of place to put the checksum.
2719                  */
2720                 TXD->lower_setup.ip_fields.ipcss = ehdrlen;
2721                 TXD->lower_setup.ip_fields.ipcse =
2722                     htole16(ehdrlen + ip_hlen - 1);
2723                 TXD->lower_setup.ip_fields.ipcso =
2724                     ehdrlen + offsetof(struct ip, ip_sum);
2725                 cmd |= E1000_TXD_CMD_IP;
2726                 *txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2727         }
2728         hdr_len = ehdrlen + ip_hlen;
2729
2730         if (csum_flags & CSUM_TCP) {
2731                 /*
2732                  * Start offset for payload checksum calculation.
2733                  * End offset for payload checksum calculation.
2734                  * Offset of place to put the checksum.
2735                  */
2736                 TXD->upper_setup.tcp_fields.tucss = hdr_len;
2737                 TXD->upper_setup.tcp_fields.tucse = htole16(0);
2738                 TXD->upper_setup.tcp_fields.tucso =
2739                     hdr_len + offsetof(struct tcphdr, th_sum);
2740                 cmd |= E1000_TXD_CMD_TCP;
2741                 *txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2742         } else if (csum_flags & CSUM_UDP) {
2743                 /*
2744                  * Start offset for header checksum calculation.
2745                  * End offset for header checksum calculation.
2746                  * Offset of place to put the checksum.
2747                  */
2748                 TXD->upper_setup.tcp_fields.tucss = hdr_len;
2749                 TXD->upper_setup.tcp_fields.tucse = htole16(0);
2750                 TXD->upper_setup.tcp_fields.tucso =
2751                     hdr_len + offsetof(struct udphdr, uh_sum);
2752                 *txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2753         }
2754
2755         *txd_lower = E1000_TXD_CMD_DEXT |       /* Extended descr type */
2756                      E1000_TXD_DTYP_D;          /* Data descr */
2757
2758         /* Save the information for this csum offloading context */
2759         adapter->csum_ehlen = ehdrlen;
2760         adapter->csum_iphlen = ip_hlen;
2761         adapter->csum_flags = csum_flags;
2762         adapter->csum_txd_upper = *txd_upper;
2763         adapter->csum_txd_lower = *txd_lower;
2764
2765         TXD->tcp_seg_setup.data = htole32(0);
2766         TXD->cmd_and_length =
2767             htole32(E1000_TXD_CMD_IFCS | E1000_TXD_CMD_DEXT | cmd);
2768
2769         if (++curr_txd == adapter->num_tx_desc)
2770                 curr_txd = 0;
2771
2772         KKASSERT(adapter->num_tx_desc_avail > 0);
2773         adapter->num_tx_desc_avail--;
2774
2775         adapter->next_avail_tx_desc = curr_txd;
2776         return 1;
2777 }
2778
2779 static int
2780 em_txcsum_pullup(struct adapter *adapter, struct mbuf **m0)
2781 {
2782         struct mbuf *m = *m0;
2783         struct ether_header *eh;
2784         int len;
2785
2786         adapter->tx_csum_try_pullup++;
2787
2788         len = ETHER_HDR_LEN + EM_IPVHL_SIZE;
2789
2790         if (__predict_false(!M_WRITABLE(m))) {
2791                 if (__predict_false(m->m_len < ETHER_HDR_LEN)) {
2792                         adapter->tx_csum_drop1++;
2793                         m_freem(m);
2794                         *m0 = NULL;
2795                         return ENOBUFS;
2796                 }
2797                 eh = mtod(m, struct ether_header *);
2798
2799                 if (eh->ether_type == htons(ETHERTYPE_VLAN))
2800                         len += EVL_ENCAPLEN;
2801
2802                 if (m->m_len < len) {
2803                         adapter->tx_csum_drop2++;
2804                         m_freem(m);
2805                         *m0 = NULL;
2806                         return ENOBUFS;
2807                 }
2808                 return 0;
2809         }
2810
2811         if (__predict_false(m->m_len < ETHER_HDR_LEN)) {
2812                 adapter->tx_csum_pullup1++;
2813                 m = m_pullup(m, ETHER_HDR_LEN);
2814                 if (m == NULL) {
2815                         adapter->tx_csum_pullup1_failed++;
2816                         *m0 = NULL;
2817                         return ENOBUFS;
2818                 }
2819                 *m0 = m;
2820         }
2821         eh = mtod(m, struct ether_header *);
2822
2823         if (eh->ether_type == htons(ETHERTYPE_VLAN))
2824                 len += EVL_ENCAPLEN;
2825
2826         if (m->m_len < len) {
2827                 adapter->tx_csum_pullup2++;
2828                 m = m_pullup(m, len);
2829                 if (m == NULL) {
2830                         adapter->tx_csum_pullup2_failed++;
2831                         *m0 = NULL;
2832                         return ENOBUFS;
2833                 }
2834                 *m0 = m;
2835         }
2836         return 0;
2837 }
2838
2839 static void
2840 em_txeof(struct adapter *adapter)
2841 {
2842         struct ifnet *ifp = &adapter->arpcom.ac_if;
2843         struct em_buffer *tx_buffer;
2844         int first, num_avail;
2845
2846         if (adapter->tx_dd_head == adapter->tx_dd_tail)
2847                 return;
2848
2849         if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
2850                 return;
2851
2852         num_avail = adapter->num_tx_desc_avail;
2853         first = adapter->next_tx_to_clean;
2854
2855         while (adapter->tx_dd_head != adapter->tx_dd_tail) {
2856                 struct e1000_tx_desc *tx_desc;
2857                 int dd_idx = adapter->tx_dd[adapter->tx_dd_head];
2858
2859                 tx_desc = &adapter->tx_desc_base[dd_idx];
2860                 if (tx_desc->upper.fields.status & E1000_TXD_STAT_DD) {
2861                         EM_INC_TXDD_IDX(adapter->tx_dd_head);
2862
2863                         if (++dd_idx == adapter->num_tx_desc)
2864                                 dd_idx = 0;
2865
2866                         while (first != dd_idx) {
2867                                 logif(pkt_txclean);
2868
2869                                 num_avail++;
2870
2871                                 tx_buffer = &adapter->tx_buffer_area[first];
2872                                 if (tx_buffer->m_head) {
2873                                         ifp->if_opackets++;
2874                                         bus_dmamap_unload(adapter->txtag,
2875                                                           tx_buffer->map);
2876                                         m_freem(tx_buffer->m_head);
2877                                         tx_buffer->m_head = NULL;
2878                                 }
2879
2880                                 if (++first == adapter->num_tx_desc)
2881                                         first = 0;
2882                         }
2883                 } else {
2884                         break;
2885                 }
2886         }
2887         adapter->next_tx_to_clean = first;
2888         adapter->num_tx_desc_avail = num_avail;
2889
2890         if (adapter->tx_dd_head == adapter->tx_dd_tail) {
2891                 adapter->tx_dd_head = 0;
2892                 adapter->tx_dd_tail = 0;
2893         }
2894
2895         if (!EM_IS_OACTIVE(adapter)) {
2896                 ifp->if_flags &= ~IFF_OACTIVE;
2897
2898                 /* All clean, turn off the timer */
2899                 if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
2900                         ifp->if_timer = 0;
2901         }
2902 }
2903
2904 static void
2905 em_tx_collect(struct adapter *adapter)
2906 {
2907         struct ifnet *ifp = &adapter->arpcom.ac_if;
2908         struct em_buffer *tx_buffer;
2909         int tdh, first, num_avail, dd_idx = -1;
2910
2911         if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
2912                 return;
2913
2914         tdh = E1000_READ_REG(&adapter->hw, E1000_TDH(0));
2915         if (tdh == adapter->next_tx_to_clean)
2916                 return;
2917
2918         if (adapter->tx_dd_head != adapter->tx_dd_tail)
2919                 dd_idx = adapter->tx_dd[adapter->tx_dd_head];
2920
2921         num_avail = adapter->num_tx_desc_avail;
2922         first = adapter->next_tx_to_clean;
2923
2924         while (first != tdh) {
2925                 logif(pkt_txclean);
2926
2927                 num_avail++;
2928
2929                 tx_buffer = &adapter->tx_buffer_area[first];
2930                 if (tx_buffer->m_head) {
2931                         ifp->if_opackets++;
2932                         bus_dmamap_unload(adapter->txtag,
2933                                           tx_buffer->map);
2934                         m_freem(tx_buffer->m_head);
2935                         tx_buffer->m_head = NULL;
2936                 }
2937
2938                 if (first == dd_idx) {
2939                         EM_INC_TXDD_IDX(adapter->tx_dd_head);
2940                         if (adapter->tx_dd_head == adapter->tx_dd_tail) {
2941                                 adapter->tx_dd_head = 0;
2942                                 adapter->tx_dd_tail = 0;
2943                                 dd_idx = -1;
2944                         } else {
2945                                 dd_idx = adapter->tx_dd[adapter->tx_dd_head];
2946                         }
2947                 }
2948
2949                 if (++first == adapter->num_tx_desc)
2950                         first = 0;
2951         }
2952         adapter->next_tx_to_clean = first;
2953         adapter->num_tx_desc_avail = num_avail;
2954
2955         if (!EM_IS_OACTIVE(adapter)) {
2956                 ifp->if_flags &= ~IFF_OACTIVE;
2957
2958                 /* All clean, turn off the timer */
2959                 if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
2960                         ifp->if_timer = 0;
2961         }
2962 }
2963
2964 /*
2965  * When Link is lost sometimes there is work still in the TX ring
2966  * which will result in a watchdog, rather than allow that do an
2967  * attempted cleanup and then reinit here.  Note that this has been
2968  * seens mostly with fiber adapters.
2969  */
2970 static void
2971 em_tx_purge(struct adapter *adapter)
2972 {
2973         struct ifnet *ifp = &adapter->arpcom.ac_if;
2974
2975         if (!adapter->link_active && ifp->if_timer) {
2976                 em_tx_collect(adapter);
2977                 if (ifp->if_timer) {
2978                         if_printf(ifp, "Link lost, TX pending, reinit\n");
2979                         ifp->if_timer = 0;
2980                         em_init(adapter);
2981                 }
2982         }
2983 }
2984
2985 static int
2986 em_newbuf(struct adapter *adapter, int i, int init)
2987 {
2988         struct mbuf *m;
2989         bus_dma_segment_t seg;
2990         bus_dmamap_t map;
2991         struct em_buffer *rx_buffer;
2992         int error, nseg;
2993
2994         m = m_getcl(init ? MB_WAIT : MB_DONTWAIT, MT_DATA, M_PKTHDR);
2995         if (m == NULL) {
2996                 adapter->mbuf_cluster_failed++;
2997                 if (init) {
2998                         if_printf(&adapter->arpcom.ac_if,
2999                                   "Unable to allocate RX mbuf\n");
3000                 }
3001                 return (ENOBUFS);
3002         }
3003         m->m_len = m->m_pkthdr.len = MCLBYTES;
3004
3005         if (adapter->max_frame_size <= MCLBYTES - ETHER_ALIGN)
3006                 m_adj(m, ETHER_ALIGN);
3007
3008         error = bus_dmamap_load_mbuf_segment(adapter->rxtag,
3009                         adapter->rx_sparemap, m,
3010                         &seg, 1, &nseg, BUS_DMA_NOWAIT);
3011         if (error) {
3012                 m_freem(m);
3013                 if (init) {
3014                         if_printf(&adapter->arpcom.ac_if,
3015                                   "Unable to load RX mbuf\n");
3016                 }
3017                 return (error);
3018         }
3019
3020         rx_buffer = &adapter->rx_buffer_area[i];
3021         if (rx_buffer->m_head != NULL)
3022                 bus_dmamap_unload(adapter->rxtag, rx_buffer->map);
3023
3024         map = rx_buffer->map;
3025         rx_buffer->map = adapter->rx_sparemap;
3026         adapter->rx_sparemap = map;
3027
3028         rx_buffer->m_head = m;
3029
3030         adapter->rx_desc_base[i].buffer_addr = htole64(seg.ds_addr);
3031         return (0);
3032 }
3033
3034 static int
3035 em_create_rx_ring(struct adapter *adapter)
3036 {
3037         device_t dev = adapter->dev;
3038         struct em_buffer *rx_buffer;
3039         int i, error;
3040
3041         adapter->rx_buffer_area =
3042                 kmalloc(sizeof(struct em_buffer) * adapter->num_rx_desc,
3043                         M_DEVBUF, M_WAITOK | M_ZERO);
3044
3045         /*
3046          * Create DMA tag for rx buffers
3047          */
3048         error = bus_dma_tag_create(adapter->parent_dtag, /* parent */
3049                         1, 0,                   /* alignment, bounds */
3050                         BUS_SPACE_MAXADDR,      /* lowaddr */
3051                         BUS_SPACE_MAXADDR,      /* highaddr */
3052                         NULL, NULL,             /* filter, filterarg */
3053                         MCLBYTES,               /* maxsize */
3054                         1,                      /* nsegments */
3055                         MCLBYTES,               /* maxsegsize */
3056                         BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, /* flags */
3057                         &adapter->rxtag);
3058         if (error) {
3059                 device_printf(dev, "Unable to allocate RX DMA tag\n");
3060                 kfree(adapter->rx_buffer_area, M_DEVBUF);
3061                 adapter->rx_buffer_area = NULL;
3062                 return error;
3063         }
3064
3065         /*
3066          * Create spare DMA map for rx buffers
3067          */
3068         error = bus_dmamap_create(adapter->rxtag, BUS_DMA_WAITOK,
3069                                   &adapter->rx_sparemap);
3070         if (error) {
3071                 device_printf(dev, "Unable to create spare RX DMA map\n");
3072                 bus_dma_tag_destroy(adapter->rxtag);
3073                 kfree(adapter->rx_buffer_area, M_DEVBUF);
3074                 adapter->rx_buffer_area = NULL;
3075                 return error;
3076         }
3077
3078         /*
3079          * Create DMA maps for rx buffers
3080          */
3081         for (i = 0; i < adapter->num_rx_desc; i++) {
3082                 rx_buffer = &adapter->rx_buffer_area[i];
3083
3084                 error = bus_dmamap_create(adapter->rxtag, BUS_DMA_WAITOK,
3085                                           &rx_buffer->map);
3086                 if (error) {
3087                         device_printf(dev, "Unable to create RX DMA map\n");
3088                         em_destroy_rx_ring(adapter, i);
3089                         return error;
3090                 }
3091         }
3092         return (0);
3093 }
3094
3095 static int
3096 em_init_rx_ring(struct adapter *adapter)
3097 {
3098         int i, error;
3099
3100         /* Reset descriptor ring */
3101         bzero(adapter->rx_desc_base,
3102             (sizeof(struct e1000_rx_desc)) * adapter->num_rx_desc);
3103
3104         /* Allocate new ones. */
3105         for (i = 0; i < adapter->num_rx_desc; i++) {
3106                 error = em_newbuf(adapter, i, 1);
3107                 if (error)
3108                         return (error);
3109         }
3110
3111         /* Setup our descriptor pointers */
3112         adapter->next_rx_desc_to_check = 0;
3113
3114         return (0);
3115 }
3116
3117 static void
3118 em_init_rx_unit(struct adapter *adapter)
3119 {
3120         struct ifnet *ifp = &adapter->arpcom.ac_if;
3121         uint64_t bus_addr;
3122         uint32_t rctl;
3123
3124         /*
3125          * Make sure receives are disabled while setting
3126          * up the descriptor ring
3127          */
3128         rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
3129         E1000_WRITE_REG(&adapter->hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
3130
3131         if (adapter->hw.mac.type >= e1000_82540) {
3132                 uint32_t itr;
3133
3134                 /*
3135                  * Set the interrupt throttling rate. Value is calculated
3136                  * as ITR = 1 / (INT_THROTTLE_CEIL * 256ns)
3137                  */
3138                 if (adapter->int_throttle_ceil)
3139                         itr = 1000000000 / 256 / adapter->int_throttle_ceil;
3140                 else
3141                         itr = 0;
3142                 em_set_itr(adapter, itr);
3143         }
3144
3145         /* Disable accelerated ackknowledge */
3146         if (adapter->hw.mac.type == e1000_82574) {
3147                 E1000_WRITE_REG(&adapter->hw,
3148                     E1000_RFCTL, E1000_RFCTL_ACK_DIS);
3149         }
3150
3151         /* Receive Checksum Offload for TCP and UDP */
3152         if (ifp->if_capenable & IFCAP_RXCSUM) {
3153                 uint32_t rxcsum;
3154
3155                 rxcsum = E1000_READ_REG(&adapter->hw, E1000_RXCSUM);
3156                 rxcsum |= (E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL);
3157                 E1000_WRITE_REG(&adapter->hw, E1000_RXCSUM, rxcsum);
3158         }
3159
3160         /*
3161          * XXX TEMPORARY WORKAROUND: on some systems with 82573
3162          * long latencies are observed, like Lenovo X60. This
3163          * change eliminates the problem, but since having positive
3164          * values in RDTR is a known source of problems on other
3165          * platforms another solution is being sought.
3166          */
3167         if (em_82573_workaround && adapter->hw.mac.type == e1000_82573) {
3168                 E1000_WRITE_REG(&adapter->hw, E1000_RADV, EM_RADV_82573);
3169                 E1000_WRITE_REG(&adapter->hw, E1000_RDTR, EM_RDTR_82573);
3170         }
3171
3172         /*
3173          * Setup the Base and Length of the Rx Descriptor Ring
3174          */
3175         bus_addr = adapter->rxdma.dma_paddr;
3176         E1000_WRITE_REG(&adapter->hw, E1000_RDLEN(0),
3177             adapter->num_rx_desc * sizeof(struct e1000_rx_desc));
3178         E1000_WRITE_REG(&adapter->hw, E1000_RDBAH(0),
3179             (uint32_t)(bus_addr >> 32));
3180         E1000_WRITE_REG(&adapter->hw, E1000_RDBAL(0),
3181             (uint32_t)bus_addr);
3182
3183         /*
3184          * Setup the HW Rx Head and Tail Descriptor Pointers
3185          */
3186         E1000_WRITE_REG(&adapter->hw, E1000_RDH(0), 0);
3187         E1000_WRITE_REG(&adapter->hw, E1000_RDT(0), adapter->num_rx_desc - 1);
3188
3189         /* Set early receive threshold on appropriate hw */
3190         if (((adapter->hw.mac.type == e1000_ich9lan) ||
3191             (adapter->hw.mac.type == e1000_pch2lan) ||
3192             (adapter->hw.mac.type == e1000_ich10lan)) &&
3193             (ifp->if_mtu > ETHERMTU)) {
3194                 uint32_t rxdctl;
3195
3196                 rxdctl = E1000_READ_REG(&adapter->hw, E1000_RXDCTL(0));
3197                 E1000_WRITE_REG(&adapter->hw, E1000_RXDCTL(0), rxdctl | 3);
3198                 E1000_WRITE_REG(&adapter->hw, E1000_ERT, 0x100 | (1 << 13));
3199         }
3200
3201         if (adapter->hw.mac.type == e1000_pch2lan) {
3202                 if (ifp->if_mtu > ETHERMTU)
3203                         e1000_lv_jumbo_workaround_ich8lan(&adapter->hw, TRUE);
3204                 else
3205                         e1000_lv_jumbo_workaround_ich8lan(&adapter->hw, FALSE);
3206         }
3207
3208         /* Setup the Receive Control Register */
3209         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3210         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
3211                 E1000_RCTL_RDMTS_HALF |
3212                 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3213
3214         /* Make sure VLAN Filters are off */
3215         rctl &= ~E1000_RCTL_VFE;
3216
3217         if (e1000_tbi_sbp_enabled_82543(&adapter->hw))
3218                 rctl |= E1000_RCTL_SBP;
3219         else
3220                 rctl &= ~E1000_RCTL_SBP;
3221
3222         switch (adapter->rx_buffer_len) {
3223         default:
3224         case 2048:
3225                 rctl |= E1000_RCTL_SZ_2048;
3226                 break;
3227
3228         case 4096:
3229                 rctl |= E1000_RCTL_SZ_4096 |
3230                     E1000_RCTL_BSEX | E1000_RCTL_LPE;
3231                 break;
3232
3233         case 8192:
3234                 rctl |= E1000_RCTL_SZ_8192 |
3235                     E1000_RCTL_BSEX | E1000_RCTL_LPE;
3236                 break;
3237
3238         case 16384:
3239                 rctl |= E1000_RCTL_SZ_16384 |
3240                     E1000_RCTL_BSEX | E1000_RCTL_LPE;
3241                 break;
3242         }
3243
3244         if (ifp->if_mtu > ETHERMTU)
3245                 rctl |= E1000_RCTL_LPE;
3246         else
3247                 rctl &= ~E1000_RCTL_LPE;
3248
3249         /* Enable Receives */
3250         E1000_WRITE_REG(&adapter->hw, E1000_RCTL, rctl);
3251 }
3252
3253 static void
3254 em_destroy_rx_ring(struct adapter *adapter, int ndesc)
3255 {
3256         struct em_buffer *rx_buffer;
3257         int i;
3258
3259         if (adapter->rx_buffer_area == NULL)
3260                 return;
3261
3262         for (i = 0; i < ndesc; i++) {
3263                 rx_buffer = &adapter->rx_buffer_area[i];
3264
3265                 KKASSERT(rx_buffer->m_head == NULL);
3266                 bus_dmamap_destroy(adapter->rxtag, rx_buffer->map);
3267         }
3268         bus_dmamap_destroy(adapter->rxtag, adapter->rx_sparemap);
3269         bus_dma_tag_destroy(adapter->rxtag);
3270
3271         kfree(adapter->rx_buffer_area, M_DEVBUF);
3272         adapter->rx_buffer_area = NULL;
3273 }
3274
3275 static void
3276 em_rxeof(struct adapter *adapter, int count)
3277 {
3278         struct ifnet *ifp = &adapter->arpcom.ac_if;
3279         uint8_t status, accept_frame = 0, eop = 0;
3280         uint16_t len, desc_len, prev_len_adj;
3281         struct e1000_rx_desc *current_desc;
3282         struct mbuf *mp;
3283         int i;
3284
3285         i = adapter->next_rx_desc_to_check;
3286         current_desc = &adapter->rx_desc_base[i];
3287
3288         if (!(current_desc->status & E1000_RXD_STAT_DD))
3289                 return;
3290
3291         while ((current_desc->status & E1000_RXD_STAT_DD) && count != 0) {
3292                 struct mbuf *m = NULL;
3293
3294                 logif(pkt_receive);
3295
3296                 mp = adapter->rx_buffer_area[i].m_head;
3297
3298                 /*
3299                  * Can't defer bus_dmamap_sync(9) because TBI_ACCEPT
3300                  * needs to access the last received byte in the mbuf.
3301                  */
3302                 bus_dmamap_sync(adapter->rxtag, adapter->rx_buffer_area[i].map,
3303                                 BUS_DMASYNC_POSTREAD);
3304
3305                 accept_frame = 1;
3306                 prev_len_adj = 0;
3307                 desc_len = le16toh(current_desc->length);
3308                 status = current_desc->status;
3309                 if (status & E1000_RXD_STAT_EOP) {
3310                         count--;
3311                         eop = 1;
3312                         if (desc_len < ETHER_CRC_LEN) {
3313                                 len = 0;
3314                                 prev_len_adj = ETHER_CRC_LEN - desc_len;
3315                         } else {
3316                                 len = desc_len - ETHER_CRC_LEN;
3317                         }
3318                 } else {
3319                         eop = 0;
3320                         len = desc_len;
3321                 }
3322
3323                 if (current_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK) {
3324                         uint8_t last_byte;
3325                         uint32_t pkt_len = desc_len;
3326
3327                         if (adapter->fmp != NULL)
3328                                 pkt_len += adapter->fmp->m_pkthdr.len;
3329
3330                         last_byte = *(mtod(mp, caddr_t) + desc_len - 1);
3331                         if (TBI_ACCEPT(&adapter->hw, status,
3332                             current_desc->errors, pkt_len, last_byte,
3333                             adapter->min_frame_size, adapter->max_frame_size)) {
3334                                 e1000_tbi_adjust_stats_82543(&adapter->hw,
3335                                     &adapter->stats, pkt_len,
3336                                     adapter->hw.mac.addr,
3337                                     adapter->max_frame_size);
3338                                 if (len > 0)
3339                                         len--;
3340                         } else {
3341                                 accept_frame = 0;
3342                         }
3343                 }
3344
3345                 if (accept_frame) {
3346                         if (em_newbuf(adapter, i, 0) != 0) {
3347                                 ifp->if_iqdrops++;
3348                                 goto discard;
3349                         }
3350
3351                         /* Assign correct length to the current fragment */
3352                         mp->m_len = len;
3353
3354                         if (adapter->fmp == NULL) {
3355                                 mp->m_pkthdr.len = len;
3356                                 adapter->fmp = mp; /* Store the first mbuf */
3357                                 adapter->lmp = mp;
3358                         } else {
3359                                 /*
3360                                  * Chain mbuf's together
3361                                  */
3362
3363                                 /*
3364                                  * Adjust length of previous mbuf in chain if
3365                                  * we received less than 4 bytes in the last
3366                                  * descriptor.
3367                                  */
3368                                 if (prev_len_adj > 0) {
3369                                         adapter->lmp->m_len -= prev_len_adj;
3370                                         adapter->fmp->m_pkthdr.len -=
3371                                             prev_len_adj;
3372                                 }
3373                                 adapter->lmp->m_next = mp;
3374                                 adapter->lmp = adapter->lmp->m_next;
3375                                 adapter->fmp->m_pkthdr.len += len;
3376                         }
3377
3378                         if (eop) {
3379                                 adapter->fmp->m_pkthdr.rcvif = ifp;
3380                                 ifp->if_ipackets++;
3381
3382                                 if (ifp->if_capenable & IFCAP_RXCSUM) {
3383                                         em_rxcsum(adapter, current_desc,
3384                                                   adapter->fmp);
3385                                 }
3386
3387                                 if (status & E1000_RXD_STAT_VP) {
3388                                         adapter->fmp->m_pkthdr.ether_vlantag =
3389                                             (le16toh(current_desc->special) &
3390                                             E1000_RXD_SPC_VLAN_MASK);
3391                                         adapter->fmp->m_flags |= M_VLANTAG;
3392                                 }
3393                                 m = adapter->fmp;
3394                                 adapter->fmp = NULL;
3395                                 adapter->lmp = NULL;
3396                         }
3397                 } else {
3398                         ifp->if_ierrors++;
3399 discard:
3400 #ifdef foo
3401                         /* Reuse loaded DMA map and just update mbuf chain */
3402                         mp = adapter->rx_buffer_area[i].m_head;
3403                         mp->m_len = mp->m_pkthdr.len = MCLBYTES;
3404                         mp->m_data = mp->m_ext.ext_buf;
3405                         mp->m_next = NULL;
3406                         if (adapter->max_frame_size <= (MCLBYTES - ETHER_ALIGN))
3407                                 m_adj(mp, ETHER_ALIGN);
3408 #endif
3409                         if (adapter->fmp != NULL) {
3410                                 m_freem(adapter->fmp);
3411                                 adapter->fmp = NULL;
3412                                 adapter->lmp = NULL;
3413                         }
3414                         m = NULL;
3415                 }
3416
3417                 /* Zero out the receive descriptors status. */
3418                 current_desc->status = 0;
3419
3420                 if (m != NULL)
3421                         ifp->if_input(ifp, m);
3422
3423                 /* Advance our pointers to the next descriptor. */
3424                 if (++i == adapter->num_rx_desc)
3425                         i = 0;
3426                 current_desc = &adapter->rx_desc_base[i];
3427         }
3428         adapter->next_rx_desc_to_check = i;
3429
3430         /* Advance the E1000's Receive Queue #0  "Tail Pointer". */
3431         if (--i < 0)
3432                 i = adapter->num_rx_desc - 1;
3433         E1000_WRITE_REG(&adapter->hw, E1000_RDT(0), i);
3434 }
3435
3436 static void
3437 em_rxcsum(struct adapter *adapter, struct e1000_rx_desc *rx_desc,
3438           struct mbuf *mp)
3439 {
3440         /* 82543 or newer only */
3441         if (adapter->hw.mac.type < e1000_82543 ||
3442             /* Ignore Checksum bit is set */
3443             (rx_desc->status & E1000_RXD_STAT_IXSM))
3444                 return;
3445
3446         if ((rx_desc->status & E1000_RXD_STAT_IPCS) &&
3447             !(rx_desc->errors & E1000_RXD_ERR_IPE)) {
3448                 /* IP Checksum Good */
3449                 mp->m_pkthdr.csum_flags |= CSUM_IP_CHECKED | CSUM_IP_VALID;
3450         }
3451
3452         if ((rx_desc->status & E1000_RXD_STAT_TCPCS) &&
3453             !(rx_desc->errors & E1000_RXD_ERR_TCPE)) {
3454                 mp->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
3455                                            CSUM_PSEUDO_HDR |
3456                                            CSUM_FRAG_NOT_CHECKED;
3457                 mp->m_pkthdr.csum_data = htons(0xffff);
3458         }
3459 }
3460
3461 static void
3462 em_enable_intr(struct adapter *adapter)
3463 {
3464         uint32_t ims_mask = IMS_ENABLE_MASK;
3465
3466         lwkt_serialize_handler_enable(adapter->arpcom.ac_if.if_serializer);
3467
3468 #if 0
3469         /* XXX MSIX */
3470         if (adapter->hw.mac.type == e1000_82574) {
3471                 E1000_WRITE_REG(&adapter->hw, EM_EIAC, EM_MSIX_MASK);
3472                 ims_mask |= EM_MSIX_MASK;
3473         }
3474 #endif
3475         E1000_WRITE_REG(&adapter->hw, E1000_IMS, ims_mask);
3476 }
3477
3478 static void
3479 em_disable_intr(struct adapter *adapter)
3480 {
3481         uint32_t clear = 0xffffffff;
3482
3483         /*
3484          * The first version of 82542 had an errata where when link was forced
3485          * it would stay up even up even if the cable was disconnected.
3486          * Sequence errors were used to detect the disconnect and then the
3487          * driver would unforce the link.  This code in the in the ISR.  For
3488          * this to work correctly the Sequence error interrupt had to be
3489          * enabled all the time.
3490          */
3491         if (adapter->hw.mac.type == e1000_82542 &&
3492             adapter->hw.revision_id == E1000_REVISION_2)
3493                 clear &= ~E1000_ICR_RXSEQ;
3494         else if (adapter->hw.mac.type == e1000_82574)
3495                 E1000_WRITE_REG(&adapter->hw, EM_EIAC, 0);
3496
3497         E1000_WRITE_REG(&adapter->hw, E1000_IMC, clear);
3498
3499         lwkt_serialize_handler_disable(adapter->arpcom.ac_if.if_serializer);
3500 }
3501
3502 /*
3503  * Bit of a misnomer, what this really means is
3504  * to enable OS management of the system... aka
3505  * to disable special hardware management features 
3506  */
3507 static void
3508 em_get_mgmt(struct adapter *adapter)
3509 {
3510         /* A shared code workaround */
3511 #define E1000_82542_MANC2H E1000_MANC2H
3512         if (adapter->has_manage) {
3513                 int manc2h = E1000_READ_REG(&adapter->hw, E1000_MANC2H);
3514                 int manc = E1000_READ_REG(&adapter->hw, E1000_MANC);
3515
3516                 /* disable hardware interception of ARP */
3517                 manc &= ~(E1000_MANC_ARP_EN);
3518
3519                 /* enable receiving management packets to the host */
3520                 if (adapter->hw.mac.type >= e1000_82571) {
3521                         manc |= E1000_MANC_EN_MNG2HOST;
3522 #define E1000_MNG2HOST_PORT_623 (1 << 5)
3523 #define E1000_MNG2HOST_PORT_664 (1 << 6)
3524                         manc2h |= E1000_MNG2HOST_PORT_623;
3525                         manc2h |= E1000_MNG2HOST_PORT_664;
3526                         E1000_WRITE_REG(&adapter->hw, E1000_MANC2H, manc2h);
3527                 }
3528
3529                 E1000_WRITE_REG(&adapter->hw, E1000_MANC, manc);
3530         }
3531 }
3532
3533 /*
3534  * Give control back to hardware management
3535  * controller if there is one.
3536  */
3537 static void
3538 em_rel_mgmt(struct adapter *adapter)
3539 {
3540         if (adapter->has_manage) {
3541                 int manc = E1000_READ_REG(&adapter->hw, E1000_MANC);
3542
3543                 /* re-enable hardware interception of ARP */
3544                 manc |= E1000_MANC_ARP_EN;
3545
3546                 if (adapter->hw.mac.type >= e1000_82571)
3547                         manc &= ~E1000_MANC_EN_MNG2HOST;
3548
3549                 E1000_WRITE_REG(&adapter->hw, E1000_MANC, manc);
3550         }
3551 }
3552
3553 /*
3554  * em_get_hw_control() sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
3555  * For ASF and Pass Through versions of f/w this means that
3556  * the driver is loaded.  For AMT version (only with 82573)
3557  * of the f/w this means that the network i/f is open.
3558  */
3559 static void
3560 em_get_hw_control(struct adapter *adapter)
3561 {
3562         /* Let firmware know the driver has taken over */
3563         if (adapter->hw.mac.type == e1000_82573) {
3564                 uint32_t swsm;
3565
3566                 swsm = E1000_READ_REG(&adapter->hw, E1000_SWSM);
3567                 E1000_WRITE_REG(&adapter->hw, E1000_SWSM,
3568                     swsm | E1000_SWSM_DRV_LOAD);
3569         } else {
3570                 uint32_t ctrl_ext;
3571
3572                 ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
3573                 E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT,
3574                     ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
3575         }
3576         adapter->control_hw = 1;
3577 }
3578
3579 /*
3580  * em_rel_hw_control() resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
3581  * For ASF and Pass Through versions of f/w this means that the
3582  * driver is no longer loaded.  For AMT version (only with 82573)
3583  * of the f/w this means that the network i/f is closed.
3584  */
3585 static void
3586 em_rel_hw_control(struct adapter *adapter)
3587 {
3588         if (!adapter->control_hw)
3589                 return;
3590         adapter->control_hw = 0;
3591
3592         /* Let firmware taken over control of h/w */
3593         if (adapter->hw.mac.type == e1000_82573) {
3594                 uint32_t swsm;
3595
3596                 swsm = E1000_READ_REG(&adapter->hw, E1000_SWSM);
3597                 E1000_WRITE_REG(&adapter->hw, E1000_SWSM,
3598                     swsm & ~E1000_SWSM_DRV_LOAD);
3599         } else {
3600                 uint32_t ctrl_ext;
3601
3602                 ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
3603                 E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT,
3604                     ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
3605         }
3606 }
3607
3608 static int
3609 em_is_valid_eaddr(const uint8_t *addr)
3610 {
3611         char zero_addr[ETHER_ADDR_LEN] = { 0, 0, 0, 0, 0, 0 };
3612
3613         if ((addr[0] & 1) || !bcmp(addr, zero_addr, ETHER_ADDR_LEN))
3614                 return (FALSE);
3615
3616         return (TRUE);
3617 }
3618
3619 /*
3620  * Enable PCI Wake On Lan capability
3621  */
3622 void
3623 em_enable_wol(device_t dev)
3624 {
3625         uint16_t cap, status;
3626         uint8_t id;
3627
3628         /* First find the capabilities pointer*/
3629         cap = pci_read_config(dev, PCIR_CAP_PTR, 2);
3630
3631         /* Read the PM Capabilities */
3632         id = pci_read_config(dev, cap, 1);
3633         if (id != PCIY_PMG)     /* Something wrong */
3634                 return;
3635
3636         /*
3637          * OK, we have the power capabilities,
3638          * so now get the status register
3639          */
3640         cap += PCIR_POWER_STATUS;
3641         status = pci_read_config(dev, cap, 2);
3642         status |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
3643         pci_write_config(dev, cap, status, 2);
3644 }
3645
3646
3647 /*
3648  * 82544 Coexistence issue workaround.
3649  *    There are 2 issues.
3650  *       1. Transmit Hang issue.
3651  *    To detect this issue, following equation can be used...
3652  *        SIZE[3:0] + ADDR[2:0] = SUM[3:0].
3653  *        If SUM[3:0] is in between 1 to 4, we will have this issue.
3654  *
3655  *       2. DAC issue.
3656  *    To detect this issue, following equation can be used...
3657  *        SIZE[3:0] + ADDR[2:0] = SUM[3:0].
3658  *        If SUM[3:0] is in between 9 to c, we will have this issue.
3659  *
3660  *    WORKAROUND:
3661  *        Make sure we do not have ending address
3662  *        as 1,2,3,4(Hang) or 9,a,b,c (DAC)
3663  */
3664 static uint32_t
3665 em_82544_fill_desc(bus_addr_t address, uint32_t length, PDESC_ARRAY desc_array)
3666 {
3667         uint32_t safe_terminator;
3668
3669         /*
3670          * Since issue is sensitive to length and address.
3671          * Let us first check the address...
3672          */
3673         if (length <= 4) {
3674                 desc_array->descriptor[0].address = address;
3675                 desc_array->descriptor[0].length = length;
3676                 desc_array->elements = 1;
3677                 return (desc_array->elements);
3678         }
3679
3680         safe_terminator =
3681         (uint32_t)((((uint32_t)address & 0x7) + (length & 0xF)) & 0xF);
3682
3683         /* If it does not fall between 0x1 to 0x4 and 0x9 to 0xC then return */
3684         if (safe_terminator == 0 ||
3685             (safe_terminator > 4 && safe_terminator < 9) ||
3686             (safe_terminator > 0xC && safe_terminator <= 0xF)) {
3687                 desc_array->descriptor[0].address = address;
3688                 desc_array->descriptor[0].length = length;
3689                 desc_array->elements = 1;
3690                 return (desc_array->elements);
3691         }
3692
3693         desc_array->descriptor[0].address = address;
3694         desc_array->descriptor[0].length = length - 4;
3695         desc_array->descriptor[1].address = address + (length - 4);
3696         desc_array->descriptor[1].length = 4;
3697         desc_array->elements = 2;
3698         return (desc_array->elements);
3699 }
3700
3701 static void
3702 em_update_stats(struct adapter *adapter)
3703 {
3704         struct ifnet *ifp = &adapter->arpcom.ac_if;
3705
3706         if (adapter->hw.phy.media_type == e1000_media_type_copper ||
3707             (E1000_READ_REG(&adapter->hw, E1000_STATUS) & E1000_STATUS_LU)) {
3708                 adapter->stats.symerrs +=
3709                         E1000_READ_REG(&adapter->hw, E1000_SYMERRS);
3710                 adapter->stats.sec += E1000_READ_REG(&adapter->hw, E1000_SEC);
3711         }
3712         adapter->stats.crcerrs += E1000_READ_REG(&adapter->hw, E1000_CRCERRS);
3713         adapter->stats.mpc += E1000_READ_REG(&adapter->hw, E1000_MPC);
3714         adapter->stats.scc += E1000_READ_REG(&adapter->hw, E1000_SCC);
3715         adapter->stats.ecol += E1000_READ_REG(&adapter->hw, E1000_ECOL);
3716
3717         adapter->stats.mcc += E1000_READ_REG(&adapter->hw, E1000_MCC);
3718         adapter->stats.latecol += E1000_READ_REG(&adapter->hw, E1000_LATECOL);
3719         adapter->stats.colc += E1000_READ_REG(&adapter->hw, E1000_COLC);
3720         adapter->stats.dc += E1000_READ_REG(&adapter->hw, E1000_DC);
3721         adapter->stats.rlec += E1000_READ_REG(&adapter->hw, E1000_RLEC);
3722         adapter->stats.xonrxc += E1000_READ_REG(&adapter->hw, E1000_XONRXC);
3723         adapter->stats.xontxc += E1000_READ_REG(&adapter->hw, E1000_XONTXC);
3724         adapter->stats.xoffrxc += E1000_READ_REG(&adapter->hw, E1000_XOFFRXC);
3725         adapter->stats.xofftxc += E1000_READ_REG(&adapter->hw, E1000_XOFFTXC);
3726         adapter->stats.fcruc += E1000_READ_REG(&adapter->hw, E1000_FCRUC);
3727         adapter->stats.prc64 += E1000_READ_REG(&adapter->hw, E1000_PRC64);
3728         adapter->stats.prc127 += E1000_READ_REG(&adapter->hw, E1000_PRC127);
3729         adapter->stats.prc255 += E1000_READ_REG(&adapter->hw, E1000_PRC255);
3730         adapter->stats.prc511 += E1000_READ_REG(&adapter->hw, E1000_PRC511);
3731         adapter->stats.prc1023 += E1000_READ_REG(&adapter->hw, E1000_PRC1023);
3732         adapter->stats.prc1522 += E1000_READ_REG(&adapter->hw, E1000_PRC1522);
3733         adapter->stats.gprc += E1000_READ_REG(&adapter->hw, E1000_GPRC);
3734         adapter->stats.bprc += E1000_READ_REG(&adapter->hw, E1000_BPRC);
3735         adapter->stats.mprc += E1000_READ_REG(&adapter->hw, E1000_MPRC);
3736         adapter->stats.gptc += E1000_READ_REG(&adapter->hw, E1000_GPTC);
3737
3738         /* For the 64-bit byte counters the low dword must be read first. */
3739         /* Both registers clear on the read of the high dword */
3740
3741         adapter->stats.gorc += E1000_READ_REG(&adapter->hw, E1000_GORCH);
3742         adapter->stats.gotc += E1000_READ_REG(&adapter->hw, E1000_GOTCH);
3743
3744         adapter->stats.rnbc += E1000_READ_REG(&adapter->hw, E1000_RNBC);
3745         adapter->stats.ruc += E1000_READ_REG(&adapter->hw, E1000_RUC);
3746         adapter->stats.rfc += E1000_READ_REG(&adapter->hw, E1000_RFC);
3747         adapter->stats.roc += E1000_READ_REG(&adapter->hw, E1000_ROC);
3748         adapter->stats.rjc += E1000_READ_REG(&adapter->hw, E1000_RJC);
3749
3750         adapter->stats.tor += E1000_READ_REG(&adapter->hw, E1000_TORH);
3751         adapter->stats.tot += E1000_READ_REG(&adapter->hw, E1000_TOTH);
3752
3753         adapter->stats.tpr += E1000_READ_REG(&adapter->hw, E1000_TPR);
3754         adapter->stats.tpt += E1000_READ_REG(&adapter->hw, E1000_TPT);
3755         adapter->stats.ptc64 += E1000_READ_REG(&adapter->hw, E1000_PTC64);
3756         adapter->stats.ptc127 += E1000_READ_REG(&adapter->hw, E1000_PTC127);
3757         adapter->stats.ptc255 += E1000_READ_REG(&adapter->hw, E1000_PTC255);
3758         adapter->stats.ptc511 += E1000_READ_REG(&adapter->hw, E1000_PTC511);
3759         adapter->stats.ptc1023 += E1000_READ_REG(&adapter->hw, E1000_PTC1023);
3760         adapter->stats.ptc1522 += E1000_READ_REG(&adapter->hw, E1000_PTC1522);
3761         adapter->stats.mptc += E1000_READ_REG(&adapter->hw, E1000_MPTC);
3762         adapter->stats.bptc += E1000_READ_REG(&adapter->hw, E1000_BPTC);
3763
3764         if (adapter->hw.mac.type >= e1000_82543) {
3765                 adapter->stats.algnerrc += 
3766                 E1000_READ_REG(&adapter->hw, E1000_ALGNERRC);
3767                 adapter->stats.rxerrc += 
3768                 E1000_READ_REG(&adapter->hw, E1000_RXERRC);
3769                 adapter->stats.tncrs += 
3770                 E1000_READ_REG(&adapter->hw, E1000_TNCRS);
3771                 adapter->stats.cexterr += 
3772                 E1000_READ_REG(&adapter->hw, E1000_CEXTERR);
3773                 adapter->stats.tsctc += 
3774                 E1000_READ_REG(&adapter->hw, E1000_TSCTC);
3775                 adapter->stats.tsctfc += 
3776                 E1000_READ_REG(&adapter->hw, E1000_TSCTFC);
3777         }
3778
3779         ifp->if_collisions = adapter->stats.colc;
3780
3781         /* Rx Errors */
3782         ifp->if_ierrors =
3783             adapter->dropped_pkts + adapter->stats.rxerrc +
3784             adapter->stats.crcerrs + adapter->stats.algnerrc +
3785             adapter->stats.ruc + adapter->stats.roc +
3786             adapter->stats.mpc + adapter->stats.cexterr;
3787
3788         /* Tx Errors */
3789         ifp->if_oerrors =
3790             adapter->stats.ecol + adapter->stats.latecol +
3791             adapter->watchdog_events;
3792 }
3793
3794 static void
3795 em_print_debug_info(struct adapter *adapter)
3796 {
3797         device_t dev = adapter->dev;
3798         uint8_t *hw_addr = adapter->hw.hw_addr;
3799
3800         device_printf(dev, "Adapter hardware address = %p \n", hw_addr);
3801         device_printf(dev, "CTRL = 0x%x RCTL = 0x%x \n",
3802             E1000_READ_REG(&adapter->hw, E1000_CTRL),
3803             E1000_READ_REG(&adapter->hw, E1000_RCTL));
3804         device_printf(dev, "Packet buffer = Tx=%dk Rx=%dk \n",
3805             ((E1000_READ_REG(&adapter->hw, E1000_PBA) & 0xffff0000) >> 16),\
3806             (E1000_READ_REG(&adapter->hw, E1000_PBA) & 0xffff) );
3807         device_printf(dev, "Flow control watermarks high = %d low = %d\n",
3808             adapter->hw.fc.high_water,
3809             adapter->hw.fc.low_water);
3810         device_printf(dev, "tx_int_delay = %d, tx_abs_int_delay = %d\n",
3811             E1000_READ_REG(&adapter->hw, E1000_TIDV),
3812             E1000_READ_REG(&adapter->hw, E1000_TADV));
3813         device_printf(dev, "rx_int_delay = %d, rx_abs_int_delay = %d\n",
3814             E1000_READ_REG(&adapter->hw, E1000_RDTR),
3815             E1000_READ_REG(&adapter->hw, E1000_RADV));
3816         device_printf(dev, "fifo workaround = %lld, fifo_reset_count = %lld\n",
3817             (long long)adapter->tx_fifo_wrk_cnt,
3818             (long long)adapter->tx_fifo_reset_cnt);
3819         device_printf(dev, "hw tdh = %d, hw tdt = %d\n",
3820             E1000_READ_REG(&adapter->hw, E1000_TDH(0)),
3821             E1000_READ_REG(&adapter->hw, E1000_TDT(0)));
3822         device_printf(dev, "hw rdh = %d, hw rdt = %d\n",
3823             E1000_READ_REG(&adapter->hw, E1000_RDH(0)),
3824             E1000_READ_REG(&adapter->hw, E1000_RDT(0)));
3825         device_printf(dev, "Num Tx descriptors avail = %d\n",
3826             adapter->num_tx_desc_avail);
3827         device_printf(dev, "Tx Descriptors not avail1 = %ld\n",
3828             adapter->no_tx_desc_avail1);
3829         device_printf(dev, "Tx Descriptors not avail2 = %ld\n",
3830             adapter->no_tx_desc_avail2);
3831         device_printf(dev, "Std mbuf failed = %ld\n",
3832             adapter->mbuf_alloc_failed);
3833         device_printf(dev, "Std mbuf cluster failed = %ld\n",
3834             adapter->mbuf_cluster_failed);
3835         device_printf(dev, "Driver dropped packets = %ld\n",
3836             adapter->dropped_pkts);
3837         device_printf(dev, "Driver tx dma failure in encap = %ld\n",
3838             adapter->no_tx_dma_setup);
3839
3840         device_printf(dev, "TXCSUM try pullup = %lu\n",
3841             adapter->tx_csum_try_pullup);
3842         device_printf(dev, "TXCSUM m_pullup(eh) called = %lu\n",
3843             adapter->tx_csum_pullup1);
3844         device_printf(dev, "TXCSUM m_pullup(eh) failed = %lu\n",
3845             adapter->tx_csum_pullup1_failed);
3846         device_printf(dev, "TXCSUM m_pullup(eh+ip) called = %lu\n",
3847             adapter->tx_csum_pullup2);
3848         device_printf(dev, "TXCSUM m_pullup(eh+ip) failed = %lu\n",
3849             adapter->tx_csum_pullup2_failed);
3850         device_printf(dev, "TXCSUM non-writable(eh) droped = %lu\n",
3851             adapter->tx_csum_drop1);
3852         device_printf(dev, "TXCSUM non-writable(eh+ip) droped = %lu\n",
3853             adapter->tx_csum_drop2);
3854 }
3855
3856 static void
3857 em_print_hw_stats(struct adapter *adapter)
3858 {
3859         device_t dev = adapter->dev;
3860
3861         device_printf(dev, "Excessive collisions = %lld\n",
3862             (long long)adapter->stats.ecol);
3863 #if (DEBUG_HW > 0)  /* Dont output these errors normally */
3864         device_printf(dev, "Symbol errors = %lld\n",
3865             (long long)adapter->stats.symerrs);
3866 #endif
3867         device_printf(dev, "Sequence errors = %lld\n",
3868             (long long)adapter->stats.sec);
3869         device_printf(dev, "Defer count = %lld\n",
3870             (long long)adapter->stats.dc);
3871         device_printf(dev, "Missed Packets = %lld\n",
3872             (long long)adapter->stats.mpc);
3873         device_printf(dev, "Receive No Buffers = %lld\n",
3874             (long long)adapter->stats.rnbc);
3875         /* RLEC is inaccurate on some hardware, calculate our own. */
3876         device_printf(dev, "Receive Length Errors = %lld\n",
3877             ((long long)adapter->stats.roc + (long long)adapter->stats.ruc));
3878         device_printf(dev, "Receive errors = %lld\n",
3879             (long long)adapter->stats.rxerrc);
3880         device_printf(dev, "Crc errors = %lld\n",
3881             (long long)adapter->stats.crcerrs);
3882         device_printf(dev, "Alignment errors = %lld\n",
3883             (long long)adapter->stats.algnerrc);
3884         device_printf(dev, "Collision/Carrier extension errors = %lld\n",
3885             (long long)adapter->stats.cexterr);
3886         device_printf(dev, "RX overruns = %ld\n", adapter->rx_overruns);
3887         device_printf(dev, "watchdog timeouts = %ld\n",
3888             adapter->watchdog_events);
3889         device_printf(dev, "XON Rcvd = %lld\n",
3890             (long long)adapter->stats.xonrxc);
3891         device_printf(dev, "XON Xmtd = %lld\n",
3892             (long long)adapter->stats.xontxc);
3893         device_printf(dev, "XOFF Rcvd = %lld\n",
3894             (long long)adapter->stats.xoffrxc);
3895         device_printf(dev, "XOFF Xmtd = %lld\n",
3896             (long long)adapter->stats.xofftxc);
3897         device_printf(dev, "Good Packets Rcvd = %lld\n",
3898             (long long)adapter->stats.gprc);
3899         device_printf(dev, "Good Packets Xmtd = %lld\n",
3900             (long long)adapter->stats.gptc);
3901 }
3902
3903 static void
3904 em_print_nvm_info(struct adapter *adapter)
3905 {
3906         uint16_t eeprom_data;
3907         int i, j, row = 0;
3908
3909         /* Its a bit crude, but it gets the job done */
3910         kprintf("\nInterface EEPROM Dump:\n");
3911         kprintf("Offset\n0x0000  ");
3912         for (i = 0, j = 0; i < 32; i++, j++) {
3913                 if (j == 8) { /* Make the offset block */
3914                         j = 0; ++row;
3915                         kprintf("\n0x00%x0  ",row);
3916                 }
3917                 e1000_read_nvm(&adapter->hw, i, 1, &eeprom_data);
3918                 kprintf("%04x ", eeprom_data);
3919         }
3920         kprintf("\n");
3921 }
3922
3923 static int
3924 em_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
3925 {
3926         struct adapter *adapter;
3927         struct ifnet *ifp;
3928         int error, result;
3929
3930         result = -1;
3931         error = sysctl_handle_int(oidp, &result, 0, req);
3932         if (error || !req->newptr)
3933                 return (error);
3934
3935         adapter = (struct adapter *)arg1;
3936         ifp = &adapter->arpcom.ac_if;
3937
3938         lwkt_serialize_enter(ifp->if_serializer);
3939
3940         if (result == 1)
3941                 em_print_debug_info(adapter);
3942
3943         /*
3944          * This value will cause a hex dump of the
3945          * first 32 16-bit words of the EEPROM to
3946          * the screen.
3947          */
3948         if (result == 2)
3949                 em_print_nvm_info(adapter);
3950
3951         lwkt_serialize_exit(ifp->if_serializer);
3952
3953         return (error);
3954 }
3955
3956 static int
3957 em_sysctl_stats(SYSCTL_HANDLER_ARGS)
3958 {
3959         int error, result;
3960
3961         result = -1;
3962         error = sysctl_handle_int(oidp, &result, 0, req);
3963         if (error || !req->newptr)
3964                 return (error);
3965
3966         if (result == 1) {
3967                 struct adapter *adapter = (struct adapter *)arg1;
3968                 struct ifnet *ifp = &adapter->arpcom.ac_if;
3969
3970                 lwkt_serialize_enter(ifp->if_serializer);
3971                 em_print_hw_stats(adapter);
3972                 lwkt_serialize_exit(ifp->if_serializer);
3973         }
3974         return (error);
3975 }
3976
3977 static void
3978 em_add_sysctl(struct adapter *adapter)
3979 {
3980         sysctl_ctx_init(&adapter->sysctl_ctx);
3981         adapter->sysctl_tree = SYSCTL_ADD_NODE(&adapter->sysctl_ctx,
3982                                         SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO,
3983                                         device_get_nameunit(adapter->dev),
3984                                         CTLFLAG_RD, 0, "");
3985         if (adapter->sysctl_tree == NULL) {
3986                 device_printf(adapter->dev, "can't add sysctl node\n");
3987         } else {
3988                 SYSCTL_ADD_PROC(&adapter->sysctl_ctx,
3989                     SYSCTL_CHILDREN(adapter->sysctl_tree),
3990                     OID_AUTO, "debug", CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
3991                     em_sysctl_debug_info, "I", "Debug Information");
3992
3993                 SYSCTL_ADD_PROC(&adapter->sysctl_ctx,
3994                     SYSCTL_CHILDREN(adapter->sysctl_tree),
3995                     OID_AUTO, "stats", CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
3996                     em_sysctl_stats, "I", "Statistics");
3997
3998                 SYSCTL_ADD_INT(&adapter->sysctl_ctx,
3999                     SYSCTL_CHILDREN(adapter->sysctl_tree),
4000                     OID_AUTO, "rxd", CTLFLAG_RD,
4001                     &adapter->num_rx_desc, 0, NULL);
4002                 SYSCTL_ADD_INT(&adapter->sysctl_ctx,
4003                     SYSCTL_CHILDREN(adapter->sysctl_tree),
4004                     OID_AUTO, "txd", CTLFLAG_RD,
4005                     &adapter->num_tx_desc, 0, NULL);
4006
4007                 if (adapter->hw.mac.type >= e1000_82540) {
4008                         SYSCTL_ADD_PROC(&adapter->sysctl_ctx,
4009                             SYSCTL_CHILDREN(adapter->sysctl_tree),
4010                             OID_AUTO, "int_throttle_ceil",
4011                             CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
4012                             em_sysctl_int_throttle, "I",
4013                             "interrupt throttling rate");
4014                 }
4015                 SYSCTL_ADD_PROC(&adapter->sysctl_ctx,
4016                     SYSCTL_CHILDREN(adapter->sysctl_tree),
4017                     OID_AUTO, "int_tx_nsegs",
4018                     CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
4019                     em_sysctl_int_tx_nsegs, "I",
4020                     "# segments per TX interrupt");
4021         }
4022 }
4023
4024 static int
4025 em_sysctl_int_throttle(SYSCTL_HANDLER_ARGS)
4026 {
4027         struct adapter *adapter = (void *)arg1;
4028         struct ifnet *ifp = &adapter->arpcom.ac_if;
4029         int error, throttle;
4030
4031         throttle = adapter->int_throttle_ceil;
4032         error = sysctl_handle_int(oidp, &throttle, 0, req);
4033         if (error || req->newptr == NULL)
4034                 return error;
4035         if (throttle < 0 || throttle > 1000000000 / 256)
4036                 return EINVAL;
4037
4038         if (throttle) {
4039                 /*
4040                  * Set the interrupt throttling rate in 256ns increments,
4041                  * recalculate sysctl value assignment to get exact frequency.
4042                  */
4043                 throttle = 1000000000 / 256 / throttle;
4044
4045                 /* Upper 16bits of ITR is reserved and should be zero */
4046                 if (throttle & 0xffff0000)
4047                         return EINVAL;
4048         }
4049
4050         lwkt_serialize_enter(ifp->if_serializer);
4051
4052         if (throttle)
4053                 adapter->int_throttle_ceil = 1000000000 / 256 / throttle;
4054         else
4055                 adapter->int_throttle_ceil = 0;
4056
4057         if (ifp->if_flags & IFF_RUNNING)
4058                 em_set_itr(adapter, throttle);
4059
4060         lwkt_serialize_exit(ifp->if_serializer);
4061
4062         if (bootverbose) {
4063                 if_printf(ifp, "Interrupt moderation set to %d/sec\n",
4064                           adapter->int_throttle_ceil);
4065         }
4066         return 0;
4067 }
4068
4069 static int
4070 em_sysctl_int_tx_nsegs(SYSCTL_HANDLER_ARGS)
4071 {
4072         struct adapter *adapter = (void *)arg1;
4073         struct ifnet *ifp = &adapter->arpcom.ac_if;
4074         int error, segs;
4075
4076         segs = adapter->tx_int_nsegs;
4077         error = sysctl_handle_int(oidp, &segs, 0, req);
4078         if (error || req->newptr == NULL)
4079                 return error;
4080         if (segs <= 0)
4081                 return EINVAL;
4082
4083         lwkt_serialize_enter(ifp->if_serializer);
4084
4085         /*
4086          * Don't allow int_tx_nsegs to become:
4087          * o  Less the oact_tx_desc
4088          * o  Too large that no TX desc will cause TX interrupt to
4089          *    be generated (OACTIVE will never recover)
4090          * o  Too small that will cause tx_dd[] overflow
4091          */
4092         if (segs < adapter->oact_tx_desc ||
4093             segs >= adapter->num_tx_desc - adapter->oact_tx_desc ||
4094             segs < adapter->num_tx_desc / EM_TXDD_SAFE) {
4095                 error = EINVAL;
4096         } else {
4097                 error = 0;
4098                 adapter->tx_int_nsegs = segs;
4099         }
4100
4101         lwkt_serialize_exit(ifp->if_serializer);
4102
4103         return error;
4104 }
4105
4106 static void
4107 em_set_itr(struct adapter *adapter, uint32_t itr)
4108 {
4109         E1000_WRITE_REG(&adapter->hw, E1000_ITR, itr);
4110         if (adapter->hw.mac.type == e1000_82574) {
4111                 int i;
4112
4113                 /*
4114                  * When using MSIX interrupts we need to
4115                  * throttle using the EITR register
4116                  */
4117                 for (i = 0; i < 4; ++i) {
4118                         E1000_WRITE_REG(&adapter->hw,
4119                             E1000_EITR_82574(i), itr);
4120                 }
4121         }
4122 }
4123
4124 /*
4125  * Disable the L0s, Errata #20
4126  */
4127 static void
4128 em_disable_aspm(struct adapter *adapter)
4129 {
4130         uint16_t link_cap, link_ctrl;
4131         uint8_t pcie_ptr, reg;
4132         device_t dev = adapter->dev;
4133
4134         switch (adapter->hw.mac.type) {
4135         case e1000_82573:
4136         case e1000_82574:
4137         case e1000_82583:
4138                 break;
4139
4140         default:
4141                 return;
4142         }
4143
4144         pcie_ptr = pci_get_pciecap_ptr(dev);
4145         if (pcie_ptr == 0)
4146                 return;
4147
4148         link_cap = pci_read_config(dev, pcie_ptr + PCIER_LINKCAP, 2);
4149         if ((link_cap & PCIEM_LNKCAP_ASPM_MASK) == 0)
4150                 return;
4151
4152         if (bootverbose)
4153                 if_printf(&adapter->arpcom.ac_if, "disable L0s\n");
4154
4155         reg = pcie_ptr + PCIER_LINKCTRL;
4156         link_ctrl = pci_read_config(dev, reg, 2);
4157         link_ctrl &= ~PCIEM_LNKCTL_ASPM_L0S;
4158         pci_write_config(dev, reg, link_ctrl, 2);
4159 }