Merge dhcpcd-8.0.4 from branch 'vendor/DHCPCD'
[dragonfly.git] / sys / net / pf / pf_norm.c
1 /*      $OpenBSD: pf_norm.c,v 1.113 2008/05/07 07:07:29 markus Exp $ */
2
3 /*
4  * Copyright (c) 2010 The DragonFly Project.  All rights reserved.
5  *
6  * Copyright 2001 Niels Provos <provos@citi.umich.edu>
7  * All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
23  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
27  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28  */
29
30 #include "opt_inet.h"
31 #include "opt_inet6.h"
32
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/mbuf.h>
36 #include <sys/filio.h>
37 #include <sys/fcntl.h>
38 #include <sys/socket.h>
39 #include <sys/kernel.h>
40 #include <sys/time.h>
41
42 #include <net/if.h>
43 #include <net/if_var.h>
44 #include <net/if_types.h>
45 #include <net/bpf.h>
46 #include <net/route.h>
47 #include <net/pf/if_pflog.h>
48
49 #include <netinet/in.h>
50 #include <netinet/in_var.h>
51 #include <netinet/in_systm.h>
52 #include <netinet/ip.h>
53 #include <netinet/ip_var.h>
54 #include <netinet/tcp.h>
55 #include <netinet/tcp_seq.h>
56 #include <netinet/udp.h>
57 #include <netinet/ip_icmp.h>
58
59 #ifdef INET6
60 #include <netinet/ip6.h>
61 #endif /* INET6 */
62
63 #include <net/pf/pfvar.h>
64
65 #define PFFRAG_SEENLAST 0x0001          /* Seen the last fragment for this */
66 #define PFFRAG_NOBUFFER 0x0002          /* Non-buffering fragment cache */
67 #define PFFRAG_DROP     0x0004          /* Drop all fragments */
68 #define BUFFER_FRAGMENTS(fr)    (!((fr)->fr_flags & PFFRAG_NOBUFFER))
69
70
71 TAILQ_HEAD(pf_fragqueue, pf_fragment)   *pf_fragqueue;
72 TAILQ_HEAD(pf_cachequeue, pf_fragment)  *pf_cachequeue;
73
74 static __inline int      pf_frag_compare(struct pf_fragment *,
75                             struct pf_fragment *);
76 RB_HEAD(pf_frag_tree, pf_fragment)      *pf_frag_tree,
77                                         *pf_cache_tree;
78 RB_PROTOTYPE(pf_frag_tree, pf_fragment, fr_entry, pf_frag_compare);
79 RB_GENERATE(pf_frag_tree, pf_fragment, fr_entry, pf_frag_compare);
80
81 /* Private prototypes */
82 void                     pf_ip2key(struct pf_fragment *, struct ip *);
83 void                     pf_remove_fragment(struct pf_fragment *);
84 void                     pf_flush_fragments(void);
85 void                     pf_free_fragment(struct pf_fragment *);
86 struct pf_fragment      *pf_find_fragment(struct ip *, struct pf_frag_tree *);
87 struct mbuf             *pf_reassemble(struct mbuf **, struct pf_fragment **,
88                             struct pf_frent *, int);
89 struct mbuf             *pf_fragcache(struct mbuf **, struct ip*,
90                             struct pf_fragment **, int, int, int *);
91 int                      pf_normalize_tcpopt(struct pf_rule *, struct mbuf *,
92                             struct tcphdr *, int, sa_family_t);
93
94 #define DPFPRINTF(x) do {                               \
95         if (pf_status.debug >= PF_DEBUG_MISC) {         \
96                 kprintf("%s: ", __func__);              \
97                 kprintf x ;                             \
98         }                                               \
99 } while(0)
100
101 static MALLOC_DEFINE(M_PFFRAGPL, "pffrag", "pf fragment pool list");
102 static MALLOC_DEFINE(M_PFCACHEPL, "pffrcache", "pf fragment cache pool list");
103 static MALLOC_DEFINE(M_PFFRENTPL, "pffrent", "pf frent pool list");
104 static MALLOC_DEFINE(M_PFCENTPL, "pffrcent", "pf fragment cent pool list");
105 static MALLOC_DEFINE(M_PFSTATESCRUBPL, "pfstatescrub", "pf state scrub pool list");
106
107 /* Globals */
108 struct malloc_type       *pf_frent_pl, *pf_frag_pl, *pf_cache_pl, *pf_cent_pl;
109 struct malloc_type       *pf_state_scrub_pl;
110 int                      pf_nfrents, pf_ncache;
111
112 void
113 pf_normalize_init(void)
114 {
115         int n;
116
117         /* XXX
118         pool_sethiwat(&pf_frag_pl, PFFRAG_FRAG_HIWAT);
119         pool_sethardlimit(&pf_frent_pl, PFFRAG_FRENT_HIWAT, NULL, 0);
120         pool_sethardlimit(&pf_cache_pl, PFFRAG_FRCACHE_HIWAT, NULL, 0);
121         pool_sethardlimit(&pf_cent_pl, PFFRAG_FRCENT_HIWAT, NULL, 0);
122         */
123
124         /*
125          * pcpu queues and trees
126          */
127         pf_fragqueue = kmalloc(sizeof(*pf_fragqueue) * ncpus,
128                                 M_PF, M_WAITOK | M_ZERO);
129         pf_cachequeue = kmalloc(sizeof(*pf_cachequeue) * ncpus,
130                                 M_PF, M_WAITOK | M_ZERO);
131         pf_frag_tree = kmalloc(sizeof(*pf_frag_tree) * ncpus,
132                                 M_PF, M_WAITOK | M_ZERO);
133         pf_cache_tree = kmalloc(sizeof(*pf_cache_tree) * ncpus,
134                                 M_PF, M_WAITOK | M_ZERO);
135
136         for (n = 0; n < ncpus; ++n) {
137                 TAILQ_INIT(&pf_fragqueue[n]);
138                 TAILQ_INIT(&pf_cachequeue[n]);
139                 RB_INIT(&pf_frag_tree[n]);
140                 RB_INIT(&pf_cache_tree[n]);
141         }
142 }
143
144 void
145 pf_normalize_unload(void)
146 {
147         kfree(pf_fragqueue, M_PF);
148         kfree(pf_cachequeue, M_PF);
149         kfree(pf_frag_tree, M_PF);
150         kfree(pf_cache_tree, M_PF);
151 }
152
153 static __inline int
154 pf_frag_compare(struct pf_fragment *a, struct pf_fragment *b)
155 {
156         int     diff;
157
158         if ((diff = a->fr_id - b->fr_id))
159                 return (diff);
160         else if ((diff = a->fr_p - b->fr_p))
161                 return (diff);
162         else if (a->fr_src.s_addr < b->fr_src.s_addr)
163                 return (-1);
164         else if (a->fr_src.s_addr > b->fr_src.s_addr)
165                 return (1);
166         else if (a->fr_dst.s_addr < b->fr_dst.s_addr)
167                 return (-1);
168         else if (a->fr_dst.s_addr > b->fr_dst.s_addr)
169                 return (1);
170         return (0);
171 }
172
173 void
174 pf_purge_expired_fragments(void)
175 {
176         struct pf_fragment *frag;
177         u_int32_t expire;
178         int cpu = mycpu->gd_cpuid;
179
180         expire = time_second - pf_default_rule.timeout[PFTM_FRAG];
181
182         while ((frag = TAILQ_LAST(&pf_fragqueue[cpu], pf_fragqueue)) != NULL) {
183                 KASSERT((BUFFER_FRAGMENTS(frag)),
184                         ("BUFFER_FRAGMENTS(frag) == 0: %s", __func__));
185                 if (frag->fr_timeout > expire)
186                         break;
187
188                 DPFPRINTF(("expiring %d(%p)\n", frag->fr_id, frag));
189                 pf_free_fragment(frag);
190         }
191
192         while ((frag = TAILQ_LAST(&pf_cachequeue[cpu], pf_cachequeue)) != NULL) {
193                 KASSERT((!BUFFER_FRAGMENTS(frag)),
194                         ("BUFFER_FRAGMENTS(frag) != 0: %s", __func__));
195                 if (frag->fr_timeout > expire)
196                         break;
197
198                 DPFPRINTF(("expiring %d(%p)\n", frag->fr_id, frag));
199                 pf_free_fragment(frag);
200                 KASSERT((TAILQ_EMPTY(&pf_cachequeue[cpu]) ||
201                     TAILQ_LAST(&pf_cachequeue[cpu], pf_cachequeue) != frag),
202                     ("!(TAILQ_EMPTY() || TAILQ_LAST() == farg): %s",
203                     __func__));
204         }
205 }
206
207 /*
208  * Try to flush old fragments to make space for new ones
209  */
210
211 void
212 pf_flush_fragments(void)
213 {
214         struct pf_fragment *frag;
215         int goal;
216         int cpu = mycpu->gd_cpuid;
217
218         goal = pf_nfrents * 9 / 10;
219         DPFPRINTF(("trying to free > %d frents\n",
220             pf_nfrents - goal));
221         while (goal < pf_nfrents) {
222                 frag = TAILQ_LAST(&pf_fragqueue[cpu], pf_fragqueue);
223                 if (frag == NULL)
224                         break;
225                 pf_free_fragment(frag);
226         }
227
228
229         goal = pf_ncache * 9 / 10;
230         DPFPRINTF(("trying to free > %d cache entries\n",
231             pf_ncache - goal));
232         while (goal < pf_ncache) {
233                 frag = TAILQ_LAST(&pf_cachequeue[cpu], pf_cachequeue);
234                 if (frag == NULL)
235                         break;
236                 pf_free_fragment(frag);
237         }
238 }
239
240 /* Frees the fragments and all associated entries */
241
242 void
243 pf_free_fragment(struct pf_fragment *frag)
244 {
245         struct pf_frent         *frent;
246         struct pf_frcache       *frcache;
247
248         /* Free all fragments */
249         if (BUFFER_FRAGMENTS(frag)) {
250                 for (frent = LIST_FIRST(&frag->fr_queue); frent;
251                     frent = LIST_FIRST(&frag->fr_queue)) {
252                         LIST_REMOVE(frent, fr_next);
253
254                         m_freem(frent->fr_m);
255                         kfree(frent, M_PFFRENTPL);
256                         pf_nfrents--;
257                 }
258         } else {
259                 for (frcache = LIST_FIRST(&frag->fr_cache); frcache;
260                     frcache = LIST_FIRST(&frag->fr_cache)) {
261                         LIST_REMOVE(frcache, fr_next);
262
263                         KASSERT((LIST_EMPTY(&frag->fr_cache) ||
264                             LIST_FIRST(&frag->fr_cache)->fr_off >
265                             frcache->fr_end),
266                             ("! (LIST_EMPTY() || LIST_FIRST()->fr_off >"
267                              " frcache->fr_end): %s", __func__));
268
269                         kfree(frcache, M_PFCENTPL);
270                         pf_ncache--;
271                 }
272         }
273
274         pf_remove_fragment(frag);
275 }
276
277 void
278 pf_ip2key(struct pf_fragment *key, struct ip *ip)
279 {
280         key->fr_p = ip->ip_p;
281         key->fr_id = ip->ip_id;
282         key->fr_src.s_addr = ip->ip_src.s_addr;
283         key->fr_dst.s_addr = ip->ip_dst.s_addr;
284 }
285
286 struct pf_fragment *
287 pf_find_fragment(struct ip *ip, struct pf_frag_tree *tree)
288 {
289         struct pf_fragment       key;
290         struct pf_fragment      *frag;
291         int cpu = mycpu->gd_cpuid;
292
293         pf_ip2key(&key, ip);
294
295         frag = RB_FIND(pf_frag_tree, tree, &key);
296         if (frag != NULL) {
297                 /* XXX Are we sure we want to update the timeout? */
298                 frag->fr_timeout = time_second;
299                 if (BUFFER_FRAGMENTS(frag)) {
300                         TAILQ_REMOVE(&pf_fragqueue[cpu], frag, frag_next);
301                         TAILQ_INSERT_HEAD(&pf_fragqueue[cpu], frag, frag_next);
302                 } else {
303                         TAILQ_REMOVE(&pf_cachequeue[cpu], frag, frag_next);
304                         TAILQ_INSERT_HEAD(&pf_cachequeue[cpu], frag, frag_next);
305                 }
306         }
307
308         return (frag);
309 }
310
311 /* Removes a fragment from the fragment queue and frees the fragment */
312
313 void
314 pf_remove_fragment(struct pf_fragment *frag)
315 {
316         int cpu = mycpu->gd_cpuid;
317
318         if (BUFFER_FRAGMENTS(frag)) {
319                 RB_REMOVE(pf_frag_tree, &pf_frag_tree[cpu], frag);
320                 TAILQ_REMOVE(&pf_fragqueue[cpu], frag, frag_next);
321                 kfree(frag, M_PFFRAGPL);
322         } else {
323                 RB_REMOVE(pf_frag_tree, &pf_cache_tree[cpu], frag);
324                 TAILQ_REMOVE(&pf_cachequeue[cpu], frag, frag_next);
325                 kfree(frag, M_PFCACHEPL);
326         }
327 }
328
329 #define FR_IP_OFF(fr)   (((fr)->fr_ip->ip_off & IP_OFFMASK) << 3)
330 struct mbuf *
331 pf_reassemble(struct mbuf **m0, struct pf_fragment **frag,
332     struct pf_frent *frent, int mff)
333 {
334         struct mbuf     *m = *m0, *m2;
335         struct pf_frent *frea, *next;
336         struct pf_frent *frep = NULL;
337         struct ip       *ip = frent->fr_ip;
338         int             hlen = ip->ip_hl << 2;
339         u_int16_t       off = (ip->ip_off & IP_OFFMASK) << 3;
340         u_int16_t       ip_len = ip->ip_len - ip->ip_hl * 4;
341         u_int16_t       max = ip_len + off;
342         int             cpu = mycpu->gd_cpuid;
343
344         KASSERT((*frag == NULL || BUFFER_FRAGMENTS(*frag)),
345             ("! (*frag == NULL || BUFFER_FRAGMENTS(*frag)): %s", __func__));
346
347         /* Strip off ip header */
348         m->m_data += hlen;
349         m->m_len -= hlen;
350
351         /* Create a new reassembly queue for this packet */
352         if (*frag == NULL) {
353                 *frag = kmalloc(sizeof(struct pf_fragment), M_PFFRAGPL, M_NOWAIT);
354                 if (*frag == NULL) {
355                         pf_flush_fragments();
356                         *frag = kmalloc(sizeof(struct pf_fragment), M_PFFRAGPL, M_NOWAIT);
357                         if (*frag == NULL)
358                                 goto drop_fragment;
359                 }
360
361                 (*frag)->fr_flags = 0;
362                 (*frag)->fr_max = 0;
363                 (*frag)->fr_src = frent->fr_ip->ip_src;
364                 (*frag)->fr_dst = frent->fr_ip->ip_dst;
365                 (*frag)->fr_p = frent->fr_ip->ip_p;
366                 (*frag)->fr_id = frent->fr_ip->ip_id;
367                 (*frag)->fr_timeout = time_second;
368                 LIST_INIT(&(*frag)->fr_queue);
369
370                 RB_INSERT(pf_frag_tree, &pf_frag_tree[cpu], *frag);
371                 TAILQ_INSERT_HEAD(&pf_fragqueue[cpu], *frag, frag_next);
372
373                 /* We do not have a previous fragment */
374                 frep = NULL;
375                 goto insert;
376         }
377
378         /*
379          * Find a fragment after the current one:
380          *  - off contains the real shifted offset.
381          */
382         LIST_FOREACH(frea, &(*frag)->fr_queue, fr_next) {
383                 if (FR_IP_OFF(frea) > off)
384                         break;
385                 frep = frea;
386         }
387
388         KASSERT((frep != NULL || frea != NULL),
389             ("!(frep != NULL || frea != NULL): %s", __func__));
390
391         if (frep != NULL &&
392             FR_IP_OFF(frep) + frep->fr_ip->ip_len - frep->fr_ip->ip_hl *
393             4 > off)
394         {
395                 u_int16_t       precut;
396
397                 precut = FR_IP_OFF(frep) + frep->fr_ip->ip_len -
398                     frep->fr_ip->ip_hl * 4 - off;
399                 if (precut >= ip_len)
400                         goto drop_fragment;
401                 m_adj(frent->fr_m, precut);
402                 DPFPRINTF(("overlap -%d\n", precut));
403                 /* Enforce 8 byte boundaries */
404                 ip->ip_off = ip->ip_off + (precut >> 3);
405                 off = (ip->ip_off & IP_OFFMASK) << 3;
406                 ip_len -= precut;
407                 ip->ip_len = ip_len;
408         }
409
410         for (; frea != NULL && ip_len + off > FR_IP_OFF(frea);
411             frea = next)
412         {
413                 u_int16_t       aftercut;
414
415                 aftercut = ip_len + off - FR_IP_OFF(frea);
416                 DPFPRINTF(("adjust overlap %d\n", aftercut));
417                 if (aftercut < frea->fr_ip->ip_len - frea->fr_ip->ip_hl
418                     * 4)
419                 {
420                         frea->fr_ip->ip_len =
421                             frea->fr_ip->ip_len - aftercut;
422                         frea->fr_ip->ip_off = frea->fr_ip->ip_off +
423                             (aftercut >> 3);
424                         m_adj(frea->fr_m, aftercut);
425                         break;
426                 }
427
428                 /* This fragment is completely overlapped, lose it */
429                 next = LIST_NEXT(frea, fr_next);
430                 m_freem(frea->fr_m);
431                 LIST_REMOVE(frea, fr_next);
432                 kfree(frea, M_PFFRENTPL);
433                 pf_nfrents--;
434         }
435
436  insert:
437         /* Update maximum data size */
438         if ((*frag)->fr_max < max)
439                 (*frag)->fr_max = max;
440         /* This is the last segment */
441         if (!mff)
442                 (*frag)->fr_flags |= PFFRAG_SEENLAST;
443
444         if (frep == NULL)
445                 LIST_INSERT_HEAD(&(*frag)->fr_queue, frent, fr_next);
446         else
447                 LIST_INSERT_AFTER(frep, frent, fr_next);
448
449         /* Check if we are completely reassembled */
450         if (!((*frag)->fr_flags & PFFRAG_SEENLAST))
451                 return (NULL);
452
453         /* Check if we have all the data */
454         off = 0;
455         for (frep = LIST_FIRST(&(*frag)->fr_queue); frep; frep = next) {
456                 next = LIST_NEXT(frep, fr_next);
457
458                 off += frep->fr_ip->ip_len - frep->fr_ip->ip_hl * 4;
459                 if (off < (*frag)->fr_max &&
460                     (next == NULL || FR_IP_OFF(next) != off))
461                 {
462                         DPFPRINTF(("missing fragment at %d, next %d, max %d\n",
463                             off, next == NULL ? -1 : FR_IP_OFF(next),
464                             (*frag)->fr_max));
465                         return (NULL);
466                 }
467         }
468         DPFPRINTF(("%d < %d?\n", off, (*frag)->fr_max));
469         if (off < (*frag)->fr_max)
470                 return (NULL);
471
472         /* We have all the data */
473         frent = LIST_FIRST(&(*frag)->fr_queue);
474         KASSERT((frent != NULL), ("frent == NULL: %s", __func__));
475         if ((frent->fr_ip->ip_hl << 2) + off > IP_MAXPACKET) {
476                 DPFPRINTF(("drop: too big: %d\n", off));
477                 pf_free_fragment(*frag);
478                 *frag = NULL;
479                 return (NULL);
480         }
481         next = LIST_NEXT(frent, fr_next);
482
483         /* Magic from ip_input */
484         ip = frent->fr_ip;
485         m = frent->fr_m;
486         m2 = m->m_next;
487         m->m_next = NULL;
488         m_cat(m, m2);
489         kfree(frent, M_PFFRENTPL);
490         pf_nfrents--;
491         for (frent = next; frent != NULL; frent = next) {
492                 next = LIST_NEXT(frent, fr_next);
493
494                 m2 = frent->fr_m;
495                 kfree(frent, M_PFFRENTPL);
496                 pf_nfrents--;
497                 m_cat(m, m2);
498         }
499
500         ip->ip_src = (*frag)->fr_src;
501         ip->ip_dst = (*frag)->fr_dst;
502
503         /* Remove from fragment queue */
504         pf_remove_fragment(*frag);
505         *frag = NULL;
506
507         hlen = ip->ip_hl << 2;
508         ip->ip_len = off + hlen;
509         m->m_len += hlen;
510         m->m_data -= hlen;
511
512         /* some debugging cruft by sklower, below, will go away soon */
513         /* XXX this should be done elsewhere */
514         if (m->m_flags & M_PKTHDR) {
515                 int plen = 0;
516                 for (m2 = m; m2; m2 = m2->m_next)
517                         plen += m2->m_len;
518                 m->m_pkthdr.len = plen;
519         }
520
521         DPFPRINTF(("complete: %p(%d)\n", m, ip->ip_len));
522         return (m);
523
524  drop_fragment:
525         /* Oops - fail safe - drop packet */
526         kfree(frent, M_PFFRENTPL);
527         pf_nfrents--;
528         m_freem(m);
529         return (NULL);
530 }
531
532 struct mbuf *
533 pf_fragcache(struct mbuf **m0, struct ip *h, struct pf_fragment **frag, int mff,
534     int drop, int *nomem)
535 {
536         struct mbuf     *m = *m0;
537         struct pf_frcache *frp, *fra, *cur = NULL;
538         int             ip_len = h->ip_len - (h->ip_hl << 2);
539         u_int16_t       off = h->ip_off << 3;
540         u_int16_t       max = ip_len + off;
541         int             hosed = 0;
542         int             cpu = mycpu->gd_cpuid;
543
544         KASSERT((*frag == NULL || !BUFFER_FRAGMENTS(*frag)),
545             ("!(*frag == NULL || !BUFFER_FRAGMENTS(*frag)): %s", __func__));
546
547         /* Create a new range queue for this packet */
548         if (*frag == NULL) {
549                 *frag = kmalloc(sizeof(struct pf_fragment), M_PFCACHEPL, M_NOWAIT);
550                 if (*frag == NULL) {
551                         pf_flush_fragments();
552                         *frag = kmalloc(sizeof(struct pf_fragment), M_PFCACHEPL, M_NOWAIT);
553                         if (*frag == NULL)
554                                 goto no_mem;
555                 }
556
557                 /* Get an entry for the queue */
558                 cur = kmalloc(sizeof(struct pf_frcache), M_PFCENTPL, M_NOWAIT);
559                 if (cur == NULL) {
560                         kfree(*frag, M_PFCACHEPL);
561                         *frag = NULL;
562                         goto no_mem;
563                 }
564                 pf_ncache++;
565
566                 (*frag)->fr_flags = PFFRAG_NOBUFFER;
567                 (*frag)->fr_max = 0;
568                 (*frag)->fr_src = h->ip_src;
569                 (*frag)->fr_dst = h->ip_dst;
570                 (*frag)->fr_p = h->ip_p;
571                 (*frag)->fr_id = h->ip_id;
572                 (*frag)->fr_timeout = time_second;
573
574                 cur->fr_off = off;
575                 cur->fr_end = max;
576                 LIST_INIT(&(*frag)->fr_cache);
577                 LIST_INSERT_HEAD(&(*frag)->fr_cache, cur, fr_next);
578
579                 RB_INSERT(pf_frag_tree, &pf_cache_tree[cpu], *frag);
580                 TAILQ_INSERT_HEAD(&pf_cachequeue[cpu], *frag, frag_next);
581
582                 DPFPRINTF(("fragcache[%d]: new %d-%d\n", h->ip_id, off, max));
583
584                 goto pass;
585         }
586
587         /*
588          * Find a fragment after the current one:
589          *  - off contains the real shifted offset.
590          */
591         frp = NULL;
592         LIST_FOREACH(fra, &(*frag)->fr_cache, fr_next) {
593                 if (fra->fr_off > off)
594                         break;
595                 frp = fra;
596         }
597
598         KASSERT((frp != NULL || fra != NULL),
599             ("!(frp != NULL || fra != NULL): %s", __func__));
600
601         if (frp != NULL) {
602                 int     precut;
603
604                 precut = frp->fr_end - off;
605                 if (precut >= ip_len) {
606                         /* Fragment is entirely a duplicate */
607                         DPFPRINTF(("fragcache[%d]: dead (%d-%d) %d-%d\n",
608                             h->ip_id, frp->fr_off, frp->fr_end, off, max));
609                         goto drop_fragment;
610                 }
611                 if (precut == 0) {
612                         /* They are adjacent.  Fixup cache entry */
613                         DPFPRINTF(("fragcache[%d]: adjacent (%d-%d) %d-%d\n",
614                             h->ip_id, frp->fr_off, frp->fr_end, off, max));
615                         frp->fr_end = max;
616                 } else if (precut > 0) {
617                         /* The first part of this payload overlaps with a
618                          * fragment that has already been passed.
619                          * Need to trim off the first part of the payload.
620                          * But to do so easily, we need to create another
621                          * mbuf to throw the original header into.
622                          */
623
624                         DPFPRINTF(("fragcache[%d]: chop %d (%d-%d) %d-%d\n",
625                             h->ip_id, precut, frp->fr_off, frp->fr_end, off,
626                             max));
627
628                         off += precut;
629                         max -= precut;
630                         /* Update the previous frag to encompass this one */
631                         frp->fr_end = max;
632
633                         if (!drop) {
634                                 /* XXX Optimization opportunity
635                                  * This is a very heavy way to trim the payload.
636                                  * we could do it much faster by diddling mbuf
637                                  * internals but that would be even less legible
638                                  * than this mbuf magic.  For my next trick,
639                                  * I'll pull a rabbit out of my laptop.
640                                  */
641                                 *m0 = m_dup(m, M_NOWAIT);
642                                 /* From KAME Project : We have missed this! */
643                                 m_adj(*m0, (h->ip_hl << 2) -
644                                     (*m0)->m_pkthdr.len);
645                                 if (*m0 == NULL)
646                                         goto no_mem;
647                                 KASSERT(((*m0)->m_next == NULL), 
648                                     ("(*m0)->m_next != NULL: %s", 
649                                     __func__));
650                                 m_adj(m, precut + (h->ip_hl << 2));
651                                 m_cat(*m0, m);
652                                 m = *m0;
653                                 if (m->m_flags & M_PKTHDR) {
654                                         int plen = 0;
655                                         struct mbuf *t;
656                                         for (t = m; t; t = t->m_next)
657                                                 plen += t->m_len;
658                                         m->m_pkthdr.len = plen;
659                                 }
660
661
662                                 h = mtod(m, struct ip *);
663
664                                 KASSERT(((int)m->m_len ==
665                                     h->ip_len - precut),
666                                     ("m->m_len != h->ip_len - precut: %s",
667                                     __func__));
668                                 h->ip_off = h->ip_off +
669                                     (precut >> 3);
670                                 h->ip_len = h->ip_len - precut;
671                         } else {
672                                 hosed++;
673                         }
674                 } else {
675                         /* There is a gap between fragments */
676
677                         DPFPRINTF(("fragcache[%d]: gap %d (%d-%d) %d-%d\n",
678                             h->ip_id, -precut, frp->fr_off, frp->fr_end, off,
679                             max));
680
681                         cur = kmalloc(sizeof(struct pf_frcache), M_PFCENTPL, M_NOWAIT);
682                         if (cur == NULL)
683                                 goto no_mem;
684                         pf_ncache++;
685
686                         cur->fr_off = off;
687                         cur->fr_end = max;
688                         LIST_INSERT_AFTER(frp, cur, fr_next);
689                 }
690         }
691
692         if (fra != NULL) {
693                 int     aftercut;
694                 int     merge = 0;
695
696                 aftercut = max - fra->fr_off;
697                 if (aftercut == 0) {
698                         /* Adjacent fragments */
699                         DPFPRINTF(("fragcache[%d]: adjacent %d-%d (%d-%d)\n",
700                             h->ip_id, off, max, fra->fr_off, fra->fr_end));
701                         fra->fr_off = off;
702                         merge = 1;
703                 } else if (aftercut > 0) {
704                         /* Need to chop off the tail of this fragment */
705                         DPFPRINTF(("fragcache[%d]: chop %d %d-%d (%d-%d)\n",
706                             h->ip_id, aftercut, off, max, fra->fr_off,
707                             fra->fr_end));
708                         fra->fr_off = off;
709                         max -= aftercut;
710
711                         merge = 1;
712
713                         if (!drop) {
714                                 m_adj(m, -aftercut);
715                                 if (m->m_flags & M_PKTHDR) {
716                                         int plen = 0;
717                                         struct mbuf *t;
718                                         for (t = m; t; t = t->m_next)
719                                                 plen += t->m_len;
720                                         m->m_pkthdr.len = plen;
721                                 }
722                                 h = mtod(m, struct ip *);
723                                 KASSERT(((int)m->m_len == h->ip_len - aftercut),
724                                     ("m->m_len != h->ip_len - aftercut: %s",
725                                     __func__));
726                                 h->ip_len = h->ip_len - aftercut;
727                         } else {
728                                 hosed++;
729                         }
730                 } else if (frp == NULL) {
731                         /* There is a gap between fragments */
732                         DPFPRINTF(("fragcache[%d]: gap %d %d-%d (%d-%d)\n",
733                             h->ip_id, -aftercut, off, max, fra->fr_off,
734                             fra->fr_end));
735
736                         cur = kmalloc(sizeof(struct pf_frcache), M_PFCENTPL, M_NOWAIT);
737                         if (cur == NULL)
738                                 goto no_mem;
739                         pf_ncache++;
740
741                         cur->fr_off = off;
742                         cur->fr_end = max;
743                         LIST_INSERT_BEFORE(fra, cur, fr_next);
744                 }
745
746
747                 /* Need to glue together two separate fragment descriptors */
748                 if (merge) {
749                         if (cur && fra->fr_off <= cur->fr_end) {
750                                 /* Need to merge in a previous 'cur' */
751                                 DPFPRINTF(("fragcache[%d]: adjacent(merge "
752                                     "%d-%d) %d-%d (%d-%d)\n",
753                                     h->ip_id, cur->fr_off, cur->fr_end, off,
754                                     max, fra->fr_off, fra->fr_end));
755                                 fra->fr_off = cur->fr_off;
756                                 LIST_REMOVE(cur, fr_next);
757                                 kfree(cur, M_PFCENTPL);
758                                 pf_ncache--;
759                                 cur = NULL;
760
761                         } else if (frp && fra->fr_off <= frp->fr_end) {
762                                 /* Need to merge in a modified 'frp' */
763                                 KASSERT((cur == NULL), ("cur != NULL: %s",
764                                     __func__));
765                                 DPFPRINTF(("fragcache[%d]: adjacent(merge "
766                                     "%d-%d) %d-%d (%d-%d)\n",
767                                     h->ip_id, frp->fr_off, frp->fr_end, off,
768                                     max, fra->fr_off, fra->fr_end));
769                                 fra->fr_off = frp->fr_off;
770                                 LIST_REMOVE(frp, fr_next);
771                                 kfree(frp, M_PFCENTPL);
772                                 pf_ncache--;
773                                 frp = NULL;
774
775                         }
776                 }
777         }
778
779         if (hosed) {
780                 /*
781                  * We must keep tracking the overall fragment even when
782                  * we're going to drop it anyway so that we know when to
783                  * free the overall descriptor.  Thus we drop the frag late.
784                  */
785                 goto drop_fragment;
786         }
787
788
789  pass:
790         /* Update maximum data size */
791         if ((*frag)->fr_max < max)
792                 (*frag)->fr_max = max;
793
794         /* This is the last segment */
795         if (!mff)
796                 (*frag)->fr_flags |= PFFRAG_SEENLAST;
797
798         /* Check if we are completely reassembled */
799         if (((*frag)->fr_flags & PFFRAG_SEENLAST) &&
800             LIST_FIRST(&(*frag)->fr_cache)->fr_off == 0 &&
801             LIST_FIRST(&(*frag)->fr_cache)->fr_end == (*frag)->fr_max) {
802                 /* Remove from fragment queue */
803                 DPFPRINTF(("fragcache[%d]: done 0-%d\n", h->ip_id,
804                     (*frag)->fr_max));
805                 pf_free_fragment(*frag);
806                 *frag = NULL;
807         }
808
809         return (m);
810
811  no_mem:
812         *nomem = 1;
813
814         /* Still need to pay attention to !IP_MF */
815         if (!mff && *frag != NULL)
816                 (*frag)->fr_flags |= PFFRAG_SEENLAST;
817
818         m_freem(m);
819         return (NULL);
820
821  drop_fragment:
822
823         /* Still need to pay attention to !IP_MF */
824         if (!mff && *frag != NULL)
825                 (*frag)->fr_flags |= PFFRAG_SEENLAST;
826
827         if (drop) {
828                 /* This fragment has been deemed bad.  Don't reass */
829                 if (((*frag)->fr_flags & PFFRAG_DROP) == 0)
830                         DPFPRINTF(("fragcache[%d]: dropping overall fragment\n",
831                             h->ip_id));
832                 (*frag)->fr_flags |= PFFRAG_DROP;
833         }
834
835         m_freem(m);
836         return (NULL);
837 }
838
839 int
840 pf_normalize_ip(struct mbuf **m0, int dir, struct pfi_kif *kif, u_short *reason,
841     struct pf_pdesc *pd)
842 {
843         struct mbuf     *m = *m0;
844         struct pf_rule  *r;
845         struct pf_frent *frent;
846         struct pf_fragment *frag = NULL;
847         struct ip       *h = mtod(m, struct ip *);
848         int             mff = (h->ip_off & IP_MF);
849         int             hlen = h->ip_hl << 2;
850         u_int16_t       fragoff = (h->ip_off & IP_OFFMASK) << 3;
851         u_int16_t       max;
852         int             ip_len;
853         int             tag = -1;
854         int             cpu = mycpu->gd_cpuid;
855
856         r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_SCRUB].active.ptr);
857         while (r != NULL) {
858                 r->evaluations++;
859                 if (pfi_kif_match(r->kif, kif) == r->ifnot)
860                         r = r->skip[PF_SKIP_IFP].ptr;
861                 else if (r->direction && r->direction != dir)
862                         r = r->skip[PF_SKIP_DIR].ptr;
863                 else if (r->af && r->af != AF_INET)
864                         r = r->skip[PF_SKIP_AF].ptr;
865                 else if (r->proto && r->proto != h->ip_p)
866                         r = r->skip[PF_SKIP_PROTO].ptr;
867                 else if (PF_MISMATCHAW(&r->src.addr,
868                     (struct pf_addr *)&h->ip_src.s_addr, AF_INET,
869                     r->src.neg, kif))
870                         r = r->skip[PF_SKIP_SRC_ADDR].ptr;
871                 else if (PF_MISMATCHAW(&r->dst.addr,
872                     (struct pf_addr *)&h->ip_dst.s_addr, AF_INET,
873                     r->dst.neg, NULL))
874                         r = r->skip[PF_SKIP_DST_ADDR].ptr;
875                 else if (r->match_tag && !pf_match_tag(m, r, &tag))
876                         r = TAILQ_NEXT(r, entries);
877                 else
878                         break;
879         }
880
881         if (r == NULL || r->action == PF_NOSCRUB)
882                 return (PF_PASS);
883         else {
884                 r->packets[dir == PF_OUT]++;
885                 r->bytes[dir == PF_OUT] += pd->tot_len;
886         }
887
888         /* Check for illegal packets */
889         if (hlen < (int)sizeof(struct ip))
890                 goto drop;
891
892         if (hlen > h->ip_len)
893                 goto drop;
894
895         /* Clear IP_DF if the rule uses the no-df option */
896         if (r->rule_flag & PFRULE_NODF && h->ip_off & IP_DF) {
897                 u_int16_t ip_off = h->ip_off;
898
899                 h->ip_off &= ~IP_DF;
900                 h->ip_sum = pf_cksum_fixup(h->ip_sum, ip_off, h->ip_off, 0);
901         }
902
903         /* We will need other tests here */
904         if (!fragoff && !mff)
905                 goto no_fragment;
906
907         /* A fragment; rehash required. */
908         m->m_flags &= ~M_HASH;
909
910         /* We're dealing with a fragment now. Don't allow fragments
911          * with IP_DF to enter the cache. If the flag was cleared by
912          * no-df above, fine. Otherwise drop it.
913          */
914         if (h->ip_off & IP_DF) {
915                 DPFPRINTF(("IP_DF\n"));
916                 goto bad;
917         }
918
919         ip_len = h->ip_len - hlen;
920
921         /* All fragments are 8 byte aligned */
922         if (mff && (ip_len & 0x7)) {
923                 DPFPRINTF(("mff and %d\n", ip_len));
924                 goto bad;
925         }
926
927         /* Respect maximum length */
928         if (fragoff + ip_len > IP_MAXPACKET) {
929                 DPFPRINTF(("max packet %d\n", fragoff + ip_len));
930                 goto bad;
931         }
932         max = fragoff + ip_len;
933
934         if ((r->rule_flag & (PFRULE_FRAGCROP|PFRULE_FRAGDROP)) == 0) {
935                 /* Fully buffer all of the fragments */
936
937                 frag = pf_find_fragment(h, &pf_frag_tree[cpu]);
938
939                 /* Check if we saw the last fragment already */
940                 if (frag != NULL && (frag->fr_flags & PFFRAG_SEENLAST) &&
941                     max > frag->fr_max)
942                         goto bad;
943
944                 /* Get an entry for the fragment queue */
945                 frent = kmalloc(sizeof(struct pf_frent), M_PFFRENTPL, M_NOWAIT);
946                 if (frent == NULL) {
947                         REASON_SET(reason, PFRES_MEMORY);
948                         return (PF_DROP);
949                 }
950                 pf_nfrents++;
951                 frent->fr_ip = h;
952                 frent->fr_m = m;
953
954                 /* Might return a completely reassembled mbuf, or NULL */
955                 DPFPRINTF(("reass frag %d @ %d-%d\n", h->ip_id, fragoff, max));
956                 *m0 = m = pf_reassemble(m0, &frag, frent, mff);
957
958                 if (m == NULL)
959                         return (PF_DROP);
960
961                 if (frag != NULL && (frag->fr_flags & PFFRAG_DROP))
962                         goto drop;
963
964                 h = mtod(m, struct ip *);
965         } else {
966                 /* non-buffering fragment cache (drops or masks overlaps) */
967                 int     nomem = 0;
968
969                 if (dir == PF_OUT && m->m_pkthdr.pf.flags & PF_TAG_FRAGCACHE) {
970                         /*
971                          * Already passed the fragment cache in the
972                          * input direction.  If we continued, it would
973                          * appear to be a dup and would be dropped.
974                          */
975                         goto fragment_pass;
976                 }
977
978                 frag = pf_find_fragment(h, &pf_cache_tree[cpu]);
979
980                 /* Check if we saw the last fragment already */
981                 if (frag != NULL && (frag->fr_flags & PFFRAG_SEENLAST) &&
982                     max > frag->fr_max) {
983                         if (r->rule_flag & PFRULE_FRAGDROP)
984                                 frag->fr_flags |= PFFRAG_DROP;
985                         goto bad;
986                 }
987
988                 *m0 = m = pf_fragcache(m0, h, &frag, mff,
989                     (r->rule_flag & PFRULE_FRAGDROP) ? 1 : 0, &nomem);
990                 if (m == NULL) {
991                         if (nomem)
992                                 goto no_mem;
993                         goto drop;
994                 }
995
996                 if (dir == PF_IN)
997                         m->m_pkthdr.pf.flags |= PF_TAG_FRAGCACHE;
998
999                 if (frag != NULL && (frag->fr_flags & PFFRAG_DROP))
1000                         goto drop;
1001                 goto fragment_pass;
1002         }
1003
1004  no_fragment:
1005         /* At this point, only IP_DF is allowed in ip_off */
1006         if (h->ip_off & ~IP_DF) {
1007                 u_int16_t ip_off = h->ip_off;
1008
1009                 h->ip_off &= IP_DF;
1010                 h->ip_sum = pf_cksum_fixup(h->ip_sum, htons(ip_off), htons(h->ip_off), 0);
1011         }
1012
1013         /* Enforce a minimum ttl, may cause endless packet loops */
1014         if (r->min_ttl && h->ip_ttl < r->min_ttl) {
1015                 u_int16_t ip_ttl = h->ip_ttl;
1016
1017                 h->ip_ttl = r->min_ttl;
1018                 h->ip_sum = pf_cksum_fixup(h->ip_sum, ip_ttl, h->ip_ttl, 0);
1019         }
1020
1021         /* Enforce tos */
1022         if (r->rule_flag & PFRULE_SET_TOS) {
1023                 u_int16_t       ov, nv;
1024
1025                 ov = *(u_int16_t *)h;
1026                 h->ip_tos = r->set_tos;
1027                 nv = *(u_int16_t *)h;
1028
1029                 h->ip_sum = pf_cksum_fixup(h->ip_sum, ov, nv, 0);
1030         }
1031
1032         if (r->rule_flag & PFRULE_RANDOMID) {
1033                 u_int16_t ip_id = h->ip_id;
1034
1035                 h->ip_id = ip_randomid();
1036                 h->ip_sum = pf_cksum_fixup(h->ip_sum, ip_id, h->ip_id, 0);
1037         }
1038         if ((r->rule_flag & (PFRULE_FRAGCROP|PFRULE_FRAGDROP)) == 0)
1039                 pd->flags |= PFDESC_IP_REAS;
1040
1041         return (PF_PASS);
1042
1043  fragment_pass:
1044         /* Enforce a minimum ttl, may cause endless packet loops */
1045         if (r->min_ttl && h->ip_ttl < r->min_ttl) {
1046                 u_int16_t ip_ttl = h->ip_ttl;
1047
1048                 h->ip_ttl = r->min_ttl;
1049                 h->ip_sum = pf_cksum_fixup(h->ip_sum, ip_ttl, h->ip_ttl, 0);
1050         }
1051         /* Enforce tos */
1052         if (r->rule_flag & PFRULE_SET_TOS) {
1053                 u_int16_t       ov, nv;
1054
1055                 ov = *(u_int16_t *)h;
1056                 h->ip_tos = r->set_tos;
1057                 nv = *(u_int16_t *)h;
1058
1059                 h->ip_sum = pf_cksum_fixup(h->ip_sum, ov, nv, 0);
1060         }
1061         if ((r->rule_flag & (PFRULE_FRAGCROP|PFRULE_FRAGDROP)) == 0)
1062                 pd->flags |= PFDESC_IP_REAS;
1063         return (PF_PASS);
1064
1065  no_mem:
1066         REASON_SET(reason, PFRES_MEMORY);
1067         if (r != NULL && r->log)
1068                 PFLOG_PACKET(kif, h, m, AF_INET, dir, *reason, r, NULL, NULL, pd);
1069         return (PF_DROP);
1070
1071  drop:
1072         REASON_SET(reason, PFRES_NORM);
1073         if (r != NULL && r->log)
1074                 PFLOG_PACKET(kif, h, m, AF_INET, dir, *reason, r, NULL, NULL, pd);
1075         return (PF_DROP);
1076
1077  bad:
1078         DPFPRINTF(("dropping bad fragment\n"));
1079
1080         /* Free associated fragments */
1081         if (frag != NULL)
1082                 pf_free_fragment(frag);
1083
1084         REASON_SET(reason, PFRES_FRAG);
1085         if (r != NULL && r->log)
1086                 PFLOG_PACKET(kif, h, m, AF_INET, dir, *reason, r, NULL, NULL, pd);
1087
1088         return (PF_DROP);
1089 }
1090
1091 #ifdef INET6
1092 int
1093 pf_normalize_ip6(struct mbuf **m0, int dir, struct pfi_kif *kif,
1094     u_short *reason, struct pf_pdesc *pd)
1095 {
1096         struct mbuf             *m = *m0;
1097         struct pf_rule          *r;
1098         struct ip6_hdr          *h = mtod(m, struct ip6_hdr *);
1099         int                      off;
1100         struct ip6_ext           ext;
1101         struct ip6_opt           opt;
1102         struct ip6_opt_jumbo     jumbo;
1103         struct ip6_frag          frag;
1104         u_int32_t                jumbolen = 0, plen;
1105         u_int16_t                fragoff = 0;
1106         int                      optend;
1107         int                      ooff;
1108         u_int8_t                 proto;
1109         int                      terminal;
1110
1111         r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_SCRUB].active.ptr);
1112         while (r != NULL) {
1113                 r->evaluations++;
1114                 if (pfi_kif_match(r->kif, kif) == r->ifnot)
1115                         r = r->skip[PF_SKIP_IFP].ptr;
1116                 else if (r->direction && r->direction != dir)
1117                         r = r->skip[PF_SKIP_DIR].ptr;
1118                 else if (r->af && r->af != AF_INET6)
1119                         r = r->skip[PF_SKIP_AF].ptr;
1120 #if 0 /* header chain! */
1121                 else if (r->proto && r->proto != h->ip6_nxt)
1122                         r = r->skip[PF_SKIP_PROTO].ptr;
1123 #endif
1124                 else if (PF_MISMATCHAW(&r->src.addr,
1125                     (struct pf_addr *)&h->ip6_src, AF_INET6,
1126                     r->src.neg, kif))
1127                         r = r->skip[PF_SKIP_SRC_ADDR].ptr;
1128                 else if (PF_MISMATCHAW(&r->dst.addr,
1129                     (struct pf_addr *)&h->ip6_dst, AF_INET6,
1130                     r->dst.neg, NULL))
1131                         r = r->skip[PF_SKIP_DST_ADDR].ptr;
1132                 else
1133                         break;
1134         }
1135
1136         if (r == NULL || r->action == PF_NOSCRUB)
1137                 return (PF_PASS);
1138         else {
1139                 r->packets[dir == PF_OUT]++;
1140                 r->bytes[dir == PF_OUT] += pd->tot_len;
1141         }
1142
1143         /* Check for illegal packets */
1144         if (sizeof(struct ip6_hdr) + IPV6_MAXPACKET < m->m_pkthdr.len)
1145                 goto drop;
1146
1147         off = sizeof(struct ip6_hdr);
1148         proto = h->ip6_nxt;
1149         terminal = 0;
1150         do {
1151                 switch (proto) {
1152                 case IPPROTO_FRAGMENT:
1153                         goto fragment;
1154                         break;
1155                 case IPPROTO_AH:
1156                 case IPPROTO_ROUTING:
1157                 case IPPROTO_DSTOPTS:
1158                         if (!pf_pull_hdr(m, off, &ext, sizeof(ext), NULL,
1159                             NULL, AF_INET6))
1160                                 goto shortpkt;
1161                         if (proto == IPPROTO_AH)
1162                                 off += (ext.ip6e_len + 2) * 4;
1163                         else
1164                                 off += (ext.ip6e_len + 1) * 8;
1165                         proto = ext.ip6e_nxt;
1166                         break;
1167                 case IPPROTO_HOPOPTS:
1168                         if (!pf_pull_hdr(m, off, &ext, sizeof(ext), NULL,
1169                             NULL, AF_INET6))
1170                                 goto shortpkt;
1171                         optend = off + (ext.ip6e_len + 1) * 8;
1172                         ooff = off + sizeof(ext);
1173                         do {
1174                                 if (!pf_pull_hdr(m, ooff, &opt.ip6o_type,
1175                                     sizeof(opt.ip6o_type), NULL, NULL,
1176                                     AF_INET6))
1177                                         goto shortpkt;
1178                                 if (opt.ip6o_type == IP6OPT_PAD1) {
1179                                         ooff++;
1180                                         continue;
1181                                 }
1182                                 if (!pf_pull_hdr(m, ooff, &opt, sizeof(opt),
1183                                     NULL, NULL, AF_INET6))
1184                                         goto shortpkt;
1185                                 if (ooff + sizeof(opt) + opt.ip6o_len > optend)
1186                                         goto drop;
1187                                 switch (opt.ip6o_type) {
1188                                 case IP6OPT_JUMBO:
1189                                         if (h->ip6_plen != 0)
1190                                                 goto drop;
1191                                         if (!pf_pull_hdr(m, ooff, &jumbo,
1192                                             sizeof(jumbo), NULL, NULL,
1193                                             AF_INET6))
1194                                                 goto shortpkt;
1195                                         memcpy(&jumbolen, jumbo.ip6oj_jumbo_len,
1196                                             sizeof(jumbolen));
1197                                         jumbolen = ntohl(jumbolen);
1198                                         if (jumbolen <= IPV6_MAXPACKET)
1199                                                 goto drop;
1200                                         if (sizeof(struct ip6_hdr) + jumbolen !=
1201                                             m->m_pkthdr.len)
1202                                                 goto drop;
1203                                         break;
1204                                 default:
1205                                         break;
1206                                 }
1207                                 ooff += sizeof(opt) + opt.ip6o_len;
1208                         } while (ooff < optend);
1209
1210                         off = optend;
1211                         proto = ext.ip6e_nxt;
1212                         break;
1213                 default:
1214                         terminal = 1;
1215                         break;
1216                 }
1217         } while (!terminal);
1218
1219         /* jumbo payload option must be present, or plen > 0 */
1220         if (ntohs(h->ip6_plen) == 0)
1221                 plen = jumbolen;
1222         else
1223                 plen = ntohs(h->ip6_plen);
1224         if (plen == 0)
1225                 goto drop;
1226         if (sizeof(struct ip6_hdr) + plen > m->m_pkthdr.len)
1227                 goto shortpkt;
1228
1229         /* Enforce a minimum ttl, may cause endless packet loops */
1230         if (r->min_ttl && h->ip6_hlim < r->min_ttl)
1231                 h->ip6_hlim = r->min_ttl;
1232
1233         return (PF_PASS);
1234
1235  fragment:
1236         if (ntohs(h->ip6_plen) == 0 || jumbolen)
1237                 goto drop;
1238         plen = ntohs(h->ip6_plen);
1239
1240         if (!pf_pull_hdr(m, off, &frag, sizeof(frag), NULL, NULL, AF_INET6))
1241                 goto shortpkt;
1242         fragoff = ntohs(frag.ip6f_offlg & IP6F_OFF_MASK);
1243         if (fragoff + (plen - off - sizeof(frag)) > IPV6_MAXPACKET)
1244                 goto badfrag;
1245
1246         /* do something about it */
1247         /* remember to set pd->flags |= PFDESC_IP_REAS */
1248         return (PF_PASS);
1249
1250  shortpkt:
1251         REASON_SET(reason, PFRES_SHORT);
1252         if (r != NULL && r->log)
1253                 PFLOG_PACKET(kif, h, m, AF_INET6, dir, *reason, r, NULL, NULL, pd);
1254         return (PF_DROP);
1255
1256  drop:
1257         REASON_SET(reason, PFRES_NORM);
1258         if (r != NULL && r->log)
1259                 PFLOG_PACKET(kif, h, m, AF_INET6, dir, *reason, r, NULL, NULL, pd);
1260         return (PF_DROP);
1261
1262  badfrag:
1263         REASON_SET(reason, PFRES_FRAG);
1264         if (r != NULL && r->log)
1265                 PFLOG_PACKET(kif, h, m, AF_INET6, dir, *reason, r, NULL, NULL, pd);
1266         return (PF_DROP);
1267 }
1268 #endif /* INET6 */
1269
1270 int
1271 pf_normalize_tcp(int dir, struct pfi_kif *kif, struct mbuf *m, int ipoff,
1272     int off, void *h, struct pf_pdesc *pd)
1273 {
1274         struct pf_rule  *r, *rm = NULL;
1275         struct tcphdr   *th = pd->hdr.tcp;
1276         int              rewrite = 0;
1277         u_short          reason;
1278         u_int8_t         flags;
1279         sa_family_t      af = pd->af;
1280
1281         r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_SCRUB].active.ptr);
1282         while (r != NULL) {
1283                 r->evaluations++;
1284                 if (pfi_kif_match(r->kif, kif) == r->ifnot)
1285                         r = r->skip[PF_SKIP_IFP].ptr;
1286                 else if (r->direction && r->direction != dir)
1287                         r = r->skip[PF_SKIP_DIR].ptr;
1288                 else if (r->af && r->af != af)
1289                         r = r->skip[PF_SKIP_AF].ptr;
1290                 else if (r->proto && r->proto != pd->proto)
1291                         r = r->skip[PF_SKIP_PROTO].ptr;
1292                 else if (PF_MISMATCHAW(&r->src.addr, pd->src, af,
1293                     r->src.neg, kif))
1294                         r = r->skip[PF_SKIP_SRC_ADDR].ptr;
1295                 else if (r->src.port_op && !pf_match_port(r->src.port_op,
1296                             r->src.port[0], r->src.port[1], th->th_sport))
1297                         r = r->skip[PF_SKIP_SRC_PORT].ptr;
1298                 else if (PF_MISMATCHAW(&r->dst.addr, pd->dst, af,
1299                     r->dst.neg, NULL))
1300                         r = r->skip[PF_SKIP_DST_ADDR].ptr;
1301                 else if (r->dst.port_op && !pf_match_port(r->dst.port_op,
1302                             r->dst.port[0], r->dst.port[1], th->th_dport))
1303                         r = r->skip[PF_SKIP_DST_PORT].ptr;
1304                 else if (r->os_fingerprint != PF_OSFP_ANY && !pf_osfp_match(
1305                             pf_osfp_fingerprint(pd, m, off, th),
1306                             r->os_fingerprint))
1307                         r = TAILQ_NEXT(r, entries);
1308                 else {
1309                         rm = r;
1310                         break;
1311                 }
1312         }
1313
1314         if (rm == NULL || rm->action == PF_NOSCRUB)
1315                 return (PF_PASS);
1316         else {
1317                 r->packets[dir == PF_OUT]++;
1318                 r->bytes[dir == PF_OUT] += pd->tot_len;
1319         }
1320
1321         if (rm->rule_flag & PFRULE_REASSEMBLE_TCP)
1322                 pd->flags |= PFDESC_TCP_NORM;
1323
1324         flags = th->th_flags;
1325         if (flags & TH_SYN) {
1326                 /* Illegal packet */
1327                 if (flags & TH_RST)
1328                         goto tcp_drop;
1329
1330                 if (flags & TH_FIN)
1331                         flags &= ~TH_FIN;
1332         } else {
1333                 /* Illegal packet */
1334                 if (!(flags & (TH_ACK|TH_RST)))
1335                         goto tcp_drop;
1336         }
1337
1338         if (!(flags & TH_ACK)) {
1339                 /* These flags are only valid if ACK is set */
1340                 if ((flags & TH_FIN) || (flags & TH_PUSH) || (flags & TH_URG))
1341                         goto tcp_drop;
1342         }
1343
1344         /* Check for illegal header length */
1345         if (th->th_off < (sizeof(struct tcphdr) >> 2))
1346                 goto tcp_drop;
1347
1348         /* If flags changed, or reserved data set, then adjust */
1349         if (flags != th->th_flags || th->th_x2 != 0) {
1350                 u_int16_t       ov, nv;
1351
1352                 ov = *(u_int16_t *)(&th->th_ack + 1);
1353                 th->th_flags = flags;
1354                 th->th_x2 = 0;
1355                 nv = *(u_int16_t *)(&th->th_ack + 1);
1356
1357                 th->th_sum = pf_cksum_fixup(th->th_sum, ov, nv, 0);
1358                 rewrite = 1;
1359         }
1360
1361         /* Remove urgent pointer, if TH_URG is not set */
1362         if (!(flags & TH_URG) && th->th_urp) {
1363                 th->th_sum = pf_cksum_fixup(th->th_sum, th->th_urp, 0, 0);
1364                 th->th_urp = 0;
1365                 rewrite = 1;
1366         }
1367
1368         /* Process options */
1369         if (r->max_mss && pf_normalize_tcpopt(r, m, th, off, pd->af))
1370                 rewrite = 1;
1371
1372         /* copy back packet headers if we sanitized */
1373         if (rewrite)
1374                 m_copyback(m, off, sizeof(*th), (caddr_t)th);
1375
1376         return (PF_PASS);
1377
1378  tcp_drop:
1379         REASON_SET(&reason, PFRES_NORM);
1380         if (rm != NULL && r->log)
1381                 PFLOG_PACKET(kif, h, m, AF_INET, dir, reason, r, NULL, NULL, pd);
1382         return (PF_DROP);
1383 }
1384
1385 int
1386 pf_normalize_tcp_init(struct mbuf *m, int off, struct pf_pdesc *pd,
1387     struct tcphdr *th, struct pf_state_peer *src, struct pf_state_peer *dst)
1388 {
1389         u_int32_t tsval, tsecr;
1390         u_int8_t hdr[60];
1391         u_int8_t *opt;
1392
1393         KASSERT((src->scrub == NULL), 
1394             ("pf_normalize_tcp_init: src->scrub != NULL"));
1395
1396         src->scrub = kmalloc(sizeof(struct pf_state_scrub), M_PFSTATESCRUBPL,
1397             M_NOWAIT | M_ZERO);
1398         if (src->scrub == NULL)
1399                 return (1);
1400
1401         switch (pd->af) {
1402 #ifdef INET
1403         case AF_INET: {
1404                 struct ip *h = mtod(m, struct ip *);
1405                 src->scrub->pfss_ttl = h->ip_ttl;
1406                 break;
1407         }
1408 #endif /* INET */
1409 #ifdef INET6
1410         case AF_INET6: {
1411                 struct ip6_hdr *h = mtod(m, struct ip6_hdr *);
1412                 src->scrub->pfss_ttl = h->ip6_hlim;
1413                 break;
1414         }
1415 #endif /* INET6 */
1416         }
1417
1418
1419         /*
1420          * All normalizations below are only begun if we see the start of
1421          * the connections.  They must all set an enabled bit in pfss_flags
1422          */
1423         if ((th->th_flags & TH_SYN) == 0)
1424                 return (0);
1425
1426
1427         if (th->th_off > (sizeof(struct tcphdr) >> 2) && src->scrub &&
1428             pf_pull_hdr(m, off, hdr, th->th_off << 2, NULL, NULL, pd->af)) {
1429                 /* Diddle with TCP options */
1430                 int hlen;
1431                 opt = hdr + sizeof(struct tcphdr);
1432                 hlen = (th->th_off << 2) - sizeof(struct tcphdr);
1433                 while (hlen >= TCPOLEN_TIMESTAMP) {
1434                         switch (*opt) {
1435                         case TCPOPT_EOL:        /* FALLTHROUGH */
1436                         case TCPOPT_NOP:
1437                                 opt++;
1438                                 hlen--;
1439                                 break;
1440                         case TCPOPT_TIMESTAMP:
1441                                 if (opt[1] >= TCPOLEN_TIMESTAMP) {
1442                                         src->scrub->pfss_flags |=
1443                                             PFSS_TIMESTAMP;
1444                                         src->scrub->pfss_ts_mod = karc4random();
1445
1446                                         /* note PFSS_PAWS not set yet */
1447                                         memcpy(&tsval, &opt[2],
1448                                             sizeof(u_int32_t));
1449                                         memcpy(&tsecr, &opt[6],
1450                                             sizeof(u_int32_t));
1451                                         src->scrub->pfss_tsval0 = ntohl(tsval);
1452                                         src->scrub->pfss_tsval = ntohl(tsval);
1453                                         src->scrub->pfss_tsecr = ntohl(tsecr);
1454                                         getmicrouptime(&src->scrub->pfss_last);
1455                                 }
1456                                 /* FALLTHROUGH */
1457                         default:
1458                                 hlen -= MAX(opt[1], 2);
1459                                 opt += MAX(opt[1], 2);
1460                                 break;
1461                         }
1462                 }
1463         }
1464
1465         return (0);
1466 }
1467
1468 void
1469 pf_normalize_tcp_cleanup(struct pf_state *state)
1470 {
1471         if (state->src.scrub)
1472                 kfree(state->src.scrub, M_PFSTATESCRUBPL);
1473         if (state->dst.scrub)
1474                 kfree(state->dst.scrub, M_PFSTATESCRUBPL);
1475
1476         /* Someday... flush the TCP segment reassembly descriptors. */
1477 }
1478
1479 int
1480 pf_normalize_tcp_stateful(struct mbuf *m, int off, struct pf_pdesc *pd,
1481     u_short *reason, struct tcphdr *th, struct pf_state *state,
1482     struct pf_state_peer *src, struct pf_state_peer *dst, int *writeback)
1483 {
1484         struct timeval uptime;
1485         u_int32_t tsval, tsecr;
1486         u_int tsval_from_last;
1487         u_int8_t hdr[60];
1488         u_int8_t *opt;
1489         int copyback = 0;
1490         int got_ts = 0;
1491
1492         KASSERT((src->scrub || dst->scrub), 
1493             ("pf_normalize_tcp_statefull: src->scrub && dst->scrub!"));
1494
1495         tsval = 0;      /* avoid gcc complaint */
1496         tsecr = 0;      /* avoid gcc complaint */
1497
1498         /*
1499          * Enforce the minimum TTL seen for this connection.  Negate a common
1500          * technique to evade an intrusion detection system and confuse
1501          * firewall state code.
1502          */
1503         switch (pd->af) {
1504 #ifdef INET
1505         case AF_INET: {
1506                 if (src->scrub) {
1507                         struct ip *h = mtod(m, struct ip *);
1508                         if (h->ip_ttl > src->scrub->pfss_ttl)
1509                                 src->scrub->pfss_ttl = h->ip_ttl;
1510                         h->ip_ttl = src->scrub->pfss_ttl;
1511                 }
1512                 break;
1513         }
1514 #endif /* INET */
1515 #ifdef INET6
1516         case AF_INET6: {
1517                 if (src->scrub) {
1518                         struct ip6_hdr *h = mtod(m, struct ip6_hdr *);
1519                         if (h->ip6_hlim > src->scrub->pfss_ttl)
1520                                 src->scrub->pfss_ttl = h->ip6_hlim;
1521                         h->ip6_hlim = src->scrub->pfss_ttl;
1522                 }
1523                 break;
1524         }
1525 #endif /* INET6 */
1526         }
1527
1528         if (th->th_off > (sizeof(struct tcphdr) >> 2) &&
1529             ((src->scrub && (src->scrub->pfss_flags & PFSS_TIMESTAMP)) ||
1530             (dst->scrub && (dst->scrub->pfss_flags & PFSS_TIMESTAMP))) &&
1531             pf_pull_hdr(m, off, hdr, th->th_off << 2, NULL, NULL, pd->af)) {
1532                 /* Diddle with TCP options */
1533                 int hlen;
1534                 opt = hdr + sizeof(struct tcphdr);
1535                 hlen = (th->th_off << 2) - sizeof(struct tcphdr);
1536                 while (hlen >= TCPOLEN_TIMESTAMP) {
1537                         switch (*opt) {
1538                         case TCPOPT_EOL:        /* FALLTHROUGH */
1539                         case TCPOPT_NOP:
1540                                 opt++;
1541                                 hlen--;
1542                                 break;
1543                         case TCPOPT_TIMESTAMP:
1544                                 /* Modulate the timestamps.  Can be used for
1545                                  * NAT detection, OS uptime determination or
1546                                  * reboot detection.
1547                                  */
1548
1549                                 if (got_ts) {
1550                                         /* Huh?  Multiple timestamps!? */
1551                                         if (pf_status.debug >= PF_DEBUG_MISC) {
1552                                                 DPFPRINTF(("multiple TS??"));
1553                                                 pf_print_state(state);
1554                                                 kprintf("\n");
1555                                         }
1556                                         REASON_SET(reason, PFRES_TS);
1557                                         return (PF_DROP);
1558                                 }
1559                                 if (opt[1] >= TCPOLEN_TIMESTAMP) {
1560                                         memcpy(&tsval, &opt[2],
1561                                             sizeof(u_int32_t));
1562                                         if (tsval && src->scrub &&
1563                                             (src->scrub->pfss_flags &
1564                                             PFSS_TIMESTAMP)) {
1565                                                 tsval = ntohl(tsval);
1566                                                 pf_change_a(&opt[2],
1567                                                     &th->th_sum,
1568                                                     htonl(tsval +
1569                                                     src->scrub->pfss_ts_mod),
1570                                                     0);
1571                                                 copyback = 1;
1572                                         }
1573
1574                                         /* Modulate TS reply iff valid (!0) */
1575                                         memcpy(&tsecr, &opt[6],
1576                                             sizeof(u_int32_t));
1577                                         if (tsecr && dst->scrub &&
1578                                             (dst->scrub->pfss_flags &
1579                                             PFSS_TIMESTAMP)) {
1580                                                 tsecr = ntohl(tsecr)
1581                                                     - dst->scrub->pfss_ts_mod;
1582                                                 pf_change_a(&opt[6],
1583                                                     &th->th_sum, htonl(tsecr),
1584                                                     0);
1585                                                 copyback = 1;
1586                                         }
1587                                         got_ts = 1;
1588                                 }
1589                                 /* FALLTHROUGH */
1590                         default:
1591                                 hlen -= MAX(opt[1], 2);
1592                                 opt += MAX(opt[1], 2);
1593                                 break;
1594                         }
1595                 }
1596                 if (copyback) {
1597                         /* Copyback the options, caller copys back header */
1598                         *writeback = 1;
1599                         m_copyback(m, off + sizeof(struct tcphdr),
1600                             (th->th_off << 2) - sizeof(struct tcphdr), hdr +
1601                             sizeof(struct tcphdr));
1602                 }
1603         }
1604
1605
1606         /*
1607          * Must invalidate PAWS checks on connections idle for too long.
1608          * The fastest allowed timestamp clock is 1ms.  That turns out to
1609          * be about 24 days before it wraps.  XXX Right now our lowerbound
1610          * TS echo check only works for the first 12 days of a connection
1611          * when the TS has exhausted half its 32bit space
1612          */
1613 #define TS_MAX_IDLE     (24*24*60*60)
1614 #define TS_MAX_CONN     (12*24*60*60)   /* XXX remove when better tsecr check */
1615
1616         getmicrouptime(&uptime);
1617         if (src->scrub && (src->scrub->pfss_flags & PFSS_PAWS) &&
1618             (uptime.tv_sec - src->scrub->pfss_last.tv_sec > TS_MAX_IDLE ||
1619             time_second - state->creation > TS_MAX_CONN))  {
1620                 if (pf_status.debug >= PF_DEBUG_MISC) {
1621                         DPFPRINTF(("src idled out of PAWS\n"));
1622                         pf_print_state(state);
1623                         kprintf("\n");
1624                 }
1625                 src->scrub->pfss_flags = (src->scrub->pfss_flags & ~PFSS_PAWS)
1626                     | PFSS_PAWS_IDLED;
1627         }
1628         if (dst->scrub && (dst->scrub->pfss_flags & PFSS_PAWS) &&
1629             uptime.tv_sec - dst->scrub->pfss_last.tv_sec > TS_MAX_IDLE) {
1630                 if (pf_status.debug >= PF_DEBUG_MISC) {
1631                         DPFPRINTF(("dst idled out of PAWS\n"));
1632                         pf_print_state(state);
1633                         kprintf("\n");
1634                 }
1635                 dst->scrub->pfss_flags = (dst->scrub->pfss_flags & ~PFSS_PAWS)
1636                     | PFSS_PAWS_IDLED;
1637         }
1638
1639         if (got_ts && src->scrub && dst->scrub &&
1640             (src->scrub->pfss_flags & PFSS_PAWS) &&
1641             (dst->scrub->pfss_flags & PFSS_PAWS)) {
1642                 /* Validate that the timestamps are "in-window".
1643                  * RFC1323 describes TCP Timestamp options that allow
1644                  * measurement of RTT (round trip time) and PAWS
1645                  * (protection against wrapped sequence numbers).  PAWS
1646                  * gives us a set of rules for rejecting packets on
1647                  * long fat pipes (packets that were somehow delayed 
1648                  * in transit longer than the time it took to send the
1649                  * full TCP sequence space of 4Gb).  We can use these
1650                  * rules and infer a few others that will let us treat
1651                  * the 32bit timestamp and the 32bit echoed timestamp
1652                  * as sequence numbers to prevent a blind attacker from
1653                  * inserting packets into a connection.
1654                  *
1655                  * RFC1323 tells us:
1656                  *  - The timestamp on this packet must be greater than
1657                  *    or equal to the last value echoed by the other
1658                  *    endpoint.  The RFC says those will be discarded
1659                  *    since it is a dup that has already been acked.
1660                  *    This gives us a lowerbound on the timestamp.
1661                  *        timestamp >= other last echoed timestamp
1662                  *  - The timestamp will be less than or equal to
1663                  *    the last timestamp plus the time between the
1664                  *    last packet and now.  The RFC defines the max
1665                  *    clock rate as 1ms.  We will allow clocks to be
1666                  *    up to 10% fast and will allow a total difference
1667                  *    or 30 seconds due to a route change.  And this
1668                  *    gives us an upperbound on the timestamp.
1669                  *        timestamp <= last timestamp + max ticks
1670                  *    We have to be careful here.  Windows will send an
1671                  *    initial timestamp of zero and then initialize it
1672                  *    to a random value after the 3whs; presumably to
1673                  *    avoid a DoS by having to call an expensive RNG
1674                  *    during a SYN flood.  Proof MS has at least one
1675                  *    good security geek.
1676                  *
1677                  *  - The TCP timestamp option must also echo the other
1678                  *    endpoints timestamp.  The timestamp echoed is the
1679                  *    one carried on the earliest unacknowledged segment
1680                  *    on the left edge of the sequence window.  The RFC
1681                  *    states that the host will reject any echoed
1682                  *    timestamps that were larger than any ever sent.
1683                  *    This gives us an upperbound on the TS echo.
1684                  *        tescr <= largest_tsval
1685                  *  - The lowerbound on the TS echo is a little more
1686                  *    tricky to determine.  The other endpoint's echoed
1687                  *    values will not decrease.  But there may be
1688                  *    network conditions that re-order packets and
1689                  *    cause our view of them to decrease.  For now the
1690                  *    only lowerbound we can safely determine is that
1691                  *    the TS echo will never be less than the original
1692                  *    TS.  XXX There is probably a better lowerbound.
1693                  *    Remove TS_MAX_CONN with better lowerbound check.
1694                  *        tescr >= other original TS
1695                  *
1696                  * It is also important to note that the fastest
1697                  * timestamp clock of 1ms will wrap its 32bit space in
1698                  * 24 days.  So we just disable TS checking after 24
1699                  * days of idle time.  We actually must use a 12d
1700                  * connection limit until we can come up with a better
1701                  * lowerbound to the TS echo check.
1702                  */
1703                 struct timeval delta_ts;
1704                 int ts_fudge;
1705
1706
1707                 /*
1708                  * PFTM_TS_DIFF is how many seconds of leeway to allow
1709                  * a host's timestamp.  This can happen if the previous
1710                  * packet got delayed in transit for much longer than
1711                  * this packet.
1712                  */
1713                 if ((ts_fudge = state->rule.ptr->timeout[PFTM_TS_DIFF]) == 0)
1714                         ts_fudge = pf_default_rule.timeout[PFTM_TS_DIFF];
1715
1716
1717                 /* Calculate max ticks since the last timestamp */
1718 #define TS_MAXFREQ      1100            /* RFC max TS freq of 1Khz + 10% skew */
1719 #define TS_MICROSECS    1000000         /* microseconds per second */
1720 #ifndef timersub
1721 #define timersub(tvp, uvp, vvp)                                         \
1722         do {                                                            \
1723                 (vvp)->tv_sec = (tvp)->tv_sec - (uvp)->tv_sec;          \
1724                 (vvp)->tv_usec = (tvp)->tv_usec - (uvp)->tv_usec;       \
1725                 if ((vvp)->tv_usec < 0) {                               \
1726                         (vvp)->tv_sec--;                                \
1727                         (vvp)->tv_usec += 1000000;                      \
1728                 }                                                       \
1729         } while (0)
1730 #endif
1731
1732                 timersub(&uptime, &src->scrub->pfss_last, &delta_ts);
1733                 tsval_from_last = (delta_ts.tv_sec + ts_fudge) * TS_MAXFREQ;
1734                 tsval_from_last += delta_ts.tv_usec / (TS_MICROSECS/TS_MAXFREQ);
1735
1736
1737                 if ((src->state >= TCPS_ESTABLISHED &&
1738                     dst->state >= TCPS_ESTABLISHED) &&
1739                     (SEQ_LT(tsval, dst->scrub->pfss_tsecr) ||
1740                     SEQ_GT(tsval, src->scrub->pfss_tsval + tsval_from_last) ||
1741                     (tsecr && (SEQ_GT(tsecr, dst->scrub->pfss_tsval) ||
1742                     SEQ_LT(tsecr, dst->scrub->pfss_tsval0))))) {
1743                         /* Bad RFC1323 implementation or an insertion attack.
1744                          *
1745                          * - Solaris 2.6 and 2.7 are known to send another ACK
1746                          *   after the FIN,FIN|ACK,ACK closing that carries
1747                          *   an old timestamp.
1748                          */
1749
1750                         DPFPRINTF(("Timestamp failed %c%c%c%c\n",
1751                             SEQ_LT(tsval, dst->scrub->pfss_tsecr) ? '0' : ' ',
1752                             SEQ_GT(tsval, src->scrub->pfss_tsval +
1753                             tsval_from_last) ? '1' : ' ',
1754                             SEQ_GT(tsecr, dst->scrub->pfss_tsval) ? '2' : ' ',
1755                             SEQ_LT(tsecr, dst->scrub->pfss_tsval0)? '3' : ' '));
1756                         DPFPRINTF((" tsval: %u  tsecr: %u  +ticks: %u  "
1757                             "idle: %lus %lums\n",
1758                             tsval, tsecr, tsval_from_last, delta_ts.tv_sec,
1759                             delta_ts.tv_usec / 1000));
1760                         DPFPRINTF((" src->tsval: %u  tsecr: %u\n",
1761                             src->scrub->pfss_tsval, src->scrub->pfss_tsecr));
1762                         DPFPRINTF((" dst->tsval: %u  tsecr: %u  tsval0: %u"
1763                             "\n", dst->scrub->pfss_tsval,
1764                             dst->scrub->pfss_tsecr, dst->scrub->pfss_tsval0));
1765                         if (pf_status.debug >= PF_DEBUG_MISC) {
1766                                 pf_print_state(state);
1767                                 pf_print_flags(th->th_flags);
1768                                 kprintf("\n");
1769                         }
1770                         REASON_SET(reason, PFRES_TS);
1771                         return (PF_DROP);
1772                 }
1773
1774                 /* XXX I'd really like to require tsecr but it's optional */
1775
1776         } else if (!got_ts && (th->th_flags & TH_RST) == 0 &&
1777             ((src->state == TCPS_ESTABLISHED && dst->state == TCPS_ESTABLISHED)
1778             || pd->p_len > 0 || (th->th_flags & TH_SYN)) &&
1779             src->scrub && dst->scrub &&
1780             (src->scrub->pfss_flags & PFSS_PAWS) &&
1781             (dst->scrub->pfss_flags & PFSS_PAWS)) {
1782                 /* Didn't send a timestamp.  Timestamps aren't really useful
1783                  * when:
1784                  *  - connection opening or closing (often not even sent).
1785                  *    but we must not let an attacker to put a FIN on a
1786                  *    data packet to sneak it through our ESTABLISHED check.
1787                  *  - on a TCP reset.  RFC suggests not even looking at TS.
1788                  *  - on an empty ACK.  The TS will not be echoed so it will
1789                  *    probably not help keep the RTT calculation in sync and
1790                  *    there isn't as much danger when the sequence numbers
1791                  *    got wrapped.  So some stacks don't include TS on empty
1792                  *    ACKs :-(
1793                  *
1794                  * To minimize the disruption to mostly RFC1323 conformant
1795                  * stacks, we will only require timestamps on data packets.
1796                  *
1797                  * And what do ya know, we cannot require timestamps on data
1798                  * packets.  There appear to be devices that do legitimate
1799                  * TCP connection hijacking.  There are HTTP devices that allow
1800                  * a 3whs (with timestamps) and then buffer the HTTP request.
1801                  * If the intermediate device has the HTTP response cache, it
1802                  * will spoof the response but not bother timestamping its
1803                  * packets.  So we can look for the presence of a timestamp in
1804                  * the first data packet and if there, require it in all future
1805                  * packets.
1806                  */
1807
1808                 if (pd->p_len > 0 && (src->scrub->pfss_flags & PFSS_DATA_TS)) {
1809                         /*
1810                          * Hey!  Someone tried to sneak a packet in.  Or the
1811                          * stack changed its RFC1323 behavior?!?!
1812                          */
1813                         if (pf_status.debug >= PF_DEBUG_MISC) {
1814                                 DPFPRINTF(("Did not receive expected RFC1323 "
1815                                     "timestamp\n"));
1816                                 pf_print_state(state);
1817                                 pf_print_flags(th->th_flags);
1818                                 kprintf("\n");
1819                         }
1820                         REASON_SET(reason, PFRES_TS);
1821                         return (PF_DROP);
1822                 }
1823         }
1824
1825
1826         /*
1827          * We will note if a host sends his data packets with or without
1828          * timestamps.  And require all data packets to contain a timestamp
1829          * if the first does.  PAWS implicitly requires that all data packets be
1830          * timestamped.  But I think there are middle-man devices that hijack
1831          * TCP streams immediately after the 3whs and don't timestamp their
1832          * packets (seen in a WWW accelerator or cache).
1833          */
1834         if (pd->p_len > 0 && src->scrub && (src->scrub->pfss_flags &
1835             (PFSS_TIMESTAMP|PFSS_DATA_TS|PFSS_DATA_NOTS)) == PFSS_TIMESTAMP) {
1836                 if (got_ts)
1837                         src->scrub->pfss_flags |= PFSS_DATA_TS;
1838                 else {
1839                         src->scrub->pfss_flags |= PFSS_DATA_NOTS;
1840                         if (pf_status.debug >= PF_DEBUG_MISC && dst->scrub &&
1841                             (dst->scrub->pfss_flags & PFSS_TIMESTAMP)) {
1842                                 /* Don't warn if other host rejected RFC1323 */
1843                                 DPFPRINTF(("Broken RFC1323 stack did not "
1844                                     "timestamp data packet. Disabled PAWS "
1845                                     "security.\n"));
1846                                 pf_print_state(state);
1847                                 pf_print_flags(th->th_flags);
1848                                 kprintf("\n");
1849                         }
1850                 }
1851         }
1852
1853
1854         /*
1855          * Update PAWS values
1856          */
1857         if (got_ts && src->scrub && PFSS_TIMESTAMP == (src->scrub->pfss_flags &
1858             (PFSS_PAWS_IDLED|PFSS_TIMESTAMP))) {
1859                 getmicrouptime(&src->scrub->pfss_last);
1860                 if (SEQ_GEQ(tsval, src->scrub->pfss_tsval) ||
1861                     (src->scrub->pfss_flags & PFSS_PAWS) == 0)
1862                         src->scrub->pfss_tsval = tsval;
1863
1864                 if (tsecr) {
1865                         if (SEQ_GEQ(tsecr, src->scrub->pfss_tsecr) ||
1866                             (src->scrub->pfss_flags & PFSS_PAWS) == 0)
1867                                 src->scrub->pfss_tsecr = tsecr;
1868
1869                         if ((src->scrub->pfss_flags & PFSS_PAWS) == 0 &&
1870                             (SEQ_LT(tsval, src->scrub->pfss_tsval0) ||
1871                             src->scrub->pfss_tsval0 == 0)) {
1872                                 /* tsval0 MUST be the lowest timestamp */
1873                                 src->scrub->pfss_tsval0 = tsval;
1874                         }
1875
1876                         /* Only fully initialized after a TS gets echoed */
1877                         if ((src->scrub->pfss_flags & PFSS_PAWS) == 0)
1878                                 src->scrub->pfss_flags |= PFSS_PAWS;
1879                 }
1880         }
1881
1882         /* I have a dream....  TCP segment reassembly.... */
1883         return (0);
1884 }
1885
1886 int
1887 pf_normalize_tcpopt(struct pf_rule *r, struct mbuf *m, struct tcphdr *th,
1888     int off, sa_family_t af)
1889 {
1890         u_int16_t       *mss;
1891         int              thoff;
1892         int              opt, cnt, optlen = 0;
1893         int              rewrite = 0;
1894         u_char           opts[TCP_MAXOLEN];
1895         u_char          *optp = opts;
1896
1897         thoff = th->th_off << 2;
1898         cnt = thoff - sizeof(struct tcphdr);
1899
1900         if (cnt > 0 && !pf_pull_hdr(m, off + sizeof(*th), opts, cnt,
1901             NULL, NULL, af))
1902                 return (rewrite);
1903
1904         for (; cnt > 0; cnt -= optlen, optp += optlen) {
1905                 opt = optp[0];
1906                 if (opt == TCPOPT_EOL)
1907                         break;
1908                 if (opt == TCPOPT_NOP)
1909                         optlen = 1;
1910                 else {
1911                         if (cnt < 2)
1912                                 break;
1913                         optlen = optp[1];
1914                         if (optlen < 2 || optlen > cnt)
1915                                 break;
1916                 }
1917                 switch (opt) {
1918                 case TCPOPT_MAXSEG:
1919                         mss = (u_int16_t *)(optp + 2);
1920                         if ((ntohs(*mss)) > r->max_mss) {
1921                                 th->th_sum = pf_cksum_fixup(th->th_sum,
1922                                     *mss, htons(r->max_mss), 0);
1923                                 *mss = htons(r->max_mss);
1924                                 rewrite = 1;
1925                         }
1926                         break;
1927                 default:
1928                         break;
1929                 }
1930         }
1931
1932         if (rewrite)
1933                 m_copyback(m, off + sizeof(*th), thoff - sizeof(*th), opts);
1934
1935         return (rewrite);
1936 }