2 * Copyright (c) 1997, 1998, 1999
3 * Bill Paul <wpaul@ee.columbia.edu>. All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 * must display the following acknowledgement:
15 * This product includes software developed by Bill Paul.
16 * 4. Neither the name of the author nor the names of any co-contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
20 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30 * THE POSSIBILITY OF SUCH DAMAGE.
32 * $FreeBSD: src/sys/pci/if_dc.c,v 1.9.2.45 2003/06/08 14:31:53 mux Exp $
33 * $DragonFly: src/sys/dev/netif/dc/if_dc.c,v 1.29 2005/05/31 07:46:17 joerg Exp $
37 * DEC "tulip" clone ethernet driver. Supports the DEC/Intel 21143
38 * series chips and several workalikes including the following:
40 * Macronix 98713/98715/98725/98727/98732 PMAC (www.macronix.com)
41 * Macronix/Lite-On 82c115 PNIC II (www.macronix.com)
42 * Lite-On 82c168/82c169 PNIC (www.litecom.com)
43 * ASIX Electronics AX88140A (www.asix.com.tw)
44 * ASIX Electronics AX88141 (www.asix.com.tw)
45 * ADMtek AL981 (www.admtek.com.tw)
46 * ADMtek AN985 (www.admtek.com.tw)
47 * Davicom DM9100, DM9102, DM9102A (www.davicom8.com)
48 * Accton EN1217 (www.accton.com)
49 * Conexant LANfinity (www.conexant.com)
51 * Datasheets for the 21143 are available at developer.intel.com.
52 * Datasheets for the clone parts can be found at their respective sites.
53 * (Except for the PNIC; see www.freebsd.org/~wpaul/PNIC/pnic.ps.gz.)
54 * The PNIC II is essentially a Macronix 98715A chip; the only difference
55 * worth noting is that its multicast hash table is only 128 bits wide
58 * Written by Bill Paul <wpaul@ee.columbia.edu>
59 * Electrical Engineering Department
60 * Columbia University, New York City
64 * The Intel 21143 is the successor to the DEC 21140. It is basically
65 * the same as the 21140 but with a few new features. The 21143 supports
66 * three kinds of media attachments:
68 * o MII port, for 10Mbps and 100Mbps support and NWAY
69 * autonegotiation provided by an external PHY.
70 * o SYM port, for symbol mode 100Mbps support.
74 * The 100Mbps SYM port and 10baseT port can be used together in
75 * combination with the internal NWAY support to create a 10/100
76 * autosensing configuration.
78 * Note that not all tulip workalikes are handled in this driver: we only
79 * deal with those which are relatively well behaved. The Winbond is
80 * handled separately due to its different register offsets and the
81 * special handling needed for its various bugs. The PNIC is handled
82 * here, but I'm not thrilled about it.
84 * All of the workalike chips use some form of MII transceiver support
85 * with the exception of the Macronix chips, which also have a SYM port.
86 * The ASIX AX88140A is also documented to have a SYM port, but all
87 * the cards I've seen use an MII transceiver, probably because the
88 * AX88140A doesn't support internal NWAY.
91 #include <sys/param.h>
92 #include <sys/systm.h>
93 #include <sys/sockio.h>
95 #include <sys/malloc.h>
96 #include <sys/kernel.h>
97 #include <sys/socket.h>
98 #include <sys/sysctl.h>
101 #include <net/ifq_var.h>
102 #include <net/if_arp.h>
103 #include <net/ethernet.h>
104 #include <net/if_dl.h>
105 #include <net/if_media.h>
106 #include <net/if_types.h>
107 #include <net/vlan/if_vlan_var.h>
111 #include <vm/vm.h> /* for vtophys */
112 #include <vm/pmap.h> /* for vtophys */
113 #include <machine/clock.h> /* for DELAY */
114 #include <machine/bus_pio.h>
115 #include <machine/bus_memio.h>
116 #include <machine/bus.h>
117 #include <machine/resource.h>
119 #include <sys/rman.h>
121 #include "../mii_layer/mii.h"
122 #include "../mii_layer/miivar.h"
124 #include <bus/pci/pcireg.h>
125 #include <bus/pci/pcivar.h>
127 #define DC_USEIOSPACE
129 #include "if_dcreg.h"
131 /* "controller miibus0" required. See GENERIC if you get errors here. */
132 #include "miibus_if.h"
135 * Various supported device vendors/types and their names.
137 static struct dc_type dc_devs[] = {
138 { DC_VENDORID_DEC, DC_DEVICEID_21143,
139 "Intel 21143 10/100BaseTX" },
140 { DC_VENDORID_DAVICOM, DC_DEVICEID_DM9009,
141 "Davicom DM9009 10/100BaseTX" },
142 { DC_VENDORID_DAVICOM, DC_DEVICEID_DM9100,
143 "Davicom DM9100 10/100BaseTX" },
144 { DC_VENDORID_DAVICOM, DC_DEVICEID_DM9102,
145 "Davicom DM9102 10/100BaseTX" },
146 { DC_VENDORID_DAVICOM, DC_DEVICEID_DM9102,
147 "Davicom DM9102A 10/100BaseTX" },
148 { DC_VENDORID_ADMTEK, DC_DEVICEID_AL981,
149 "ADMtek AL981 10/100BaseTX" },
150 { DC_VENDORID_ADMTEK, DC_DEVICEID_AN985,
151 "ADMtek AN985 10/100BaseTX" },
152 { DC_VENDORID_ASIX, DC_DEVICEID_AX88140A,
153 "ASIX AX88140A 10/100BaseTX" },
154 { DC_VENDORID_ASIX, DC_DEVICEID_AX88140A,
155 "ASIX AX88141 10/100BaseTX" },
156 { DC_VENDORID_MX, DC_DEVICEID_98713,
157 "Macronix 98713 10/100BaseTX" },
158 { DC_VENDORID_MX, DC_DEVICEID_98713,
159 "Macronix 98713A 10/100BaseTX" },
160 { DC_VENDORID_CP, DC_DEVICEID_98713_CP,
161 "Compex RL100-TX 10/100BaseTX" },
162 { DC_VENDORID_CP, DC_DEVICEID_98713_CP,
163 "Compex RL100-TX 10/100BaseTX" },
164 { DC_VENDORID_MX, DC_DEVICEID_987x5,
165 "Macronix 98715/98715A 10/100BaseTX" },
166 { DC_VENDORID_MX, DC_DEVICEID_987x5,
167 "Macronix 98715AEC-C 10/100BaseTX" },
168 { DC_VENDORID_MX, DC_DEVICEID_987x5,
169 "Macronix 98725 10/100BaseTX" },
170 { DC_VENDORID_MX, DC_DEVICEID_98727,
171 "Macronix 98727/98732 10/100BaseTX" },
172 { DC_VENDORID_LO, DC_DEVICEID_82C115,
173 "LC82C115 PNIC II 10/100BaseTX" },
174 { DC_VENDORID_LO, DC_DEVICEID_82C168,
175 "82c168 PNIC 10/100BaseTX" },
176 { DC_VENDORID_LO, DC_DEVICEID_82C168,
177 "82c169 PNIC 10/100BaseTX" },
178 { DC_VENDORID_ACCTON, DC_DEVICEID_EN1217,
179 "Accton EN1217 10/100BaseTX" },
180 { DC_VENDORID_ACCTON, DC_DEVICEID_EN2242,
181 "Accton EN2242 MiniPCI 10/100BaseTX" },
182 { DC_VENDORID_CONEXANT, DC_DEVICEID_RS7112,
183 "Conexant LANfinity MiniPCI 10/100BaseTX" },
184 { DC_VENDORID_3COM, DC_DEVICEID_3CSOHOB,
185 "3Com OfficeConnect 10/100B" },
189 static int dc_probe (device_t);
190 static int dc_attach (device_t);
191 static int dc_detach (device_t);
192 static int dc_suspend (device_t);
193 static int dc_resume (device_t);
194 static void dc_acpi (device_t);
195 static struct dc_type *dc_devtype (device_t);
196 static int dc_newbuf (struct dc_softc *, int, struct mbuf *);
197 static int dc_encap (struct dc_softc *, struct mbuf *,
199 static void dc_pnic_rx_bug_war (struct dc_softc *, int);
200 static int dc_rx_resync (struct dc_softc *);
201 static void dc_rxeof (struct dc_softc *);
202 static void dc_txeof (struct dc_softc *);
203 static void dc_tick (void *);
204 static void dc_tx_underrun (struct dc_softc *);
205 static void dc_intr (void *);
206 static void dc_start (struct ifnet *);
207 static int dc_ioctl (struct ifnet *, u_long, caddr_t,
209 #ifdef DEVICE_POLLING
210 static void dc_poll (struct ifnet *ifp, enum poll_cmd cmd,
213 static void dc_init (void *);
214 static void dc_stop (struct dc_softc *);
215 static void dc_watchdog (struct ifnet *);
216 static void dc_shutdown (device_t);
217 static int dc_ifmedia_upd (struct ifnet *);
218 static void dc_ifmedia_sts (struct ifnet *, struct ifmediareq *);
220 static void dc_delay (struct dc_softc *);
221 static void dc_eeprom_idle (struct dc_softc *);
222 static void dc_eeprom_putbyte (struct dc_softc *, int);
223 static void dc_eeprom_getword (struct dc_softc *, int, u_int16_t *);
224 static void dc_eeprom_getword_pnic
225 (struct dc_softc *, int, u_int16_t *);
226 static void dc_eeprom_width (struct dc_softc *);
227 static void dc_read_eeprom (struct dc_softc *, caddr_t, int,
230 static void dc_mii_writebit (struct dc_softc *, int);
231 static int dc_mii_readbit (struct dc_softc *);
232 static void dc_mii_sync (struct dc_softc *);
233 static void dc_mii_send (struct dc_softc *, u_int32_t, int);
234 static int dc_mii_readreg (struct dc_softc *, struct dc_mii_frame *);
235 static int dc_mii_writereg (struct dc_softc *, struct dc_mii_frame *);
236 static int dc_miibus_readreg (device_t, int, int);
237 static int dc_miibus_writereg (device_t, int, int, int);
238 static void dc_miibus_statchg (device_t);
239 static void dc_miibus_mediainit (device_t);
241 static void dc_setcfg (struct dc_softc *, int);
242 static u_int32_t dc_crc_le (struct dc_softc *, c_caddr_t);
243 static u_int32_t dc_crc_be (caddr_t);
244 static void dc_setfilt_21143 (struct dc_softc *);
245 static void dc_setfilt_asix (struct dc_softc *);
246 static void dc_setfilt_admtek (struct dc_softc *);
248 static void dc_setfilt (struct dc_softc *);
250 static void dc_reset (struct dc_softc *);
251 static int dc_list_rx_init (struct dc_softc *);
252 static int dc_list_tx_init (struct dc_softc *);
254 static void dc_read_srom (struct dc_softc *, int);
255 static void dc_parse_21143_srom (struct dc_softc *);
256 static void dc_decode_leaf_sia (struct dc_softc *,
257 struct dc_eblock_sia *);
258 static void dc_decode_leaf_mii (struct dc_softc *,
259 struct dc_eblock_mii *);
260 static void dc_decode_leaf_sym (struct dc_softc *,
261 struct dc_eblock_sym *);
262 static void dc_apply_fixup (struct dc_softc *, int);
265 #define DC_RES SYS_RES_IOPORT
266 #define DC_RID DC_PCI_CFBIO
268 #define DC_RES SYS_RES_MEMORY
269 #define DC_RID DC_PCI_CFBMA
272 static device_method_t dc_methods[] = {
273 /* Device interface */
274 DEVMETHOD(device_probe, dc_probe),
275 DEVMETHOD(device_attach, dc_attach),
276 DEVMETHOD(device_detach, dc_detach),
277 DEVMETHOD(device_suspend, dc_suspend),
278 DEVMETHOD(device_resume, dc_resume),
279 DEVMETHOD(device_shutdown, dc_shutdown),
282 DEVMETHOD(bus_print_child, bus_generic_print_child),
283 DEVMETHOD(bus_driver_added, bus_generic_driver_added),
286 DEVMETHOD(miibus_readreg, dc_miibus_readreg),
287 DEVMETHOD(miibus_writereg, dc_miibus_writereg),
288 DEVMETHOD(miibus_statchg, dc_miibus_statchg),
289 DEVMETHOD(miibus_mediainit, dc_miibus_mediainit),
294 static driver_t dc_driver = {
297 sizeof(struct dc_softc)
300 static devclass_t dc_devclass;
303 static int dc_quick=1;
304 SYSCTL_INT(_hw, OID_AUTO, dc_quick, CTLFLAG_RW,
305 &dc_quick,0,"do not mdevget in dc driver");
308 DECLARE_DUMMY_MODULE(if_dc);
309 DRIVER_MODULE(if_dc, pci, dc_driver, dc_devclass, 0, 0);
310 DRIVER_MODULE(miibus, dc, miibus_driver, miibus_devclass, 0, 0);
312 #define DC_SETBIT(sc, reg, x) \
313 CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | (x))
315 #define DC_CLRBIT(sc, reg, x) \
316 CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~(x))
318 #define SIO_SET(x) DC_SETBIT(sc, DC_SIO, (x))
319 #define SIO_CLR(x) DC_CLRBIT(sc, DC_SIO, (x))
321 static void dc_delay(sc)
326 for (idx = (300 / 33) + 1; idx > 0; idx--)
327 CSR_READ_4(sc, DC_BUSCTL);
330 static void dc_eeprom_width(sc)
335 /* Force EEPROM to idle state. */
338 /* Enter EEPROM access mode. */
339 CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
341 DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
343 DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
345 DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
350 DC_SETBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
352 DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
354 DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
356 DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
360 for (i = 1; i <= 12; i++) {
361 DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
363 if (!(CSR_READ_4(sc, DC_SIO) & DC_SIO_EE_DATAOUT)) {
364 DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
368 DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
372 /* Turn off EEPROM access mode. */
380 /* Enter EEPROM access mode. */
381 CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
383 DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
385 DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
387 DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
390 /* Turn off EEPROM access mode. */
394 static void dc_eeprom_idle(sc)
399 CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
401 DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
403 DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
405 DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
408 for (i = 0; i < 25; i++) {
409 DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
411 DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
415 DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
417 DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CS);
419 CSR_WRITE_4(sc, DC_SIO, 0x00000000);
425 * Send a read command and address to the EEPROM, check for ACK.
427 static void dc_eeprom_putbyte(sc, addr)
433 d = DC_EECMD_READ >> 6;
436 DC_SETBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
438 DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
440 DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
442 DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
447 * Feed in each bit and strobe the clock.
449 for (i = sc->dc_romwidth; i--;) {
450 if (addr & (1 << i)) {
451 SIO_SET(DC_SIO_EE_DATAIN);
453 SIO_CLR(DC_SIO_EE_DATAIN);
456 SIO_SET(DC_SIO_EE_CLK);
458 SIO_CLR(DC_SIO_EE_CLK);
466 * Read a word of data stored in the EEPROM at address 'addr.'
467 * The PNIC 82c168/82c169 has its own non-standard way to read
470 static void dc_eeprom_getword_pnic(sc, addr, dest)
478 CSR_WRITE_4(sc, DC_PN_SIOCTL, DC_PN_EEOPCODE_READ|addr);
480 for (i = 0; i < DC_TIMEOUT; i++) {
482 r = CSR_READ_4(sc, DC_SIO);
483 if (!(r & DC_PN_SIOCTL_BUSY)) {
484 *dest = (u_int16_t)(r & 0xFFFF);
493 * Read a word of data stored in the EEPROM at address 'addr.'
495 static void dc_eeprom_getword(sc, addr, dest)
503 /* Force EEPROM to idle state. */
506 /* Enter EEPROM access mode. */
507 CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
509 DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
511 DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
513 DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
517 * Send address of word we want to read.
519 dc_eeprom_putbyte(sc, addr);
522 * Start reading bits from EEPROM.
524 for (i = 0x8000; i; i >>= 1) {
525 SIO_SET(DC_SIO_EE_CLK);
527 if (CSR_READ_4(sc, DC_SIO) & DC_SIO_EE_DATAOUT)
530 SIO_CLR(DC_SIO_EE_CLK);
534 /* Turn off EEPROM access mode. */
543 * Read a sequence of words from the EEPROM.
545 static void dc_read_eeprom(sc, dest, off, cnt, swap)
553 u_int16_t word = 0, *ptr;
555 for (i = 0; i < cnt; i++) {
557 dc_eeprom_getword_pnic(sc, off + i, &word);
559 dc_eeprom_getword(sc, off + i, &word);
560 ptr = (u_int16_t *)(dest + (i * 2));
571 * The following two routines are taken from the Macronix 98713
572 * Application Notes pp.19-21.
575 * Write a bit to the MII bus.
577 static void dc_mii_writebit(sc, bit)
582 CSR_WRITE_4(sc, DC_SIO,
583 DC_SIO_ROMCTL_WRITE|DC_SIO_MII_DATAOUT);
585 CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_WRITE);
587 DC_SETBIT(sc, DC_SIO, DC_SIO_MII_CLK);
588 DC_CLRBIT(sc, DC_SIO, DC_SIO_MII_CLK);
594 * Read a bit from the MII bus.
596 static int dc_mii_readbit(sc)
599 CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_READ|DC_SIO_MII_DIR);
600 CSR_READ_4(sc, DC_SIO);
601 DC_SETBIT(sc, DC_SIO, DC_SIO_MII_CLK);
602 DC_CLRBIT(sc, DC_SIO, DC_SIO_MII_CLK);
603 if (CSR_READ_4(sc, DC_SIO) & DC_SIO_MII_DATAIN)
610 * Sync the PHYs by setting data bit and strobing the clock 32 times.
612 static void dc_mii_sync(sc)
617 CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_WRITE);
619 for (i = 0; i < 32; i++)
620 dc_mii_writebit(sc, 1);
626 * Clock a series of bits through the MII.
628 static void dc_mii_send(sc, bits, cnt)
635 for (i = (0x1 << (cnt - 1)); i; i >>= 1)
636 dc_mii_writebit(sc, bits & i);
640 * Read an PHY register through the MII.
642 static int dc_mii_readreg(sc, frame)
644 struct dc_mii_frame *frame;
652 * Set up frame for RX.
654 frame->mii_stdelim = DC_MII_STARTDELIM;
655 frame->mii_opcode = DC_MII_READOP;
656 frame->mii_turnaround = 0;
665 * Send command/address info.
667 dc_mii_send(sc, frame->mii_stdelim, 2);
668 dc_mii_send(sc, frame->mii_opcode, 2);
669 dc_mii_send(sc, frame->mii_phyaddr, 5);
670 dc_mii_send(sc, frame->mii_regaddr, 5);
674 dc_mii_writebit(sc, 1);
675 dc_mii_writebit(sc, 0);
679 ack = dc_mii_readbit(sc);
682 * Now try reading data bits. If the ack failed, we still
683 * need to clock through 16 cycles to keep the PHY(s) in sync.
686 for(i = 0; i < 16; i++) {
692 for (i = 0x8000; i; i >>= 1) {
694 if (dc_mii_readbit(sc))
695 frame->mii_data |= i;
701 dc_mii_writebit(sc, 0);
702 dc_mii_writebit(sc, 0);
712 * Write to a PHY register through the MII.
714 static int dc_mii_writereg(sc, frame)
716 struct dc_mii_frame *frame;
723 * Set up frame for TX.
726 frame->mii_stdelim = DC_MII_STARTDELIM;
727 frame->mii_opcode = DC_MII_WRITEOP;
728 frame->mii_turnaround = DC_MII_TURNAROUND;
735 dc_mii_send(sc, frame->mii_stdelim, 2);
736 dc_mii_send(sc, frame->mii_opcode, 2);
737 dc_mii_send(sc, frame->mii_phyaddr, 5);
738 dc_mii_send(sc, frame->mii_regaddr, 5);
739 dc_mii_send(sc, frame->mii_turnaround, 2);
740 dc_mii_send(sc, frame->mii_data, 16);
743 dc_mii_writebit(sc, 0);
744 dc_mii_writebit(sc, 0);
751 static int dc_miibus_readreg(dev, phy, reg)
755 struct dc_mii_frame frame;
757 int i, rval, phy_reg = 0;
759 sc = device_get_softc(dev);
760 bzero((char *)&frame, sizeof(frame));
763 * Note: both the AL981 and AN985 have internal PHYs,
764 * however the AL981 provides direct access to the PHY
765 * registers while the AN985 uses a serial MII interface.
766 * The AN985's MII interface is also buggy in that you
767 * can read from any MII address (0 to 31), but only address 1
768 * behaves normally. To deal with both cases, we pretend
769 * that the PHY is at MII address 1.
771 if (DC_IS_ADMTEK(sc) && phy != DC_ADMTEK_PHYADDR)
775 * Note: the ukphy probes of the RS7112 report a PHY at
776 * MII address 0 (possibly HomePNA?) and 1 (ethernet)
777 * so we only respond to correct one.
779 if (DC_IS_CONEXANT(sc) && phy != DC_CONEXANT_PHYADDR)
782 if (sc->dc_pmode != DC_PMODE_MII) {
783 if (phy == (MII_NPHY - 1)) {
787 * Fake something to make the probe
788 * code think there's a PHY here.
790 return(BMSR_MEDIAMASK);
794 return(DC_VENDORID_LO);
795 return(DC_VENDORID_DEC);
799 return(DC_DEVICEID_82C168);
800 return(DC_DEVICEID_21143);
810 if (DC_IS_PNIC(sc)) {
811 CSR_WRITE_4(sc, DC_PN_MII, DC_PN_MIIOPCODE_READ |
812 (phy << 23) | (reg << 18));
813 for (i = 0; i < DC_TIMEOUT; i++) {
815 rval = CSR_READ_4(sc, DC_PN_MII);
816 if (!(rval & DC_PN_MII_BUSY)) {
818 return(rval == 0xFFFF ? 0 : rval);
824 if (DC_IS_COMET(sc)) {
827 phy_reg = DC_AL_BMCR;
830 phy_reg = DC_AL_BMSR;
833 phy_reg = DC_AL_VENID;
836 phy_reg = DC_AL_DEVID;
839 phy_reg = DC_AL_ANAR;
842 phy_reg = DC_AL_LPAR;
845 phy_reg = DC_AL_ANER;
848 if_printf(&sc->arpcom.ac_if,
849 "phy_read: bad phy register %x\n", reg);
854 rval = CSR_READ_4(sc, phy_reg) & 0x0000FFFF;
861 frame.mii_phyaddr = phy;
862 frame.mii_regaddr = reg;
863 if (sc->dc_type == DC_TYPE_98713) {
864 phy_reg = CSR_READ_4(sc, DC_NETCFG);
865 CSR_WRITE_4(sc, DC_NETCFG, phy_reg & ~DC_NETCFG_PORTSEL);
867 dc_mii_readreg(sc, &frame);
868 if (sc->dc_type == DC_TYPE_98713)
869 CSR_WRITE_4(sc, DC_NETCFG, phy_reg);
871 return(frame.mii_data);
874 static int dc_miibus_writereg(dev, phy, reg, data)
879 struct dc_mii_frame frame;
882 sc = device_get_softc(dev);
883 bzero((char *)&frame, sizeof(frame));
885 if (DC_IS_ADMTEK(sc) && phy != DC_ADMTEK_PHYADDR)
888 if (DC_IS_CONEXANT(sc) && phy != DC_CONEXANT_PHYADDR)
891 if (DC_IS_PNIC(sc)) {
892 CSR_WRITE_4(sc, DC_PN_MII, DC_PN_MIIOPCODE_WRITE |
893 (phy << 23) | (reg << 10) | data);
894 for (i = 0; i < DC_TIMEOUT; i++) {
895 if (!(CSR_READ_4(sc, DC_PN_MII) & DC_PN_MII_BUSY))
901 if (DC_IS_COMET(sc)) {
904 phy_reg = DC_AL_BMCR;
907 phy_reg = DC_AL_BMSR;
910 phy_reg = DC_AL_VENID;
913 phy_reg = DC_AL_DEVID;
916 phy_reg = DC_AL_ANAR;
919 phy_reg = DC_AL_LPAR;
922 phy_reg = DC_AL_ANER;
925 if_printf(&sc->arpcom.ac_if,
926 "phy_write: bad phy register %x\n", reg);
931 CSR_WRITE_4(sc, phy_reg, data);
935 frame.mii_phyaddr = phy;
936 frame.mii_regaddr = reg;
937 frame.mii_data = data;
939 if (sc->dc_type == DC_TYPE_98713) {
940 phy_reg = CSR_READ_4(sc, DC_NETCFG);
941 CSR_WRITE_4(sc, DC_NETCFG, phy_reg & ~DC_NETCFG_PORTSEL);
943 dc_mii_writereg(sc, &frame);
944 if (sc->dc_type == DC_TYPE_98713)
945 CSR_WRITE_4(sc, DC_NETCFG, phy_reg);
950 static void dc_miibus_statchg(dev)
954 struct mii_data *mii;
957 sc = device_get_softc(dev);
958 if (DC_IS_ADMTEK(sc))
961 mii = device_get_softc(sc->dc_miibus);
962 ifm = &mii->mii_media;
963 if (DC_IS_DAVICOM(sc) &&
964 IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1) {
965 dc_setcfg(sc, ifm->ifm_media);
966 sc->dc_if_media = ifm->ifm_media;
968 dc_setcfg(sc, mii->mii_media_active);
969 sc->dc_if_media = mii->mii_media_active;
976 * Special support for DM9102A cards with HomePNA PHYs. Note:
977 * with the Davicom DM9102A/DM9801 eval board that I have, it seems
978 * to be impossible to talk to the management interface of the DM9801
979 * PHY (its MDIO pin is not connected to anything). Consequently,
980 * the driver has to just 'know' about the additional mode and deal
981 * with it itself. *sigh*
983 static void dc_miibus_mediainit(dev)
987 struct mii_data *mii;
991 rev = pci_read_config(dev, DC_PCI_CFRV, 4) & 0xFF;
993 sc = device_get_softc(dev);
994 mii = device_get_softc(sc->dc_miibus);
995 ifm = &mii->mii_media;
997 if (DC_IS_DAVICOM(sc) && rev >= DC_REVISION_DM9102A)
998 ifmedia_add(ifm, IFM_ETHER | IFM_HPNA_1, 0, NULL);
1003 #define DC_POLY 0xEDB88320
1004 #define DC_BITS_512 9
1005 #define DC_BITS_128 7
1006 #define DC_BITS_64 6
1008 static u_int32_t dc_crc_le(sc, addr)
1009 struct dc_softc *sc;
1012 u_int32_t idx, bit, data, crc;
1014 /* Compute CRC for the address value. */
1015 crc = 0xFFFFFFFF; /* initial value */
1017 for (idx = 0; idx < 6; idx++) {
1018 for (data = *addr++, bit = 0; bit < 8; bit++, data >>= 1)
1019 crc = (crc >> 1) ^ (((crc ^ data) & 1) ? DC_POLY : 0);
1023 * The hash table on the PNIC II and the MX98715AEC-C/D/E
1024 * chips is only 128 bits wide.
1026 if (sc->dc_flags & DC_128BIT_HASH)
1027 return (crc & ((1 << DC_BITS_128) - 1));
1029 /* The hash table on the MX98715BEC is only 64 bits wide. */
1030 if (sc->dc_flags & DC_64BIT_HASH)
1031 return (crc & ((1 << DC_BITS_64) - 1));
1033 return (crc & ((1 << DC_BITS_512) - 1));
1037 * Calculate CRC of a multicast group address, return the lower 6 bits.
1039 static u_int32_t dc_crc_be(addr)
1042 u_int32_t crc, carry;
1046 /* Compute CRC for the address value. */
1047 crc = 0xFFFFFFFF; /* initial value */
1049 for (i = 0; i < 6; i++) {
1051 for (j = 0; j < 8; j++) {
1052 carry = ((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01);
1056 crc = (crc ^ 0x04c11db6) | carry;
1060 /* return the filter bit position */
1061 return((crc >> 26) & 0x0000003F);
1065 * 21143-style RX filter setup routine. Filter programming is done by
1066 * downloading a special setup frame into the TX engine. 21143, Macronix,
1067 * PNIC, PNIC II and Davicom chips are programmed this way.
1069 * We always program the chip using 'hash perfect' mode, i.e. one perfect
1070 * address (our node address) and a 512-bit hash filter for multicast
1071 * frames. We also sneak the broadcast address into the hash filter since
1074 void dc_setfilt_21143(sc)
1075 struct dc_softc *sc;
1077 struct dc_desc *sframe;
1079 struct ifmultiaddr *ifma;
1083 ifp = &sc->arpcom.ac_if;
1085 i = sc->dc_cdata.dc_tx_prod;
1086 DC_INC(sc->dc_cdata.dc_tx_prod, DC_TX_LIST_CNT);
1087 sc->dc_cdata.dc_tx_cnt++;
1088 sframe = &sc->dc_ldata->dc_tx_list[i];
1089 sp = (u_int32_t *)&sc->dc_cdata.dc_sbuf;
1090 bzero((char *)sp, DC_SFRAME_LEN);
1092 sframe->dc_data = vtophys(&sc->dc_cdata.dc_sbuf);
1093 sframe->dc_ctl = DC_SFRAME_LEN | DC_TXCTL_SETUP | DC_TXCTL_TLINK |
1094 DC_FILTER_HASHPERF | DC_TXCTL_FINT;
1096 sc->dc_cdata.dc_tx_chain[i] = (struct mbuf *)&sc->dc_cdata.dc_sbuf;
1098 /* If we want promiscuous mode, set the allframes bit. */
1099 if (ifp->if_flags & IFF_PROMISC)
1100 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1102 DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1104 if (ifp->if_flags & IFF_ALLMULTI)
1105 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1107 DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1109 for (ifma = ifp->if_multiaddrs.lh_first; ifma != NULL;
1110 ifma = ifma->ifma_link.le_next) {
1111 if (ifma->ifma_addr->sa_family != AF_LINK)
1114 LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1115 sp[h >> 4] |= 1 << (h & 0xF);
1118 if (ifp->if_flags & IFF_BROADCAST) {
1119 h = dc_crc_le(sc, ifp->if_broadcastaddr);
1120 sp[h >> 4] |= 1 << (h & 0xF);
1123 /* Set our MAC address */
1124 sp[39] = ((u_int16_t *)sc->arpcom.ac_enaddr)[0];
1125 sp[40] = ((u_int16_t *)sc->arpcom.ac_enaddr)[1];
1126 sp[41] = ((u_int16_t *)sc->arpcom.ac_enaddr)[2];
1128 sframe->dc_status = DC_TXSTAT_OWN;
1129 CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
1132 * The PNIC takes an exceedingly long time to process its
1133 * setup frame; wait 10ms after posting the setup frame
1134 * before proceeding, just so it has time to swallow its
1144 void dc_setfilt_admtek(sc)
1145 struct dc_softc *sc;
1149 u_int32_t hashes[2] = { 0, 0 };
1150 struct ifmultiaddr *ifma;
1152 ifp = &sc->arpcom.ac_if;
1154 /* Init our MAC address */
1155 CSR_WRITE_4(sc, DC_AL_PAR0, *(u_int32_t *)(&sc->arpcom.ac_enaddr[0]));
1156 CSR_WRITE_4(sc, DC_AL_PAR1, *(u_int32_t *)(&sc->arpcom.ac_enaddr[4]));
1158 /* If we want promiscuous mode, set the allframes bit. */
1159 if (ifp->if_flags & IFF_PROMISC)
1160 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1162 DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1164 if (ifp->if_flags & IFF_ALLMULTI)
1165 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1167 DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1169 /* first, zot all the existing hash bits */
1170 CSR_WRITE_4(sc, DC_AL_MAR0, 0);
1171 CSR_WRITE_4(sc, DC_AL_MAR1, 0);
1174 * If we're already in promisc or allmulti mode, we
1175 * don't have to bother programming the multicast filter.
1177 if (ifp->if_flags & (IFF_PROMISC|IFF_ALLMULTI))
1180 /* now program new ones */
1181 for (ifma = ifp->if_multiaddrs.lh_first; ifma != NULL;
1182 ifma = ifma->ifma_link.le_next) {
1183 if (ifma->ifma_addr->sa_family != AF_LINK)
1185 if (DC_IS_CENTAUR(sc))
1186 h = dc_crc_le(sc, LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1188 h = dc_crc_be(LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1190 hashes[0] |= (1 << h);
1192 hashes[1] |= (1 << (h - 32));
1195 CSR_WRITE_4(sc, DC_AL_MAR0, hashes[0]);
1196 CSR_WRITE_4(sc, DC_AL_MAR1, hashes[1]);
1201 void dc_setfilt_asix(sc)
1202 struct dc_softc *sc;
1206 u_int32_t hashes[2] = { 0, 0 };
1207 struct ifmultiaddr *ifma;
1209 ifp = &sc->arpcom.ac_if;
1211 /* Init our MAC address */
1212 CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_PAR0);
1213 CSR_WRITE_4(sc, DC_AX_FILTDATA,
1214 *(u_int32_t *)(&sc->arpcom.ac_enaddr[0]));
1215 CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_PAR1);
1216 CSR_WRITE_4(sc, DC_AX_FILTDATA,
1217 *(u_int32_t *)(&sc->arpcom.ac_enaddr[4]));
1219 /* If we want promiscuous mode, set the allframes bit. */
1220 if (ifp->if_flags & IFF_PROMISC)
1221 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1223 DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1225 if (ifp->if_flags & IFF_ALLMULTI)
1226 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1228 DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1231 * The ASIX chip has a special bit to enable reception
1232 * of broadcast frames.
1234 if (ifp->if_flags & IFF_BROADCAST)
1235 DC_SETBIT(sc, DC_NETCFG, DC_AX_NETCFG_RX_BROAD);
1237 DC_CLRBIT(sc, DC_NETCFG, DC_AX_NETCFG_RX_BROAD);
1239 /* first, zot all the existing hash bits */
1240 CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR0);
1241 CSR_WRITE_4(sc, DC_AX_FILTDATA, 0);
1242 CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR1);
1243 CSR_WRITE_4(sc, DC_AX_FILTDATA, 0);
1246 * If we're already in promisc or allmulti mode, we
1247 * don't have to bother programming the multicast filter.
1249 if (ifp->if_flags & (IFF_PROMISC|IFF_ALLMULTI))
1252 /* now program new ones */
1253 for (ifma = ifp->if_multiaddrs.lh_first; ifma != NULL;
1254 ifma = ifma->ifma_link.le_next) {
1255 if (ifma->ifma_addr->sa_family != AF_LINK)
1257 h = dc_crc_be(LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1259 hashes[0] |= (1 << h);
1261 hashes[1] |= (1 << (h - 32));
1264 CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR0);
1265 CSR_WRITE_4(sc, DC_AX_FILTDATA, hashes[0]);
1266 CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR1);
1267 CSR_WRITE_4(sc, DC_AX_FILTDATA, hashes[1]);
1272 static void dc_setfilt(sc)
1273 struct dc_softc *sc;
1275 if (DC_IS_INTEL(sc) || DC_IS_MACRONIX(sc) || DC_IS_PNIC(sc) ||
1276 DC_IS_PNICII(sc) || DC_IS_DAVICOM(sc) || DC_IS_CONEXANT(sc))
1277 dc_setfilt_21143(sc);
1280 dc_setfilt_asix(sc);
1282 if (DC_IS_ADMTEK(sc))
1283 dc_setfilt_admtek(sc);
1289 * In order to fiddle with the
1290 * 'full-duplex' and '100Mbps' bits in the netconfig register, we
1291 * first have to put the transmit and/or receive logic in the idle state.
1293 static void dc_setcfg(sc, media)
1294 struct dc_softc *sc;
1300 if (IFM_SUBTYPE(media) == IFM_NONE)
1303 if (CSR_READ_4(sc, DC_NETCFG) & (DC_NETCFG_TX_ON|DC_NETCFG_RX_ON)) {
1305 DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_TX_ON|DC_NETCFG_RX_ON));
1307 for (i = 0; i < DC_TIMEOUT; i++) {
1308 isr = CSR_READ_4(sc, DC_ISR);
1309 if (isr & DC_ISR_TX_IDLE ||
1310 (isr & DC_ISR_RX_STATE) == DC_RXSTATE_STOPPED)
1315 if (i == DC_TIMEOUT) {
1316 if_printf(&sc->arpcom.ac_if,
1317 "failed to force tx and rx to idle state\n");
1321 if (IFM_SUBTYPE(media) == IFM_100_TX) {
1322 DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_SPEEDSEL);
1323 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_HEARTBEAT);
1324 if (sc->dc_pmode == DC_PMODE_MII) {
1327 if (DC_IS_INTEL(sc)) {
1328 /* there's a write enable bit here that reads as 1 */
1329 watchdogreg = CSR_READ_4(sc, DC_WATCHDOG);
1330 watchdogreg &= ~DC_WDOG_CTLWREN;
1331 watchdogreg |= DC_WDOG_JABBERDIS;
1332 CSR_WRITE_4(sc, DC_WATCHDOG, watchdogreg);
1334 DC_SETBIT(sc, DC_WATCHDOG, DC_WDOG_JABBERDIS);
1336 DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_PCS|
1337 DC_NETCFG_PORTSEL|DC_NETCFG_SCRAMBLER));
1338 if (sc->dc_type == DC_TYPE_98713)
1339 DC_SETBIT(sc, DC_NETCFG, (DC_NETCFG_PCS|
1340 DC_NETCFG_SCRAMBLER));
1341 if (!DC_IS_DAVICOM(sc))
1342 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1343 DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
1344 if (DC_IS_INTEL(sc))
1345 dc_apply_fixup(sc, IFM_AUTO);
1347 if (DC_IS_PNIC(sc)) {
1348 DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_SPEEDSEL);
1349 DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_100TX_LOOP);
1350 DC_SETBIT(sc, DC_PN_NWAY, DC_PN_NWAY_SPEEDSEL);
1352 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1353 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1354 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_SCRAMBLER);
1355 if (DC_IS_INTEL(sc))
1357 (media & IFM_GMASK) == IFM_FDX ?
1358 IFM_100_TX|IFM_FDX : IFM_100_TX);
1362 if (IFM_SUBTYPE(media) == IFM_10_T) {
1363 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_SPEEDSEL);
1364 DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_HEARTBEAT);
1365 if (sc->dc_pmode == DC_PMODE_MII) {
1368 /* there's a write enable bit here that reads as 1 */
1369 if (DC_IS_INTEL(sc)) {
1370 watchdogreg = CSR_READ_4(sc, DC_WATCHDOG);
1371 watchdogreg &= ~DC_WDOG_CTLWREN;
1372 watchdogreg |= DC_WDOG_JABBERDIS;
1373 CSR_WRITE_4(sc, DC_WATCHDOG, watchdogreg);
1375 DC_SETBIT(sc, DC_WATCHDOG, DC_WDOG_JABBERDIS);
1377 DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_PCS|
1378 DC_NETCFG_PORTSEL|DC_NETCFG_SCRAMBLER));
1379 if (sc->dc_type == DC_TYPE_98713)
1380 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1381 if (!DC_IS_DAVICOM(sc))
1382 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1383 DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
1384 if (DC_IS_INTEL(sc))
1385 dc_apply_fixup(sc, IFM_AUTO);
1387 if (DC_IS_PNIC(sc)) {
1388 DC_PN_GPIO_CLRBIT(sc, DC_PN_GPIO_SPEEDSEL);
1389 DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_100TX_LOOP);
1390 DC_CLRBIT(sc, DC_PN_NWAY, DC_PN_NWAY_SPEEDSEL);
1392 DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1393 DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1394 DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_SCRAMBLER);
1395 if (DC_IS_INTEL(sc)) {
1396 DC_CLRBIT(sc, DC_SIARESET, DC_SIA_RESET);
1397 DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
1398 if ((media & IFM_GMASK) == IFM_FDX)
1399 DC_SETBIT(sc, DC_10BTCTRL, 0x7F3D);
1401 DC_SETBIT(sc, DC_10BTCTRL, 0x7F3F);
1402 DC_SETBIT(sc, DC_SIARESET, DC_SIA_RESET);
1403 DC_CLRBIT(sc, DC_10BTCTRL,
1404 DC_TCTL_AUTONEGENBL);
1406 (media & IFM_GMASK) == IFM_FDX ?
1407 IFM_10_T|IFM_FDX : IFM_10_T);
1414 * If this is a Davicom DM9102A card with a DM9801 HomePNA
1415 * PHY and we want HomePNA mode, set the portsel bit to turn
1416 * on the external MII port.
1418 if (DC_IS_DAVICOM(sc)) {
1419 if (IFM_SUBTYPE(media) == IFM_HPNA_1) {
1420 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1423 DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1427 if ((media & IFM_GMASK) == IFM_FDX) {
1428 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_FULLDUPLEX);
1429 if (sc->dc_pmode == DC_PMODE_SYM && DC_IS_PNIC(sc))
1430 DC_SETBIT(sc, DC_PN_NWAY, DC_PN_NWAY_DUPLEX);
1432 DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_FULLDUPLEX);
1433 if (sc->dc_pmode == DC_PMODE_SYM && DC_IS_PNIC(sc))
1434 DC_CLRBIT(sc, DC_PN_NWAY, DC_PN_NWAY_DUPLEX);
1438 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON|DC_NETCFG_RX_ON);
1443 static void dc_reset(sc)
1444 struct dc_softc *sc;
1448 DC_SETBIT(sc, DC_BUSCTL, DC_BUSCTL_RESET);
1450 for (i = 0; i < DC_TIMEOUT; i++) {
1452 if (!(CSR_READ_4(sc, DC_BUSCTL) & DC_BUSCTL_RESET))
1456 if (DC_IS_ASIX(sc) || DC_IS_ADMTEK(sc) || DC_IS_CONEXANT(sc)) {
1458 DC_CLRBIT(sc, DC_BUSCTL, DC_BUSCTL_RESET);
1462 if (i == DC_TIMEOUT)
1463 if_printf(&sc->arpcom.ac_if, "reset never completed!\n");
1465 /* Wait a little while for the chip to get its brains in order. */
1468 CSR_WRITE_4(sc, DC_IMR, 0x00000000);
1469 CSR_WRITE_4(sc, DC_BUSCTL, 0x00000000);
1470 CSR_WRITE_4(sc, DC_NETCFG, 0x00000000);
1473 * Bring the SIA out of reset. In some cases, it looks
1474 * like failing to unreset the SIA soon enough gets it
1475 * into a state where it will never come out of reset
1476 * until we reset the whole chip again.
1478 if (DC_IS_INTEL(sc)) {
1479 DC_SETBIT(sc, DC_SIARESET, DC_SIA_RESET);
1480 CSR_WRITE_4(sc, DC_10BTCTRL, 0);
1481 CSR_WRITE_4(sc, DC_WATCHDOG, 0);
1487 static struct dc_type *dc_devtype(dev)
1495 while(t->dc_name != NULL) {
1496 if ((pci_get_vendor(dev) == t->dc_vid) &&
1497 (pci_get_device(dev) == t->dc_did)) {
1498 /* Check the PCI revision */
1499 rev = pci_read_config(dev, DC_PCI_CFRV, 4) & 0xFF;
1500 if (t->dc_did == DC_DEVICEID_98713 &&
1501 rev >= DC_REVISION_98713A)
1503 if (t->dc_did == DC_DEVICEID_98713_CP &&
1504 rev >= DC_REVISION_98713A)
1506 if (t->dc_did == DC_DEVICEID_987x5 &&
1507 rev >= DC_REVISION_98715AEC_C)
1509 if (t->dc_did == DC_DEVICEID_987x5 &&
1510 rev >= DC_REVISION_98725)
1512 if (t->dc_did == DC_DEVICEID_AX88140A &&
1513 rev >= DC_REVISION_88141)
1515 if (t->dc_did == DC_DEVICEID_82C168 &&
1516 rev >= DC_REVISION_82C169)
1518 if (t->dc_did == DC_DEVICEID_DM9102 &&
1519 rev >= DC_REVISION_DM9102A)
1530 * Probe for a 21143 or clone chip. Check the PCI vendor and device
1531 * IDs against our list and return a device name if we find a match.
1532 * We do a little bit of extra work to identify the exact type of
1533 * chip. The MX98713 and MX98713A have the same PCI vendor/device ID,
1534 * but different revision IDs. The same is true for 98715/98715A
1535 * chips and the 98725, as well as the ASIX and ADMtek chips. In some
1536 * cases, the exact chip revision affects driver behavior.
1538 static int dc_probe(dev)
1543 t = dc_devtype(dev);
1546 device_set_desc(dev, t->dc_name);
1553 static void dc_acpi(dev)
1558 /* Find the location of the capabilities block */
1559 cptr = pci_read_config(dev, DC_PCI_CCAP, 4) & 0xFF;
1561 r = pci_read_config(dev, cptr, 4) & 0xFF;
1564 r = pci_read_config(dev, cptr + 4, 4);
1565 if (r & DC_PSTATE_D3) {
1566 u_int32_t iobase, membase, irq;
1567 struct dc_softc *sc;
1569 /* Save important PCI config data. */
1570 iobase = pci_read_config(dev, DC_PCI_CFBIO, 4);
1571 membase = pci_read_config(dev, DC_PCI_CFBMA, 4);
1572 irq = pci_read_config(dev, DC_PCI_CFIT, 4);
1574 sc = device_get_softc(dev);
1575 /* Reset the power state. */
1576 if_printf(&sc->arpcom.ac_if,
1577 "chip is in D%d power mode "
1578 "-- setting to D0\n", r & DC_PSTATE_D3);
1580 pci_write_config(dev, cptr + 4, r, 4);
1582 /* Restore PCI config data. */
1583 pci_write_config(dev, DC_PCI_CFBIO, iobase, 4);
1584 pci_write_config(dev, DC_PCI_CFBMA, membase, 4);
1585 pci_write_config(dev, DC_PCI_CFIT, irq, 4);
1590 static void dc_apply_fixup(sc, media)
1591 struct dc_softc *sc;
1594 struct dc_mediainfo *m;
1602 if (m->dc_media == media)
1610 for (i = 0, p = m->dc_reset_ptr; i < m->dc_reset_len; i++, p += 2) {
1611 reg = (p[0] | (p[1] << 8)) << 16;
1612 CSR_WRITE_4(sc, DC_WATCHDOG, reg);
1615 for (i = 0, p = m->dc_gp_ptr; i < m->dc_gp_len; i++, p += 2) {
1616 reg = (p[0] | (p[1] << 8)) << 16;
1617 CSR_WRITE_4(sc, DC_WATCHDOG, reg);
1623 static void dc_decode_leaf_sia(sc, l)
1624 struct dc_softc *sc;
1625 struct dc_eblock_sia *l;
1627 struct dc_mediainfo *m;
1629 m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_INTWAIT | M_ZERO);
1630 if (l->dc_sia_code == DC_SIA_CODE_10BT)
1631 m->dc_media = IFM_10_T;
1633 if (l->dc_sia_code == DC_SIA_CODE_10BT_FDX)
1634 m->dc_media = IFM_10_T|IFM_FDX;
1636 if (l->dc_sia_code == DC_SIA_CODE_10B2)
1637 m->dc_media = IFM_10_2;
1639 if (l->dc_sia_code == DC_SIA_CODE_10B5)
1640 m->dc_media = IFM_10_5;
1643 m->dc_gp_ptr = (u_int8_t *)&l->dc_sia_gpio_ctl;
1645 m->dc_next = sc->dc_mi;
1648 sc->dc_pmode = DC_PMODE_SIA;
1653 static void dc_decode_leaf_sym(sc, l)
1654 struct dc_softc *sc;
1655 struct dc_eblock_sym *l;
1657 struct dc_mediainfo *m;
1659 m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_INTWAIT | M_ZERO);
1660 if (l->dc_sym_code == DC_SYM_CODE_100BT)
1661 m->dc_media = IFM_100_TX;
1663 if (l->dc_sym_code == DC_SYM_CODE_100BT_FDX)
1664 m->dc_media = IFM_100_TX|IFM_FDX;
1667 m->dc_gp_ptr = (u_int8_t *)&l->dc_sym_gpio_ctl;
1669 m->dc_next = sc->dc_mi;
1672 sc->dc_pmode = DC_PMODE_SYM;
1677 static void dc_decode_leaf_mii(sc, l)
1678 struct dc_softc *sc;
1679 struct dc_eblock_mii *l;
1682 struct dc_mediainfo *m;
1684 m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_INTWAIT | M_ZERO);
1685 /* We abuse IFM_AUTO to represent MII. */
1686 m->dc_media = IFM_AUTO;
1687 m->dc_gp_len = l->dc_gpr_len;
1690 p += sizeof(struct dc_eblock_mii);
1692 p += 2 * l->dc_gpr_len;
1693 m->dc_reset_len = *p;
1695 m->dc_reset_ptr = p;
1697 m->dc_next = sc->dc_mi;
1703 static void dc_read_srom(sc, bits)
1704 struct dc_softc *sc;
1710 sc->dc_srom = malloc(size, M_DEVBUF, M_INTWAIT);
1711 dc_read_eeprom(sc, (caddr_t)sc->dc_srom, 0, (size / 2), 0);
1714 static void dc_parse_21143_srom(sc)
1715 struct dc_softc *sc;
1717 struct dc_leaf_hdr *lhdr;
1718 struct dc_eblock_hdr *hdr;
1724 loff = sc->dc_srom[27];
1725 lhdr = (struct dc_leaf_hdr *)&(sc->dc_srom[loff]);
1728 ptr += sizeof(struct dc_leaf_hdr) - 1;
1730 * Look if we got a MII media block.
1732 for (i = 0; i < lhdr->dc_mcnt; i++) {
1733 hdr = (struct dc_eblock_hdr *)ptr;
1734 if (hdr->dc_type == DC_EBLOCK_MII)
1737 ptr += (hdr->dc_len & 0x7F);
1742 * Do the same thing again. Only use SIA and SYM media
1743 * blocks if no MII media block is available.
1746 ptr += sizeof(struct dc_leaf_hdr) - 1;
1747 for (i = 0; i < lhdr->dc_mcnt; i++) {
1748 hdr = (struct dc_eblock_hdr *)ptr;
1749 switch(hdr->dc_type) {
1751 dc_decode_leaf_mii(sc, (struct dc_eblock_mii *)hdr);
1755 dc_decode_leaf_sia(sc,
1756 (struct dc_eblock_sia *)hdr);
1760 dc_decode_leaf_sym(sc,
1761 (struct dc_eblock_sym *)hdr);
1764 /* Don't care. Yet. */
1767 ptr += (hdr->dc_len & 0x7F);
1775 * Attach the interface. Allocate softc structures, do ifmedia
1776 * setup and ethernet/BPF attach.
1778 static int dc_attach(dev)
1782 u_char eaddr[ETHER_ADDR_LEN];
1784 struct dc_softc *sc;
1787 int error = 0, rid, mac_offset;
1791 sc = device_get_softc(dev);
1792 bzero(sc, sizeof(struct dc_softc));
1793 callout_init(&sc->dc_stat_timer);
1795 ifp = &sc->arpcom.ac_if;
1796 if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1799 * Handle power management nonsense.
1804 * Map control/status registers.
1806 command = pci_read_config(dev, PCIR_COMMAND, 4);
1807 command |= (PCIM_CMD_PORTEN|PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
1808 pci_write_config(dev, PCIR_COMMAND, command, 4);
1809 command = pci_read_config(dev, PCIR_COMMAND, 4);
1811 #ifdef DC_USEIOSPACE
1812 if (!(command & PCIM_CMD_PORTEN)) {
1813 device_printf(dev, "failed to enable I/O ports!\n");
1818 if (!(command & PCIM_CMD_MEMEN)) {
1819 device_printf(dev, "failed to enable memory mapping!\n");
1826 sc->dc_res = bus_alloc_resource_any(dev, DC_RES, &rid, RF_ACTIVE);
1828 if (sc->dc_res == NULL) {
1829 device_printf(dev, "couldn't map ports/memory\n");
1834 sc->dc_btag = rman_get_bustag(sc->dc_res);
1835 sc->dc_bhandle = rman_get_bushandle(sc->dc_res);
1837 /* Allocate interrupt */
1839 sc->dc_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1840 RF_SHAREABLE | RF_ACTIVE);
1842 if (sc->dc_irq == NULL) {
1843 device_printf(dev, "couldn't map interrupt\n");
1844 bus_release_resource(dev, DC_RES, DC_RID, sc->dc_res);
1849 error = bus_setup_intr(dev, sc->dc_irq, INTR_TYPE_NET,
1850 dc_intr, sc, &sc->dc_intrhand, NULL);
1853 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->dc_irq);
1854 bus_release_resource(dev, DC_RES, DC_RID, sc->dc_res);
1855 device_printf(dev, "couldn't set up irq\n");
1859 /* Need this info to decide on a chip type. */
1860 sc->dc_info = dc_devtype(dev);
1861 revision = pci_read_config(dev, DC_PCI_CFRV, 4) & 0x000000FF;
1863 /* Get the eeprom width, but PNIC has diff eeprom */
1864 if (sc->dc_info->dc_did != DC_DEVICEID_82C168)
1865 dc_eeprom_width(sc);
1867 switch(sc->dc_info->dc_did) {
1868 case DC_DEVICEID_21143:
1869 sc->dc_type = DC_TYPE_21143;
1870 sc->dc_flags |= DC_TX_POLL|DC_TX_USE_TX_INTR;
1871 sc->dc_flags |= DC_REDUCED_MII_POLL;
1872 /* Save EEPROM contents so we can parse them later. */
1873 dc_read_srom(sc, sc->dc_romwidth);
1875 case DC_DEVICEID_DM9009:
1876 case DC_DEVICEID_DM9100:
1877 case DC_DEVICEID_DM9102:
1878 sc->dc_type = DC_TYPE_DM9102;
1879 sc->dc_flags |= DC_TX_COALESCE|DC_TX_INTR_ALWAYS;
1880 sc->dc_flags |= DC_REDUCED_MII_POLL|DC_TX_STORENFWD;
1881 sc->dc_pmode = DC_PMODE_MII;
1882 /* Increase the latency timer value. */
1883 command = pci_read_config(dev, DC_PCI_CFLT, 4);
1884 command &= 0xFFFF00FF;
1885 command |= 0x00008000;
1886 pci_write_config(dev, DC_PCI_CFLT, command, 4);
1888 case DC_DEVICEID_AL981:
1889 sc->dc_type = DC_TYPE_AL981;
1890 sc->dc_flags |= DC_TX_USE_TX_INTR;
1891 sc->dc_flags |= DC_TX_ADMTEK_WAR;
1892 sc->dc_pmode = DC_PMODE_MII;
1893 dc_read_srom(sc, sc->dc_romwidth);
1895 case DC_DEVICEID_AN985:
1896 case DC_DEVICEID_EN2242:
1897 case DC_DEVICEID_3CSOHOB:
1898 sc->dc_type = DC_TYPE_AN985;
1899 sc->dc_flags |= DC_64BIT_HASH;
1900 sc->dc_flags |= DC_TX_USE_TX_INTR;
1901 sc->dc_flags |= DC_TX_ADMTEK_WAR;
1902 sc->dc_pmode = DC_PMODE_MII;
1903 dc_read_srom(sc, sc->dc_romwidth);
1905 case DC_DEVICEID_98713:
1906 case DC_DEVICEID_98713_CP:
1907 if (revision < DC_REVISION_98713A) {
1908 sc->dc_type = DC_TYPE_98713;
1910 if (revision >= DC_REVISION_98713A) {
1911 sc->dc_type = DC_TYPE_98713A;
1912 sc->dc_flags |= DC_21143_NWAY;
1914 sc->dc_flags |= DC_REDUCED_MII_POLL;
1915 sc->dc_flags |= DC_TX_POLL|DC_TX_USE_TX_INTR;
1917 case DC_DEVICEID_987x5:
1918 case DC_DEVICEID_EN1217:
1920 * Macronix MX98715AEC-C/D/E parts have only a
1921 * 128-bit hash table. We need to deal with these
1922 * in the same manner as the PNIC II so that we
1923 * get the right number of bits out of the
1926 if (revision >= DC_REVISION_98715AEC_C &&
1927 revision < DC_REVISION_98725)
1928 sc->dc_flags |= DC_128BIT_HASH;
1929 sc->dc_type = DC_TYPE_987x5;
1930 sc->dc_flags |= DC_TX_POLL|DC_TX_USE_TX_INTR;
1931 sc->dc_flags |= DC_REDUCED_MII_POLL|DC_21143_NWAY;
1933 case DC_DEVICEID_98727:
1934 sc->dc_type = DC_TYPE_987x5;
1935 sc->dc_flags |= DC_TX_POLL|DC_TX_USE_TX_INTR;
1936 sc->dc_flags |= DC_REDUCED_MII_POLL|DC_21143_NWAY;
1938 case DC_DEVICEID_82C115:
1939 sc->dc_type = DC_TYPE_PNICII;
1940 sc->dc_flags |= DC_TX_POLL|DC_TX_USE_TX_INTR|DC_128BIT_HASH;
1941 sc->dc_flags |= DC_REDUCED_MII_POLL|DC_21143_NWAY;
1943 case DC_DEVICEID_82C168:
1944 sc->dc_type = DC_TYPE_PNIC;
1945 sc->dc_flags |= DC_TX_STORENFWD|DC_TX_INTR_ALWAYS;
1946 sc->dc_flags |= DC_PNIC_RX_BUG_WAR;
1947 sc->dc_pnic_rx_buf = malloc(DC_RXLEN * 5, M_DEVBUF, M_WAITOK);
1948 if (revision < DC_REVISION_82C169)
1949 sc->dc_pmode = DC_PMODE_SYM;
1951 case DC_DEVICEID_AX88140A:
1952 sc->dc_type = DC_TYPE_ASIX;
1953 sc->dc_flags |= DC_TX_USE_TX_INTR|DC_TX_INTR_FIRSTFRAG;
1954 sc->dc_flags |= DC_REDUCED_MII_POLL;
1955 sc->dc_pmode = DC_PMODE_MII;
1957 case DC_DEVICEID_RS7112:
1958 sc->dc_type = DC_TYPE_CONEXANT;
1959 sc->dc_flags |= DC_TX_INTR_ALWAYS;
1960 sc->dc_flags |= DC_REDUCED_MII_POLL;
1961 sc->dc_pmode = DC_PMODE_MII;
1962 dc_read_srom(sc, sc->dc_romwidth);
1965 device_printf(dev, "unknown device: %x\n", sc->dc_info->dc_did);
1969 /* Save the cache line size. */
1970 if (DC_IS_DAVICOM(sc))
1971 sc->dc_cachesize = 0;
1973 sc->dc_cachesize = pci_read_config(dev,
1974 DC_PCI_CFLT, 4) & 0xFF;
1976 /* Reset the adapter. */
1979 /* Take 21143 out of snooze mode */
1980 if (DC_IS_INTEL(sc)) {
1981 command = pci_read_config(dev, DC_PCI_CFDD, 4);
1982 command &= ~(DC_CFDD_SNOOZE_MODE|DC_CFDD_SLEEP_MODE);
1983 pci_write_config(dev, DC_PCI_CFDD, command, 4);
1987 * Try to learn something about the supported media.
1988 * We know that ASIX and ADMtek and Davicom devices
1989 * will *always* be using MII media, so that's a no-brainer.
1990 * The tricky ones are the Macronix/PNIC II and the
1993 if (DC_IS_INTEL(sc))
1994 dc_parse_21143_srom(sc);
1995 else if (DC_IS_MACRONIX(sc) || DC_IS_PNICII(sc)) {
1996 if (sc->dc_type == DC_TYPE_98713)
1997 sc->dc_pmode = DC_PMODE_MII;
1999 sc->dc_pmode = DC_PMODE_SYM;
2000 } else if (!sc->dc_pmode)
2001 sc->dc_pmode = DC_PMODE_MII;
2004 * Get station address from the EEPROM.
2006 switch(sc->dc_type) {
2008 case DC_TYPE_98713A:
2010 case DC_TYPE_PNICII:
2011 dc_read_eeprom(sc, (caddr_t)&mac_offset,
2012 (DC_EE_NODEADDR_OFFSET / 2), 1, 0);
2013 dc_read_eeprom(sc, (caddr_t)&eaddr, (mac_offset / 2), 3, 0);
2016 dc_read_eeprom(sc, (caddr_t)&eaddr, 0, 3, 1);
2018 case DC_TYPE_DM9102:
2021 dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0);
2025 bcopy(&sc->dc_srom[DC_AL_EE_NODEADDR], (caddr_t)&eaddr,
2027 dc_read_eeprom(sc, (caddr_t)&eaddr, DC_AL_EE_NODEADDR, 3, 0);
2029 case DC_TYPE_CONEXANT:
2030 bcopy(sc->dc_srom + DC_CONEXANT_EE_NODEADDR, &eaddr, 6);
2033 dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0);
2037 sc->dc_ldata = contigmalloc(sizeof(struct dc_list_data), M_DEVBUF,
2038 M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
2040 if (sc->dc_ldata == NULL) {
2041 device_printf(dev, "no memory for list buffers!\n");
2042 if (sc->dc_pnic_rx_buf != NULL)
2043 free(sc->dc_pnic_rx_buf, M_DEVBUF);
2044 bus_teardown_intr(dev, sc->dc_irq, sc->dc_intrhand);
2045 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->dc_irq);
2046 bus_release_resource(dev, DC_RES, DC_RID, sc->dc_res);
2051 bzero(sc->dc_ldata, sizeof(struct dc_list_data));
2054 ifp->if_mtu = ETHERMTU;
2055 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2056 ifp->if_ioctl = dc_ioctl;
2057 ifp->if_start = dc_start;
2058 #ifdef DEVICE_POLLING
2059 ifp->if_poll = dc_poll;
2061 ifp->if_watchdog = dc_watchdog;
2062 ifp->if_init = dc_init;
2063 ifp->if_baudrate = 10000000;
2064 ifq_set_maxlen(&ifp->if_snd, DC_TX_LIST_CNT - 1);
2065 ifq_set_ready(&ifp->if_snd);
2068 * Do MII setup. If this is a 21143, check for a PHY on the
2069 * MII bus after applying any necessary fixups to twiddle the
2070 * GPIO bits. If we don't end up finding a PHY, restore the
2071 * old selection (SIA only or SIA/SYM) and attach the dcphy
2074 if (DC_IS_INTEL(sc)) {
2075 dc_apply_fixup(sc, IFM_AUTO);
2077 sc->dc_pmode = DC_PMODE_MII;
2080 error = mii_phy_probe(dev, &sc->dc_miibus,
2081 dc_ifmedia_upd, dc_ifmedia_sts);
2083 if (error && DC_IS_INTEL(sc)) {
2085 if (sc->dc_pmode != DC_PMODE_SIA)
2086 sc->dc_pmode = DC_PMODE_SYM;
2087 sc->dc_flags |= DC_21143_NWAY;
2088 mii_phy_probe(dev, &sc->dc_miibus,
2089 dc_ifmedia_upd, dc_ifmedia_sts);
2091 * For non-MII cards, we need to have the 21143
2092 * drive the LEDs. Except there are some systems
2093 * like the NEC VersaPro NoteBook PC which have no
2094 * LEDs, and twiddling these bits has adverse effects
2095 * on them. (I.e. you suddenly can't get a link.)
2097 if (pci_read_config(dev, DC_PCI_CSID, 4) != 0x80281033)
2098 sc->dc_flags |= DC_TULIP_LEDS;
2103 device_printf(dev, "MII without any PHY!\n");
2104 contigfree(sc->dc_ldata, sizeof(struct dc_list_data),
2106 if (sc->dc_pnic_rx_buf != NULL)
2107 free(sc->dc_pnic_rx_buf, M_DEVBUF);
2108 bus_teardown_intr(dev, sc->dc_irq, sc->dc_intrhand);
2109 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->dc_irq);
2110 bus_release_resource(dev, DC_RES, DC_RID, sc->dc_res);
2116 * Call MI attach routine.
2118 ether_ifattach(ifp, eaddr);
2120 if (DC_IS_ADMTEK(sc)) {
2122 * Set automatic TX underrun recovery for the ADMtek chips
2124 DC_SETBIT(sc, DC_AL_CR, DC_AL_CR_ATUR);
2128 * Tell the upper layer(s) we support long frames.
2130 ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
2138 static int dc_detach(dev)
2141 struct dc_softc *sc;
2144 struct dc_mediainfo *m;
2148 sc = device_get_softc(dev);
2149 ifp = &sc->arpcom.ac_if;
2152 ether_ifdetach(ifp);
2154 bus_generic_detach(dev);
2155 device_delete_child(dev, sc->dc_miibus);
2157 bus_teardown_intr(dev, sc->dc_irq, sc->dc_intrhand);
2158 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->dc_irq);
2159 bus_release_resource(dev, DC_RES, DC_RID, sc->dc_res);
2161 contigfree(sc->dc_ldata, sizeof(struct dc_list_data), M_DEVBUF);
2162 if (sc->dc_pnic_rx_buf != NULL)
2163 free(sc->dc_pnic_rx_buf, M_DEVBUF);
2165 while(sc->dc_mi != NULL) {
2166 m = sc->dc_mi->dc_next;
2167 free(sc->dc_mi, M_DEVBUF);
2170 free(sc->dc_srom, M_DEVBUF);
2178 * Initialize the transmit descriptors.
2180 static int dc_list_tx_init(sc)
2181 struct dc_softc *sc;
2183 struct dc_chain_data *cd;
2184 struct dc_list_data *ld;
2189 for (i = 0; i < DC_TX_LIST_CNT; i++) {
2190 if (i == (DC_TX_LIST_CNT - 1)) {
2191 ld->dc_tx_list[i].dc_next =
2192 vtophys(&ld->dc_tx_list[0]);
2194 ld->dc_tx_list[i].dc_next =
2195 vtophys(&ld->dc_tx_list[i + 1]);
2197 cd->dc_tx_chain[i] = NULL;
2198 ld->dc_tx_list[i].dc_data = 0;
2199 ld->dc_tx_list[i].dc_ctl = 0;
2202 cd->dc_tx_prod = cd->dc_tx_cons = cd->dc_tx_cnt = 0;
2209 * Initialize the RX descriptors and allocate mbufs for them. Note that
2210 * we arrange the descriptors in a closed ring, so that the last descriptor
2211 * points back to the first.
2213 static int dc_list_rx_init(sc)
2214 struct dc_softc *sc;
2216 struct dc_chain_data *cd;
2217 struct dc_list_data *ld;
2223 for (i = 0; i < DC_RX_LIST_CNT; i++) {
2224 if (dc_newbuf(sc, i, NULL) == ENOBUFS)
2226 if (i == (DC_RX_LIST_CNT - 1)) {
2227 ld->dc_rx_list[i].dc_next =
2228 vtophys(&ld->dc_rx_list[0]);
2230 ld->dc_rx_list[i].dc_next =
2231 vtophys(&ld->dc_rx_list[i + 1]);
2241 * Initialize an RX descriptor and attach an MBUF cluster.
2243 static int dc_newbuf(sc, i, m)
2244 struct dc_softc *sc;
2248 struct mbuf *m_new = NULL;
2251 c = &sc->dc_ldata->dc_rx_list[i];
2254 MGETHDR(m_new, MB_DONTWAIT, MT_DATA);
2258 MCLGET(m_new, MB_DONTWAIT);
2259 if (!(m_new->m_flags & M_EXT)) {
2263 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
2266 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
2267 m_new->m_data = m_new->m_ext.ext_buf;
2270 m_adj(m_new, sizeof(u_int64_t));
2273 * If this is a PNIC chip, zero the buffer. This is part
2274 * of the workaround for the receive bug in the 82c168 and
2277 if (sc->dc_flags & DC_PNIC_RX_BUG_WAR)
2278 bzero((char *)mtod(m_new, char *), m_new->m_len);
2280 sc->dc_cdata.dc_rx_chain[i] = m_new;
2281 c->dc_data = vtophys(mtod(m_new, caddr_t));
2282 c->dc_ctl = DC_RXCTL_RLINK | DC_RXLEN;
2283 c->dc_status = DC_RXSTAT_OWN;
2290 * The PNIC chip has a terrible bug in it that manifests itself during
2291 * periods of heavy activity. The exact mode of failure if difficult to
2292 * pinpoint: sometimes it only happens in promiscuous mode, sometimes it
2293 * will happen on slow machines. The bug is that sometimes instead of
2294 * uploading one complete frame during reception, it uploads what looks
2295 * like the entire contents of its FIFO memory. The frame we want is at
2296 * the end of the whole mess, but we never know exactly how much data has
2297 * been uploaded, so salvaging the frame is hard.
2299 * There is only one way to do it reliably, and it's disgusting.
2300 * Here's what we know:
2302 * - We know there will always be somewhere between one and three extra
2303 * descriptors uploaded.
2305 * - We know the desired received frame will always be at the end of the
2306 * total data upload.
2308 * - We know the size of the desired received frame because it will be
2309 * provided in the length field of the status word in the last descriptor.
2311 * Here's what we do:
2313 * - When we allocate buffers for the receive ring, we bzero() them.
2314 * This means that we know that the buffer contents should be all
2315 * zeros, except for data uploaded by the chip.
2317 * - We also force the PNIC chip to upload frames that include the
2318 * ethernet CRC at the end.
2320 * - We gather all of the bogus frame data into a single buffer.
2322 * - We then position a pointer at the end of this buffer and scan
2323 * backwards until we encounter the first non-zero byte of data.
2324 * This is the end of the received frame. We know we will encounter
2325 * some data at the end of the frame because the CRC will always be
2326 * there, so even if the sender transmits a packet of all zeros,
2327 * we won't be fooled.
2329 * - We know the size of the actual received frame, so we subtract
2330 * that value from the current pointer location. This brings us
2331 * to the start of the actual received packet.
2333 * - We copy this into an mbuf and pass it on, along with the actual
2336 * The performance hit is tremendous, but it beats dropping frames all
2340 #define DC_WHOLEFRAME (DC_RXSTAT_FIRSTFRAG|DC_RXSTAT_LASTFRAG)
2341 static void dc_pnic_rx_bug_war(sc, idx)
2342 struct dc_softc *sc;
2345 struct dc_desc *cur_rx;
2346 struct dc_desc *c = NULL;
2347 struct mbuf *m = NULL;
2350 u_int32_t rxstat = 0;
2352 i = sc->dc_pnic_rx_bug_save;
2353 cur_rx = &sc->dc_ldata->dc_rx_list[idx];
2354 ptr = sc->dc_pnic_rx_buf;
2355 bzero(ptr, DC_RXLEN * 5);
2357 /* Copy all the bytes from the bogus buffers. */
2359 c = &sc->dc_ldata->dc_rx_list[i];
2360 rxstat = c->dc_status;
2361 m = sc->dc_cdata.dc_rx_chain[i];
2362 bcopy(mtod(m, char *), ptr, DC_RXLEN);
2364 /* If this is the last buffer, break out. */
2365 if (i == idx || rxstat & DC_RXSTAT_LASTFRAG)
2367 dc_newbuf(sc, i, m);
2368 DC_INC(i, DC_RX_LIST_CNT);
2371 /* Find the length of the actual receive frame. */
2372 total_len = DC_RXBYTES(rxstat);
2374 /* Scan backwards until we hit a non-zero byte. */
2379 if ((uintptr_t)(ptr) & 0x3)
2382 /* Now find the start of the frame. */
2384 if (ptr < sc->dc_pnic_rx_buf)
2385 ptr = sc->dc_pnic_rx_buf;
2388 * Now copy the salvaged frame to the last mbuf and fake up
2389 * the status word to make it look like a successful
2392 dc_newbuf(sc, i, m);
2393 bcopy(ptr, mtod(m, char *), total_len);
2394 cur_rx->dc_status = rxstat | DC_RXSTAT_FIRSTFRAG;
2400 * This routine searches the RX ring for dirty descriptors in the
2401 * event that the rxeof routine falls out of sync with the chip's
2402 * current descriptor pointer. This may happen sometimes as a result
2403 * of a "no RX buffer available" condition that happens when the chip
2404 * consumes all of the RX buffers before the driver has a chance to
2405 * process the RX ring. This routine may need to be called more than
2406 * once to bring the driver back in sync with the chip, however we
2407 * should still be getting RX DONE interrupts to drive the search
2408 * for new packets in the RX ring, so we should catch up eventually.
2410 static int dc_rx_resync(sc)
2411 struct dc_softc *sc;
2414 struct dc_desc *cur_rx;
2416 pos = sc->dc_cdata.dc_rx_prod;
2418 for (i = 0; i < DC_RX_LIST_CNT; i++) {
2419 cur_rx = &sc->dc_ldata->dc_rx_list[pos];
2420 if (!(cur_rx->dc_status & DC_RXSTAT_OWN))
2422 DC_INC(pos, DC_RX_LIST_CNT);
2425 /* If the ring really is empty, then just return. */
2426 if (i == DC_RX_LIST_CNT)
2429 /* We've fallen behing the chip: catch it. */
2430 sc->dc_cdata.dc_rx_prod = pos;
2436 * A frame has been uploaded: pass the resulting mbuf chain up to
2437 * the higher level protocols.
2439 static void dc_rxeof(sc)
2440 struct dc_softc *sc;
2444 struct dc_desc *cur_rx;
2445 int i, total_len = 0;
2448 ifp = &sc->arpcom.ac_if;
2449 i = sc->dc_cdata.dc_rx_prod;
2451 while(!(sc->dc_ldata->dc_rx_list[i].dc_status & DC_RXSTAT_OWN)) {
2453 #ifdef DEVICE_POLLING
2454 if (ifp->if_flags & IFF_POLLING) {
2455 if (sc->rxcycles <= 0)
2459 #endif /* DEVICE_POLLING */
2460 cur_rx = &sc->dc_ldata->dc_rx_list[i];
2461 rxstat = cur_rx->dc_status;
2462 m = sc->dc_cdata.dc_rx_chain[i];
2463 total_len = DC_RXBYTES(rxstat);
2465 if (sc->dc_flags & DC_PNIC_RX_BUG_WAR) {
2466 if ((rxstat & DC_WHOLEFRAME) != DC_WHOLEFRAME) {
2467 if (rxstat & DC_RXSTAT_FIRSTFRAG)
2468 sc->dc_pnic_rx_bug_save = i;
2469 if ((rxstat & DC_RXSTAT_LASTFRAG) == 0) {
2470 DC_INC(i, DC_RX_LIST_CNT);
2473 dc_pnic_rx_bug_war(sc, i);
2474 rxstat = cur_rx->dc_status;
2475 total_len = DC_RXBYTES(rxstat);
2479 sc->dc_cdata.dc_rx_chain[i] = NULL;
2482 * If an error occurs, update stats, clear the
2483 * status word and leave the mbuf cluster in place:
2484 * it should simply get re-used next time this descriptor
2485 * comes up in the ring. However, don't report long
2486 * frames as errors since they could be vlans
2488 if ((rxstat & DC_RXSTAT_RXERR)){
2489 if (!(rxstat & DC_RXSTAT_GIANT) ||
2490 (rxstat & (DC_RXSTAT_CRCERR | DC_RXSTAT_DRIBBLE |
2491 DC_RXSTAT_MIIERE | DC_RXSTAT_COLLSEEN |
2492 DC_RXSTAT_RUNT | DC_RXSTAT_DE))) {
2494 if (rxstat & DC_RXSTAT_COLLSEEN)
2495 ifp->if_collisions++;
2496 dc_newbuf(sc, i, m);
2497 if (rxstat & DC_RXSTAT_CRCERR) {
2498 DC_INC(i, DC_RX_LIST_CNT);
2507 /* No errors; receive the packet. */
2508 total_len -= ETHER_CRC_LEN;
2512 * On the x86 we do not have alignment problems, so try to
2513 * allocate a new buffer for the receive ring, and pass up
2514 * the one where the packet is already, saving the expensive
2515 * copy done in m_devget().
2516 * If we are on an architecture with alignment problems, or
2517 * if the allocation fails, then use m_devget and leave the
2518 * existing buffer in the receive ring.
2520 if (dc_quick && dc_newbuf(sc, i, NULL) == 0) {
2521 m->m_pkthdr.rcvif = ifp;
2522 m->m_pkthdr.len = m->m_len = total_len;
2523 DC_INC(i, DC_RX_LIST_CNT);
2529 m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
2530 total_len + ETHER_ALIGN, 0, ifp, NULL);
2531 dc_newbuf(sc, i, m);
2532 DC_INC(i, DC_RX_LIST_CNT);
2537 m_adj(m0, ETHER_ALIGN);
2542 (*ifp->if_input)(ifp, m);
2545 sc->dc_cdata.dc_rx_prod = i;
2549 * A frame was downloaded to the chip. It's safe for us to clean up
2555 struct dc_softc *sc;
2557 struct dc_desc *cur_tx = NULL;
2561 ifp = &sc->arpcom.ac_if;
2564 * Go through our tx list and free mbufs for those
2565 * frames that have been transmitted.
2567 idx = sc->dc_cdata.dc_tx_cons;
2568 while(idx != sc->dc_cdata.dc_tx_prod) {
2571 cur_tx = &sc->dc_ldata->dc_tx_list[idx];
2572 txstat = cur_tx->dc_status;
2574 if (txstat & DC_TXSTAT_OWN)
2577 if (!(cur_tx->dc_ctl & DC_TXCTL_LASTFRAG) ||
2578 cur_tx->dc_ctl & DC_TXCTL_SETUP) {
2579 if (cur_tx->dc_ctl & DC_TXCTL_SETUP) {
2581 * Yes, the PNIC is so brain damaged
2582 * that it will sometimes generate a TX
2583 * underrun error while DMAing the RX
2584 * filter setup frame. If we detect this,
2585 * we have to send the setup frame again,
2586 * or else the filter won't be programmed
2589 if (DC_IS_PNIC(sc)) {
2590 if (txstat & DC_TXSTAT_ERRSUM)
2593 sc->dc_cdata.dc_tx_chain[idx] = NULL;
2595 sc->dc_cdata.dc_tx_cnt--;
2596 DC_INC(idx, DC_TX_LIST_CNT);
2600 if (DC_IS_CONEXANT(sc)) {
2602 * For some reason Conexant chips like
2603 * setting the CARRLOST flag even when
2604 * the carrier is there. In CURRENT we
2605 * have the same problem for Xircom
2608 if (/*sc->dc_type == DC_TYPE_21143 &&*/
2609 sc->dc_pmode == DC_PMODE_MII &&
2610 ((txstat & 0xFFFF) & ~(DC_TXSTAT_ERRSUM|
2611 DC_TXSTAT_NOCARRIER)))
2612 txstat &= ~DC_TXSTAT_ERRSUM;
2614 if (/*sc->dc_type == DC_TYPE_21143 &&*/
2615 sc->dc_pmode == DC_PMODE_MII &&
2616 ((txstat & 0xFFFF) & ~(DC_TXSTAT_ERRSUM|
2617 DC_TXSTAT_NOCARRIER|DC_TXSTAT_CARRLOST)))
2618 txstat &= ~DC_TXSTAT_ERRSUM;
2621 if (txstat & DC_TXSTAT_ERRSUM) {
2623 if (txstat & DC_TXSTAT_EXCESSCOLL)
2624 ifp->if_collisions++;
2625 if (txstat & DC_TXSTAT_LATECOLL)
2626 ifp->if_collisions++;
2627 if (!(txstat & DC_TXSTAT_UNDERRUN)) {
2633 ifp->if_collisions += (txstat & DC_TXSTAT_COLLCNT) >> 3;
2636 if (sc->dc_cdata.dc_tx_chain[idx] != NULL) {
2637 m_freem(sc->dc_cdata.dc_tx_chain[idx]);
2638 sc->dc_cdata.dc_tx_chain[idx] = NULL;
2641 sc->dc_cdata.dc_tx_cnt--;
2642 DC_INC(idx, DC_TX_LIST_CNT);
2645 if (idx != sc->dc_cdata.dc_tx_cons) {
2646 /* some buffers have been freed */
2647 sc->dc_cdata.dc_tx_cons = idx;
2648 ifp->if_flags &= ~IFF_OACTIVE;
2650 ifp->if_timer = (sc->dc_cdata.dc_tx_cnt == 0) ? 0 : 5;
2655 static void dc_tick(xsc)
2658 struct dc_softc *sc;
2659 struct mii_data *mii;
2667 ifp = &sc->arpcom.ac_if;
2668 mii = device_get_softc(sc->dc_miibus);
2670 if (sc->dc_flags & DC_REDUCED_MII_POLL) {
2671 if (sc->dc_flags & DC_21143_NWAY) {
2672 r = CSR_READ_4(sc, DC_10BTSTAT);
2673 if (IFM_SUBTYPE(mii->mii_media_active) ==
2674 IFM_100_TX && (r & DC_TSTAT_LS100)) {
2678 if (IFM_SUBTYPE(mii->mii_media_active) ==
2679 IFM_10_T && (r & DC_TSTAT_LS10)) {
2683 if (sc->dc_link == 0)
2686 r = CSR_READ_4(sc, DC_ISR);
2687 if ((r & DC_ISR_RX_STATE) == DC_RXSTATE_WAIT &&
2688 sc->dc_cdata.dc_tx_cnt == 0)
2690 if (!(mii->mii_media_status & IFM_ACTIVE))
2697 * When the init routine completes, we expect to be able to send
2698 * packets right away, and in fact the network code will send a
2699 * gratuitous ARP the moment the init routine marks the interface
2700 * as running. However, even though the MAC may have been initialized,
2701 * there may be a delay of a few seconds before the PHY completes
2702 * autonegotiation and the link is brought up. Any transmissions
2703 * made during that delay will be lost. Dealing with this is tricky:
2704 * we can't just pause in the init routine while waiting for the
2705 * PHY to come ready since that would bring the whole system to
2706 * a screeching halt for several seconds.
2708 * What we do here is prevent the TX start routine from sending
2709 * any packets until a link has been established. After the
2710 * interface has been initialized, the tick routine will poll
2711 * the state of the PHY until the IFM_ACTIVE flag is set. Until
2712 * that time, packets will stay in the send queue, and once the
2713 * link comes up, they will be flushed out to the wire.
2717 if (mii->mii_media_status & IFM_ACTIVE &&
2718 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
2720 if (!ifq_is_empty(&ifp->if_snd))
2725 if (sc->dc_flags & DC_21143_NWAY && !sc->dc_link)
2726 callout_reset(&sc->dc_stat_timer, hz / 10, dc_tick, sc);
2728 callout_reset(&sc->dc_stat_timer, hz, dc_tick, sc);
2736 * A transmit underrun has occurred. Back off the transmit threshold,
2737 * or switch to store and forward mode if we have to.
2739 static void dc_tx_underrun(sc)
2740 struct dc_softc *sc;
2745 if (DC_IS_DAVICOM(sc))
2748 if (DC_IS_INTEL(sc)) {
2750 * The real 21143 requires that the transmitter be idle
2751 * in order to change the transmit threshold or store
2752 * and forward state.
2754 DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
2756 for (i = 0; i < DC_TIMEOUT; i++) {
2757 isr = CSR_READ_4(sc, DC_ISR);
2758 if (isr & DC_ISR_TX_IDLE)
2762 if (i == DC_TIMEOUT) {
2763 if_printf(&sc->arpcom.ac_if,
2764 "failed to force tx to idle state\n");
2769 if_printf(&sc->arpcom.ac_if, "TX underrun -- ");
2770 sc->dc_txthresh += DC_TXTHRESH_INC;
2771 if (sc->dc_txthresh > DC_TXTHRESH_MAX) {
2772 printf("using store and forward mode\n");
2773 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
2775 printf("increasing TX threshold\n");
2776 DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_THRESH);
2777 DC_SETBIT(sc, DC_NETCFG, sc->dc_txthresh);
2780 if (DC_IS_INTEL(sc))
2781 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
2786 #ifdef DEVICE_POLLING
2789 dc_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
2791 struct dc_softc *sc = ifp->if_softc;
2796 /* Disable interrupts */
2797 CSR_WRITE_4(sc, DC_IMR, 0x00000000);
2799 case POLL_DEREGISTER:
2800 /* Re-enable interrupts. */
2801 CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
2804 sc->rxcycles = count;
2807 if ((ifp->if_flags & IFF_OACTIVE) == 0 && !ifq_is_empty(&ifp->if_snd))
2810 case POLL_AND_CHECK_STATUS:
2811 sc->rxcycles = count;
2814 if ((ifp->if_flags & IFF_OACTIVE) == 0 && !ifq_is_empty(&ifp->if_snd))
2816 status = CSR_READ_4(sc, DC_ISR);
2817 status &= (DC_ISR_RX_WATDOGTIMEO|DC_ISR_RX_NOBUF|
2818 DC_ISR_TX_NOBUF|DC_ISR_TX_IDLE|DC_ISR_TX_UNDERRUN|
2822 /* ack what we have */
2823 CSR_WRITE_4(sc, DC_ISR, status);
2825 if (status & (DC_ISR_RX_WATDOGTIMEO|DC_ISR_RX_NOBUF) ) {
2826 u_int32_t r = CSR_READ_4(sc, DC_FRAMESDISCARDED);
2827 ifp->if_ierrors += (r & 0xffff) + ((r >> 17) & 0x7ff);
2829 if (dc_rx_resync(sc))
2832 /* restart transmit unit if necessary */
2833 if (status & DC_ISR_TX_IDLE && sc->dc_cdata.dc_tx_cnt)
2834 CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
2836 if (status & DC_ISR_TX_UNDERRUN)
2839 if (status & DC_ISR_BUS_ERR) {
2840 if_printf(ifp, "dc_poll: bus error\n");
2847 #endif /* DEVICE_POLLING */
2849 static void dc_intr(arg)
2852 struct dc_softc *sc;
2858 if (sc->suspended) {
2862 ifp = &sc->arpcom.ac_if;
2864 if ( (CSR_READ_4(sc, DC_ISR) & DC_INTRS) == 0)
2867 /* Suppress unwanted interrupts */
2868 if (!(ifp->if_flags & IFF_UP)) {
2869 if (CSR_READ_4(sc, DC_ISR) & DC_INTRS)
2874 /* Disable interrupts. */
2875 CSR_WRITE_4(sc, DC_IMR, 0x00000000);
2877 while((status = CSR_READ_4(sc, DC_ISR)) & DC_INTRS) {
2879 CSR_WRITE_4(sc, DC_ISR, status);
2881 if (status & DC_ISR_RX_OK) {
2883 curpkts = ifp->if_ipackets;
2885 if (curpkts == ifp->if_ipackets) {
2886 while(dc_rx_resync(sc))
2891 if (status & (DC_ISR_TX_OK|DC_ISR_TX_NOBUF))
2894 if (status & DC_ISR_TX_IDLE) {
2896 if (sc->dc_cdata.dc_tx_cnt) {
2897 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
2898 CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
2902 if (status & DC_ISR_TX_UNDERRUN)
2905 if ((status & DC_ISR_RX_WATDOGTIMEO)
2906 || (status & DC_ISR_RX_NOBUF)) {
2908 curpkts = ifp->if_ipackets;
2910 if (curpkts == ifp->if_ipackets) {
2911 while(dc_rx_resync(sc))
2916 if (status & DC_ISR_BUS_ERR) {
2922 /* Re-enable interrupts. */
2923 CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
2925 if (!ifq_is_empty(&ifp->if_snd))
2932 * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
2933 * pointers to the fragment pointers.
2935 static int dc_encap(sc, m_head, txidx)
2936 struct dc_softc *sc;
2937 struct mbuf *m_head;
2940 struct dc_desc *f = NULL;
2942 int frag, cur, cnt = 0;
2945 * Start packing the mbufs in this chain into
2946 * the fragment pointers. Stop when we run out
2947 * of fragments or hit the end of the mbuf chain.
2950 cur = frag = *txidx;
2952 for (m = m_head; m != NULL; m = m->m_next) {
2953 if (m->m_len != 0) {
2954 if (sc->dc_flags & DC_TX_ADMTEK_WAR) {
2955 if (*txidx != sc->dc_cdata.dc_tx_prod &&
2956 frag == (DC_TX_LIST_CNT - 1))
2959 if ((DC_TX_LIST_CNT -
2960 (sc->dc_cdata.dc_tx_cnt + cnt)) < 5)
2963 f = &sc->dc_ldata->dc_tx_list[frag];
2964 f->dc_ctl = DC_TXCTL_TLINK | m->m_len;
2967 f->dc_ctl |= DC_TXCTL_FIRSTFRAG;
2969 f->dc_status = DC_TXSTAT_OWN;
2970 f->dc_data = vtophys(mtod(m, vm_offset_t));
2972 DC_INC(frag, DC_TX_LIST_CNT);
2980 sc->dc_cdata.dc_tx_cnt += cnt;
2981 sc->dc_cdata.dc_tx_chain[cur] = m_head;
2982 sc->dc_ldata->dc_tx_list[cur].dc_ctl |= DC_TXCTL_LASTFRAG;
2983 if (sc->dc_flags & DC_TX_INTR_FIRSTFRAG)
2984 sc->dc_ldata->dc_tx_list[*txidx].dc_ctl |= DC_TXCTL_FINT;
2985 if (sc->dc_flags & DC_TX_INTR_ALWAYS)
2986 sc->dc_ldata->dc_tx_list[cur].dc_ctl |= DC_TXCTL_FINT;
2987 if (sc->dc_flags & DC_TX_USE_TX_INTR && sc->dc_cdata.dc_tx_cnt > 64)
2988 sc->dc_ldata->dc_tx_list[cur].dc_ctl |= DC_TXCTL_FINT;
2989 sc->dc_ldata->dc_tx_list[*txidx].dc_status = DC_TXSTAT_OWN;
2996 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
2997 * to the mbuf data regions directly in the transmit lists. We also save a
2998 * copy of the pointers since the transmit list fragment pointers are
2999 * physical addresses.
3002 static void dc_start(ifp)
3005 struct dc_softc *sc;
3006 struct mbuf *m_head = NULL, *m_new;
3007 int did_defrag, idx;
3014 if (ifp->if_flags & IFF_OACTIVE)
3017 idx = sc->dc_cdata.dc_tx_prod;
3019 while(sc->dc_cdata.dc_tx_chain[idx] == NULL) {
3021 m_head = ifq_poll(&ifp->if_snd);
3025 if (sc->dc_flags & DC_TX_COALESCE &&
3026 m_head->m_next != NULL) {
3028 * Check first if coalescing allows us to queue
3029 * the packet. We don't want to loose it if
3030 * the TX queue is full.
3032 if ((sc->dc_flags & DC_TX_ADMTEK_WAR) &&
3033 idx != sc->dc_cdata.dc_tx_prod &&
3034 idx == (DC_TX_LIST_CNT - 1)) {
3035 ifp->if_flags |= IFF_OACTIVE;
3038 if ((DC_TX_LIST_CNT - sc->dc_cdata.dc_tx_cnt) < 5) {
3039 ifp->if_flags |= IFF_OACTIVE;
3043 /* only coalesce if have >1 mbufs */
3044 m_new = m_defrag_nofree(m_head, MB_DONTWAIT);
3045 if (m_new == NULL) {
3046 ifp->if_flags |= IFF_OACTIVE;
3054 if (dc_encap(sc, m_head, &idx)) {
3057 m_new = ifq_dequeue(&ifp->if_snd);
3060 ifp->if_flags |= IFF_OACTIVE;
3064 m_new = ifq_dequeue(&ifp->if_snd);
3069 * If there's a BPF listener, bounce a copy of this frame
3072 BPF_MTAP(ifp, m_head);
3074 if (sc->dc_flags & DC_TX_ONE) {
3075 ifp->if_flags |= IFF_OACTIVE;
3081 sc->dc_cdata.dc_tx_prod = idx;
3082 if (!(sc->dc_flags & DC_TX_POLL))
3083 CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
3086 * Set a timeout in case the chip goes out to lunch.
3093 static void dc_init(xsc)
3096 struct dc_softc *sc = xsc;
3097 struct ifnet *ifp = &sc->arpcom.ac_if;
3098 struct mii_data *mii;
3103 mii = device_get_softc(sc->dc_miibus);
3106 * Cancel pending I/O and free all RX/TX buffers.
3112 * Set cache alignment and burst length.
3114 if (DC_IS_ASIX(sc) || DC_IS_DAVICOM(sc))
3115 CSR_WRITE_4(sc, DC_BUSCTL, 0);
3117 CSR_WRITE_4(sc, DC_BUSCTL, DC_BUSCTL_MRME|DC_BUSCTL_MRLE);
3119 * Evenly share the bus between receive and transmit process.
3121 if (DC_IS_INTEL(sc))
3122 DC_SETBIT(sc, DC_BUSCTL, DC_BUSCTL_ARBITRATION);
3123 if (DC_IS_DAVICOM(sc) || DC_IS_INTEL(sc)) {
3124 DC_SETBIT(sc, DC_BUSCTL, DC_BURSTLEN_USECA);
3126 DC_SETBIT(sc, DC_BUSCTL, DC_BURSTLEN_16LONG);
3128 if (sc->dc_flags & DC_TX_POLL)
3129 DC_SETBIT(sc, DC_BUSCTL, DC_TXPOLL_1);
3130 switch(sc->dc_cachesize) {
3132 DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_32LONG);
3135 DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_16LONG);
3138 DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_8LONG);
3142 DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_NONE);
3146 if (sc->dc_flags & DC_TX_STORENFWD)
3147 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3149 if (sc->dc_txthresh > DC_TXTHRESH_MAX) {
3150 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3152 DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3153 DC_SETBIT(sc, DC_NETCFG, sc->dc_txthresh);
3157 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_NO_RXCRC);
3158 DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_BACKOFF);
3160 if (DC_IS_MACRONIX(sc) || DC_IS_PNICII(sc)) {
3162 * The app notes for the 98713 and 98715A say that
3163 * in order to have the chips operate properly, a magic
3164 * number must be written to CSR16. Macronix does not
3165 * document the meaning of these bits so there's no way
3166 * to know exactly what they do. The 98713 has a magic
3167 * number all its own; the rest all use a different one.
3169 DC_CLRBIT(sc, DC_MX_MAGICPACKET, 0xFFFF0000);
3170 if (sc->dc_type == DC_TYPE_98713)
3171 DC_SETBIT(sc, DC_MX_MAGICPACKET, DC_MX_MAGIC_98713);
3173 DC_SETBIT(sc, DC_MX_MAGICPACKET, DC_MX_MAGIC_98715);
3176 DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_THRESH);
3177 DC_SETBIT(sc, DC_NETCFG, DC_TXTHRESH_MIN);
3179 /* Init circular RX list. */
3180 if (dc_list_rx_init(sc) == ENOBUFS) {
3181 if_printf(ifp, "initialization failed: no "
3182 "memory for rx buffers\n");
3189 * Init tx descriptors.
3191 dc_list_tx_init(sc);
3194 * Load the address of the RX list.
3196 CSR_WRITE_4(sc, DC_RXADDR, vtophys(&sc->dc_ldata->dc_rx_list[0]));
3197 CSR_WRITE_4(sc, DC_TXADDR, vtophys(&sc->dc_ldata->dc_tx_list[0]));
3200 * Enable interrupts.
3202 #ifdef DEVICE_POLLING
3204 * ... but only if we are not polling, and make sure they are off in
3205 * the case of polling. Some cards (e.g. fxp) turn interrupts on
3208 if (ifp->if_flags & IFF_POLLING)
3209 CSR_WRITE_4(sc, DC_IMR, 0x00000000);
3212 CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
3213 CSR_WRITE_4(sc, DC_ISR, 0xFFFFFFFF);
3215 /* Enable transmitter. */
3216 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
3219 * If this is an Intel 21143 and we're not using the
3220 * MII port, program the LED control pins so we get
3221 * link and activity indications.
3223 if (sc->dc_flags & DC_TULIP_LEDS) {
3224 CSR_WRITE_4(sc, DC_WATCHDOG,
3225 DC_WDOG_CTLWREN|DC_WDOG_LINK|DC_WDOG_ACTIVITY);
3226 CSR_WRITE_4(sc, DC_WATCHDOG, 0);
3230 * Load the RX/multicast filter. We do this sort of late
3231 * because the filter programming scheme on the 21143 and
3232 * some clones requires DMAing a setup frame via the TX
3233 * engine, and we need the transmitter enabled for that.
3237 /* Enable receiver. */
3238 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ON);
3239 CSR_WRITE_4(sc, DC_RXSTART, 0xFFFFFFFF);
3242 dc_setcfg(sc, sc->dc_if_media);
3244 ifp->if_flags |= IFF_RUNNING;
3245 ifp->if_flags &= ~IFF_OACTIVE;
3249 /* Don't start the ticker if this is a homePNA link. */
3250 if (IFM_SUBTYPE(mii->mii_media.ifm_media) == IFM_HPNA_1)
3253 if (sc->dc_flags & DC_21143_NWAY)
3254 callout_reset(&sc->dc_stat_timer, hz/10, dc_tick, sc);
3256 callout_reset(&sc->dc_stat_timer, hz, dc_tick, sc);
3263 * Set media options.
3265 static int dc_ifmedia_upd(ifp)
3268 struct dc_softc *sc;
3269 struct mii_data *mii;
3270 struct ifmedia *ifm;
3273 mii = device_get_softc(sc->dc_miibus);
3275 ifm = &mii->mii_media;
3277 if (DC_IS_DAVICOM(sc) &&
3278 IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1)
3279 dc_setcfg(sc, ifm->ifm_media);
3287 * Report current media status.
3289 static void dc_ifmedia_sts(ifp, ifmr)
3291 struct ifmediareq *ifmr;
3293 struct dc_softc *sc;
3294 struct mii_data *mii;
3295 struct ifmedia *ifm;
3298 mii = device_get_softc(sc->dc_miibus);
3300 ifm = &mii->mii_media;
3301 if (DC_IS_DAVICOM(sc)) {
3302 if (IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1) {
3303 ifmr->ifm_active = ifm->ifm_media;
3304 ifmr->ifm_status = 0;
3308 ifmr->ifm_active = mii->mii_media_active;
3309 ifmr->ifm_status = mii->mii_media_status;
3314 static int dc_ioctl(ifp, command, data, cr)
3320 struct dc_softc *sc = ifp->if_softc;
3321 struct ifreq *ifr = (struct ifreq *) data;
3322 struct mii_data *mii;
3329 if (ifp->if_flags & IFF_UP) {
3330 int need_setfilt = (ifp->if_flags ^ sc->dc_if_flags) &
3331 (IFF_PROMISC | IFF_ALLMULTI);
3332 if (ifp->if_flags & IFF_RUNNING) {
3336 sc->dc_txthresh = 0;
3340 if (ifp->if_flags & IFF_RUNNING)
3343 sc->dc_if_flags = ifp->if_flags;
3353 mii = device_get_softc(sc->dc_miibus);
3354 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
3357 error = ether_ioctl(ifp, command, data);
3366 static void dc_watchdog(ifp)
3369 struct dc_softc *sc;
3374 if_printf(ifp, "watchdog timeout\n");
3380 if (!ifq_is_empty(&ifp->if_snd))
3387 * Stop the adapter and free any mbufs allocated to the
3390 static void dc_stop(sc)
3391 struct dc_softc *sc;
3396 ifp = &sc->arpcom.ac_if;
3399 callout_stop(&sc->dc_stat_timer);
3401 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3403 DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_RX_ON|DC_NETCFG_TX_ON));
3404 CSR_WRITE_4(sc, DC_IMR, 0x00000000);
3405 CSR_WRITE_4(sc, DC_TXADDR, 0x00000000);
3406 CSR_WRITE_4(sc, DC_RXADDR, 0x00000000);
3410 * Free data in the RX lists.
3412 for (i = 0; i < DC_RX_LIST_CNT; i++) {
3413 if (sc->dc_cdata.dc_rx_chain[i] != NULL) {
3414 m_freem(sc->dc_cdata.dc_rx_chain[i]);
3415 sc->dc_cdata.dc_rx_chain[i] = NULL;
3418 bzero((char *)&sc->dc_ldata->dc_rx_list,
3419 sizeof(sc->dc_ldata->dc_rx_list));
3422 * Free the TX list buffers.
3424 for (i = 0; i < DC_TX_LIST_CNT; i++) {
3425 if (sc->dc_cdata.dc_tx_chain[i] != NULL) {
3426 if ((sc->dc_ldata->dc_tx_list[i].dc_ctl &
3428 !(sc->dc_ldata->dc_tx_list[i].dc_ctl &
3429 DC_TXCTL_LASTFRAG)) {
3430 sc->dc_cdata.dc_tx_chain[i] = NULL;
3433 m_freem(sc->dc_cdata.dc_tx_chain[i]);
3434 sc->dc_cdata.dc_tx_chain[i] = NULL;
3438 bzero((char *)&sc->dc_ldata->dc_tx_list,
3439 sizeof(sc->dc_ldata->dc_tx_list));
3445 * Stop all chip I/O so that the kernel's probe routines don't
3446 * get confused by errant DMAs when rebooting.
3448 static void dc_shutdown(dev)
3451 struct dc_softc *sc;
3453 sc = device_get_softc(dev);
3461 * Device suspend routine. Stop the interface and save some PCI
3462 * settings in case the BIOS doesn't restore them properly on
3465 static int dc_suspend(dev)
3470 struct dc_softc *sc;
3474 sc = device_get_softc(dev);
3478 for (i = 0; i < 5; i++)
3479 sc->saved_maps[i] = pci_read_config(dev, PCIR_MAPS + i * 4, 4);
3480 sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
3481 sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
3482 sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
3483 sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
3492 * Device resume routine. Restore some PCI settings in case the BIOS
3493 * doesn't, re-enable busmastering, and restart the interface if
3496 static int dc_resume(dev)
3501 struct dc_softc *sc;
3506 sc = device_get_softc(dev);
3507 ifp = &sc->arpcom.ac_if;
3511 /* better way to do this? */
3512 for (i = 0; i < 5; i++)
3513 pci_write_config(dev, PCIR_MAPS + i * 4, sc->saved_maps[i], 4);
3514 pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4);
3515 pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1);
3516 pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1);
3517 pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1);
3519 /* reenable busmastering */
3520 pci_enable_busmaster(dev);
3521 pci_enable_io(dev, DC_RES);
3523 /* reinitialize interface if necessary */
3524 if (ifp->if_flags & IFF_UP)