Merge branch 'vendor/TCSH'
[dragonfly.git] / sys / dev / drm / i915 / intel_lrc.c
1 /*
2  * Copyright © 2014 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Ben Widawsky <ben@bwidawsk.net>
25  *    Michel Thierry <michel.thierry@intel.com>
26  *    Thomas Daniel <thomas.daniel@intel.com>
27  *    Oscar Mateo <oscar.mateo@intel.com>
28  *
29  */
30
31 /**
32  * DOC: Logical Rings, Logical Ring Contexts and Execlists
33  *
34  * Motivation:
35  * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36  * These expanded contexts enable a number of new abilities, especially
37  * "Execlists" (also implemented in this file).
38  *
39  * One of the main differences with the legacy HW contexts is that logical
40  * ring contexts incorporate many more things to the context's state, like
41  * PDPs or ringbuffer control registers:
42  *
43  * The reason why PDPs are included in the context is straightforward: as
44  * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45  * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46  * instead, the GPU will do it for you on the context switch.
47  *
48  * But, what about the ringbuffer control registers (head, tail, etc..)?
49  * shouldn't we just need a set of those per engine command streamer? This is
50  * where the name "Logical Rings" starts to make sense: by virtualizing the
51  * rings, the engine cs shifts to a new "ring buffer" with every context
52  * switch. When you want to submit a workload to the GPU you: A) choose your
53  * context, B) find its appropriate virtualized ring, C) write commands to it
54  * and then, finally, D) tell the GPU to switch to that context.
55  *
56  * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57  * to a contexts is via a context execution list, ergo "Execlists".
58  *
59  * LRC implementation:
60  * Regarding the creation of contexts, we have:
61  *
62  * - One global default context.
63  * - One local default context for each opened fd.
64  * - One local extra context for each context create ioctl call.
65  *
66  * Now that ringbuffers belong per-context (and not per-engine, like before)
67  * and that contexts are uniquely tied to a given engine (and not reusable,
68  * like before) we need:
69  *
70  * - One ringbuffer per-engine inside each context.
71  * - One backing object per-engine inside each context.
72  *
73  * The global default context starts its life with these new objects fully
74  * allocated and populated. The local default context for each opened fd is
75  * more complex, because we don't know at creation time which engine is going
76  * to use them. To handle this, we have implemented a deferred creation of LR
77  * contexts:
78  *
79  * The local context starts its life as a hollow or blank holder, that only
80  * gets populated for a given engine once we receive an execbuffer. If later
81  * on we receive another execbuffer ioctl for the same context but a different
82  * engine, we allocate/populate a new ringbuffer and context backing object and
83  * so on.
84  *
85  * Finally, regarding local contexts created using the ioctl call: as they are
86  * only allowed with the render ring, we can allocate & populate them right
87  * away (no need to defer anything, at least for now).
88  *
89  * Execlists implementation:
90  * Execlists are the new method by which, on gen8+ hardware, workloads are
91  * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92  * This method works as follows:
93  *
94  * When a request is committed, its commands (the BB start and any leading or
95  * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96  * for the appropriate context. The tail pointer in the hardware context is not
97  * updated at this time, but instead, kept by the driver in the ringbuffer
98  * structure. A structure representing this request is added to a request queue
99  * for the appropriate engine: this structure contains a copy of the context's
100  * tail after the request was written to the ring buffer and a pointer to the
101  * context itself.
102  *
103  * If the engine's request queue was empty before the request was added, the
104  * queue is processed immediately. Otherwise the queue will be processed during
105  * a context switch interrupt. In any case, elements on the queue will get sent
106  * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107  * globally unique 20-bits submission ID.
108  *
109  * When execution of a request completes, the GPU updates the context status
110  * buffer with a context complete event and generates a context switch interrupt.
111  * During the interrupt handling, the driver examines the events in the buffer:
112  * for each context complete event, if the announced ID matches that on the head
113  * of the request queue, then that request is retired and removed from the queue.
114  *
115  * After processing, if any requests were retired and the queue is not empty
116  * then a new execution list can be submitted. The two requests at the front of
117  * the queue are next to be submitted but since a context may not occur twice in
118  * an execution list, if subsequent requests have the same ID as the first then
119  * the two requests must be combined. This is done simply by discarding requests
120  * at the head of the queue until either only one requests is left (in which case
121  * we use a NULL second context) or the first two requests have unique IDs.
122  *
123  * By always executing the first two requests in the queue the driver ensures
124  * that the GPU is kept as busy as possible. In the case where a single context
125  * completes but a second context is still executing, the request for this second
126  * context will be at the head of the queue when we remove the first one. This
127  * request will then be resubmitted along with a new request for a different context,
128  * which will cause the hardware to continue executing the second request and queue
129  * the new request (the GPU detects the condition of a context getting preempted
130  * with the same context and optimizes the context switch flow by not doing
131  * preemption, but just sampling the new tail pointer).
132  *
133  */
134
135 #include <drm/drmP.h>
136 #include <drm/i915_drm.h>
137 #include "i915_drv.h"
138 #include "intel_drv.h"
139
140 #define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
141 #define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
142
143 #define GEN8_LR_CONTEXT_ALIGN 4096
144
145 #define RING_EXECLIST_QFULL             (1 << 0x2)
146 #define RING_EXECLIST1_VALID            (1 << 0x3)
147 #define RING_EXECLIST0_VALID            (1 << 0x4)
148 #define RING_EXECLIST_ACTIVE_STATUS     (3 << 0xE)
149 #define RING_EXECLIST1_ACTIVE           (1 << 0x11)
150 #define RING_EXECLIST0_ACTIVE           (1 << 0x12)
151
152 #define GEN8_CTX_STATUS_IDLE_ACTIVE     (1 << 0)
153 #define GEN8_CTX_STATUS_PREEMPTED       (1 << 1)
154 #define GEN8_CTX_STATUS_ELEMENT_SWITCH  (1 << 2)
155 #define GEN8_CTX_STATUS_ACTIVE_IDLE     (1 << 3)
156 #define GEN8_CTX_STATUS_COMPLETE        (1 << 4)
157 #define GEN8_CTX_STATUS_LITE_RESTORE    (1 << 15)
158
159 #define CTX_LRI_HEADER_0                0x01
160 #define CTX_CONTEXT_CONTROL             0x02
161 #define CTX_RING_HEAD                   0x04
162 #define CTX_RING_TAIL                   0x06
163 #define CTX_RING_BUFFER_START           0x08
164 #define CTX_RING_BUFFER_CONTROL         0x0a
165 #define CTX_BB_HEAD_U                   0x0c
166 #define CTX_BB_HEAD_L                   0x0e
167 #define CTX_BB_STATE                    0x10
168 #define CTX_SECOND_BB_HEAD_U            0x12
169 #define CTX_SECOND_BB_HEAD_L            0x14
170 #define CTX_SECOND_BB_STATE             0x16
171 #define CTX_BB_PER_CTX_PTR              0x18
172 #define CTX_RCS_INDIRECT_CTX            0x1a
173 #define CTX_RCS_INDIRECT_CTX_OFFSET     0x1c
174 #define CTX_LRI_HEADER_1                0x21
175 #define CTX_CTX_TIMESTAMP               0x22
176 #define CTX_PDP3_UDW                    0x24
177 #define CTX_PDP3_LDW                    0x26
178 #define CTX_PDP2_UDW                    0x28
179 #define CTX_PDP2_LDW                    0x2a
180 #define CTX_PDP1_UDW                    0x2c
181 #define CTX_PDP1_LDW                    0x2e
182 #define CTX_PDP0_UDW                    0x30
183 #define CTX_PDP0_LDW                    0x32
184 #define CTX_LRI_HEADER_2                0x41
185 #define CTX_R_PWR_CLK_STATE             0x42
186 #define CTX_GPGPU_CSR_BASE_ADDRESS      0x44
187
188 #define GEN8_CTX_VALID (1<<0)
189 #define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
190 #define GEN8_CTX_FORCE_RESTORE (1<<2)
191 #define GEN8_CTX_L3LLC_COHERENT (1<<5)
192 #define GEN8_CTX_PRIVILEGE (1<<8)
193 enum {
194         ADVANCED_CONTEXT = 0,
195         LEGACY_CONTEXT,
196         ADVANCED_AD_CONTEXT,
197         LEGACY_64B_CONTEXT
198 };
199 #define GEN8_CTX_MODE_SHIFT 3
200 enum {
201         FAULT_AND_HANG = 0,
202         FAULT_AND_HALT, /* Debug only */
203         FAULT_AND_STREAM,
204         FAULT_AND_CONTINUE /* Unsupported */
205 };
206 #define GEN8_CTX_ID_SHIFT 32
207
208 /**
209  * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
210  * @dev: DRM device.
211  * @enable_execlists: value of i915.enable_execlists module parameter.
212  *
213  * Only certain platforms support Execlists (the prerequisites being
214  * support for Logical Ring Contexts and Aliasing PPGTT or better),
215  * and only when enabled via module parameter.
216  *
217  * Return: 1 if Execlists is supported and has to be enabled.
218  */
219 int intel_sanitize_enable_execlists(struct drm_device *dev, int enable_execlists)
220 {
221         WARN_ON(i915.enable_ppgtt == -1);
222
223         if (enable_execlists == 0)
224                 return 0;
225
226         if (HAS_LOGICAL_RING_CONTEXTS(dev) && USES_PPGTT(dev) &&
227             i915.use_mmio_flip >= 0)
228                 return 1;
229
230         return 0;
231 }
232
233 /**
234  * intel_execlists_ctx_id() - get the Execlists Context ID
235  * @ctx_obj: Logical Ring Context backing object.
236  *
237  * Do not confuse with ctx->id! Unfortunately we have a name overload
238  * here: the old context ID we pass to userspace as a handler so that
239  * they can refer to a context, and the new context ID we pass to the
240  * ELSP so that the GPU can inform us of the context status via
241  * interrupts.
242  *
243  * Return: 20-bits globally unique context ID.
244  */
245 u32 intel_execlists_ctx_id(struct drm_i915_gem_object *ctx_obj)
246 {
247         u32 lrca = i915_gem_obj_ggtt_offset(ctx_obj);
248
249         /* LRCA is required to be 4K aligned so the more significant 20 bits
250          * are globally unique */
251         return lrca >> 12;
252 }
253
254 static uint64_t execlists_ctx_descriptor(struct drm_i915_gem_object *ctx_obj)
255 {
256         uint64_t desc;
257         uint64_t lrca = i915_gem_obj_ggtt_offset(ctx_obj);
258
259         WARN_ON(lrca & 0xFFFFFFFF00000FFFULL);
260
261         desc = GEN8_CTX_VALID;
262         desc |= LEGACY_CONTEXT << GEN8_CTX_MODE_SHIFT;
263         desc |= GEN8_CTX_L3LLC_COHERENT;
264         desc |= GEN8_CTX_PRIVILEGE;
265         desc |= lrca;
266         desc |= (u64)intel_execlists_ctx_id(ctx_obj) << GEN8_CTX_ID_SHIFT;
267
268         /* TODO: WaDisableLiteRestore when we start using semaphore
269          * signalling between Command Streamers */
270         /* desc |= GEN8_CTX_FORCE_RESTORE; */
271
272         return desc;
273 }
274
275 static void execlists_elsp_write(struct intel_engine_cs *ring,
276                                  struct drm_i915_gem_object *ctx_obj0,
277                                  struct drm_i915_gem_object *ctx_obj1)
278 {
279         struct drm_i915_private *dev_priv = ring->dev->dev_private;
280         uint64_t temp = 0;
281         uint32_t desc[4];
282
283         /* XXX: You must always write both descriptors in the order below. */
284         if (ctx_obj1)
285                 temp = execlists_ctx_descriptor(ctx_obj1);
286         else
287                 temp = 0;
288         desc[1] = (u32)(temp >> 32);
289         desc[0] = (u32)temp;
290
291         temp = execlists_ctx_descriptor(ctx_obj0);
292         desc[3] = (u32)(temp >> 32);
293         desc[2] = (u32)temp;
294
295         /* Set Force Wakeup bit to prevent GT from entering C6 while ELSP writes
296          * are in progress.
297          *
298          * The other problem is that we can't just call gen6_gt_force_wake_get()
299          * because that function calls intel_runtime_pm_get(), which might sleep.
300          * Instead, we do the runtime_pm_get/put when creating/destroying requests.
301          */
302         lockmgr(&dev_priv->uncore.lock, LK_EXCLUSIVE);
303         if (IS_CHERRYVIEW(dev_priv->dev)) {
304                 if (dev_priv->uncore.fw_rendercount++ == 0)
305                         dev_priv->uncore.funcs.force_wake_get(dev_priv,
306                                                               FORCEWAKE_RENDER);
307                 if (dev_priv->uncore.fw_mediacount++ == 0)
308                         dev_priv->uncore.funcs.force_wake_get(dev_priv,
309                                                               FORCEWAKE_MEDIA);
310         } else {
311                 if (dev_priv->uncore.forcewake_count++ == 0)
312                         dev_priv->uncore.funcs.force_wake_get(dev_priv,
313                                                               FORCEWAKE_ALL);
314         }
315         lockmgr(&dev_priv->uncore.lock, LK_RELEASE);
316
317         I915_WRITE(RING_ELSP(ring), desc[1]);
318         I915_WRITE(RING_ELSP(ring), desc[0]);
319         I915_WRITE(RING_ELSP(ring), desc[3]);
320         /* The context is automatically loaded after the following */
321         I915_WRITE(RING_ELSP(ring), desc[2]);
322
323         /* ELSP is a wo register, so use another nearby reg for posting instead */
324         POSTING_READ(RING_EXECLIST_STATUS(ring));
325
326         /* Release Force Wakeup (see the big comment above). */
327         lockmgr(&dev_priv->uncore.lock, LK_EXCLUSIVE);
328         if (IS_CHERRYVIEW(dev_priv->dev)) {
329                 if (--dev_priv->uncore.fw_rendercount == 0)
330                         dev_priv->uncore.funcs.force_wake_put(dev_priv,
331                                                               FORCEWAKE_RENDER);
332                 if (--dev_priv->uncore.fw_mediacount == 0)
333                         dev_priv->uncore.funcs.force_wake_put(dev_priv,
334                                                               FORCEWAKE_MEDIA);
335         } else {
336                 if (--dev_priv->uncore.forcewake_count == 0)
337                         dev_priv->uncore.funcs.force_wake_put(dev_priv,
338                                                               FORCEWAKE_ALL);
339         }
340
341         lockmgr(&dev_priv->uncore.lock, LK_RELEASE);
342 }
343
344 static int execlists_ctx_write_tail(struct drm_i915_gem_object *ctx_obj, u32 tail)
345 {
346         struct vm_page *page;
347         uint32_t *reg_state;
348
349         page = i915_gem_object_get_page(ctx_obj, 1);
350         reg_state = kmap_atomic(page);
351
352         reg_state[CTX_RING_TAIL+1] = tail;
353
354         kunmap_atomic(reg_state);
355
356         return 0;
357 }
358
359 static int execlists_submit_context(struct intel_engine_cs *ring,
360                                     struct intel_context *to0, u32 tail0,
361                                     struct intel_context *to1, u32 tail1)
362 {
363         struct drm_i915_gem_object *ctx_obj0;
364         struct drm_i915_gem_object *ctx_obj1 = NULL;
365
366         ctx_obj0 = to0->engine[ring->id].state;
367         BUG_ON(!ctx_obj0);
368         WARN_ON(!i915_gem_obj_is_pinned(ctx_obj0));
369
370         execlists_ctx_write_tail(ctx_obj0, tail0);
371
372         if (to1) {
373                 ctx_obj1 = to1->engine[ring->id].state;
374                 BUG_ON(!ctx_obj1);
375                 WARN_ON(!i915_gem_obj_is_pinned(ctx_obj1));
376
377                 execlists_ctx_write_tail(ctx_obj1, tail1);
378         }
379
380         execlists_elsp_write(ring, ctx_obj0, ctx_obj1);
381
382         return 0;
383 }
384
385 static void execlists_context_unqueue(struct intel_engine_cs *ring)
386 {
387         struct intel_ctx_submit_request *req0 = NULL, *req1 = NULL;
388         struct intel_ctx_submit_request *cursor = NULL, *tmp = NULL;
389         struct drm_i915_private *dev_priv = ring->dev->dev_private;
390
391         assert_spin_locked(&ring->execlist_lock);
392
393         if (list_empty(&ring->execlist_queue))
394                 return;
395
396         /* Try to read in pairs */
397         list_for_each_entry_safe(cursor, tmp, &ring->execlist_queue,
398                                  execlist_link) {
399                 if (!req0) {
400                         req0 = cursor;
401                 } else if (req0->ctx == cursor->ctx) {
402                         /* Same ctx: ignore first request, as second request
403                          * will update tail past first request's workload */
404                         cursor->elsp_submitted = req0->elsp_submitted;
405                         list_del(&req0->execlist_link);
406                         queue_work(dev_priv->wq, &req0->work);
407                         req0 = cursor;
408                 } else {
409                         req1 = cursor;
410                         break;
411                 }
412         }
413
414         WARN_ON(req1 && req1->elsp_submitted);
415
416         WARN_ON(execlists_submit_context(ring, req0->ctx, req0->tail,
417                                          req1 ? req1->ctx : NULL,
418                                          req1 ? req1->tail : 0));
419
420         req0->elsp_submitted++;
421         if (req1)
422                 req1->elsp_submitted++;
423 }
424
425 static bool execlists_check_remove_request(struct intel_engine_cs *ring,
426                                            u32 request_id)
427 {
428         struct drm_i915_private *dev_priv = ring->dev->dev_private;
429         struct intel_ctx_submit_request *head_req;
430
431         assert_spin_locked(&ring->execlist_lock);
432
433         head_req = list_first_entry_or_null(&ring->execlist_queue,
434                                             struct intel_ctx_submit_request,
435                                             execlist_link);
436
437         if (head_req != NULL) {
438                 struct drm_i915_gem_object *ctx_obj =
439                                 head_req->ctx->engine[ring->id].state;
440                 if (intel_execlists_ctx_id(ctx_obj) == request_id) {
441                         WARN(head_req->elsp_submitted == 0,
442                              "Never submitted head request\n");
443
444                         if (--head_req->elsp_submitted <= 0) {
445                                 list_del(&head_req->execlist_link);
446                                 queue_work(dev_priv->wq, &head_req->work);
447                                 return true;
448                         }
449                 }
450         }
451
452         return false;
453 }
454
455 /**
456  * intel_execlists_handle_ctx_events() - handle Context Switch interrupts
457  * @ring: Engine Command Streamer to handle.
458  *
459  * Check the unread Context Status Buffers and manage the submission of new
460  * contexts to the ELSP accordingly.
461  */
462 void intel_execlists_handle_ctx_events(struct intel_engine_cs *ring)
463 {
464         struct drm_i915_private *dev_priv = ring->dev->dev_private;
465         u32 status_pointer;
466         u8 read_pointer;
467         u8 write_pointer;
468         u32 status;
469         u32 status_id;
470         u32 submit_contexts = 0;
471
472         status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(ring));
473
474         read_pointer = ring->next_context_status_buffer;
475         write_pointer = status_pointer & 0x07;
476         if (read_pointer > write_pointer)
477                 write_pointer += 6;
478
479         lockmgr(&ring->execlist_lock, LK_EXCLUSIVE);
480
481         while (read_pointer < write_pointer) {
482                 read_pointer++;
483                 status = I915_READ(RING_CONTEXT_STATUS_BUF(ring) +
484                                 (read_pointer % 6) * 8);
485                 status_id = I915_READ(RING_CONTEXT_STATUS_BUF(ring) +
486                                 (read_pointer % 6) * 8 + 4);
487
488                 if (status & GEN8_CTX_STATUS_PREEMPTED) {
489                         if (status & GEN8_CTX_STATUS_LITE_RESTORE) {
490                                 if (execlists_check_remove_request(ring, status_id))
491                                         WARN(1, "Lite Restored request removed from queue\n");
492                         } else
493                                 WARN(1, "Preemption without Lite Restore\n");
494                 }
495
496                  if ((status & GEN8_CTX_STATUS_ACTIVE_IDLE) ||
497                      (status & GEN8_CTX_STATUS_ELEMENT_SWITCH)) {
498                         if (execlists_check_remove_request(ring, status_id))
499                                 submit_contexts++;
500                 }
501         }
502
503         if (submit_contexts != 0)
504                 execlists_context_unqueue(ring);
505
506         lockmgr(&ring->execlist_lock, LK_RELEASE);
507
508         WARN(submit_contexts > 2, "More than two context complete events?\n");
509         ring->next_context_status_buffer = write_pointer % 6;
510
511         I915_WRITE(RING_CONTEXT_STATUS_PTR(ring),
512                    ((u32)ring->next_context_status_buffer & 0x07) << 8);
513 }
514
515 static void execlists_free_request_task(struct work_struct *work)
516 {
517         struct intel_ctx_submit_request *req =
518                 container_of(work, struct intel_ctx_submit_request, work);
519         struct drm_device *dev = req->ring->dev;
520         struct drm_i915_private *dev_priv = dev->dev_private;
521
522         intel_runtime_pm_put(dev_priv);
523
524         mutex_lock(&dev->struct_mutex);
525         i915_gem_context_unreference(req->ctx);
526         mutex_unlock(&dev->struct_mutex);
527
528         kfree(req);
529 }
530
531 static int execlists_context_queue(struct intel_engine_cs *ring,
532                                    struct intel_context *to,
533                                    u32 tail)
534 {
535         struct intel_ctx_submit_request *req = NULL, *cursor;
536         struct drm_i915_private *dev_priv = ring->dev->dev_private;
537         int num_elements = 0;
538
539         req = kzalloc(sizeof(*req), GFP_KERNEL);
540         if (req == NULL)
541                 return -ENOMEM;
542         req->ctx = to;
543         i915_gem_context_reference(req->ctx);
544         req->ring = ring;
545         req->tail = tail;
546         INIT_WORK(&req->work, execlists_free_request_task);
547
548         intel_runtime_pm_get(dev_priv);
549
550         lockmgr(&ring->execlist_lock, LK_EXCLUSIVE);
551
552         list_for_each_entry(cursor, &ring->execlist_queue, execlist_link)
553                 if (++num_elements > 2)
554                         break;
555
556         if (num_elements > 2) {
557                 struct intel_ctx_submit_request *tail_req;
558
559                 tail_req = list_last_entry(&ring->execlist_queue,
560                                            struct intel_ctx_submit_request,
561                                            execlist_link);
562
563                 if (to == tail_req->ctx) {
564                         WARN(tail_req->elsp_submitted != 0,
565                              "More than 2 already-submitted reqs queued\n");
566                         list_del(&tail_req->execlist_link);
567                         queue_work(dev_priv->wq, &tail_req->work);
568                 }
569         }
570
571         list_add_tail(&req->execlist_link, &ring->execlist_queue);
572         if (num_elements == 0)
573                 execlists_context_unqueue(ring);
574
575         lockmgr(&ring->execlist_lock, LK_RELEASE);
576
577         return 0;
578 }
579
580 static int logical_ring_invalidate_all_caches(struct intel_ringbuffer *ringbuf)
581 {
582         struct intel_engine_cs *ring = ringbuf->ring;
583         uint32_t flush_domains;
584         int ret;
585
586         flush_domains = 0;
587         if (ring->gpu_caches_dirty)
588                 flush_domains = I915_GEM_GPU_DOMAINS;
589
590         ret = ring->emit_flush(ringbuf, I915_GEM_GPU_DOMAINS, flush_domains);
591         if (ret)
592                 return ret;
593
594         ring->gpu_caches_dirty = false;
595         return 0;
596 }
597
598 static int execlists_move_to_gpu(struct intel_ringbuffer *ringbuf,
599                                  struct list_head *vmas)
600 {
601         struct intel_engine_cs *ring = ringbuf->ring;
602         struct i915_vma *vma;
603         uint32_t flush_domains = 0;
604         bool flush_chipset = false;
605         int ret;
606
607         list_for_each_entry(vma, vmas, exec_list) {
608                 struct drm_i915_gem_object *obj = vma->obj;
609
610                 ret = i915_gem_object_sync(obj, ring);
611                 if (ret)
612                         return ret;
613
614                 if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
615                         flush_chipset |= i915_gem_clflush_object(obj, false);
616
617                 flush_domains |= obj->base.write_domain;
618         }
619
620         if (flush_domains & I915_GEM_DOMAIN_GTT)
621                 wmb();
622
623         /* Unconditionally invalidate gpu caches and ensure that we do flush
624          * any residual writes from the previous batch.
625          */
626         return logical_ring_invalidate_all_caches(ringbuf);
627 }
628
629 /**
630  * execlists_submission() - submit a batchbuffer for execution, Execlists style
631  * @dev: DRM device.
632  * @file: DRM file.
633  * @ring: Engine Command Streamer to submit to.
634  * @ctx: Context to employ for this submission.
635  * @args: execbuffer call arguments.
636  * @vmas: list of vmas.
637  * @batch_obj: the batchbuffer to submit.
638  * @exec_start: batchbuffer start virtual address pointer.
639  * @flags: translated execbuffer call flags.
640  *
641  * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
642  * away the submission details of the execbuffer ioctl call.
643  *
644  * Return: non-zero if the submission fails.
645  */
646 int intel_execlists_submission(struct drm_device *dev, struct drm_file *file,
647                                struct intel_engine_cs *ring,
648                                struct intel_context *ctx,
649                                struct drm_i915_gem_execbuffer2 *args,
650                                struct list_head *vmas,
651                                struct drm_i915_gem_object *batch_obj,
652                                u64 exec_start, u32 flags)
653 {
654         struct drm_i915_private *dev_priv = dev->dev_private;
655         struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
656         int instp_mode;
657         u32 instp_mask;
658         int ret;
659
660         instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
661         instp_mask = I915_EXEC_CONSTANTS_MASK;
662         switch (instp_mode) {
663         case I915_EXEC_CONSTANTS_REL_GENERAL:
664         case I915_EXEC_CONSTANTS_ABSOLUTE:
665         case I915_EXEC_CONSTANTS_REL_SURFACE:
666                 if (instp_mode != 0 && ring != &dev_priv->ring[RCS]) {
667                         DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
668                         return -EINVAL;
669                 }
670
671                 if (instp_mode != dev_priv->relative_constants_mode) {
672                         if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
673                                 DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
674                                 return -EINVAL;
675                         }
676
677                         /* The HW changed the meaning on this bit on gen6 */
678                         instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
679                 }
680                 break;
681         default:
682                 DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
683                 return -EINVAL;
684         }
685
686         if (args->num_cliprects != 0) {
687                 DRM_DEBUG("clip rectangles are only valid on pre-gen5\n");
688                 return -EINVAL;
689         } else {
690                 if (args->DR4 == 0xffffffff) {
691                         DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
692                         args->DR4 = 0;
693                 }
694
695                 if (args->DR1 || args->DR4 || args->cliprects_ptr) {
696                         DRM_DEBUG("0 cliprects but dirt in cliprects fields\n");
697                         return -EINVAL;
698                 }
699         }
700
701         if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
702                 DRM_DEBUG("sol reset is gen7 only\n");
703                 return -EINVAL;
704         }
705
706         ret = execlists_move_to_gpu(ringbuf, vmas);
707         if (ret)
708                 return ret;
709
710         if (ring == &dev_priv->ring[RCS] &&
711             instp_mode != dev_priv->relative_constants_mode) {
712                 ret = intel_logical_ring_begin(ringbuf, 4);
713                 if (ret)
714                         return ret;
715
716                 intel_logical_ring_emit(ringbuf, MI_NOOP);
717                 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
718                 intel_logical_ring_emit(ringbuf, INSTPM);
719                 intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
720                 intel_logical_ring_advance(ringbuf);
721
722                 dev_priv->relative_constants_mode = instp_mode;
723         }
724
725         ret = ring->emit_bb_start(ringbuf, exec_start, flags);
726         if (ret)
727                 return ret;
728
729         i915_gem_execbuffer_move_to_active(vmas, ring);
730         i915_gem_execbuffer_retire_commands(dev, file, ring, batch_obj);
731
732         return 0;
733 }
734
735 void intel_logical_ring_stop(struct intel_engine_cs *ring)
736 {
737         struct drm_i915_private *dev_priv = ring->dev->dev_private;
738         int ret;
739
740         if (!intel_ring_initialized(ring))
741                 return;
742
743         ret = intel_ring_idle(ring);
744         if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
745                 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
746                           ring->name, ret);
747
748         /* TODO: Is this correct with Execlists enabled? */
749         I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
750         if (wait_for_atomic((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
751                 DRM_ERROR("%s :timed out trying to stop ring\n", ring->name);
752                 return;
753         }
754         I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
755 }
756
757 int logical_ring_flush_all_caches(struct intel_ringbuffer *ringbuf)
758 {
759         struct intel_engine_cs *ring = ringbuf->ring;
760         int ret;
761
762         if (!ring->gpu_caches_dirty)
763                 return 0;
764
765         ret = ring->emit_flush(ringbuf, 0, I915_GEM_GPU_DOMAINS);
766         if (ret)
767                 return ret;
768
769         ring->gpu_caches_dirty = false;
770         return 0;
771 }
772
773 /**
774  * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
775  * @ringbuf: Logical Ringbuffer to advance.
776  *
777  * The tail is updated in our logical ringbuffer struct, not in the actual context. What
778  * really happens during submission is that the context and current tail will be placed
779  * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
780  * point, the tail *inside* the context is updated and the ELSP written to.
781  */
782 void intel_logical_ring_advance_and_submit(struct intel_ringbuffer *ringbuf)
783 {
784         struct intel_engine_cs *ring = ringbuf->ring;
785         struct intel_context *ctx = ringbuf->FIXME_lrc_ctx;
786
787         intel_logical_ring_advance(ringbuf);
788
789         if (intel_ring_stopped(ring))
790                 return;
791
792         execlists_context_queue(ring, ctx, ringbuf->tail);
793 }
794
795 static int logical_ring_alloc_seqno(struct intel_engine_cs *ring,
796                                     struct intel_context *ctx)
797 {
798         if (ring->outstanding_lazy_seqno)
799                 return 0;
800
801         if (ring->preallocated_lazy_request == NULL) {
802                 struct drm_i915_gem_request *request;
803
804                 request = kmalloc(sizeof(*request), M_DRM, M_WAITOK);
805                 if (request == NULL)
806                         return -ENOMEM;
807
808                 /* Hold a reference to the context this request belongs to
809                  * (we will need it when the time comes to emit/retire the
810                  * request).
811                  */
812                 request->ctx = ctx;
813                 i915_gem_context_reference(request->ctx);
814
815                 ring->preallocated_lazy_request = request;
816         }
817
818         return i915_gem_get_seqno(ring->dev, &ring->outstanding_lazy_seqno);
819 }
820
821 static int logical_ring_wait_request(struct intel_ringbuffer *ringbuf,
822                                      int bytes)
823 {
824         struct intel_engine_cs *ring = ringbuf->ring;
825         struct drm_i915_gem_request *request;
826         u32 seqno = 0;
827         int ret;
828
829         if (ringbuf->last_retired_head != -1) {
830                 ringbuf->head = ringbuf->last_retired_head;
831                 ringbuf->last_retired_head = -1;
832
833                 ringbuf->space = intel_ring_space(ringbuf);
834                 if (ringbuf->space >= bytes)
835                         return 0;
836         }
837
838         list_for_each_entry(request, &ring->request_list, list) {
839                 if (__intel_ring_space(request->tail, ringbuf->tail,
840                                        ringbuf->size) >= bytes) {
841                         seqno = request->seqno;
842                         break;
843                 }
844         }
845
846         if (seqno == 0)
847                 return -ENOSPC;
848
849         ret = i915_wait_seqno(ring, seqno);
850         if (ret)
851                 return ret;
852
853         i915_gem_retire_requests_ring(ring);
854         ringbuf->head = ringbuf->last_retired_head;
855         ringbuf->last_retired_head = -1;
856
857         ringbuf->space = intel_ring_space(ringbuf);
858         return 0;
859 }
860
861 static int logical_ring_wait_for_space(struct intel_ringbuffer *ringbuf,
862                                        int bytes)
863 {
864         struct intel_engine_cs *ring = ringbuf->ring;
865         struct drm_device *dev = ring->dev;
866         struct drm_i915_private *dev_priv = dev->dev_private;
867         unsigned long end;
868         int ret;
869
870         ret = logical_ring_wait_request(ringbuf, bytes);
871         if (ret != -ENOSPC)
872                 return ret;
873
874         /* Force the context submission in case we have been skipping it */
875         intel_logical_ring_advance_and_submit(ringbuf);
876
877         /* With GEM the hangcheck timer should kick us out of the loop,
878          * leaving it early runs the risk of corrupting GEM state (due
879          * to running on almost untested codepaths). But on resume
880          * timers don't work yet, so prevent a complete hang in that
881          * case by choosing an insanely large timeout. */
882         end = jiffies + 60 * HZ;
883
884         do {
885                 ringbuf->head = I915_READ_HEAD(ring);
886                 ringbuf->space = intel_ring_space(ringbuf);
887                 if (ringbuf->space >= bytes) {
888                         ret = 0;
889                         break;
890                 }
891
892                 msleep(1);
893
894 #if 0
895                 if (dev_priv->mm.interruptible && signal_pending(current)) {
896                         ret = -ERESTARTSYS;
897                         break;
898                 }
899 #endif
900
901                 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
902                                            dev_priv->mm.interruptible);
903                 if (ret)
904                         break;
905
906                 if (time_after(jiffies, end)) {
907                         ret = -EBUSY;
908                         break;
909                 }
910         } while (1);
911
912         return ret;
913 }
914
915 static int logical_ring_wrap_buffer(struct intel_ringbuffer *ringbuf)
916 {
917         uint32_t __iomem *virt;
918         int rem = ringbuf->size - ringbuf->tail;
919
920         if (ringbuf->space < rem) {
921                 int ret = logical_ring_wait_for_space(ringbuf, rem);
922
923                 if (ret)
924                         return ret;
925         }
926
927         virt = (unsigned int *)((char *)ringbuf->virtual_start + ringbuf->tail);
928         rem /= 4;
929         while (rem--)
930                 iowrite32(MI_NOOP, virt++);
931
932         ringbuf->tail = 0;
933         ringbuf->space = intel_ring_space(ringbuf);
934
935         return 0;
936 }
937
938 static int logical_ring_prepare(struct intel_ringbuffer *ringbuf, int bytes)
939 {
940         int ret;
941
942         if (unlikely(ringbuf->tail + bytes > ringbuf->effective_size)) {
943                 ret = logical_ring_wrap_buffer(ringbuf);
944                 if (unlikely(ret))
945                         return ret;
946         }
947
948         if (unlikely(ringbuf->space < bytes)) {
949                 ret = logical_ring_wait_for_space(ringbuf, bytes);
950                 if (unlikely(ret))
951                         return ret;
952         }
953
954         return 0;
955 }
956
957 /**
958  * intel_logical_ring_begin() - prepare the logical ringbuffer to accept some commands
959  *
960  * @ringbuf: Logical ringbuffer.
961  * @num_dwords: number of DWORDs that we plan to write to the ringbuffer.
962  *
963  * The ringbuffer might not be ready to accept the commands right away (maybe it needs to
964  * be wrapped, or wait a bit for the tail to be updated). This function takes care of that
965  * and also preallocates a request (every workload submission is still mediated through
966  * requests, same as it did with legacy ringbuffer submission).
967  *
968  * Return: non-zero if the ringbuffer is not ready to be written to.
969  */
970 int intel_logical_ring_begin(struct intel_ringbuffer *ringbuf, int num_dwords)
971 {
972         struct intel_engine_cs *ring = ringbuf->ring;
973         struct drm_device *dev = ring->dev;
974         struct drm_i915_private *dev_priv = dev->dev_private;
975         int ret;
976
977         ret = i915_gem_check_wedge(&dev_priv->gpu_error,
978                                    dev_priv->mm.interruptible);
979         if (ret)
980                 return ret;
981
982         ret = logical_ring_prepare(ringbuf, num_dwords * sizeof(uint32_t));
983         if (ret)
984                 return ret;
985
986         /* Preallocate the olr before touching the ring */
987         ret = logical_ring_alloc_seqno(ring, ringbuf->FIXME_lrc_ctx);
988         if (ret)
989                 return ret;
990
991         ringbuf->space -= num_dwords * sizeof(uint32_t);
992         return 0;
993 }
994
995 static int gen8_init_common_ring(struct intel_engine_cs *ring)
996 {
997         struct drm_device *dev = ring->dev;
998         struct drm_i915_private *dev_priv = dev->dev_private;
999
1000         I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1001         I915_WRITE(RING_HWSTAM(ring->mmio_base), 0xffffffff);
1002
1003         I915_WRITE(RING_MODE_GEN7(ring),
1004                    _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1005                    _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1006         POSTING_READ(RING_MODE_GEN7(ring));
1007         DRM_DEBUG_DRIVER("Execlists enabled for %s\n", ring->name);
1008
1009         memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
1010
1011         return 0;
1012 }
1013
1014 static int gen8_init_render_ring(struct intel_engine_cs *ring)
1015 {
1016         struct drm_device *dev = ring->dev;
1017         struct drm_i915_private *dev_priv = dev->dev_private;
1018         int ret;
1019
1020         ret = gen8_init_common_ring(ring);
1021         if (ret)
1022                 return ret;
1023
1024         /* We need to disable the AsyncFlip performance optimisations in order
1025          * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1026          * programmed to '1' on all products.
1027          *
1028          * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1029          */
1030         I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1031
1032         ret = intel_init_pipe_control(ring);
1033         if (ret)
1034                 return ret;
1035
1036         I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1037
1038         return ret;
1039 }
1040
1041 static int gen8_emit_bb_start(struct intel_ringbuffer *ringbuf,
1042                               u64 offset, unsigned flags)
1043 {
1044         bool ppgtt = !(flags & I915_DISPATCH_SECURE);
1045         int ret;
1046
1047         ret = intel_logical_ring_begin(ringbuf, 4);
1048         if (ret)
1049                 return ret;
1050
1051         /* FIXME(BDW): Address space and security selectors. */
1052         intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8));
1053         intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
1054         intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
1055         intel_logical_ring_emit(ringbuf, MI_NOOP);
1056         intel_logical_ring_advance(ringbuf);
1057
1058         return 0;
1059 }
1060
1061 static bool gen8_logical_ring_get_irq(struct intel_engine_cs *ring)
1062 {
1063         struct drm_device *dev = ring->dev;
1064         struct drm_i915_private *dev_priv = dev->dev_private;
1065
1066         if (!dev->irq_enabled)
1067                 return false;
1068
1069         lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1070         if (ring->irq_refcount++ == 0) {
1071                 I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1072                 POSTING_READ(RING_IMR(ring->mmio_base));
1073         }
1074         lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1075
1076         return true;
1077 }
1078
1079 static void gen8_logical_ring_put_irq(struct intel_engine_cs *ring)
1080 {
1081         struct drm_device *dev = ring->dev;
1082         struct drm_i915_private *dev_priv = dev->dev_private;
1083
1084         lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1085         if (--ring->irq_refcount == 0) {
1086                 I915_WRITE_IMR(ring, ~ring->irq_keep_mask);
1087                 POSTING_READ(RING_IMR(ring->mmio_base));
1088         }
1089         lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1090 }
1091
1092 static int gen8_emit_flush(struct intel_ringbuffer *ringbuf,
1093                            u32 invalidate_domains,
1094                            u32 unused)
1095 {
1096         struct intel_engine_cs *ring = ringbuf->ring;
1097         struct drm_device *dev = ring->dev;
1098         struct drm_i915_private *dev_priv = dev->dev_private;
1099         uint32_t cmd;
1100         int ret;
1101
1102         ret = intel_logical_ring_begin(ringbuf, 4);
1103         if (ret)
1104                 return ret;
1105
1106         cmd = MI_FLUSH_DW + 1;
1107
1108         if (ring == &dev_priv->ring[VCS]) {
1109                 if (invalidate_domains & I915_GEM_GPU_DOMAINS)
1110                         cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD |
1111                                 MI_FLUSH_DW_STORE_INDEX |
1112                                 MI_FLUSH_DW_OP_STOREDW;
1113         } else {
1114                 if (invalidate_domains & I915_GEM_DOMAIN_RENDER)
1115                         cmd |= MI_INVALIDATE_TLB | MI_FLUSH_DW_STORE_INDEX |
1116                                 MI_FLUSH_DW_OP_STOREDW;
1117         }
1118
1119         intel_logical_ring_emit(ringbuf, cmd);
1120         intel_logical_ring_emit(ringbuf,
1121                                 I915_GEM_HWS_SCRATCH_ADDR |
1122                                 MI_FLUSH_DW_USE_GTT);
1123         intel_logical_ring_emit(ringbuf, 0); /* upper addr */
1124         intel_logical_ring_emit(ringbuf, 0); /* value */
1125         intel_logical_ring_advance(ringbuf);
1126
1127         return 0;
1128 }
1129
1130 static int gen8_emit_flush_render(struct intel_ringbuffer *ringbuf,
1131                                   u32 invalidate_domains,
1132                                   u32 flush_domains)
1133 {
1134         struct intel_engine_cs *ring = ringbuf->ring;
1135         u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1136         u32 flags = 0;
1137         int ret;
1138
1139         flags |= PIPE_CONTROL_CS_STALL;
1140
1141         if (flush_domains) {
1142                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1143                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1144         }
1145
1146         if (invalidate_domains) {
1147                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1148                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1149                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1150                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1151                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1152                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1153                 flags |= PIPE_CONTROL_QW_WRITE;
1154                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
1155         }
1156
1157         ret = intel_logical_ring_begin(ringbuf, 6);
1158         if (ret)
1159                 return ret;
1160
1161         intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1162         intel_logical_ring_emit(ringbuf, flags);
1163         intel_logical_ring_emit(ringbuf, scratch_addr);
1164         intel_logical_ring_emit(ringbuf, 0);
1165         intel_logical_ring_emit(ringbuf, 0);
1166         intel_logical_ring_emit(ringbuf, 0);
1167         intel_logical_ring_advance(ringbuf);
1168
1169         return 0;
1170 }
1171
1172 static u32 gen8_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1173 {
1174         return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1175 }
1176
1177 static void gen8_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1178 {
1179         intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1180 }
1181
1182 static int gen8_emit_request(struct intel_ringbuffer *ringbuf)
1183 {
1184         struct intel_engine_cs *ring = ringbuf->ring;
1185         u32 cmd;
1186         int ret;
1187
1188         ret = intel_logical_ring_begin(ringbuf, 6);
1189         if (ret)
1190                 return ret;
1191
1192         cmd = MI_STORE_DWORD_IMM_GEN8;
1193         cmd |= MI_GLOBAL_GTT;
1194
1195         intel_logical_ring_emit(ringbuf, cmd);
1196         intel_logical_ring_emit(ringbuf,
1197                                 (ring->status_page.gfx_addr +
1198                                 (I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT)));
1199         intel_logical_ring_emit(ringbuf, 0);
1200         intel_logical_ring_emit(ringbuf, ring->outstanding_lazy_seqno);
1201         intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1202         intel_logical_ring_emit(ringbuf, MI_NOOP);
1203         intel_logical_ring_advance_and_submit(ringbuf);
1204
1205         return 0;
1206 }
1207
1208 /**
1209  * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1210  *
1211  * @ring: Engine Command Streamer.
1212  *
1213  */
1214 void intel_logical_ring_cleanup(struct intel_engine_cs *ring)
1215 {
1216         struct drm_i915_private *dev_priv = ring->dev->dev_private;
1217
1218         if (!intel_ring_initialized(ring))
1219                 return;
1220
1221         intel_logical_ring_stop(ring);
1222         WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
1223         ring->preallocated_lazy_request = NULL;
1224         ring->outstanding_lazy_seqno = 0;
1225
1226         if (ring->cleanup)
1227                 ring->cleanup(ring);
1228
1229         i915_cmd_parser_fini_ring(ring);
1230
1231         if (ring->status_page.obj) {
1232                 kunmap(ring->status_page.obj->pages[0]);
1233                 ring->status_page.obj = NULL;
1234         }
1235 }
1236
1237 static int logical_ring_init(struct drm_device *dev, struct intel_engine_cs *ring)
1238 {
1239         int ret;
1240
1241         /* Intentionally left blank. */
1242         ring->buffer = NULL;
1243
1244         ring->dev = dev;
1245         INIT_LIST_HEAD(&ring->active_list);
1246         INIT_LIST_HEAD(&ring->request_list);
1247         init_waitqueue_head(&ring->irq_queue);
1248
1249         INIT_LIST_HEAD(&ring->execlist_queue);
1250         lockinit(&ring->execlist_lock, "i915el", 0, LK_CANRECURSE);
1251         ring->next_context_status_buffer = 0;
1252
1253         ret = i915_cmd_parser_init_ring(ring);
1254         if (ret)
1255                 return ret;
1256
1257         if (ring->init) {
1258                 ret = ring->init(ring);
1259                 if (ret)
1260                         return ret;
1261         }
1262
1263         ret = intel_lr_context_deferred_create(ring->default_context, ring);
1264
1265         return ret;
1266 }
1267
1268 static int logical_render_ring_init(struct drm_device *dev)
1269 {
1270         struct drm_i915_private *dev_priv = dev->dev_private;
1271         struct intel_engine_cs *ring = &dev_priv->ring[RCS];
1272
1273         ring->name = "render ring";
1274         ring->id = RCS;
1275         ring->mmio_base = RENDER_RING_BASE;
1276         ring->irq_enable_mask =
1277                 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
1278         ring->irq_keep_mask =
1279                 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
1280         if (HAS_L3_DPF(dev))
1281                 ring->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
1282
1283         ring->init = gen8_init_render_ring;
1284         ring->cleanup = intel_fini_pipe_control;
1285         ring->get_seqno = gen8_get_seqno;
1286         ring->set_seqno = gen8_set_seqno;
1287         ring->emit_request = gen8_emit_request;
1288         ring->emit_flush = gen8_emit_flush_render;
1289         ring->irq_get = gen8_logical_ring_get_irq;
1290         ring->irq_put = gen8_logical_ring_put_irq;
1291         ring->emit_bb_start = gen8_emit_bb_start;
1292
1293         return logical_ring_init(dev, ring);
1294 }
1295
1296 static int logical_bsd_ring_init(struct drm_device *dev)
1297 {
1298         struct drm_i915_private *dev_priv = dev->dev_private;
1299         struct intel_engine_cs *ring = &dev_priv->ring[VCS];
1300
1301         ring->name = "bsd ring";
1302         ring->id = VCS;
1303         ring->mmio_base = GEN6_BSD_RING_BASE;
1304         ring->irq_enable_mask =
1305                 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
1306         ring->irq_keep_mask =
1307                 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
1308
1309         ring->init = gen8_init_common_ring;
1310         ring->get_seqno = gen8_get_seqno;
1311         ring->set_seqno = gen8_set_seqno;
1312         ring->emit_request = gen8_emit_request;
1313         ring->emit_flush = gen8_emit_flush;
1314         ring->irq_get = gen8_logical_ring_get_irq;
1315         ring->irq_put = gen8_logical_ring_put_irq;
1316         ring->emit_bb_start = gen8_emit_bb_start;
1317
1318         return logical_ring_init(dev, ring);
1319 }
1320
1321 static int logical_bsd2_ring_init(struct drm_device *dev)
1322 {
1323         struct drm_i915_private *dev_priv = dev->dev_private;
1324         struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
1325
1326         ring->name = "bds2 ring";
1327         ring->id = VCS2;
1328         ring->mmio_base = GEN8_BSD2_RING_BASE;
1329         ring->irq_enable_mask =
1330                 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
1331         ring->irq_keep_mask =
1332                 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
1333
1334         ring->init = gen8_init_common_ring;
1335         ring->get_seqno = gen8_get_seqno;
1336         ring->set_seqno = gen8_set_seqno;
1337         ring->emit_request = gen8_emit_request;
1338         ring->emit_flush = gen8_emit_flush;
1339         ring->irq_get = gen8_logical_ring_get_irq;
1340         ring->irq_put = gen8_logical_ring_put_irq;
1341         ring->emit_bb_start = gen8_emit_bb_start;
1342
1343         return logical_ring_init(dev, ring);
1344 }
1345
1346 static int logical_blt_ring_init(struct drm_device *dev)
1347 {
1348         struct drm_i915_private *dev_priv = dev->dev_private;
1349         struct intel_engine_cs *ring = &dev_priv->ring[BCS];
1350
1351         ring->name = "blitter ring";
1352         ring->id = BCS;
1353         ring->mmio_base = BLT_RING_BASE;
1354         ring->irq_enable_mask =
1355                 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
1356         ring->irq_keep_mask =
1357                 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
1358
1359         ring->init = gen8_init_common_ring;
1360         ring->get_seqno = gen8_get_seqno;
1361         ring->set_seqno = gen8_set_seqno;
1362         ring->emit_request = gen8_emit_request;
1363         ring->emit_flush = gen8_emit_flush;
1364         ring->irq_get = gen8_logical_ring_get_irq;
1365         ring->irq_put = gen8_logical_ring_put_irq;
1366         ring->emit_bb_start = gen8_emit_bb_start;
1367
1368         return logical_ring_init(dev, ring);
1369 }
1370
1371 static int logical_vebox_ring_init(struct drm_device *dev)
1372 {
1373         struct drm_i915_private *dev_priv = dev->dev_private;
1374         struct intel_engine_cs *ring = &dev_priv->ring[VECS];
1375
1376         ring->name = "video enhancement ring";
1377         ring->id = VECS;
1378         ring->mmio_base = VEBOX_RING_BASE;
1379         ring->irq_enable_mask =
1380                 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
1381         ring->irq_keep_mask =
1382                 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
1383
1384         ring->init = gen8_init_common_ring;
1385         ring->get_seqno = gen8_get_seqno;
1386         ring->set_seqno = gen8_set_seqno;
1387         ring->emit_request = gen8_emit_request;
1388         ring->emit_flush = gen8_emit_flush;
1389         ring->irq_get = gen8_logical_ring_get_irq;
1390         ring->irq_put = gen8_logical_ring_put_irq;
1391         ring->emit_bb_start = gen8_emit_bb_start;
1392
1393         return logical_ring_init(dev, ring);
1394 }
1395
1396 /**
1397  * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
1398  * @dev: DRM device.
1399  *
1400  * This function inits the engines for an Execlists submission style (the equivalent in the
1401  * legacy ringbuffer submission world would be i915_gem_init_rings). It does it only for
1402  * those engines that are present in the hardware.
1403  *
1404  * Return: non-zero if the initialization failed.
1405  */
1406 int intel_logical_rings_init(struct drm_device *dev)
1407 {
1408         struct drm_i915_private *dev_priv = dev->dev_private;
1409         int ret;
1410
1411         ret = logical_render_ring_init(dev);
1412         if (ret)
1413                 return ret;
1414
1415         if (HAS_BSD(dev)) {
1416                 ret = logical_bsd_ring_init(dev);
1417                 if (ret)
1418                         goto cleanup_render_ring;
1419         }
1420
1421         if (HAS_BLT(dev)) {
1422                 ret = logical_blt_ring_init(dev);
1423                 if (ret)
1424                         goto cleanup_bsd_ring;
1425         }
1426
1427         if (HAS_VEBOX(dev)) {
1428                 ret = logical_vebox_ring_init(dev);
1429                 if (ret)
1430                         goto cleanup_blt_ring;
1431         }
1432
1433         if (HAS_BSD2(dev)) {
1434                 ret = logical_bsd2_ring_init(dev);
1435                 if (ret)
1436                         goto cleanup_vebox_ring;
1437         }
1438
1439         ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
1440         if (ret)
1441                 goto cleanup_bsd2_ring;
1442
1443         return 0;
1444
1445 cleanup_bsd2_ring:
1446         intel_logical_ring_cleanup(&dev_priv->ring[VCS2]);
1447 cleanup_vebox_ring:
1448         intel_logical_ring_cleanup(&dev_priv->ring[VECS]);
1449 cleanup_blt_ring:
1450         intel_logical_ring_cleanup(&dev_priv->ring[BCS]);
1451 cleanup_bsd_ring:
1452         intel_logical_ring_cleanup(&dev_priv->ring[VCS]);
1453 cleanup_render_ring:
1454         intel_logical_ring_cleanup(&dev_priv->ring[RCS]);
1455
1456         return ret;
1457 }
1458
1459 int intel_lr_context_render_state_init(struct intel_engine_cs *ring,
1460                                        struct intel_context *ctx)
1461 {
1462         struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
1463         struct render_state so;
1464         struct drm_i915_file_private *file_priv = ctx->file_priv;
1465         struct drm_file *file = file_priv ? file_priv->file : NULL;
1466         int ret;
1467
1468         ret = i915_gem_render_state_prepare(ring, &so);
1469         if (ret)
1470                 return ret;
1471
1472         if (so.rodata == NULL)
1473                 return 0;
1474
1475         ret = ring->emit_bb_start(ringbuf,
1476                         so.ggtt_offset,
1477                         I915_DISPATCH_SECURE);
1478         if (ret)
1479                 goto out;
1480
1481         i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), ring);
1482
1483         ret = __i915_add_request(ring, file, so.obj, NULL);
1484         /* intel_logical_ring_add_request moves object to inactive if it
1485          * fails */
1486 out:
1487         i915_gem_render_state_fini(&so);
1488         return ret;
1489 }
1490
1491 static int
1492 populate_lr_context(struct intel_context *ctx, struct drm_i915_gem_object *ctx_obj,
1493                     struct intel_engine_cs *ring, struct intel_ringbuffer *ringbuf)
1494 {
1495         struct drm_device *dev = ring->dev;
1496         struct drm_i915_private *dev_priv = dev->dev_private;
1497         struct drm_i915_gem_object *ring_obj = ringbuf->obj;
1498         struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
1499         struct vm_page *page;
1500         uint32_t *reg_state;
1501         int ret;
1502
1503         if (!ppgtt)
1504                 ppgtt = dev_priv->mm.aliasing_ppgtt;
1505
1506         ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
1507         if (ret) {
1508                 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
1509                 return ret;
1510         }
1511
1512         ret = i915_gem_object_get_pages(ctx_obj);
1513         if (ret) {
1514                 DRM_DEBUG_DRIVER("Could not get object pages\n");
1515                 return ret;
1516         }
1517
1518         i915_gem_object_pin_pages(ctx_obj);
1519
1520         /* The second page of the context object contains some fields which must
1521          * be set up prior to the first execution. */
1522         page = i915_gem_object_get_page(ctx_obj, 1);
1523         reg_state = kmap_atomic(page);
1524
1525         /* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
1526          * commands followed by (reg, value) pairs. The values we are setting here are
1527          * only for the first context restore: on a subsequent save, the GPU will
1528          * recreate this batchbuffer with new values (including all the missing
1529          * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
1530         if (ring->id == RCS)
1531                 reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(14);
1532         else
1533                 reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(11);
1534         reg_state[CTX_LRI_HEADER_0] |= MI_LRI_FORCE_POSTED;
1535         reg_state[CTX_CONTEXT_CONTROL] = RING_CONTEXT_CONTROL(ring);
1536         reg_state[CTX_CONTEXT_CONTROL+1] =
1537                         _MASKED_BIT_ENABLE((1<<3) | MI_RESTORE_INHIBIT);
1538         reg_state[CTX_RING_HEAD] = RING_HEAD(ring->mmio_base);
1539         reg_state[CTX_RING_HEAD+1] = 0;
1540         reg_state[CTX_RING_TAIL] = RING_TAIL(ring->mmio_base);
1541         reg_state[CTX_RING_TAIL+1] = 0;
1542         reg_state[CTX_RING_BUFFER_START] = RING_START(ring->mmio_base);
1543         reg_state[CTX_RING_BUFFER_START+1] = i915_gem_obj_ggtt_offset(ring_obj);
1544         reg_state[CTX_RING_BUFFER_CONTROL] = RING_CTL(ring->mmio_base);
1545         reg_state[CTX_RING_BUFFER_CONTROL+1] =
1546                         ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID;
1547         reg_state[CTX_BB_HEAD_U] = ring->mmio_base + 0x168;
1548         reg_state[CTX_BB_HEAD_U+1] = 0;
1549         reg_state[CTX_BB_HEAD_L] = ring->mmio_base + 0x140;
1550         reg_state[CTX_BB_HEAD_L+1] = 0;
1551         reg_state[CTX_BB_STATE] = ring->mmio_base + 0x110;
1552         reg_state[CTX_BB_STATE+1] = (1<<5);
1553         reg_state[CTX_SECOND_BB_HEAD_U] = ring->mmio_base + 0x11c;
1554         reg_state[CTX_SECOND_BB_HEAD_U+1] = 0;
1555         reg_state[CTX_SECOND_BB_HEAD_L] = ring->mmio_base + 0x114;
1556         reg_state[CTX_SECOND_BB_HEAD_L+1] = 0;
1557         reg_state[CTX_SECOND_BB_STATE] = ring->mmio_base + 0x118;
1558         reg_state[CTX_SECOND_BB_STATE+1] = 0;
1559         if (ring->id == RCS) {
1560                 /* TODO: according to BSpec, the register state context
1561                  * for CHV does not have these. OTOH, these registers do
1562                  * exist in CHV. I'm waiting for a clarification */
1563                 reg_state[CTX_BB_PER_CTX_PTR] = ring->mmio_base + 0x1c0;
1564                 reg_state[CTX_BB_PER_CTX_PTR+1] = 0;
1565                 reg_state[CTX_RCS_INDIRECT_CTX] = ring->mmio_base + 0x1c4;
1566                 reg_state[CTX_RCS_INDIRECT_CTX+1] = 0;
1567                 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET] = ring->mmio_base + 0x1c8;
1568                 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] = 0;
1569         }
1570         reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9);
1571         reg_state[CTX_LRI_HEADER_1] |= MI_LRI_FORCE_POSTED;
1572         reg_state[CTX_CTX_TIMESTAMP] = ring->mmio_base + 0x3a8;
1573         reg_state[CTX_CTX_TIMESTAMP+1] = 0;
1574         reg_state[CTX_PDP3_UDW] = GEN8_RING_PDP_UDW(ring, 3);
1575         reg_state[CTX_PDP3_LDW] = GEN8_RING_PDP_LDW(ring, 3);
1576         reg_state[CTX_PDP2_UDW] = GEN8_RING_PDP_UDW(ring, 2);
1577         reg_state[CTX_PDP2_LDW] = GEN8_RING_PDP_LDW(ring, 2);
1578         reg_state[CTX_PDP1_UDW] = GEN8_RING_PDP_UDW(ring, 1);
1579         reg_state[CTX_PDP1_LDW] = GEN8_RING_PDP_LDW(ring, 1);
1580         reg_state[CTX_PDP0_UDW] = GEN8_RING_PDP_UDW(ring, 0);
1581         reg_state[CTX_PDP0_LDW] = GEN8_RING_PDP_LDW(ring, 0);
1582         reg_state[CTX_PDP3_UDW+1] = upper_32_bits(ppgtt->pd_dma_addr[3]);
1583         reg_state[CTX_PDP3_LDW+1] = lower_32_bits(ppgtt->pd_dma_addr[3]);
1584         reg_state[CTX_PDP2_UDW+1] = upper_32_bits(ppgtt->pd_dma_addr[2]);
1585         reg_state[CTX_PDP2_LDW+1] = lower_32_bits(ppgtt->pd_dma_addr[2]);
1586         reg_state[CTX_PDP1_UDW+1] = upper_32_bits(ppgtt->pd_dma_addr[1]);
1587         reg_state[CTX_PDP1_LDW+1] = lower_32_bits(ppgtt->pd_dma_addr[1]);
1588         reg_state[CTX_PDP0_UDW+1] = upper_32_bits(ppgtt->pd_dma_addr[0]);
1589         reg_state[CTX_PDP0_LDW+1] = lower_32_bits(ppgtt->pd_dma_addr[0]);
1590         if (ring->id == RCS) {
1591                 reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
1592                 reg_state[CTX_R_PWR_CLK_STATE] = 0x20c8;
1593                 reg_state[CTX_R_PWR_CLK_STATE+1] = 0;
1594         }
1595
1596         kunmap_atomic(reg_state);
1597
1598         ctx_obj->dirty = 1;
1599         set_page_dirty(page);
1600         i915_gem_object_unpin_pages(ctx_obj);
1601
1602         return 0;
1603 }
1604
1605 /**
1606  * intel_lr_context_free() - free the LRC specific bits of a context
1607  * @ctx: the LR context to free.
1608  *
1609  * The real context freeing is done in i915_gem_context_free: this only
1610  * takes care of the bits that are LRC related: the per-engine backing
1611  * objects and the logical ringbuffer.
1612  */
1613 void intel_lr_context_free(struct intel_context *ctx)
1614 {
1615         int i;
1616
1617         for (i = 0; i < I915_NUM_RINGS; i++) {
1618                 struct drm_i915_gem_object *ctx_obj = ctx->engine[i].state;
1619                 struct intel_ringbuffer *ringbuf = ctx->engine[i].ringbuf;
1620
1621                 if (ctx_obj) {
1622                         intel_destroy_ringbuffer_obj(ringbuf);
1623                         kfree(ringbuf);
1624                         i915_gem_object_ggtt_unpin(ctx_obj);
1625                         drm_gem_object_unreference(&ctx_obj->base);
1626                 }
1627         }
1628 }
1629
1630 static uint32_t get_lr_context_size(struct intel_engine_cs *ring)
1631 {
1632         int ret = 0;
1633
1634         WARN_ON(INTEL_INFO(ring->dev)->gen != 8);
1635
1636         switch (ring->id) {
1637         case RCS:
1638                 ret = GEN8_LR_CONTEXT_RENDER_SIZE;
1639                 break;
1640         case VCS:
1641         case BCS:
1642         case VECS:
1643         case VCS2:
1644                 ret = GEN8_LR_CONTEXT_OTHER_SIZE;
1645                 break;
1646         }
1647
1648         return ret;
1649 }
1650
1651 /**
1652  * intel_lr_context_deferred_create() - create the LRC specific bits of a context
1653  * @ctx: LR context to create.
1654  * @ring: engine to be used with the context.
1655  *
1656  * This function can be called more than once, with different engines, if we plan
1657  * to use the context with them. The context backing objects and the ringbuffers
1658  * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
1659  * the creation is a deferred call: it's better to make sure first that we need to use
1660  * a given ring with the context.
1661  *
1662  * Return: non-zero on eror.
1663  */
1664 int intel_lr_context_deferred_create(struct intel_context *ctx,
1665                                      struct intel_engine_cs *ring)
1666 {
1667         struct drm_device *dev = ring->dev;
1668         struct drm_i915_gem_object *ctx_obj;
1669         uint32_t context_size;
1670         struct intel_ringbuffer *ringbuf;
1671         int ret;
1672
1673         WARN_ON(ctx->legacy_hw_ctx.rcs_state != NULL);
1674         if (ctx->engine[ring->id].state)
1675                 return 0;
1676
1677         context_size = round_up(get_lr_context_size(ring), 4096);
1678
1679         ctx_obj = i915_gem_alloc_context_obj(dev, context_size);
1680         if (IS_ERR(ctx_obj)) {
1681                 ret = PTR_ERR(ctx_obj);
1682                 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed: %d\n", ret);
1683                 return ret;
1684         }
1685
1686         ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN, 0);
1687         if (ret) {
1688                 DRM_DEBUG_DRIVER("Pin LRC backing obj failed: %d\n", ret);
1689                 drm_gem_object_unreference(&ctx_obj->base);
1690                 return ret;
1691         }
1692
1693         ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
1694         if (!ringbuf) {
1695                 DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s\n",
1696                                 ring->name);
1697                 i915_gem_object_ggtt_unpin(ctx_obj);
1698                 drm_gem_object_unreference(&ctx_obj->base);
1699                 ret = -ENOMEM;
1700                 return ret;
1701         }
1702
1703         ringbuf->ring = ring;
1704         ringbuf->FIXME_lrc_ctx = ctx;
1705
1706         ringbuf->size = 32 * PAGE_SIZE;
1707         ringbuf->effective_size = ringbuf->size;
1708         ringbuf->head = 0;
1709         ringbuf->tail = 0;
1710         ringbuf->space = ringbuf->size;
1711         ringbuf->last_retired_head = -1;
1712
1713         /* TODO: For now we put this in the mappable region so that we can reuse
1714          * the existing ringbuffer code which ioremaps it. When we start
1715          * creating many contexts, this will no longer work and we must switch
1716          * to a kmapish interface.
1717          */
1718         ret = intel_alloc_ringbuffer_obj(dev, ringbuf);
1719         if (ret) {
1720                 DRM_DEBUG_DRIVER("Failed to allocate ringbuffer obj %s: %d\n",
1721                                 ring->name, ret);
1722                 goto error;
1723         }
1724
1725         ret = populate_lr_context(ctx, ctx_obj, ring, ringbuf);
1726         if (ret) {
1727                 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
1728                 intel_destroy_ringbuffer_obj(ringbuf);
1729                 goto error;
1730         }
1731
1732         ctx->engine[ring->id].ringbuf = ringbuf;
1733         ctx->engine[ring->id].state = ctx_obj;
1734
1735         if (ctx == ring->default_context) {
1736                 /* The status page is offset 0 from the default context object
1737                  * in LRC mode. */
1738                 ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(ctx_obj);
1739                 ring->status_page.page_addr =
1740                                 kmap(ctx_obj->pages[0]);
1741                 if (ring->status_page.page_addr == NULL)
1742                         return -ENOMEM;
1743                 ring->status_page.obj = ctx_obj;
1744         }
1745
1746         if (ring->id == RCS && !ctx->rcs_initialized) {
1747                 ret = intel_lr_context_render_state_init(ring, ctx);
1748                 if (ret) {
1749                         DRM_ERROR("Init render state failed: %d\n", ret);
1750                         ctx->engine[ring->id].ringbuf = NULL;
1751                         ctx->engine[ring->id].state = NULL;
1752                         intel_destroy_ringbuffer_obj(ringbuf);
1753                         goto error;
1754                 }
1755                 ctx->rcs_initialized = true;
1756         }
1757
1758         return 0;
1759
1760 error:
1761         kfree(ringbuf);
1762         i915_gem_object_ggtt_unpin(ctx_obj);
1763         drm_gem_object_unreference(&ctx_obj->base);
1764         return ret;
1765 }