Merge branch 'vendor/OPENSSL'
[dragonfly.git] / sys / platform / pc64 / isa / clock.c
1 /*-
2  * Copyright (c) 1990 The Regents of the University of California.
3  * Copyright (c) 2008 The DragonFly Project.
4  * All rights reserved.
5  *
6  * This code is derived from software contributed to Berkeley by
7  * William Jolitz and Don Ahn.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *      from: @(#)clock.c       7.2 (Berkeley) 5/12/91
34  * $FreeBSD: src/sys/i386/isa/clock.c,v 1.149.2.6 2002/11/02 04:41:50 iwasaki Exp $
35  */
36
37 /*
38  * Routines to handle clock hardware.
39  */
40
41 /*
42  * inittodr, settodr and support routines written
43  * by Christoph Robitschko <chmr@edvz.tu-graz.ac.at>
44  *
45  * reintroduced and updated by Chris Stenton <chris@gnome.co.uk> 8/10/94
46  */
47
48 #if 0
49 #include "opt_clock.h"
50 #endif
51
52 #include <sys/param.h>
53 #include <sys/systm.h>
54 #include <sys/eventhandler.h>
55 #include <sys/time.h>
56 #include <sys/kernel.h>
57 #include <sys/bus.h>
58 #include <sys/sysctl.h>
59 #include <sys/cons.h>
60 #include <sys/kbio.h>
61 #include <sys/systimer.h>
62 #include <sys/globaldata.h>
63 #include <sys/machintr.h>
64 #include <sys/interrupt.h>
65
66 #include <sys/thread2.h>
67
68 #include <machine/clock.h>
69 #include <machine/cputypes.h>
70 #include <machine/frame.h>
71 #include <machine/ipl.h>
72 #include <machine/limits.h>
73 #include <machine/md_var.h>
74 #include <machine/psl.h>
75 #include <machine/segments.h>
76 #include <machine/smp.h>
77 #include <machine/specialreg.h>
78 #include <machine/intr_machdep.h>
79
80 #include <machine_base/apic/ioapic.h>
81 #include <machine_base/apic/ioapic_abi.h>
82 #include <machine_base/icu/icu.h>
83 #include <bus/isa/isa.h>
84 #include <bus/isa/rtc.h>
85 #include <machine_base/isa/timerreg.h>
86
87 static void i8254_restore(void);
88 static void resettodr_on_shutdown(void *arg __unused);
89
90 /*
91  * 32-bit time_t's can't reach leap years before 1904 or after 2036, so we
92  * can use a simple formula for leap years.
93  */
94 #define LEAPYEAR(y) ((u_int)(y) % 4 == 0)
95 #define DAYSPERYEAR   (31+28+31+30+31+30+31+31+30+31+30+31)
96
97 #ifndef TIMER_FREQ
98 #define TIMER_FREQ   1193182
99 #endif
100
101 static uint8_t i8254_walltimer_sel;
102 static uint16_t i8254_walltimer_cntr;
103
104 int     adjkerntz;              /* local offset from GMT in seconds */
105 int     disable_rtc_set;        /* disable resettodr() if != 0 */
106 int     tsc_present;
107 int     tsc_invariant;
108 int     tsc_mpsync;
109 int64_t tsc_frequency;
110 int     tsc_is_broken;
111 int     wall_cmos_clock;        /* wall CMOS clock assumed if != 0 */
112 int     timer0_running;
113 enum tstate { RELEASED, ACQUIRED };
114 enum tstate timer0_state;
115 enum tstate timer1_state;
116 enum tstate timer2_state;
117
118 static  int     beeping = 0;
119 static  const u_char daysinmonth[] = {31,28,31,30,31,30,31,31,30,31,30,31};
120 static  u_char  rtc_statusa = RTCSA_DIVIDER | RTCSA_NOPROF;
121 static  u_char  rtc_statusb = RTCSB_24HR | RTCSB_PINTR;
122 static  int     rtc_loaded;
123
124 static int i8254_cputimer_div;
125
126 static int i8254_nointr;
127 static int i8254_intr_disable = 1;
128 TUNABLE_INT("hw.i8254.intr_disable", &i8254_intr_disable);
129
130 static struct callout sysbeepstop_ch;
131
132 static sysclock_t i8254_cputimer_count(void);
133 static void i8254_cputimer_construct(struct cputimer *cputimer, sysclock_t last);
134 static void i8254_cputimer_destruct(struct cputimer *cputimer);
135
136 static struct cputimer  i8254_cputimer = {
137     SLIST_ENTRY_INITIALIZER,
138     "i8254",
139     CPUTIMER_PRI_8254,
140     0,
141     i8254_cputimer_count,
142     cputimer_default_fromhz,
143     cputimer_default_fromus,
144     i8254_cputimer_construct,
145     i8254_cputimer_destruct,
146     TIMER_FREQ,
147     0, 0, 0
148 };
149
150 static sysclock_t tsc_cputimer_count_mfence(void);
151 static sysclock_t tsc_cputimer_count_lfence(void);
152 static void tsc_cputimer_construct(struct cputimer *, sysclock_t);
153
154 static struct cputimer  tsc_cputimer = {
155     SLIST_ENTRY_INITIALIZER,
156     "TSC",
157     CPUTIMER_PRI_TSC,
158     CPUTIMER_TSC,
159     tsc_cputimer_count_mfence, /* safe bet */
160     cputimer_default_fromhz,
161     cputimer_default_fromus,
162     tsc_cputimer_construct,
163     cputimer_default_destruct,
164     0,
165     0, 0, 0
166 };
167
168 static void i8254_intr_reload(struct cputimer_intr *, sysclock_t);
169 static void i8254_intr_config(struct cputimer_intr *, const struct cputimer *);
170 static void i8254_intr_initclock(struct cputimer_intr *, boolean_t);
171
172 static struct cputimer_intr i8254_cputimer_intr = {
173     .freq = TIMER_FREQ,
174     .reload = i8254_intr_reload,
175     .enable = cputimer_intr_default_enable,
176     .config = i8254_intr_config,
177     .restart = cputimer_intr_default_restart,
178     .pmfixup = cputimer_intr_default_pmfixup,
179     .initclock = i8254_intr_initclock,
180     .next = SLIST_ENTRY_INITIALIZER,
181     .name = "i8254",
182     .type = CPUTIMER_INTR_8254,
183     .prio = CPUTIMER_INTR_PRIO_8254,
184     .caps = CPUTIMER_INTR_CAP_PS
185 };
186
187 /*
188  * timer0 clock interrupt.  Timer0 is in one-shot mode and has stopped
189  * counting as of this interrupt.  We use timer1 in free-running mode (not
190  * generating any interrupts) as our main counter.  Each cpu has timeouts
191  * pending.
192  *
193  * This code is INTR_MPSAFE and may be called without the BGL held.
194  */
195 static void
196 clkintr(void *dummy, void *frame_arg)
197 {
198         static sysclock_t sysclock_count;       /* NOTE! Must be static */
199         struct globaldata *gd = mycpu;
200         struct globaldata *gscan;
201         int n;
202
203         /*
204          * SWSTROBE mode is a one-shot, the timer is no longer running
205          */
206         timer0_running = 0;
207
208         /*
209          * XXX the dispatcher needs work.  right now we call systimer_intr()
210          * directly or via IPI for any cpu with systimers queued, which is
211          * usually *ALL* of them.  We need to use the LAPIC timer for this.
212          */
213         sysclock_count = sys_cputimer->count();
214         for (n = 0; n < ncpus; ++n) {
215             gscan = globaldata_find(n);
216             if (TAILQ_FIRST(&gscan->gd_systimerq) == NULL)
217                 continue;
218             if (gscan != gd) {
219                 lwkt_send_ipiq3(gscan, (ipifunc3_t)systimer_intr, 
220                                 &sysclock_count, 1);
221             } else {
222                 systimer_intr(&sysclock_count, 0, frame_arg);
223             }
224         }
225 }
226
227
228 /*
229  * NOTE! not MP safe.
230  */
231 int
232 acquire_timer2(int mode)
233 {
234         if (timer2_state != RELEASED)
235                 return (-1);
236         timer2_state = ACQUIRED;
237
238         /*
239          * This access to the timer registers is as atomic as possible
240          * because it is a single instruction.  We could do better if we
241          * knew the rate.
242          */
243         outb(TIMER_MODE, TIMER_SEL2 | (mode & 0x3f));
244         return (0);
245 }
246
247 int
248 release_timer2(void)
249 {
250         if (timer2_state != ACQUIRED)
251                 return (-1);
252         outb(TIMER_MODE, TIMER_SEL2 | TIMER_SQWAVE | TIMER_16BIT);
253         timer2_state = RELEASED;
254         return (0);
255 }
256
257 #include "opt_ddb.h"
258 #ifdef DDB
259 #include <ddb/ddb.h>
260
261 DB_SHOW_COMMAND(rtc, rtc)
262 {
263         kprintf("%02x/%02x/%02x %02x:%02x:%02x, A = %02x, B = %02x, C = %02x\n",
264                rtcin(RTC_YEAR), rtcin(RTC_MONTH), rtcin(RTC_DAY),
265                rtcin(RTC_HRS), rtcin(RTC_MIN), rtcin(RTC_SEC),
266                rtcin(RTC_STATUSA), rtcin(RTC_STATUSB), rtcin(RTC_INTR));
267 }
268 #endif /* DDB */
269
270 /*
271  * Return the current cpu timer count as a 32 bit integer.
272  */
273 static
274 sysclock_t
275 i8254_cputimer_count(void)
276 {
277         static uint16_t cputimer_last;
278         uint16_t count;
279         sysclock_t ret;
280
281         clock_lock();
282         outb(TIMER_MODE, i8254_walltimer_sel | TIMER_LATCH);
283         count = (uint8_t)inb(i8254_walltimer_cntr);             /* get countdown */
284         count |= ((uint8_t)inb(i8254_walltimer_cntr) << 8);
285         count = -count;                                 /* -> countup */
286         if (count < cputimer_last)                      /* rollover */
287                 i8254_cputimer.base += 0x00010000;
288         ret = i8254_cputimer.base | count;
289         cputimer_last = count;
290         clock_unlock();
291         return(ret);
292 }
293
294 /*
295  * This function is called whenever the system timebase changes, allowing
296  * us to calculate what is needed to convert a system timebase tick 
297  * into an 8254 tick for the interrupt timer.  If we can convert to a
298  * simple shift, multiplication, or division, we do so.  Otherwise 64
299  * bit arithmatic is required every time the interrupt timer is reloaded.
300  */
301 static void
302 i8254_intr_config(struct cputimer_intr *cti, const struct cputimer *timer)
303 {
304     int freq;
305     int div;
306
307     /*
308      * Will a simple divide do the trick?
309      */
310     div = (timer->freq + (cti->freq / 2)) / cti->freq;
311     freq = cti->freq * div;
312
313     if (freq >= timer->freq - 1 && freq <= timer->freq + 1)
314         i8254_cputimer_div = div;
315     else
316         i8254_cputimer_div = 0;
317 }
318
319 /*
320  * Reload for the next timeout.  It is possible for the reload value
321  * to be 0 or negative, indicating that an immediate timer interrupt
322  * is desired.  For now make the minimum 2 ticks.
323  *
324  * We may have to convert from the system timebase to the 8254 timebase.
325  */
326 static void
327 i8254_intr_reload(struct cputimer_intr *cti, sysclock_t reload)
328 {
329     uint16_t count;
330
331     if (i8254_cputimer_div)
332         reload /= i8254_cputimer_div;
333     else
334         reload = (int64_t)reload * cti->freq / sys_cputimer->freq;
335
336     if ((int)reload < 2)
337         reload = 2;
338
339     clock_lock();
340     if (timer0_running) {
341         outb(TIMER_MODE, TIMER_SEL0 | TIMER_LATCH);     /* count-down timer */
342         count = (uint8_t)inb(TIMER_CNTR0);              /* lsb */
343         count |= ((uint8_t)inb(TIMER_CNTR0) << 8);      /* msb */
344         if (reload < count) {
345             outb(TIMER_MODE, TIMER_SEL0 | TIMER_SWSTROBE | TIMER_16BIT);
346             outb(TIMER_CNTR0, (uint8_t)reload);         /* lsb */
347             outb(TIMER_CNTR0, (uint8_t)(reload >> 8));  /* msb */
348         }
349     } else {
350         timer0_running = 1;
351         if (reload > 0xFFFF)
352             reload = 0;         /* full count */
353         outb(TIMER_MODE, TIMER_SEL0 | TIMER_SWSTROBE | TIMER_16BIT);
354         outb(TIMER_CNTR0, (uint8_t)reload);             /* lsb */
355         outb(TIMER_CNTR0, (uint8_t)(reload >> 8));      /* msb */
356     }
357     clock_unlock();
358 }
359
360 /*
361  * DELAY(usec)       - Spin for the specified number of microseconds.
362  * DRIVERSLEEP(usec) - Spin for the specified number of microseconds,
363  *                     but do a thread switch in the loop
364  *
365  * Relies on timer 1 counting down from (cputimer_freq / hz)
366  * Note: timer had better have been programmed before this is first used!
367  */
368 static void
369 DODELAY(int n, int doswitch)
370 {
371         ssysclock_t delta, ticks_left;
372         sysclock_t prev_tick, tick;
373
374 #ifdef DELAYDEBUG
375         int getit_calls = 1;
376         int n1;
377         static int state = 0;
378
379         if (state == 0) {
380                 state = 1;
381                 for (n1 = 1; n1 <= 10000000; n1 *= 10)
382                         DELAY(n1);
383                 state = 2;
384         }
385         if (state == 1)
386                 kprintf("DELAY(%d)...", n);
387 #endif
388         /*
389          * Guard against the timer being uninitialized if we are called
390          * early for console i/o.
391          */
392         if (timer0_state == RELEASED)
393                 i8254_restore();
394
395         /*
396          * Read the counter first, so that the rest of the setup overhead is
397          * counted.  Then calculate the number of hardware timer ticks
398          * required, rounding up to be sure we delay at least the requested
399          * number of microseconds.
400          */
401         prev_tick = sys_cputimer->count();
402         ticks_left = ((u_int)n * (int64_t)sys_cputimer->freq + 999999) /
403                      1000000;
404
405         /*
406          * Loop until done.
407          */
408         while (ticks_left > 0) {
409                 tick = sys_cputimer->count();
410 #ifdef DELAYDEBUG
411                 ++getit_calls;
412 #endif
413                 delta = tick - prev_tick;
414                 prev_tick = tick;
415                 if (delta < 0)
416                         delta = 0;
417                 ticks_left -= delta;
418                 if (doswitch && ticks_left > 0)
419                         lwkt_switch();
420                 cpu_pause();
421         }
422 #ifdef DELAYDEBUG
423         if (state == 1)
424                 kprintf(" %d calls to getit() at %d usec each\n",
425                        getit_calls, (n + 5) / getit_calls);
426 #endif
427 }
428
429 /*
430  * DELAY() never switches.
431  */
432 void
433 DELAY(int n)
434 {
435         DODELAY(n, 0);
436 }
437
438 /*
439  * Returns non-zero if the specified time period has elapsed.  Call
440  * first with last_clock set to 0.
441  */
442 int
443 CHECKTIMEOUT(TOTALDELAY *tdd)
444 {
445         sysclock_t delta;
446         int us;
447
448         if (tdd->started == 0) {
449                 if (timer0_state == RELEASED)
450                         i8254_restore();
451                 tdd->last_clock = sys_cputimer->count();
452                 tdd->started = 1;
453                 return(0);
454         }
455         delta = sys_cputimer->count() - tdd->last_clock;
456         us = (u_int64_t)delta * (u_int64_t)1000000 /
457              (u_int64_t)sys_cputimer->freq;
458         tdd->last_clock += (u_int64_t)us * (u_int64_t)sys_cputimer->freq /
459                            1000000;
460         tdd->us -= us;
461         return (tdd->us < 0);
462 }
463
464
465 /*
466  * DRIVERSLEEP() does not switch if called with a spinlock held or
467  * from a hard interrupt.
468  */
469 void
470 DRIVERSLEEP(int usec)
471 {
472         globaldata_t gd = mycpu;
473
474         if (gd->gd_intr_nesting_level || gd->gd_spinlocks) {
475                 DODELAY(usec, 0);
476         } else {
477                 DODELAY(usec, 1);
478         }
479 }
480
481 static void
482 sysbeepstop(void *chan)
483 {
484         outb(IO_PPI, inb(IO_PPI)&0xFC); /* disable counter2 output to speaker */
485         beeping = 0;
486         release_timer2();
487 }
488
489 int
490 sysbeep(int pitch, int period)
491 {
492         if (acquire_timer2(TIMER_SQWAVE|TIMER_16BIT))
493                 return(-1);
494         if (sysbeep_enable == 0)
495                 return(-1);
496         /*
497          * Nobody else is using timer2, we do not need the clock lock
498          */
499         outb(TIMER_CNTR2, pitch);
500         outb(TIMER_CNTR2, (pitch>>8));
501         if (!beeping) {
502                 /* enable counter2 output to speaker */
503                 outb(IO_PPI, inb(IO_PPI) | 3);
504                 beeping = period;
505                 callout_reset(&sysbeepstop_ch, period, sysbeepstop, NULL);
506         }
507         return (0);
508 }
509
510 /*
511  * RTC support routines
512  */
513
514 int
515 rtcin(int reg)
516 {
517         u_char val;
518
519         crit_enter();
520         outb(IO_RTC, reg);
521         inb(0x84);
522         val = inb(IO_RTC + 1);
523         inb(0x84);
524         crit_exit();
525         return (val);
526 }
527
528 static __inline void
529 writertc(u_char reg, u_char val)
530 {
531         crit_enter();
532         inb(0x84);
533         outb(IO_RTC, reg);
534         inb(0x84);
535         outb(IO_RTC + 1, val);
536         inb(0x84);              /* XXX work around wrong order in rtcin() */
537         crit_exit();
538 }
539
540 static __inline int
541 readrtc(int port)
542 {
543         return(bcd2bin(rtcin(port)));
544 }
545
546 static u_int
547 calibrate_clocks(void)
548 {
549         u_int64_t old_tsc;
550         u_int tot_count;
551         sysclock_t count, prev_count;
552         int sec, start_sec, timeout;
553
554         if (bootverbose)
555                 kprintf("Calibrating clock(s) ...\n");
556         if (!(rtcin(RTC_STATUSD) & RTCSD_PWR))
557                 goto fail;
558         timeout = 100000000;
559
560         /* Read the mc146818A seconds counter. */
561         for (;;) {
562                 if (!(rtcin(RTC_STATUSA) & RTCSA_TUP)) {
563                         sec = rtcin(RTC_SEC);
564                         break;
565                 }
566                 if (--timeout == 0)
567                         goto fail;
568         }
569
570         /* Wait for the mC146818A seconds counter to change. */
571         start_sec = sec;
572         for (;;) {
573                 if (!(rtcin(RTC_STATUSA) & RTCSA_TUP)) {
574                         sec = rtcin(RTC_SEC);
575                         if (sec != start_sec)
576                                 break;
577                 }
578                 if (--timeout == 0)
579                         goto fail;
580         }
581
582         /* Start keeping track of the i8254 counter. */
583         prev_count = sys_cputimer->count();
584         tot_count = 0;
585
586         if (tsc_present) 
587                 old_tsc = rdtsc();
588         else
589                 old_tsc = 0;            /* shut up gcc */
590
591         /*
592          * Wait for the mc146818A seconds counter to change.  Read the i8254
593          * counter for each iteration since this is convenient and only
594          * costs a few usec of inaccuracy. The timing of the final reads
595          * of the counters almost matches the timing of the initial reads,
596          * so the main cause of inaccuracy is the varying latency from 
597          * inside getit() or rtcin(RTC_STATUSA) to the beginning of the
598          * rtcin(RTC_SEC) that returns a changed seconds count.  The
599          * maximum inaccuracy from this cause is < 10 usec on 486's.
600          */
601         start_sec = sec;
602         for (;;) {
603                 if (!(rtcin(RTC_STATUSA) & RTCSA_TUP))
604                         sec = rtcin(RTC_SEC);
605                 count = sys_cputimer->count();
606                 tot_count += (int)(count - prev_count);
607                 prev_count = count;
608                 if (sec != start_sec)
609                         break;
610                 if (--timeout == 0)
611                         goto fail;
612         }
613
614         /*
615          * Read the cpu cycle counter.  The timing considerations are
616          * similar to those for the i8254 clock.
617          */
618         if (tsc_present) {
619                 tsc_frequency = rdtsc() - old_tsc;
620         }
621
622         if (tsc_present) {
623                 kprintf("TSC%s clock: %llu Hz, ",
624                     tsc_invariant ? " invariant" : "",
625                     (long long)tsc_frequency);
626         }
627         kprintf("i8254 clock: %u Hz\n", tot_count);
628         return (tot_count);
629
630 fail:
631         kprintf("failed, using default i8254 clock of %u Hz\n",
632                 i8254_cputimer.freq);
633         return (i8254_cputimer.freq);
634 }
635
636 static void
637 i8254_restore(void)
638 {
639         timer0_state = ACQUIRED;
640
641         clock_lock();
642
643         /*
644          * Timer0 is our fine-grained variable clock interrupt
645          */
646         outb(TIMER_MODE, TIMER_SEL0 | TIMER_SWSTROBE | TIMER_16BIT);
647         outb(TIMER_CNTR0, 2);   /* lsb */
648         outb(TIMER_CNTR0, 0);   /* msb */
649         clock_unlock();
650
651         if (!i8254_nointr) {
652                 cputimer_intr_register(&i8254_cputimer_intr);
653                 cputimer_intr_select(&i8254_cputimer_intr, 0);
654         }
655
656         /*
657          * Timer1 or timer2 is our free-running clock, but only if another
658          * has not been selected.
659          */
660         cputimer_register(&i8254_cputimer);
661         cputimer_select(&i8254_cputimer, 0);
662 }
663
664 static void
665 i8254_cputimer_construct(struct cputimer *timer, sysclock_t oldclock)
666 {
667         int which;
668
669         /*
670          * Should we use timer 1 or timer 2 ?
671          */
672         which = 0;
673         TUNABLE_INT_FETCH("hw.i8254.walltimer", &which);
674         if (which != 1 && which != 2)
675                 which = 2;
676
677         switch(which) {
678         case 1:
679                 timer->name = "i8254_timer1";
680                 timer->type = CPUTIMER_8254_SEL1;
681                 i8254_walltimer_sel = TIMER_SEL1;
682                 i8254_walltimer_cntr = TIMER_CNTR1;
683                 timer1_state = ACQUIRED;
684                 break;
685         case 2:
686                 timer->name = "i8254_timer2";
687                 timer->type = CPUTIMER_8254_SEL2;
688                 i8254_walltimer_sel = TIMER_SEL2;
689                 i8254_walltimer_cntr = TIMER_CNTR2;
690                 timer2_state = ACQUIRED;
691                 break;
692         }
693
694         timer->base = (oldclock + 0xFFFF) & ~0xFFFF;
695
696         clock_lock();
697         outb(TIMER_MODE, i8254_walltimer_sel | TIMER_RATEGEN | TIMER_16BIT);
698         outb(i8254_walltimer_cntr, 0);  /* lsb */
699         outb(i8254_walltimer_cntr, 0);  /* msb */
700         outb(IO_PPI, inb(IO_PPI) | 1);  /* bit 0: enable gate, bit 1: spkr */
701         clock_unlock();
702 }
703
704 static void
705 i8254_cputimer_destruct(struct cputimer *timer)
706 {
707         switch(timer->type) {
708         case CPUTIMER_8254_SEL1:
709             timer1_state = RELEASED;
710             break;
711         case CPUTIMER_8254_SEL2:
712             timer2_state = RELEASED;
713             break;
714         default:
715             break;
716         }
717         timer->type = 0;
718 }
719
720 static void
721 rtc_restore(void)
722 {
723         /* Restore all of the RTC's "status" (actually, control) registers. */
724         writertc(RTC_STATUSB, RTCSB_24HR);
725         writertc(RTC_STATUSA, rtc_statusa);
726         writertc(RTC_STATUSB, rtc_statusb);
727 }
728
729 /*
730  * Restore all the timers.
731  *
732  * This function is called to resynchronize our core timekeeping after a
733  * long halt, e.g. from apm_default_resume() and friends.  It is also 
734  * called if after a BIOS call we have detected munging of the 8254.
735  * It is necessary because cputimer_count() counter's delta may have grown
736  * too large for nanouptime() and friends to handle, or (in the case of 8254
737  * munging) might cause the SYSTIMER code to prematurely trigger.
738  */
739 void
740 timer_restore(void)
741 {
742         crit_enter();
743         i8254_restore();                /* restore timer_freq and hz */
744         rtc_restore();                  /* reenable RTC interrupts */
745         crit_exit();
746 }
747
748 /*
749  * Initialize 8254 timer 0 early so that it can be used in DELAY().
750  */
751 void
752 startrtclock(void)
753 {
754         u_int delta, freq;
755
756         /* 
757          * Can we use the TSC?
758          *
759          * NOTE: If running under qemu, probably a good idea to force the
760          *       TSC because we are not likely to detect it as being
761          *       invariant or mpsyncd if you don't.  This will greatly
762          *       reduce SMP contention.
763          */
764         if (cpu_feature & CPUID_TSC) {
765                 tsc_present = 1;
766                 TUNABLE_INT_FETCH("hw.tsc_cputimer_force", &tsc_invariant);
767
768                 if ((cpu_vendor_id == CPU_VENDOR_INTEL ||
769                      cpu_vendor_id == CPU_VENDOR_AMD) &&
770                     cpu_exthigh >= 0x80000007) {
771                         u_int regs[4];
772
773                         do_cpuid(0x80000007, regs);
774                         if (regs[3] & 0x100)
775                                 tsc_invariant = 1;
776                 }
777         } else {
778                 tsc_present = 0;
779         }
780
781         /*
782          * Initial RTC state, don't do anything unexpected
783          */
784         writertc(RTC_STATUSA, rtc_statusa);
785         writertc(RTC_STATUSB, RTCSB_24HR);
786
787         /*
788          * Set the 8254 timer0 in TIMER_SWSTROBE mode and cause it to 
789          * generate an interrupt, which we will ignore for now.
790          *
791          * Set the 8254 timer1 in TIMER_RATEGEN mode and load 0x0000
792          * (so it counts a full 2^16 and repeats).  We will use this timer
793          * for our counting.
794          */
795         i8254_restore();
796         freq = calibrate_clocks();
797 #ifdef CLK_CALIBRATION_LOOP
798         if (bootverbose) {
799                 int c;
800
801                 cnpoll(TRUE);
802                 kprintf("Press a key on the console to "
803                         "abort clock calibration\n");
804                 while ((c = cncheckc()) == -1 || c == NOKEY)
805                         calibrate_clocks();
806                 cnpoll(FALSE);
807         }
808 #endif
809
810         /*
811          * Use the calibrated i8254 frequency if it seems reasonable.
812          * Otherwise use the default, and don't use the calibrated i586
813          * frequency.
814          */
815         delta = freq > i8254_cputimer.freq ? 
816                         freq - i8254_cputimer.freq : i8254_cputimer.freq - freq;
817         if (delta < i8254_cputimer.freq / 100) {
818 #ifndef CLK_USE_I8254_CALIBRATION
819                 if (bootverbose)
820                         kprintf(
821 "CLK_USE_I8254_CALIBRATION not specified - using default frequency\n");
822                 freq = i8254_cputimer.freq;
823 #endif
824                 /*
825                  * NOTE:
826                  * Interrupt timer's freq must be adjusted
827                  * before we change the cuptimer's frequency.
828                  */
829                 i8254_cputimer_intr.freq = freq;
830                 cputimer_set_frequency(&i8254_cputimer, freq);
831         } else {
832                 if (bootverbose)
833                         kprintf(
834                     "%d Hz differs from default of %d Hz by more than 1%%\n",
835                                freq, i8254_cputimer.freq);
836                 tsc_frequency = 0;
837         }
838
839 #ifndef CLK_USE_TSC_CALIBRATION
840         if (tsc_frequency != 0) {
841                 if (bootverbose)
842                         kprintf(
843 "CLK_USE_TSC_CALIBRATION not specified - using old calibration method\n");
844                 tsc_frequency = 0;
845         }
846 #endif
847         if (tsc_present && tsc_frequency == 0) {
848                 /*
849                  * Calibration of the i586 clock relative to the mc146818A
850                  * clock failed.  Do a less accurate calibration relative
851                  * to the i8254 clock.
852                  */
853                 u_int64_t old_tsc = rdtsc();
854
855                 DELAY(1000000);
856                 tsc_frequency = rdtsc() - old_tsc;
857 #ifdef CLK_USE_TSC_CALIBRATION
858                 if (bootverbose) {
859                         kprintf("TSC clock: %llu Hz (Method B)\n",
860                                 tsc_frequency);
861                 }
862 #endif
863         }
864
865         EVENTHANDLER_REGISTER(shutdown_post_sync, resettodr_on_shutdown, NULL, SHUTDOWN_PRI_LAST);
866 }
867
868 /*
869  * Sync the time of day back to the RTC on shutdown, but only if
870  * we have already loaded it and have not crashed.
871  */
872 static void
873 resettodr_on_shutdown(void *arg __unused)
874 {
875         if (rtc_loaded && panicstr == NULL) {
876                 resettodr();
877         }
878 }
879
880 /*
881  * Initialize the time of day register, based on the time base which is, e.g.
882  * from a filesystem.
883  */
884 void
885 inittodr(time_t base)
886 {
887         unsigned long   sec, days;
888         int             year, month;
889         int             y, m;
890         struct timespec ts;
891
892         if (base) {
893                 ts.tv_sec = base;
894                 ts.tv_nsec = 0;
895                 set_timeofday(&ts);
896         }
897
898         /* Look if we have a RTC present and the time is valid */
899         if (!(rtcin(RTC_STATUSD) & RTCSD_PWR))
900                 goto wrong_time;
901
902         /* wait for time update to complete */
903         /* If RTCSA_TUP is zero, we have at least 244us before next update */
904         crit_enter();
905         while (rtcin(RTC_STATUSA) & RTCSA_TUP) {
906                 crit_exit();
907                 crit_enter();
908         }
909
910         days = 0;
911 #ifdef USE_RTC_CENTURY
912         year = readrtc(RTC_YEAR) + readrtc(RTC_CENTURY) * 100;
913 #else
914         year = readrtc(RTC_YEAR) + 1900;
915         if (year < 1970)
916                 year += 100;
917 #endif
918         if (year < 1970) {
919                 crit_exit();
920                 goto wrong_time;
921         }
922         month = readrtc(RTC_MONTH);
923         for (m = 1; m < month; m++)
924                 days += daysinmonth[m-1];
925         if ((month > 2) && LEAPYEAR(year))
926                 days ++;
927         days += readrtc(RTC_DAY) - 1;
928         for (y = 1970; y < year; y++)
929                 days += DAYSPERYEAR + LEAPYEAR(y);
930         sec = ((( days * 24 +
931                   readrtc(RTC_HRS)) * 60 +
932                   readrtc(RTC_MIN)) * 60 +
933                   readrtc(RTC_SEC));
934         /* sec now contains the number of seconds, since Jan 1 1970,
935            in the local time zone */
936
937         sec += tz.tz_minuteswest * 60 + (wall_cmos_clock ? adjkerntz : 0);
938
939         y = (int)(time_second - sec);
940         if (y <= -2 || y >= 2) {
941                 /* badly off, adjust it */
942                 ts.tv_sec = sec;
943                 ts.tv_nsec = 0;
944                 set_timeofday(&ts);
945         }
946         rtc_loaded = 1;
947         crit_exit();
948         return;
949
950 wrong_time:
951         kprintf("Invalid time in real time clock.\n");
952         kprintf("Check and reset the date immediately!\n");
953 }
954
955 /*
956  * Write system time back to RTC
957  */
958 void
959 resettodr(void)
960 {
961         struct timeval tv;
962         unsigned long tm;
963         int m;
964         int y;
965
966         if (disable_rtc_set)
967                 return;
968
969         microtime(&tv);
970         tm = tv.tv_sec;
971
972         crit_enter();
973         /* Disable RTC updates and interrupts. */
974         writertc(RTC_STATUSB, RTCSB_HALT | RTCSB_24HR);
975
976         /* Calculate local time to put in RTC */
977
978         tm -= tz.tz_minuteswest * 60 + (wall_cmos_clock ? adjkerntz : 0);
979
980         writertc(RTC_SEC, bin2bcd(tm%60)); tm /= 60;    /* Write back Seconds */
981         writertc(RTC_MIN, bin2bcd(tm%60)); tm /= 60;    /* Write back Minutes */
982         writertc(RTC_HRS, bin2bcd(tm%24)); tm /= 24;    /* Write back Hours   */
983
984         /* We have now the days since 01-01-1970 in tm */
985         writertc(RTC_WDAY, (tm+4)%7);                   /* Write back Weekday */
986         for (y = 1970, m = DAYSPERYEAR + LEAPYEAR(y);
987              tm >= m;
988              y++,      m = DAYSPERYEAR + LEAPYEAR(y))
989              tm -= m;
990
991         /* Now we have the years in y and the day-of-the-year in tm */
992         writertc(RTC_YEAR, bin2bcd(y%100));             /* Write back Year    */
993 #ifdef USE_RTC_CENTURY
994         writertc(RTC_CENTURY, bin2bcd(y/100));          /* ... and Century    */
995 #endif
996         for (m = 0; ; m++) {
997                 int ml;
998
999                 ml = daysinmonth[m];
1000                 if (m == 1 && LEAPYEAR(y))
1001                         ml++;
1002                 if (tm < ml)
1003                         break;
1004                 tm -= ml;
1005         }
1006
1007         writertc(RTC_MONTH, bin2bcd(m + 1));            /* Write back Month   */
1008         writertc(RTC_DAY, bin2bcd(tm + 1));             /* Write back Month Day */
1009
1010         /* Reenable RTC updates and interrupts. */
1011         writertc(RTC_STATUSB, rtc_statusb);
1012         crit_exit();
1013 }
1014
1015 static int
1016 i8254_ioapic_trial(int irq, struct cputimer_intr *cti)
1017 {
1018         sysclock_t base;
1019         long lastcnt;
1020
1021         /*
1022          * Following code assumes the 8254 is the cpu timer,
1023          * so make sure it is.
1024          */
1025         KKASSERT(sys_cputimer == &i8254_cputimer);
1026         KKASSERT(cti == &i8254_cputimer_intr);
1027
1028         lastcnt = get_interrupt_counter(irq, mycpuid);
1029
1030         /*
1031          * Force an 8254 Timer0 interrupt and wait 1/100s for
1032          * it to happen, then see if we got it.
1033          */
1034         kprintf("IOAPIC: testing 8254 interrupt delivery\n");
1035
1036         i8254_intr_reload(cti, 2);
1037         base = sys_cputimer->count();
1038         while (sys_cputimer->count() - base < sys_cputimer->freq / 100)
1039                 ; /* nothing */
1040
1041         if (get_interrupt_counter(irq, mycpuid) - lastcnt == 0)
1042                 return ENOENT;
1043         return 0;
1044 }
1045
1046 /*
1047  * Start both clocks running.  DragonFly note: the stat clock is no longer
1048  * used.  Instead, 8254 based systimers are used for all major clock
1049  * interrupts.
1050  */
1051 static void
1052 i8254_intr_initclock(struct cputimer_intr *cti, boolean_t selected)
1053 {
1054         void *clkdesc = NULL;
1055         int irq = 0, mixed_mode = 0, error;
1056
1057         KKASSERT(mycpuid == 0);
1058         callout_init_mp(&sysbeepstop_ch);
1059
1060         if (!selected && i8254_intr_disable)
1061                 goto nointr;
1062
1063         /*
1064          * The stat interrupt mask is different without the
1065          * statistics clock.  Also, don't set the interrupt
1066          * flag which would normally cause the RTC to generate
1067          * interrupts.
1068          */
1069         rtc_statusb = RTCSB_24HR;
1070
1071         /* Finish initializing 8254 timer 0. */
1072         if (ioapic_enable) {
1073                 irq = machintr_legacy_intr_find(0, INTR_TRIGGER_EDGE,
1074                         INTR_POLARITY_HIGH);
1075                 if (irq < 0) {
1076 mixed_mode_setup:
1077                         error = ioapic_conf_legacy_extint(0);
1078                         if (!error) {
1079                                 irq = machintr_legacy_intr_find(0,
1080                                     INTR_TRIGGER_EDGE, INTR_POLARITY_HIGH);
1081                                 if (irq < 0)
1082                                         error = ENOENT;
1083                         }
1084
1085                         if (error) {
1086                                 if (!selected) {
1087                                         kprintf("IOAPIC: setup mixed mode for "
1088                                                 "irq 0 failed: %d\n", error);
1089                                         goto nointr;
1090                                 } else {
1091                                         panic("IOAPIC: setup mixed mode for "
1092                                               "irq 0 failed: %d\n", error);
1093                                 }
1094                         }
1095                         mixed_mode = 1;
1096                 }
1097                 clkdesc = register_int(irq, clkintr, NULL, "clk",
1098                                        NULL,
1099                                        INTR_EXCL | INTR_CLOCK |
1100                                        INTR_NOPOLL | INTR_MPSAFE |
1101                                        INTR_NOENTROPY, 0);
1102         } else {
1103                 register_int(0, clkintr, NULL, "clk", NULL,
1104                              INTR_EXCL | INTR_CLOCK |
1105                              INTR_NOPOLL | INTR_MPSAFE |
1106                              INTR_NOENTROPY, 0);
1107         }
1108
1109         /* Initialize RTC. */
1110         writertc(RTC_STATUSA, rtc_statusa);
1111         writertc(RTC_STATUSB, RTCSB_24HR);
1112
1113         if (ioapic_enable) {
1114                 error = i8254_ioapic_trial(irq, cti);
1115                 if (error) {
1116                         if (mixed_mode) {
1117                                 if (!selected) {
1118                                         kprintf("IOAPIC: mixed mode for irq %d "
1119                                                 "trial failed: %d\n",
1120                                                 irq, error);
1121                                         goto nointr;
1122                                 } else {
1123                                         panic("IOAPIC: mixed mode for irq %d "
1124                                               "trial failed: %d\n", irq, error);
1125                                 }
1126                         } else {
1127                                 kprintf("IOAPIC: warning 8254 is not connected "
1128                                         "to the correct pin, try mixed mode\n");
1129                                 unregister_int(clkdesc, 0);
1130                                 goto mixed_mode_setup;
1131                         }
1132                 }
1133         }
1134         return;
1135
1136 nointr:
1137         i8254_nointr = 1; /* don't try to register again */
1138         cputimer_intr_deregister(cti);
1139 }
1140
1141 void
1142 setstatclockrate(int newhz)
1143 {
1144         if (newhz == RTC_PROFRATE)
1145                 rtc_statusa = RTCSA_DIVIDER | RTCSA_PROF;
1146         else
1147                 rtc_statusa = RTCSA_DIVIDER | RTCSA_NOPROF;
1148         writertc(RTC_STATUSA, rtc_statusa);
1149 }
1150
1151 #if 0
1152 static unsigned
1153 tsc_get_timecount(struct timecounter *tc)
1154 {
1155         return (rdtsc());
1156 }
1157 #endif
1158
1159 #ifdef KERN_TIMESTAMP
1160 #define KERN_TIMESTAMP_SIZE 16384
1161 static u_long tsc[KERN_TIMESTAMP_SIZE] ;
1162 SYSCTL_OPAQUE(_debug, OID_AUTO, timestamp, CTLFLAG_RD, tsc,
1163         sizeof(tsc), "LU", "Kernel timestamps");
1164 void  
1165 _TSTMP(u_int32_t x)
1166 {
1167         static int i;
1168
1169         tsc[i] = (u_int32_t)rdtsc();
1170         tsc[i+1] = x;
1171         i = i + 2;
1172         if (i >= KERN_TIMESTAMP_SIZE)
1173                 i = 0;
1174         tsc[i] = 0; /* mark last entry */
1175 }
1176 #endif /* KERN_TIMESTAMP */
1177
1178 /*
1179  *
1180  */
1181
1182 static int
1183 hw_i8254_timestamp(SYSCTL_HANDLER_ARGS)
1184 {
1185     sysclock_t count;
1186     uint64_t tscval;
1187     char buf[32];
1188
1189     crit_enter();
1190     if (sys_cputimer == &i8254_cputimer)
1191         count = sys_cputimer->count();
1192     else
1193         count = 0;
1194     if (tsc_present)
1195         tscval = rdtsc();
1196     else
1197         tscval = 0;
1198     crit_exit();
1199     ksnprintf(buf, sizeof(buf), "%08x %016llx", count, (long long)tscval);
1200     return(SYSCTL_OUT(req, buf, strlen(buf) + 1));
1201 }
1202
1203 struct tsc_mpsync_arg {
1204         volatile uint64_t       tsc_target;
1205         volatile int            tsc_mpsync;
1206 };
1207
1208 struct tsc_mpsync_thr {
1209         volatile int            tsc_done_cnt;
1210         volatile int            tsc_mpsync_cnt;
1211 };
1212
1213 static void
1214 tsc_mpsync_test_remote(void *xarg)
1215 {
1216         struct tsc_mpsync_arg *arg = xarg;
1217         uint64_t tsc;
1218
1219         tsc = rdtsc_ordered();
1220         if (tsc < arg->tsc_target)
1221                 arg->tsc_mpsync = 0;
1222 }
1223
1224 static void
1225 tsc_mpsync_test_loop(struct tsc_mpsync_arg *arg)
1226 {
1227         struct globaldata *gd = mycpu;
1228         uint64_t test_end, test_begin;
1229         u_int i;
1230
1231         if (bootverbose) {
1232                 kprintf("cpu%d: TSC testing MP synchronization ...\n",
1233                     gd->gd_cpuid);
1234         }
1235
1236         test_begin = rdtsc_ordered();
1237         /* Run test for 100ms */
1238         test_end = test_begin + (tsc_frequency / 10);
1239
1240         arg->tsc_mpsync = 1;
1241         arg->tsc_target = test_begin;
1242
1243 #define TSC_TEST_TRYMAX         1000000 /* Make sure we could stop */
1244 #define TSC_TEST_TRYMIN         50000
1245
1246         for (i = 0; i < TSC_TEST_TRYMAX; ++i) {
1247                 struct lwkt_cpusync cs;
1248
1249                 crit_enter();
1250                 lwkt_cpusync_init(&cs, gd->gd_other_cpus,
1251                     tsc_mpsync_test_remote, arg);
1252                 lwkt_cpusync_interlock(&cs);
1253                 arg->tsc_target = rdtsc_ordered();
1254                 cpu_mfence();
1255                 lwkt_cpusync_deinterlock(&cs);
1256                 crit_exit();
1257
1258                 if (!arg->tsc_mpsync) {
1259                         kprintf("cpu%d: TSC is not MP synchronized @%u\n",
1260                             gd->gd_cpuid, i);
1261                         break;
1262                 }
1263                 if (arg->tsc_target > test_end && i >= TSC_TEST_TRYMIN)
1264                         break;
1265         }
1266
1267 #undef TSC_TEST_TRYMIN
1268 #undef TSC_TEST_TRYMAX
1269
1270         if (arg->tsc_target == test_begin) {
1271                 kprintf("cpu%d: TSC does not tick?!\n", gd->gd_cpuid);
1272                 /* XXX disable TSC? */
1273                 tsc_invariant = 0;
1274                 arg->tsc_mpsync = 0;
1275                 return;
1276         }
1277
1278         if (arg->tsc_mpsync && bootverbose) {
1279                 kprintf("cpu%d: TSC is MP synchronized after %u tries\n",
1280                     gd->gd_cpuid, i);
1281         }
1282 }
1283
1284 static void
1285 tsc_mpsync_ap_thread(void *xthr)
1286 {
1287         struct tsc_mpsync_thr *thr = xthr;
1288         struct tsc_mpsync_arg arg;
1289
1290         tsc_mpsync_test_loop(&arg);
1291         if (arg.tsc_mpsync) {
1292                 atomic_add_int(&thr->tsc_mpsync_cnt, 1);
1293                 cpu_sfence();
1294         }
1295         atomic_add_int(&thr->tsc_done_cnt, 1);
1296
1297         lwkt_exit();
1298 }
1299
1300 static void
1301 tsc_mpsync_test(void)
1302 {
1303         struct tsc_mpsync_arg arg;
1304
1305         if (!tsc_invariant) {
1306                 /* Not even invariant TSC */
1307                 return;
1308         }
1309
1310         if (ncpus == 1) {
1311                 /* Only one CPU */
1312                 tsc_mpsync = 1;
1313                 return;
1314         }
1315
1316         /*
1317          * Forcing can be used w/qemu to reduce contention
1318          */
1319         TUNABLE_INT_FETCH("hw.tsc_cputimer_force", &tsc_mpsync);
1320         if (tsc_mpsync) {
1321                 kprintf("TSC as cputimer forced\n");
1322                 return;
1323         }
1324
1325         if (cpu_vendor_id != CPU_VENDOR_INTEL) {
1326                 /* XXX only Intel works */
1327                 return;
1328         }
1329
1330         kprintf("TSC testing MP synchronization ...\n");
1331
1332         tsc_mpsync_test_loop(&arg);
1333         if (arg.tsc_mpsync) {
1334                 struct tsc_mpsync_thr thr;
1335                 int cpu;
1336
1337                 /*
1338                  * Test TSC MP synchronization on APs.
1339                  */
1340
1341                 thr.tsc_done_cnt = 1;
1342                 thr.tsc_mpsync_cnt = 1;
1343
1344                 for (cpu = 0; cpu < ncpus; ++cpu) {
1345                         if (cpu == mycpuid)
1346                                 continue;
1347
1348                         lwkt_create(tsc_mpsync_ap_thread, &thr, NULL,
1349                             NULL, 0, cpu, "tsc mpsync %d", cpu);
1350                 }
1351
1352                 while (thr.tsc_done_cnt != ncpus) {
1353                         cpu_pause();
1354                         cpu_lfence();
1355                 }
1356                 if (thr.tsc_mpsync_cnt == ncpus)
1357                         tsc_mpsync = 1;
1358         }
1359
1360         if (tsc_mpsync)
1361                 kprintf("TSC is MP synchronized\n");
1362         else
1363                 kprintf("TSC is not MP synchronized\n");
1364 }
1365 SYSINIT(tsc_mpsync, SI_BOOT2_FINISH_SMP, SI_ORDER_ANY, tsc_mpsync_test, NULL);
1366
1367 #define TSC_CPUTIMER_FREQMAX    128000000       /* 128Mhz */
1368
1369 static int tsc_cputimer_shift;
1370
1371 static void
1372 tsc_cputimer_construct(struct cputimer *timer, sysclock_t oldclock)
1373 {
1374         timer->base = 0;
1375         timer->base = oldclock - timer->count();
1376 }
1377
1378 static __inline sysclock_t
1379 tsc_cputimer_count(void)
1380 {
1381         uint64_t tsc;
1382
1383         tsc = rdtsc();
1384         tsc >>= tsc_cputimer_shift;
1385
1386         return (tsc + tsc_cputimer.base);
1387 }
1388
1389 static sysclock_t
1390 tsc_cputimer_count_lfence(void)
1391 {
1392         cpu_lfence();
1393         return tsc_cputimer_count();
1394 }
1395
1396 static sysclock_t
1397 tsc_cputimer_count_mfence(void)
1398 {
1399         cpu_mfence();
1400         return tsc_cputimer_count();
1401 }
1402
1403 static void
1404 tsc_cputimer_register(void)
1405 {
1406         uint64_t freq;
1407         int enable = 1;
1408
1409         if (!tsc_mpsync)
1410                 return;
1411
1412         TUNABLE_INT_FETCH("hw.tsc_cputimer_enable", &enable);
1413         if (!enable)
1414                 return;
1415
1416         freq = tsc_frequency;
1417         while (freq > TSC_CPUTIMER_FREQMAX) {
1418                 freq >>= 1;
1419                 ++tsc_cputimer_shift;
1420         }
1421         kprintf("TSC: cputimer freq %ju, shift %d\n",
1422             (uintmax_t)freq, tsc_cputimer_shift);
1423
1424         tsc_cputimer.freq = freq;
1425
1426         if (cpu_vendor_id == CPU_VENDOR_INTEL)
1427                 tsc_cputimer.count = tsc_cputimer_count_lfence;
1428         else
1429                 tsc_cputimer.count = tsc_cputimer_count_mfence; /* safe bet */
1430
1431         cputimer_register(&tsc_cputimer);
1432         cputimer_select(&tsc_cputimer, 0);
1433 }
1434 SYSINIT(tsc_cputimer_reg, SI_BOOT2_POST_SMP, SI_ORDER_FIRST,
1435         tsc_cputimer_register, NULL);
1436
1437 SYSCTL_NODE(_hw, OID_AUTO, i8254, CTLFLAG_RW, 0, "I8254");
1438 SYSCTL_UINT(_hw_i8254, OID_AUTO, freq, CTLFLAG_RD, &i8254_cputimer.freq, 0,
1439             "frequency");
1440 SYSCTL_PROC(_hw_i8254, OID_AUTO, timestamp, CTLTYPE_STRING|CTLFLAG_RD,
1441             0, 0, hw_i8254_timestamp, "A", "");
1442
1443 SYSCTL_INT(_hw, OID_AUTO, tsc_present, CTLFLAG_RD,
1444             &tsc_present, 0, "TSC Available");
1445 SYSCTL_INT(_hw, OID_AUTO, tsc_invariant, CTLFLAG_RD,
1446             &tsc_invariant, 0, "Invariant TSC");
1447 SYSCTL_INT(_hw, OID_AUTO, tsc_mpsync, CTLFLAG_RD,
1448             &tsc_mpsync, 0, "TSC is synchronized across CPUs");
1449 SYSCTL_QUAD(_hw, OID_AUTO, tsc_frequency, CTLFLAG_RD,
1450             &tsc_frequency, 0, "TSC Frequency");