Ports -> pkgsrc
[dragonfly.git] / sys / vm / vm_fault.c
1 /*
2  * Copyright (c) 1991, 1993
3  *      The Regents of the University of California.  All rights reserved.
4  * Copyright (c) 1994 John S. Dyson
5  * All rights reserved.
6  * Copyright (c) 1994 David Greenman
7  * All rights reserved.
8  *
9  *
10  * This code is derived from software contributed to Berkeley by
11  * The Mach Operating System project at Carnegie-Mellon University.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. All advertising materials mentioning features or use of this software
22  *    must display the following acknowledgement:
23  *      This product includes software developed by the University of
24  *      California, Berkeley and its contributors.
25  * 4. Neither the name of the University nor the names of its contributors
26  *    may be used to endorse or promote products derived from this software
27  *    without specific prior written permission.
28  *
29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39  * SUCH DAMAGE.
40  *
41  *      from: @(#)vm_fault.c    8.4 (Berkeley) 1/12/94
42  *
43  *
44  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
45  * All rights reserved.
46  *
47  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
48  *
49  * Permission to use, copy, modify and distribute this software and
50  * its documentation is hereby granted, provided that both the copyright
51  * notice and this permission notice appear in all copies of the
52  * software, derivative works or modified versions, and any portions
53  * thereof, and that both notices appear in supporting documentation.
54  *
55  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
56  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
57  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
58  *
59  * Carnegie Mellon requests users of this software to return to
60  *
61  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
62  *  School of Computer Science
63  *  Carnegie Mellon University
64  *  Pittsburgh PA 15213-3890
65  *
66  * any improvements or extensions that they make and grant Carnegie the
67  * rights to redistribute these changes.
68  *
69  * $FreeBSD: src/sys/vm/vm_fault.c,v 1.108.2.8 2002/02/26 05:49:27 silby Exp $
70  * $DragonFly: src/sys/vm/vm_fault.c,v 1.25 2006/05/17 17:47:58 dillon Exp $
71  */
72
73 /*
74  *      Page fault handling module.
75  */
76
77 #include <sys/param.h>
78 #include <sys/systm.h>
79 #include <sys/kernel.h>
80 #include <sys/proc.h>
81 #include <sys/vnode.h>
82 #include <sys/resourcevar.h>
83 #include <sys/vmmeter.h>
84
85 #include <vm/vm.h>
86 #include <vm/vm_param.h>
87 #include <sys/lock.h>
88 #include <vm/pmap.h>
89 #include <vm/vm_map.h>
90 #include <vm/vm_object.h>
91 #include <vm/vm_page.h>
92 #include <vm/vm_pageout.h>
93 #include <vm/vm_kern.h>
94 #include <vm/vm_pager.h>
95 #include <vm/vnode_pager.h>
96 #include <vm/vm_extern.h>
97
98 #include <sys/thread2.h>
99 #include <vm/vm_page2.h>
100
101 static int vm_fault_additional_pages (vm_page_t, int,
102                                           int, vm_page_t *, int *);
103 static int vm_fault_ratelimit(struct vmspace *vmspace);
104
105 #define VM_FAULT_READ_AHEAD 8
106 #define VM_FAULT_READ_BEHIND 7
107 #define VM_FAULT_READ (VM_FAULT_READ_AHEAD+VM_FAULT_READ_BEHIND+1)
108
109 struct faultstate {
110         vm_page_t m;
111         vm_object_t object;
112         vm_pindex_t pindex;
113         vm_page_t first_m;
114         vm_object_t     first_object;
115         vm_pindex_t first_pindex;
116         vm_map_t map;
117         vm_map_entry_t entry;
118         int lookup_still_valid;
119         struct vnode *vp;
120 };
121
122 static __inline void
123 release_page(struct faultstate *fs)
124 {
125         vm_page_wakeup(fs->m);
126         vm_page_deactivate(fs->m);
127         fs->m = NULL;
128 }
129
130 static __inline void
131 unlock_map(struct faultstate *fs)
132 {
133         if (fs->lookup_still_valid) {
134                 vm_map_lookup_done(fs->map, fs->entry, 0);
135                 fs->lookup_still_valid = FALSE;
136         }
137 }
138
139 static void
140 _unlock_things(struct faultstate *fs, int dealloc)
141 {
142         vm_object_pip_wakeup(fs->object);
143         if (fs->object != fs->first_object) {
144                 vm_page_free(fs->first_m);
145                 vm_object_pip_wakeup(fs->first_object);
146                 fs->first_m = NULL;
147         }
148         if (dealloc) {
149                 vm_object_deallocate(fs->first_object);
150         }
151         unlock_map(fs); 
152         if (fs->vp != NULL) { 
153                 vput(fs->vp);
154                 fs->vp = NULL;
155         }
156 }
157
158 #define unlock_things(fs) _unlock_things(fs, 0)
159 #define unlock_and_deallocate(fs) _unlock_things(fs, 1)
160
161 /*
162  * TRYPAGER - used by vm_fault to calculate whether the pager for the
163  *            current object *might* contain the page.
164  *
165  *            default objects are zero-fill, there is no real pager.
166  */
167
168 #define TRYPAGER        (fs.object->type != OBJT_DEFAULT && \
169                         (((fault_flags & VM_FAULT_WIRE_MASK) == 0) || wired))
170
171 /*
172  *      vm_fault:
173  *
174  *      Handle a page fault occurring at the given address,
175  *      requiring the given permissions, in the map specified.
176  *      If successful, the page is inserted into the
177  *      associated physical map.
178  *
179  *      NOTE: the given address should be truncated to the
180  *      proper page address.
181  *
182  *      KERN_SUCCESS is returned if the page fault is handled; otherwise,
183  *      a standard error specifying why the fault is fatal is returned.
184  *
185  *
186  *      The map in question must be referenced, and remains so.
187  *      Caller may hold no locks.
188  */
189 int
190 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type, int fault_flags)
191 {
192         vm_prot_t prot;
193         int result;
194         boolean_t wired;
195         int map_generation;
196         vm_object_t next_object;
197         vm_page_t marray[VM_FAULT_READ];
198         int hardfault;
199         int faultcount;
200         int limticks;
201         int didlimit = 0;
202         struct faultstate fs;
203
204         mycpu->gd_cnt.v_vm_faults++;
205         hardfault = 0;
206
207 RetryFault:
208         /*
209          * Find the backing store object and offset into it to begin the
210          * search.
211          */
212         fs.map = map;
213         if ((result = vm_map_lookup(&fs.map, vaddr,
214                 fault_type, &fs.entry, &fs.first_object,
215                 &fs.first_pindex, &prot, &wired)) != KERN_SUCCESS) {
216                 if ((result != KERN_PROTECTION_FAILURE) ||
217                         ((fault_flags & VM_FAULT_WIRE_MASK) != VM_FAULT_USER_WIRE)) {
218                         return result;
219                 }
220
221                 /*
222                  * If we are user-wiring a r/w segment, and it is COW, then
223                  * we need to do the COW operation.  Note that we don't COW
224                  * currently RO sections now, because it is NOT desirable
225                  * to COW .text.  We simply keep .text from ever being COW'ed
226                  * and take the heat that one cannot debug wired .text sections.
227                  */
228                 result = vm_map_lookup(&fs.map, vaddr,
229                         VM_PROT_READ|VM_PROT_WRITE|VM_PROT_OVERRIDE_WRITE,
230                         &fs.entry, &fs.first_object, &fs.first_pindex, &prot, &wired);
231                 if (result != KERN_SUCCESS) {
232                         return result;
233                 }
234
235                 /*
236                  * If we don't COW now, on a user wire, the user will never
237                  * be able to write to the mapping.  If we don't make this
238                  * restriction, the bookkeeping would be nearly impossible.
239                  */
240                 if ((fs.entry->protection & VM_PROT_WRITE) == 0)
241                         fs.entry->max_protection &= ~VM_PROT_WRITE;
242         }
243
244         map_generation = fs.map->timestamp;
245
246         if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
247                 panic("vm_fault: fault on nofault entry, addr: %lx",
248                     (u_long)vaddr);
249         }
250
251         /*
252          * A system map entry may return a NULL object.  No object means
253          * no pager means an unrecoverable kernel fault.
254          */
255         if (fs.first_object == NULL) {
256                 panic("vm_fault: unrecoverable fault at %p in entry %p",
257                         (void *)vaddr, fs.entry);
258         }
259
260         /*
261          * Make a reference to this object to prevent its disposal while we
262          * are messing with it.  Once we have the reference, the map is free
263          * to be diddled.  Since objects reference their shadows (and copies),
264          * they will stay around as well.
265          *
266          * Bump the paging-in-progress count to prevent size changes (e.g.
267          * truncation operations) during I/O.  This must be done after
268          * obtaining the vnode lock in order to avoid possible deadlocks.
269          */
270         vm_object_reference(fs.first_object);
271         fs.vp = vnode_pager_lock(fs.first_object);
272         vm_object_pip_add(fs.first_object, 1);
273
274         fs.lookup_still_valid = TRUE;
275
276         if (wired)
277                 fault_type = prot;
278
279         fs.first_m = NULL;
280
281         /*
282          * Search for the page at object/offset.
283          */
284
285         fs.object = fs.first_object;
286         fs.pindex = fs.first_pindex;
287
288         while (TRUE) {
289                 /*
290                  * If the object is dead, we stop here
291                  */
292
293                 if (fs.object->flags & OBJ_DEAD) {
294                         unlock_and_deallocate(&fs);
295                         return (KERN_PROTECTION_FAILURE);
296                 }
297
298                 /*
299                  * See if page is resident.  spl protection is required
300                  * to avoid an interrupt unbusy/free race against our
301                  * lookup.  We must hold the protection through a page
302                  * allocation or busy.
303                  */
304                 crit_enter();
305                 fs.m = vm_page_lookup(fs.object, fs.pindex);
306                 if (fs.m != NULL) {
307                         int queue;
308                         /*
309                          * Wait/Retry if the page is busy.  We have to do this
310                          * if the page is busy via either PG_BUSY or 
311                          * vm_page_t->busy because the vm_pager may be using
312                          * vm_page_t->busy for pageouts ( and even pageins if
313                          * it is the vnode pager ), and we could end up trying
314                          * to pagein and pageout the same page simultaneously.
315                          *
316                          * We can theoretically allow the busy case on a read
317                          * fault if the page is marked valid, but since such
318                          * pages are typically already pmap'd, putting that
319                          * special case in might be more effort then it is 
320                          * worth.  We cannot under any circumstances mess
321                          * around with a vm_page_t->busy page except, perhaps,
322                          * to pmap it.
323                          */
324                         if ((fs.m->flags & PG_BUSY) || fs.m->busy) {
325                                 unlock_things(&fs);
326                                 vm_page_sleep_busy(fs.m, TRUE, "vmpfw");
327                                 mycpu->gd_cnt.v_intrans++;
328                                 vm_object_deallocate(fs.first_object);
329                                 crit_exit();
330                                 goto RetryFault;
331                         }
332
333                         queue = fs.m->queue;
334                         vm_page_unqueue_nowakeup(fs.m);
335
336                         if ((queue - fs.m->pc) == PQ_CACHE && vm_page_count_severe()) {
337                                 vm_page_activate(fs.m);
338                                 unlock_and_deallocate(&fs);
339                                 vm_waitpfault();
340                                 crit_exit();
341                                 goto RetryFault;
342                         }
343
344                         /*
345                          * Mark page busy for other processes, and the 
346                          * pagedaemon.  If it still isn't completely valid
347                          * (readable), jump to readrest, else break-out ( we
348                          * found the page ).
349                          *
350                          * We can release the spl once we have marked the
351                          * page busy.
352                          */
353
354                         vm_page_busy(fs.m);
355                         crit_exit();
356
357                         if (((fs.m->valid & VM_PAGE_BITS_ALL) != VM_PAGE_BITS_ALL) &&
358                                 fs.m->object != kernel_object && fs.m->object != kmem_object) {
359                                 goto readrest;
360                         }
361
362                         break;
363                 }
364
365                 /*
366                  * Page is not resident, If this is the search termination
367                  * or the pager might contain the page, allocate a new page.
368                  *
369                  * note: we are still in splvm().
370                  */
371
372                 if (TRYPAGER || fs.object == fs.first_object) {
373                         if (fs.pindex >= fs.object->size) {
374                                 crit_exit();
375                                 unlock_and_deallocate(&fs);
376                                 return (KERN_PROTECTION_FAILURE);
377                         }
378
379                         /*
380                          * Ratelimit.
381                          */
382                         if (didlimit == 0 && curproc != NULL) {
383                                 limticks = 
384                                         vm_fault_ratelimit(curproc->p_vmspace);
385                                 if (limticks) {
386                                         crit_exit();
387                                         unlock_and_deallocate(&fs);
388                                         tsleep(curproc, 0, "vmrate", limticks);
389                                         didlimit = 1;
390                                         goto RetryFault;
391                                 }
392                         }
393
394                         /*
395                          * Allocate a new page for this object/offset pair.
396                          */
397                         fs.m = NULL;
398                         if (!vm_page_count_severe()) {
399                                 fs.m = vm_page_alloc(fs.object, fs.pindex,
400                                     (fs.vp || fs.object->backing_object)? VM_ALLOC_NORMAL: VM_ALLOC_NORMAL | VM_ALLOC_ZERO);
401                         }
402                         if (fs.m == NULL) {
403                                 crit_exit();
404                                 unlock_and_deallocate(&fs);
405                                 vm_waitpfault();
406                                 goto RetryFault;
407                         }
408                 }
409                 crit_exit();
410
411 readrest:
412                 /*
413                  * We have found a valid page or we have allocated a new page.
414                  * The page thus may not be valid or may not be entirely 
415                  * valid.
416                  *
417                  * Attempt to fault-in the page if there is a chance that the
418                  * pager has it, and potentially fault in additional pages
419                  * at the same time.
420                  *
421                  * We are NOT in splvm here and if TRYPAGER is true then
422                  * fs.m will be non-NULL and will be PG_BUSY for us.
423                  */
424
425                 if (TRYPAGER) {
426                         int rv;
427                         int reqpage;
428                         int ahead, behind;
429                         u_char behavior = vm_map_entry_behavior(fs.entry);
430
431                         if (behavior == MAP_ENTRY_BEHAV_RANDOM) {
432                                 ahead = 0;
433                                 behind = 0;
434                         } else {
435                                 behind = (vaddr - fs.entry->start) >> PAGE_SHIFT;
436                                 if (behind > VM_FAULT_READ_BEHIND)
437                                         behind = VM_FAULT_READ_BEHIND;
438
439                                 ahead = ((fs.entry->end - vaddr) >> PAGE_SHIFT) - 1;
440                                 if (ahead > VM_FAULT_READ_AHEAD)
441                                         ahead = VM_FAULT_READ_AHEAD;
442                         }
443
444                         if ((fs.first_object->type != OBJT_DEVICE) &&
445                             (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL ||
446                                 (behavior != MAP_ENTRY_BEHAV_RANDOM &&
447                                 fs.pindex >= fs.entry->lastr &&
448                                 fs.pindex < fs.entry->lastr + VM_FAULT_READ))
449                         ) {
450                                 vm_pindex_t firstpindex, tmppindex;
451
452                                 if (fs.first_pindex < 2 * VM_FAULT_READ)
453                                         firstpindex = 0;
454                                 else
455                                         firstpindex = fs.first_pindex - 2 * VM_FAULT_READ;
456
457                                 /*
458                                  * note: partially valid pages cannot be 
459                                  * included in the lookahead - NFS piecemeal
460                                  * writes will barf on it badly.
461                                  *
462                                  * spl protection is required to avoid races
463                                  * between the lookup and an interrupt
464                                  * unbusy/free sequence occuring prior to
465                                  * our busy check.
466                                  */
467                                 crit_enter();
468                                 for (tmppindex = fs.first_pindex - 1;
469                                     tmppindex >= firstpindex;
470                                     --tmppindex
471                                 ) {
472                                         vm_page_t mt;
473                                         mt = vm_page_lookup( fs.first_object, tmppindex);
474                                         if (mt == NULL || (mt->valid != VM_PAGE_BITS_ALL))
475                                                 break;
476                                         if (mt->busy ||
477                                                 (mt->flags & (PG_BUSY | PG_FICTITIOUS | PG_UNMANAGED)) ||
478                                                 mt->hold_count ||
479                                                 mt->wire_count) 
480                                                 continue;
481                                         if (mt->dirty == 0)
482                                                 vm_page_test_dirty(mt);
483                                         if (mt->dirty) {
484                                                 vm_page_protect(mt, VM_PROT_NONE);
485                                                 vm_page_deactivate(mt);
486                                         } else {
487                                                 vm_page_cache(mt);
488                                         }
489                                 }
490                                 crit_exit();
491
492                                 ahead += behind;
493                                 behind = 0;
494                         }
495
496                         /*
497                          * now we find out if any other pages should be paged
498                          * in at this time this routine checks to see if the
499                          * pages surrounding this fault reside in the same
500                          * object as the page for this fault.  If they do,
501                          * then they are faulted in also into the object.  The
502                          * array "marray" returned contains an array of
503                          * vm_page_t structs where one of them is the
504                          * vm_page_t passed to the routine.  The reqpage
505                          * return value is the index into the marray for the
506                          * vm_page_t passed to the routine.
507                          *
508                          * fs.m plus the additional pages are PG_BUSY'd.
509                          */
510                         faultcount = vm_fault_additional_pages(
511                             fs.m, behind, ahead, marray, &reqpage);
512
513                         /*
514                          * update lastr imperfectly (we do not know how much
515                          * getpages will actually read), but good enough.
516                          */
517                         fs.entry->lastr = fs.pindex + faultcount - behind;
518
519                         /*
520                          * Call the pager to retrieve the data, if any, after
521                          * releasing the lock on the map.  We hold a ref on
522                          * fs.object and the pages are PG_BUSY'd.
523                          */
524                         unlock_map(&fs);
525
526                         rv = faultcount ?
527                             vm_pager_get_pages(fs.object, marray, faultcount,
528                                 reqpage) : VM_PAGER_FAIL;
529
530                         if (rv == VM_PAGER_OK) {
531                                 /*
532                                  * Found the page. Leave it busy while we play
533                                  * with it.
534                                  */
535
536                                 /*
537                                  * Relookup in case pager changed page. Pager
538                                  * is responsible for disposition of old page
539                                  * if moved.
540                                  *
541                                  * XXX other code segments do relookups too.
542                                  * It's a bad abstraction that needs to be
543                                  * fixed/removed.
544                                  */
545                                 fs.m = vm_page_lookup(fs.object, fs.pindex);
546                                 if (fs.m == NULL) {
547                                         unlock_and_deallocate(&fs);
548                                         goto RetryFault;
549                                 }
550
551                                 hardfault++;
552                                 break; /* break to PAGE HAS BEEN FOUND */
553                         }
554                         /*
555                          * Remove the bogus page (which does not exist at this
556                          * object/offset); before doing so, we must get back
557                          * our object lock to preserve our invariant.
558                          *
559                          * Also wake up any other process that may want to bring
560                          * in this page.
561                          *
562                          * If this is the top-level object, we must leave the
563                          * busy page to prevent another process from rushing
564                          * past us, and inserting the page in that object at
565                          * the same time that we are.
566                          */
567
568                         if (rv == VM_PAGER_ERROR) {
569                                 if (curproc)
570                                         printf("vm_fault: pager read error, pid %d (%s)\n", curproc->p_pid, curproc->p_comm);
571                                 else
572                                         printf("vm_fault: pager read error, thread %p (%s)\n", curthread, curproc->p_comm);
573                         }
574                         /*
575                          * Data outside the range of the pager or an I/O error
576                          */
577                         /*
578                          * XXX - the check for kernel_map is a kludge to work
579                          * around having the machine panic on a kernel space
580                          * fault w/ I/O error.
581                          */
582                         if (((fs.map != kernel_map) && (rv == VM_PAGER_ERROR)) ||
583                                 (rv == VM_PAGER_BAD)) {
584                                 vm_page_free(fs.m);
585                                 fs.m = NULL;
586                                 unlock_and_deallocate(&fs);
587                                 return ((rv == VM_PAGER_ERROR) ? KERN_FAILURE : KERN_PROTECTION_FAILURE);
588                         }
589                         if (fs.object != fs.first_object) {
590                                 vm_page_free(fs.m);
591                                 fs.m = NULL;
592                                 /*
593                                  * XXX - we cannot just fall out at this
594                                  * point, m has been freed and is invalid!
595                                  */
596                         }
597                 }
598
599                 /*
600                  * We get here if the object has default pager (or unwiring) 
601                  * or the pager doesn't have the page.
602                  */
603                 if (fs.object == fs.first_object)
604                         fs.first_m = fs.m;
605
606                 /*
607                  * Move on to the next object.  Lock the next object before
608                  * unlocking the current one.
609                  */
610
611                 fs.pindex += OFF_TO_IDX(fs.object->backing_object_offset);
612                 next_object = fs.object->backing_object;
613                 if (next_object == NULL) {
614                         /*
615                          * If there's no object left, fill the page in the top
616                          * object with zeros.
617                          */
618                         if (fs.object != fs.first_object) {
619                                 vm_object_pip_wakeup(fs.object);
620
621                                 fs.object = fs.first_object;
622                                 fs.pindex = fs.first_pindex;
623                                 fs.m = fs.first_m;
624                         }
625                         fs.first_m = NULL;
626
627                         /*
628                          * Zero the page if necessary and mark it valid.
629                          */
630                         if ((fs.m->flags & PG_ZERO) == 0) {
631                                 vm_page_zero_fill(fs.m);
632                         } else {
633                                 mycpu->gd_cnt.v_ozfod++;
634                         }
635                         mycpu->gd_cnt.v_zfod++;
636                         fs.m->valid = VM_PAGE_BITS_ALL;
637                         break;  /* break to PAGE HAS BEEN FOUND */
638                 } else {
639                         if (fs.object != fs.first_object) {
640                                 vm_object_pip_wakeup(fs.object);
641                         }
642                         KASSERT(fs.object != next_object, ("object loop %p", next_object));
643                         fs.object = next_object;
644                         vm_object_pip_add(fs.object, 1);
645                 }
646         }
647
648         KASSERT((fs.m->flags & PG_BUSY) != 0,
649             ("vm_fault: not busy after main loop"));
650
651         /*
652          * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
653          * is held.]
654          */
655
656         /*
657          * If the page is being written, but isn't already owned by the
658          * top-level object, we have to copy it into a new page owned by the
659          * top-level object.
660          */
661
662         if (fs.object != fs.first_object) {
663                 /*
664                  * We only really need to copy if we want to write it.
665                  */
666
667                 if (fault_type & VM_PROT_WRITE) {
668                         /*
669                          * This allows pages to be virtually copied from a 
670                          * backing_object into the first_object, where the 
671                          * backing object has no other refs to it, and cannot
672                          * gain any more refs.  Instead of a bcopy, we just 
673                          * move the page from the backing object to the 
674                          * first object.  Note that we must mark the page 
675                          * dirty in the first object so that it will go out 
676                          * to swap when needed.
677                          */
678                         if (map_generation == fs.map->timestamp &&
679                                 /*
680                                  * Only one shadow object
681                                  */
682                                 (fs.object->shadow_count == 1) &&
683                                 /*
684                                  * No COW refs, except us
685                                  */
686                                 (fs.object->ref_count == 1) &&
687                                 /*
688                                  * No one else can look this object up
689                                  */
690                                 (fs.object->handle == NULL) &&
691                                 /*
692                                  * No other ways to look the object up
693                                  */
694                                 ((fs.object->type == OBJT_DEFAULT) ||
695                                  (fs.object->type == OBJT_SWAP)) &&
696                                 /*
697                                  * We don't chase down the shadow chain
698                                  */
699                                 (fs.object == fs.first_object->backing_object) &&
700
701                                 /*
702                                  * grab the lock if we need to
703                                  */
704                                 (fs.lookup_still_valid ||
705                                  lockmgr(&fs.map->lock, LK_EXCLUSIVE|LK_NOWAIT) == 0)
706                             ) {
707                                 
708                                 fs.lookup_still_valid = 1;
709                                 /*
710                                  * get rid of the unnecessary page
711                                  */
712                                 vm_page_protect(fs.first_m, VM_PROT_NONE);
713                                 vm_page_free(fs.first_m);
714                                 fs.first_m = NULL;
715
716                                 /*
717                                  * grab the page and put it into the 
718                                  * process'es object.  The page is 
719                                  * automatically made dirty.
720                                  */
721                                 vm_page_rename(fs.m, fs.first_object, fs.first_pindex);
722                                 fs.first_m = fs.m;
723                                 vm_page_busy(fs.first_m);
724                                 fs.m = NULL;
725                                 mycpu->gd_cnt.v_cow_optim++;
726                         } else {
727                                 /*
728                                  * Oh, well, lets copy it.
729                                  */
730                                 vm_page_copy(fs.m, fs.first_m);
731                         }
732
733                         if (fs.m) {
734                                 /*
735                                  * We no longer need the old page or object.
736                                  */
737                                 release_page(&fs);
738                         }
739
740                         /*
741                          * fs.object != fs.first_object due to above 
742                          * conditional
743                          */
744
745                         vm_object_pip_wakeup(fs.object);
746
747                         /*
748                          * Only use the new page below...
749                          */
750
751                         mycpu->gd_cnt.v_cow_faults++;
752                         fs.m = fs.first_m;
753                         fs.object = fs.first_object;
754                         fs.pindex = fs.first_pindex;
755
756                 } else {
757                         prot &= ~VM_PROT_WRITE;
758                 }
759         }
760
761         /*
762          * We must verify that the maps have not changed since our last
763          * lookup.
764          */
765
766         if (!fs.lookup_still_valid &&
767                 (fs.map->timestamp != map_generation)) {
768                 vm_object_t retry_object;
769                 vm_pindex_t retry_pindex;
770                 vm_prot_t retry_prot;
771
772                 /*
773                  * Since map entries may be pageable, make sure we can take a
774                  * page fault on them.
775                  */
776
777                 /*
778                  * Unlock vnode before the lookup to avoid deadlock.   E.G.
779                  * avoid a deadlock between the inode and exec_map that can
780                  * occur due to locks being obtained in different orders.
781                  */
782
783                 if (fs.vp != NULL) {
784                         vput(fs.vp);
785                         fs.vp = NULL;
786                 }
787                 
788                 if (fs.map->infork) {
789                         release_page(&fs);
790                         unlock_and_deallocate(&fs);
791                         goto RetryFault;
792                 }
793
794                 /*
795                  * To avoid trying to write_lock the map while another process
796                  * has it read_locked (in vm_map_wire), we do not try for
797                  * write permission.  If the page is still writable, we will
798                  * get write permission.  If it is not, or has been marked
799                  * needs_copy, we enter the mapping without write permission,
800                  * and will merely take another fault.
801                  */
802                 result = vm_map_lookup(&fs.map, vaddr, fault_type & ~VM_PROT_WRITE,
803                     &fs.entry, &retry_object, &retry_pindex, &retry_prot, &wired);
804                 map_generation = fs.map->timestamp;
805
806                 /*
807                  * If we don't need the page any longer, put it on the active
808                  * list (the easiest thing to do here).  If no one needs it,
809                  * pageout will grab it eventually.
810                  */
811
812                 if (result != KERN_SUCCESS) {
813                         release_page(&fs);
814                         unlock_and_deallocate(&fs);
815                         return (result);
816                 }
817                 fs.lookup_still_valid = TRUE;
818
819                 if ((retry_object != fs.first_object) ||
820                     (retry_pindex != fs.first_pindex)) {
821                         release_page(&fs);
822                         unlock_and_deallocate(&fs);
823                         goto RetryFault;
824                 }
825                 /*
826                  * Check whether the protection has changed or the object has
827                  * been copied while we left the map unlocked. Changing from
828                  * read to write permission is OK - we leave the page
829                  * write-protected, and catch the write fault. Changing from
830                  * write to read permission means that we can't mark the page
831                  * write-enabled after all.
832                  */
833                 prot &= retry_prot;
834         }
835
836         /*
837          * Put this page into the physical map. We had to do the unlock above
838          * because pmap_enter may cause other faults.   We don't put the page
839          * back on the active queue until later so that the page-out daemon
840          * won't find us (yet).
841          */
842
843         if (prot & VM_PROT_WRITE) {
844                 vm_page_flag_set(fs.m, PG_WRITEABLE);
845                 vm_object_set_writeable_dirty(fs.m->object);
846
847                 /*
848                  * If the fault is a write, we know that this page is being
849                  * written NOW so dirty it explicitly to save on 
850                  * pmap_is_modified() calls later.
851                  *
852                  * If this is a NOSYNC mmap we do not want to set PG_NOSYNC
853                  * if the page is already dirty to prevent data written with
854                  * the expectation of being synced from not being synced.
855                  * Likewise if this entry does not request NOSYNC then make
856                  * sure the page isn't marked NOSYNC.  Applications sharing
857                  * data should use the same flags to avoid ping ponging.
858                  *
859                  * Also tell the backing pager, if any, that it should remove
860                  * any swap backing since the page is now dirty.
861                  */
862                 if (fs.entry->eflags & MAP_ENTRY_NOSYNC) {
863                         if (fs.m->dirty == 0)
864                                 vm_page_flag_set(fs.m, PG_NOSYNC);
865                 } else {
866                         vm_page_flag_clear(fs.m, PG_NOSYNC);
867                 }
868                 if (fault_flags & VM_FAULT_DIRTY) {
869                         crit_enter();
870                         vm_page_dirty(fs.m);
871                         vm_pager_page_unswapped(fs.m);
872                         crit_exit();
873                 }
874         }
875
876         /*
877          * Page had better still be busy
878          */
879
880         KASSERT(fs.m->flags & PG_BUSY,
881                 ("vm_fault: page %p not busy!", fs.m));
882
883         unlock_things(&fs);
884
885         /*
886          * Sanity check: page must be completely valid or it is not fit to
887          * map into user space.  vm_pager_get_pages() ensures this.
888          */
889
890         if (fs.m->valid != VM_PAGE_BITS_ALL) {
891                 vm_page_zero_invalid(fs.m, TRUE);
892                 printf("Warning: page %p partially invalid on fault\n", fs.m);
893         }
894
895         pmap_enter(fs.map->pmap, vaddr, fs.m, prot, wired);
896
897         if (((fault_flags & VM_FAULT_WIRE_MASK) == 0) && (wired == 0)) {
898                 pmap_prefault(fs.map->pmap, vaddr, fs.entry);
899         }
900
901         vm_page_flag_clear(fs.m, PG_ZERO);
902         vm_page_flag_set(fs.m, PG_MAPPED|PG_REFERENCED);
903         if (fault_flags & VM_FAULT_HOLD)
904                 vm_page_hold(fs.m);
905
906         /*
907          * If the page is not wired down, then put it where the pageout daemon
908          * can find it.
909          */
910
911         if (fault_flags & VM_FAULT_WIRE_MASK) {
912                 if (wired)
913                         vm_page_wire(fs.m);
914                 else
915                         vm_page_unwire(fs.m, 1);
916         } else {
917                 vm_page_activate(fs.m);
918         }
919
920         if (curproc && (curproc->p_flag & P_SWAPPEDOUT) == 0 &&
921             curproc->p_stats) {
922                 if (hardfault) {
923                         curproc->p_stats->p_ru.ru_majflt++;
924                 } else {
925                         curproc->p_stats->p_ru.ru_minflt++;
926                 }
927         }
928
929         /*
930          * Unlock everything, and return
931          */
932
933         vm_page_wakeup(fs.m);
934         vm_object_deallocate(fs.first_object);
935
936         return (KERN_SUCCESS);
937
938 }
939
940 /*
941  * quick version of vm_fault
942  */
943 int
944 vm_fault_quick(caddr_t v, int prot)
945 {
946         int r;
947
948         if (prot & VM_PROT_WRITE)
949                 r = subyte(v, fubyte(v));
950         else
951                 r = fubyte(v);
952         return(r);
953 }
954
955 /*
956  * Wire down a range of virtual addresses in a map.  The entry in question
957  * should be marked in-transition and the map must be locked.  We must
958  * release the map temporarily while faulting-in the page to avoid a
959  * deadlock.  Note that the entry may be clipped while we are blocked but
960  * will never be freed.
961  */
962 int
963 vm_fault_wire(vm_map_t map, vm_map_entry_t entry, boolean_t user_wire)
964 {
965         boolean_t fictitious;
966         vm_offset_t start;
967         vm_offset_t end;
968         vm_offset_t va;
969         vm_paddr_t pa;
970         pmap_t pmap;
971         int rv;
972
973         pmap = vm_map_pmap(map);
974         start = entry->start;
975         end = entry->end;
976         fictitious = entry->object.vm_object &&
977                         (entry->object.vm_object->type == OBJT_DEVICE);
978
979         vm_map_unlock(map);
980         map->timestamp++;
981
982         /*
983          * We simulate a fault to get the page and enter it in the physical
984          * map.
985          */
986         for (va = start; va < end; va += PAGE_SIZE) {
987                 if (user_wire) {
988                         rv = vm_fault(map, va, VM_PROT_READ, 
989                                         VM_FAULT_USER_WIRE);
990                 } else {
991                         rv = vm_fault(map, va, VM_PROT_READ|VM_PROT_WRITE,
992                                         VM_FAULT_CHANGE_WIRING);
993                 }
994                 if (rv) {
995                         while (va > start) {
996                                 va -= PAGE_SIZE;
997                                 if ((pa = pmap_extract(pmap, va)) == 0)
998                                         continue;
999                                 pmap_change_wiring(pmap, va, FALSE);
1000                                 if (!fictitious)
1001                                         vm_page_unwire(PHYS_TO_VM_PAGE(pa), 1);
1002                         }
1003                         vm_map_lock(map);
1004                         return (rv);
1005                 }
1006         }
1007         vm_map_lock(map);
1008         return (KERN_SUCCESS);
1009 }
1010
1011 /*
1012  * Unwire a range of virtual addresses in a map.  The map should be
1013  * locked.
1014  */
1015 void
1016 vm_fault_unwire(vm_map_t map, vm_map_entry_t entry)
1017 {
1018         boolean_t fictitious;
1019         vm_offset_t start;
1020         vm_offset_t end;
1021         vm_offset_t va;
1022         vm_paddr_t pa;
1023         pmap_t pmap;
1024
1025         pmap = vm_map_pmap(map);
1026         start = entry->start;
1027         end = entry->end;
1028         fictitious = entry->object.vm_object &&
1029                         (entry->object.vm_object->type == OBJT_DEVICE);
1030
1031         /*
1032          * Since the pages are wired down, we must be able to get their
1033          * mappings from the physical map system.
1034          */
1035         for (va = start; va < end; va += PAGE_SIZE) {
1036                 pa = pmap_extract(pmap, va);
1037                 if (pa != 0) {
1038                         pmap_change_wiring(pmap, va, FALSE);
1039                         if (!fictitious)
1040                                 vm_page_unwire(PHYS_TO_VM_PAGE(pa), 1);
1041                 }
1042         }
1043 }
1044
1045 /*
1046  * Reduce the rate at which memory is allocated to a process based
1047  * on the perceived load on the VM system. As the load increases
1048  * the allocation burst rate goes down and the delay increases. 
1049  *
1050  * Rate limiting does not apply when faulting active or inactive
1051  * pages.  When faulting 'cache' pages, rate limiting only applies
1052  * if the system currently has a severe page deficit.
1053  *
1054  * XXX vm_pagesupply should be increased when a page is freed.
1055  *
1056  * We sleep up to 1/10 of a second.
1057  */
1058 static int
1059 vm_fault_ratelimit(struct vmspace *vmspace)
1060 {
1061         if (vm_load_enable == 0)
1062                 return(0);
1063         if (vmspace->vm_pagesupply > 0) {
1064                 --vmspace->vm_pagesupply;
1065                 return(0);
1066         }
1067 #ifdef INVARIANTS
1068         if (vm_load_debug) {
1069                 printf("load %-4d give %d pgs, wait %d, pid %-5d (%s)\n",
1070                         vm_load, 
1071                         (1000 - vm_load ) / 10, vm_load * hz / 10000,
1072                         curproc->p_pid, curproc->p_comm);
1073         }
1074 #endif
1075         vmspace->vm_pagesupply = (1000 - vm_load) / 10;
1076         return(vm_load * hz / 10000);
1077 }
1078
1079 /*
1080  *      Routine:
1081  *              vm_fault_copy_entry
1082  *      Function:
1083  *              Copy all of the pages from a wired-down map entry to another.
1084  *
1085  *      In/out conditions:
1086  *              The source and destination maps must be locked for write.
1087  *              The source map entry must be wired down (or be a sharing map
1088  *              entry corresponding to a main map entry that is wired down).
1089  */
1090
1091 void
1092 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map,
1093     vm_map_entry_t dst_entry, vm_map_entry_t src_entry)
1094 {
1095         vm_object_t dst_object;
1096         vm_object_t src_object;
1097         vm_ooffset_t dst_offset;
1098         vm_ooffset_t src_offset;
1099         vm_prot_t prot;
1100         vm_offset_t vaddr;
1101         vm_page_t dst_m;
1102         vm_page_t src_m;
1103
1104 #ifdef  lint
1105         src_map++;
1106 #endif  /* lint */
1107
1108         src_object = src_entry->object.vm_object;
1109         src_offset = src_entry->offset;
1110
1111         /*
1112          * Create the top-level object for the destination entry. (Doesn't
1113          * actually shadow anything - we copy the pages directly.)
1114          */
1115         dst_object = vm_object_allocate(OBJT_DEFAULT,
1116             (vm_size_t) OFF_TO_IDX(dst_entry->end - dst_entry->start));
1117
1118         dst_entry->object.vm_object = dst_object;
1119         dst_entry->offset = 0;
1120
1121         prot = dst_entry->max_protection;
1122
1123         /*
1124          * Loop through all of the pages in the entry's range, copying each
1125          * one from the source object (it should be there) to the destination
1126          * object.
1127          */
1128         for (vaddr = dst_entry->start, dst_offset = 0;
1129             vaddr < dst_entry->end;
1130             vaddr += PAGE_SIZE, dst_offset += PAGE_SIZE) {
1131
1132                 /*
1133                  * Allocate a page in the destination object
1134                  */
1135                 do {
1136                         dst_m = vm_page_alloc(dst_object,
1137                                 OFF_TO_IDX(dst_offset), VM_ALLOC_NORMAL);
1138                         if (dst_m == NULL) {
1139                                 vm_wait();
1140                         }
1141                 } while (dst_m == NULL);
1142
1143                 /*
1144                  * Find the page in the source object, and copy it in.
1145                  * (Because the source is wired down, the page will be in
1146                  * memory.)
1147                  */
1148                 src_m = vm_page_lookup(src_object,
1149                         OFF_TO_IDX(dst_offset + src_offset));
1150                 if (src_m == NULL)
1151                         panic("vm_fault_copy_wired: page missing");
1152
1153                 vm_page_copy(src_m, dst_m);
1154
1155                 /*
1156                  * Enter it in the pmap...
1157                  */
1158
1159                 vm_page_flag_clear(dst_m, PG_ZERO);
1160                 pmap_enter(dst_map->pmap, vaddr, dst_m, prot, FALSE);
1161                 vm_page_flag_set(dst_m, PG_WRITEABLE|PG_MAPPED);
1162
1163                 /*
1164                  * Mark it no longer busy, and put it on the active list.
1165                  */
1166                 vm_page_activate(dst_m);
1167                 vm_page_wakeup(dst_m);
1168         }
1169 }
1170
1171
1172 /*
1173  * This routine checks around the requested page for other pages that
1174  * might be able to be faulted in.  This routine brackets the viable
1175  * pages for the pages to be paged in.
1176  *
1177  * Inputs:
1178  *      m, rbehind, rahead
1179  *
1180  * Outputs:
1181  *  marray (array of vm_page_t), reqpage (index of requested page)
1182  *
1183  * Return value:
1184  *  number of pages in marray
1185  */
1186 static int
1187 vm_fault_additional_pages(vm_page_t m, int rbehind, int rahead,
1188     vm_page_t *marray, int *reqpage)
1189 {
1190         int i,j;
1191         vm_object_t object;
1192         vm_pindex_t pindex, startpindex, endpindex, tpindex;
1193         vm_page_t rtm;
1194         int cbehind, cahead;
1195
1196         object = m->object;
1197         pindex = m->pindex;
1198
1199         /*
1200          * we don't fault-ahead for device pager
1201          */
1202         if (object->type == OBJT_DEVICE) {
1203                 *reqpage = 0;
1204                 marray[0] = m;
1205                 return 1;
1206         }
1207
1208         /*
1209          * if the requested page is not available, then give up now
1210          */
1211
1212         if (!vm_pager_has_page(object, pindex, &cbehind, &cahead)) {
1213                 return 0;
1214         }
1215
1216         if ((cbehind == 0) && (cahead == 0)) {
1217                 *reqpage = 0;
1218                 marray[0] = m;
1219                 return 1;
1220         }
1221
1222         if (rahead > cahead) {
1223                 rahead = cahead;
1224         }
1225
1226         if (rbehind > cbehind) {
1227                 rbehind = cbehind;
1228         }
1229
1230         /*
1231          * try to do any readahead that we might have free pages for.
1232          */
1233         if ((rahead + rbehind) >
1234                 ((vmstats.v_free_count + vmstats.v_cache_count) - vmstats.v_free_reserved)) {
1235                 pagedaemon_wakeup();
1236                 marray[0] = m;
1237                 *reqpage = 0;
1238                 return 1;
1239         }
1240
1241         /*
1242          * scan backward for the read behind pages -- in memory 
1243          *
1244          * Assume that if the page is not found an interrupt will not
1245          * create it.  Theoretically interrupts can only remove (busy)
1246          * pages, not create new associations.
1247          */
1248         if (pindex > 0) {
1249                 if (rbehind > pindex) {
1250                         rbehind = pindex;
1251                         startpindex = 0;
1252                 } else {
1253                         startpindex = pindex - rbehind;
1254                 }
1255
1256                 crit_enter();
1257                 for ( tpindex = pindex - 1; tpindex >= startpindex; tpindex -= 1) {
1258                         if (vm_page_lookup( object, tpindex)) {
1259                                 startpindex = tpindex + 1;
1260                                 break;
1261                         }
1262                         if (tpindex == 0)
1263                                 break;
1264                 }
1265
1266                 for(i = 0, tpindex = startpindex; tpindex < pindex; i++, tpindex++) {
1267
1268                         rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL);
1269                         if (rtm == NULL) {
1270                                 crit_exit();
1271                                 for (j = 0; j < i; j++) {
1272                                         vm_page_free(marray[j]);
1273                                 }
1274                                 marray[0] = m;
1275                                 *reqpage = 0;
1276                                 return 1;
1277                         }
1278
1279                         marray[i] = rtm;
1280                 }
1281                 crit_exit();
1282         } else {
1283                 startpindex = 0;
1284                 i = 0;
1285         }
1286
1287         marray[i] = m;
1288         /* page offset of the required page */
1289         *reqpage = i;
1290
1291         tpindex = pindex + 1;
1292         i++;
1293
1294         /*
1295          * scan forward for the read ahead pages
1296          */
1297         endpindex = tpindex + rahead;
1298         if (endpindex > object->size)
1299                 endpindex = object->size;
1300
1301         crit_enter();
1302         for( ; tpindex < endpindex; i++, tpindex++) {
1303
1304                 if (vm_page_lookup(object, tpindex)) {
1305                         break;
1306                 }
1307
1308                 rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL);
1309                 if (rtm == NULL) {
1310                         break;
1311                 }
1312
1313                 marray[i] = rtm;
1314         }
1315         crit_exit();
1316
1317         /* return number of bytes of pages */
1318         return i;
1319 }