/* * WPA Supplicant - driver interface definition * Copyright (c) 2003-2006, Jouni Malinen * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * Alternatively, this software may be distributed under the terms of BSD * license. * * See README and COPYING for more details. */ #ifndef DRIVER_H #define DRIVER_H #define WPA_SUPPLICANT_DRIVER_VERSION 2 #include "defs.h" #define AUTH_ALG_OPEN_SYSTEM 0x01 #define AUTH_ALG_SHARED_KEY 0x02 #define AUTH_ALG_LEAP 0x04 #define IEEE80211_MODE_INFRA 0 #define IEEE80211_MODE_IBSS 1 #define IEEE80211_CAP_ESS 0x0001 #define IEEE80211_CAP_IBSS 0x0002 #define IEEE80211_CAP_PRIVACY 0x0010 #define SSID_MAX_WPA_IE_LEN 40 /** * struct wpa_scan_result - Scan results * @bssid: BSSID * @ssid: SSID * @ssid_len: length of the ssid * @wpa_ie: WPA IE * @wpa_ie_len: length of the wpa_ie * @rsn_ie: RSN IE * @rsn_ie_len: length of the RSN IE * @freq: frequency of the channel in MHz (e.g., 2412 = channel 1) * @caps: capability information field in host byte order * @qual: signal quality * @noise: noise level * @level: signal level * @maxrate: maximum supported rate * * This structure is used as a generic format for scan results from the * driver. Each driver interface implementation is responsible for converting * the driver or OS specific scan results into this format. */ struct wpa_scan_result { u8 bssid[ETH_ALEN]; u8 ssid[32]; size_t ssid_len; u8 wpa_ie[SSID_MAX_WPA_IE_LEN]; size_t wpa_ie_len; u8 rsn_ie[SSID_MAX_WPA_IE_LEN]; size_t rsn_ie_len; int freq; u16 caps; int qual; int noise; int level; int maxrate; }; /** * struct wpa_driver_associate_params - Association parameters * Data for struct wpa_driver_ops::associate(). */ struct wpa_driver_associate_params { /** * bssid - BSSID of the selected AP * This can be %NULL, if ap_scan=2 mode is used and the driver is * responsible for selecting with which BSS to associate. */ const u8 *bssid; /** * ssid - The selected SSID */ const u8 *ssid; size_t ssid_len; /** * freq - Frequency of the channel the selected AP is using * Frequency that the selected AP is using (in MHz as * reported in the scan results) */ int freq; /** * wpa_ie - WPA information element for (Re)Association Request * WPA information element to be included in (Re)Association * Request (including information element id and length). Use * of this WPA IE is optional. If the driver generates the WPA * IE, it can use pairwise_suite, group_suite, and * key_mgmt_suite to select proper algorithms. In this case, * the driver has to notify wpa_supplicant about the used WPA * IE by generating an event that the interface code will * convert into EVENT_ASSOCINFO data (see wpa_supplicant.h). * When using WPA2/IEEE 802.11i, wpa_ie is used for RSN IE * instead. The driver can determine which version is used by * looking at the first byte of the IE (0xdd for WPA, 0x30 for * WPA2/RSN). */ const u8 *wpa_ie; /** * wpa_ie_len - length of the wpa_ie */ size_t wpa_ie_len; /* The selected pairwise/group cipher and key management * suites. These are usually ignored if @wpa_ie is used. */ wpa_cipher pairwise_suite; wpa_cipher group_suite; wpa_key_mgmt key_mgmt_suite; /** * auth_alg - Allowed authentication algorithms * Bit field of AUTH_ALG_* */ int auth_alg; /** * mode - Operation mode (infra/ibss) IEEE80211_MODE_* */ int mode; /** * wep_key - WEP keys for static WEP configuration */ const u8 *wep_key[4]; /** * wep_key_len - WEP key length for static WEP configuration */ size_t wep_key_len[4]; /** * wep_tx_keyidx - WEP TX key index for static WEP configuration */ int wep_tx_keyidx; /** * mgmt_frame_protection - IEEE 802.11w management frame protection */ enum { NO_MGMT_FRAME_PROTECTION, MGMT_FRAME_PROTECTION_OPTIONAL, MGMT_FRAME_PROTECTION_REQUIRED } mgmt_frame_protection; }; /** * struct wpa_driver_capa - Driver capability information */ struct wpa_driver_capa { #define WPA_DRIVER_CAPA_KEY_MGMT_WPA 0x00000001 #define WPA_DRIVER_CAPA_KEY_MGMT_WPA2 0x00000002 #define WPA_DRIVER_CAPA_KEY_MGMT_WPA_PSK 0x00000004 #define WPA_DRIVER_CAPA_KEY_MGMT_WPA2_PSK 0x00000008 #define WPA_DRIVER_CAPA_KEY_MGMT_WPA_NONE 0x00000010 unsigned int key_mgmt; #define WPA_DRIVER_CAPA_ENC_WEP40 0x00000001 #define WPA_DRIVER_CAPA_ENC_WEP104 0x00000002 #define WPA_DRIVER_CAPA_ENC_TKIP 0x00000004 #define WPA_DRIVER_CAPA_ENC_CCMP 0x00000008 unsigned int enc; #define WPA_DRIVER_AUTH_OPEN 0x00000001 #define WPA_DRIVER_AUTH_SHARED 0x00000002 #define WPA_DRIVER_AUTH_LEAP 0x00000004 unsigned int auth; /* Driver generated WPA/RSN IE */ #define WPA_DRIVER_FLAGS_DRIVER_IE 0x00000001 #define WPA_DRIVER_FLAGS_SET_KEYS_AFTER_ASSOC 0x00000002 #define WPA_DRIVER_FLAGS_USER_SPACE_MLME 0x00000004 unsigned int flags; }; #define WPA_CHAN_W_SCAN 0x00000001 #define WPA_CHAN_W_ACTIVE_SCAN 0x00000002 #define WPA_CHAN_W_IBSS 0x00000004 struct wpa_channel_data { short chan; /* channel number (IEEE 802.11) */ short freq; /* frequency in MHz */ int flag; /* flag for user space use (WPA_CHAN_*) */ }; #define WPA_RATE_ERP 0x00000001 #define WPA_RATE_BASIC 0x00000002 #define WPA_RATE_PREAMBLE2 0x00000004 #define WPA_RATE_SUPPORTED 0x00000010 #define WPA_RATE_OFDM 0x00000020 #define WPA_RATE_CCK 0x00000040 #define WPA_RATE_MANDATORY 0x00000100 struct wpa_rate_data { int rate; /* rate in 100 kbps */ int flags; /* WPA_RATE_ flags */ }; typedef enum { WPA_MODE_IEEE80211B, WPA_MODE_IEEE80211G, WPA_MODE_IEEE80211A, NUM_WPA_MODES } wpa_hw_mode; struct wpa_hw_modes { wpa_hw_mode mode; int num_channels; struct wpa_channel_data *channels; int num_rates; struct wpa_rate_data *rates; }; struct ieee80211_rx_status { int channel; int ssi; }; /** * struct wpa_driver_ops - Driver interface API definition * * This structure defines the API that each driver interface needs to implement * for core wpa_supplicant code. All driver specific functionality is captured * in this wrapper. */ struct wpa_driver_ops { /** Name of the driver interface */ const char *name; /** One line description of the driver interface */ const char *desc; /** * get_bssid - Get the current BSSID * @priv: private driver interface data * @bssid: buffer for BSSID (ETH_ALEN = 6 bytes) * * Returns: 0 on success, -1 on failure * * Query kernel driver for the current BSSID and copy it to bssid. * Setting bssid to 00:00:00:00:00:00 is recommended if the STA is not * associated. */ int (*get_bssid)(void *priv, u8 *bssid); /** * get_ssid - Get the current SSID * @priv: private driver interface data * @ssid: buffer for SSID (at least 32 bytes) * * Returns: Length of the SSID on success, -1 on failure * * Query kernel driver for the current SSID and copy it to ssid. * Returning zero is recommended if the STA is not associated. * * Note: SSID is an array of octets, i.e., it is not nul terminated and * can, at least in theory, contain control characters (including nul) * and as such, should be processed as binary data, not a printable * string. */ int (*get_ssid)(void *priv, u8 *ssid); /** * set_wpa - Enable/disable WPA support (OBSOLETE) * @priv: private driver interface data * @enabled: 1 = enable, 0 = disable * * Returns: 0 on success, -1 on failure * * Note: This function is included for backwards compatibility. This is * called only just after init and just before deinit, so these * functions can be used to implement same functionality and the driver * interface need not define this function. * * Configure the kernel driver to enable/disable WPA support. This may * be empty function, if WPA support is always enabled. Common * configuration items are WPA IE (clearing it when WPA support is * disabled), Privacy flag configuration for capability field (note: * this the value need to set in associate handler to allow plaintext * mode to be used) when trying to associate with, roaming mode (can * allow wpa_supplicant to control roaming if ap_scan=1 is used; * however, drivers can also implement roaming if desired, especially * ap_scan=2 mode is used for this). */ int (*set_wpa)(void *priv, int enabled); /** * set_key - Configure encryption key * @priv: private driver interface data * @alg: encryption algorithm (%WPA_ALG_NONE, %WPA_ALG_WEP, * %WPA_ALG_TKIP, %WPA_ALG_CCMP, %WPA_ALG_IGTK, %WPA_ALG_DHV); * %WPA_ALG_NONE clears the key. * @addr: address of the peer STA or ff:ff:ff:ff:ff:ff for * broadcast/default keys * @key_idx: key index (0..3), usually 0 for unicast keys; 0..4095 for * IGTK * @set_tx: configure this key as the default Tx key (only used when * driver does not support separate unicast/individual key * @seq: sequence number/packet number, seq_len octets, the next * packet number to be used for in replay protection; configured * for Rx keys (in most cases, this is only used with broadcast * keys and set to zero for unicast keys) * @seq_len: length of the seq, depends on the algorithm: * TKIP: 6 octets, CCMP: 6 octets, IGTK: 6 octets * @key: key buffer; TKIP: 16-byte temporal key, 8-byte Tx Mic key, * 8-byte Rx Mic Key * @key_len: length of the key buffer in octets (WEP: 5 or 13, * TKIP: 32, CCMP: 16, IGTK: 16, DHV: 16) * * Returns: 0 on success, -1 on failure * * Configure the given key for the kernel driver. If the driver * supports separate individual keys (4 default keys + 1 individual), * addr can be used to determine whether the key is default or * individual. If only 4 keys are supported, the default key with key * index 0 is used as the individual key. STA must be configured to use * it as the default Tx key (set_tx is set) and accept Rx for all the * key indexes. In most cases, WPA uses only key indexes 1 and 2 for * broadcast keys, so key index 0 is available for this kind of * configuration. * * Please note that TKIP keys include separate TX and RX MIC keys and * some drivers may expect them in different order than wpa_supplicant * is using. If the TX/RX keys are swapped, all TKIP encrypted packets * will tricker Michael MIC errors. This can be fixed by changing the * order of MIC keys by swapping te bytes 16..23 and 24..31 of the key * in driver_*.c set_key() implementation, see driver_ndis.c for an * example on how this can be done. */ int (*set_key)(void *priv, wpa_alg alg, const u8 *addr, int key_idx, int set_tx, const u8 *seq, size_t seq_len, const u8 *key, size_t key_len); /** * init - Initialize driver interface * @ctx: context to be used when calling wpa_supplicant functions, * e.g., wpa_supplicant_event() * @ifname: interface name, e.g., wlan0 * * Returns: Pointer to private data, %NULL on failure * * Initialize driver interface, including event processing for kernel * driver events (e.g., associated, scan results, Michael MIC failure). * This function can allocate a private configuration data area for * @ctx, file descriptor, interface name, etc. information that may be * needed in future driver operations. If this is not used, non-NULL * value will need to be returned because %NULL is used to indicate * failure. The returned value will be used as 'void *priv' data for * all other driver_ops functions. * * The main event loop (eloop.c) of wpa_supplicant can be used to * register callback for read sockets (eloop_register_read_sock()). * * See wpa_supplicant.h for more information about events and * wpa_supplicant_event() function. */ void * (*init)(void *ctx, const char *ifname); /** * deinit - Deinitialize driver interface * @priv: private driver interface data from init() * * Shut down driver interface and processing of driver events. Free * private data buffer if one was allocated in init() handler. */ void (*deinit)(void *priv); /** * set_param - Set driver configuration parameters * @priv: private driver interface data from init() * @param: driver specific configuration parameters * * Returns: 0 on success, -1 on failure * * Optional handler for notifying driver interface about configuration * parameters (driver_param). */ int (*set_param)(void *priv, const char *param); /** * set_countermeasures - Enable/disable TKIP countermeasures * @priv: private driver interface data * @enabled: 1 = countermeasures enabled, 0 = disabled * * Returns: 0 on success, -1 on failure * * Configure TKIP countermeasures. When these are enabled, the driver * should drop all received and queued frames that are using TKIP. */ int (*set_countermeasures)(void *priv, int enabled); /** * set_drop_unencrypted - Enable/disable unencrypted frame filtering * @priv: private driver interface data * @enabled: 1 = unencrypted Tx/Rx frames will be dropped, 0 = disabled * * Returns: 0 on success, -1 on failure * * Configure the driver to drop all non-EAPOL frames (both receive and * transmit paths). Unencrypted EAPOL frames (ethertype 0x888e) must * still be allowed for key negotiation. */ int (*set_drop_unencrypted)(void *priv, int enabled); /** * scan - Request the driver to initiate scan * @priv: private driver interface data * @ssid: specific SSID to scan for (ProbeReq) or %NULL to scan for * all SSIDs (either active scan with broadcast SSID or passive * scan * @ssid_len: length of the SSID * * Returns: 0 on success, -1 on failure * * Once the scan results are ready, the driver should report scan * results event for wpa_supplicant which will eventually request the * results with wpa_driver_get_scan_results(). */ int (*scan)(void *priv, const u8 *ssid, size_t ssid_len); /** * get_scan_results - Fetch the latest scan results * @priv: private driver interface data * @results: pointer to buffer for scan results * @max_size: maximum number of entries (buffer size) * * Returns: Number of scan result entries used on success, -1 on * failure * * If scan results include more than max_size BSSes, max_size will be * returned and the remaining entries will not be included in the * buffer. */ int (*get_scan_results)(void *priv, struct wpa_scan_result *results, size_t max_size); /** * deauthenticate - Request driver to deauthenticate * @priv: private driver interface data * @addr: peer address (BSSID of the AP) * @reason_code: 16-bit reason code to be sent in the deauthentication * frame * * Returns: 0 on success, -1 on failure */ int (*deauthenticate)(void *priv, const u8 *addr, int reason_code); /** * disassociate - Request driver to disassociate * @priv: private driver interface data * @addr: peer address (BSSID of the AP) * @reason_code: 16-bit reason code to be sent in the disassociation * frame * * Returns: 0 on success, -1 on failure */ int (*disassociate)(void *priv, const u8 *addr, int reason_code); /** * associate - Request driver to associate * @priv: private driver interface data * @params: association parameters * * Returns: 0 on success, -1 on failure */ int (*associate)(void *priv, struct wpa_driver_associate_params *params); /** * set_auth_alg - Set IEEE 802.11 authentication algorithm * @priv: private driver interface data * @auth_alg: bit field of AUTH_ALG_* * * If the driver supports more than one authentication algorithm at the * same time, it should configure all supported algorithms. If not, one * algorithm needs to be selected arbitrarily. Open System * authentication should be ok for most cases and it is recommended to * be used if other options are not supported. Static WEP configuration * may also use Shared Key authentication and LEAP requires its own * algorithm number. For LEAP, user can make sure that only one * algorithm is used at a time by configuring LEAP as the only * supported EAP method. This information is also available in * associate() params, so set_auth_alg may not be needed in case of * most drivers. * * Returns: 0 on success, -1 on failure */ int (*set_auth_alg)(void *priv, int auth_alg); /** * add_pmkid - Add PMKSA cache entry to the driver * @priv: private driver interface data * @bssid: BSSID for the PMKSA cache entry * @pmkid: PMKID for the PMKSA cache entry * * Returns: 0 on success, -1 on failure * * This function is called when a new PMK is received, as a result of * either normal authentication or RSN pre-authentication. * * If the driver generates RSN IE, i.e., it does not use wpa_ie in * associate(), add_pmkid() can be used to add new PMKSA cache entries * in the driver. If the driver uses wpa_ie from wpa_supplicant, this * driver_ops function does not need to be implemented. Likewise, if * the driver does not support WPA, this function is not needed. */ int (*add_pmkid)(void *priv, const u8 *bssid, const u8 *pmkid); /** * remove_pmkid - Remove PMKSA cache entry to the driver * @priv: private driver interface data * @bssid: BSSID for the PMKSA cache entry * @pmkid: PMKID for the PMKSA cache entry * * Returns: 0 on success, -1 on failure * * This function is called when the supplicant drops a PMKSA cache * entry for any reason. * * If the driver generates RSN IE, i.e., it does not use wpa_ie in * associate(), remove_pmkid() can be used to synchronize PMKSA caches * between the driver and wpa_supplicant. If the driver uses wpa_ie * from wpa_supplicant, this driver_ops function does not need to be * implemented. Likewise, if the driver does not support WPA, this * function is not needed. */ int (*remove_pmkid)(void *priv, const u8 *bssid, const u8 *pmkid); /** * flush_pmkid - Flush PMKSA cache * @priv: private driver interface data * * Returns: 0 on success, -1 on failure * * This function is called when the supplicant drops all PMKSA cache * entries for any reason. * * If the driver generates RSN IE, i.e., it does not use wpa_ie in * associate(), remove_pmkid() can be used to synchronize PMKSA caches * between the driver and wpa_supplicant. If the driver uses wpa_ie * from wpa_supplicant, this driver_ops function does not need to be * implemented. Likewise, if the driver does not support WPA, this * function is not needed. */ int (*flush_pmkid)(void *priv); /** * flush_pmkid - Flush PMKSA cache * @priv: private driver interface data * * Returns: 0 on success, -1 on failure * * Get driver/firmware/hardware capabilities. */ int (*get_capa)(void *priv, struct wpa_driver_capa *capa); /** * poll - Poll driver for association information * @priv: private driver interface data * * This is an option callback that can be used when the driver does not * provide event mechanism for association events. This is called when * receiving WPA EAPOL-Key messages that require association * information. The driver interface is supposed to generate associnfo * event before returning from this callback function. In addition, the * driver interface should generate an association event after having * sent out associnfo. */ void (*poll)(void *priv); /** * get_ifname - Get interface name * @priv: private driver interface data * * Returns: Pointer to the interface name. This can differ from the * interface name used in init() call. * * This optional function can be used to allow the driver interface to * replace the interface name with something else, e.g., based on an * interface mapping from a more descriptive name. */ const char * (*get_ifname)(void *priv); /** * get_mac_addr - Get own MAC address * @priv: private driver interface data * * Returns: Pointer to own MAC address or %NULL on failure * * This optional function can be used to get the own MAC address of the * device from the driver interface code. This is only needed if the * l2_packet implementation for the OS does not provide easy access to * a MAC address. */ const u8 * (*get_mac_addr)(void *priv); /** * send_eapol - Optional function for sending EAPOL packets * @priv: private driver interface data * @dest: Destination MAC address * @proto: Ethertype * @data: EAPOL packet starting with IEEE 802.1X header * @data_len: Size of the EAPOL packet * * Returns: 0 on success, -1 on failure * * This optional function can be used to override l2_packet operations * with driver specific functionality. If this function pointer is set, * l2_packet module is not used at all and the driver interface code is * responsible for receiving and sending all EAPOL packets. The * received EAPOL packets are sent to core code by calling * wpa_supplicant_rx_eapol(). The driver interface is required to * implement get_mac_addr() handler if send_eapol() is used. */ int (*send_eapol)(void *priv, const u8 *dest, u16 proto, const u8 *data, size_t data_len); /** * set_operstate - Sets device operating state to DORMANT or UP * @priv: private driver interface data * @state: 0 = dormant, 1 = up * Returns: 0 on success, -1 on failure * * This is an optional function that can be used on operating systems * that support a concept of controlling network device state from user * space applications. This function, if set, gets called with * state = 1 when authentication has been completed and with state = 0 * when connection is lost. */ int (*set_operstate)(void *priv, int state); /** * mlme_setprotection - MLME-SETPROTECTION.request primitive * @priv: Private driver interface data * @addr: Address of the station for which to set protection (may be * %NULL for group keys) * @protect_type: MLME_SETPROTECTION_PROTECT_TYPE_* * @key_type: MLME_SETPROTECTION_KEY_TYPE_* * Returns: 0 on success, -1 on failure * * This is an optional function that can be used to set the driver to * require protection for Tx and/or Rx frames. This uses the layer * interface defined in IEEE 802.11i-2004 clause 10.3.22.1 * (MLME-SETPROTECTION.request). Many drivers do not use explicit * set protection operation; instead, they set protection implicitly * based on configured keys. */ int (*mlme_setprotection)(void *priv, const u8 *addr, int protect_type, int key_type); /** * get_hw_feature_data - Get hardware support data (channels and rates) * @priv: Private driver interface data * @num_modes: Variable for returning the number of returned modes * flags: Variable for returning hardware feature flags * Returns: Pointer to allocated hardware data on success or %NULL on * failure. Caller is responsible for freeing this. * * This function is only needed for drivers that export MLME * (management frame processing) to wpa_supplicant. */ struct wpa_hw_modes * (*get_hw_feature_data)(void *priv, u16 *num_modes, u16 *flags); /** * set_channel - Set channel * @priv: Private driver interface data * @phymode: WPA_MODE_IEEE80211B, .. * @chan: IEEE 802.11 channel number * @freq: Frequency of the channel in MHz * Returns: 0 on success, -1 on failure * * This function is only needed for drivers that export MLME * (management frame processing) to wpa_supplicant. */ int (*set_channel)(void *priv, wpa_hw_mode phymode, int chan, int freq); /** * set_ssid - Set SSID * @priv: Private driver interface data * @ssid: SSID * @ssid_len: SSID length * Returns: 0 on success, -1 on failure * * This function is only needed for drivers that export MLME * (management frame processing) to wpa_supplicant. */ int (*set_ssid)(void *priv, const u8 *ssid, size_t ssid_len); /** * set_bssid - Set BSSID * @priv: Private driver interface data * @bssid: BSSID * Returns: 0 on success, -1 on failure * * This function is only needed for drivers that export MLME * (management frame processing) to wpa_supplicant. */ int (*set_bssid)(void *priv, const u8 *bssid); /** * send_mlme - Send management frame from MLME * @priv: Private driver interface data * @data: IEEE 802.11 management frame with IEEE 802.11 header * @data_len: Size of the management frame * Returns: 0 on success, -1 on failure * * This function is only needed for drivers that export MLME * (management frame processing) to wpa_supplicant. */ int (*send_mlme)(void *priv, const u8 *data, size_t data_len); /** * mlme_add_sta - Add a STA entry into the driver/netstack * @priv: Private driver interface data * @addr: MAC address of the STA (e.g., BSSID of the AP) * @supp_rates: Supported rate set (from (Re)AssocResp); in IEEE 802.11 * format (one octet per rate, 1 = 0.5 Mbps) * @supp_rates_len: Number of entries in supp_rates * Returns: 0 on success, -1 on failure * * This function is only needed for drivers that export MLME * (management frame processing) to wpa_supplicant. When the MLME code * completes association with an AP, this function is called to * configure the driver/netstack with a STA entry for data frame * processing (TX rate control, encryption/decryption). */ int (*mlme_add_sta)(void *priv, const u8 *addr, const u8 *supp_rates, size_t supp_rates_len); /** * mlme_remove_sta - Remove a STA entry from the driver/netstack * @priv: Private driver interface data * @addr: MAC address of the STA (e.g., BSSID of the AP) * Returns: 0 on success, -1 on failure * * This function is only needed for drivers that export MLME * (management frame processing) to wpa_supplicant. */ int (*mlme_remove_sta)(void *priv, const u8 *addr); }; #endif /* DRIVER_H */