/* Low-level I/O routines for BFDs. Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc. Written by Cygnus Support. This file is part of BFD, the Binary File Descriptor library. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include "sysdep.h" #include "bfd.h" #include "libbfd.h" #include #ifndef S_IXUSR #define S_IXUSR 0100 /* Execute by owner. */ #endif #ifndef S_IXGRP #define S_IXGRP 0010 /* Execute by group. */ #endif #ifndef S_IXOTH #define S_IXOTH 0001 /* Execute by others. */ #endif file_ptr real_ftell (FILE *file) { #if defined (HAVE_FTELLO64) return ftello64 (file); #elif defined (HAVE_FTELLO) return ftello (file); #else return ftell (file); #endif } int real_fseek (FILE *file, file_ptr offset, int whence) { #if defined (HAVE_FSEEKO64) return fseeko64 (file, offset, whence); #elif defined (HAVE_FSEEKO) return fseeko (file, offset, whence); #else return fseek (file, offset, whence); #endif } /* INTERNAL_DEFINITION struct bfd_iovec DESCRIPTION The <> contains the internal file I/O class. Each <> has an instance of this class and all file I/O is routed through it (it is assumed that the instance implements all methods listed below). .struct bfd_iovec .{ . {* To avoid problems with macros, a "b" rather than "f" . prefix is prepended to each method name. *} . {* Attempt to read/write NBYTES on ABFD's IOSTREAM storing/fetching . bytes starting at PTR. Return the number of bytes actually . transfered (a read past end-of-file returns less than NBYTES), . or -1 (setting <>) if an error occurs. *} . file_ptr (*bread) (struct bfd *abfd, void *ptr, file_ptr nbytes); . file_ptr (*bwrite) (struct bfd *abfd, const void *ptr, . file_ptr nbytes); . {* Return the current IOSTREAM file offset, or -1 (setting <> . if an error occurs. *} . file_ptr (*btell) (struct bfd *abfd); . {* For the following, on successful completion a value of 0 is returned. . Otherwise, a value of -1 is returned (and <> is set). *} . int (*bseek) (struct bfd *abfd, file_ptr offset, int whence); . int (*bclose) (struct bfd *abfd); . int (*bflush) (struct bfd *abfd); . int (*bstat) (struct bfd *abfd, struct stat *sb); .}; */ /* Return value is amount read. */ bfd_size_type bfd_bread (void *ptr, bfd_size_type size, bfd *abfd) { size_t nread; if ((abfd->flags & BFD_IN_MEMORY) != 0) { struct bfd_in_memory *bim; bfd_size_type get; bim = abfd->iostream; get = size; if (abfd->where + get > bim->size) { if (bim->size < (bfd_size_type) abfd->where) get = 0; else get = bim->size - abfd->where; bfd_set_error (bfd_error_file_truncated); } memcpy (ptr, bim->buffer + abfd->where, (size_t) get); abfd->where += get; return get; } if (abfd->iovec) nread = abfd->iovec->bread (abfd, ptr, size); else nread = 0; if (nread != (size_t) -1) abfd->where += nread; return nread; } bfd_size_type bfd_bwrite (const void *ptr, bfd_size_type size, bfd *abfd) { size_t nwrote; if ((abfd->flags & BFD_IN_MEMORY) != 0) { struct bfd_in_memory *bim = abfd->iostream; size = (size_t) size; if (abfd->where + size > bim->size) { bfd_size_type newsize, oldsize; oldsize = (bim->size + 127) & ~(bfd_size_type) 127; bim->size = abfd->where + size; /* Round up to cut down on memory fragmentation */ newsize = (bim->size + 127) & ~(bfd_size_type) 127; if (newsize > oldsize) { bim->buffer = bfd_realloc (bim->buffer, newsize); if (bim->buffer == 0) { bim->size = 0; return 0; } } } memcpy (bim->buffer + abfd->where, ptr, (size_t) size); abfd->where += size; return size; } if (abfd->iovec) nwrote = abfd->iovec->bwrite (abfd, ptr, size); else nwrote = 0; if (nwrote != (size_t) -1) abfd->where += nwrote; if (nwrote != size) { #ifdef ENOSPC errno = ENOSPC; #endif bfd_set_error (bfd_error_system_call); } return nwrote; } file_ptr bfd_tell (bfd *abfd) { file_ptr ptr; if ((abfd->flags & BFD_IN_MEMORY) != 0) return abfd->where; if (abfd->iovec) { ptr = abfd->iovec->btell (abfd); if (abfd->my_archive) ptr -= abfd->origin; } else ptr = 0; abfd->where = ptr; return ptr; } int bfd_flush (bfd *abfd) { if ((abfd->flags & BFD_IN_MEMORY) != 0) return 0; if (abfd->iovec) return abfd->iovec->bflush (abfd); return 0; } /* Returns 0 for success, negative value for failure (in which case bfd_get_error can retrieve the error code). */ int bfd_stat (bfd *abfd, struct stat *statbuf) { int result; if ((abfd->flags & BFD_IN_MEMORY) != 0) abort (); if (abfd->iovec) result = abfd->iovec->bstat (abfd, statbuf); else result = -1; if (result < 0) bfd_set_error (bfd_error_system_call); return result; } /* Returns 0 for success, nonzero for failure (in which case bfd_get_error can retrieve the error code). */ int bfd_seek (bfd *abfd, file_ptr position, int direction) { int result; file_ptr file_position; /* For the time being, a BFD may not seek to it's end. The problem is that we don't easily have a way to recognize the end of an element in an archive. */ BFD_ASSERT (direction == SEEK_SET || direction == SEEK_CUR); if (direction == SEEK_CUR && position == 0) return 0; if ((abfd->flags & BFD_IN_MEMORY) != 0) { struct bfd_in_memory *bim; bim = abfd->iostream; if (direction == SEEK_SET) abfd->where = position; else abfd->where += position; if (abfd->where > bim->size) { if ((abfd->direction == write_direction) || (abfd->direction == both_direction)) { bfd_size_type newsize, oldsize; oldsize = (bim->size + 127) & ~(bfd_size_type) 127; bim->size = abfd->where; /* Round up to cut down on memory fragmentation */ newsize = (bim->size + 127) & ~(bfd_size_type) 127; if (newsize > oldsize) { bim->buffer = bfd_realloc (bim->buffer, newsize); if (bim->buffer == 0) { bim->size = 0; return -1; } } } else { abfd->where = bim->size; bfd_set_error (bfd_error_file_truncated); return -1; } } return 0; } if (abfd->format != bfd_archive && abfd->my_archive == 0) { #if 0 /* Explanation for this code: I'm only about 95+% sure that the above conditions are sufficient and that all i/o calls are properly adjusting the `where' field. So this is sort of an `assert' that the `where' field is correct. If we can go a while without tripping the abort, we can probably safely disable this code, so that the real optimizations happen. */ file_ptr where_am_i_now; where_am_i_now = real_ftell (bfd_cache_lookup (abfd)); if (abfd->my_archive) where_am_i_now -= abfd->origin; if (where_am_i_now != abfd->where) abort (); #endif if (direction == SEEK_SET && (bfd_vma) position == abfd->where) return 0; } else { /* We need something smarter to optimize access to archives. Currently, anything inside an archive is read via the file handle for the archive. Which means that a bfd_seek on one component affects the `current position' in the archive, as well as in any other component. It might be sufficient to put a spike through the cache abstraction, and look to the archive for the file position, but I think we should try for something cleaner. In the meantime, no optimization for archives. */ } file_position = position; if (direction == SEEK_SET && abfd->my_archive != NULL) file_position += abfd->origin; if (abfd->iovec) result = abfd->iovec->bseek (abfd, file_position, direction); else result = -1; if (result != 0) { int hold_errno = errno; /* Force redetermination of `where' field. */ bfd_tell (abfd); /* An EINVAL error probably means that the file offset was absurd. */ if (hold_errno == EINVAL) bfd_set_error (bfd_error_file_truncated); else { bfd_set_error (bfd_error_system_call); errno = hold_errno; } } else { /* Adjust `where' field. */ if (direction == SEEK_SET) abfd->where = position; else abfd->where += position; } return result; } /* FUNCTION bfd_get_mtime SYNOPSIS long bfd_get_mtime (bfd *abfd); DESCRIPTION Return the file modification time (as read from the file system, or from the archive header for archive members). */ long bfd_get_mtime (bfd *abfd) { struct stat buf; if (abfd->mtime_set) return abfd->mtime; if (abfd->iovec == NULL) return 0; if (abfd->iovec->bstat (abfd, &buf) != 0) return 0; abfd->mtime = buf.st_mtime; /* Save value in case anyone wants it */ return buf.st_mtime; } /* FUNCTION bfd_get_size SYNOPSIS long bfd_get_size (bfd *abfd); DESCRIPTION Return the file size (as read from file system) for the file associated with BFD @var{abfd}. The initial motivation for, and use of, this routine is not so we can get the exact size of the object the BFD applies to, since that might not be generally possible (archive members for example). It would be ideal if someone could eventually modify it so that such results were guaranteed. Instead, we want to ask questions like "is this NNN byte sized object I'm about to try read from file offset YYY reasonable?" As as example of where we might do this, some object formats use string tables for which the first <> bytes of the table contain the size of the table itself, including the size bytes. If an application tries to read what it thinks is one of these string tables, without some way to validate the size, and for some reason the size is wrong (byte swapping error, wrong location for the string table, etc.), the only clue is likely to be a read error when it tries to read the table, or a "virtual memory exhausted" error when it tries to allocate 15 bazillon bytes of space for the 15 bazillon byte table it is about to read. This function at least allows us to answer the question, "is the size reasonable?". */ long bfd_get_size (bfd *abfd) { struct stat buf; if ((abfd->flags & BFD_IN_MEMORY) != 0) return ((struct bfd_in_memory *) abfd->iostream)->size; if (abfd->iovec == NULL) return 0; if (abfd->iovec->bstat (abfd, &buf) != 0) return 0; return buf.st_size; }