/* * Copyright (c) 2004 Jeffrey M. Hsu. All rights reserved. * Copyright (c) 2004 The DragonFly Project. All rights reserved. * * This code is derived from software contributed to The DragonFly Project * by Jeffrey M. Hsu. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of The DragonFly Project nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific, prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* * Copyright (c) 2004 Jeffrey M. Hsu. All rights reserved. * * License terms: all terms for the DragonFly license above plus the following: * * 4. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * * This product includes software developed by Jeffrey M. Hsu * for the DragonFly Project. * * This requirement may be waived with permission from Jeffrey Hsu. * This requirement will sunset and may be removed on July 8 2005, * after which the standard DragonFly license (as shown above) will * apply. */ /* * Copyright (c) 1982, 1986, 1988, 1991, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)uipc_mbuf.c 8.2 (Berkeley) 1/4/94 * $FreeBSD: src/sys/kern/uipc_mbuf.c,v 1.51.2.24 2003/04/15 06:59:29 silby Exp $ * $DragonFly: src/sys/kern/uipc_mbuf.c,v 1.28 2004/09/19 22:32:47 joerg Exp $ */ #include "opt_param.h" #include "opt_mbuf_stress_test.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef INVARIANTS #include #endif /* * mbuf cluster meta-data */ typedef struct mbcluster { struct mbcluster *mcl_next; int32_t mcl_magic; int32_t mcl_refs; void *mcl_data; } *mbcluster_t; typedef struct mbuf *mbuf_t; #define MCL_MAGIC 0x6d62636c static void mbinit (void *); SYSINIT(mbuf, SI_SUB_MBUF, SI_ORDER_FIRST, mbinit, NULL) static u_long mbtypes[MT_NTYPES]; struct mbstat mbstat; int max_linkhdr; int max_protohdr; int max_hdr; int max_datalen; int m_defragpackets; int m_defragbytes; int m_defraguseless; int m_defragfailure; #ifdef MBUF_STRESS_TEST int m_defragrandomfailures; #endif int nmbclusters; int nmbufs; u_int m_mballoc_wid = 0; u_int m_clalloc_wid = 0; SYSCTL_INT(_kern_ipc, KIPC_MAX_LINKHDR, max_linkhdr, CTLFLAG_RW, &max_linkhdr, 0, ""); SYSCTL_INT(_kern_ipc, KIPC_MAX_PROTOHDR, max_protohdr, CTLFLAG_RW, &max_protohdr, 0, ""); SYSCTL_INT(_kern_ipc, KIPC_MAX_HDR, max_hdr, CTLFLAG_RW, &max_hdr, 0, ""); SYSCTL_INT(_kern_ipc, KIPC_MAX_DATALEN, max_datalen, CTLFLAG_RW, &max_datalen, 0, ""); SYSCTL_INT(_kern_ipc, OID_AUTO, mbuf_wait, CTLFLAG_RW, &mbuf_wait, 0, ""); SYSCTL_STRUCT(_kern_ipc, KIPC_MBSTAT, mbstat, CTLFLAG_RW, &mbstat, mbstat, ""); SYSCTL_OPAQUE(_kern_ipc, OID_AUTO, mbtypes, CTLFLAG_RD, mbtypes, sizeof(mbtypes), "LU", ""); SYSCTL_INT(_kern_ipc, KIPC_NMBCLUSTERS, nmbclusters, CTLFLAG_RW, &nmbclusters, 0, "Maximum number of mbuf clusters available"); SYSCTL_INT(_kern_ipc, OID_AUTO, nmbufs, CTLFLAG_RW, &nmbufs, 0, "Maximum number of mbufs available"); SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragpackets, CTLFLAG_RD, &m_defragpackets, 0, ""); SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragbytes, CTLFLAG_RD, &m_defragbytes, 0, ""); SYSCTL_INT(_kern_ipc, OID_AUTO, m_defraguseless, CTLFLAG_RD, &m_defraguseless, 0, ""); SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragfailure, CTLFLAG_RD, &m_defragfailure, 0, ""); #ifdef MBUF_STRESS_TEST SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragrandomfailures, CTLFLAG_RW, &m_defragrandomfailures, 0, ""); #endif static int mcl_pool_count; static int mcl_pool_max = 20; static int mcl_free_max = 1000; static int mbuf_free_max = 5000; SYSCTL_INT(_kern_ipc, OID_AUTO, mcl_pool_max, CTLFLAG_RW, &mcl_pool_max, 0, "Maximum number of mbufs+cluster in free list"); SYSCTL_INT(_kern_ipc, OID_AUTO, mcl_pool_count, CTLFLAG_RD, &mcl_pool_count, 0, "Current number of mbufs+cluster in free list"); SYSCTL_INT(_kern_ipc, OID_AUTO, mcl_free_max, CTLFLAG_RW, &mcl_free_max, 0, "Maximum number of clusters on the free list"); SYSCTL_INT(_kern_ipc, OID_AUTO, mbuf_free_max, CTLFLAG_RW, &mbuf_free_max, 0, "Maximum number of mbufs on the free list"); static MALLOC_DEFINE(M_MBUF, "mbuf", "mbuf"); static MALLOC_DEFINE(M_MBUFCL, "mbufcl", "mbufcl"); static mbuf_t mmbfree; static mbcluster_t mclfree; static struct mbuf *mcl_pool; static void m_reclaim (void); static int m_mballoc(int nmb, int how); static int m_clalloc(int ncl, int how); static struct mbuf *m_mballoc_wait(int caller, int type); static void m_mclref(void *arg); static void m_mclfree(void *arg); #ifndef NMBCLUSTERS #define NMBCLUSTERS (512 + maxusers * 16) #endif #ifndef NMBUFS #define NMBUFS (nmbclusters * 4) #endif /* * Perform sanity checks of tunables declared above. */ static void tunable_mbinit(void *dummy) { /* * This has to be done before VM init. */ nmbclusters = NMBCLUSTERS; TUNABLE_INT_FETCH("kern.ipc.nmbclusters", &nmbclusters); nmbufs = NMBUFS; TUNABLE_INT_FETCH("kern.ipc.nmbufs", &nmbufs); /* Sanity checks */ if (nmbufs < nmbclusters * 2) nmbufs = nmbclusters * 2; return; } SYSINIT(tunable_mbinit, SI_SUB_TUNABLES, SI_ORDER_ANY, tunable_mbinit, NULL); /* "number of clusters of pages" */ #define NCL_INIT 1 #define NMB_INIT 16 /* ARGSUSED*/ static void mbinit(void *dummy) { int s; mmbfree = NULL; mclfree = NULL; mbstat.m_msize = MSIZE; mbstat.m_mclbytes = MCLBYTES; mbstat.m_minclsize = MINCLSIZE; mbstat.m_mlen = MLEN; mbstat.m_mhlen = MHLEN; s = splimp(); if (m_mballoc(NMB_INIT, MB_DONTWAIT) == 0) goto bad; #if MCLBYTES <= PAGE_SIZE if (m_clalloc(NCL_INIT, MB_DONTWAIT) == 0) goto bad; #else /* It's OK to call contigmalloc in this context. */ if (m_clalloc(16, MB_WAIT) == 0) goto bad; #endif splx(s); return; bad: panic("mbinit"); } /* * Allocate at least nmb mbufs and place on mbuf free list. * Returns the number of mbufs successfully allocated, 0 if none. * * Must be called at splimp. */ static int m_mballoc(int nmb, int how) { int i; struct mbuf *m; /* * If we've hit the mbuf limit, stop allocating (or trying to) * in order to avoid exhausting kernel memory entirely. */ if ((nmb + mbstat.m_mbufs) > nmbufs) return (0); /* * Attempt to allocate the requested number of mbufs, terminate when * the allocation fails but if blocking is allowed allocate at least * one. */ for (i = 0; i < nmb; ++i) { m = malloc(MSIZE, M_MBUF, M_NOWAIT|M_NULLOK|M_ZERO); if (m == NULL) { if (how == MB_WAIT) { mbstat.m_wait++; m = malloc(MSIZE, M_MBUF, M_WAITOK|M_NULLOK|M_ZERO); } if (m == NULL) break; } m->m_next = mmbfree; mmbfree = m; ++mbstat.m_mbufs; ++mbtypes[MT_FREE]; how = MB_DONTWAIT; } return(i); } /* * Once mbuf memory has been exhausted and if the call to the allocation macros * (or, in some cases, functions) is with MB_WAIT, then it is necessary to rely * solely on reclaimed mbufs. Here we wait for an mbuf to be freed for a * designated (mbuf_wait) time. */ static struct mbuf * m_mballoc_wait(int caller, int type) { struct mbuf *m; int s; s = splimp(); m_mballoc_wid++; if ((tsleep(&m_mballoc_wid, 0, "mballc", mbuf_wait)) == EWOULDBLOCK) m_mballoc_wid--; splx(s); /* * Now that we (think) that we've got something, we will redo an * MGET, but avoid getting into another instance of m_mballoc_wait() * XXX: We retry to fetch _even_ if the sleep timed out. This is left * this way, purposely, in the [unlikely] case that an mbuf was * freed but the sleep was not awakened in time. */ m = NULL; switch (caller) { case MGET_C: MGET(m, MB_DONTWAIT, type); break; case MGETHDR_C: MGETHDR(m, MB_DONTWAIT, type); break; default: panic("m_mballoc_wait: invalid caller (%d)", caller); } s = splimp(); if (m != NULL) { /* We waited and got something... */ mbstat.m_wait++; /* Wake up another if we have more free. */ if (mmbfree != NULL) MMBWAKEUP(); } splx(s); return (m); } #if MCLBYTES > PAGE_SIZE static int i_want_my_mcl; static void kproc_mclalloc(void) { int status; int s; s = splimp(); for (;;) { tsleep(&i_want_my_mcl, 0, "mclalloc", 0); while (i_want_my_mcl > 0) { if (m_clalloc(1, MB_WAIT) == 0) printf("m_clalloc failed even in thread context!\n"); --i_want_my_mcl; } } /* not reached */ splx(s); } static struct thread *mclallocthread; static struct kproc_desc mclalloc_kp = { "mclalloc", kproc_mclalloc, &mclallocthread }; SYSINIT(mclallocthread, SI_SUB_KTHREAD_UPDATE, SI_ORDER_ANY, kproc_start, &mclalloc_kp); #endif /* * Allocate at least nmb mbuf clusters and place on mbuf free list. * Returns the number of mbuf clusters successfully allocated, 0 if none. * * Must be called at splimp. */ static int m_clalloc(int ncl, int how) { static int last_report; mbcluster_t mcl; void *data; int i; /* * If we've hit the mbuf cluster limit, stop allocating (or trying to). */ if ((ncl + mbstat.m_clusters) > nmbclusters) ncl = 0; /* * Attempt to allocate the requested number of mbuf clusters, * terminate when the allocation fails but if blocking is allowed * allocate at least one. * * We need to allocate two structures for each cluster... a * ref counting / governing structure and the actual data. MCLBYTES * should be a power of 2 which means that the slab allocator will * return a buffer that does not cross a page boundary. */ for (i = 0; i < ncl; ++i) { /* * Meta structure */ mcl = malloc(sizeof(*mcl), M_MBUFCL, M_NOWAIT|M_NULLOK|M_ZERO); if (mcl == NULL && how == MB_WAIT) { mbstat.m_wait++; mcl = malloc(sizeof(*mcl), M_MBUFCL, M_WAITOK|M_NULLOK|M_ZERO); } /* * Physically contiguous data buffer. */ #if MCLBYTES > PAGE_SIZE if (how != MB_WAIT) { i_want_my_mcl += ncl - i; wakeup(&i_want_my_mcl); mbstat.m_wait++; data = NULL; } else { data = contigmalloc_map(MCLBYTES, M_MBUFCL, M_WAITOK, 0ul, ~0ul, PAGE_SIZE, 0, kernel_map); } #else data = malloc(MCLBYTES, M_MBUFCL, M_NOWAIT|M_NULLOK); if (data == NULL) { if (how == MB_WAIT) { mbstat.m_wait++; data = malloc(MCLBYTES, M_MBUFCL, M_WAITOK|M_NULLOK); } } #endif if (data == NULL) { free(mcl, M_MBUFCL); break; } mcl->mcl_next = mclfree; mcl->mcl_data = data; mcl->mcl_magic = MCL_MAGIC; mcl->mcl_refs = 0; mclfree = mcl; ++mbstat.m_clfree; ++mbstat.m_clusters; how = MB_DONTWAIT; } /* * If we could not allocate any report failure no more often then * once a second. */ if (i == 0) { mbstat.m_drops++; if (ticks < last_report || (ticks - last_report) >= hz) { last_report = ticks; printf("All mbuf clusters exhausted, please see tuning(7).\n"); } } return (i); } /* * Once cluster memory has been exhausted and the allocation is called with * MB_WAIT, we rely on the mclfree pointers. If nothing is free, we will * sleep for a designated amount of time (mbuf_wait) or until we're woken up * due to sudden mcluster availability. */ static void m_clalloc_wait(void) { int s; /* If in interrupt context, and INVARIANTS, maintain sanity and die. */ KASSERT(mycpu->gd_intr_nesting_level == 0, ("CLALLOC: CANNOT WAIT IN INTERRUPT")); /* * Sleep until something's available or until we expire. */ m_clalloc_wid++; if ((tsleep(&m_clalloc_wid, 0, "mclalc", mbuf_wait)) == EWOULDBLOCK) m_clalloc_wid--; /* * Try the allocation once more, and if we see mor then two * free entries wake up others as well. */ m_clalloc(1, MB_WAIT); s = splimp(); if (mclfree && mclfree->mcl_next) { MCLWAKEUP(); } splx(s); } /* * Return the number of references to this mbuf's data. 0 is returned * if the mbuf is not M_EXT, a reference count is returned if it is * M_EXT|M_EXT_CLUSTER, and 99 is returned if it is a special M_EXT. */ int m_sharecount(struct mbuf *m) { int count; switch(m->m_flags & (M_EXT|M_EXT_CLUSTER)) { case 0: count = 0; break; case M_EXT: count = 99; break; case M_EXT|M_EXT_CLUSTER: count = ((mbcluster_t)m->m_ext.ext_arg)->mcl_refs; break; default: panic("bad mbuf flags: %p", m); count = 0; } return(count); } /* * change mbuf to new type */ void m_chtype(struct mbuf *m, int type) { int s; s = splimp(); --mbtypes[m->m_type]; ++mbtypes[type]; m->m_type = type; splx(s); } /* * When MGET fails, ask protocols to free space when short of memory, * then re-attempt to allocate an mbuf. */ struct mbuf * m_retry(int how, int t) { struct mbuf *m; int ms; /* * Must only do the reclaim if not in an interrupt context. */ if (how == MB_WAIT) { KASSERT(mycpu->gd_intr_nesting_level == 0, ("MBALLOC: CANNOT WAIT IN INTERRUPT")); m_reclaim(); } ms = splimp(); if (mmbfree == NULL) m_mballoc(1, how); m = mmbfree; if (m != NULL) { mmbfree = m->m_next; mbtypes[MT_FREE]--; m->m_type = t; mbtypes[t]++; m->m_next = NULL; m->m_nextpkt = NULL; m->m_data = m->m_dat; m->m_flags = 0; splx(ms); mbstat.m_wait++; } else { static int last_report ; /* when we did that (in ticks) */ splx(ms); mbstat.m_drops++; if (ticks < last_report || (ticks - last_report) >= hz) { last_report = ticks; printf("All mbufs exhausted, please see tuning(7).\n"); } } return (m); } /* * As above; retry an MGETHDR. */ struct mbuf * m_retryhdr(int how, int t) { struct mbuf *m; int ms; /* * Must only do the reclaim if not in an interrupt context. */ if (how == MB_WAIT) { KASSERT(mycpu->gd_intr_nesting_level == 0, ("MBALLOC: CANNOT WAIT IN INTERRUPT")); m_reclaim(); } ms = splimp(); if (mmbfree == NULL) m_mballoc(1, how); m = mmbfree; if (m != NULL) { mmbfree = m->m_next; mbtypes[MT_FREE]--; m->m_type = t; mbtypes[t]++; m->m_next = NULL; m->m_nextpkt = NULL; m->m_data = m->m_pktdat; m->m_flags = M_PKTHDR; m->m_pkthdr.rcvif = NULL; SLIST_INIT(&m->m_pkthdr.tags); m->m_pkthdr.csum_flags = 0; splx(ms); mbstat.m_wait++; } else { static int last_report ; /* when we did that (in ticks) */ splx(ms); mbstat.m_drops++; if (ticks < last_report || (ticks - last_report) >= hz) { last_report = ticks; printf("All mbufs exhausted, please see tuning(7).\n"); } } return (m); } static void m_reclaim(void) { struct domain *dp; struct protosw *pr; int s; s = splimp(); for (dp = domains; dp; dp = dp->dom_next) { for (pr = dp->dom_protosw; pr < dp->dom_protoswNPROTOSW; pr++) { if (pr->pr_drain) (*pr->pr_drain)(); } } splx(s); mbstat.m_drain++; } /* * Space allocation routines. * These are also available as macros * for critical paths. */ struct mbuf * m_get(int how, int type) { struct mbuf *m; int ms; ms = splimp(); if (mmbfree == NULL) m_mballoc(1, how); m = mmbfree; if (m != NULL) { mmbfree = m->m_next; mbtypes[MT_FREE]--; m->m_type = type; mbtypes[type]++; m->m_next = NULL; m->m_nextpkt = NULL; m->m_data = m->m_dat; m->m_flags = 0; splx(ms); } else { splx(ms); m = m_retry(how, type); if (m == NULL && how == MB_WAIT) m = m_mballoc_wait(MGET_C, type); } return (m); } struct mbuf * m_gethdr(int how, int type) { struct mbuf *m; int ms; ms = splimp(); if (mmbfree == NULL) m_mballoc(1, how); m = mmbfree; if (m != NULL) { mmbfree = m->m_next; mbtypes[MT_FREE]--; m->m_type = type; mbtypes[type]++; m->m_next = NULL; m->m_nextpkt = NULL; m->m_data = m->m_pktdat; m->m_flags = M_PKTHDR; m->m_pkthdr.rcvif = NULL; SLIST_INIT(&m->m_pkthdr.tags); m->m_pkthdr.csum_flags = 0; m->m_pkthdr.pf_flags = 0; splx(ms); } else { splx(ms); m = m_retryhdr(how, type); if (m == NULL && how == MB_WAIT) m = m_mballoc_wait(MGETHDR_C, type); } return (m); } struct mbuf * m_getclr(int how, int type) { struct mbuf *m; if ((m = m_get(how, type)) != NULL) { bzero(mtod(m, caddr_t), MLEN); } return (m); } /* * m_getcl() returns an mbuf with an attached cluster. * Because many network drivers use this kind of buffers a lot, it is * convenient to keep a small pool of free buffers of this kind. * Even a small size such as 10 gives about 10% improvement in the * forwarding rate in a bridge or router. * The size of this free list is controlled by the sysctl variable * mcl_pool_max. The list is populated on m_freem(), and used in * m_getcl() if elements are available. */ struct mbuf * m_getcl(int how, short type, int flags) { int s; struct mbuf *mp; s = splimp(); if (flags & M_PKTHDR) { if (type == MT_DATA && mcl_pool) { mp = mcl_pool; mcl_pool = mp->m_nextpkt; --mcl_pool_count; splx(s); mp->m_nextpkt = NULL; mp->m_data = mp->m_ext.ext_buf; mp->m_flags = M_PKTHDR|M_EXT|M_EXT_CLUSTER; mp->m_pkthdr.rcvif = NULL; mp->m_pkthdr.csum_flags = 0; return mp; } else { MGETHDR(mp, how, type); } } else { MGET(mp, how, type); } if (mp) { m_mclget(mp, how); if ((mp->m_flags & M_EXT) == 0) { m_free(mp); mp = NULL; } } splx(s); return mp; } /* * struct mbuf * * m_getm(m, len, how, type) * * This will allocate len-worth of mbufs and/or mbuf clusters (whatever fits * best) and return a pointer to the top of the allocated chain. If m is * non-null, then we assume that it is a single mbuf or an mbuf chain to * which we want len bytes worth of mbufs and/or clusters attached, and so * if we succeed in allocating it, we will just return a pointer to m. * * If we happen to fail at any point during the allocation, we will free * up everything we have already allocated and return NULL. * */ struct mbuf * m_getm(struct mbuf *m, int len, int how, int type) { struct mbuf *top, *tail, *mp, *mtail = NULL; KASSERT(len >= 0, ("len is < 0 in m_getm")); mp = m_get(how, type); if (mp == NULL) { return (NULL); } else if (len > MINCLSIZE) { m_mclget(mp, how); if ((mp->m_flags & M_EXT) == 0) { m_free(mp); return (NULL); } } mp->m_len = 0; len -= M_TRAILINGSPACE(mp); if (m != NULL) { for (mtail = m; mtail->m_next != NULL; mtail = mtail->m_next) ; } else { m = mp; } top = tail = mp; while (len > 0) { mp = m_get(how, type); if (mp == NULL) goto failed; tail->m_next = mp; tail = mp; if (len > MINCLSIZE) { m_mclget(mp, how); if ((mp->m_flags & M_EXT) == 0) goto failed; } mp->m_len = 0; len -= M_TRAILINGSPACE(mp); } if (mtail != NULL) mtail->m_next = top; return (m); failed: m_freem(top); return (NULL); } /* * m_mclget() - Adds a cluster to a normal mbuf, M_EXT is set on success. */ void m_mclget(struct mbuf *m, int how) { mbcluster_t mcl; int s; KKASSERT((m->m_flags & M_EXT_OLD) == 0); s = splimp(); if ((mcl = mclfree) == NULL) { m_clalloc(1, how); if ((mcl = mclfree) == NULL) { if (how == MB_WAIT) { m_clalloc_wait(); mcl = mclfree; } } } /* * Possibly found a cluster, unlink it from the free list and * set the ref count. */ if (mcl == NULL) { splx(s); return; } KKASSERT(mcl->mcl_refs == 0); mclfree = mcl->mcl_next; mcl->mcl_refs = 1; --mbstat.m_clfree; splx(s); /* * Add the cluster to the mbuf. */ m->m_ext.ext_arg = mcl; m->m_ext.ext_buf = mcl->mcl_data; m->m_ext.ext_nref.new = m_mclref; m->m_ext.ext_nfree.new = m_mclfree; m->m_ext.ext_size = MCLBYTES; m->m_data = m->m_ext.ext_buf; m->m_flags |= M_EXT | M_EXT_CLUSTER; } static void m_mclfree(void *arg) { mbcluster_t mcl = arg; KKASSERT(mcl->mcl_magic == MCL_MAGIC); KKASSERT(mcl->mcl_refs > 0); crit_enter(); if (--mcl->mcl_refs == 0) { if (mbstat.m_clfree < mcl_free_max) { mcl->mcl_next = mclfree; mclfree = mcl; ++mbstat.m_clfree; MCLWAKEUP(); } else { mcl->mcl_magic = -1; free(mcl->mcl_data, M_MBUFCL); free(mcl, M_MBUFCL); --mbstat.m_clusters; } } crit_exit(); } static void m_mclref(void *arg) { mbcluster_t mcl = arg; KKASSERT(mcl->mcl_magic == MCL_MAGIC); crit_enter(); ++mcl->mcl_refs; crit_exit(); } /* * Helper routines for M_EXT reference/free */ static __inline void m_extref(const struct mbuf *m) { int s; KKASSERT(m->m_ext.ext_nfree.any != NULL); s = splimp(); if (m->m_flags & M_EXT_OLD) m->m_ext.ext_nref.old(m->m_ext.ext_buf, m->m_ext.ext_size); else m->m_ext.ext_nref.new(m->m_ext.ext_arg); splx(s); } /* * m_free() * * Free a single mbuf and any associated external storage. The successor, * if any, is returned. * * We do need to check non-first mbuf for m_aux, since some of existing * code does not call M_PREPEND properly. * (example: call to bpf_mtap from drivers) */ struct mbuf * m_free(struct mbuf *m) { int s; struct mbuf *n; s = splimp(); KASSERT(m->m_type != MT_FREE, ("freeing free mbuf %p", m)); /* * Adjust our type count and delete any attached chains if the * mbuf is a packet header. */ if ((m->m_flags & M_PKTHDR) != 0) m_tag_delete_chain(m, NULL); /* * Place the mbuf on the appropriate free list. Try to maintain a * small cache of mbuf+cluster pairs. */ n = m->m_next; m->m_next = NULL; if (m->m_flags & M_EXT) { KKASSERT(m->m_ext.ext_nfree.any != NULL); if (mcl_pool_count < mcl_pool_max && m && m->m_next == NULL && (m->m_flags & (M_PKTHDR|M_EXT_CLUSTER)) == (M_PKTHDR|M_EXT_CLUSTER) && m->m_type == MT_DATA && M_EXT_WRITABLE(m) ) { KKASSERT(((mbcluster_t)m->m_ext.ext_arg)->mcl_magic == MCL_MAGIC); m->m_nextpkt = mcl_pool; mcl_pool = m; ++mcl_pool_count; m = NULL; } else { if (m->m_flags & M_EXT_OLD) m->m_ext.ext_nfree.old(m->m_ext.ext_buf, m->m_ext.ext_size); else m->m_ext.ext_nfree.new(m->m_ext.ext_arg); m->m_flags = 0; m->m_ext.ext_arg = NULL; m->m_ext.ext_nref.new = NULL; m->m_ext.ext_nfree.new = NULL; } } if (m) { --mbtypes[m->m_type]; if (mbtypes[MT_FREE] < mbuf_free_max) { m->m_type = MT_FREE; mbtypes[MT_FREE]++; m->m_next = mmbfree; mmbfree = m; MMBWAKEUP(); } else { free(m, M_MBUF); --mbstat.m_mbufs; } } splx(s); return (n); } void m_freem(struct mbuf *m) { int s; s = splimp(); while (m) m = m_free(m); splx(s); } /* * Mbuffer utility routines. */ /* * Lesser-used path for M_PREPEND: * allocate new mbuf to prepend to chain, * copy junk along. */ struct mbuf * m_prepend(struct mbuf *m, int len, int how) { struct mbuf *mn; MGET(mn, how, m->m_type); if (mn == (struct mbuf *)NULL) { m_freem(m); return ((struct mbuf *)NULL); } if (m->m_flags & M_PKTHDR) M_MOVE_PKTHDR(mn, m); mn->m_next = m; m = mn; if (len < MHLEN) MH_ALIGN(m, len); m->m_len = len; return (m); } /* * Make a copy of an mbuf chain starting "off0" bytes from the beginning, * continuing for "len" bytes. If len is M_COPYALL, copy to end of mbuf. * The wait parameter is a choice of MB_WAIT/MB_DONTWAIT from caller. * Note that the copy is read-only, because clusters are not copied, * only their reference counts are incremented. */ #define MCFail (mbstat.m_mcfail) struct mbuf * m_copym(const struct mbuf *m, int off0, int len, int wait) { struct mbuf *n, **np; int off = off0; struct mbuf *top; int copyhdr = 0; KASSERT(off >= 0, ("m_copym, negative off %d", off)); KASSERT(len >= 0, ("m_copym, negative len %d", len)); if (off == 0 && m->m_flags & M_PKTHDR) copyhdr = 1; while (off > 0) { KASSERT(m != NULL, ("m_copym, offset > size of mbuf chain")); if (off < m->m_len) break; off -= m->m_len; m = m->m_next; } np = ⊤ top = 0; while (len > 0) { if (m == 0) { KASSERT(len == M_COPYALL, ("m_copym, length > size of mbuf chain")); break; } MGET(n, wait, m->m_type); *np = n; if (n == 0) goto nospace; if (copyhdr) { if (!m_dup_pkthdr(n, m, wait)) goto nospace; if (len == M_COPYALL) n->m_pkthdr.len -= off0; else n->m_pkthdr.len = len; copyhdr = 0; } n->m_len = min(len, m->m_len - off); if (m->m_flags & M_EXT) { n->m_data = m->m_data + off; m_extref(m); n->m_ext = m->m_ext; n->m_flags |= m->m_flags & (M_EXT | M_EXT_OLD | M_EXT_CLUSTER); } else { bcopy(mtod(m, caddr_t)+off, mtod(n, caddr_t), (unsigned)n->m_len); } if (len != M_COPYALL) len -= n->m_len; off = 0; m = m->m_next; np = &n->m_next; } if (top == 0) MCFail++; return (top); nospace: m_freem(top); MCFail++; return (0); } /* * Copy an entire packet, including header (which must be present). * An optimization of the common case `m_copym(m, 0, M_COPYALL, how)'. * Note that the copy is read-only, because clusters are not copied, * only their reference counts are incremented. * Preserve alignment of the first mbuf so if the creator has left * some room at the beginning (e.g. for inserting protocol headers) * the copies also have the room available. */ struct mbuf * m_copypacket(struct mbuf *m, int how) { struct mbuf *top, *n, *o; MGET(n, how, m->m_type); top = n; if (!n) goto nospace; if (!m_dup_pkthdr(n, m, how)) goto nospace; n->m_len = m->m_len; if (m->m_flags & M_EXT) { n->m_data = m->m_data; m_extref(m); n->m_ext = m->m_ext; n->m_flags |= m->m_flags & (M_EXT | M_EXT_OLD | M_EXT_CLUSTER); } else { n->m_data = n->m_pktdat + (m->m_data - m->m_pktdat ); bcopy(mtod(m, char *), mtod(n, char *), n->m_len); } m = m->m_next; while (m) { MGET(o, how, m->m_type); if (!o) goto nospace; n->m_next = o; n = n->m_next; n->m_len = m->m_len; if (m->m_flags & M_EXT) { n->m_data = m->m_data; m_extref(m); n->m_ext = m->m_ext; n->m_flags |= m->m_flags & (M_EXT | M_EXT_OLD | M_EXT_CLUSTER); } else { bcopy(mtod(m, char *), mtod(n, char *), n->m_len); } m = m->m_next; } return top; nospace: m_freem(top); MCFail++; return 0; } /* * Copy data from an mbuf chain starting "off" bytes from the beginning, * continuing for "len" bytes, into the indicated buffer. */ void m_copydata(const struct mbuf *m, int off, int len, caddr_t cp) { unsigned count; KASSERT(off >= 0, ("m_copydata, negative off %d", off)); KASSERT(len >= 0, ("m_copydata, negative len %d", len)); while (off > 0) { KASSERT(m != NULL, ("m_copydata, offset > size of mbuf chain")); if (off < m->m_len) break; off -= m->m_len; m = m->m_next; } while (len > 0) { KASSERT(m != NULL, ("m_copydata, length > size of mbuf chain")); count = min(m->m_len - off, len); bcopy(mtod(m, caddr_t) + off, cp, count); len -= count; cp += count; off = 0; m = m->m_next; } } /* * Copy a packet header mbuf chain into a completely new chain, including * copying any mbuf clusters. Use this instead of m_copypacket() when * you need a writable copy of an mbuf chain. */ struct mbuf * m_dup(struct mbuf *m, int how) { struct mbuf **p, *top = NULL; int remain, moff, nsize; /* Sanity check */ if (m == NULL) return (0); KASSERT((m->m_flags & M_PKTHDR) != 0, ("%s: !PKTHDR", __FUNCTION__)); /* While there's more data, get a new mbuf, tack it on, and fill it */ remain = m->m_pkthdr.len; moff = 0; p = ⊤ while (remain > 0 || top == NULL) { /* allow m->m_pkthdr.len == 0 */ struct mbuf *n; /* Get the next new mbuf */ MGET(n, how, m->m_type); if (n == NULL) goto nospace; if (top == NULL) { /* first one, must be PKTHDR */ if (!m_dup_pkthdr(n, m, how)) goto nospace; nsize = MHLEN; } else /* not the first one */ nsize = MLEN; if (remain >= MINCLSIZE) { MCLGET(n, how); if ((n->m_flags & M_EXT) == 0) { (void)m_free(n); goto nospace; } nsize = MCLBYTES; } n->m_len = 0; /* Link it into the new chain */ *p = n; p = &n->m_next; /* Copy data from original mbuf(s) into new mbuf */ while (n->m_len < nsize && m != NULL) { int chunk = min(nsize - n->m_len, m->m_len - moff); bcopy(m->m_data + moff, n->m_data + n->m_len, chunk); moff += chunk; n->m_len += chunk; remain -= chunk; if (moff == m->m_len) { m = m->m_next; moff = 0; } } /* Check correct total mbuf length */ KASSERT((remain > 0 && m != NULL) || (remain == 0 && m == NULL), ("%s: bogus m_pkthdr.len", __FUNCTION__)); } return (top); nospace: m_freem(top); MCFail++; return (0); } /* * Concatenate mbuf chain n to m. * Both chains must be of the same type (e.g. MT_DATA). * Any m_pkthdr is not updated. */ void m_cat(struct mbuf *m, struct mbuf *n) { while (m->m_next) m = m->m_next; while (n) { if (m->m_flags & M_EXT || m->m_data + m->m_len + n->m_len >= &m->m_dat[MLEN]) { /* just join the two chains */ m->m_next = n; return; } /* splat the data from one into the other */ bcopy(mtod(n, caddr_t), mtod(m, caddr_t) + m->m_len, (u_int)n->m_len); m->m_len += n->m_len; n = m_free(n); } } void m_adj(struct mbuf *mp, int req_len) { int len = req_len; struct mbuf *m; int count; if ((m = mp) == NULL) return; if (len >= 0) { /* * Trim from head. */ while (m != NULL && len > 0) { if (m->m_len <= len) { len -= m->m_len; m->m_len = 0; m = m->m_next; } else { m->m_len -= len; m->m_data += len; len = 0; } } m = mp; if (mp->m_flags & M_PKTHDR) m->m_pkthdr.len -= (req_len - len); } else { /* * Trim from tail. Scan the mbuf chain, * calculating its length and finding the last mbuf. * If the adjustment only affects this mbuf, then just * adjust and return. Otherwise, rescan and truncate * after the remaining size. */ len = -len; count = 0; for (;;) { count += m->m_len; if (m->m_next == (struct mbuf *)0) break; m = m->m_next; } if (m->m_len >= len) { m->m_len -= len; if (mp->m_flags & M_PKTHDR) mp->m_pkthdr.len -= len; return; } count -= len; if (count < 0) count = 0; /* * Correct length for chain is "count". * Find the mbuf with last data, adjust its length, * and toss data from remaining mbufs on chain. */ m = mp; if (m->m_flags & M_PKTHDR) m->m_pkthdr.len = count; for (; m; m = m->m_next) { if (m->m_len >= count) { m->m_len = count; break; } count -= m->m_len; } while (m->m_next) (m = m->m_next) ->m_len = 0; } } /* * Rearange an mbuf chain so that len bytes are contiguous * and in the data area of an mbuf (so that mtod will work for a structure * of size len). Returns the resulting mbuf chain on success, frees it and * returns null on failure. If there is room, it will add up to * max_protohdr-len extra bytes to the contiguous region in an attempt to * avoid being called next time. */ #define MPFail (mbstat.m_mpfail) struct mbuf * m_pullup(struct mbuf *n, int len) { struct mbuf *m; int count; int space; /* * If first mbuf has no cluster, and has room for len bytes * without shifting current data, pullup into it, * otherwise allocate a new mbuf to prepend to the chain. */ if ((n->m_flags & M_EXT) == 0 && n->m_data + len < &n->m_dat[MLEN] && n->m_next) { if (n->m_len >= len) return (n); m = n; n = n->m_next; len -= m->m_len; } else { if (len > MHLEN) goto bad; MGET(m, MB_DONTWAIT, n->m_type); if (m == 0) goto bad; m->m_len = 0; if (n->m_flags & M_PKTHDR) M_MOVE_PKTHDR(m, n); } space = &m->m_dat[MLEN] - (m->m_data + m->m_len); do { count = min(min(max(len, max_protohdr), space), n->m_len); bcopy(mtod(n, caddr_t), mtod(m, caddr_t) + m->m_len, (unsigned)count); len -= count; m->m_len += count; n->m_len -= count; space -= count; if (n->m_len) n->m_data += count; else n = m_free(n); } while (len > 0 && n); if (len > 0) { (void) m_free(m); goto bad; } m->m_next = n; return (m); bad: m_freem(n); MPFail++; return (0); } /* * Partition an mbuf chain in two pieces, returning the tail -- * all but the first len0 bytes. In case of failure, it returns NULL and * attempts to restore the chain to its original state. * * Note that the resulting mbufs might be read-only, because the new * mbuf can end up sharing an mbuf cluster with the original mbuf if * the "breaking point" happens to lie within a cluster mbuf. Use the * M_WRITABLE() macro to check for this case. */ struct mbuf * m_split(struct mbuf *m0, int len0, int wait) { struct mbuf *m, *n; unsigned len = len0, remain; for (m = m0; m && len > m->m_len; m = m->m_next) len -= m->m_len; if (m == 0) return (0); remain = m->m_len - len; if (m0->m_flags & M_PKTHDR) { MGETHDR(n, wait, m0->m_type); if (n == 0) return (0); n->m_pkthdr.rcvif = m0->m_pkthdr.rcvif; n->m_pkthdr.len = m0->m_pkthdr.len - len0; m0->m_pkthdr.len = len0; if (m->m_flags & M_EXT) goto extpacket; if (remain > MHLEN) { /* m can't be the lead packet */ MH_ALIGN(n, 0); n->m_next = m_split(m, len, wait); if (n->m_next == 0) { (void) m_free(n); return (0); } else { n->m_len = 0; return (n); } } else MH_ALIGN(n, remain); } else if (remain == 0) { n = m->m_next; m->m_next = 0; return (n); } else { MGET(n, wait, m->m_type); if (n == 0) return (0); M_ALIGN(n, remain); } extpacket: if (m->m_flags & M_EXT) { n->m_data = m->m_data + len; m_extref(m); n->m_ext = m->m_ext; n->m_flags |= m->m_flags & (M_EXT | M_EXT_OLD | M_EXT_CLUSTER); } else { bcopy(mtod(m, caddr_t) + len, mtod(n, caddr_t), remain); } n->m_len = remain; m->m_len = len; n->m_next = m->m_next; m->m_next = 0; return (n); } /* * Routine to copy from device local memory into mbufs. */ struct mbuf * m_devget(char *buf, int totlen, int off0, struct ifnet *ifp, void (*copy) (char *from, caddr_t to, u_int len)) { struct mbuf *m; struct mbuf *top = 0, **mp = ⊤ int off = off0, len; char *cp; char *epkt; cp = buf; epkt = cp + totlen; if (off) { cp += off + 2 * sizeof(u_short); totlen -= 2 * sizeof(u_short); } MGETHDR(m, MB_DONTWAIT, MT_DATA); if (m == 0) return (0); m->m_pkthdr.rcvif = ifp; m->m_pkthdr.len = totlen; m->m_len = MHLEN; while (totlen > 0) { if (top) { MGET(m, MB_DONTWAIT, MT_DATA); if (m == 0) { m_freem(top); return (0); } m->m_len = MLEN; } len = min(totlen, epkt - cp); if (len >= MINCLSIZE) { MCLGET(m, MB_DONTWAIT); if (m->m_flags & M_EXT) m->m_len = len = min(len, MCLBYTES); else len = m->m_len; } else { /* * Place initial small packet/header at end of mbuf. */ if (len < m->m_len) { if (top == 0 && len + max_linkhdr <= m->m_len) m->m_data += max_linkhdr; m->m_len = len; } else len = m->m_len; } if (copy) copy(cp, mtod(m, caddr_t), (unsigned)len); else bcopy(cp, mtod(m, caddr_t), (unsigned)len); cp += len; *mp = m; mp = &m->m_next; totlen -= len; if (cp == epkt) cp = buf; } return (top); } /* * Copy data from a buffer back into the indicated mbuf chain, * starting "off" bytes from the beginning, extending the mbuf * chain if necessary. */ void m_copyback(struct mbuf *m0, int off, int len, caddr_t cp) { int mlen; struct mbuf *m = m0, *n; int totlen = 0; if (m0 == 0) return; while (off > (mlen = m->m_len)) { off -= mlen; totlen += mlen; if (m->m_next == 0) { n = m_getclr(MB_DONTWAIT, m->m_type); if (n == 0) goto out; n->m_len = min(MLEN, len + off); m->m_next = n; } m = m->m_next; } while (len > 0) { mlen = min (m->m_len - off, len); bcopy(cp, off + mtod(m, caddr_t), (unsigned)mlen); cp += mlen; len -= mlen; mlen += off; off = 0; totlen += mlen; if (len == 0) break; if (m->m_next == 0) { n = m_get(MB_DONTWAIT, m->m_type); if (n == 0) break; n->m_len = min(MLEN, len); m->m_next = n; } m = m->m_next; } out: if (((m = m0)->m_flags & M_PKTHDR) && (m->m_pkthdr.len < totlen)) m->m_pkthdr.len = totlen; } void m_print(const struct mbuf *m) { int len; const struct mbuf *m2; len = m->m_pkthdr.len; m2 = m; while (len) { printf("%p %*D\n", m2, m2->m_len, (u_char *)m2->m_data, "-"); len -= m2->m_len; m2 = m2->m_next; } return; } /* * "Move" mbuf pkthdr from "from" to "to". * "from" must have M_PKTHDR set, and "to" must be empty. */ void m_move_pkthdr(struct mbuf *to, struct mbuf *from) { KASSERT((to->m_flags & M_EXT) == 0, ("m_move_pkthdr: to has cluster")); to->m_flags = from->m_flags & M_COPYFLAGS; to->m_data = to->m_pktdat; to->m_pkthdr = from->m_pkthdr; /* especially tags */ SLIST_INIT(&from->m_pkthdr.tags); /* purge tags from src */ from->m_flags &= ~M_PKTHDR; } /* * Duplicate "from"'s mbuf pkthdr in "to". * "from" must have M_PKTHDR set, and "to" must be empty. * In particular, this does a deep copy of the packet tags. */ int m_dup_pkthdr(struct mbuf *to, const struct mbuf *from, int how) { to->m_flags = (from->m_flags & M_COPYFLAGS) | (to->m_flags & M_EXT); if ((to->m_flags & M_EXT) == 0) to->m_data = to->m_pktdat; to->m_pkthdr = from->m_pkthdr; SLIST_INIT(&to->m_pkthdr.tags); return (m_tag_copy_chain(to, from, how)); } /* * Defragment a mbuf chain, returning the shortest possible * chain of mbufs and clusters. If allocation fails and * this cannot be completed, NULL will be returned, but * the passed in chain will be unchanged. Upon success, * the original chain will be freed, and the new chain * will be returned. * * If a non-packet header is passed in, the original * mbuf (chain?) will be returned unharmed. */ struct mbuf * m_defrag(struct mbuf *m0, int how) { struct mbuf *m_new = NULL, *m_final = NULL; int progress = 0, length; if (!(m0->m_flags & M_PKTHDR)) return (m0); #ifdef MBUF_STRESS_TEST if (m_defragrandomfailures) { int temp = arc4random() & 0xff; if (temp == 0xba) goto nospace; } #endif if (m0->m_pkthdr.len > MHLEN) m_final = m_getcl(how, MT_DATA, M_PKTHDR); else m_final = m_gethdr(how, MT_DATA); if (m_final == NULL) goto nospace; if (m_dup_pkthdr(m_final, m0, how) == NULL) goto nospace; m_new = m_final; while (progress < m0->m_pkthdr.len) { length = m0->m_pkthdr.len - progress; if (length > MCLBYTES) length = MCLBYTES; if (m_new == NULL) { if (length > MLEN) m_new = m_getcl(how, MT_DATA, 0); else m_new = m_get(how, MT_DATA); if (m_new == NULL) goto nospace; } m_copydata(m0, progress, length, mtod(m_new, caddr_t)); progress += length; m_new->m_len = length; if (m_new != m_final) m_cat(m_final, m_new); m_new = NULL; } if (m0->m_next == NULL) m_defraguseless++; m_freem(m0); m0 = m_final; m_defragpackets++; m_defragbytes += m0->m_pkthdr.len; return (m0); nospace: m_defragfailure++; if (m_new) m_free(m_new); if (m_final) m_freem(m_final); return (NULL); } /* * Move data from uio into mbufs. * A length of zero means copy the whole uio. */ struct mbuf * m_uiomove(struct uio *uio, int wait, int len0) { struct mbuf *head; /* result mbuf chain */ struct mbuf *m; /* current working mbuf */ struct mbuf **mp; int resid, datalen, error; resid = (len0 == 0) ? uio->uio_resid : min(len0, uio->uio_resid); head = NULL; mp = &head; do { if (resid > MHLEN) { m = m_getcl(wait, MT_DATA, head == NULL ? M_PKTHDR : 0); if (m == NULL) goto failed; if (m->m_flags & M_PKTHDR) m->m_pkthdr.len = 0; } else { if (head == NULL) { MGETHDR(m, wait, MT_DATA); if (m == NULL) goto failed; m->m_pkthdr.len = 0; /* Leave room for protocol headers. */ if (resid < MHLEN) MH_ALIGN(m, resid); } else { MGET(m, wait, MT_DATA); if (m == NULL) goto failed; } } datalen = min(MCLBYTES, resid); error = uiomove(mtod(m, caddr_t), datalen, uio); if (error) { m_free(m); goto failed; } m->m_len = datalen; *mp = m; mp = &m->m_next; head->m_pkthdr.len += datalen; resid -= datalen; } while (resid > 0); return (head); failed: if (head) m_freem(head); return (NULL); }