/*- * Copyright (c) 1990 The Regents of the University of California. * All rights reserved. * * This code is derived from software contributed to Berkeley by * William Jolitz. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * from: @(#)autoconf.c 7.1 (Berkeley) 5/9/91 * $FreeBSD: src/sys/i386/i386/autoconf.c,v 1.146.2.2 2001/06/07 06:05:58 dd Exp $ * $DragonFly: src/sys/i386/i386/Attic/autoconf.c,v 1.15 2004/10/14 18:31:02 dillon Exp $ */ /* * Setup the system to run on the current machine. * * Configure() is called at boot time and initializes the vba * device tables and the memory controller monitoring. Available * devices are determined (from possibilities mentioned in ioconf.c), * and the drivers are initialized. */ #include "opt_bootp.h" #include "opt_ffs.h" #include "opt_cd9660.h" #include "opt_nfs.h" #include "opt_nfsroot.h" #include "opt_bus.h" #include "opt_rootdevname.h" #include "use_isa.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef APIC_IO #include #else #include #endif /* APIC_IO */ #include #include #include #include #if NISA > 0 #include device_t isa_bus_device = 0; #endif static void configure_first (void *); static void configure (void *); static void configure_final (void *); #if defined(FFS) && defined(FFS_ROOT) static void setroot (void); #endif #if defined(NFS) && defined(NFS_ROOT) #if !defined(BOOTP_NFSROOT) static void pxe_setup_nfsdiskless(void); #endif #endif SYSINIT(configure1, SI_SUB_CONFIGURE, SI_ORDER_FIRST, configure_first, NULL); /* SI_ORDER_SECOND is hookable */ SYSINIT(configure2, SI_SUB_CONFIGURE, SI_ORDER_THIRD, configure, NULL); /* SI_ORDER_MIDDLE is hookable */ SYSINIT(configure3, SI_SUB_CONFIGURE, SI_ORDER_ANY, configure_final, NULL); dev_t rootdev = NODEV; dev_t dumpdev = NODEV; device_t nexus_dev; /* * Determine i/o configuration for a machine. */ static void configure_first(dummy) void *dummy; { } static void configure(dummy) void *dummy; { /* * Activate the ICU's. Note that we are explicitly at splhigh() * at present as we have no way to disable stray PCI level triggered * interrupts until the devices have had a driver attached. This * is particularly a problem when the interrupts are shared. For * example, if IRQ 10 is shared between a disk and network device * and the disk device generates an interrupt, if we "activate" * IRQ 10 when the network driver is set up, then we will get * recursive interrupt 10's as nothing will know how to turn off * the disk device's interrupt. * * Having the ICU's active means we can probe interrupt routing to * see if a device causes the corresponding pending bit to be set. * * This is all rather inconvenient. */ #ifdef APIC_IO bsp_apic_configure(); cpu_enable_intr(); #else cpu_enable_intr(); INTREN(IRQ_SLAVE); #endif /* APIC_IO */ /* nexus0 is the top of the i386 device tree */ device_add_child(root_bus, "nexus", 0); /* initialize new bus architecture */ root_bus_configure(); #if NISA > 0 /* * Explicitly probe and attach ISA last. The isa bus saves * it's device node at attach time for us here. */ if (isa_bus_device) isa_probe_children(isa_bus_device); #endif /* * Now we're ready to handle (pending) interrupts. * XXX this is slightly misplaced. */ spl0(); /* * Allow lowering of the ipl to the lowest kernel level if we * panic (or call tsleep() before clearing `cold'). No level is * completely safe (since a panic may occur in a critical region * at splhigh()), but we want at least bio interrupts to work. */ safepri = curthread->td_cpl; } static void configure_final(dummy) void *dummy; { int i; cninit_finish(); if (bootverbose) { #ifdef APIC_IO imen_dump(); #endif /* APIC_IO */ /* * Print out the BIOS's idea of the disk geometries. */ printf("BIOS Geometries:\n"); for (i = 0; i < N_BIOS_GEOM; i++) { unsigned long bios_geom; int max_cylinder, max_head, max_sector; bios_geom = bootinfo.bi_bios_geom[i]; /* * XXX the bootstrap punts a 1200K floppy geometry * when the get-disk-geometry interrupt fails. Skip * drives that have this geometry. */ if (bios_geom == 0x4f010f) continue; printf(" %x:%08lx ", i, bios_geom); max_cylinder = bios_geom >> 16; max_head = (bios_geom >> 8) & 0xff; max_sector = bios_geom & 0xff; printf( "0..%d=%d cylinders, 0..%d=%d heads, 1..%d=%d sectors\n", max_cylinder, max_cylinder + 1, max_head, max_head + 1, max_sector, max_sector); } printf(" %d accounted for\n", bootinfo.bi_n_bios_used); printf("Device configuration finished.\n"); } cold = 0; } #ifdef BOOTP void bootpc_init(void); #endif /* * Do legacy root filesystem discovery. */ void cpu_rootconf() { #ifdef BOOTP bootpc_init(); #endif #if defined(NFS) && defined(NFS_ROOT) #if !defined(BOOTP_NFSROOT) pxe_setup_nfsdiskless(); if (nfs_diskless_valid) #endif rootdevnames[0] = "nfs:"; #endif #if defined(FFS) && defined(FFS_ROOT) if (!rootdevnames[0]) setroot(); #endif } SYSINIT(cpu_rootconf, SI_SUB_ROOT_CONF, SI_ORDER_FIRST, cpu_rootconf, NULL) u_long bootdev = 0; /* not a dev_t - encoding is different */ #if defined(FFS) && defined(FFS_ROOT) #define FDMAJOR 2 #define FDUNITSHIFT 6 /* * The boot code uses old block device major numbers to pass bootdev to * us. We have to translate these to character device majors because * we don't have block devices any more. */ static int boot_translate_majdev(int bmajor) { static int conv[] = { BOOTMAJOR_CONVARY }; if (bmajor >= 0 && bmajor < sizeof(conv)/sizeof(conv[0])) return(conv[bmajor]); return(-1); } /* * Attempt to find the device from which we were booted. * If we can do so, and not instructed not to do so, * set rootdevs[] and rootdevnames[] to correspond to the * boot device(s). * * This code survives in order to allow the system to be * booted from legacy environments that do not correctly * populate the kernel environment. There are significant * restrictions on the bootability of the system in this * situation; it can only be mounting root from a 'da' * 'wd' or 'fd' device, and the root filesystem must be ufs. */ static void setroot() { int majdev, mindev, unit, slice, part; dev_t newrootdev, dev; char partname[2]; char *sname; if ((bootdev & B_MAGICMASK) != B_DEVMAGIC) { printf("no B_DEVMAGIC (bootdev=%#lx)\n", bootdev); return; } majdev = boot_translate_majdev(B_TYPE(bootdev)); if (bootverbose) { printf("bootdev: %08lx type=%ld unit=%ld " "slice=%ld part=%ld major=%d\n", bootdev, B_TYPE(bootdev), B_UNIT(bootdev), B_SLICE(bootdev), B_PARTITION(bootdev), majdev); } dev = udev2dev(makeudev(majdev, 0), 0); if (!dev_is_good(dev)) return; unit = B_UNIT(bootdev); slice = B_SLICE(bootdev); if (slice == WHOLE_DISK_SLICE) slice = COMPATIBILITY_SLICE; if (slice < 0 || slice >= MAX_SLICES) { printf("bad slice\n"); return; } /* * XXX kludge for inconsistent unit numbering and lack of slice * support for floppies. */ if (majdev == FD_CDEV_MAJOR) { slice = COMPATIBILITY_SLICE; part = RAW_PART; mindev = unit << FDUNITSHIFT; } else { part = B_PARTITION(bootdev); mindev = dkmakeminor(unit, slice, part); } newrootdev = udev2dev(makeudev(majdev, mindev), 0); if (!dev_is_good(newrootdev)) return; sname = dsname(newrootdev, unit, slice, part, partname); rootdevnames[0] = malloc(strlen(sname) + 6, M_DEVBUF, M_WAITOK); sprintf(rootdevnames[0], "ufs:%s%s", sname, partname); /* * For properly dangerously dedicated disks (ones with a historical * bogus partition table), the boot blocks will give slice = 4, but * the kernel will only provide the compatibility slice since it * knows that slice 4 is not a real slice. Arrange to try mounting * the compatibility slice as root if mounting the slice passed by * the boot blocks fails. This handles the dangerously dedicated * case and perhaps others. */ if (slice == COMPATIBILITY_SLICE) return; slice = COMPATIBILITY_SLICE; sname = dsname(newrootdev, unit, slice, part, partname); rootdevnames[1] = malloc(strlen(sname) + 6, M_DEVBUF, M_WAITOK); sprintf(rootdevnames[1], "ufs:%s%s", sname, partname); } #endif #if defined(NFS) && defined(NFS_ROOT) #if !defined(BOOTP_NFSROOT) #include #include #include #include #include #include #include #include #include #include #include extern struct nfs_diskless nfs_diskless; /* * Convert a kenv variable to a sockaddr. If the kenv variable does not * exist the sockaddr will remain zerod out (callers typically just check * sin_len). A network address of 0.0.0.0 is equivalent to failure. */ static int inaddr_to_sockaddr(char *ev, struct sockaddr_in *sa) { u_int32_t a[4]; char *cp; bzero(sa, sizeof(*sa)); if ((cp = getenv(ev)) == NULL) return(1); if (sscanf(cp, "%d.%d.%d.%d", &a[0], &a[1], &a[2], &a[3]) != 4) return(1); if (a[0] == 0 && a[1] == 0 && a[2] == 0 && a[3] == 0) return(1); /* XXX is this ordering correct? */ sa->sin_addr.s_addr = (a[3] << 24) + (a[2] << 16) + (a[1] << 8) + a[0]; sa->sin_len = sizeof(*sa); sa->sin_family = AF_INET; return(0); } static int hwaddr_to_sockaddr(char *ev, struct sockaddr_dl *sa) { char *cp; u_int32_t a[6]; bzero(sa, sizeof(*sa)); sa->sdl_len = sizeof(*sa); sa->sdl_family = AF_LINK; sa->sdl_type = IFT_ETHER; sa->sdl_alen = ETHER_ADDR_LEN; if ((cp = getenv(ev)) == NULL) return(1); if (sscanf(cp, "%x:%x:%x:%x:%x:%x", &a[0], &a[1], &a[2], &a[3], &a[4], &a[5]) != 6) return(1); sa->sdl_data[0] = a[0]; sa->sdl_data[1] = a[1]; sa->sdl_data[2] = a[2]; sa->sdl_data[3] = a[3]; sa->sdl_data[4] = a[4]; sa->sdl_data[5] = a[5]; return(0); } static int decode_nfshandle(char *ev, u_char *fh) { u_char *cp; int len, val; if (((cp = getenv(ev)) == NULL) || (strlen(cp) < 2) || (*cp != 'X')) return(0); len = 0; cp++; for (;;) { if (*cp == 'X') return(len); if ((sscanf(cp, "%2x", &val) != 1) || (val > 0xff)) return(0); *(fh++) = val; len++; cp += 2; if (len > NFSX_V2FH) return(0); } } /* * Populate the essential fields in the nfsv3_diskless structure. * * The loader is expected to export the following environment variables: * * boot.netif.ip IP address on boot interface * boot.netif.netmask netmask on boot interface * boot.netif.gateway default gateway (optional) * boot.netif.hwaddr hardware address of boot interface * boot.nfsroot.server IP address of root filesystem server * boot.nfsroot.path path of the root filesystem on server * boot.nfsroot.nfshandle NFS handle for root filesystem on server */ static void pxe_setup_nfsdiskless() { struct nfs_diskless *nd = &nfs_diskless; struct ifnet *ifp; struct ifaddr *ifa; struct sockaddr_dl *sdl, ourdl; struct sockaddr_in myaddr, netmask; char *cp; /* set up interface */ if (inaddr_to_sockaddr("boot.netif.ip", &myaddr)) return; if (inaddr_to_sockaddr("boot.netif.netmask", &netmask)) { printf("PXE: no netmask\n"); return; } bcopy(&myaddr, &nd->myif.ifra_addr, sizeof(myaddr)); bcopy(&myaddr, &nd->myif.ifra_broadaddr, sizeof(myaddr)); ((struct sockaddr_in *) &nd->myif.ifra_broadaddr)->sin_addr.s_addr = myaddr.sin_addr.s_addr | ~ netmask.sin_addr.s_addr; bcopy(&netmask, &nd->myif.ifra_mask, sizeof(netmask)); if (hwaddr_to_sockaddr("boot.netif.hwaddr", &ourdl)) { printf("PXE: no hardware address\n"); return; } ifa = NULL; ifp = TAILQ_FIRST(&ifnet); TAILQ_FOREACH(ifp, &ifnet, if_link) { TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { if ((ifa->ifa_addr->sa_family == AF_LINK) && (sdl = ((struct sockaddr_dl *)ifa->ifa_addr))) { if ((sdl->sdl_type == ourdl.sdl_type) && (sdl->sdl_alen == ourdl.sdl_alen) && !bcmp(sdl->sdl_data + sdl->sdl_nlen, ourdl.sdl_data + ourdl.sdl_nlen, sdl->sdl_alen)) goto match_done; } } } printf("PXE: no interface\n"); return; /* no matching interface */ match_done: strlcpy(nd->myif.ifra_name, ifp->if_xname, sizeof(nd->myif.ifra_name)); /* set up gateway */ inaddr_to_sockaddr("boot.netif.gateway", &nd->mygateway); /* XXX set up swap? */ /* set up root mount */ nd->root_args.rsize = 8192; /* XXX tunable? */ nd->root_args.wsize = 8192; nd->root_args.sotype = SOCK_DGRAM; nd->root_args.flags = (NFSMNT_WSIZE | NFSMNT_RSIZE | NFSMNT_RESVPORT); if (inaddr_to_sockaddr("boot.nfsroot.server", &nd->root_saddr)) { printf("PXE: no server\n"); return; } nd->root_saddr.sin_port = htons(NFS_PORT); if (decode_nfshandle("boot.nfsroot.nfshandle", &nd->root_fh[0]) == 0) { printf("PXE: no NFS handle\n"); return; } if ((cp = getenv("boot.nfsroot.path")) != NULL) strncpy(nd->root_hostnam, cp, MNAMELEN - 1); nfs_diskless_valid = 1; } #endif #endif