/* * Sun RPC is a product of Sun Microsystems, Inc. and is provided for * unrestricted use provided that this legend is included on all tape * media and as a part of the software program in whole or part. Users * may copy or modify Sun RPC without charge, but are not authorized * to license or distribute it to anyone else except as part of a product or * program developed by the user. * * SUN RPC IS PROVIDED AS IS WITH NO WARRANTIES OF ANY KIND INCLUDING THE * WARRANTIES OF DESIGN, MERCHANTIBILITY AND FITNESS FOR A PARTICULAR * PURPOSE, OR ARISING FROM A COURSE OF DEALING, USAGE OR TRADE PRACTICE. * * Sun RPC is provided with no support and without any obligation on the * part of Sun Microsystems, Inc. to assist in its use, correction, * modification or enhancement. * * SUN MICROSYSTEMS, INC. SHALL HAVE NO LIABILITY WITH RESPECT TO THE * INFRINGEMENT OF COPYRIGHTS, TRADE SECRETS OR ANY PATENTS BY SUN RPC * OR ANY PART THEREOF. * * In no event will Sun Microsystems, Inc. be liable for any lost revenue * or profits or other special, indirect and consequential damages, even if * Sun has been advised of the possibility of such damages. * * Sun Microsystems, Inc. * 2550 Garcia Avenue * Mountain View, California 94043 * * @(#)svc_unix.c 1.21 87/08/11 Copyr 1984 Sun Micro * @(#)svc_unix.c 2.2 88/08/01 4.0 RPCSRC * $FreeBSD: src/lib/libc/rpc/svc_unix.c,v 1.7.2.2 2001/09/05 22:29:23 dec Exp $ * $DragonFly: src/lib/libcr/rpc/Attic/svc_unix.c,v 1.2 2003/06/17 04:26:45 dillon Exp $ */ /* * svc_unix.c, Server side for TCP/IP based RPC. * * Copyright (C) 1984, Sun Microsystems, Inc. * * Actually implements two flavors of transporter - * a unix rendezvouser (a listner and connection establisher) * and a record/unix stream. */ #include #include #include #include #include #include #include #include #include /* * Ops vector for AF_UNIX based rpc service handle */ static bool_t svcunix_recv(); static enum xprt_stat svcunix_stat(); static bool_t svcunix_getargs(); static bool_t svcunix_reply(); static bool_t svcunix_freeargs(); static void svcunix_destroy(); static struct xp_ops svcunix_op = { svcunix_recv, svcunix_stat, svcunix_getargs, svcunix_reply, svcunix_freeargs, svcunix_destroy }; /* * Ops vector for TCP/IP rendezvous handler */ static bool_t rendezvous_request(); static enum xprt_stat rendezvous_stat(); static struct xp_ops svcunix_rendezvous_op = { rendezvous_request, rendezvous_stat, (bool_t (*)())abort, (bool_t (*)())abort, (bool_t (*)())abort, svcunix_destroy }; static int readunix(), writeunix(); static SVCXPRT *makefd_xprt(); struct unix_rendezvous { /* kept in xprt->xp_p1 */ u_int sendsize; u_int recvsize; }; struct unix_conn { /* kept in xprt->xp_p1 */ enum xprt_stat strm_stat; u_long x_id; XDR xdrs; char verf_body[MAX_AUTH_BYTES]; }; struct cmessage { struct cmsghdr cmsg; struct cmsgcred cmcred; }; static struct cmessage cm; static int __msgread(sock, buf, cnt) int sock; void *buf; size_t cnt; { struct iovec iov[1]; struct msghdr msg; bzero((char *)&cm, sizeof(cm)); iov[0].iov_base = buf; iov[0].iov_len = cnt; msg.msg_iov = iov; msg.msg_iovlen = 1; msg.msg_name = NULL; msg.msg_namelen = 0; msg.msg_control = (caddr_t)&cm; msg.msg_controllen = sizeof(struct cmessage); msg.msg_flags = 0; return(recvmsg(sock, &msg, 0)); } static int __msgwrite(sock, buf, cnt) int sock; void *buf; size_t cnt; { struct iovec iov[1]; struct msghdr msg; bzero((char *)&cm, sizeof(cm)); iov[0].iov_base = buf; iov[0].iov_len = cnt; cm.cmsg.cmsg_type = SCM_CREDS; cm.cmsg.cmsg_level = SOL_SOCKET; cm.cmsg.cmsg_len = sizeof(struct cmessage); msg.msg_iov = iov; msg.msg_iovlen = 1; msg.msg_name = NULL; msg.msg_namelen = 0; msg.msg_control = (caddr_t)&cm; msg.msg_controllen = sizeof(struct cmessage); msg.msg_flags = 0; return(sendmsg(sock, &msg, 0)); } /* * Usage: * xprt = svcunix_create(sock, send_buf_size, recv_buf_size); * * Creates, registers, and returns a (rpc) unix based transporter. * Once *xprt is initialized, it is registered as a transporter * see (svc.h, xprt_register). This routine returns * a NULL if a problem occurred. * * If sock<0 then a socket is created, else sock is used. * If the socket, sock is not bound to a port then svcunix_create * binds it to an arbitrary port. The routine then starts a unix * listener on the socket's associated port. In any (successful) case, * xprt->xp_sock is the registered socket number and xprt->xp_port is the * associated port number. * * Since unix streams do buffered io similar to stdio, the caller can specify * how big the send and receive buffers are via the second and third parms; * 0 => use the system default. */ SVCXPRT * svcunix_create(sock, sendsize, recvsize, path) register int sock; u_int sendsize; u_int recvsize; char *path; { bool_t madesock = FALSE; register SVCXPRT *xprt; register struct unix_rendezvous *r; struct sockaddr_un addr; int len = sizeof(struct sockaddr_un); if (sock == RPC_ANYSOCK) { if ((sock = socket(AF_UNIX, SOCK_STREAM, 0)) < 0) { perror("svc_unix.c - AF_UNIX socket creation problem"); return ((SVCXPRT *)NULL); } madesock = TRUE; } memset(&addr, 0, sizeof (addr)); addr.sun_family = AF_UNIX; strcpy(addr.sun_path, path); len = strlen(addr.sun_path) + sizeof(addr.sun_family) + sizeof(addr.sun_len) + 1; addr.sun_len = len; bind(sock, (struct sockaddr *)&addr, len); if ((getsockname(sock, (struct sockaddr *)&addr, &len) != 0) || (listen(sock, 2) != 0)) { perror("svc_unix.c - cannot getsockname or listen"); if (madesock) (void)_close(sock); return ((SVCXPRT *)NULL); } r = (struct unix_rendezvous *)mem_alloc(sizeof(*r)); if (r == NULL) { (void) fprintf(stderr, "svcunix_create: out of memory\n"); return (NULL); } r->sendsize = sendsize; r->recvsize = recvsize; xprt = (SVCXPRT *)mem_alloc(sizeof(SVCXPRT)); if (xprt == NULL) { (void) fprintf(stderr, "svcunix_create: out of memory\n"); return (NULL); } xprt->xp_p2 = NULL; xprt->xp_p1 = (caddr_t)r; xprt->xp_verf = _null_auth; xprt->xp_ops = &svcunix_rendezvous_op; xprt->xp_port = -1 /*ntohs(addr.sin_port)*/; xprt->xp_sock = sock; xprt_register(xprt); return (xprt); } /* * Like svunix_create(), except the routine takes any *open* UNIX file * descriptor as its first input. */ SVCXPRT * svcunixfd_create(fd, sendsize, recvsize) int fd; u_int sendsize; u_int recvsize; { return (makefd_xprt(fd, sendsize, recvsize)); } static SVCXPRT * makefd_xprt(fd, sendsize, recvsize) int fd; u_int sendsize; u_int recvsize; { register SVCXPRT *xprt; register struct unix_conn *cd; xprt = (SVCXPRT *)mem_alloc(sizeof(SVCXPRT)); if (xprt == (SVCXPRT *)NULL) { (void) fprintf(stderr, "svc_unix: makefd_xprt: out of memory\n"); goto done; } cd = (struct unix_conn *)mem_alloc(sizeof(struct unix_conn)); if (cd == (struct unix_conn *)NULL) { (void) fprintf(stderr, "svc_unix: makefd_xprt: out of memory\n"); mem_free((char *) xprt, sizeof(SVCXPRT)); xprt = (SVCXPRT *)NULL; goto done; } cd->strm_stat = XPRT_IDLE; xdrrec_create(&(cd->xdrs), sendsize, recvsize, (caddr_t)xprt, readunix, writeunix); xprt->xp_p2 = NULL; xprt->xp_p1 = (caddr_t)cd; xprt->xp_verf.oa_base = cd->verf_body; xprt->xp_addrlen = 0; xprt->xp_ops = &svcunix_op; /* truely deals with calls */ xprt->xp_port = 0; /* this is a connection, not a rendezvouser */ xprt->xp_sock = fd; xprt_register(xprt); done: return (xprt); } static bool_t rendezvous_request(xprt) register SVCXPRT *xprt; { int sock; struct unix_rendezvous *r; struct sockaddr_un addr; struct sockaddr_in in_addr; int len; r = (struct unix_rendezvous *)xprt->xp_p1; again: len = sizeof(struct sockaddr_in); if ((sock = accept(xprt->xp_sock, (struct sockaddr *)&addr, &len)) < 0) { if (errno == EINTR) goto again; return (FALSE); } /* * make a new transporter (re-uses xprt) */ bzero((char *)&in_addr, sizeof(in_addr)); in_addr.sin_family = AF_UNIX; xprt = makefd_xprt(sock, r->sendsize, r->recvsize); xprt->xp_raddr = in_addr; xprt->xp_addrlen = len; return (FALSE); /* there is never an rpc msg to be processed */ } static enum xprt_stat rendezvous_stat() { return (XPRT_IDLE); } static void svcunix_destroy(xprt) register SVCXPRT *xprt; { register struct unix_conn *cd = (struct unix_conn *)xprt->xp_p1; xprt_unregister(xprt); (void)_close(xprt->xp_sock); if (xprt->xp_port != 0) { /* a rendezvouser socket */ xprt->xp_port = 0; } else { /* an actual connection socket */ XDR_DESTROY(&(cd->xdrs)); } mem_free((caddr_t)cd, sizeof(struct unix_conn)); mem_free((caddr_t)xprt, sizeof(SVCXPRT)); } /* * All read operations timeout after 35 seconds. * A timeout is fatal for the connection. */ static struct timeval wait_per_try = { 35, 0 }; /* * reads data from the unix conection. * any error is fatal and the connection is closed. * (And a read of zero bytes is a half closed stream => error.) * * Note: we have to be careful here not to allow ourselves to become * blocked too long in this routine. While we're waiting for data from one * client, another client may be trying to connect. To avoid this situation, * some code from svc_run() is transplanted here: the select() loop checks * all RPC descriptors including the one we want and calls svc_getreqset2() * to handle new requests if any are detected. */ static int readunix(xprt, buf, len) register SVCXPRT *xprt; caddr_t buf; register int len; { register int sock = xprt->xp_sock; struct timeval start, delta, tv; struct timeval tmp1, tmp2; fd_set *fds; extern fd_set *__svc_fdset; extern int __svc_fdsetsize; delta = wait_per_try; fds = NULL; gettimeofday(&start, NULL); do { int bytes = howmany(__svc_fdsetsize, NFDBITS) * sizeof(fd_mask); if (fds != NULL) free(fds); fds = (fd_set *)malloc(bytes); if (fds == NULL) goto fatal_err; memcpy(fds, __svc_fdset, bytes); /* XXX we know the other bits are still clear */ FD_SET(sock, fds); tv = delta; /* in case select() implements writeback */ switch (select(svc_maxfd + 1, fds, NULL, NULL, &tv)) { case -1: memset(fds, 0, bytes); if (errno != EINTR) goto fatal_err; gettimeofday(&tmp1, NULL); timersub(&tmp1, &start, &tmp2); timersub(&wait_per_try, &tmp2, &tmp1); if (tmp1.tv_sec < 0 || !timerisset(&tmp1)) goto fatal_err; delta = tmp1; continue; case 0: goto fatal_err; default: if (!FD_ISSET(sock, fds)) { svc_getreqset2(fds, svc_maxfd + 1); gettimeofday(&tmp1, NULL); timersub(&tmp1, &start, &tmp2); timersub(&wait_per_try, &tmp2, &tmp1); if (tmp1.tv_sec < 0 || !timerisset(&tmp1)) goto fatal_err; delta = tmp1; continue; } } } while (!FD_ISSET(sock, fds)); if ((len = __msgread(sock, buf, len)) > 0) { if (fds != NULL) free(fds); return (len); } fatal_err: ((struct unix_conn *)(xprt->xp_p1))->strm_stat = XPRT_DIED; if (fds != NULL) free(fds); return (-1); } /* * writes data to the unix connection. * Any error is fatal and the connection is closed. */ static int writeunix(xprt, buf, len) register SVCXPRT *xprt; caddr_t buf; int len; { register int i, cnt; for (cnt = len; cnt > 0; cnt -= i, buf += i) { if ((i = __msgwrite(xprt->xp_sock, buf, cnt)) < 0) { ((struct unix_conn *)(xprt->xp_p1))->strm_stat = XPRT_DIED; return (-1); } } return (len); } static enum xprt_stat svcunix_stat(xprt) SVCXPRT *xprt; { register struct unix_conn *cd = (struct unix_conn *)(xprt->xp_p1); if (cd->strm_stat == XPRT_DIED) return (XPRT_DIED); if (! xdrrec_eof(&(cd->xdrs))) return (XPRT_MOREREQS); return (XPRT_IDLE); } static bool_t svcunix_recv(xprt, msg) SVCXPRT *xprt; register struct rpc_msg *msg; { register struct unix_conn *cd = (struct unix_conn *)(xprt->xp_p1); register XDR *xdrs = &(cd->xdrs); xdrs->x_op = XDR_DECODE; (void)xdrrec_skiprecord(xdrs); if (xdr_callmsg(xdrs, msg)) { cd->x_id = msg->rm_xid; /* set up verifiers */ msg->rm_call.cb_verf.oa_flavor = AUTH_UNIX; msg->rm_call.cb_verf.oa_base = (caddr_t)&cm; msg->rm_call.cb_verf.oa_length = sizeof(cm); return (TRUE); } cd->strm_stat = XPRT_DIED; /* XXXX */ return (FALSE); } static bool_t svcunix_getargs(xprt, xdr_args, args_ptr) SVCXPRT *xprt; xdrproc_t xdr_args; caddr_t args_ptr; { return ((*xdr_args)(&(((struct unix_conn *)(xprt->xp_p1))->xdrs), args_ptr)); } static bool_t svcunix_freeargs(xprt, xdr_args, args_ptr) SVCXPRT *xprt; xdrproc_t xdr_args; caddr_t args_ptr; { register XDR *xdrs = &(((struct unix_conn *)(xprt->xp_p1))->xdrs); xdrs->x_op = XDR_FREE; return ((*xdr_args)(xdrs, args_ptr)); } static bool_t svcunix_reply(xprt, msg) SVCXPRT *xprt; register struct rpc_msg *msg; { register struct unix_conn *cd = (struct unix_conn *)(xprt->xp_p1); register XDR *xdrs = &(cd->xdrs); register bool_t stat; xdrs->x_op = XDR_ENCODE; msg->rm_xid = cd->x_id; stat = xdr_replymsg(xdrs, msg); (void)xdrrec_endofrecord(xdrs, TRUE); return (stat); }