/* $FreeBSD: src/sys/crypto/rijndael/rijndael-api-fst.c,v 1.2.2.1 2001/07/03 11:01:35 ume Exp $ */ /* $DragonFly: src/sys/crypto/rijndael/rijndael-api-fst.c,v 1.2 2003/06/17 04:28:20 dillon Exp $ */ /* $KAME: rijndael-api-fst.c,v 1.10 2001/05/27 09:34:18 itojun Exp $ */ /* * rijndael-api-fst.c v2.3 April '2000 * * Optimised ANSI C code * * authors: v1.0: Antoon Bosselaers * v2.0: Vincent Rijmen * v2.1: Vincent Rijmen * v2.2: Vincent Rijmen * v2.3: Paulo Barreto * v2.4: Vincent Rijmen * * This code is placed in the public domain. */ #include #include #ifdef _KERNEL #include #else #include #endif #include #include #include int rijndael_makeKey(keyInstance *key, BYTE direction, int keyLen, char *keyMaterial) { word8 k[MAXKC][4]; int i; char *keyMat; if (key == NULL) { return BAD_KEY_INSTANCE; } if ((direction == DIR_ENCRYPT) || (direction == DIR_DECRYPT)) { key->direction = direction; } else { return BAD_KEY_DIR; } if ((keyLen == 128) || (keyLen == 192) || (keyLen == 256)) { key->keyLen = keyLen; } else { return BAD_KEY_MAT; } if (keyMaterial != NULL) { bcopy(keyMaterial, key->keyMaterial, keyLen/8); } key->ROUNDS = keyLen/32 + 6; /* initialize key schedule: */ keyMat = key->keyMaterial; for (i = 0; i < key->keyLen/8; i++) { k[i >> 2][i & 3] = (word8)keyMat[i]; } rijndaelKeySched(k, key->keySched, key->ROUNDS); if (direction == DIR_DECRYPT) { rijndaelKeyEncToDec(key->keySched, key->ROUNDS); } return TRUE; } int rijndael_cipherInit(cipherInstance *cipher, BYTE mode, char *IV) { if ((mode == MODE_ECB) || (mode == MODE_CBC) || (mode == MODE_CFB1)) { cipher->mode = mode; } else { return BAD_CIPHER_MODE; } if (IV != NULL) { bcopy(IV, cipher->IV, MAX_IV_SIZE); } else { bzero(cipher->IV, MAX_IV_SIZE); } return TRUE; } int rijndael_blockEncrypt(cipherInstance *cipher, keyInstance *key, BYTE *input, int inputLen, BYTE *outBuffer) { int i, k, numBlocks; word8 block[16], iv[4][4]; if (cipher == NULL || key == NULL || key->direction == DIR_DECRYPT) { return BAD_CIPHER_STATE; } if (input == NULL || inputLen <= 0) { return 0; /* nothing to do */ } numBlocks = inputLen/128; switch (cipher->mode) { case MODE_ECB: for (i = numBlocks; i > 0; i--) { rijndaelEncrypt(input, outBuffer, key->keySched, key->ROUNDS); input += 16; outBuffer += 16; } break; case MODE_CBC: #if 1 /*STRICT_ALIGN*/ bcopy(cipher->IV, block, 16); bcopy(input, iv, 16); ((word32*)block)[0] ^= ((word32*)iv)[0]; ((word32*)block)[1] ^= ((word32*)iv)[1]; ((word32*)block)[2] ^= ((word32*)iv)[2]; ((word32*)block)[3] ^= ((word32*)iv)[3]; #else ((word32*)block)[0] = ((word32*)cipher->IV)[0] ^ ((word32*)input)[0]; ((word32*)block)[1] = ((word32*)cipher->IV)[1] ^ ((word32*)input)[1]; ((word32*)block)[2] = ((word32*)cipher->IV)[2] ^ ((word32*)input)[2]; ((word32*)block)[3] = ((word32*)cipher->IV)[3] ^ ((word32*)input)[3]; #endif rijndaelEncrypt(block, outBuffer, key->keySched, key->ROUNDS); input += 16; for (i = numBlocks - 1; i > 0; i--) { #if 1 /*STRICT_ALIGN*/ bcopy(outBuffer, block, 16); ((word32*)block)[0] ^= ((word32*)iv)[0]; ((word32*)block)[1] ^= ((word32*)iv)[1]; ((word32*)block)[2] ^= ((word32*)iv)[2]; ((word32*)block)[3] ^= ((word32*)iv)[3]; #else ((word32*)block)[0] = ((word32*)outBuffer)[0] ^ ((word32*)input)[0]; ((word32*)block)[1] = ((word32*)outBuffer)[1] ^ ((word32*)input)[1]; ((word32*)block)[2] = ((word32*)outBuffer)[2] ^ ((word32*)input)[2]; ((word32*)block)[3] = ((word32*)outBuffer)[3] ^ ((word32*)input)[3]; #endif outBuffer += 16; rijndaelEncrypt(block, outBuffer, key->keySched, key->ROUNDS); input += 16; } break; case MODE_CFB1: #if 1 /*STRICT_ALIGN*/ bcopy(cipher->IV, iv, 16); #else /* !STRICT_ALIGN */ *((word32*)iv[0]) = *((word32*)(cipher->IV )); *((word32*)iv[1]) = *((word32*)(cipher->IV+ 4)); *((word32*)iv[2]) = *((word32*)(cipher->IV+ 8)); *((word32*)iv[3]) = *((word32*)(cipher->IV+12)); #endif /* ?STRICT_ALIGN */ for (i = numBlocks; i > 0; i--) { for (k = 0; k < 128; k++) { *((word32*) block ) = *((word32*)iv[0]); *((word32*)(block+ 4)) = *((word32*)iv[1]); *((word32*)(block+ 8)) = *((word32*)iv[2]); *((word32*)(block+12)) = *((word32*)iv[3]); rijndaelEncrypt(block, block, key->keySched, key->ROUNDS); outBuffer[k/8] ^= (block[0] & 0x80) >> (k & 7); iv[0][0] = (iv[0][0] << 1) | (iv[0][1] >> 7); iv[0][1] = (iv[0][1] << 1) | (iv[0][2] >> 7); iv[0][2] = (iv[0][2] << 1) | (iv[0][3] >> 7); iv[0][3] = (iv[0][3] << 1) | (iv[1][0] >> 7); iv[1][0] = (iv[1][0] << 1) | (iv[1][1] >> 7); iv[1][1] = (iv[1][1] << 1) | (iv[1][2] >> 7); iv[1][2] = (iv[1][2] << 1) | (iv[1][3] >> 7); iv[1][3] = (iv[1][3] << 1) | (iv[2][0] >> 7); iv[2][0] = (iv[2][0] << 1) | (iv[2][1] >> 7); iv[2][1] = (iv[2][1] << 1) | (iv[2][2] >> 7); iv[2][2] = (iv[2][2] << 1) | (iv[2][3] >> 7); iv[2][3] = (iv[2][3] << 1) | (iv[3][0] >> 7); iv[3][0] = (iv[3][0] << 1) | (iv[3][1] >> 7); iv[3][1] = (iv[3][1] << 1) | (iv[3][2] >> 7); iv[3][2] = (iv[3][2] << 1) | (iv[3][3] >> 7); iv[3][3] = (iv[3][3] << 1) | ((outBuffer[k/8] >> (7-(k&7))) & 1); } } break; default: return BAD_CIPHER_STATE; } return 128*numBlocks; } /** * Encrypt data partitioned in octets, using RFC 2040-like padding. * * @param input data to be encrypted (octet sequence) * @param inputOctets input length in octets (not bits) * @param outBuffer encrypted output data * * @return length in octets (not bits) of the encrypted output buffer. */ int rijndael_padEncrypt(cipherInstance *cipher, keyInstance *key, BYTE *input, int inputOctets, BYTE *outBuffer) { int i, numBlocks, padLen; word8 block[16], *iv, *cp; if (cipher == NULL || key == NULL || key->direction == DIR_DECRYPT) { return BAD_CIPHER_STATE; } if (input == NULL || inputOctets <= 0) { return 0; /* nothing to do */ } numBlocks = inputOctets/16; switch (cipher->mode) { case MODE_ECB: for (i = numBlocks; i > 0; i--) { rijndaelEncrypt(input, outBuffer, key->keySched, key->ROUNDS); input += 16; outBuffer += 16; } padLen = 16 - (inputOctets - 16*numBlocks); if (padLen > 0 && padLen <= 16) panic("rijndael_padEncrypt(ECB)"); bcopy(input, block, 16 - padLen); for (cp = block + 16 - padLen; cp < block + 16; cp++) *cp = padLen; rijndaelEncrypt(block, outBuffer, key->keySched, key->ROUNDS); break; case MODE_CBC: iv = cipher->IV; for (i = numBlocks; i > 0; i--) { ((word32*)block)[0] = ((word32*)input)[0] ^ ((word32*)iv)[0]; ((word32*)block)[1] = ((word32*)input)[1] ^ ((word32*)iv)[1]; ((word32*)block)[2] = ((word32*)input)[2] ^ ((word32*)iv)[2]; ((word32*)block)[3] = ((word32*)input)[3] ^ ((word32*)iv)[3]; rijndaelEncrypt(block, outBuffer, key->keySched, key->ROUNDS); iv = outBuffer; input += 16; outBuffer += 16; } padLen = 16 - (inputOctets - 16*numBlocks); if (padLen > 0 && padLen <= 16) panic("rijndael_padEncrypt(CBC)"); for (i = 0; i < 16 - padLen; i++) { block[i] = input[i] ^ iv[i]; } for (i = 16 - padLen; i < 16; i++) { block[i] = (BYTE)padLen ^ iv[i]; } rijndaelEncrypt(block, outBuffer, key->keySched, key->ROUNDS); break; default: return BAD_CIPHER_STATE; } return 16*(numBlocks + 1); } int rijndael_blockDecrypt(cipherInstance *cipher, keyInstance *key, BYTE *input, int inputLen, BYTE *outBuffer) { int i, k, numBlocks; word8 block[16], iv[4][4]; if (cipher == NULL || key == NULL || (cipher->mode != MODE_CFB1 && key->direction == DIR_ENCRYPT)) { return BAD_CIPHER_STATE; } if (input == NULL || inputLen <= 0) { return 0; /* nothing to do */ } numBlocks = inputLen/128; switch (cipher->mode) { case MODE_ECB: for (i = numBlocks; i > 0; i--) { rijndaelDecrypt(input, outBuffer, key->keySched, key->ROUNDS); input += 16; outBuffer += 16; } break; case MODE_CBC: #if 1 /*STRICT_ALIGN */ bcopy(cipher->IV, iv, 16); #else *((word32*)iv[0]) = *((word32*)(cipher->IV )); *((word32*)iv[1]) = *((word32*)(cipher->IV+ 4)); *((word32*)iv[2]) = *((word32*)(cipher->IV+ 8)); *((word32*)iv[3]) = *((word32*)(cipher->IV+12)); #endif for (i = numBlocks; i > 0; i--) { rijndaelDecrypt(input, block, key->keySched, key->ROUNDS); ((word32*)block)[0] ^= *((word32*)iv[0]); ((word32*)block)[1] ^= *((word32*)iv[1]); ((word32*)block)[2] ^= *((word32*)iv[2]); ((word32*)block)[3] ^= *((word32*)iv[3]); #if 1 /*STRICT_ALIGN*/ bcopy(input, iv, 16); bcopy(block, outBuffer, 16); #else *((word32*)iv[0]) = ((word32*)input)[0]; ((word32*)outBuffer)[0] = ((word32*)block)[0]; *((word32*)iv[1]) = ((word32*)input)[1]; ((word32*)outBuffer)[1] = ((word32*)block)[1]; *((word32*)iv[2]) = ((word32*)input)[2]; ((word32*)outBuffer)[2] = ((word32*)block)[2]; *((word32*)iv[3]) = ((word32*)input)[3]; ((word32*)outBuffer)[3] = ((word32*)block)[3]; #endif input += 16; outBuffer += 16; } break; case MODE_CFB1: #if 1 /*STRICT_ALIGN */ bcopy(cipher->IV, iv, 16); #else *((word32*)iv[0]) = *((word32*)(cipher->IV)); *((word32*)iv[1]) = *((word32*)(cipher->IV+ 4)); *((word32*)iv[2]) = *((word32*)(cipher->IV+ 8)); *((word32*)iv[3]) = *((word32*)(cipher->IV+12)); #endif for (i = numBlocks; i > 0; i--) { for (k = 0; k < 128; k++) { *((word32*) block ) = *((word32*)iv[0]); *((word32*)(block+ 4)) = *((word32*)iv[1]); *((word32*)(block+ 8)) = *((word32*)iv[2]); *((word32*)(block+12)) = *((word32*)iv[3]); rijndaelEncrypt(block, block, key->keySched, key->ROUNDS); iv[0][0] = (iv[0][0] << 1) | (iv[0][1] >> 7); iv[0][1] = (iv[0][1] << 1) | (iv[0][2] >> 7); iv[0][2] = (iv[0][2] << 1) | (iv[0][3] >> 7); iv[0][3] = (iv[0][3] << 1) | (iv[1][0] >> 7); iv[1][0] = (iv[1][0] << 1) | (iv[1][1] >> 7); iv[1][1] = (iv[1][1] << 1) | (iv[1][2] >> 7); iv[1][2] = (iv[1][2] << 1) | (iv[1][3] >> 7); iv[1][3] = (iv[1][3] << 1) | (iv[2][0] >> 7); iv[2][0] = (iv[2][0] << 1) | (iv[2][1] >> 7); iv[2][1] = (iv[2][1] << 1) | (iv[2][2] >> 7); iv[2][2] = (iv[2][2] << 1) | (iv[2][3] >> 7); iv[2][3] = (iv[2][3] << 1) | (iv[3][0] >> 7); iv[3][0] = (iv[3][0] << 1) | (iv[3][1] >> 7); iv[3][1] = (iv[3][1] << 1) | (iv[3][2] >> 7); iv[3][2] = (iv[3][2] << 1) | (iv[3][3] >> 7); iv[3][3] = (iv[3][3] << 1) | ((input[k/8] >> (7-(k&7))) & 1); outBuffer[k/8] ^= (block[0] & 0x80) >> (k & 7); } } break; default: return BAD_CIPHER_STATE; } return 128*numBlocks; } int rijndael_padDecrypt(cipherInstance *cipher, keyInstance *key, BYTE *input, int inputOctets, BYTE *outBuffer) { int i, numBlocks, padLen; word8 block[16]; word32 iv[4]; if (cipher == NULL || key == NULL || key->direction == DIR_ENCRYPT) { return BAD_CIPHER_STATE; } if (input == NULL || inputOctets <= 0) { return 0; /* nothing to do */ } if (inputOctets % 16 != 0) { return BAD_DATA; } numBlocks = inputOctets/16; switch (cipher->mode) { case MODE_ECB: /* all blocks but last */ for (i = numBlocks - 1; i > 0; i--) { rijndaelDecrypt(input, outBuffer, key->keySched, key->ROUNDS); input += 16; outBuffer += 16; } /* last block */ rijndaelDecrypt(input, block, key->keySched, key->ROUNDS); padLen = block[15]; if (padLen >= 16) { return BAD_DATA; } for (i = 16 - padLen; i < 16; i++) { if (block[i] != padLen) { return BAD_DATA; } } bcopy(block, outBuffer, 16 - padLen); break; case MODE_CBC: bcopy(cipher->IV, iv, 16); /* all blocks but last */ for (i = numBlocks - 1; i > 0; i--) { rijndaelDecrypt(input, block, key->keySched, key->ROUNDS); ((word32*)block)[0] ^= iv[0]; ((word32*)block)[1] ^= iv[1]; ((word32*)block)[2] ^= iv[2]; ((word32*)block)[3] ^= iv[3]; bcopy(input, iv, 16); bcopy(block, outBuffer, 16); input += 16; outBuffer += 16; } /* last block */ rijndaelDecrypt(input, block, key->keySched, key->ROUNDS); ((word32*)block)[0] ^= iv[0]; ((word32*)block)[1] ^= iv[1]; ((word32*)block)[2] ^= iv[2]; ((word32*)block)[3] ^= iv[3]; padLen = block[15]; if (padLen <= 0 || padLen > 16) { return BAD_DATA; } for (i = 16 - padLen; i < 16; i++) { if (block[i] != padLen) { return BAD_DATA; } } bcopy(block, outBuffer, 16 - padLen); break; default: return BAD_CIPHER_STATE; } return 16*numBlocks - padLen; } #ifdef INTERMEDIATE_VALUE_KAT /** * cipherUpdateRounds: * * Encrypts/Decrypts exactly one full block a specified number of rounds. * Only used in the Intermediate Value Known Answer Test. * * Returns: * TRUE - on success * BAD_CIPHER_STATE - cipher in bad state (e.g., not initialized) */ int rijndael_cipherUpdateRounds(cipherInstance *cipher, keyInstance *key, BYTE *input, int inputLen, BYTE *outBuffer, int rounds) { int j; word8 block[4][4]; if (cipher == NULL || key == NULL) { return BAD_CIPHER_STATE; } for (j = 3; j >= 0; j--) { /* parse input stream into rectangular array */ *((word32*)block[j]) = *((word32*)(input+4*j)); } switch (key->direction) { case DIR_ENCRYPT: rijndaelEncryptRound(block, key->keySched, key->ROUNDS, rounds); break; case DIR_DECRYPT: rijndaelDecryptRound(block, key->keySched, key->ROUNDS, rounds); break; default: return BAD_KEY_DIR; } for (j = 3; j >= 0; j--) { /* parse rectangular array into output ciphertext bytes */ *((word32*)(outBuffer+4*j)) = *((word32*)block[j]); } return TRUE; } #endif /* INTERMEDIATE_VALUE_KAT */