/* * SYS/THREAD.H * * Implements the architecture independant portion of the LWKT * subsystem. * * $DragonFly: src/sys/sys/thread.h,v 1.32 2003/09/24 18:37:51 dillon Exp $ */ #ifndef _SYS_THREAD_H_ #define _SYS_THREAD_H_ #ifndef _SYS_QUEUE_H_ #include /* TAILQ_* macros */ #endif struct globaldata; struct proc; struct thread; struct lwkt_queue; struct lwkt_token; struct lwkt_wait; struct lwkt_ipiq; struct lwkt_cpu_msg; struct lwkt_cpu_port; struct lwkt_rwlock; struct lwkt_msg; struct lwkt_port; union sysunion; typedef struct lwkt_queue *lwkt_queue_t; typedef struct lwkt_token *lwkt_token_t; typedef struct lwkt_wait *lwkt_wait_t; typedef struct lwkt_cpu_msg *lwkt_cpu_msg_t; typedef struct lwkt_cpu_port *lwkt_cpu_port_t; typedef struct lwkt_rwlock *lwkt_rwlock_t; typedef struct lwkt_ipiq *lwkt_ipiq_t; typedef struct thread *thread_t; typedef TAILQ_HEAD(lwkt_queue, thread) lwkt_queue; #ifndef _MACHINE_THREAD_H_ #include /* md_thread */ #endif #ifndef _SYS_MSGPORT_H_ #include #endif /* * Tokens arbitrate access to information. They are 'soft' arbitrators * in that they are associated with cpus rather then threads, making the * optimal aquisition case very fast if your cpu already happens to own the * token you are requesting. */ typedef struct lwkt_token { int t_cpu; /* the current owner of the token */ int t_reqcpu; /* return ownership to this cpu on release */ int t_gen; /* generation number */ #if 0 int t_pri; /* raise thread priority to hold token */ #endif } lwkt_token; /* * Wait structures deal with blocked threads. Due to the way remote cpus * interact with these structures stable storage must be used. */ typedef struct lwkt_wait { lwkt_queue wa_waitq; /* list of waiting threads */ lwkt_token wa_token; /* who currently owns the list */ int wa_gen; int wa_count; } lwkt_wait; #define MAXCPUFIFO 16 /* power of 2 */ #define MAXCPUFIFO_MASK (MAXCPUFIFO - 1) typedef void (*ipifunc_t)(void *arg); typedef struct lwkt_ipiq { int ip_rindex; /* only written by target cpu */ int ip_xindex; /* writte by target, indicates completion */ int ip_windex; /* only written by source cpu */ ipifunc_t ip_func[MAXCPUFIFO]; void *ip_arg[MAXCPUFIFO]; } lwkt_ipiq; /* * The standard message and queue structure used for communications between * cpus. Messages are typically queued via a machine-specific non-linked * FIFO matrix allowing any cpu to send a message to any other cpu without * blocking. */ typedef struct lwkt_cpu_msg { void (*cm_func)(lwkt_cpu_msg_t msg); /* primary dispatch function */ int cm_code; /* request code if applicable */ int cm_cpu; /* reply to cpu */ thread_t cm_originator; /* originating thread for wakeup */ } lwkt_cpu_msg; /* * reader/writer lock */ typedef struct lwkt_rwlock { lwkt_wait rw_wait; thread_t rw_owner; int rw_count; int rw_requests; } lwkt_rwlock; #define rw_token rw_wait.wa_token /* * Thread structure. Note that ownership of a thread structure is special * cased and there is no 'token'. A thread is always owned by the cpu * represented by td_gd, any manipulation of the thread by some other cpu * must be done through cpu_*msg() functions. e.g. you could request * ownership of a thread that way, or hand a thread off to another cpu. * * NOTE: td_pri is bumped by TDPRI_CRIT when entering a critical section, * but this does not effect how the thread is scheduled by LWKT. */ struct md_intr_info; struct thread { TAILQ_ENTRY(thread) td_threadq; TAILQ_ENTRY(thread) td_allq; lwkt_port td_msgport; /* built-in message port for replies */ struct proc *td_proc; /* (optional) associated process */ struct pcb *td_pcb; /* points to pcb and top of kstack */ struct globaldata *td_gd; /* associated with this cpu */ const char *td_wmesg; /* string name for blockage */ void *td_wchan; /* waiting on channel */ int td_pri; /* 0-31, 31=highest priority (note 1) */ int td_flags; /* TDF flags */ int td_gen; /* wait queue chasing generation number */ /* maybe preempt */ void (*td_preemptable)(struct thread *td, int critpri); void (*td_release)(struct thread *td); union { struct md_intr_info *intdata; } td_info; char *td_kstack; /* kernel stack */ char *td_sp; /* kernel stack pointer for LWKT restore */ void (*td_switch)(struct thread *ntd); lwkt_wait_t td_wait; /* thread sitting on wait structure */ u_int64_t td_uticks; /* Statclock hits in user mode (uS) */ u_int64_t td_sticks; /* Statclock hits in system mode (uS) */ u_int64_t td_iticks; /* Statclock hits processing intr (uS) */ int td_locks; /* lockmgr lock debugging YYY */ int td_refs; /* hold position in gd_tdallq / hold free */ #ifdef SMP int td_mpcount; /* MP lock held (count) */ #else int td_unused001; #endif char td_comm[MAXCOMLEN+1]; /* typ 16+1 bytes */ struct thread *td_preempted; /* we preempted this thread */ struct md_thread td_mach; }; /* * Thread flags. Note that TDF_RUNNING is cleared on the old thread after * we switch to the new one, which is necessary because LWKTs don't need * to hold the BGL. This flag is used by the exit code and the managed * thread migration code. * * LWKT threads stay on their (per-cpu) run queue while running, not to * be confused with user processes which are removed from the user scheduling * run queue while actually running. */ #define TDF_RUNNING 0x0001 /* thread still active */ #define TDF_RUNQ 0x0002 /* on an LWKT run queue */ #define TDF_PREEMPT_LOCK 0x0004 /* I have been preempted */ #define TDF_PREEMPT_DONE 0x0008 /* acknowledge preemption complete */ #define TDF_IDLE_NOHLT 0x0010 /* we need to spin */ #define TDF_ONALLQ 0x0100 /* on gd_tdallq */ #define TDF_ALLOCATED_THREAD 0x0200 /* zalloc allocated thread */ #define TDF_ALLOCATED_STACK 0x0400 /* zalloc allocated stack */ #define TDF_VERBOSE 0x0800 /* verbose on exit */ #define TDF_DEADLKTREAT 0x1000 /* special lockmgr deadlock treatment */ #define TDF_STOPREQ 0x2000 /* suspend_kproc */ #define TDF_WAKEREQ 0x4000 /* resume_kproc */ #define TDF_TIMEOUT 0x8000 /* tsleep timeout */ #define TDF_INTTHREAD 0x00010000 /* interrupt thread */ /* * Thread priorities. Typically only one thread from any given * user process scheduling queue is on the LWKT run queue at a time. * Remember that there is one LWKT run queue per cpu. * * Critical sections are handled by bumping td_pri above TDPRI_MAX, which * causes interrupts to be masked as they occur. When this occurs a * rollup flag will be set in mycpu->gd_reqflags. */ #define TDPRI_IDLE_THREAD 0 /* the idle thread */ #define TDPRI_USER_IDLE 4 /* user scheduler idle */ #define TDPRI_USER_NORM 6 /* user scheduler normal */ #define TDPRI_USER_REAL 8 /* user scheduler real time */ #define TDPRI_KERN_USER 10 /* kernel / block in syscall */ #define TDPRI_KERN_DAEMON 12 /* kernel daemon (pageout, etc) */ #define TDPRI_SOFT_NORM 14 /* kernel / normal */ #define TDPRI_SOFT_TIMER 16 /* kernel / timer */ #define TDPRI_EXITING 19 /* exiting thread */ #define TDPRI_INT_SUPPORT 20 /* kernel / high priority support */ #define TDPRI_INT_LOW 27 /* low priority interrupt */ #define TDPRI_INT_MED 28 /* medium priority interrupt */ #define TDPRI_INT_HIGH 29 /* high priority interrupt */ #define TDPRI_MAX 31 #define TDPRI_MASK 31 #define TDPRI_CRIT 32 /* high bits of td_pri used for crit */ #define CACHE_NTHREADS 6 #define IN_CRITICAL_SECT(td) ((td)->td_pri >= TDPRI_CRIT) #ifdef _KERNEL extern struct vm_zone *thread_zone; extern struct thread *lwkt_alloc_thread(struct thread *template); extern void lwkt_init_thread(struct thread *td, void *stack, int flags, struct globaldata *gd); extern void lwkt_set_comm(thread_t td, const char *ctl, ...); extern void lwkt_wait_free(struct thread *td); extern void lwkt_free_thread(struct thread *td); extern void lwkt_init_wait(struct lwkt_wait *w); extern void lwkt_gdinit(struct globaldata *gd); extern void lwkt_switch(void); extern void lwkt_maybe_switch(void); extern void lwkt_preempt(thread_t ntd, int critpri); extern void lwkt_schedule(thread_t td); extern void lwkt_schedule_self(void); extern void lwkt_deschedule(thread_t td); extern void lwkt_deschedule_self(void); extern void lwkt_acquire(thread_t td); extern void lwkt_yield(void); extern void lwkt_yield_quick(void); extern void lwkt_hold(thread_t td); extern void lwkt_rele(thread_t td); extern void lwkt_block(lwkt_wait_t w, const char *wmesg, int *gen); extern void lwkt_signal(lwkt_wait_t w, int count); extern int lwkt_trytoken(lwkt_token_t tok); extern int lwkt_gettoken(lwkt_token_t tok); extern int lwkt_gentoken(lwkt_token_t tok, int *gen); extern void lwkt_reltoken(lwkt_token_t tok); extern void lwkt_inittoken(lwkt_token_t tok); extern int lwkt_regettoken(lwkt_token_t tok); extern void lwkt_rwlock_init(lwkt_rwlock_t lock); extern void lwkt_exlock(lwkt_rwlock_t lock, const char *wmesg); extern void lwkt_shlock(lwkt_rwlock_t lock, const char *wmesg); extern void lwkt_exunlock(lwkt_rwlock_t lock); extern void lwkt_shunlock(lwkt_rwlock_t lock); extern void lwkt_setpri(thread_t td, int pri); extern void lwkt_setpri_self(int pri); extern int lwkt_send_ipiq(int dcpu, ipifunc_t func, void *arg); extern void lwkt_send_ipiq_mask(u_int32_t mask, ipifunc_t func, void *arg); extern void lwkt_wait_ipiq(int dcpu, int seq); extern void lwkt_process_ipiq(void); extern void crit_panic(void); extern struct proc *lwkt_preempted_proc(void); extern int lwkt_create (void (*func)(void *), void *arg, struct thread **ptd, struct thread *template, int tdflags, const char *ctl, ...); extern void lwkt_exit (void) __dead2; #endif #endif