/* * refclock_atom - clock driver for 1-pps signals */ #ifdef HAVE_CONFIG_H #include #endif #include #include #include "ntpd.h" #include "ntp_io.h" #include "ntp_unixtime.h" #include "ntp_refclock.h" #include "ntp_stdlib.h" #if defined(REFCLOCK) && defined(CLOCK_ATOM) #ifdef HAVE_PPSAPI # ifdef HAVE_TIMEPPS_H # include # else # ifdef HAVE_SYS_TIMEPPS_H # include # endif # endif #endif /* HAVE_PPSAPI */ /* * This driver furnishes an interface for pulse-per-second (PPS) signals * produced by a cesium clock, timing receiver or related equipment. It * can be used to remove accumulated jitter and retime a secondary * server when synchronized to a primary server over a congested, wide- * area network and before redistributing the time to local clients. * * Before this driver becomes active, the local clock must be set to * within +-500 ms by another means, such as a radio clock or NTP * itself. There are two ways to connect the PPS signal, normally at TTL * levels, to the computer. One is to shift to EIA levels and connect to * pin 8 (DCD) of a serial port. This requires a level converter and * may require a one-shot flipflop to lengthen the pulse. The other is * to connect the PPS signal directly to pin 10 (ACK) of a PC paralell * port. These methods are architecture dependent. * * Both methods require a modified device driver and kernel interface * compatible with the Pulse-per-Second API for Unix-like Operating * Systems, Version 1.0, RFC-2783 (PPSAPI). Implementations are * available for FreeBSD, Linux, SunOS, Solaris and Alpha. However, at * present only the Alpha implementation provides the full generality of * the API with multiple PPS drivers and multiple handles per driver. * * In many configurations a single port is used for the radio timecode * and PPS signal. In order to provide for this configuration and others * involving dedicated multiple serial/parallel ports, the driver first * attempts to open the device /dev/pps%d, where %d is the unit number. * If this fails, the driver attempts to open the device specified by * the pps configuration command. If a port is to be shared, the pps * command must be placed before the radio device(s) and the radio * device(s) must be placed before the PPS driver(s) in the * configuration file. * * This driver normally uses the PLL/FLL clock discipline implemented in * the ntpd code. If kernel support is available, the kernel PLL/FLL * clock discipline is used instead. The default configuration is not to * use the kernel PPS discipline, if present. The kernel PPS discipline * can be enabled using the pps command. * * Fudge Factors * * There are no special fudge factors other than the generic. The fudge * time1 parameter can be used to compensate for miscellaneous device * driver and OS delays. */ /* * Interface definitions */ #ifdef HAVE_PPSAPI extern int pps_assert; /* selects rising or falling edge */ extern int pps_hardpps; /* enables the kernel PPS interface */ #define DEVICE "/dev/pps%d" /* device name and unit */ #endif /* HAVE_PPSAPI */ #define PRECISION (-20) /* precision assumed (about 1 us) */ #define REFID "PPS\0" /* reference ID */ #define DESCRIPTION "PPS Clock Discipline" /* WRU */ #define NANOSECOND 1000000000 /* one second (ns) */ #define RANGEGATE 500000 /* range gate (ns) */ #define ASTAGE 8 /* filter stages */ static struct peer *pps_peer; /* atom driver for PPS sources */ #ifdef HAVE_PPSAPI /* * PPS unit control structure */ struct ppsunit { struct timespec ts; /* last timestamp */ int fddev; /* pps device descriptor */ pps_params_t pps_params; /* pps parameters */ pps_info_t pps_info; /* last pps data */ pps_handle_t handle; /* pps handlebars */ }; #endif /* HAVE_PPSAPI */ /* * Function prototypes */ static int atom_start P((int, struct peer *)); static void atom_poll P((int, struct peer *)); #ifdef HAVE_PPSAPI static void atom_shutdown P((int, struct peer *)); static void atom_control P((int, struct refclockstat *, struct refclockstat *, struct peer *)); static int atom_pps P((struct peer *)); static int atom_ppsapi P((struct peer *, int, int)); #endif /* HAVE_PPSAPI */ /* * Transfer vector */ struct refclock refclock_atom = { atom_start, /* start up driver */ #ifdef HAVE_PPSAPI atom_shutdown, /* shut down driver */ #else noentry, /* shut down driver */ #endif /* HAVE_PPSAPI */ atom_poll, /* transmit poll message */ #ifdef HAVE_PPSAPI atom_control, /* fudge control */ #else noentry, /* fudge control */ #endif /* HAVE_PPSAPI */ noentry, /* initialize driver */ noentry, /* not used (old atom_buginfo) */ NOFLAGS /* not used */ }; /* * atom_start - initialize data for processing */ static int atom_start( int unit, /* unit number (not used) */ struct peer *peer /* peer structure pointer */ ) { struct refclockproc *pp; #ifdef HAVE_PPSAPI register struct ppsunit *up; char device[80]; #endif /* HAVE_PPSAPI */ /* * Allocate and initialize unit structure */ pps_peer = peer; pp = peer->procptr; peer->precision = PRECISION; pp->clockdesc = DESCRIPTION; memcpy((char *)&pp->refid, REFID, 4); peer->burst = ASTAGE; peer->stratum = STRATUM_UNSPEC; #ifdef HAVE_PPSAPI up = emalloc(sizeof(struct ppsunit)); memset(up, 0, sizeof(struct ppsunit)); pp->unitptr = (caddr_t)up; /* * Open PPS device. If this fails and some driver has already * opened the associated radio device, fdpps has the file * descriptor for it. */ sprintf(device, DEVICE, unit); up->fddev = open(device, O_RDWR, 0777); if (up->fddev <= 0 && fdpps > 0) { strcpy(device, pps_device); up->fddev = fdpps; } if (up->fddev <= 0) { msyslog(LOG_ERR, "refclock_atom: %s: %m", device); return (0); } /* * Light off the PPSAPI interface. If this PPS device is shared * with the radio device, take the default options from the pps * command. This is for legacy purposes. */ if (time_pps_create(up->fddev, &up->handle) < 0) { msyslog(LOG_ERR, "refclock_atom: time_pps_create failed: %m"); return (0); } return (atom_ppsapi(peer, pps_assert, pps_hardpps)); #else /* HAVE_PPSAPI */ return (1); #endif /* HAVE_PPSAPI */ } #ifdef HAVE_PPSAPI /* * atom_control - fudge control */ static void atom_control( int unit, /* unit (not used */ struct refclockstat *in, /* input parameters (not uded) */ struct refclockstat *out, /* output parameters (not used) */ struct peer *peer /* peer structure pointer */ ) { struct refclockproc *pp; pp = peer->procptr; atom_ppsapi(peer, pp->sloppyclockflag & CLK_FLAG2, pp->sloppyclockflag & CLK_FLAG3); } /* * Initialize PPSAPI */ int atom_ppsapi( struct peer *peer, /* peer structure pointer */ int enb_clear, /* clear enable */ int enb_hardpps /* hardpps enable */ ) { struct refclockproc *pp; register struct ppsunit *up; int capability; pp = peer->procptr; up = (struct ppsunit *)pp->unitptr; if (time_pps_getcap(up->handle, &capability) < 0) { msyslog(LOG_ERR, "refclock_atom: time_pps_getcap failed: %m"); return (0); } memset(&up->pps_params, 0, sizeof(pps_params_t)); if (enb_clear) up->pps_params.mode = capability & PPS_CAPTURECLEAR; else up->pps_params.mode = capability & PPS_CAPTUREASSERT; if (!up->pps_params.mode) { msyslog(LOG_ERR, "refclock_atom: invalid capture edge %d", pps_assert); return (0); } up->pps_params.mode |= PPS_TSFMT_TSPEC; if (time_pps_setparams(up->handle, &up->pps_params) < 0) { msyslog(LOG_ERR, "refclock_atom: time_pps_setparams failed: %m"); return (0); } if (enb_hardpps) { if (time_pps_kcbind(up->handle, PPS_KC_HARDPPS, up->pps_params.mode & ~PPS_TSFMT_TSPEC, PPS_TSFMT_TSPEC) < 0) { msyslog(LOG_ERR, "refclock_atom: time_pps_kcbind failed: %m"); return (0); } pps_enable = 1; } #if DEBUG if (debug) { time_pps_getparams(up->handle, &up->pps_params); printf( "refclock_ppsapi: fd %d capability 0x%x version %d mode 0x%x kern %d\n", up->fddev, capability, up->pps_params.api_version, up->pps_params.mode, enb_hardpps); } #endif return (1); } /* * atom_shutdown - shut down the clock */ static void atom_shutdown( int unit, /* unit number (not used) */ struct peer *peer /* peer structure pointer */ ) { struct refclockproc *pp; register struct ppsunit *up; pp = peer->procptr; up = (struct ppsunit *)pp->unitptr; if (up->fddev > 0) close(up->fddev); if (up->handle != 0) time_pps_destroy(up->handle); if (pps_peer == peer) pps_peer = 0; free(up); } /* * atom_pps - receive data from the PPSAPI interface * * This routine is called once per second when the PPSAPI interface is * present. It snatches the PPS timestamp from the kernel and saves the * sign-extended fraction in a circular buffer for processing at the * next poll event. */ static int atom_pps( struct peer *peer /* peer structure pointer */ ) { register struct ppsunit *up; struct refclockproc *pp; pps_info_t pps_info; struct timespec timeout, ts; double dtemp; /* * Convert the timespec nanoseconds field to signed double and * save in the median filter. for billboards. No harm is done if * previous data are overwritten. If the discipline comes bum or * the data grow stale, just forget it. A range gate rejects new * samples if less than a jiggle time from the next second. */ pp = peer->procptr; up = (struct ppsunit *)pp->unitptr; if (up->handle == 0) return (-1); timeout.tv_sec = 0; timeout.tv_nsec = 0; memcpy(&pps_info, &up->pps_info, sizeof(pps_info_t)); if (time_pps_fetch(up->handle, PPS_TSFMT_TSPEC, &up->pps_info, &timeout) < 0) return (-1); if (up->pps_params.mode & PPS_CAPTUREASSERT) { if (pps_info.assert_sequence == up->pps_info.assert_sequence) return (1); ts = up->pps_info.assert_timestamp; } else if (up->pps_params.mode & PPS_CAPTURECLEAR) { if (pps_info.clear_sequence == up->pps_info.clear_sequence) return (1); ts = up->pps_info.clear_timestamp; } else { return (-1); } if (!((ts.tv_sec == up->ts.tv_sec && ts.tv_nsec - up->ts.tv_nsec > NANOSECOND - RANGEGATE) || (ts.tv_sec - up->ts.tv_sec == 1 && ts.tv_nsec - up->ts.tv_nsec < RANGEGATE))) { up->ts = ts; return (1); } up->ts = ts; pp->lastrec.l_ui = ts.tv_sec + JAN_1970; dtemp = ts.tv_nsec * FRAC / 1e9; if (dtemp >= FRAC) pp->lastrec.l_ui++; pp->lastrec.l_uf = (u_int32)dtemp; if (ts.tv_nsec > NANOSECOND / 2) ts.tv_nsec -= NANOSECOND; dtemp = -(double)ts.tv_nsec / NANOSECOND; SAMPLE(dtemp + pp->fudgetime1); #ifdef DEBUG if (debug > 1) printf("atom_pps %f %f\n", dtemp, pp->fudgetime1); #endif return (0); } #endif /* HAVE_PPSAPI */ /* * pps_sample - receive PPS data from some other clock driver * * This routine is called once per second when the external clock driver * processes PPS information. It processes the PPS timestamp and saves * the sign-extended fraction in a circular buffer for processing at the * next poll event. This works only for a single PPS device. */ int pps_sample( l_fp *offset /* PPS offset */ ) { register struct peer *peer; struct refclockproc *pp; l_fp lftmp; double doffset; peer = pps_peer; if (peer == 0) /* nobody home */ return (1); pp = peer->procptr; /* * Convert the timeval to l_fp and save for billboards. Sign- * extend the fraction and stash in the buffer. No harm is done * if previous data are overwritten. If the discipline comes bum * or the data grow stale, just forget it. */ pp->lastrec = *offset; L_CLR(&lftmp); L_ADDF(&lftmp, pp->lastrec.l_f); LFPTOD(&lftmp, doffset); SAMPLE(-doffset + pp->fudgetime1); return (0); } /* * atom_poll - called by the transmit procedure * * This routine is called once per second when in burst mode to save PPS * sample offsets in the median filter. At the end of the burst period * the samples are processed as a heap and the clock filter updated. */ static void atom_poll( int unit, /* unit number (not used) */ struct peer *peer /* peer structure pointer */ ) { struct refclockproc *pp; #ifdef HAVE_PPSAPI int err; #endif /* HAVE_PPSAPI */ /* * Accumulate samples in the median filter. If a noise sample, * return with no prejudice; if a protocol error, get mean; * otherwise, cool. At the end of each poll interval, do a * little bookeeping and process the surviving samples. */ pp = peer->procptr; pp->polls++; #ifdef HAVE_PPSAPI err = atom_pps(peer); if (err < 0) { refclock_report(peer, CEVNT_FAULT); return; } #endif /* HAVE_PPSAPI */ /* * Valid time is returned only if the prefer peer has survived * the intersection algorithm and within clock_max of local time * and not too long ago. This ensures the PPS time is within * +-0.5 s of the local time and the seconds numbering is * unambiguous. Note that the leap bits are set no-warning on * the first valid update and the stratum is set at the prefer * peer. */ if (peer->burst > 0) return; peer->stratum = STRATUM_UNSPEC; if (pp->codeproc == pp->coderecv) { refclock_report(peer, CEVNT_TIMEOUT); peer->burst = ASTAGE; return; } else if (!sys_prefer) { pp->codeproc = pp->coderecv; peer->burst = ASTAGE; return; } else if (fabs(sys_prefer->offset) > clock_max) { pp->codeproc = pp->coderecv; peer->burst = ASTAGE; return; } peer->stratum = sys_prefer->stratum; if (peer->stratum <= 1) peer->refid = pp->refid; else peer->refid = peer->srcadr.sin_addr.s_addr; pp->leap = LEAP_NOWARNING; refclock_receive(peer); peer->burst = ASTAGE; } #else int refclock_atom_bs; int pps_sample( l_fp *offset /* PPS offset */ ) { return 1; } #endif /* REFCLOCK */