/*- * Copyright (c) 2003-2004 Tim Kientzle * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer * in this position and unchanged. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR(S) ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR(S) BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* * This code borrows heavily from "compress" source code, which is * protected by the following copyright. (Clause 3 dropped by request * of the Regents.) */ /*- * Copyright (c) 1985, 1986, 1992, 1993 * The Regents of the University of California. All rights reserved. * * This code is derived from software contributed to Berkeley by * Diomidis Spinellis and James A. Woods, derived from original * work by Spencer Thomas and Joseph Orost. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include "archive_platform.h" __FBSDID("$FreeBSD: src/lib/libarchive/archive_read_support_compression_compress.c,v 1.3 2004/10/17 23:40:10 kientzle Exp $"); #include #include #include #include #include "archive.h" #include "archive_private.h" /* * Because LZW decompression is pretty simple, I've just implemented * the whole decompressor here (cribbing from "compress" source code, * of course), rather than relying on an external library. I have * made an effort to clarify and simplify the algorithm, so the * names and structure here don't exactly match those used by compress. */ struct private_data { /* Input variables. */ const unsigned char *next_in; size_t avail_in; int bit_buffer; int bits_avail; size_t bytes_in_section; /* Output variables. */ size_t uncompressed_buffer_size; void *uncompressed_buffer; unsigned char *read_next; /* Data for client. */ unsigned char *next_out; /* Where to write new data. */ size_t avail_out; /* Space at end of buffer. */ /* Decompression status variables. */ int use_reset_code; int end_of_stream; /* EOF status. */ int maxcode; /* Largest code. */ int maxcode_bits; /* Length of largest code. */ int section_end_code; /* When to increase bits. */ int bits; /* Current code length. */ int oldcode; /* Previous code. */ int finbyte; /* Last byte of prev code. */ /* Dictionary. */ int free_ent; /* Next dictionary entry. */ unsigned char suffix[65536]; uint16_t prefix[65536]; /* * Scratch area for expanding dictionary entries. Note: * "worst" case here comes from compressing /dev/zero: the * last code in the dictionary will code a sequence of * 65536-256 zero bytes. Thus, we need stack space to expand * a 65280-byte dictionary entry. (Of course, 32640:1 * compression could also be considered the "best" case. ;-) */ unsigned char *stackp; unsigned char stack[65300]; }; static int bid(const void *, size_t); static int finish(struct archive *); static int init(struct archive *, const void *, size_t); static ssize_t read_ahead(struct archive *, const void **, size_t); static ssize_t read_consume(struct archive *, size_t); static int getbits(struct archive *, struct private_data *, int n); static int next_code(struct archive *a, struct private_data *state); int archive_read_support_compression_compress(struct archive *a) { return (__archive_read_register_compression(a, bid, init)); } /* * Test whether we can handle this data. * * This logic returns zero if any part of the signature fails. It * also tries to Do The Right Thing if a very short buffer prevents us * from verifying as much as we would like. */ static int bid(const void *buff, size_t len) { const unsigned char *buffer; int bits_checked; if (len < 1) return (0); buffer = buff; bits_checked = 0; if (buffer[0] != 037) /* Verify first ID byte. */ return (0); bits_checked += 8; if (len < 2) return (bits_checked); if (buffer[1] != 0235) /* Verify second ID byte. */ return (0); bits_checked += 8; if (len < 3) return (bits_checked); /* * TODO: Verify more. */ return (bits_checked); } /* * Setup the callbacks. */ static int init(struct archive *a, const void *buff, size_t n) { struct private_data *state; int code; a->compression_code = ARCHIVE_COMPRESSION_COMPRESS; a->compression_name = "compress (.Z)"; a->compression_read_ahead = read_ahead; a->compression_read_consume = read_consume; a->compression_finish = finish; state = malloc(sizeof(*state)); if (state == NULL) { archive_set_error(a, ENOMEM, "Can't allocate data for %s decompression", a->compression_name); return (ARCHIVE_FATAL); } memset(state, 0, sizeof(*state)); state->uncompressed_buffer_size = 64 * 1024; state->uncompressed_buffer = malloc(state->uncompressed_buffer_size); if (state->uncompressed_buffer == NULL) { archive_set_error(a, ENOMEM, "Can't allocate %s decompression buffers", a->compression_name); goto fatal; } state->next_in = buff; state->avail_in = n; state->read_next = state->next_out = state->uncompressed_buffer; state->avail_out = state->uncompressed_buffer_size; code = getbits(a, state, 8); if (code != 037) goto fatal; code = getbits(a, state, 8); if (code != 0235) goto fatal; code = getbits(a, state, 8); state->maxcode_bits = code & 0x1f; state->maxcode = (1 << state->maxcode_bits); state->use_reset_code = code & 0x80; /* Initialize decompressor. */ state->free_ent = 256; state->stackp = state->stack; if (state->use_reset_code) state->free_ent++; state->bits = 9; state->section_end_code = (1<bits) - 1; state->oldcode = -1; for (code = 255; code >= 0; code--) { state->prefix[code] = 0; state->suffix[code] = code; } next_code(a, state); a->compression_data = state; return (ARCHIVE_OK); fatal: finish(a); return (ARCHIVE_FATAL); } /* * Return a block of data from the decompression buffer. Decompress more * as necessary. */ static ssize_t read_ahead(struct archive *a, const void **p, size_t min) { struct private_data *state; int read_avail, was_avail, ret; state = a->compression_data; was_avail = -1; if (!a->client_reader) { archive_set_error(a, ARCHIVE_ERRNO_PROGRAMMER, "No read callback is registered? " "This is probably an internal programming error."); return (ARCHIVE_FATAL); } read_avail = state->next_out - state->read_next; if (read_avail < (int)min && state->end_of_stream) { if (state->end_of_stream == ARCHIVE_EOF) return (0); else return (-1); } if (read_avail < (int)min) { memmove(state->uncompressed_buffer, state->read_next, read_avail); state->read_next = state->uncompressed_buffer; state->next_out = state->read_next + read_avail; state->avail_out = state->uncompressed_buffer_size - read_avail; while (read_avail < (int)state->uncompressed_buffer_size && !state->end_of_stream) { if (state->stackp > state->stack) { *state->next_out++ = *--state->stackp; state->avail_out--; read_avail++; } else { ret = next_code(a, state); if (ret == ARCHIVE_EOF) state->end_of_stream = ret; else if (ret != ARCHIVE_OK) return (ret); } } } *p = state->read_next; return (read_avail); } /* * Mark a previously-returned block of data as read. */ static ssize_t read_consume(struct archive *a, size_t n) { struct private_data *state; state = a->compression_data; a->file_position += n; state->read_next += n; if (state->read_next > state->next_out) __archive_errx(1, "Request to consume too many " "bytes from compress decompressor"); return (n); } /* * Clean up the decompressor. */ static int finish(struct archive *a) { struct private_data *state; int ret; state = a->compression_data; ret = ARCHIVE_OK; free(state->uncompressed_buffer); free(state); a->compression_data = NULL; if (a->client_closer != NULL) (a->client_closer)(a, a->client_data); return (ret); } /* * Process the next code and fill the stack with the expansion * of the code. Returns ARCHIVE_FATAL if there is a fatal I/O or * format error, ARCHIVE_EOF if we hit end of data, ARCHIVE_OK otherwise. */ static int next_code(struct archive *a, struct private_data *state) { int code, newcode; static int debug_buff[1024]; static unsigned debug_index; code = newcode = getbits(a, state, state->bits); if (code < 0) return (code); debug_buff[debug_index++] = code; if (debug_index >= sizeof(debug_buff)/sizeof(debug_buff[0])) debug_index = 0; /* If it's a reset code, reset the dictionary. */ if ((code == 256) && state->use_reset_code) { /* * The original 'compress' implementation blocked its * I/O in a manner that resulted in junk bytes being * inserted after every reset. The next section skips * this junk. (Yes, the number of *bytes* to skip is * a function of the current *bit* length.) */ int skip_bytes = state->bits - (state->bytes_in_section % state->bits); skip_bytes %= state->bits; state->bits_avail = 0; /* Discard rest of this byte. */ while (skip_bytes-- > 0) { code = getbits(a, state, 8); if (code < 0) return (code); } /* Now, actually do the reset. */ state->bytes_in_section = 0; state->bits = 9; state->section_end_code = (1 << state->bits) - 1; state->free_ent = 257; state->oldcode = -1; return (next_code(a, state)); } if (code > state->free_ent) { /* An invalid code is a fatal error. */ archive_set_error(a, -1, "Invalid compressed data"); return (ARCHIVE_FATAL); } /* Special case for KwKwK string. */ if (code >= state->free_ent) { *state->stackp++ = state->finbyte; code = state->oldcode; } /* Generate output characters in reverse order. */ while (code >= 256) { *state->stackp++ = state->suffix[code]; code = state->prefix[code]; } *state->stackp++ = state->finbyte = code; /* Generate the new entry. */ code = state->free_ent; if (code < state->maxcode && state->oldcode >= 0) { state->prefix[code] = state->oldcode; state->suffix[code] = state->finbyte; ++state->free_ent; } if (state->free_ent > state->section_end_code) { state->bits++; state->bytes_in_section = 0; if (state->bits == state->maxcode_bits) state->section_end_code = state->maxcode; else state->section_end_code = (1 << state->bits) - 1; } /* Remember previous code. */ state->oldcode = newcode; return (ARCHIVE_OK); } /* * Return next 'n' bits from stream. * * -1 indicates end of available data. */ static int getbits(struct archive *a, struct private_data *state, int n) { int code, ret; static const int mask[] = { 0x00, 0x01, 0x03, 0x07, 0x0f, 0x1f, 0x3f, 0x7f, 0xff, 0x1ff, 0x3ff, 0x7ff, 0xfff, 0x1fff, 0x3fff, 0x7fff, 0xffff }; while (state->bits_avail < n) { if (state->avail_in <= 0) { ret = (a->client_reader)(a, a->client_data, (const void **)&state->next_in); if (ret < 0) return (ARCHIVE_FATAL); if (ret == 0) return (ARCHIVE_EOF); a->raw_position += ret; state->avail_in = ret; } state->bit_buffer |= *state->next_in++ << state->bits_avail; state->avail_in--; state->bits_avail += 8; state->bytes_in_section++; } code = state->bit_buffer; state->bit_buffer >>= n; state->bits_avail -= n; return (code & mask[n]); }