/* Subroutines used for code generation on IA-32. Copyright (C) 1988, 1992, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc. This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING. If not, write to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include "config.h" #include "system.h" #include "coretypes.h" #include "tm.h" #include "rtl.h" #include "tree.h" #include "tm_p.h" #include "regs.h" #include "hard-reg-set.h" #include "real.h" #include "insn-config.h" #include "conditions.h" #include "output.h" #include "insn-codes.h" #include "insn-attr.h" #include "flags.h" #include "except.h" #include "function.h" #include "recog.h" #include "expr.h" #include "optabs.h" #include "toplev.h" #include "basic-block.h" #include "ggc.h" #include "target.h" #include "target-def.h" #include "langhooks.h" #include "cgraph.h" #include "tree-gimple.h" #ifndef CHECK_STACK_LIMIT #define CHECK_STACK_LIMIT (-1) #endif /* Return index of given mode in mult and division cost tables. */ #define MODE_INDEX(mode) \ ((mode) == QImode ? 0 \ : (mode) == HImode ? 1 \ : (mode) == SImode ? 2 \ : (mode) == DImode ? 3 \ : 4) /* Processor costs (relative to an add) */ static const struct processor_costs size_cost = { /* costs for tunning for size */ 2, /* cost of an add instruction */ 3, /* cost of a lea instruction */ 2, /* variable shift costs */ 3, /* constant shift costs */ {3, 3, 3, 3, 5}, /* cost of starting a multiply */ 0, /* cost of multiply per each bit set */ {3, 3, 3, 3, 5}, /* cost of a divide/mod */ 3, /* cost of movsx */ 3, /* cost of movzx */ 0, /* "large" insn */ 2, /* MOVE_RATIO */ 2, /* cost for loading QImode using movzbl */ {2, 2, 2}, /* cost of loading integer registers in QImode, HImode and SImode. Relative to reg-reg move (2). */ {2, 2, 2}, /* cost of storing integer registers */ 2, /* cost of reg,reg fld/fst */ {2, 2, 2}, /* cost of loading fp registers in SFmode, DFmode and XFmode */ {2, 2, 2}, /* cost of loading integer registers */ 3, /* cost of moving MMX register */ {3, 3}, /* cost of loading MMX registers in SImode and DImode */ {3, 3}, /* cost of storing MMX registers in SImode and DImode */ 3, /* cost of moving SSE register */ {3, 3, 3}, /* cost of loading SSE registers in SImode, DImode and TImode */ {3, 3, 3}, /* cost of storing SSE registers in SImode, DImode and TImode */ 3, /* MMX or SSE register to integer */ 0, /* size of prefetch block */ 0, /* number of parallel prefetches */ 1, /* Branch cost */ 2, /* cost of FADD and FSUB insns. */ 2, /* cost of FMUL instruction. */ 2, /* cost of FDIV instruction. */ 2, /* cost of FABS instruction. */ 2, /* cost of FCHS instruction. */ 2, /* cost of FSQRT instruction. */ }; /* Processor costs (relative to an add) */ static const struct processor_costs i386_cost = { /* 386 specific costs */ 1, /* cost of an add instruction */ 1, /* cost of a lea instruction */ 3, /* variable shift costs */ 2, /* constant shift costs */ {6, 6, 6, 6, 6}, /* cost of starting a multiply */ 1, /* cost of multiply per each bit set */ {23, 23, 23, 23, 23}, /* cost of a divide/mod */ 3, /* cost of movsx */ 2, /* cost of movzx */ 15, /* "large" insn */ 3, /* MOVE_RATIO */ 4, /* cost for loading QImode using movzbl */ {2, 4, 2}, /* cost of loading integer registers in QImode, HImode and SImode. Relative to reg-reg move (2). */ {2, 4, 2}, /* cost of storing integer registers */ 2, /* cost of reg,reg fld/fst */ {8, 8, 8}, /* cost of loading fp registers in SFmode, DFmode and XFmode */ {8, 8, 8}, /* cost of loading integer registers */ 2, /* cost of moving MMX register */ {4, 8}, /* cost of loading MMX registers in SImode and DImode */ {4, 8}, /* cost of storing MMX registers in SImode and DImode */ 2, /* cost of moving SSE register */ {4, 8, 16}, /* cost of loading SSE registers in SImode, DImode and TImode */ {4, 8, 16}, /* cost of storing SSE registers in SImode, DImode and TImode */ 3, /* MMX or SSE register to integer */ 0, /* size of prefetch block */ 0, /* number of parallel prefetches */ 1, /* Branch cost */ 23, /* cost of FADD and FSUB insns. */ 27, /* cost of FMUL instruction. */ 88, /* cost of FDIV instruction. */ 22, /* cost of FABS instruction. */ 24, /* cost of FCHS instruction. */ 122, /* cost of FSQRT instruction. */ }; static const struct processor_costs i486_cost = { /* 486 specific costs */ 1, /* cost of an add instruction */ 1, /* cost of a lea instruction */ 3, /* variable shift costs */ 2, /* constant shift costs */ {12, 12, 12, 12, 12}, /* cost of starting a multiply */ 1, /* cost of multiply per each bit set */ {40, 40, 40, 40, 40}, /* cost of a divide/mod */ 3, /* cost of movsx */ 2, /* cost of movzx */ 15, /* "large" insn */ 3, /* MOVE_RATIO */ 4, /* cost for loading QImode using movzbl */ {2, 4, 2}, /* cost of loading integer registers in QImode, HImode and SImode. Relative to reg-reg move (2). */ {2, 4, 2}, /* cost of storing integer registers */ 2, /* cost of reg,reg fld/fst */ {8, 8, 8}, /* cost of loading fp registers in SFmode, DFmode and XFmode */ {8, 8, 8}, /* cost of loading integer registers */ 2, /* cost of moving MMX register */ {4, 8}, /* cost of loading MMX registers in SImode and DImode */ {4, 8}, /* cost of storing MMX registers in SImode and DImode */ 2, /* cost of moving SSE register */ {4, 8, 16}, /* cost of loading SSE registers in SImode, DImode and TImode */ {4, 8, 16}, /* cost of storing SSE registers in SImode, DImode and TImode */ 3, /* MMX or SSE register to integer */ 0, /* size of prefetch block */ 0, /* number of parallel prefetches */ 1, /* Branch cost */ 8, /* cost of FADD and FSUB insns. */ 16, /* cost of FMUL instruction. */ 73, /* cost of FDIV instruction. */ 3, /* cost of FABS instruction. */ 3, /* cost of FCHS instruction. */ 83, /* cost of FSQRT instruction. */ }; static const struct processor_costs pentium_cost = { 1, /* cost of an add instruction */ 1, /* cost of a lea instruction */ 4, /* variable shift costs */ 1, /* constant shift costs */ {11, 11, 11, 11, 11}, /* cost of starting a multiply */ 0, /* cost of multiply per each bit set */ {25, 25, 25, 25, 25}, /* cost of a divide/mod */ 3, /* cost of movsx */ 2, /* cost of movzx */ 8, /* "large" insn */ 6, /* MOVE_RATIO */ 6, /* cost for loading QImode using movzbl */ {2, 4, 2}, /* cost of loading integer registers in QImode, HImode and SImode. Relative to reg-reg move (2). */ {2, 4, 2}, /* cost of storing integer registers */ 2, /* cost of reg,reg fld/fst */ {2, 2, 6}, /* cost of loading fp registers in SFmode, DFmode and XFmode */ {4, 4, 6}, /* cost of loading integer registers */ 8, /* cost of moving MMX register */ {8, 8}, /* cost of loading MMX registers in SImode and DImode */ {8, 8}, /* cost of storing MMX registers in SImode and DImode */ 2, /* cost of moving SSE register */ {4, 8, 16}, /* cost of loading SSE registers in SImode, DImode and TImode */ {4, 8, 16}, /* cost of storing SSE registers in SImode, DImode and TImode */ 3, /* MMX or SSE register to integer */ 0, /* size of prefetch block */ 0, /* number of parallel prefetches */ 2, /* Branch cost */ 3, /* cost of FADD and FSUB insns. */ 3, /* cost of FMUL instruction. */ 39, /* cost of FDIV instruction. */ 1, /* cost of FABS instruction. */ 1, /* cost of FCHS instruction. */ 70, /* cost of FSQRT instruction. */ }; static const struct processor_costs pentiumpro_cost = { 1, /* cost of an add instruction */ 1, /* cost of a lea instruction */ 1, /* variable shift costs */ 1, /* constant shift costs */ {4, 4, 4, 4, 4}, /* cost of starting a multiply */ 0, /* cost of multiply per each bit set */ {17, 17, 17, 17, 17}, /* cost of a divide/mod */ 1, /* cost of movsx */ 1, /* cost of movzx */ 8, /* "large" insn */ 6, /* MOVE_RATIO */ 2, /* cost for loading QImode using movzbl */ {4, 4, 4}, /* cost of loading integer registers in QImode, HImode and SImode. Relative to reg-reg move (2). */ {2, 2, 2}, /* cost of storing integer registers */ 2, /* cost of reg,reg fld/fst */ {2, 2, 6}, /* cost of loading fp registers in SFmode, DFmode and XFmode */ {4, 4, 6}, /* cost of loading integer registers */ 2, /* cost of moving MMX register */ {2, 2}, /* cost of loading MMX registers in SImode and DImode */ {2, 2}, /* cost of storing MMX registers in SImode and DImode */ 2, /* cost of moving SSE register */ {2, 2, 8}, /* cost of loading SSE registers in SImode, DImode and TImode */ {2, 2, 8}, /* cost of storing SSE registers in SImode, DImode and TImode */ 3, /* MMX or SSE register to integer */ 32, /* size of prefetch block */ 6, /* number of parallel prefetches */ 2, /* Branch cost */ 3, /* cost of FADD and FSUB insns. */ 5, /* cost of FMUL instruction. */ 56, /* cost of FDIV instruction. */ 2, /* cost of FABS instruction. */ 2, /* cost of FCHS instruction. */ 56, /* cost of FSQRT instruction. */ }; static const struct processor_costs k6_cost = { 1, /* cost of an add instruction */ 2, /* cost of a lea instruction */ 1, /* variable shift costs */ 1, /* constant shift costs */ {3, 3, 3, 3, 3}, /* cost of starting a multiply */ 0, /* cost of multiply per each bit set */ {18, 18, 18, 18, 18}, /* cost of a divide/mod */ 2, /* cost of movsx */ 2, /* cost of movzx */ 8, /* "large" insn */ 4, /* MOVE_RATIO */ 3, /* cost for loading QImode using movzbl */ {4, 5, 4}, /* cost of loading integer registers in QImode, HImode and SImode. Relative to reg-reg move (2). */ {2, 3, 2}, /* cost of storing integer registers */ 4, /* cost of reg,reg fld/fst */ {6, 6, 6}, /* cost of loading fp registers in SFmode, DFmode and XFmode */ {4, 4, 4}, /* cost of loading integer registers */ 2, /* cost of moving MMX register */ {2, 2}, /* cost of loading MMX registers in SImode and DImode */ {2, 2}, /* cost of storing MMX registers in SImode and DImode */ 2, /* cost of moving SSE register */ {2, 2, 8}, /* cost of loading SSE registers in SImode, DImode and TImode */ {2, 2, 8}, /* cost of storing SSE registers in SImode, DImode and TImode */ 6, /* MMX or SSE register to integer */ 32, /* size of prefetch block */ 1, /* number of parallel prefetches */ 1, /* Branch cost */ 2, /* cost of FADD and FSUB insns. */ 2, /* cost of FMUL instruction. */ 56, /* cost of FDIV instruction. */ 2, /* cost of FABS instruction. */ 2, /* cost of FCHS instruction. */ 56, /* cost of FSQRT instruction. */ }; static const struct processor_costs athlon_cost = { 1, /* cost of an add instruction */ 2, /* cost of a lea instruction */ 1, /* variable shift costs */ 1, /* constant shift costs */ {5, 5, 5, 5, 5}, /* cost of starting a multiply */ 0, /* cost of multiply per each bit set */ {18, 26, 42, 74, 74}, /* cost of a divide/mod */ 1, /* cost of movsx */ 1, /* cost of movzx */ 8, /* "large" insn */ 9, /* MOVE_RATIO */ 4, /* cost for loading QImode using movzbl */ {3, 4, 3}, /* cost of loading integer registers in QImode, HImode and SImode. Relative to reg-reg move (2). */ {3, 4, 3}, /* cost of storing integer registers */ 4, /* cost of reg,reg fld/fst */ {4, 4, 12}, /* cost of loading fp registers in SFmode, DFmode and XFmode */ {6, 6, 8}, /* cost of loading integer registers */ 2, /* cost of moving MMX register */ {4, 4}, /* cost of loading MMX registers in SImode and DImode */ {4, 4}, /* cost of storing MMX registers in SImode and DImode */ 2, /* cost of moving SSE register */ {4, 4, 6}, /* cost of loading SSE registers in SImode, DImode and TImode */ {4, 4, 5}, /* cost of storing SSE registers in SImode, DImode and TImode */ 5, /* MMX or SSE register to integer */ 64, /* size of prefetch block */ 6, /* number of parallel prefetches */ 5, /* Branch cost */ 4, /* cost of FADD and FSUB insns. */ 4, /* cost of FMUL instruction. */ 24, /* cost of FDIV instruction. */ 2, /* cost of FABS instruction. */ 2, /* cost of FCHS instruction. */ 35, /* cost of FSQRT instruction. */ }; static const struct processor_costs k8_cost = { 1, /* cost of an add instruction */ 2, /* cost of a lea instruction */ 1, /* variable shift costs */ 1, /* constant shift costs */ {3, 4, 3, 4, 5}, /* cost of starting a multiply */ 0, /* cost of multiply per each bit set */ {18, 26, 42, 74, 74}, /* cost of a divide/mod */ 1, /* cost of movsx */ 1, /* cost of movzx */ 8, /* "large" insn */ 9, /* MOVE_RATIO */ 4, /* cost for loading QImode using movzbl */ {3, 4, 3}, /* cost of loading integer registers in QImode, HImode and SImode. Relative to reg-reg move (2). */ {3, 4, 3}, /* cost of storing integer registers */ 4, /* cost of reg,reg fld/fst */ {4, 4, 12}, /* cost of loading fp registers in SFmode, DFmode and XFmode */ {6, 6, 8}, /* cost of loading integer registers */ 2, /* cost of moving MMX register */ {3, 3}, /* cost of loading MMX registers in SImode and DImode */ {4, 4}, /* cost of storing MMX registers in SImode and DImode */ 2, /* cost of moving SSE register */ {4, 3, 6}, /* cost of loading SSE registers in SImode, DImode and TImode */ {4, 4, 5}, /* cost of storing SSE registers in SImode, DImode and TImode */ 5, /* MMX or SSE register to integer */ 64, /* size of prefetch block */ 6, /* number of parallel prefetches */ 5, /* Branch cost */ 4, /* cost of FADD and FSUB insns. */ 4, /* cost of FMUL instruction. */ 19, /* cost of FDIV instruction. */ 2, /* cost of FABS instruction. */ 2, /* cost of FCHS instruction. */ 35, /* cost of FSQRT instruction. */ }; static const struct processor_costs pentium4_cost = { 1, /* cost of an add instruction */ 3, /* cost of a lea instruction */ 4, /* variable shift costs */ 4, /* constant shift costs */ {15, 15, 15, 15, 15}, /* cost of starting a multiply */ 0, /* cost of multiply per each bit set */ {56, 56, 56, 56, 56}, /* cost of a divide/mod */ 1, /* cost of movsx */ 1, /* cost of movzx */ 16, /* "large" insn */ 6, /* MOVE_RATIO */ 2, /* cost for loading QImode using movzbl */ {4, 5, 4}, /* cost of loading integer registers in QImode, HImode and SImode. Relative to reg-reg move (2). */ {2, 3, 2}, /* cost of storing integer registers */ 2, /* cost of reg,reg fld/fst */ {2, 2, 6}, /* cost of loading fp registers in SFmode, DFmode and XFmode */ {4, 4, 6}, /* cost of loading integer registers */ 2, /* cost of moving MMX register */ {2, 2}, /* cost of loading MMX registers in SImode and DImode */ {2, 2}, /* cost of storing MMX registers in SImode and DImode */ 12, /* cost of moving SSE register */ {12, 12, 12}, /* cost of loading SSE registers in SImode, DImode and TImode */ {2, 2, 8}, /* cost of storing SSE registers in SImode, DImode and TImode */ 10, /* MMX or SSE register to integer */ 64, /* size of prefetch block */ 6, /* number of parallel prefetches */ 2, /* Branch cost */ 5, /* cost of FADD and FSUB insns. */ 7, /* cost of FMUL instruction. */ 43, /* cost of FDIV instruction. */ 2, /* cost of FABS instruction. */ 2, /* cost of FCHS instruction. */ 43, /* cost of FSQRT instruction. */ }; static const struct processor_costs nocona_cost = { 1, /* cost of an add instruction */ 1, /* cost of a lea instruction */ 1, /* variable shift costs */ 1, /* constant shift costs */ {10, 10, 10, 10, 10}, /* cost of starting a multiply */ 0, /* cost of multiply per each bit set */ {66, 66, 66, 66, 66}, /* cost of a divide/mod */ 1, /* cost of movsx */ 1, /* cost of movzx */ 16, /* "large" insn */ 9, /* MOVE_RATIO */ 4, /* cost for loading QImode using movzbl */ {4, 4, 4}, /* cost of loading integer registers in QImode, HImode and SImode. Relative to reg-reg move (2). */ {4, 4, 4}, /* cost of storing integer registers */ 3, /* cost of reg,reg fld/fst */ {12, 12, 12}, /* cost of loading fp registers in SFmode, DFmode and XFmode */ {4, 4, 4}, /* cost of loading integer registers */ 6, /* cost of moving MMX register */ {12, 12}, /* cost of loading MMX registers in SImode and DImode */ {12, 12}, /* cost of storing MMX registers in SImode and DImode */ 6, /* cost of moving SSE register */ {12, 12, 12}, /* cost of loading SSE registers in SImode, DImode and TImode */ {12, 12, 12}, /* cost of storing SSE registers in SImode, DImode and TImode */ 8, /* MMX or SSE register to integer */ 128, /* size of prefetch block */ 8, /* number of parallel prefetches */ 1, /* Branch cost */ 6, /* cost of FADD and FSUB insns. */ 8, /* cost of FMUL instruction. */ 40, /* cost of FDIV instruction. */ 3, /* cost of FABS instruction. */ 3, /* cost of FCHS instruction. */ 44, /* cost of FSQRT instruction. */ }; const struct processor_costs *ix86_cost = &pentium_cost; /* Processor feature/optimization bitmasks. */ #define m_386 (1< to_allocate <- FRAME_POINTER [frame] ( ) [padding2] / */ struct ix86_frame { int nregs; int padding1; int va_arg_size; HOST_WIDE_INT frame; int padding2; int outgoing_arguments_size; int red_zone_size; HOST_WIDE_INT to_allocate; /* The offsets relative to ARG_POINTER. */ HOST_WIDE_INT frame_pointer_offset; HOST_WIDE_INT hard_frame_pointer_offset; HOST_WIDE_INT stack_pointer_offset; /* When save_regs_using_mov is set, emit prologue using move instead of push instructions. */ bool save_regs_using_mov; }; /* Used to enable/disable debugging features. */ const char *ix86_debug_arg_string, *ix86_debug_addr_string; /* Code model option as passed by user. */ const char *ix86_cmodel_string; /* Parsed value. */ enum cmodel ix86_cmodel; /* Asm dialect. */ const char *ix86_asm_string; enum asm_dialect ix86_asm_dialect = ASM_ATT; /* TLS dialext. */ const char *ix86_tls_dialect_string; enum tls_dialect ix86_tls_dialect = TLS_DIALECT_GNU; /* Which unit we are generating floating point math for. */ enum fpmath_unit ix86_fpmath; /* Which cpu are we scheduling for. */ enum processor_type ix86_tune; /* Which instruction set architecture to use. */ enum processor_type ix86_arch; /* Strings to hold which cpu and instruction set architecture to use. */ const char *ix86_tune_string; /* for -mtune= */ const char *ix86_arch_string; /* for -march= */ const char *ix86_fpmath_string; /* for -mfpmath= */ /* # of registers to use to pass arguments. */ const char *ix86_regparm_string; /* true if sse prefetch instruction is not NOOP. */ int x86_prefetch_sse; /* ix86_regparm_string as a number */ int ix86_regparm; /* Alignment to use for loops and jumps: */ /* Power of two alignment for loops. */ const char *ix86_align_loops_string; /* Power of two alignment for non-loop jumps. */ const char *ix86_align_jumps_string; /* Power of two alignment for stack boundary in bytes. */ const char *ix86_preferred_stack_boundary_string; /* Preferred alignment for stack boundary in bits. */ unsigned int ix86_preferred_stack_boundary; /* Values 1-5: see jump.c */ int ix86_branch_cost; const char *ix86_branch_cost_string; /* Power of two alignment for functions. */ const char *ix86_align_funcs_string; /* Prefix built by ASM_GENERATE_INTERNAL_LABEL. */ char internal_label_prefix[16]; int internal_label_prefix_len; static void output_pic_addr_const (FILE *, rtx, int); static void put_condition_code (enum rtx_code, enum machine_mode, int, int, FILE *); static const char *get_some_local_dynamic_name (void); static int get_some_local_dynamic_name_1 (rtx *, void *); static rtx ix86_expand_int_compare (enum rtx_code, rtx, rtx); static enum rtx_code ix86_prepare_fp_compare_args (enum rtx_code, rtx *, rtx *); static bool ix86_fixed_condition_code_regs (unsigned int *, unsigned int *); static enum machine_mode ix86_cc_modes_compatible (enum machine_mode, enum machine_mode); static rtx get_thread_pointer (int); static rtx legitimize_tls_address (rtx, enum tls_model, int); static void get_pc_thunk_name (char [32], unsigned int); static rtx gen_push (rtx); static int ix86_flags_dependant (rtx, rtx, enum attr_type); static int ix86_agi_dependant (rtx, rtx, enum attr_type); static struct machine_function * ix86_init_machine_status (void); static int ix86_split_to_parts (rtx, rtx *, enum machine_mode); static int ix86_nsaved_regs (void); static void ix86_emit_save_regs (void); static void ix86_emit_save_regs_using_mov (rtx, HOST_WIDE_INT); static void ix86_emit_restore_regs_using_mov (rtx, HOST_WIDE_INT, int); static void ix86_output_function_epilogue (FILE *, HOST_WIDE_INT); static HOST_WIDE_INT ix86_GOT_alias_set (void); static void ix86_adjust_counter (rtx, HOST_WIDE_INT); static rtx ix86_expand_aligntest (rtx, int); static void ix86_expand_strlensi_unroll_1 (rtx, rtx, rtx); static int ix86_issue_rate (void); static int ix86_adjust_cost (rtx, rtx, rtx, int); static int ia32_multipass_dfa_lookahead (void); static void ix86_init_mmx_sse_builtins (void); static rtx x86_this_parameter (tree); static void x86_output_mi_thunk (FILE *, tree, HOST_WIDE_INT, HOST_WIDE_INT, tree); static bool x86_can_output_mi_thunk (tree, HOST_WIDE_INT, HOST_WIDE_INT, tree); static void x86_file_start (void); static void ix86_reorg (void); static bool ix86_expand_carry_flag_compare (enum rtx_code, rtx, rtx, rtx*); static tree ix86_build_builtin_va_list (void); static void ix86_setup_incoming_varargs (CUMULATIVE_ARGS *, enum machine_mode, tree, int *, int); static tree ix86_gimplify_va_arg (tree, tree, tree *, tree *); static bool ix86_vector_mode_supported_p (enum machine_mode); static int ix86_address_cost (rtx); static bool ix86_cannot_force_const_mem (rtx); static rtx ix86_delegitimize_address (rtx); struct builtin_description; static rtx ix86_expand_sse_comi (const struct builtin_description *, tree, rtx); static rtx ix86_expand_sse_compare (const struct builtin_description *, tree, rtx); static rtx ix86_expand_unop1_builtin (enum insn_code, tree, rtx); static rtx ix86_expand_unop_builtin (enum insn_code, tree, rtx, int); static rtx ix86_expand_binop_builtin (enum insn_code, tree, rtx); static rtx ix86_expand_store_builtin (enum insn_code, tree); static rtx safe_vector_operand (rtx, enum machine_mode); static rtx ix86_expand_fp_compare (enum rtx_code, rtx, rtx, rtx, rtx *, rtx *); static int ix86_fp_comparison_arithmetics_cost (enum rtx_code code); static int ix86_fp_comparison_fcomi_cost (enum rtx_code code); static int ix86_fp_comparison_sahf_cost (enum rtx_code code); static int ix86_fp_comparison_cost (enum rtx_code code); static unsigned int ix86_select_alt_pic_regnum (void); static int ix86_save_reg (unsigned int, int); static void ix86_compute_frame_layout (struct ix86_frame *); static int ix86_comp_type_attributes (tree, tree); static int ix86_function_regparm (tree, tree); const struct attribute_spec ix86_attribute_table[]; static bool ix86_function_ok_for_sibcall (tree, tree); static tree ix86_handle_cdecl_attribute (tree *, tree, tree, int, bool *); static tree ix86_handle_regparm_attribute (tree *, tree, tree, int, bool *); static int ix86_value_regno (enum machine_mode); static bool contains_128bit_aligned_vector_p (tree); static rtx ix86_struct_value_rtx (tree, int); static bool ix86_ms_bitfield_layout_p (tree); static tree ix86_handle_struct_attribute (tree *, tree, tree, int, bool *); static int extended_reg_mentioned_1 (rtx *, void *); static bool ix86_rtx_costs (rtx, int, int, int *); static int min_insn_size (rtx); static tree ix86_md_asm_clobbers (tree clobbers); static bool ix86_must_pass_in_stack (enum machine_mode mode, tree type); static bool ix86_pass_by_reference (CUMULATIVE_ARGS *, enum machine_mode, tree, bool); static void ix86_init_builtins (void); static rtx ix86_expand_builtin (tree, rtx, rtx, enum machine_mode, int); /* This function is only used on Solaris. */ static void i386_solaris_elf_named_section (const char *, unsigned int, tree) ATTRIBUTE_UNUSED; /* Register class used for passing given 64bit part of the argument. These represent classes as documented by the PS ABI, with the exception of SSESF, SSEDF classes, that are basically SSE class, just gcc will use SF or DFmode move instead of DImode to avoid reformatting penalties. Similarly we play games with INTEGERSI_CLASS to use cheaper SImode moves whenever possible (upper half does contain padding). */ enum x86_64_reg_class { X86_64_NO_CLASS, X86_64_INTEGER_CLASS, X86_64_INTEGERSI_CLASS, X86_64_SSE_CLASS, X86_64_SSESF_CLASS, X86_64_SSEDF_CLASS, X86_64_SSEUP_CLASS, X86_64_X87_CLASS, X86_64_X87UP_CLASS, X86_64_COMPLEX_X87_CLASS, X86_64_MEMORY_CLASS }; static const char * const x86_64_reg_class_name[] = { "no", "integer", "integerSI", "sse", "sseSF", "sseDF", "sseup", "x87", "x87up", "cplx87", "no" }; #define MAX_CLASSES 4 /* Table of constants used by fldpi, fldln2, etc.... */ static REAL_VALUE_TYPE ext_80387_constants_table [5]; static bool ext_80387_constants_init = 0; static void init_ext_80387_constants (void); /* Initialize the GCC target structure. */ #undef TARGET_ATTRIBUTE_TABLE #define TARGET_ATTRIBUTE_TABLE ix86_attribute_table #if TARGET_DLLIMPORT_DECL_ATTRIBUTES # undef TARGET_MERGE_DECL_ATTRIBUTES # define TARGET_MERGE_DECL_ATTRIBUTES merge_dllimport_decl_attributes #endif #undef TARGET_COMP_TYPE_ATTRIBUTES #define TARGET_COMP_TYPE_ATTRIBUTES ix86_comp_type_attributes #undef TARGET_INIT_BUILTINS #define TARGET_INIT_BUILTINS ix86_init_builtins #undef TARGET_EXPAND_BUILTIN #define TARGET_EXPAND_BUILTIN ix86_expand_builtin #undef TARGET_ASM_FUNCTION_EPILOGUE #define TARGET_ASM_FUNCTION_EPILOGUE ix86_output_function_epilogue #undef TARGET_ASM_OPEN_PAREN #define TARGET_ASM_OPEN_PAREN "" #undef TARGET_ASM_CLOSE_PAREN #define TARGET_ASM_CLOSE_PAREN "" #undef TARGET_ASM_ALIGNED_HI_OP #define TARGET_ASM_ALIGNED_HI_OP ASM_SHORT #undef TARGET_ASM_ALIGNED_SI_OP #define TARGET_ASM_ALIGNED_SI_OP ASM_LONG #ifdef ASM_QUAD #undef TARGET_ASM_ALIGNED_DI_OP #define TARGET_ASM_ALIGNED_DI_OP ASM_QUAD #endif #undef TARGET_ASM_UNALIGNED_HI_OP #define TARGET_ASM_UNALIGNED_HI_OP TARGET_ASM_ALIGNED_HI_OP #undef TARGET_ASM_UNALIGNED_SI_OP #define TARGET_ASM_UNALIGNED_SI_OP TARGET_ASM_ALIGNED_SI_OP #undef TARGET_ASM_UNALIGNED_DI_OP #define TARGET_ASM_UNALIGNED_DI_OP TARGET_ASM_ALIGNED_DI_OP #undef TARGET_SCHED_ADJUST_COST #define TARGET_SCHED_ADJUST_COST ix86_adjust_cost #undef TARGET_SCHED_ISSUE_RATE #define TARGET_SCHED_ISSUE_RATE ix86_issue_rate #undef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD #define TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD \ ia32_multipass_dfa_lookahead #undef TARGET_FUNCTION_OK_FOR_SIBCALL #define TARGET_FUNCTION_OK_FOR_SIBCALL ix86_function_ok_for_sibcall #ifdef HAVE_AS_TLS #undef TARGET_HAVE_TLS #define TARGET_HAVE_TLS true #endif #undef TARGET_CANNOT_FORCE_CONST_MEM #define TARGET_CANNOT_FORCE_CONST_MEM ix86_cannot_force_const_mem #undef TARGET_DELEGITIMIZE_ADDRESS #define TARGET_DELEGITIMIZE_ADDRESS ix86_delegitimize_address #undef TARGET_MS_BITFIELD_LAYOUT_P #define TARGET_MS_BITFIELD_LAYOUT_P ix86_ms_bitfield_layout_p #undef TARGET_ASM_OUTPUT_MI_THUNK #define TARGET_ASM_OUTPUT_MI_THUNK x86_output_mi_thunk #undef TARGET_ASM_CAN_OUTPUT_MI_THUNK #define TARGET_ASM_CAN_OUTPUT_MI_THUNK x86_can_output_mi_thunk #undef TARGET_ASM_FILE_START #define TARGET_ASM_FILE_START x86_file_start #undef TARGET_RTX_COSTS #define TARGET_RTX_COSTS ix86_rtx_costs #undef TARGET_ADDRESS_COST #define TARGET_ADDRESS_COST ix86_address_cost #undef TARGET_FIXED_CONDITION_CODE_REGS #define TARGET_FIXED_CONDITION_CODE_REGS ix86_fixed_condition_code_regs #undef TARGET_CC_MODES_COMPATIBLE #define TARGET_CC_MODES_COMPATIBLE ix86_cc_modes_compatible #undef TARGET_MACHINE_DEPENDENT_REORG #define TARGET_MACHINE_DEPENDENT_REORG ix86_reorg #undef TARGET_BUILD_BUILTIN_VA_LIST #define TARGET_BUILD_BUILTIN_VA_LIST ix86_build_builtin_va_list #undef TARGET_MD_ASM_CLOBBERS #define TARGET_MD_ASM_CLOBBERS ix86_md_asm_clobbers #undef TARGET_PROMOTE_PROTOTYPES #define TARGET_PROMOTE_PROTOTYPES hook_bool_tree_true #undef TARGET_STRUCT_VALUE_RTX #define TARGET_STRUCT_VALUE_RTX ix86_struct_value_rtx #undef TARGET_SETUP_INCOMING_VARARGS #define TARGET_SETUP_INCOMING_VARARGS ix86_setup_incoming_varargs #undef TARGET_MUST_PASS_IN_STACK #define TARGET_MUST_PASS_IN_STACK ix86_must_pass_in_stack #undef TARGET_PASS_BY_REFERENCE #define TARGET_PASS_BY_REFERENCE ix86_pass_by_reference #undef TARGET_GIMPLIFY_VA_ARG_EXPR #define TARGET_GIMPLIFY_VA_ARG_EXPR ix86_gimplify_va_arg #undef TARGET_VECTOR_MODE_SUPPORTED_P #define TARGET_VECTOR_MODE_SUPPORTED_P ix86_vector_mode_supported_p #ifdef SUBTARGET_INSERT_ATTRIBUTES #undef TARGET_INSERT_ATTRIBUTES #define TARGET_INSERT_ATTRIBUTES SUBTARGET_INSERT_ATTRIBUTES #endif struct gcc_target targetm = TARGET_INITIALIZER; /* The svr4 ABI for the i386 says that records and unions are returned in memory. */ #ifndef DEFAULT_PCC_STRUCT_RETURN #define DEFAULT_PCC_STRUCT_RETURN 1 #endif /* Sometimes certain combinations of command options do not make sense on a particular target machine. You can define a macro `OVERRIDE_OPTIONS' to take account of this. This macro, if defined, is executed once just after all the command options have been parsed. Don't use this macro to turn on various extra optimizations for `-O'. That is what `OPTIMIZATION_OPTIONS' is for. */ void override_options (void) { int i; int ix86_tune_defaulted = 0; /* Comes from final.c -- no real reason to change it. */ #define MAX_CODE_ALIGN 16 static struct ptt { const struct processor_costs *cost; /* Processor costs */ const int target_enable; /* Target flags to enable. */ const int target_disable; /* Target flags to disable. */ const int align_loop; /* Default alignments. */ const int align_loop_max_skip; const int align_jump; const int align_jump_max_skip; const int align_func; } const processor_target_table[PROCESSOR_max] = { {&i386_cost, 0, 0, 4, 3, 4, 3, 4}, {&i486_cost, 0, 0, 16, 15, 16, 15, 16}, {&pentium_cost, 0, 0, 16, 7, 16, 7, 16}, {&pentiumpro_cost, 0, 0, 16, 15, 16, 7, 16}, {&k6_cost, 0, 0, 32, 7, 32, 7, 32}, {&athlon_cost, 0, 0, 16, 7, 16, 7, 16}, {&pentium4_cost, 0, 0, 0, 0, 0, 0, 0}, {&k8_cost, 0, 0, 16, 7, 16, 7, 16}, {&nocona_cost, 0, 0, 0, 0, 0, 0, 0} }; static const char * const cpu_names[] = TARGET_CPU_DEFAULT_NAMES; static struct pta { const char *const name; /* processor name or nickname. */ const enum processor_type processor; const enum pta_flags { PTA_SSE = 1, PTA_SSE2 = 2, PTA_SSE3 = 4, PTA_MMX = 8, PTA_PREFETCH_SSE = 16, PTA_3DNOW = 32, PTA_3DNOW_A = 64, PTA_64BIT = 128 } flags; } const processor_alias_table[] = { {"i386", PROCESSOR_I386, 0}, {"i486", PROCESSOR_I486, 0}, {"i586", PROCESSOR_PENTIUM, 0}, {"pentium", PROCESSOR_PENTIUM, 0}, {"pentium-mmx", PROCESSOR_PENTIUM, PTA_MMX}, {"winchip-c6", PROCESSOR_I486, PTA_MMX}, {"winchip2", PROCESSOR_I486, PTA_MMX | PTA_3DNOW}, {"c3", PROCESSOR_I486, PTA_MMX | PTA_3DNOW}, {"c3-2", PROCESSOR_PENTIUMPRO, PTA_MMX | PTA_PREFETCH_SSE | PTA_SSE}, {"i686", PROCESSOR_PENTIUMPRO, 0}, {"pentiumpro", PROCESSOR_PENTIUMPRO, 0}, {"pentium2", PROCESSOR_PENTIUMPRO, PTA_MMX}, {"pentium3", PROCESSOR_PENTIUMPRO, PTA_MMX | PTA_SSE | PTA_PREFETCH_SSE}, {"pentium3m", PROCESSOR_PENTIUMPRO, PTA_MMX | PTA_SSE | PTA_PREFETCH_SSE}, {"pentium-m", PROCESSOR_PENTIUMPRO, PTA_MMX | PTA_SSE | PTA_PREFETCH_SSE | PTA_SSE2}, {"pentium4", PROCESSOR_PENTIUM4, PTA_SSE | PTA_SSE2 | PTA_MMX | PTA_PREFETCH_SSE}, {"pentium4m", PROCESSOR_PENTIUM4, PTA_SSE | PTA_SSE2 | PTA_MMX | PTA_PREFETCH_SSE}, {"prescott", PROCESSOR_NOCONA, PTA_SSE | PTA_SSE2 | PTA_SSE3 | PTA_MMX | PTA_PREFETCH_SSE}, {"nocona", PROCESSOR_NOCONA, PTA_SSE | PTA_SSE2 | PTA_SSE3 | PTA_64BIT | PTA_MMX | PTA_PREFETCH_SSE}, {"k6", PROCESSOR_K6, PTA_MMX}, {"k6-2", PROCESSOR_K6, PTA_MMX | PTA_3DNOW}, {"k6-3", PROCESSOR_K6, PTA_MMX | PTA_3DNOW}, {"athlon", PROCESSOR_ATHLON, PTA_MMX | PTA_PREFETCH_SSE | PTA_3DNOW | PTA_3DNOW_A}, {"athlon-tbird", PROCESSOR_ATHLON, PTA_MMX | PTA_PREFETCH_SSE | PTA_3DNOW | PTA_3DNOW_A}, {"athlon-4", PROCESSOR_ATHLON, PTA_MMX | PTA_PREFETCH_SSE | PTA_3DNOW | PTA_3DNOW_A | PTA_SSE}, {"athlon-xp", PROCESSOR_ATHLON, PTA_MMX | PTA_PREFETCH_SSE | PTA_3DNOW | PTA_3DNOW_A | PTA_SSE}, {"athlon-mp", PROCESSOR_ATHLON, PTA_MMX | PTA_PREFETCH_SSE | PTA_3DNOW | PTA_3DNOW_A | PTA_SSE}, {"x86-64", PROCESSOR_K8, PTA_MMX | PTA_PREFETCH_SSE | PTA_64BIT | PTA_SSE | PTA_SSE2 }, {"k8", PROCESSOR_K8, PTA_MMX | PTA_PREFETCH_SSE | PTA_3DNOW | PTA_64BIT | PTA_3DNOW_A | PTA_SSE | PTA_SSE2}, {"opteron", PROCESSOR_K8, PTA_MMX | PTA_PREFETCH_SSE | PTA_3DNOW | PTA_64BIT | PTA_3DNOW_A | PTA_SSE | PTA_SSE2}, {"athlon64", PROCESSOR_K8, PTA_MMX | PTA_PREFETCH_SSE | PTA_3DNOW | PTA_64BIT | PTA_3DNOW_A | PTA_SSE | PTA_SSE2}, {"athlon-fx", PROCESSOR_K8, PTA_MMX | PTA_PREFETCH_SSE | PTA_3DNOW | PTA_64BIT | PTA_3DNOW_A | PTA_SSE | PTA_SSE2}, }; int const pta_size = ARRAY_SIZE (processor_alias_table); #ifdef SUBTARGET_OVERRIDE_OPTIONS SUBTARGET_OVERRIDE_OPTIONS; #endif /* Set the default values for switches whose default depends on TARGET_64BIT in case they weren't overwritten by command line options. */ if (TARGET_64BIT) { if (flag_omit_frame_pointer == 2) flag_omit_frame_pointer = 1; if (flag_asynchronous_unwind_tables == 2) flag_asynchronous_unwind_tables = 1; if (flag_pcc_struct_return == 2) flag_pcc_struct_return = 0; } else { if (flag_omit_frame_pointer == 2) flag_omit_frame_pointer = 0; if (flag_asynchronous_unwind_tables == 2) flag_asynchronous_unwind_tables = 0; if (flag_pcc_struct_return == 2) flag_pcc_struct_return = DEFAULT_PCC_STRUCT_RETURN; } if (!ix86_tune_string && ix86_arch_string) ix86_tune_string = ix86_arch_string; if (!ix86_tune_string) { ix86_tune_string = cpu_names [TARGET_CPU_DEFAULT]; ix86_tune_defaulted = 1; } if (!ix86_arch_string) ix86_arch_string = TARGET_64BIT ? "x86-64" : "i386"; if (ix86_cmodel_string != 0) { if (!strcmp (ix86_cmodel_string, "small")) ix86_cmodel = flag_pic ? CM_SMALL_PIC : CM_SMALL; else if (flag_pic) sorry ("code model %s not supported in PIC mode", ix86_cmodel_string); else if (!strcmp (ix86_cmodel_string, "32")) ix86_cmodel = CM_32; else if (!strcmp (ix86_cmodel_string, "kernel") && !flag_pic) ix86_cmodel = CM_KERNEL; else if (!strcmp (ix86_cmodel_string, "medium") && !flag_pic) ix86_cmodel = CM_MEDIUM; else if (!strcmp (ix86_cmodel_string, "large") && !flag_pic) ix86_cmodel = CM_LARGE; else error ("bad value (%s) for -mcmodel= switch", ix86_cmodel_string); } else { ix86_cmodel = CM_32; if (TARGET_64BIT) ix86_cmodel = flag_pic ? CM_SMALL_PIC : CM_SMALL; } if (ix86_asm_string != 0) { if (!strcmp (ix86_asm_string, "intel")) ix86_asm_dialect = ASM_INTEL; else if (!strcmp (ix86_asm_string, "att")) ix86_asm_dialect = ASM_ATT; else error ("bad value (%s) for -masm= switch", ix86_asm_string); } if ((TARGET_64BIT == 0) != (ix86_cmodel == CM_32)) error ("code model %qs not supported in the %s bit mode", ix86_cmodel_string, TARGET_64BIT ? "64" : "32"); if (ix86_cmodel == CM_LARGE) sorry ("code model % not supported yet"); if ((TARGET_64BIT != 0) != ((target_flags & MASK_64BIT) != 0)) sorry ("%i-bit mode not compiled in", (target_flags & MASK_64BIT) ? 64 : 32); for (i = 0; i < pta_size; i++) if (! strcmp (ix86_arch_string, processor_alias_table[i].name)) { ix86_arch = processor_alias_table[i].processor; /* Default cpu tuning to the architecture. */ ix86_tune = ix86_arch; if (processor_alias_table[i].flags & PTA_MMX && !(target_flags_explicit & MASK_MMX)) target_flags |= MASK_MMX; if (processor_alias_table[i].flags & PTA_3DNOW && !(target_flags_explicit & MASK_3DNOW)) target_flags |= MASK_3DNOW; if (processor_alias_table[i].flags & PTA_3DNOW_A && !(target_flags_explicit & MASK_3DNOW_A)) target_flags |= MASK_3DNOW_A; if (processor_alias_table[i].flags & PTA_SSE && !(target_flags_explicit & MASK_SSE)) target_flags |= MASK_SSE; if (processor_alias_table[i].flags & PTA_SSE2 && !(target_flags_explicit & MASK_SSE2)) target_flags |= MASK_SSE2; if (processor_alias_table[i].flags & PTA_SSE3 && !(target_flags_explicit & MASK_SSE3)) target_flags |= MASK_SSE3; if (processor_alias_table[i].flags & PTA_PREFETCH_SSE) x86_prefetch_sse = true; if (TARGET_64BIT && !(processor_alias_table[i].flags & PTA_64BIT)) error ("CPU you selected does not support x86-64 " "instruction set"); break; } if (i == pta_size) error ("bad value (%s) for -march= switch", ix86_arch_string); for (i = 0; i < pta_size; i++) if (! strcmp (ix86_tune_string, processor_alias_table[i].name)) { ix86_tune = processor_alias_table[i].processor; if (TARGET_64BIT && !(processor_alias_table[i].flags & PTA_64BIT)) { if (ix86_tune_defaulted) { ix86_tune_string = "x86-64"; for (i = 0; i < pta_size; i++) if (! strcmp (ix86_tune_string, processor_alias_table[i].name)) break; ix86_tune = processor_alias_table[i].processor; } else error ("CPU you selected does not support x86-64 " "instruction set"); } /* Intel CPUs have always interpreted SSE prefetch instructions as NOPs; so, we can enable SSE prefetch instructions even when -mtune (rather than -march) points us to a processor that has them. However, the VIA C3 gives a SIGILL, so we only do that for i686 and higher processors. */ if (TARGET_CMOVE && (processor_alias_table[i].flags & PTA_PREFETCH_SSE)) x86_prefetch_sse = true; break; } if (i == pta_size) error ("bad value (%s) for -mtune= switch", ix86_tune_string); if (optimize_size) ix86_cost = &size_cost; else ix86_cost = processor_target_table[ix86_tune].cost; target_flags |= processor_target_table[ix86_tune].target_enable; target_flags &= ~processor_target_table[ix86_tune].target_disable; /* Arrange to set up i386_stack_locals for all functions. */ init_machine_status = ix86_init_machine_status; /* Validate -mregparm= value. */ if (ix86_regparm_string) { i = atoi (ix86_regparm_string); if (i < 0 || i > REGPARM_MAX) error ("-mregparm=%d is not between 0 and %d", i, REGPARM_MAX); else ix86_regparm = i; } else if (TARGET_64BIT) ix86_regparm = REGPARM_MAX; /* If the user has provided any of the -malign-* options, warn and use that value only if -falign-* is not set. Remove this code in GCC 3.2 or later. */ if (ix86_align_loops_string) { warning ("-malign-loops is obsolete, use -falign-loops"); if (align_loops == 0) { i = atoi (ix86_align_loops_string); if (i < 0 || i > MAX_CODE_ALIGN) error ("-malign-loops=%d is not between 0 and %d", i, MAX_CODE_ALIGN); else align_loops = 1 << i; } } if (ix86_align_jumps_string) { warning ("-malign-jumps is obsolete, use -falign-jumps"); if (align_jumps == 0) { i = atoi (ix86_align_jumps_string); if (i < 0 || i > MAX_CODE_ALIGN) error ("-malign-loops=%d is not between 0 and %d", i, MAX_CODE_ALIGN); else align_jumps = 1 << i; } } if (ix86_align_funcs_string) { warning ("-malign-functions is obsolete, use -falign-functions"); if (align_functions == 0) { i = atoi (ix86_align_funcs_string); if (i < 0 || i > MAX_CODE_ALIGN) error ("-malign-loops=%d is not between 0 and %d", i, MAX_CODE_ALIGN); else align_functions = 1 << i; } } /* Default align_* from the processor table. */ if (align_loops == 0) { align_loops = processor_target_table[ix86_tune].align_loop; align_loops_max_skip = processor_target_table[ix86_tune].align_loop_max_skip; } if (align_jumps == 0) { align_jumps = processor_target_table[ix86_tune].align_jump; align_jumps_max_skip = processor_target_table[ix86_tune].align_jump_max_skip; } if (align_functions == 0) { align_functions = processor_target_table[ix86_tune].align_func; } /* Validate -mpreferred-stack-boundary= value, or provide default. The default of 128 bits is for Pentium III's SSE __m128, but we don't want additional code to keep the stack aligned when optimizing for code size. */ ix86_preferred_stack_boundary = (optimize_size ? TARGET_64BIT ? 128 : 32 : 128); if (ix86_preferred_stack_boundary_string) { i = atoi (ix86_preferred_stack_boundary_string); if (i < (TARGET_64BIT ? 4 : 2) || i > 12) error ("-mpreferred-stack-boundary=%d is not between %d and 12", i, TARGET_64BIT ? 4 : 2); else ix86_preferred_stack_boundary = (1 << i) * BITS_PER_UNIT; } /* Validate -mbranch-cost= value, or provide default. */ ix86_branch_cost = processor_target_table[ix86_tune].cost->branch_cost; if (ix86_branch_cost_string) { i = atoi (ix86_branch_cost_string); if (i < 0 || i > 5) error ("-mbranch-cost=%d is not between 0 and 5", i); else ix86_branch_cost = i; } if (ix86_tls_dialect_string) { if (strcmp (ix86_tls_dialect_string, "gnu") == 0) ix86_tls_dialect = TLS_DIALECT_GNU; else if (strcmp (ix86_tls_dialect_string, "sun") == 0) ix86_tls_dialect = TLS_DIALECT_SUN; else error ("bad value (%s) for -mtls-dialect= switch", ix86_tls_dialect_string); } /* Keep nonleaf frame pointers. */ if (flag_omit_frame_pointer) target_flags &= ~MASK_OMIT_LEAF_FRAME_POINTER; else if (TARGET_OMIT_LEAF_FRAME_POINTER) flag_omit_frame_pointer = 1; /* If we're doing fast math, we don't care about comparison order wrt NaNs. This lets us use a shorter comparison sequence. */ if (flag_unsafe_math_optimizations) target_flags &= ~MASK_IEEE_FP; /* If the architecture always has an FPU, turn off NO_FANCY_MATH_387, since the insns won't need emulation. */ if (x86_arch_always_fancy_math_387 & (1 << ix86_arch)) target_flags &= ~MASK_NO_FANCY_MATH_387; /* Likewise, if the target doesn't have a 387, or we've specified software floating point, don't use 387 inline instrinsics. */ if (!TARGET_80387) target_flags |= MASK_NO_FANCY_MATH_387; /* Turn on SSE2 builtins for -msse3. */ if (TARGET_SSE3) target_flags |= MASK_SSE2; /* Turn on SSE builtins for -msse2. */ if (TARGET_SSE2) target_flags |= MASK_SSE; /* Turn on MMX builtins for -msse. */ if (TARGET_SSE) { target_flags |= MASK_MMX & ~target_flags_explicit; x86_prefetch_sse = true; } /* Turn on MMX builtins for 3Dnow. */ if (TARGET_3DNOW) target_flags |= MASK_MMX; if (TARGET_64BIT) { if (TARGET_ALIGN_DOUBLE) error ("-malign-double makes no sense in the 64bit mode"); if (TARGET_RTD) error ("-mrtd calling convention not supported in the 64bit mode"); /* Enable by default the SSE and MMX builtins. Do allow the user to explicitly disable any of these. In particular, disabling SSE and MMX for kernel code is extremely useful. */ target_flags |= ((MASK_SSE2 | MASK_SSE | MASK_MMX | MASK_128BIT_LONG_DOUBLE) & ~target_flags_explicit); if (TARGET_SSE) ix86_fpmath = FPMATH_SSE; } else { ix86_fpmath = FPMATH_387; /* i386 ABI does not specify red zone. It still makes sense to use it when programmer takes care to stack from being destroyed. */ if (!(target_flags_explicit & MASK_NO_RED_ZONE)) target_flags |= MASK_NO_RED_ZONE; } if (ix86_fpmath_string != 0) { if (! strcmp (ix86_fpmath_string, "387")) ix86_fpmath = FPMATH_387; else if (! strcmp (ix86_fpmath_string, "sse")) { if (!TARGET_SSE) { warning ("SSE instruction set disabled, using 387 arithmetics"); ix86_fpmath = FPMATH_387; } else ix86_fpmath = FPMATH_SSE; } else if (! strcmp (ix86_fpmath_string, "387,sse") || ! strcmp (ix86_fpmath_string, "sse,387")) { if (!TARGET_SSE) { warning ("SSE instruction set disabled, using 387 arithmetics"); ix86_fpmath = FPMATH_387; } else if (!TARGET_80387) { warning ("387 instruction set disabled, using SSE arithmetics"); ix86_fpmath = FPMATH_SSE; } else ix86_fpmath = FPMATH_SSE | FPMATH_387; } else error ("bad value (%s) for -mfpmath= switch", ix86_fpmath_string); } /* If the i387 is disabled, then do not return values in it. */ if (!TARGET_80387) target_flags &= ~MASK_FLOAT_RETURNS; if ((x86_accumulate_outgoing_args & TUNEMASK) && !(target_flags_explicit & MASK_ACCUMULATE_OUTGOING_ARGS) && !optimize_size) target_flags |= MASK_ACCUMULATE_OUTGOING_ARGS; /* Figure out what ASM_GENERATE_INTERNAL_LABEL builds as a prefix. */ { char *p; ASM_GENERATE_INTERNAL_LABEL (internal_label_prefix, "LX", 0); p = strchr (internal_label_prefix, 'X'); internal_label_prefix_len = p - internal_label_prefix; *p = '\0'; } /* When scheduling description is not available, disable scheduler pass so it won't slow down the compilation and make x87 code slower. */ if (!TARGET_SCHEDULE) flag_schedule_insns_after_reload = flag_schedule_insns = 0; } void optimization_options (int level, int size ATTRIBUTE_UNUSED) { /* For -O2 and beyond, turn off -fschedule-insns by default. It tends to make the problem with not enough registers even worse. */ #ifdef INSN_SCHEDULING if (level > 1) flag_schedule_insns = 0; #endif /* The default values of these switches depend on the TARGET_64BIT that is not known at this moment. Mark these values with 2 and let user the to override these. In case there is no command line option specifying them, we will set the defaults in override_options. */ if (optimize >= 1) flag_omit_frame_pointer = 2; flag_pcc_struct_return = 2; flag_asynchronous_unwind_tables = 2; #ifdef SUBTARGET_OPTIMIZATION_OPTIONS SUBTARGET_OPTIMIZATION_OPTIONS; #endif } /* Table of valid machine attributes. */ const struct attribute_spec ix86_attribute_table[] = { /* { name, min_len, max_len, decl_req, type_req, fn_type_req, handler } */ /* Stdcall attribute says callee is responsible for popping arguments if they are not variable. */ { "stdcall", 0, 0, false, true, true, ix86_handle_cdecl_attribute }, /* Fastcall attribute says callee is responsible for popping arguments if they are not variable. */ { "fastcall", 0, 0, false, true, true, ix86_handle_cdecl_attribute }, /* Cdecl attribute says the callee is a normal C declaration */ { "cdecl", 0, 0, false, true, true, ix86_handle_cdecl_attribute }, /* Regparm attribute specifies how many integer arguments are to be passed in registers. */ { "regparm", 1, 1, false, true, true, ix86_handle_regparm_attribute }, #if TARGET_DLLIMPORT_DECL_ATTRIBUTES { "dllimport", 0, 0, false, false, false, handle_dll_attribute }, { "dllexport", 0, 0, false, false, false, handle_dll_attribute }, { "shared", 0, 0, true, false, false, ix86_handle_shared_attribute }, #endif { "ms_struct", 0, 0, false, false, false, ix86_handle_struct_attribute }, { "gcc_struct", 0, 0, false, false, false, ix86_handle_struct_attribute }, #ifdef SUBTARGET_ATTRIBUTE_TABLE SUBTARGET_ATTRIBUTE_TABLE, #endif { NULL, 0, 0, false, false, false, NULL } }; /* Decide whether we can make a sibling call to a function. DECL is the declaration of the function being targeted by the call and EXP is the CALL_EXPR representing the call. */ static bool ix86_function_ok_for_sibcall (tree decl, tree exp) { /* If we are generating position-independent code, we cannot sibcall optimize any indirect call, or a direct call to a global function, as the PLT requires %ebx be live. */ if (!TARGET_64BIT && flag_pic && (!decl || TREE_PUBLIC (decl))) return false; /* If we are returning floats on the 80387 register stack, we cannot make a sibcall from a function that doesn't return a float to a function that does or, conversely, from a function that does return a float to a function that doesn't; the necessary stack adjustment would not be executed. */ if (STACK_REG_P (ix86_function_value (TREE_TYPE (exp))) != STACK_REG_P (ix86_function_value (TREE_TYPE (DECL_RESULT (cfun->decl))))) return false; /* If this call is indirect, we'll need to be able to use a call-clobbered register for the address of the target function. Make sure that all such registers are not used for passing parameters. */ if (!decl && !TARGET_64BIT) { tree type; /* We're looking at the CALL_EXPR, we need the type of the function. */ type = TREE_OPERAND (exp, 0); /* pointer expression */ type = TREE_TYPE (type); /* pointer type */ type = TREE_TYPE (type); /* function type */ if (ix86_function_regparm (type, NULL) >= 3) { /* ??? Need to count the actual number of registers to be used, not the possible number of registers. Fix later. */ return false; } } #if TARGET_DLLIMPORT_DECL_ATTRIBUTES /* Dllimport'd functions are also called indirectly. */ if (decl && lookup_attribute ("dllimport", DECL_ATTRIBUTES (decl)) && ix86_function_regparm (TREE_TYPE (decl), NULL) >= 3) return false; #endif /* Otherwise okay. That also includes certain types of indirect calls. */ return true; } /* Handle a "cdecl", "stdcall", or "fastcall" attribute; arguments as in struct attribute_spec.handler. */ static tree ix86_handle_cdecl_attribute (tree *node, tree name, tree args ATTRIBUTE_UNUSED, int flags ATTRIBUTE_UNUSED, bool *no_add_attrs) { if (TREE_CODE (*node) != FUNCTION_TYPE && TREE_CODE (*node) != METHOD_TYPE && TREE_CODE (*node) != FIELD_DECL && TREE_CODE (*node) != TYPE_DECL) { warning ("%qs attribute only applies to functions", IDENTIFIER_POINTER (name)); *no_add_attrs = true; } else { if (is_attribute_p ("fastcall", name)) { if (lookup_attribute ("stdcall", TYPE_ATTRIBUTES (*node))) { error ("fastcall and stdcall attributes are not compatible"); } else if (lookup_attribute ("regparm", TYPE_ATTRIBUTES (*node))) { error ("fastcall and regparm attributes are not compatible"); } } else if (is_attribute_p ("stdcall", name)) { if (lookup_attribute ("fastcall", TYPE_ATTRIBUTES (*node))) { error ("fastcall and stdcall attributes are not compatible"); } } } if (TARGET_64BIT) { warning ("%qs attribute ignored", IDENTIFIER_POINTER (name)); *no_add_attrs = true; } return NULL_TREE; } /* Handle a "regparm" attribute; arguments as in struct attribute_spec.handler. */ static tree ix86_handle_regparm_attribute (tree *node, tree name, tree args, int flags ATTRIBUTE_UNUSED, bool *no_add_attrs) { if (TREE_CODE (*node) != FUNCTION_TYPE && TREE_CODE (*node) != METHOD_TYPE && TREE_CODE (*node) != FIELD_DECL && TREE_CODE (*node) != TYPE_DECL) { warning ("%qs attribute only applies to functions", IDENTIFIER_POINTER (name)); *no_add_attrs = true; } else { tree cst; cst = TREE_VALUE (args); if (TREE_CODE (cst) != INTEGER_CST) { warning ("%qs attribute requires an integer constant argument", IDENTIFIER_POINTER (name)); *no_add_attrs = true; } else if (compare_tree_int (cst, REGPARM_MAX) > 0) { warning ("argument to %qs attribute larger than %d", IDENTIFIER_POINTER (name), REGPARM_MAX); *no_add_attrs = true; } if (lookup_attribute ("fastcall", TYPE_ATTRIBUTES (*node))) { error ("fastcall and regparm attributes are not compatible"); } } return NULL_TREE; } /* Return 0 if the attributes for two types are incompatible, 1 if they are compatible, and 2 if they are nearly compatible (which causes a warning to be generated). */ static int ix86_comp_type_attributes (tree type1, tree type2) { /* Check for mismatch of non-default calling convention. */ const char *const rtdstr = TARGET_RTD ? "cdecl" : "stdcall"; if (TREE_CODE (type1) != FUNCTION_TYPE) return 1; /* Check for mismatched fastcall types */ if (!lookup_attribute ("fastcall", TYPE_ATTRIBUTES (type1)) != !lookup_attribute ("fastcall", TYPE_ATTRIBUTES (type2))) return 0; /* Check for mismatched return types (cdecl vs stdcall). */ if (!lookup_attribute (rtdstr, TYPE_ATTRIBUTES (type1)) != !lookup_attribute (rtdstr, TYPE_ATTRIBUTES (type2))) return 0; if (ix86_function_regparm (type1, NULL) != ix86_function_regparm (type2, NULL)) return 0; return 1; } /* Return the regparm value for a fuctio with the indicated TYPE and DECL. DECL may be NULL when calling function indirectly or considering a libcall. */ static int ix86_function_regparm (tree type, tree decl) { tree attr; int regparm = ix86_regparm; bool user_convention = false; if (!TARGET_64BIT) { attr = lookup_attribute ("regparm", TYPE_ATTRIBUTES (type)); if (attr) { regparm = TREE_INT_CST_LOW (TREE_VALUE (TREE_VALUE (attr))); user_convention = true; } if (lookup_attribute ("fastcall", TYPE_ATTRIBUTES (type))) { regparm = 2; user_convention = true; } /* Use register calling convention for local functions when possible. */ if (!TARGET_64BIT && !user_convention && decl && flag_unit_at_a_time && !profile_flag) { struct cgraph_local_info *i = cgraph_local_info (decl); if (i && i->local) { /* We can't use regparm(3) for nested functions as these use static chain pointer in third argument. */ if (DECL_CONTEXT (decl) && !DECL_NO_STATIC_CHAIN (decl)) regparm = 2; else regparm = 3; } } } return regparm; } /* Return true if EAX is live at the start of the function. Used by ix86_expand_prologue to determine if we need special help before calling allocate_stack_worker. */ static bool ix86_eax_live_at_start_p (void) { /* Cheat. Don't bother working forward from ix86_function_regparm to the function type to whether an actual argument is located in eax. Instead just look at cfg info, which is still close enough to correct at this point. This gives false positives for broken functions that might use uninitialized data that happens to be allocated in eax, but who cares? */ return REGNO_REG_SET_P (ENTRY_BLOCK_PTR->global_live_at_end, 0); } /* Value is the number of bytes of arguments automatically popped when returning from a subroutine call. FUNDECL is the declaration node of the function (as a tree), FUNTYPE is the data type of the function (as a tree), or for a library call it is an identifier node for the subroutine name. SIZE is the number of bytes of arguments passed on the stack. On the 80386, the RTD insn may be used to pop them if the number of args is fixed, but if the number is variable then the caller must pop them all. RTD can't be used for library calls now because the library is compiled with the Unix compiler. Use of RTD is a selectable option, since it is incompatible with standard Unix calling sequences. If the option is not selected, the caller must always pop the args. The attribute stdcall is equivalent to RTD on a per module basis. */ int ix86_return_pops_args (tree fundecl, tree funtype, int size) { int rtd = TARGET_RTD && (!fundecl || TREE_CODE (fundecl) != IDENTIFIER_NODE); /* Cdecl functions override -mrtd, and never pop the stack. */ if (! lookup_attribute ("cdecl", TYPE_ATTRIBUTES (funtype))) { /* Stdcall and fastcall functions will pop the stack if not variable args. */ if (lookup_attribute ("stdcall", TYPE_ATTRIBUTES (funtype)) || lookup_attribute ("fastcall", TYPE_ATTRIBUTES (funtype))) rtd = 1; if (rtd && (TYPE_ARG_TYPES (funtype) == NULL_TREE || (TREE_VALUE (tree_last (TYPE_ARG_TYPES (funtype))) == void_type_node))) return size; } /* Lose any fake structure return argument if it is passed on the stack. */ if (aggregate_value_p (TREE_TYPE (funtype), fundecl) && !TARGET_64BIT && !KEEP_AGGREGATE_RETURN_POINTER) { int nregs = ix86_function_regparm (funtype, fundecl); if (!nregs) return GET_MODE_SIZE (Pmode); } return 0; } /* Argument support functions. */ /* Return true when register may be used to pass function parameters. */ bool ix86_function_arg_regno_p (int regno) { int i; if (!TARGET_64BIT) return (regno < REGPARM_MAX || (TARGET_SSE && SSE_REGNO_P (regno) && !fixed_regs[regno])); if (SSE_REGNO_P (regno) && TARGET_SSE) return true; /* RAX is used as hidden argument to va_arg functions. */ if (!regno) return true; for (i = 0; i < REGPARM_MAX; i++) if (regno == x86_64_int_parameter_registers[i]) return true; return false; } /* Return if we do not know how to pass TYPE solely in registers. */ static bool ix86_must_pass_in_stack (enum machine_mode mode, tree type) { if (must_pass_in_stack_var_size_or_pad (mode, type)) return true; /* For 32-bit, we want TImode aggregates to go on the stack. But watch out! The layout_type routine is crafty and tries to trick us into passing currently unsupported vector types on the stack by using TImode. */ return (!TARGET_64BIT && mode == TImode && type && TREE_CODE (type) != VECTOR_TYPE); } /* Initialize a variable CUM of type CUMULATIVE_ARGS for a call to a function whose data type is FNTYPE. For a library call, FNTYPE is 0. */ void init_cumulative_args (CUMULATIVE_ARGS *cum, /* Argument info to initialize */ tree fntype, /* tree ptr for function decl */ rtx libname, /* SYMBOL_REF of library name or 0 */ tree fndecl) { static CUMULATIVE_ARGS zero_cum; tree param, next_param; if (TARGET_DEBUG_ARG) { fprintf (stderr, "\ninit_cumulative_args ("); if (fntype) fprintf (stderr, "fntype code = %s, ret code = %s", tree_code_name[(int) TREE_CODE (fntype)], tree_code_name[(int) TREE_CODE (TREE_TYPE (fntype))]); else fprintf (stderr, "no fntype"); if (libname) fprintf (stderr, ", libname = %s", XSTR (libname, 0)); } *cum = zero_cum; /* Set up the number of registers to use for passing arguments. */ if (fntype) cum->nregs = ix86_function_regparm (fntype, fndecl); else cum->nregs = ix86_regparm; if (TARGET_SSE) cum->sse_nregs = SSE_REGPARM_MAX; if (TARGET_MMX) cum->mmx_nregs = MMX_REGPARM_MAX; cum->warn_sse = true; cum->warn_mmx = true; cum->maybe_vaarg = false; /* Use ecx and edx registers if function has fastcall attribute */ if (fntype && !TARGET_64BIT) { if (lookup_attribute ("fastcall", TYPE_ATTRIBUTES (fntype))) { cum->nregs = 2; cum->fastcall = 1; } } /* Determine if this function has variable arguments. This is indicated by the last argument being 'void_type_mode' if there are no variable arguments. If there are variable arguments, then we won't pass anything in registers in 32-bit mode. */ if (cum->nregs || cum->mmx_nregs || cum->sse_nregs) { for (param = (fntype) ? TYPE_ARG_TYPES (fntype) : 0; param != 0; param = next_param) { next_param = TREE_CHAIN (param); if (next_param == 0 && TREE_VALUE (param) != void_type_node) { if (!TARGET_64BIT) { cum->nregs = 0; cum->sse_nregs = 0; cum->mmx_nregs = 0; cum->warn_sse = 0; cum->warn_mmx = 0; cum->fastcall = 0; } cum->maybe_vaarg = true; } } } if ((!fntype && !libname) || (fntype && !TYPE_ARG_TYPES (fntype))) cum->maybe_vaarg = 1; if (TARGET_DEBUG_ARG) fprintf (stderr, ", nregs=%d )\n", cum->nregs); return; } /* Return the "natural" mode for TYPE. In most cases, this is just TYPE_MODE. But in the case of vector types, it is some vector mode. When we have only some of our vector isa extensions enabled, then there are some modes for which vector_mode_supported_p is false. For these modes, the generic vector support in gcc will choose some non-vector mode in order to implement the type. By computing the natural mode, we'll select the proper ABI location for the operand and not depend on whatever the middle-end decides to do with these vector types. */ static enum machine_mode type_natural_mode (tree type) { enum machine_mode mode = TYPE_MODE (type); if (TREE_CODE (type) == VECTOR_TYPE && !VECTOR_MODE_P (mode)) { HOST_WIDE_INT size = int_size_in_bytes (type); if ((size == 8 || size == 16) /* ??? Generic code allows us to create width 1 vectors. Ignore. */ && TYPE_VECTOR_SUBPARTS (type) > 1) { enum machine_mode innermode = TYPE_MODE (TREE_TYPE (type)); if (TREE_CODE (TREE_TYPE (type)) == REAL_TYPE) mode = MIN_MODE_VECTOR_FLOAT; else mode = MIN_MODE_VECTOR_INT; /* Get the mode which has this inner mode and number of units. */ for (; mode != VOIDmode; mode = GET_MODE_WIDER_MODE (mode)) if (GET_MODE_NUNITS (mode) == TYPE_VECTOR_SUBPARTS (type) && GET_MODE_INNER (mode) == innermode) return mode; abort (); } } return mode; } /* We want to pass a value in REGNO whose "natural" mode is MODE. However, this may not agree with the mode that the type system has chosen for the register, which is ORIG_MODE. If ORIG_MODE is not BLKmode, then we can go ahead and use it. Otherwise we have to build a PARALLEL instead. */ static rtx gen_reg_or_parallel (enum machine_mode mode, enum machine_mode orig_mode, unsigned int regno) { rtx tmp; if (orig_mode != BLKmode) tmp = gen_rtx_REG (orig_mode, regno); else { tmp = gen_rtx_REG (mode, regno); tmp = gen_rtx_EXPR_LIST (VOIDmode, tmp, const0_rtx); tmp = gen_rtx_PARALLEL (orig_mode, gen_rtvec (1, tmp)); } return tmp; } /* x86-64 register passing implementation. See x86-64 ABI for details. Goal of this code is to classify each 8bytes of incoming argument by the register class and assign registers accordingly. */ /* Return the union class of CLASS1 and CLASS2. See the x86-64 PS ABI for details. */ static enum x86_64_reg_class merge_classes (enum x86_64_reg_class class1, enum x86_64_reg_class class2) { /* Rule #1: If both classes are equal, this is the resulting class. */ if (class1 == class2) return class1; /* Rule #2: If one of the classes is NO_CLASS, the resulting class is the other class. */ if (class1 == X86_64_NO_CLASS) return class2; if (class2 == X86_64_NO_CLASS) return class1; /* Rule #3: If one of the classes is MEMORY, the result is MEMORY. */ if (class1 == X86_64_MEMORY_CLASS || class2 == X86_64_MEMORY_CLASS) return X86_64_MEMORY_CLASS; /* Rule #4: If one of the classes is INTEGER, the result is INTEGER. */ if ((class1 == X86_64_INTEGERSI_CLASS && class2 == X86_64_SSESF_CLASS) || (class2 == X86_64_INTEGERSI_CLASS && class1 == X86_64_SSESF_CLASS)) return X86_64_INTEGERSI_CLASS; if (class1 == X86_64_INTEGER_CLASS || class1 == X86_64_INTEGERSI_CLASS || class2 == X86_64_INTEGER_CLASS || class2 == X86_64_INTEGERSI_CLASS) return X86_64_INTEGER_CLASS; /* Rule #5: If one of the classes is X87, X87UP, or COMPLEX_X87 class, MEMORY is used. */ if (class1 == X86_64_X87_CLASS || class1 == X86_64_X87UP_CLASS || class1 == X86_64_COMPLEX_X87_CLASS || class2 == X86_64_X87_CLASS || class2 == X86_64_X87UP_CLASS || class2 == X86_64_COMPLEX_X87_CLASS) return X86_64_MEMORY_CLASS; /* Rule #6: Otherwise class SSE is used. */ return X86_64_SSE_CLASS; } /* Classify the argument of type TYPE and mode MODE. CLASSES will be filled by the register class used to pass each word of the operand. The number of words is returned. In case the parameter should be passed in memory, 0 is returned. As a special case for zero sized containers, classes[0] will be NO_CLASS and 1 is returned. BIT_OFFSET is used internally for handling records and specifies offset of the offset in bits modulo 256 to avoid overflow cases. See the x86-64 PS ABI for details. */ static int classify_argument (enum machine_mode mode, tree type, enum x86_64_reg_class classes[MAX_CLASSES], int bit_offset) { HOST_WIDE_INT bytes = (mode == BLKmode) ? int_size_in_bytes (type) : (int) GET_MODE_SIZE (mode); int words = (bytes + (bit_offset % 64) / 8 + UNITS_PER_WORD - 1) / UNITS_PER_WORD; /* Variable sized entities are always passed/returned in memory. */ if (bytes < 0) return 0; if (mode != VOIDmode && targetm.calls.must_pass_in_stack (mode, type)) return 0; if (type && AGGREGATE_TYPE_P (type)) { int i; tree field; enum x86_64_reg_class subclasses[MAX_CLASSES]; /* On x86-64 we pass structures larger than 16 bytes on the stack. */ if (bytes > 16) return 0; for (i = 0; i < words; i++) classes[i] = X86_64_NO_CLASS; /* Zero sized arrays or structures are NO_CLASS. We return 0 to signalize memory class, so handle it as special case. */ if (!words) { classes[0] = X86_64_NO_CLASS; return 1; } /* Classify each field of record and merge classes. */ if (TREE_CODE (type) == RECORD_TYPE) { /* For classes first merge in the field of the subclasses. */ if (TYPE_BINFO (type)) { tree binfo, base_binfo; int basenum; for (binfo = TYPE_BINFO (type), basenum = 0; BINFO_BASE_ITERATE (binfo, basenum, base_binfo); basenum++) { int num; int offset = tree_low_cst (BINFO_OFFSET (base_binfo), 0) * 8; tree type = BINFO_TYPE (base_binfo); num = classify_argument (TYPE_MODE (type), type, subclasses, (offset + bit_offset) % 256); if (!num) return 0; for (i = 0; i < num; i++) { int pos = (offset + (bit_offset % 64)) / 8 / 8; classes[i + pos] = merge_classes (subclasses[i], classes[i + pos]); } } } /* And now merge the fields of structure. */ for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field)) { if (TREE_CODE (field) == FIELD_DECL) { int num; /* Bitfields are always classified as integer. Handle them early, since later code would consider them to be misaligned integers. */ if (DECL_BIT_FIELD (field)) { for (i = int_bit_position (field) / 8 / 8; i < (int_bit_position (field) + tree_low_cst (DECL_SIZE (field), 0) + 63) / 8 / 8; i++) classes[i] = merge_classes (X86_64_INTEGER_CLASS, classes[i]); } else { num = classify_argument (TYPE_MODE (TREE_TYPE (field)), TREE_TYPE (field), subclasses, (int_bit_position (field) + bit_offset) % 256); if (!num) return 0; for (i = 0; i < num; i++) { int pos = (int_bit_position (field) + (bit_offset % 64)) / 8 / 8; classes[i + pos] = merge_classes (subclasses[i], classes[i + pos]); } } } } } /* Arrays are handled as small records. */ else if (TREE_CODE (type) == ARRAY_TYPE) { int num; num = classify_argument (TYPE_MODE (TREE_TYPE (type)), TREE_TYPE (type), subclasses, bit_offset); if (!num) return 0; /* The partial classes are now full classes. */ if (subclasses[0] == X86_64_SSESF_CLASS && bytes != 4) subclasses[0] = X86_64_SSE_CLASS; if (subclasses[0] == X86_64_INTEGERSI_CLASS && bytes != 4) subclasses[0] = X86_64_INTEGER_CLASS; for (i = 0; i < words; i++) classes[i] = subclasses[i % num]; } /* Unions are similar to RECORD_TYPE but offset is always 0. */ else if (TREE_CODE (type) == UNION_TYPE || TREE_CODE (type) == QUAL_UNION_TYPE) { /* For classes first merge in the field of the subclasses. */ if (TYPE_BINFO (type)) { tree binfo, base_binfo; int basenum; for (binfo = TYPE_BINFO (type), basenum = 0; BINFO_BASE_ITERATE (binfo, basenum, base_binfo); basenum++) { int num; int offset = tree_low_cst (BINFO_OFFSET (base_binfo), 0) * 8; tree type = BINFO_TYPE (base_binfo); num = classify_argument (TYPE_MODE (type), type, subclasses, (offset + (bit_offset % 64)) % 256); if (!num) return 0; for (i = 0; i < num; i++) { int pos = (offset + (bit_offset % 64)) / 8 / 8; classes[i + pos] = merge_classes (subclasses[i], classes[i + pos]); } } } for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field)) { if (TREE_CODE (field) == FIELD_DECL) { int num; num = classify_argument (TYPE_MODE (TREE_TYPE (field)), TREE_TYPE (field), subclasses, bit_offset); if (!num) return 0; for (i = 0; i < num; i++) classes[i] = merge_classes (subclasses[i], classes[i]); } } } else abort (); /* Final merger cleanup. */ for (i = 0; i < words; i++) { /* If one class is MEMORY, everything should be passed in memory. */ if (classes[i] == X86_64_MEMORY_CLASS) return 0; /* The X86_64_SSEUP_CLASS should be always preceded by X86_64_SSE_CLASS. */ if (classes[i] == X86_64_SSEUP_CLASS && (i == 0 || classes[i - 1] != X86_64_SSE_CLASS)) classes[i] = X86_64_SSE_CLASS; /* X86_64_X87UP_CLASS should be preceded by X86_64_X87_CLASS. */ if (classes[i] == X86_64_X87UP_CLASS && (i == 0 || classes[i - 1] != X86_64_X87_CLASS)) classes[i] = X86_64_SSE_CLASS; } return words; } /* Compute alignment needed. We align all types to natural boundaries with exception of XFmode that is aligned to 64bits. */ if (mode != VOIDmode && mode != BLKmode) { int mode_alignment = GET_MODE_BITSIZE (mode); if (mode == XFmode) mode_alignment = 128; else if (mode == XCmode) mode_alignment = 256; if (COMPLEX_MODE_P (mode)) mode_alignment /= 2; /* Misaligned fields are always returned in memory. */ if (bit_offset % mode_alignment) return 0; } /* for V1xx modes, just use the base mode */ if (VECTOR_MODE_P (mode) && GET_MODE_SIZE (GET_MODE_INNER (mode)) == bytes) mode = GET_MODE_INNER (mode); /* Classification of atomic types. */ switch (mode) { case DImode: case SImode: case HImode: case QImode: case CSImode: case CHImode: case CQImode: if (bit_offset + GET_MODE_BITSIZE (mode) <= 32) classes[0] = X86_64_INTEGERSI_CLASS; else classes[0] = X86_64_INTEGER_CLASS; return 1; case CDImode: case TImode: classes[0] = classes[1] = X86_64_INTEGER_CLASS; return 2; case CTImode: return 0; case SFmode: if (!(bit_offset % 64)) classes[0] = X86_64_SSESF_CLASS; else classes[0] = X86_64_SSE_CLASS; return 1; case DFmode: classes[0] = X86_64_SSEDF_CLASS; return 1; case XFmode: classes[0] = X86_64_X87_CLASS; classes[1] = X86_64_X87UP_CLASS; return 2; case TFmode: classes[0] = X86_64_SSE_CLASS; classes[1] = X86_64_SSEUP_CLASS; return 2; case SCmode: classes[0] = X86_64_SSE_CLASS; return 1; case DCmode: classes[0] = X86_64_SSEDF_CLASS; classes[1] = X86_64_SSEDF_CLASS; return 2; case XCmode: classes[0] = X86_64_COMPLEX_X87_CLASS; return 1; case TCmode: /* This modes is larger than 16 bytes. */ return 0; case V4SFmode: case V4SImode: case V16QImode: case V8HImode: case V2DFmode: case V2DImode: classes[0] = X86_64_SSE_CLASS; classes[1] = X86_64_SSEUP_CLASS; return 2; case V2SFmode: case V2SImode: case V4HImode: case V8QImode: classes[0] = X86_64_SSE_CLASS; return 1; case BLKmode: case VOIDmode: return 0; default: if (VECTOR_MODE_P (mode)) { if (bytes > 16) return 0; if (GET_MODE_CLASS (GET_MODE_INNER (mode)) == MODE_INT) { if (bit_offset + GET_MODE_BITSIZE (mode) <= 32) classes[0] = X86_64_INTEGERSI_CLASS; else classes[0] = X86_64_INTEGER_CLASS; classes[1] = X86_64_INTEGER_CLASS; return 1 + (bytes > 8); } } abort (); } } /* Examine the argument and return set number of register required in each class. Return 0 iff parameter should be passed in memory. */ static int examine_argument (enum machine_mode mode, tree type, int in_return, int *int_nregs, int *sse_nregs) { enum x86_64_reg_class class[MAX_CLASSES]; int n = classify_argument (mode, type, class, 0); *int_nregs = 0; *sse_nregs = 0; if (!n) return 0; for (n--; n >= 0; n--) switch (class[n]) { case X86_64_INTEGER_CLASS: case X86_64_INTEGERSI_CLASS: (*int_nregs)++; break; case X86_64_SSE_CLASS: case X86_64_SSESF_CLASS: case X86_64_SSEDF_CLASS: (*sse_nregs)++; break; case X86_64_NO_CLASS: case X86_64_SSEUP_CLASS: break; case X86_64_X87_CLASS: case X86_64_X87UP_CLASS: if (!in_return) return 0; break; case X86_64_COMPLEX_X87_CLASS: return in_return ? 2 : 0; case X86_64_MEMORY_CLASS: abort (); } return 1; } /* Construct container for the argument used by GCC interface. See FUNCTION_ARG for the detailed description. */ static rtx construct_container (enum machine_mode mode, enum machine_mode orig_mode, tree type, int in_return, int nintregs, int nsseregs, const int *intreg, int sse_regno) { enum machine_mode tmpmode; int bytes = (mode == BLKmode) ? int_size_in_bytes (type) : (int) GET_MODE_SIZE (mode); enum x86_64_reg_class class[MAX_CLASSES]; int n; int i; int nexps = 0; int needed_sseregs, needed_intregs; rtx exp[MAX_CLASSES]; rtx ret; n = classify_argument (mode, type, class, 0); if (TARGET_DEBUG_ARG) { if (!n) fprintf (stderr, "Memory class\n"); else { fprintf (stderr, "Classes:"); for (i = 0; i < n; i++) { fprintf (stderr, " %s", x86_64_reg_class_name[class[i]]); } fprintf (stderr, "\n"); } } if (!n) return NULL; if (!examine_argument (mode, type, in_return, &needed_intregs, &needed_sseregs)) return NULL; if (needed_intregs > nintregs || needed_sseregs > nsseregs) return NULL; /* We allowed the user to turn off SSE for kernel mode. Don't crash if some less clueful developer tries to use floating-point anyway. */ if (needed_sseregs && !TARGET_SSE) { static bool issued_error; if (!issued_error) { issued_error = true; if (in_return) error ("SSE register return with SSE disabled"); else error ("SSE register argument with SSE disabled"); } return NULL; } /* First construct simple cases. Avoid SCmode, since we want to use single register to pass this type. */ if (n == 1 && mode != SCmode) switch (class[0]) { case X86_64_INTEGER_CLASS: case X86_64_INTEGERSI_CLASS: return gen_rtx_REG (mode, intreg[0]); case X86_64_SSE_CLASS: case X86_64_SSESF_CLASS: case X86_64_SSEDF_CLASS: return gen_reg_or_parallel (mode, orig_mode, SSE_REGNO (sse_regno)); case X86_64_X87_CLASS: case X86_64_COMPLEX_X87_CLASS: return gen_rtx_REG (mode, FIRST_STACK_REG); case X86_64_NO_CLASS: /* Zero sized array, struct or class. */ return NULL; default: abort (); } if (n == 2 && class[0] == X86_64_SSE_CLASS && class[1] == X86_64_SSEUP_CLASS && mode != BLKmode) return gen_rtx_REG (mode, SSE_REGNO (sse_regno)); if (n == 2 && class[0] == X86_64_X87_CLASS && class[1] == X86_64_X87UP_CLASS) return gen_rtx_REG (XFmode, FIRST_STACK_REG); if (n == 2 && class[0] == X86_64_INTEGER_CLASS && class[1] == X86_64_INTEGER_CLASS && (mode == CDImode || mode == TImode || mode == TFmode) && intreg[0] + 1 == intreg[1]) return gen_rtx_REG (mode, intreg[0]); /* Otherwise figure out the entries of the PARALLEL. */ for (i = 0; i < n; i++) { switch (class[i]) { case X86_64_NO_CLASS: break; case X86_64_INTEGER_CLASS: case X86_64_INTEGERSI_CLASS: /* Merge TImodes on aligned occasions here too. */ if (i * 8 + 8 > bytes) tmpmode = mode_for_size ((bytes - i * 8) * BITS_PER_UNIT, MODE_INT, 0); else if (class[i] == X86_64_INTEGERSI_CLASS) tmpmode = SImode; else tmpmode = DImode; /* We've requested 24 bytes we don't have mode for. Use DImode. */ if (tmpmode == BLKmode) tmpmode = DImode; exp [nexps++] = gen_rtx_EXPR_LIST (VOIDmode, gen_rtx_REG (tmpmode, *intreg), GEN_INT (i*8)); intreg++; break; case X86_64_SSESF_CLASS: exp [nexps++] = gen_rtx_EXPR_LIST (VOIDmode, gen_rtx_REG (SFmode, SSE_REGNO (sse_regno)), GEN_INT (i*8)); sse_regno++; break; case X86_64_SSEDF_CLASS: exp [nexps++] = gen_rtx_EXPR_LIST (VOIDmode, gen_rtx_REG (DFmode, SSE_REGNO (sse_regno)), GEN_INT (i*8)); sse_regno++; break; case X86_64_SSE_CLASS: if (i < n - 1 && class[i + 1] == X86_64_SSEUP_CLASS) tmpmode = TImode; else tmpmode = DImode; exp [nexps++] = gen_rtx_EXPR_LIST (VOIDmode, gen_rtx_REG (tmpmode, SSE_REGNO (sse_regno)), GEN_INT (i*8)); if (tmpmode == TImode) i++; sse_regno++; break; default: abort (); } } /* Empty aligned struct, union or class. */ if (nexps == 0) return NULL; ret = gen_rtx_PARALLEL (mode, rtvec_alloc (nexps)); for (i = 0; i < nexps; i++) XVECEXP (ret, 0, i) = exp [i]; return ret; } /* Update the data in CUM to advance over an argument of mode MODE and data type TYPE. (TYPE is null for libcalls where that information may not be available.) */ void function_arg_advance (CUMULATIVE_ARGS *cum, enum machine_mode mode, tree type, int named) { int bytes = (mode == BLKmode) ? int_size_in_bytes (type) : (int) GET_MODE_SIZE (mode); int words = (bytes + UNITS_PER_WORD - 1) / UNITS_PER_WORD; if (type) mode = type_natural_mode (type); if (TARGET_DEBUG_ARG) fprintf (stderr, "function_adv (sz=%d, wds=%2d, nregs=%d, ssenregs=%d, " "mode=%s, named=%d)\n\n", words, cum->words, cum->nregs, cum->sse_nregs, GET_MODE_NAME (mode), named); if (TARGET_64BIT) { int int_nregs, sse_nregs; if (!examine_argument (mode, type, 0, &int_nregs, &sse_nregs)) cum->words += words; else if (sse_nregs <= cum->sse_nregs && int_nregs <= cum->nregs) { cum->nregs -= int_nregs; cum->sse_nregs -= sse_nregs; cum->regno += int_nregs; cum->sse_regno += sse_nregs; } else cum->words += words; } else { switch (mode) { default: break; case BLKmode: if (bytes < 0) break; /* FALLTHRU */ case DImode: case SImode: case HImode: case QImode: cum->words += words; cum->nregs -= words; cum->regno += words; if (cum->nregs <= 0) { cum->nregs = 0; cum->regno = 0; } break; case TImode: case V16QImode: case V8HImode: case V4SImode: case V2DImode: case V4SFmode: case V2DFmode: if (!type || !AGGREGATE_TYPE_P (type)) { cum->sse_words += words; cum->sse_nregs -= 1; cum->sse_regno += 1; if (cum->sse_nregs <= 0) { cum->sse_nregs = 0; cum->sse_regno = 0; } } break; case V8QImode: case V4HImode: case V2SImode: case V2SFmode: if (!type || !AGGREGATE_TYPE_P (type)) { cum->mmx_words += words; cum->mmx_nregs -= 1; cum->mmx_regno += 1; if (cum->mmx_nregs <= 0) { cum->mmx_nregs = 0; cum->mmx_regno = 0; } } break; } } } /* Define where to put the arguments to a function. Value is zero to push the argument on the stack, or a hard register in which to store the argument. MODE is the argument's machine mode. TYPE is the data type of the argument (as a tree). This is null for libcalls where that information may not be available. CUM is a variable of type CUMULATIVE_ARGS which gives info about the preceding args and about the function being called. NAMED is nonzero if this argument is a named parameter (otherwise it is an extra parameter matching an ellipsis). */ rtx function_arg (CUMULATIVE_ARGS *cum, enum machine_mode orig_mode, tree type, int named) { enum machine_mode mode = orig_mode; rtx ret = NULL_RTX; int bytes = (mode == BLKmode) ? int_size_in_bytes (type) : (int) GET_MODE_SIZE (mode); int words = (bytes + UNITS_PER_WORD - 1) / UNITS_PER_WORD; static bool warnedsse, warnedmmx; /* To simplify the code below, represent vector types with a vector mode even if MMX/SSE are not active. */ if (type && TREE_CODE (type) == VECTOR_TYPE) mode = type_natural_mode (type); /* Handle a hidden AL argument containing number of registers for varargs x86-64 functions. For i386 ABI just return constm1_rtx to avoid any AL settings. */ if (mode == VOIDmode) { if (TARGET_64BIT) return GEN_INT (cum->maybe_vaarg ? (cum->sse_nregs < 0 ? SSE_REGPARM_MAX : cum->sse_regno) : -1); else return constm1_rtx; } if (TARGET_64BIT) ret = construct_container (mode, orig_mode, type, 0, cum->nregs, cum->sse_nregs, &x86_64_int_parameter_registers [cum->regno], cum->sse_regno); else switch (mode) { /* For now, pass fp/complex values on the stack. */ default: break; case BLKmode: if (bytes < 0) break; /* FALLTHRU */ case DImode: case SImode: case HImode: case QImode: if (words <= cum->nregs) { int regno = cum->regno; /* Fastcall allocates the first two DWORD (SImode) or smaller arguments to ECX and EDX. */ if (cum->fastcall) { if (mode == BLKmode || mode == DImode) break; /* ECX not EAX is the first allocated register. */ if (regno == 0) regno = 2; } ret = gen_rtx_REG (mode, regno); } break; case TImode: case V16QImode: case V8HImode: case V4SImode: case V2DImode: case V4SFmode: case V2DFmode: if (!type || !AGGREGATE_TYPE_P (type)) { if (!TARGET_SSE && !warnedsse && cum->warn_sse) { warnedsse = true; warning ("SSE vector argument without SSE enabled " "changes the ABI"); } if (cum->sse_nregs) ret = gen_reg_or_parallel (mode, orig_mode, cum->sse_regno + FIRST_SSE_REG); } break; case V8QImode: case V4HImode: case V2SImode: case V2SFmode: if (!type || !AGGREGATE_TYPE_P (type)) { if (!TARGET_MMX && !warnedmmx && cum->warn_mmx) { warnedmmx = true; warning ("MMX vector argument without MMX enabled " "changes the ABI"); } if (cum->mmx_nregs) ret = gen_reg_or_parallel (mode, orig_mode, cum->mmx_regno + FIRST_MMX_REG); } break; } if (TARGET_DEBUG_ARG) { fprintf (stderr, "function_arg (size=%d, wds=%2d, nregs=%d, mode=%4s, named=%d, ", words, cum->words, cum->nregs, GET_MODE_NAME (mode), named); if (ret) print_simple_rtl (stderr, ret); else fprintf (stderr, ", stack"); fprintf (stderr, " )\n"); } return ret; } /* A C expression that indicates when an argument must be passed by reference. If nonzero for an argument, a copy of that argument is made in memory and a pointer to the argument is passed instead of the argument itself. The pointer is passed in whatever way is appropriate for passing a pointer to that type. */ static bool ix86_pass_by_reference (CUMULATIVE_ARGS *cum ATTRIBUTE_UNUSED, enum machine_mode mode ATTRIBUTE_UNUSED, tree type, bool named ATTRIBUTE_UNUSED) { if (!TARGET_64BIT) return 0; if (type && int_size_in_bytes (type) == -1) { if (TARGET_DEBUG_ARG) fprintf (stderr, "function_arg_pass_by_reference\n"); return 1; } return 0; } /* Return true when TYPE should be 128bit aligned for 32bit argument passing ABI. Only called if TARGET_SSE. */ static bool contains_128bit_aligned_vector_p (tree type) { enum machine_mode mode = TYPE_MODE (type); if (SSE_REG_MODE_P (mode) && (!TYPE_USER_ALIGN (type) || TYPE_ALIGN (type) > 128)) return true; if (TYPE_ALIGN (type) < 128) return false; if (AGGREGATE_TYPE_P (type)) { /* Walk the aggregates recursively. */ if (TREE_CODE (type) == RECORD_TYPE || TREE_CODE (type) == UNION_TYPE || TREE_CODE (type) == QUAL_UNION_TYPE) { tree field; if (TYPE_BINFO (type)) { tree binfo, base_binfo; int i; for (binfo = TYPE_BINFO (type), i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++) if (contains_128bit_aligned_vector_p (BINFO_TYPE (base_binfo))) return true; } /* And now merge the fields of structure. */ for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field)) { if (TREE_CODE (field) == FIELD_DECL && contains_128bit_aligned_vector_p (TREE_TYPE (field))) return true; } } /* Just for use if some languages passes arrays by value. */ else if (TREE_CODE (type) == ARRAY_TYPE) { if (contains_128bit_aligned_vector_p (TREE_TYPE (type))) return true; } else abort (); } return false; } /* Gives the alignment boundary, in bits, of an argument with the specified mode and type. */ int ix86_function_arg_boundary (enum machine_mode mode, tree type) { int align; if (type) align = TYPE_ALIGN (type); else align = GET_MODE_ALIGNMENT (mode); if (align < PARM_BOUNDARY) align = PARM_BOUNDARY; if (!TARGET_64BIT) { /* i386 ABI defines all arguments to be 4 byte aligned. We have to make an exception for SSE modes since these require 128bit alignment. The handling here differs from field_alignment. ICC aligns MMX arguments to 4 byte boundaries, while structure fields are aligned to 8 byte boundaries. */ if (!TARGET_SSE) align = PARM_BOUNDARY; else if (!type) { if (!SSE_REG_MODE_P (mode)) align = PARM_BOUNDARY; } else { if (!contains_128bit_aligned_vector_p (type)) align = PARM_BOUNDARY; } } if (align > 128) align = 128; return align; } /* Return true if N is a possible register number of function value. */ bool ix86_function_value_regno_p (int regno) { if (!TARGET_64BIT) { return ((regno) == 0 || ((regno) == FIRST_FLOAT_REG && TARGET_FLOAT_RETURNS_IN_80387) || ((regno) == FIRST_SSE_REG && TARGET_SSE)); } return ((regno) == 0 || (regno) == FIRST_FLOAT_REG || ((regno) == FIRST_SSE_REG && TARGET_SSE) || ((regno) == FIRST_FLOAT_REG && TARGET_FLOAT_RETURNS_IN_80387)); } /* Define how to find the value returned by a function. VALTYPE is the data type of the value (as a tree). If the precise function being called is known, FUNC is its FUNCTION_DECL; otherwise, FUNC is 0. */ rtx ix86_function_value (tree valtype) { enum machine_mode natmode = type_natural_mode (valtype); if (TARGET_64BIT) { rtx ret = construct_container (natmode, TYPE_MODE (valtype), valtype, 1, REGPARM_MAX, SSE_REGPARM_MAX, x86_64_int_return_registers, 0); /* For zero sized structures, construct_container return NULL, but we need to keep rest of compiler happy by returning meaningful value. */ if (!ret) ret = gen_rtx_REG (TYPE_MODE (valtype), 0); return ret; } else return gen_rtx_REG (TYPE_MODE (valtype), ix86_value_regno (natmode)); } /* Return false iff type is returned in memory. */ int ix86_return_in_memory (tree type) { int needed_intregs, needed_sseregs, size; enum machine_mode mode = type_natural_mode (type); if (TARGET_64BIT) return !examine_argument (mode, type, 1, &needed_intregs, &needed_sseregs); if (mode == BLKmode) return 1; size = int_size_in_bytes (type); if (MS_AGGREGATE_RETURN && AGGREGATE_TYPE_P (type) && size <= 8) return 0; if (VECTOR_MODE_P (mode) || mode == TImode) { /* User-created vectors small enough to fit in EAX. */ if (size < 8) return 0; /* MMX/3dNow values are returned on the stack, since we've got to EMMS/FEMMS before returning. */ if (size == 8) return 1; /* SSE values are returned in XMM0, except when it doesn't exist. */ if (size == 16) return (TARGET_SSE ? 0 : 1); } if (mode == XFmode) return 0; if (size > 12) return 1; return 0; } /* When returning SSE vector types, we have a choice of either (1) being abi incompatible with a -march switch, or (2) generating an error. Given no good solution, I think the safest thing is one warning. The user won't be able to use -Werror, but.... Choose the STRUCT_VALUE_RTX hook because that's (at present) only called in response to actually generating a caller or callee that uses such a type. As opposed to RETURN_IN_MEMORY, which is called via aggregate_value_p for general type probing from tree-ssa. */ static rtx ix86_struct_value_rtx (tree type, int incoming ATTRIBUTE_UNUSED) { static bool warned; if (!TARGET_SSE && type && !warned) { /* Look at the return type of the function, not the function type. */ enum machine_mode mode = TYPE_MODE (TREE_TYPE (type)); if (mode == TImode || (VECTOR_MODE_P (mode) && GET_MODE_SIZE (mode) == 16)) { warned = true; warning ("SSE vector return without SSE enabled changes the ABI"); } } return NULL; } /* Define how to find the value returned by a library function assuming the value has mode MODE. */ rtx ix86_libcall_value (enum machine_mode mode) { if (TARGET_64BIT) { switch (mode) { case SFmode: case SCmode: case DFmode: case DCmode: case TFmode: return gen_rtx_REG (mode, FIRST_SSE_REG); case XFmode: case XCmode: return gen_rtx_REG (mode, FIRST_FLOAT_REG); case TCmode: return NULL; default: return gen_rtx_REG (mode, 0); } } else return gen_rtx_REG (mode, ix86_value_regno (mode)); } /* Given a mode, return the register to use for a return value. */ static int ix86_value_regno (enum machine_mode mode) { /* Floating point return values in %st(0). */ if (GET_MODE_CLASS (mode) == MODE_FLOAT && TARGET_FLOAT_RETURNS_IN_80387) return FIRST_FLOAT_REG; /* 16-byte vector modes in %xmm0. See ix86_return_in_memory for where we prevent this case when sse is not available. */ if (mode == TImode || (VECTOR_MODE_P (mode) && GET_MODE_SIZE (mode) == 16)) return FIRST_SSE_REG; /* Everything else in %eax. */ return 0; } /* Create the va_list data type. */ static tree ix86_build_builtin_va_list (void) { tree f_gpr, f_fpr, f_ovf, f_sav, record, type_decl; /* For i386 we use plain pointer to argument area. */ if (!TARGET_64BIT) return build_pointer_type (char_type_node); record = (*lang_hooks.types.make_type) (RECORD_TYPE); type_decl = build_decl (TYPE_DECL, get_identifier ("__va_list_tag"), record); f_gpr = build_decl (FIELD_DECL, get_identifier ("gp_offset"), unsigned_type_node); f_fpr = build_decl (FIELD_DECL, get_identifier ("fp_offset"), unsigned_type_node); f_ovf = build_decl (FIELD_DECL, get_identifier ("overflow_arg_area"), ptr_type_node); f_sav = build_decl (FIELD_DECL, get_identifier ("reg_save_area"), ptr_type_node); DECL_FIELD_CONTEXT (f_gpr) = record; DECL_FIELD_CONTEXT (f_fpr) = record; DECL_FIELD_CONTEXT (f_ovf) = record; DECL_FIELD_CONTEXT (f_sav) = record; TREE_CHAIN (record) = type_decl; TYPE_NAME (record) = type_decl; TYPE_FIELDS (record) = f_gpr; TREE_CHAIN (f_gpr) = f_fpr; TREE_CHAIN (f_fpr) = f_ovf; TREE_CHAIN (f_ovf) = f_sav; layout_type (record); /* The correct type is an array type of one element. */ return build_array_type (record, build_index_type (size_zero_node)); } /* Worker function for TARGET_SETUP_INCOMING_VARARGS. */ static void ix86_setup_incoming_varargs (CUMULATIVE_ARGS *cum, enum machine_mode mode, tree type, int *pretend_size ATTRIBUTE_UNUSED, int no_rtl) { CUMULATIVE_ARGS next_cum; rtx save_area = NULL_RTX, mem; rtx label; rtx label_ref; rtx tmp_reg; rtx nsse_reg; int set; tree fntype; int stdarg_p; int i; if (!TARGET_64BIT) return; /* Indicate to allocate space on the stack for varargs save area. */ ix86_save_varrargs_registers = 1; cfun->stack_alignment_needed = 128; fntype = TREE_TYPE (current_function_decl); stdarg_p = (TYPE_ARG_TYPES (fntype) != 0 && (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype))) != void_type_node)); /* For varargs, we do not want to skip the dummy va_dcl argument. For stdargs, we do want to skip the last named argument. */ next_cum = *cum; if (stdarg_p) function_arg_advance (&next_cum, mode, type, 1); if (!no_rtl) save_area = frame_pointer_rtx; set = get_varargs_alias_set (); for (i = next_cum.regno; i < ix86_regparm; i++) { mem = gen_rtx_MEM (Pmode, plus_constant (save_area, i * UNITS_PER_WORD)); set_mem_alias_set (mem, set); emit_move_insn (mem, gen_rtx_REG (Pmode, x86_64_int_parameter_registers[i])); } if (next_cum.sse_nregs) { /* Now emit code to save SSE registers. The AX parameter contains number of SSE parameter registers used to call this function. We use sse_prologue_save insn template that produces computed jump across SSE saves. We need some preparation work to get this working. */ label = gen_label_rtx (); label_ref = gen_rtx_LABEL_REF (Pmode, label); /* Compute address to jump to : label - 5*eax + nnamed_sse_arguments*5 */ tmp_reg = gen_reg_rtx (Pmode); nsse_reg = gen_reg_rtx (Pmode); emit_insn (gen_zero_extendqidi2 (nsse_reg, gen_rtx_REG (QImode, 0))); emit_insn (gen_rtx_SET (VOIDmode, tmp_reg, gen_rtx_MULT (Pmode, nsse_reg, GEN_INT (4)))); if (next_cum.sse_regno) emit_move_insn (nsse_reg, gen_rtx_CONST (DImode, gen_rtx_PLUS (DImode, label_ref, GEN_INT (next_cum.sse_regno * 4)))); else emit_move_insn (nsse_reg, label_ref); emit_insn (gen_subdi3 (nsse_reg, nsse_reg, tmp_reg)); /* Compute address of memory block we save into. We always use pointer pointing 127 bytes after first byte to store - this is needed to keep instruction size limited by 4 bytes. */ tmp_reg = gen_reg_rtx (Pmode); emit_insn (gen_rtx_SET (VOIDmode, tmp_reg, plus_constant (save_area, 8 * REGPARM_MAX + 127))); mem = gen_rtx_MEM (BLKmode, plus_constant (tmp_reg, -127)); set_mem_alias_set (mem, set); set_mem_align (mem, BITS_PER_WORD); /* And finally do the dirty job! */ emit_insn (gen_sse_prologue_save (mem, nsse_reg, GEN_INT (next_cum.sse_regno), label)); } } /* Implement va_start. */ void ix86_va_start (tree valist, rtx nextarg) { HOST_WIDE_INT words, n_gpr, n_fpr; tree f_gpr, f_fpr, f_ovf, f_sav; tree gpr, fpr, ovf, sav, t; /* Only 64bit target needs something special. */ if (!TARGET_64BIT) { std_expand_builtin_va_start (valist, nextarg); return; } f_gpr = TYPE_FIELDS (TREE_TYPE (va_list_type_node)); f_fpr = TREE_CHAIN (f_gpr); f_ovf = TREE_CHAIN (f_fpr); f_sav = TREE_CHAIN (f_ovf); valist = build1 (INDIRECT_REF, TREE_TYPE (TREE_TYPE (valist)), valist); gpr = build (COMPONENT_REF, TREE_TYPE (f_gpr), valist, f_gpr, NULL_TREE); fpr = build (COMPONENT_REF, TREE_TYPE (f_fpr), valist, f_fpr, NULL_TREE); ovf = build (COMPONENT_REF, TREE_TYPE (f_ovf), valist, f_ovf, NULL_TREE); sav = build (COMPONENT_REF, TREE_TYPE (f_sav), valist, f_sav, NULL_TREE); /* Count number of gp and fp argument registers used. */ words = current_function_args_info.words; n_gpr = current_function_args_info.regno; n_fpr = current_function_args_info.sse_regno; if (TARGET_DEBUG_ARG) fprintf (stderr, "va_start: words = %d, n_gpr = %d, n_fpr = %d\n", (int) words, (int) n_gpr, (int) n_fpr); t = build (MODIFY_EXPR, TREE_TYPE (gpr), gpr, build_int_cst (NULL_TREE, n_gpr * 8)); TREE_SIDE_EFFECTS (t) = 1; expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL); t = build (MODIFY_EXPR, TREE_TYPE (fpr), fpr, build_int_cst (NULL_TREE, n_fpr * 16 + 8*REGPARM_MAX)); TREE_SIDE_EFFECTS (t) = 1; expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL); /* Find the overflow area. */ t = make_tree (TREE_TYPE (ovf), virtual_incoming_args_rtx); if (words != 0) t = build (PLUS_EXPR, TREE_TYPE (ovf), t, build_int_cst (NULL_TREE, words * UNITS_PER_WORD)); t = build (MODIFY_EXPR, TREE_TYPE (ovf), ovf, t); TREE_SIDE_EFFECTS (t) = 1; expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL); /* Find the register save area. Prologue of the function save it right above stack frame. */ t = make_tree (TREE_TYPE (sav), frame_pointer_rtx); t = build (MODIFY_EXPR, TREE_TYPE (sav), sav, t); TREE_SIDE_EFFECTS (t) = 1; expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL); } /* Implement va_arg. */ tree ix86_gimplify_va_arg (tree valist, tree type, tree *pre_p, tree *post_p) { static const int intreg[6] = { 0, 1, 2, 3, 4, 5 }; tree f_gpr, f_fpr, f_ovf, f_sav; tree gpr, fpr, ovf, sav, t; int size, rsize; tree lab_false, lab_over = NULL_TREE; tree addr, t2; rtx container; int indirect_p = 0; tree ptrtype; enum machine_mode nat_mode; /* Only 64bit target needs something special. */ if (!TARGET_64BIT) return std_gimplify_va_arg_expr (valist, type, pre_p, post_p); f_gpr = TYPE_FIELDS (TREE_TYPE (va_list_type_node)); f_fpr = TREE_CHAIN (f_gpr); f_ovf = TREE_CHAIN (f_fpr); f_sav = TREE_CHAIN (f_ovf); valist = build_va_arg_indirect_ref (valist); gpr = build (COMPONENT_REF, TREE_TYPE (f_gpr), valist, f_gpr, NULL_TREE); fpr = build (COMPONENT_REF, TREE_TYPE (f_fpr), valist, f_fpr, NULL_TREE); ovf = build (COMPONENT_REF, TREE_TYPE (f_ovf), valist, f_ovf, NULL_TREE); sav = build (COMPONENT_REF, TREE_TYPE (f_sav), valist, f_sav, NULL_TREE); indirect_p = pass_by_reference (NULL, TYPE_MODE (type), type, false); if (indirect_p) type = build_pointer_type (type); size = int_size_in_bytes (type); rsize = (size + UNITS_PER_WORD - 1) / UNITS_PER_WORD; nat_mode = type_natural_mode (type); container = construct_container (nat_mode, TYPE_MODE (type), type, 0, REGPARM_MAX, SSE_REGPARM_MAX, intreg, 0); /* Pull the value out of the saved registers. */ addr = create_tmp_var (ptr_type_node, "addr"); DECL_POINTER_ALIAS_SET (addr) = get_varargs_alias_set (); if (container) { int needed_intregs, needed_sseregs; bool need_temp; tree int_addr, sse_addr; lab_false = create_artificial_label (); lab_over = create_artificial_label (); examine_argument (nat_mode, type, 0, &needed_intregs, &needed_sseregs); need_temp = (!REG_P (container) && ((needed_intregs && TYPE_ALIGN (type) > 64) || TYPE_ALIGN (type) > 128)); /* In case we are passing structure, verify that it is consecutive block on the register save area. If not we need to do moves. */ if (!need_temp && !REG_P (container)) { /* Verify that all registers are strictly consecutive */ if (SSE_REGNO_P (REGNO (XEXP (XVECEXP (container, 0, 0), 0)))) { int i; for (i = 0; i < XVECLEN (container, 0) && !need_temp; i++) { rtx slot = XVECEXP (container, 0, i); if (REGNO (XEXP (slot, 0)) != FIRST_SSE_REG + (unsigned int) i || INTVAL (XEXP (slot, 1)) != i * 16) need_temp = 1; } } else { int i; for (i = 0; i < XVECLEN (container, 0) && !need_temp; i++) { rtx slot = XVECEXP (container, 0, i); if (REGNO (XEXP (slot, 0)) != (unsigned int) i || INTVAL (XEXP (slot, 1)) != i * 8) need_temp = 1; } } } if (!need_temp) { int_addr = addr; sse_addr = addr; } else { int_addr = create_tmp_var (ptr_type_node, "int_addr"); DECL_POINTER_ALIAS_SET (int_addr) = get_varargs_alias_set (); sse_addr = create_tmp_var (ptr_type_node, "sse_addr"); DECL_POINTER_ALIAS_SET (sse_addr) = get_varargs_alias_set (); } /* First ensure that we fit completely in registers. */ if (needed_intregs) { t = build_int_cst (TREE_TYPE (gpr), (REGPARM_MAX - needed_intregs + 1) * 8); t = build2 (GE_EXPR, boolean_type_node, gpr, t); t2 = build1 (GOTO_EXPR, void_type_node, lab_false); t = build (COND_EXPR, void_type_node, t, t2, NULL_TREE); gimplify_and_add (t, pre_p); } if (needed_sseregs) { t = build_int_cst (TREE_TYPE (fpr), (SSE_REGPARM_MAX - needed_sseregs + 1) * 16 + REGPARM_MAX * 8); t = build2 (GE_EXPR, boolean_type_node, fpr, t); t2 = build1 (GOTO_EXPR, void_type_node, lab_false); t = build (COND_EXPR, void_type_node, t, t2, NULL_TREE); gimplify_and_add (t, pre_p); } /* Compute index to start of area used for integer regs. */ if (needed_intregs) { /* int_addr = gpr + sav; */ t = fold_convert (ptr_type_node, gpr); t = build2 (PLUS_EXPR, ptr_type_node, sav, t); t = build2 (MODIFY_EXPR, void_type_node, int_addr, t); gimplify_and_add (t, pre_p); } if (needed_sseregs) { /* sse_addr = fpr + sav; */ t = fold_convert (ptr_type_node, fpr); t = build2 (PLUS_EXPR, ptr_type_node, sav, t); t = build2 (MODIFY_EXPR, void_type_node, sse_addr, t); gimplify_and_add (t, pre_p); } if (need_temp) { int i; tree temp = create_tmp_var (type, "va_arg_tmp"); /* addr = &temp; */ t = build1 (ADDR_EXPR, build_pointer_type (type), temp); t = build2 (MODIFY_EXPR, void_type_node, addr, t); gimplify_and_add (t, pre_p); for (i = 0; i < XVECLEN (container, 0); i++) { rtx slot = XVECEXP (container, 0, i); rtx reg = XEXP (slot, 0); enum machine_mode mode = GET_MODE (reg); tree piece_type = lang_hooks.types.type_for_mode (mode, 1); tree addr_type = build_pointer_type (piece_type); tree src_addr, src; int src_offset; tree dest_addr, dest; if (SSE_REGNO_P (REGNO (reg))) { src_addr = sse_addr; src_offset = (REGNO (reg) - FIRST_SSE_REG) * 16; } else { src_addr = int_addr; src_offset = REGNO (reg) * 8; } src_addr = fold_convert (addr_type, src_addr); src_addr = fold (build2 (PLUS_EXPR, addr_type, src_addr, size_int (src_offset))); src = build_va_arg_indirect_ref (src_addr); dest_addr = fold_convert (addr_type, addr); dest_addr = fold (build2 (PLUS_EXPR, addr_type, dest_addr, size_int (INTVAL (XEXP (slot, 1))))); dest = build_va_arg_indirect_ref (dest_addr); t = build2 (MODIFY_EXPR, void_type_node, dest, src); gimplify_and_add (t, pre_p); } } if (needed_intregs) { t = build2 (PLUS_EXPR, TREE_TYPE (gpr), gpr, build_int_cst (TREE_TYPE (gpr), needed_intregs * 8)); t = build2 (MODIFY_EXPR, TREE_TYPE (gpr), gpr, t); gimplify_and_add (t, pre_p); } if (needed_sseregs) { t = build2 (PLUS_EXPR, TREE_TYPE (fpr), fpr, build_int_cst (TREE_TYPE (fpr), needed_sseregs * 16)); t = build2 (MODIFY_EXPR, TREE_TYPE (fpr), fpr, t); gimplify_and_add (t, pre_p); } t = build1 (GOTO_EXPR, void_type_node, lab_over); gimplify_and_add (t, pre_p); t = build1 (LABEL_EXPR, void_type_node, lab_false); append_to_statement_list (t, pre_p); } /* ... otherwise out of the overflow area. */ /* Care for on-stack alignment if needed. */ if (FUNCTION_ARG_BOUNDARY (VOIDmode, type) <= 64) t = ovf; else { HOST_WIDE_INT align = FUNCTION_ARG_BOUNDARY (VOIDmode, type) / 8; t = build (PLUS_EXPR, TREE_TYPE (ovf), ovf, build_int_cst (TREE_TYPE (ovf), align - 1)); t = build (BIT_AND_EXPR, TREE_TYPE (t), t, build_int_cst (TREE_TYPE (t), -align)); } gimplify_expr (&t, pre_p, NULL, is_gimple_val, fb_rvalue); t2 = build2 (MODIFY_EXPR, void_type_node, addr, t); gimplify_and_add (t2, pre_p); t = build2 (PLUS_EXPR, TREE_TYPE (t), t, build_int_cst (TREE_TYPE (t), rsize * UNITS_PER_WORD)); t = build2 (MODIFY_EXPR, TREE_TYPE (ovf), ovf, t); gimplify_and_add (t, pre_p); if (container) { t = build1 (LABEL_EXPR, void_type_node, lab_over); append_to_statement_list (t, pre_p); } ptrtype = build_pointer_type (type); addr = fold_convert (ptrtype, addr); if (indirect_p) addr = build_va_arg_indirect_ref (addr); return build_va_arg_indirect_ref (addr); } /* Return nonzero if OPNUM's MEM should be matched in movabs* patterns. */ int ix86_check_movabs (rtx insn, int opnum) { rtx set, mem; set = PATTERN (insn); if (GET_CODE (set) == PARALLEL) set = XVECEXP (set, 0, 0); if (GET_CODE (set) != SET) abort (); mem = XEXP (set, opnum); while (GET_CODE (mem) == SUBREG) mem = SUBREG_REG (mem); if (GET_CODE (mem) != MEM) abort (); return (volatile_ok || !MEM_VOLATILE_P (mem)); } /* Initialize the table of extra 80387 mathematical constants. */ static void init_ext_80387_constants (void) { static const char * cst[5] = { "0.3010299956639811952256464283594894482", /* 0: fldlg2 */ "0.6931471805599453094286904741849753009", /* 1: fldln2 */ "1.4426950408889634073876517827983434472", /* 2: fldl2e */ "3.3219280948873623478083405569094566090", /* 3: fldl2t */ "3.1415926535897932385128089594061862044", /* 4: fldpi */ }; int i; for (i = 0; i < 5; i++) { real_from_string (&ext_80387_constants_table[i], cst[i]); /* Ensure each constant is rounded to XFmode precision. */ real_convert (&ext_80387_constants_table[i], XFmode, &ext_80387_constants_table[i]); } ext_80387_constants_init = 1; } /* Return true if the constant is something that can be loaded with a special instruction. */ int standard_80387_constant_p (rtx x) { if (GET_CODE (x) != CONST_DOUBLE || !FLOAT_MODE_P (GET_MODE (x))) return -1; if (x == CONST0_RTX (GET_MODE (x))) return 1; if (x == CONST1_RTX (GET_MODE (x))) return 2; /* For XFmode constants, try to find a special 80387 instruction when optimizing for size or on those CPUs that benefit from them. */ if (GET_MODE (x) == XFmode && (optimize_size || x86_ext_80387_constants & TUNEMASK)) { REAL_VALUE_TYPE r; int i; if (! ext_80387_constants_init) init_ext_80387_constants (); REAL_VALUE_FROM_CONST_DOUBLE (r, x); for (i = 0; i < 5; i++) if (real_identical (&r, &ext_80387_constants_table[i])) return i + 3; } return 0; } /* Return the opcode of the special instruction to be used to load the constant X. */ const char * standard_80387_constant_opcode (rtx x) { switch (standard_80387_constant_p (x)) { case 1: return "fldz"; case 2: return "fld1"; case 3: return "fldlg2"; case 4: return "fldln2"; case 5: return "fldl2e"; case 6: return "fldl2t"; case 7: return "fldpi"; } abort (); } /* Return the CONST_DOUBLE representing the 80387 constant that is loaded by the specified special instruction. The argument IDX matches the return value from standard_80387_constant_p. */ rtx standard_80387_constant_rtx (int idx) { int i; if (! ext_80387_constants_init) init_ext_80387_constants (); switch (idx) { case 3: case 4: case 5: case 6: case 7: i = idx - 3; break; default: abort (); } return CONST_DOUBLE_FROM_REAL_VALUE (ext_80387_constants_table[i], XFmode); } /* Return 1 if X is FP constant we can load to SSE register w/o using memory. */ int standard_sse_constant_p (rtx x) { if (x == const0_rtx) return 1; return (x == CONST0_RTX (GET_MODE (x))); } /* Returns 1 if OP contains a symbol reference */ int symbolic_reference_mentioned_p (rtx op) { const char *fmt; int i; if (GET_CODE (op) == SYMBOL_REF || GET_CODE (op) == LABEL_REF) return 1; fmt = GET_RTX_FORMAT (GET_CODE (op)); for (i = GET_RTX_LENGTH (GET_CODE (op)) - 1; i >= 0; i--) { if (fmt[i] == 'E') { int j; for (j = XVECLEN (op, i) - 1; j >= 0; j--) if (symbolic_reference_mentioned_p (XVECEXP (op, i, j))) return 1; } else if (fmt[i] == 'e' && symbolic_reference_mentioned_p (XEXP (op, i))) return 1; } return 0; } /* Return 1 if it is appropriate to emit `ret' instructions in the body of a function. Do this only if the epilogue is simple, needing a couple of insns. Prior to reloading, we can't tell how many registers must be saved, so return 0 then. Return 0 if there is no frame marker to de-allocate. */ int ix86_can_use_return_insn_p (void) { struct ix86_frame frame; if (! reload_completed || frame_pointer_needed) return 0; /* Don't allow more than 32 pop, since that's all we can do with one instruction. */ if (current_function_pops_args && current_function_args_size >= 32768) return 0; ix86_compute_frame_layout (&frame); return frame.to_allocate == 0 && frame.nregs == 0; } /* Value should be nonzero if functions must have frame pointers. Zero means the frame pointer need not be set up (and parms may be accessed via the stack pointer) in functions that seem suitable. */ int ix86_frame_pointer_required (void) { /* If we accessed previous frames, then the generated code expects to be able to access the saved ebp value in our frame. */ if (cfun->machine->accesses_prev_frame) return 1; /* Several x86 os'es need a frame pointer for other reasons, usually pertaining to setjmp. */ if (SUBTARGET_FRAME_POINTER_REQUIRED) return 1; /* In override_options, TARGET_OMIT_LEAF_FRAME_POINTER turns off the frame pointer by default. Turn it back on now if we've not got a leaf function. */ if (TARGET_OMIT_LEAF_FRAME_POINTER && (!current_function_is_leaf)) return 1; if (current_function_profile) return 1; return 0; } /* Record that the current function accesses previous call frames. */ void ix86_setup_frame_addresses (void) { cfun->machine->accesses_prev_frame = 1; } #if defined(HAVE_GAS_HIDDEN) && defined(SUPPORTS_ONE_ONLY) # define USE_HIDDEN_LINKONCE 1 #else # define USE_HIDDEN_LINKONCE 0 #endif static int pic_labels_used; /* Fills in the label name that should be used for a pc thunk for the given register. */ static void get_pc_thunk_name (char name[32], unsigned int regno) { if (USE_HIDDEN_LINKONCE) sprintf (name, "__i686.get_pc_thunk.%s", reg_names[regno]); else ASM_GENERATE_INTERNAL_LABEL (name, "LPR", regno); } /* This function generates code for -fpic that loads %ebx with the return address of the caller and then returns. */ void ix86_file_end (void) { rtx xops[2]; int regno; for (regno = 0; regno < 8; ++regno) { char name[32]; if (! ((pic_labels_used >> regno) & 1)) continue; get_pc_thunk_name (name, regno); if (USE_HIDDEN_LINKONCE) { tree decl; decl = build_decl (FUNCTION_DECL, get_identifier (name), error_mark_node); TREE_PUBLIC (decl) = 1; TREE_STATIC (decl) = 1; DECL_ONE_ONLY (decl) = 1; (*targetm.asm_out.unique_section) (decl, 0); named_section (decl, NULL, 0); (*targetm.asm_out.globalize_label) (asm_out_file, name); fputs ("\t.hidden\t", asm_out_file); assemble_name (asm_out_file, name); fputc ('\n', asm_out_file); ASM_DECLARE_FUNCTION_NAME (asm_out_file, name, decl); } else { text_section (); ASM_OUTPUT_LABEL (asm_out_file, name); } xops[0] = gen_rtx_REG (SImode, regno); xops[1] = gen_rtx_MEM (SImode, stack_pointer_rtx); output_asm_insn ("mov{l}\t{%1, %0|%0, %1}", xops); output_asm_insn ("ret", xops); } if (NEED_INDICATE_EXEC_STACK) file_end_indicate_exec_stack (); } /* Emit code for the SET_GOT patterns. */ const char * output_set_got (rtx dest) { rtx xops[3]; xops[0] = dest; xops[1] = gen_rtx_SYMBOL_REF (Pmode, GOT_SYMBOL_NAME); if (! TARGET_DEEP_BRANCH_PREDICTION || !flag_pic) { xops[2] = gen_rtx_LABEL_REF (Pmode, gen_label_rtx ()); if (!flag_pic) output_asm_insn ("mov{l}\t{%2, %0|%0, %2}", xops); else output_asm_insn ("call\t%a2", xops); #if TARGET_MACHO /* Output the "canonical" label name ("Lxx$pb") here too. This is what will be referred to by the Mach-O PIC subsystem. */ ASM_OUTPUT_LABEL (asm_out_file, machopic_function_base_name ()); #endif (*targetm.asm_out.internal_label) (asm_out_file, "L", CODE_LABEL_NUMBER (XEXP (xops[2], 0))); if (flag_pic) output_asm_insn ("pop{l}\t%0", xops); } else { char name[32]; get_pc_thunk_name (name, REGNO (dest)); pic_labels_used |= 1 << REGNO (dest); xops[2] = gen_rtx_SYMBOL_REF (Pmode, ggc_strdup (name)); xops[2] = gen_rtx_MEM (QImode, xops[2]); output_asm_insn ("call\t%X2", xops); } if (!flag_pic || TARGET_DEEP_BRANCH_PREDICTION) output_asm_insn ("add{l}\t{%1, %0|%0, %1}", xops); else if (!TARGET_MACHO) output_asm_insn ("add{l}\t{%1+[.-%a2], %0|%0, %a1+(.-%a2)}", xops); return ""; } /* Generate an "push" pattern for input ARG. */ static rtx gen_push (rtx arg) { return gen_rtx_SET (VOIDmode, gen_rtx_MEM (Pmode, gen_rtx_PRE_DEC (Pmode, stack_pointer_rtx)), arg); } /* Return >= 0 if there is an unused call-clobbered register available for the entire function. */ static unsigned int ix86_select_alt_pic_regnum (void) { if (current_function_is_leaf && !current_function_profile) { int i; for (i = 2; i >= 0; --i) if (!regs_ever_live[i]) return i; } return INVALID_REGNUM; } /* Return 1 if we need to save REGNO. */ static int ix86_save_reg (unsigned int regno, int maybe_eh_return) { if (pic_offset_table_rtx && regno == REAL_PIC_OFFSET_TABLE_REGNUM && (regs_ever_live[REAL_PIC_OFFSET_TABLE_REGNUM] || current_function_profile || current_function_calls_eh_return || current_function_uses_const_pool)) { if (ix86_select_alt_pic_regnum () != INVALID_REGNUM) return 0; return 1; } if (current_function_calls_eh_return && maybe_eh_return) { unsigned i; for (i = 0; ; i++) { unsigned test = EH_RETURN_DATA_REGNO (i); if (test == INVALID_REGNUM) break; if (test == regno) return 1; } } return (regs_ever_live[regno] && !call_used_regs[regno] && !fixed_regs[regno] && (regno != HARD_FRAME_POINTER_REGNUM || !frame_pointer_needed)); } /* Return number of registers to be saved on the stack. */ static int ix86_nsaved_regs (void) { int nregs = 0; int regno; for (regno = FIRST_PSEUDO_REGISTER - 1; regno >= 0; regno--) if (ix86_save_reg (regno, true)) nregs++; return nregs; } /* Return the offset between two registers, one to be eliminated, and the other its replacement, at the start of a routine. */ HOST_WIDE_INT ix86_initial_elimination_offset (int from, int to) { struct ix86_frame frame; ix86_compute_frame_layout (&frame); if (from == ARG_POINTER_REGNUM && to == HARD_FRAME_POINTER_REGNUM) return frame.hard_frame_pointer_offset; else if (from == FRAME_POINTER_REGNUM && to == HARD_FRAME_POINTER_REGNUM) return frame.hard_frame_pointer_offset - frame.frame_pointer_offset; else { if (to != STACK_POINTER_REGNUM) abort (); else if (from == ARG_POINTER_REGNUM) return frame.stack_pointer_offset; else if (from != FRAME_POINTER_REGNUM) abort (); else return frame.stack_pointer_offset - frame.frame_pointer_offset; } } /* Fill structure ix86_frame about frame of currently computed function. */ static void ix86_compute_frame_layout (struct ix86_frame *frame) { HOST_WIDE_INT total_size; unsigned int stack_alignment_needed; HOST_WIDE_INT offset; unsigned int preferred_alignment; HOST_WIDE_INT size = get_frame_size (); frame->nregs = ix86_nsaved_regs (); total_size = size; stack_alignment_needed = cfun->stack_alignment_needed / BITS_PER_UNIT; preferred_alignment = cfun->preferred_stack_boundary / BITS_PER_UNIT; /* During reload iteration the amount of registers saved can change. Recompute the value as needed. Do not recompute when amount of registers didn't change as reload does mutiple calls to the function and does not expect the decision to change within single iteration. */ if (!optimize_size && cfun->machine->use_fast_prologue_epilogue_nregs != frame->nregs) { int count = frame->nregs; cfun->machine->use_fast_prologue_epilogue_nregs = count; /* The fast prologue uses move instead of push to save registers. This is significantly longer, but also executes faster as modern hardware can execute the moves in parallel, but can't do that for push/pop. Be careful about choosing what prologue to emit: When function takes many instructions to execute we may use slow version as well as in case function is known to be outside hot spot (this is known with feedback only). Weight the size of function by number of registers to save as it is cheap to use one or two push instructions but very slow to use many of them. */ if (count) count = (count - 1) * FAST_PROLOGUE_INSN_COUNT; if (cfun->function_frequency < FUNCTION_FREQUENCY_NORMAL || (flag_branch_probabilities && cfun->function_frequency < FUNCTION_FREQUENCY_HOT)) cfun->machine->use_fast_prologue_epilogue = false; else cfun->machine->use_fast_prologue_epilogue = !expensive_function_p (count); } if (TARGET_PROLOGUE_USING_MOVE && cfun->machine->use_fast_prologue_epilogue) frame->save_regs_using_mov = true; else frame->save_regs_using_mov = false; /* Skip return address and saved base pointer. */ offset = frame_pointer_needed ? UNITS_PER_WORD * 2 : UNITS_PER_WORD; frame->hard_frame_pointer_offset = offset; /* Do some sanity checking of stack_alignment_needed and preferred_alignment, since i386 port is the only using those features that may break easily. */ if (size && !stack_alignment_needed) abort (); if (preferred_alignment < STACK_BOUNDARY / BITS_PER_UNIT) abort (); if (preferred_alignment > PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT) abort (); if (stack_alignment_needed > PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT) abort (); if (stack_alignment_needed < STACK_BOUNDARY / BITS_PER_UNIT) stack_alignment_needed = STACK_BOUNDARY / BITS_PER_UNIT; /* Register save area */ offset += frame->nregs * UNITS_PER_WORD; /* Va-arg area */ if (ix86_save_varrargs_registers) { offset += X86_64_VARARGS_SIZE; frame->va_arg_size = X86_64_VARARGS_SIZE; } else frame->va_arg_size = 0; /* Align start of frame for local function. */ frame->padding1 = ((offset + stack_alignment_needed - 1) & -stack_alignment_needed) - offset; offset += frame->padding1; /* Frame pointer points here. */ frame->frame_pointer_offset = offset; offset += size; /* Add outgoing arguments area. Can be skipped if we eliminated all the function calls as dead code. Skipping is however impossible when function calls alloca. Alloca expander assumes that last current_function_outgoing_args_size of stack frame are unused. */ if (ACCUMULATE_OUTGOING_ARGS && (!current_function_is_leaf || current_function_calls_alloca)) { offset += current_function_outgoing_args_size; frame->outgoing_arguments_size = current_function_outgoing_args_size; } else frame->outgoing_arguments_size = 0; /* Align stack boundary. Only needed if we're calling another function or using alloca. */ if (!current_function_is_leaf || current_function_calls_alloca) frame->padding2 = ((offset + preferred_alignment - 1) & -preferred_alignment) - offset; else frame->padding2 = 0; offset += frame->padding2; /* We've reached end of stack frame. */ frame->stack_pointer_offset = offset; /* Size prologue needs to allocate. */ frame->to_allocate = (size + frame->padding1 + frame->padding2 + frame->outgoing_arguments_size + frame->va_arg_size); if ((!frame->to_allocate && frame->nregs <= 1) || (TARGET_64BIT && frame->to_allocate >= (HOST_WIDE_INT) 0x80000000)) frame->save_regs_using_mov = false; if (TARGET_RED_ZONE && current_function_sp_is_unchanging && current_function_is_leaf) { frame->red_zone_size = frame->to_allocate; if (frame->save_regs_using_mov) frame->red_zone_size += frame->nregs * UNITS_PER_WORD; if (frame->red_zone_size > RED_ZONE_SIZE - RED_ZONE_RESERVE) frame->red_zone_size = RED_ZONE_SIZE - RED_ZONE_RESERVE; } else frame->red_zone_size = 0; frame->to_allocate -= frame->red_zone_size; frame->stack_pointer_offset -= frame->red_zone_size; #if 0 fprintf (stderr, "nregs: %i\n", frame->nregs); fprintf (stderr, "size: %i\n", size); fprintf (stderr, "alignment1: %i\n", stack_alignment_needed); fprintf (stderr, "padding1: %i\n", frame->padding1); fprintf (stderr, "va_arg: %i\n", frame->va_arg_size); fprintf (stderr, "padding2: %i\n", frame->padding2); fprintf (stderr, "to_allocate: %i\n", frame->to_allocate); fprintf (stderr, "red_zone_size: %i\n", frame->red_zone_size); fprintf (stderr, "frame_pointer_offset: %i\n", frame->frame_pointer_offset); fprintf (stderr, "hard_frame_pointer_offset: %i\n", frame->hard_frame_pointer_offset); fprintf (stderr, "stack_pointer_offset: %i\n", frame->stack_pointer_offset); #endif } /* Emit code to save registers in the prologue. */ static void ix86_emit_save_regs (void) { int regno; rtx insn; for (regno = FIRST_PSEUDO_REGISTER - 1; regno >= 0; regno--) if (ix86_save_reg (regno, true)) { insn = emit_insn (gen_push (gen_rtx_REG (Pmode, regno))); RTX_FRAME_RELATED_P (insn) = 1; } } /* Emit code to save registers using MOV insns. First register is restored from POINTER + OFFSET. */ static void ix86_emit_save_regs_using_mov (rtx pointer, HOST_WIDE_INT offset) { int regno; rtx insn; for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++) if (ix86_save_reg (regno, true)) { insn = emit_move_insn (adjust_address (gen_rtx_MEM (Pmode, pointer), Pmode, offset), gen_rtx_REG (Pmode, regno)); RTX_FRAME_RELATED_P (insn) = 1; offset += UNITS_PER_WORD; } } /* Expand prologue or epilogue stack adjustment. The pattern exist to put a dependency on all ebp-based memory accesses. STYLE should be negative if instructions should be marked as frame related, zero if %r11 register is live and cannot be freely used and positive otherwise. */ static void pro_epilogue_adjust_stack (rtx dest, rtx src, rtx offset, int style) { rtx insn; if (! TARGET_64BIT) insn = emit_insn (gen_pro_epilogue_adjust_stack_1 (dest, src, offset)); else if (x86_64_immediate_operand (offset, DImode)) insn = emit_insn (gen_pro_epilogue_adjust_stack_rex64 (dest, src, offset)); else { rtx r11; /* r11 is used by indirect sibcall return as well, set before the epilogue and used after the epilogue. ATM indirect sibcall shouldn't be used together with huge frame sizes in one function because of the frame_size check in sibcall.c. */ if (style == 0) abort (); r11 = gen_rtx_REG (DImode, FIRST_REX_INT_REG + 3 /* R11 */); insn = emit_insn (gen_rtx_SET (DImode, r11, offset)); if (style < 0) RTX_FRAME_RELATED_P (insn) = 1; insn = emit_insn (gen_pro_epilogue_adjust_stack_rex64_2 (dest, src, r11, offset)); } if (style < 0) RTX_FRAME_RELATED_P (insn) = 1; } /* Expand the prologue into a bunch of separate insns. */ void ix86_expand_prologue (void) { rtx insn; bool pic_reg_used; struct ix86_frame frame; HOST_WIDE_INT allocate; ix86_compute_frame_layout (&frame); /* Note: AT&T enter does NOT have reversed args. Enter is probably slower on all targets. Also sdb doesn't like it. */ if (frame_pointer_needed) { insn = emit_insn (gen_push (hard_frame_pointer_rtx)); RTX_FRAME_RELATED_P (insn) = 1; insn = emit_move_insn (hard_frame_pointer_rtx, stack_pointer_rtx); RTX_FRAME_RELATED_P (insn) = 1; } allocate = frame.to_allocate; if (!frame.save_regs_using_mov) ix86_emit_save_regs (); else allocate += frame.nregs * UNITS_PER_WORD; /* When using red zone we may start register saving before allocating the stack frame saving one cycle of the prologue. */ if (TARGET_RED_ZONE && frame.save_regs_using_mov) ix86_emit_save_regs_using_mov (frame_pointer_needed ? hard_frame_pointer_rtx : stack_pointer_rtx, -frame.nregs * UNITS_PER_WORD); if (allocate == 0) ; else if (! TARGET_STACK_PROBE || allocate < CHECK_STACK_LIMIT) pro_epilogue_adjust_stack (stack_pointer_rtx, stack_pointer_rtx, GEN_INT (-allocate), -1); else { /* Only valid for Win32. */ rtx eax = gen_rtx_REG (SImode, 0); bool eax_live = ix86_eax_live_at_start_p (); rtx t; if (TARGET_64BIT) abort (); if (eax_live) { emit_insn (gen_push (eax)); allocate -= 4; } emit_move_insn (eax, GEN_INT (allocate)); insn = emit_insn (gen_allocate_stack_worker (eax)); RTX_FRAME_RELATED_P (insn) = 1; t = gen_rtx_PLUS (Pmode, stack_pointer_rtx, GEN_INT (-allocate)); t = gen_rtx_SET (VOIDmode, stack_pointer_rtx, t); REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_FRAME_RELATED_EXPR, t, REG_NOTES (insn)); if (eax_live) { if (frame_pointer_needed) t = plus_constant (hard_frame_pointer_rtx, allocate - frame.to_allocate - frame.nregs * UNITS_PER_WORD); else t = plus_constant (stack_pointer_rtx, allocate); emit_move_insn (eax, gen_rtx_MEM (SImode, t)); } } if (frame.save_regs_using_mov && !TARGET_RED_ZONE) { if (!frame_pointer_needed || !frame.to_allocate) ix86_emit_save_regs_using_mov (stack_pointer_rtx, frame.to_allocate); else ix86_emit_save_regs_using_mov (hard_frame_pointer_rtx, -frame.nregs * UNITS_PER_WORD); } pic_reg_used = false; if (pic_offset_table_rtx && (regs_ever_live[REAL_PIC_OFFSET_TABLE_REGNUM] || current_function_profile)) { unsigned int alt_pic_reg_used = ix86_select_alt_pic_regnum (); if (alt_pic_reg_used != INVALID_REGNUM) REGNO (pic_offset_table_rtx) = alt_pic_reg_used; pic_reg_used = true; } if (pic_reg_used) { insn = emit_insn (gen_set_got (pic_offset_table_rtx)); /* Even with accurate pre-reload life analysis, we can wind up deleting all references to the pic register after reload. Consider if cross-jumping unifies two sides of a branch controlled by a comparison vs the only read from a global. In which case, allow the set_got to be deleted, though we're too late to do anything about the ebx save in the prologue. */ REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_MAYBE_DEAD, const0_rtx, NULL); } /* Prevent function calls from be scheduled before the call to mcount. In the pic_reg_used case, make sure that the got load isn't deleted. */ if (current_function_profile) emit_insn (gen_blockage (pic_reg_used ? pic_offset_table_rtx : const0_rtx)); } /* Emit code to restore saved registers using MOV insns. First register is restored from POINTER + OFFSET. */ static void ix86_emit_restore_regs_using_mov (rtx pointer, HOST_WIDE_INT offset, int maybe_eh_return) { int regno; rtx base_address = gen_rtx_MEM (Pmode, pointer); for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++) if (ix86_save_reg (regno, maybe_eh_return)) { /* Ensure that adjust_address won't be forced to produce pointer out of range allowed by x86-64 instruction set. */ if (TARGET_64BIT && offset != trunc_int_for_mode (offset, SImode)) { rtx r11; r11 = gen_rtx_REG (DImode, FIRST_REX_INT_REG + 3 /* R11 */); emit_move_insn (r11, GEN_INT (offset)); emit_insn (gen_adddi3 (r11, r11, pointer)); base_address = gen_rtx_MEM (Pmode, r11); offset = 0; } emit_move_insn (gen_rtx_REG (Pmode, regno), adjust_address (base_address, Pmode, offset)); offset += UNITS_PER_WORD; } } /* Restore function stack, frame, and registers. */ void ix86_expand_epilogue (int style) { int regno; int sp_valid = !frame_pointer_needed || current_function_sp_is_unchanging; struct ix86_frame frame; HOST_WIDE_INT offset; ix86_compute_frame_layout (&frame); /* Calculate start of saved registers relative to ebp. Special care must be taken for the normal return case of a function using eh_return: the eax and edx registers are marked as saved, but not restored along this path. */ offset = frame.nregs; if (current_function_calls_eh_return && style != 2) offset -= 2; offset *= -UNITS_PER_WORD; /* If we're only restoring one register and sp is not valid then using a move instruction to restore the register since it's less work than reloading sp and popping the register. The default code result in stack adjustment using add/lea instruction, while this code results in LEAVE instruction (or discrete equivalent), so it is profitable in some other cases as well. Especially when there are no registers to restore. We also use this code when TARGET_USE_LEAVE and there is exactly one register to pop. This heuristic may need some tuning in future. */ if ((!sp_valid && frame.nregs <= 1) || (TARGET_EPILOGUE_USING_MOVE && cfun->machine->use_fast_prologue_epilogue && (frame.nregs > 1 || frame.to_allocate)) || (frame_pointer_needed && !frame.nregs && frame.to_allocate) || (frame_pointer_needed && TARGET_USE_LEAVE && cfun->machine->use_fast_prologue_epilogue && frame.nregs == 1) || current_function_calls_eh_return) { /* Restore registers. We can use ebp or esp to address the memory locations. If both are available, default to ebp, since offsets are known to be small. Only exception is esp pointing directly to the end of block of saved registers, where we may simplify addressing mode. */ if (!frame_pointer_needed || (sp_valid && !frame.to_allocate)) ix86_emit_restore_regs_using_mov (stack_pointer_rtx, frame.to_allocate, style == 2); else ix86_emit_restore_regs_using_mov (hard_frame_pointer_rtx, offset, style == 2); /* eh_return epilogues need %ecx added to the stack pointer. */ if (style == 2) { rtx tmp, sa = EH_RETURN_STACKADJ_RTX; if (frame_pointer_needed) { tmp = gen_rtx_PLUS (Pmode, hard_frame_pointer_rtx, sa); tmp = plus_constant (tmp, UNITS_PER_WORD); emit_insn (gen_rtx_SET (VOIDmode, sa, tmp)); tmp = gen_rtx_MEM (Pmode, hard_frame_pointer_rtx); emit_move_insn (hard_frame_pointer_rtx, tmp); pro_epilogue_adjust_stack (stack_pointer_rtx, sa, const0_rtx, style); } else { tmp = gen_rtx_PLUS (Pmode, stack_pointer_rtx, sa); tmp = plus_constant (tmp, (frame.to_allocate + frame.nregs * UNITS_PER_WORD)); emit_insn (gen_rtx_SET (VOIDmode, stack_pointer_rtx, tmp)); } } else if (!frame_pointer_needed) pro_epilogue_adjust_stack (stack_pointer_rtx, stack_pointer_rtx, GEN_INT (frame.to_allocate + frame.nregs * UNITS_PER_WORD), style); /* If not an i386, mov & pop is faster than "leave". */ else if (TARGET_USE_LEAVE || optimize_size || !cfun->machine->use_fast_prologue_epilogue) emit_insn (TARGET_64BIT ? gen_leave_rex64 () : gen_leave ()); else { pro_epilogue_adjust_stack (stack_pointer_rtx, hard_frame_pointer_rtx, const0_rtx, style); if (TARGET_64BIT) emit_insn (gen_popdi1 (hard_frame_pointer_rtx)); else emit_insn (gen_popsi1 (hard_frame_pointer_rtx)); } } else { /* First step is to deallocate the stack frame so that we can pop the registers. */ if (!sp_valid) { if (!frame_pointer_needed) abort (); pro_epilogue_adjust_stack (stack_pointer_rtx, hard_frame_pointer_rtx, GEN_INT (offset), style); } else if (frame.to_allocate) pro_epilogue_adjust_stack (stack_pointer_rtx, stack_pointer_rtx, GEN_INT (frame.to_allocate), style); for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++) if (ix86_save_reg (regno, false)) { if (TARGET_64BIT) emit_insn (gen_popdi1 (gen_rtx_REG (Pmode, regno))); else emit_insn (gen_popsi1 (gen_rtx_REG (Pmode, regno))); } if (frame_pointer_needed) { /* Leave results in shorter dependency chains on CPUs that are able to grok it fast. */ if (TARGET_USE_LEAVE) emit_insn (TARGET_64BIT ? gen_leave_rex64 () : gen_leave ()); else if (TARGET_64BIT) emit_insn (gen_popdi1 (hard_frame_pointer_rtx)); else emit_insn (gen_popsi1 (hard_frame_pointer_rtx)); } } /* Sibcall epilogues don't want a return instruction. */ if (style == 0) return; if (current_function_pops_args && current_function_args_size) { rtx popc = GEN_INT (current_function_pops_args); /* i386 can only pop 64K bytes. If asked to pop more, pop return address, do explicit add, and jump indirectly to the caller. */ if (current_function_pops_args >= 65536) { rtx ecx = gen_rtx_REG (SImode, 2); /* There is no "pascal" calling convention in 64bit ABI. */ if (TARGET_64BIT) abort (); emit_insn (gen_popsi1 (ecx)); emit_insn (gen_addsi3 (stack_pointer_rtx, stack_pointer_rtx, popc)); emit_jump_insn (gen_return_indirect_internal (ecx)); } else emit_jump_insn (gen_return_pop_internal (popc)); } else emit_jump_insn (gen_return_internal ()); } /* Reset from the function's potential modifications. */ static void ix86_output_function_epilogue (FILE *file ATTRIBUTE_UNUSED, HOST_WIDE_INT size ATTRIBUTE_UNUSED) { if (pic_offset_table_rtx) REGNO (pic_offset_table_rtx) = REAL_PIC_OFFSET_TABLE_REGNUM; } /* Extract the parts of an RTL expression that is a valid memory address for an instruction. Return 0 if the structure of the address is grossly off. Return -1 if the address contains ASHIFT, so it is not strictly valid, but still used for computing length of lea instruction. */ int ix86_decompose_address (rtx addr, struct ix86_address *out) { rtx base = NULL_RTX, index = NULL_RTX, disp = NULL_RTX; rtx base_reg, index_reg; HOST_WIDE_INT scale = 1; rtx scale_rtx = NULL_RTX; int retval = 1; enum ix86_address_seg seg = SEG_DEFAULT; if (GET_CODE (addr) == REG || GET_CODE (addr) == SUBREG) base = addr; else if (GET_CODE (addr) == PLUS) { rtx addends[4], op; int n = 0, i; op = addr; do { if (n >= 4) return 0; addends[n++] = XEXP (op, 1); op = XEXP (op, 0); } while (GET_CODE (op) == PLUS); if (n >= 4) return 0; addends[n] = op; for (i = n; i >= 0; --i) { op = addends[i]; switch (GET_CODE (op)) { case MULT: if (index) return 0; index = XEXP (op, 0); scale_rtx = XEXP (op, 1); break; case UNSPEC: if (XINT (op, 1) == UNSPEC_TP && TARGET_TLS_DIRECT_SEG_REFS && seg == SEG_DEFAULT) seg = TARGET_64BIT ? SEG_FS : SEG_GS; else return 0; break; case REG: case SUBREG: if (!base) base = op; else if (!index) index = op; else return 0; break; case CONST: case CONST_INT: case SYMBOL_REF: case LABEL_REF: if (disp) return 0; disp = op; break; default: return 0; } } } else if (GET_CODE (addr) == MULT) { index = XEXP (addr, 0); /* index*scale */ scale_rtx = XEXP (addr, 1); } else if (GET_CODE (addr) == ASHIFT) { rtx tmp; /* We're called for lea too, which implements ashift on occasion. */ index = XEXP (addr, 0); tmp = XEXP (addr, 1); if (GET_CODE (tmp) != CONST_INT) return 0; scale = INTVAL (tmp); if ((unsigned HOST_WIDE_INT) scale > 3) return 0; scale = 1 << scale; retval = -1; } else disp = addr; /* displacement */ /* Extract the integral value of scale. */ if (scale_rtx) { if (GET_CODE (scale_rtx) != CONST_INT) return 0; scale = INTVAL (scale_rtx); } base_reg = base && GET_CODE (base) == SUBREG ? SUBREG_REG (base) : base; index_reg = index && GET_CODE (index) == SUBREG ? SUBREG_REG (index) : index; /* Allow arg pointer and stack pointer as index if there is not scaling. */ if (base_reg && index_reg && scale == 1 && (index_reg == arg_pointer_rtx || index_reg == frame_pointer_rtx || (REG_P (index_reg) && REGNO (index_reg) == STACK_POINTER_REGNUM))) { rtx tmp; tmp = base, base = index, index = tmp; tmp = base_reg, base_reg = index_reg, index_reg = tmp; } /* Special case: %ebp cannot be encoded as a base without a displacement. */ if ((base_reg == hard_frame_pointer_rtx || base_reg == frame_pointer_rtx || base_reg == arg_pointer_rtx) && !disp) disp = const0_rtx; /* Special case: on K6, [%esi] makes the instruction vector decoded. Avoid this by transforming to [%esi+0]. */ if (ix86_tune == PROCESSOR_K6 && !optimize_size && base_reg && !index_reg && !disp && REG_P (base_reg) && REGNO_REG_CLASS (REGNO (base_reg)) == SIREG) disp = const0_rtx; /* Special case: encode reg+reg instead of reg*2. */ if (!base && index && scale && scale == 2) base = index, base_reg = index_reg, scale = 1; /* Special case: scaling cannot be encoded without base or displacement. */ if (!base && !disp && index && scale != 1) disp = const0_rtx; out->base = base; out->index = index; out->disp = disp; out->scale = scale; out->seg = seg; return retval; } /* Return cost of the memory address x. For i386, it is better to use a complex address than let gcc copy the address into a reg and make a new pseudo. But not if the address requires to two regs - that would mean more pseudos with longer lifetimes. */ static int ix86_address_cost (rtx x) { struct ix86_address parts; int cost = 1; if (!ix86_decompose_address (x, &parts)) abort (); if (parts.base && GET_CODE (parts.base) == SUBREG) parts.base = SUBREG_REG (parts.base); if (parts.index && GET_CODE (parts.index) == SUBREG) parts.index = SUBREG_REG (parts.index); /* More complex memory references are better. */ if (parts.disp && parts.disp != const0_rtx) cost--; if (parts.seg != SEG_DEFAULT) cost--; /* Attempt to minimize number of registers in the address. */ if ((parts.base && (!REG_P (parts.base) || REGNO (parts.base) >= FIRST_PSEUDO_REGISTER)) || (parts.index && (!REG_P (parts.index) || REGNO (parts.index) >= FIRST_PSEUDO_REGISTER))) cost++; if (parts.base && (!REG_P (parts.base) || REGNO (parts.base) >= FIRST_PSEUDO_REGISTER) && parts.index && (!REG_P (parts.index) || REGNO (parts.index) >= FIRST_PSEUDO_REGISTER) && parts.base != parts.index) cost++; /* AMD-K6 don't like addresses with ModR/M set to 00_xxx_100b, since it's predecode logic can't detect the length of instructions and it degenerates to vector decoded. Increase cost of such addresses here. The penalty is minimally 2 cycles. It may be worthwhile to split such addresses or even refuse such addresses at all. Following addressing modes are affected: [base+scale*index] [scale*index+disp] [base+index] The first and last case may be avoidable by explicitly coding the zero in memory address, but I don't have AMD-K6 machine handy to check this theory. */ if (TARGET_K6 && ((!parts.disp && parts.base && parts.index && parts.scale != 1) || (parts.disp && !parts.base && parts.index && parts.scale != 1) || (!parts.disp && parts.base && parts.index && parts.scale == 1))) cost += 10; return cost; } /* If X is a machine specific address (i.e. a symbol or label being referenced as a displacement from the GOT implemented using an UNSPEC), then return the base term. Otherwise return X. */ rtx ix86_find_base_term (rtx x) { rtx term; if (TARGET_64BIT) { if (GET_CODE (x) != CONST) return x; term = XEXP (x, 0); if (GET_CODE (term) == PLUS && (GET_CODE (XEXP (term, 1)) == CONST_INT || GET_CODE (XEXP (term, 1)) == CONST_DOUBLE)) term = XEXP (term, 0); if (GET_CODE (term) != UNSPEC || XINT (term, 1) != UNSPEC_GOTPCREL) return x; term = XVECEXP (term, 0, 0); if (GET_CODE (term) != SYMBOL_REF && GET_CODE (term) != LABEL_REF) return x; return term; } term = ix86_delegitimize_address (x); if (GET_CODE (term) != SYMBOL_REF && GET_CODE (term) != LABEL_REF) return x; return term; } /* Allow {LABEL | SYMBOL}_REF - SYMBOL_REF-FOR-PICBASE for Mach-O as this is used for to form addresses to local data when -fPIC is in use. */ static bool darwin_local_data_pic (rtx disp) { if (GET_CODE (disp) == MINUS) { if (GET_CODE (XEXP (disp, 0)) == LABEL_REF || GET_CODE (XEXP (disp, 0)) == SYMBOL_REF) if (GET_CODE (XEXP (disp, 1)) == SYMBOL_REF) { const char *sym_name = XSTR (XEXP (disp, 1), 0); if (! strcmp (sym_name, "")) return true; } } return false; } /* Determine if a given RTX is a valid constant. We already know this satisfies CONSTANT_P. */ bool legitimate_constant_p (rtx x) { switch (GET_CODE (x)) { case CONST: x = XEXP (x, 0); if (GET_CODE (x) == PLUS) { if (GET_CODE (XEXP (x, 1)) != CONST_INT) return false; x = XEXP (x, 0); } if (TARGET_MACHO && darwin_local_data_pic (x)) return true; /* Only some unspecs are valid as "constants". */ if (GET_CODE (x) == UNSPEC) switch (XINT (x, 1)) { case UNSPEC_TPOFF: case UNSPEC_NTPOFF: return local_exec_symbolic_operand (XVECEXP (x, 0, 0), Pmode); case UNSPEC_DTPOFF: return local_dynamic_symbolic_operand (XVECEXP (x, 0, 0), Pmode); default: return false; } /* We must have drilled down to a symbol. */ if (!symbolic_operand (x, Pmode)) return false; /* FALLTHRU */ case SYMBOL_REF: /* TLS symbols are never valid. */ if (tls_symbolic_operand (x, Pmode)) return false; break; default: break; } /* Otherwise we handle everything else in the move patterns. */ return true; } /* Determine if it's legal to put X into the constant pool. This is not possible for the address of thread-local symbols, which is checked above. */ static bool ix86_cannot_force_const_mem (rtx x) { return !legitimate_constant_p (x); } /* Determine if a given RTX is a valid constant address. */ bool constant_address_p (rtx x) { return CONSTANT_P (x) && legitimate_address_p (Pmode, x, 1); } /* Nonzero if the constant value X is a legitimate general operand when generating PIC code. It is given that flag_pic is on and that X satisfies CONSTANT_P or is a CONST_DOUBLE. */ bool legitimate_pic_operand_p (rtx x) { rtx inner; switch (GET_CODE (x)) { case CONST: inner = XEXP (x, 0); /* Only some unspecs are valid as "constants". */ if (GET_CODE (inner) == UNSPEC) switch (XINT (inner, 1)) { case UNSPEC_TPOFF: return local_exec_symbolic_operand (XVECEXP (inner, 0, 0), Pmode); default: return false; } /* FALLTHRU */ case SYMBOL_REF: case LABEL_REF: return legitimate_pic_address_disp_p (x); default: return true; } } /* Determine if a given CONST RTX is a valid memory displacement in PIC mode. */ int legitimate_pic_address_disp_p (rtx disp) { bool saw_plus; /* In 64bit mode we can allow direct addresses of symbols and labels when they are not dynamic symbols. */ if (TARGET_64BIT) { /* TLS references should always be enclosed in UNSPEC. */ if (tls_symbolic_operand (disp, GET_MODE (disp))) return 0; if (GET_CODE (disp) == SYMBOL_REF && ix86_cmodel == CM_SMALL_PIC && SYMBOL_REF_LOCAL_P (disp)) return 1; if (GET_CODE (disp) == LABEL_REF) return 1; if (GET_CODE (disp) == CONST && GET_CODE (XEXP (disp, 0)) == PLUS) { rtx op0 = XEXP (XEXP (disp, 0), 0); rtx op1 = XEXP (XEXP (disp, 0), 1); /* TLS references should always be enclosed in UNSPEC. */ if (tls_symbolic_operand (op0, GET_MODE (op0))) return 0; if (((GET_CODE (op0) == SYMBOL_REF && ix86_cmodel == CM_SMALL_PIC && SYMBOL_REF_LOCAL_P (op0)) || GET_CODE (op0) == LABEL_REF) && GET_CODE (op1) == CONST_INT && INTVAL (op1) < 16*1024*1024 && INTVAL (op1) >= -16*1024*1024) return 1; } } if (GET_CODE (disp) != CONST) return 0; disp = XEXP (disp, 0); if (TARGET_64BIT) { /* We are unsafe to allow PLUS expressions. This limit allowed distance of GOT tables. We should not need these anyway. */ if (GET_CODE (disp) != UNSPEC || XINT (disp, 1) != UNSPEC_GOTPCREL) return 0; if (GET_CODE (XVECEXP (disp, 0, 0)) != SYMBOL_REF && GET_CODE (XVECEXP (disp, 0, 0)) != LABEL_REF) return 0; return 1; } saw_plus = false; if (GET_CODE (disp) == PLUS) { if (GET_CODE (XEXP (disp, 1)) != CONST_INT) return 0; disp = XEXP (disp, 0); saw_plus = true; } if (TARGET_MACHO && darwin_local_data_pic (disp)) return 1; if (GET_CODE (disp) != UNSPEC) return 0; switch (XINT (disp, 1)) { case UNSPEC_GOT: if (saw_plus) return false; return GET_CODE (XVECEXP (disp, 0, 0)) == SYMBOL_REF; case UNSPEC_GOTOFF: if (GET_CODE (XVECEXP (disp, 0, 0)) == SYMBOL_REF || GET_CODE (XVECEXP (disp, 0, 0)) == LABEL_REF) return local_symbolic_operand (XVECEXP (disp, 0, 0), Pmode); return false; case UNSPEC_GOTTPOFF: case UNSPEC_GOTNTPOFF: case UNSPEC_INDNTPOFF: if (saw_plus) return false; return initial_exec_symbolic_operand (XVECEXP (disp, 0, 0), Pmode); case UNSPEC_NTPOFF: return local_exec_symbolic_operand (XVECEXP (disp, 0, 0), Pmode); case UNSPEC_DTPOFF: return local_dynamic_symbolic_operand (XVECEXP (disp, 0, 0), Pmode); } return 0; } /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression that is a valid memory address for an instruction. The MODE argument is the machine mode for the MEM expression that wants to use this address. It only recognizes address in canonical form. LEGITIMIZE_ADDRESS should convert common non-canonical forms to canonical form so that they will be recognized. */ int legitimate_address_p (enum machine_mode mode, rtx addr, int strict) { struct ix86_address parts; rtx base, index, disp; HOST_WIDE_INT scale; const char *reason = NULL; rtx reason_rtx = NULL_RTX; if (TARGET_DEBUG_ADDR) { fprintf (stderr, "\n======\nGO_IF_LEGITIMATE_ADDRESS, mode = %s, strict = %d\n", GET_MODE_NAME (mode), strict); debug_rtx (addr); } if (ix86_decompose_address (addr, &parts) <= 0) { reason = "decomposition failed"; goto report_error; } base = parts.base; index = parts.index; disp = parts.disp; scale = parts.scale; /* Validate base register. Don't allow SUBREG's that span more than a word here. It can lead to spill failures when the base is one word out of a two word structure, which is represented internally as a DImode int. */ if (base) { rtx reg; reason_rtx = base; if (REG_P (base)) reg = base; else if (GET_CODE (base) == SUBREG && REG_P (SUBREG_REG (base)) && GET_MODE_SIZE (GET_MODE (SUBREG_REG (base))) <= UNITS_PER_WORD) reg = SUBREG_REG (base); else { reason = "base is not a register"; goto report_error; } if (GET_MODE (base) != Pmode) { reason = "base is not in Pmode"; goto report_error; } if ((strict && ! REG_OK_FOR_BASE_STRICT_P (reg)) || (! strict && ! REG_OK_FOR_BASE_NONSTRICT_P (reg))) { reason = "base is not valid"; goto report_error; } } /* Validate index register. Don't allow SUBREG's that span more than a word here -- same as above. */ if (index) { rtx reg; reason_rtx = index; if (REG_P (index)) reg = index; else if (GET_CODE (index) == SUBREG && REG_P (SUBREG_REG (index)) && GET_MODE_SIZE (GET_MODE (SUBREG_REG (index))) <= UNITS_PER_WORD) reg = SUBREG_REG (index); else { reason = "index is not a register"; goto report_error; } if (GET_MODE (index) != Pmode) { reason = "index is not in Pmode"; goto report_error; } if ((strict && ! REG_OK_FOR_INDEX_STRICT_P (reg)) || (! strict && ! REG_OK_FOR_INDEX_NONSTRICT_P (reg))) { reason = "index is not valid"; goto report_error; } } /* Validate scale factor. */ if (scale != 1) { reason_rtx = GEN_INT (scale); if (!index) { reason = "scale without index"; goto report_error; } if (scale != 2 && scale != 4 && scale != 8) { reason = "scale is not a valid multiplier"; goto report_error; } } /* Validate displacement. */ if (disp) { reason_rtx = disp; if (GET_CODE (disp) == CONST && GET_CODE (XEXP (disp, 0)) == UNSPEC) switch (XINT (XEXP (disp, 0), 1)) { case UNSPEC_GOT: case UNSPEC_GOTOFF: case UNSPEC_GOTPCREL: if (!flag_pic) abort (); goto is_legitimate_pic; case UNSPEC_GOTTPOFF: case UNSPEC_GOTNTPOFF: case UNSPEC_INDNTPOFF: case UNSPEC_NTPOFF: case UNSPEC_DTPOFF: break; default: reason = "invalid address unspec"; goto report_error; } else if (flag_pic && (SYMBOLIC_CONST (disp) #if TARGET_MACHO && !machopic_operand_p (disp) #endif )) { is_legitimate_pic: if (TARGET_64BIT && (index || base)) { /* foo@dtpoff(%rX) is ok. */ if (GET_CODE (disp) != CONST || GET_CODE (XEXP (disp, 0)) != PLUS || GET_CODE (XEXP (XEXP (disp, 0), 0)) != UNSPEC || GET_CODE (XEXP (XEXP (disp, 0), 1)) != CONST_INT || (XINT (XEXP (XEXP (disp, 0), 0), 1) != UNSPEC_DTPOFF && XINT (XEXP (XEXP (disp, 0), 0), 1) != UNSPEC_NTPOFF)) { reason = "non-constant pic memory reference"; goto report_error; } } else if (! legitimate_pic_address_disp_p (disp)) { reason = "displacement is an invalid pic construct"; goto report_error; } /* This code used to verify that a symbolic pic displacement includes the pic_offset_table_rtx register. While this is good idea, unfortunately these constructs may be created by "adds using lea" optimization for incorrect code like: int a; int foo(int i) { return *(&a+i); } This code is nonsensical, but results in addressing GOT table with pic_offset_table_rtx base. We can't just refuse it easily, since it gets matched by "addsi3" pattern, that later gets split to lea in the case output register differs from input. While this can be handled by separate addsi pattern for this case that never results in lea, this seems to be easier and correct fix for crash to disable this test. */ } else if (GET_CODE (disp) != LABEL_REF && GET_CODE (disp) != CONST_INT && (GET_CODE (disp) != CONST || !legitimate_constant_p (disp)) && (GET_CODE (disp) != SYMBOL_REF || !legitimate_constant_p (disp))) { reason = "displacement is not constant"; goto report_error; } else if (TARGET_64BIT && !x86_64_immediate_operand (disp, VOIDmode)) { reason = "displacement is out of range"; goto report_error; } } /* Everything looks valid. */ if (TARGET_DEBUG_ADDR) fprintf (stderr, "Success.\n"); return TRUE; report_error: if (TARGET_DEBUG_ADDR) { fprintf (stderr, "Error: %s\n", reason); debug_rtx (reason_rtx); } return FALSE; } /* Return an unique alias set for the GOT. */ static HOST_WIDE_INT ix86_GOT_alias_set (void) { static HOST_WIDE_INT set = -1; if (set == -1) set = new_alias_set (); return set; } /* Return a legitimate reference for ORIG (an address) using the register REG. If REG is 0, a new pseudo is generated. There are two types of references that must be handled: 1. Global data references must load the address from the GOT, via the PIC reg. An insn is emitted to do this load, and the reg is returned. 2. Static data references, constant pool addresses, and code labels compute the address as an offset from the GOT, whose base is in the PIC reg. Static data objects have SYMBOL_FLAG_LOCAL set to differentiate them from global data objects. The returned address is the PIC reg + an unspec constant. GO_IF_LEGITIMATE_ADDRESS rejects symbolic references unless the PIC reg also appears in the address. */ static rtx legitimize_pic_address (rtx orig, rtx reg) { rtx addr = orig; rtx new = orig; rtx base; #if TARGET_MACHO if (reg == 0) reg = gen_reg_rtx (Pmode); /* Use the generic Mach-O PIC machinery. */ return machopic_legitimize_pic_address (orig, GET_MODE (orig), reg); #endif if (TARGET_64BIT && legitimate_pic_address_disp_p (addr)) new = addr; else if (!TARGET_64BIT && local_symbolic_operand (addr, Pmode)) { /* This symbol may be referenced via a displacement from the PIC base address (@GOTOFF). */ if (reload_in_progress) regs_ever_live[PIC_OFFSET_TABLE_REGNUM] = 1; if (GET_CODE (addr) == CONST) addr = XEXP (addr, 0); if (GET_CODE (addr) == PLUS) { new = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, XEXP (addr, 0)), UNSPEC_GOTOFF); new = gen_rtx_PLUS (Pmode, new, XEXP (addr, 1)); } else new = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, addr), UNSPEC_GOTOFF); new = gen_rtx_CONST (Pmode, new); new = gen_rtx_PLUS (Pmode, pic_offset_table_rtx, new); if (reg != 0) { emit_move_insn (reg, new); new = reg; } } else if (GET_CODE (addr) == SYMBOL_REF) { if (TARGET_64BIT) { new = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, addr), UNSPEC_GOTPCREL); new = gen_rtx_CONST (Pmode, new); new = gen_const_mem (Pmode, new); set_mem_alias_set (new, ix86_GOT_alias_set ()); if (reg == 0) reg = gen_reg_rtx (Pmode); /* Use directly gen_movsi, otherwise the address is loaded into register for CSE. We don't want to CSE this addresses, instead we CSE addresses from the GOT table, so skip this. */ emit_insn (gen_movsi (reg, new)); new = reg; } else { /* This symbol must be referenced via a load from the Global Offset Table (@GOT). */ if (reload_in_progress) regs_ever_live[PIC_OFFSET_TABLE_REGNUM] = 1; new = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, addr), UNSPEC_GOT); new = gen_rtx_CONST (Pmode, new); new = gen_rtx_PLUS (Pmode, pic_offset_table_rtx, new); new = gen_const_mem (Pmode, new); set_mem_alias_set (new, ix86_GOT_alias_set ()); if (reg == 0) reg = gen_reg_rtx (Pmode); emit_move_insn (reg, new); new = reg; } } else { if (GET_CODE (addr) == CONST) { addr = XEXP (addr, 0); /* We must match stuff we generate before. Assume the only unspecs that can get here are ours. Not that we could do anything with them anyway.... */ if (GET_CODE (addr) == UNSPEC || (GET_CODE (addr) == PLUS && GET_CODE (XEXP (addr, 0)) == UNSPEC)) return orig; if (GET_CODE (addr) != PLUS) abort (); } if (GET_CODE (addr) == PLUS) { rtx op0 = XEXP (addr, 0), op1 = XEXP (addr, 1); /* Check first to see if this is a constant offset from a @GOTOFF symbol reference. */ if (local_symbolic_operand (op0, Pmode) && GET_CODE (op1) == CONST_INT) { if (!TARGET_64BIT) { if (reload_in_progress) regs_ever_live[PIC_OFFSET_TABLE_REGNUM] = 1; new = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, op0), UNSPEC_GOTOFF); new = gen_rtx_PLUS (Pmode, new, op1); new = gen_rtx_CONST (Pmode, new); new = gen_rtx_PLUS (Pmode, pic_offset_table_rtx, new); if (reg != 0) { emit_move_insn (reg, new); new = reg; } } else { if (INTVAL (op1) < -16*1024*1024 || INTVAL (op1) >= 16*1024*1024) new = gen_rtx_PLUS (Pmode, force_reg (Pmode, op0), op1); } } else { base = legitimize_pic_address (XEXP (addr, 0), reg); new = legitimize_pic_address (XEXP (addr, 1), base == reg ? NULL_RTX : reg); if (GET_CODE (new) == CONST_INT) new = plus_constant (base, INTVAL (new)); else { if (GET_CODE (new) == PLUS && CONSTANT_P (XEXP (new, 1))) { base = gen_rtx_PLUS (Pmode, base, XEXP (new, 0)); new = XEXP (new, 1); } new = gen_rtx_PLUS (Pmode, base, new); } } } } return new; } /* Load the thread pointer. If TO_REG is true, force it into a register. */ static rtx get_thread_pointer (int to_reg) { rtx tp, reg, insn; tp = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, const0_rtx), UNSPEC_TP); if (!to_reg) return tp; reg = gen_reg_rtx (Pmode); insn = gen_rtx_SET (VOIDmode, reg, tp); insn = emit_insn (insn); return reg; } /* A subroutine of legitimize_address and ix86_expand_move. FOR_MOV is false if we expect this to be used for a memory address and true if we expect to load the address into a register. */ static rtx legitimize_tls_address (rtx x, enum tls_model model, int for_mov) { rtx dest, base, off, pic; int type; switch (model) { case TLS_MODEL_GLOBAL_DYNAMIC: dest = gen_reg_rtx (Pmode); if (TARGET_64BIT) { rtx rax = gen_rtx_REG (Pmode, 0), insns; start_sequence (); emit_call_insn (gen_tls_global_dynamic_64 (rax, x)); insns = get_insns (); end_sequence (); emit_libcall_block (insns, dest, rax, x); } else emit_insn (gen_tls_global_dynamic_32 (dest, x)); break; case TLS_MODEL_LOCAL_DYNAMIC: base = gen_reg_rtx (Pmode); if (TARGET_64BIT) { rtx rax = gen_rtx_REG (Pmode, 0), insns, note; start_sequence (); emit_call_insn (gen_tls_local_dynamic_base_64 (rax)); insns = get_insns (); end_sequence (); note = gen_rtx_EXPR_LIST (VOIDmode, const0_rtx, NULL); note = gen_rtx_EXPR_LIST (VOIDmode, ix86_tls_get_addr (), note); emit_libcall_block (insns, base, rax, note); } else emit_insn (gen_tls_local_dynamic_base_32 (base)); off = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, x), UNSPEC_DTPOFF); off = gen_rtx_CONST (Pmode, off); return gen_rtx_PLUS (Pmode, base, off); case TLS_MODEL_INITIAL_EXEC: if (TARGET_64BIT) { pic = NULL; type = UNSPEC_GOTNTPOFF; } else if (flag_pic) { if (reload_in_progress) regs_ever_live[PIC_OFFSET_TABLE_REGNUM] = 1; pic = pic_offset_table_rtx; type = TARGET_GNU_TLS ? UNSPEC_GOTNTPOFF : UNSPEC_GOTTPOFF; } else if (!TARGET_GNU_TLS) { pic = gen_reg_rtx (Pmode); emit_insn (gen_set_got (pic)); type = UNSPEC_GOTTPOFF; } else { pic = NULL; type = UNSPEC_INDNTPOFF; } off = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, x), type); off = gen_rtx_CONST (Pmode, off); if (pic) off = gen_rtx_PLUS (Pmode, pic, off); off = gen_const_mem (Pmode, off); set_mem_alias_set (off, ix86_GOT_alias_set ()); if (TARGET_64BIT || TARGET_GNU_TLS) { base = get_thread_pointer (for_mov || !TARGET_TLS_DIRECT_SEG_REFS); off = force_reg (Pmode, off); return gen_rtx_PLUS (Pmode, base, off); } else { base = get_thread_pointer (true); dest = gen_reg_rtx (Pmode); emit_insn (gen_subsi3 (dest, base, off)); } break; case TLS_MODEL_LOCAL_EXEC: off = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, x), (TARGET_64BIT || TARGET_GNU_TLS) ? UNSPEC_NTPOFF : UNSPEC_TPOFF); off = gen_rtx_CONST (Pmode, off); if (TARGET_64BIT || TARGET_GNU_TLS) { base = get_thread_pointer (for_mov || !TARGET_TLS_DIRECT_SEG_REFS); return gen_rtx_PLUS (Pmode, base, off); } else { base = get_thread_pointer (true); dest = gen_reg_rtx (Pmode); emit_insn (gen_subsi3 (dest, base, off)); } break; default: abort (); } return dest; } /* Try machine-dependent ways of modifying an illegitimate address to be legitimate. If we find one, return the new, valid address. This macro is used in only one place: `memory_address' in explow.c. OLDX is the address as it was before break_out_memory_refs was called. In some cases it is useful to look at this to decide what needs to be done. MODE and WIN are passed so that this macro can use GO_IF_LEGITIMATE_ADDRESS. It is always safe for this macro to do nothing. It exists to recognize opportunities to optimize the output. For the 80386, we handle X+REG by loading X into a register R and using R+REG. R will go in a general reg and indexing will be used. However, if REG is a broken-out memory address or multiplication, nothing needs to be done because REG can certainly go in a general reg. When -fpic is used, special handling is needed for symbolic references. See comments by legitimize_pic_address in i386.c for details. */ rtx legitimize_address (rtx x, rtx oldx ATTRIBUTE_UNUSED, enum machine_mode mode) { int changed = 0; unsigned log; if (TARGET_DEBUG_ADDR) { fprintf (stderr, "\n==========\nLEGITIMIZE_ADDRESS, mode = %s\n", GET_MODE_NAME (mode)); debug_rtx (x); } log = GET_CODE (x) == SYMBOL_REF ? SYMBOL_REF_TLS_MODEL (x) : 0; if (log) return legitimize_tls_address (x, log, false); if (GET_CODE (x) == CONST && GET_CODE (XEXP (x, 0)) == PLUS && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF && (log = SYMBOL_REF_TLS_MODEL (XEXP (XEXP (x, 0), 0)))) { rtx t = legitimize_tls_address (XEXP (XEXP (x, 0), 0), log, false); return gen_rtx_PLUS (Pmode, t, XEXP (XEXP (x, 0), 1)); } if (flag_pic && SYMBOLIC_CONST (x)) return legitimize_pic_address (x, 0); /* Canonicalize shifts by 0, 1, 2, 3 into multiply */ if (GET_CODE (x) == ASHIFT && GET_CODE (XEXP (x, 1)) == CONST_INT && (unsigned HOST_WIDE_INT) INTVAL (XEXP (x, 1)) < 4) { changed = 1; log = INTVAL (XEXP (x, 1)); x = gen_rtx_MULT (Pmode, force_reg (Pmode, XEXP (x, 0)), GEN_INT (1 << log)); } if (GET_CODE (x) == PLUS) { /* Canonicalize shifts by 0, 1, 2, 3 into multiply. */ if (GET_CODE (XEXP (x, 0)) == ASHIFT && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT && (unsigned HOST_WIDE_INT) INTVAL (XEXP (XEXP (x, 0), 1)) < 4) { changed = 1; log = INTVAL (XEXP (XEXP (x, 0), 1)); XEXP (x, 0) = gen_rtx_MULT (Pmode, force_reg (Pmode, XEXP (XEXP (x, 0), 0)), GEN_INT (1 << log)); } if (GET_CODE (XEXP (x, 1)) == ASHIFT && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT && (unsigned HOST_WIDE_INT) INTVAL (XEXP (XEXP (x, 1), 1)) < 4) { changed = 1; log = INTVAL (XEXP (XEXP (x, 1), 1)); XEXP (x, 1) = gen_rtx_MULT (Pmode, force_reg (Pmode, XEXP (XEXP (x, 1), 0)), GEN_INT (1 << log)); } /* Put multiply first if it isn't already. */ if (GET_CODE (XEXP (x, 1)) == MULT) { rtx tmp = XEXP (x, 0); XEXP (x, 0) = XEXP (x, 1); XEXP (x, 1) = tmp; changed = 1; } /* Canonicalize (plus (mult (reg) (const)) (plus (reg) (const))) into (plus (plus (mult (reg) (const)) (reg)) (const)). This can be created by virtual register instantiation, register elimination, and similar optimizations. */ if (GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == PLUS) { changed = 1; x = gen_rtx_PLUS (Pmode, gen_rtx_PLUS (Pmode, XEXP (x, 0), XEXP (XEXP (x, 1), 0)), XEXP (XEXP (x, 1), 1)); } /* Canonicalize (plus (plus (mult (reg) (const)) (plus (reg) (const))) const) into (plus (plus (mult (reg) (const)) (reg)) (const)). */ else if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 0)) == PLUS && GET_CODE (XEXP (XEXP (x, 0), 0)) == MULT && GET_CODE (XEXP (XEXP (x, 0), 1)) == PLUS && CONSTANT_P (XEXP (x, 1))) { rtx constant; rtx other = NULL_RTX; if (GET_CODE (XEXP (x, 1)) == CONST_INT) { constant = XEXP (x, 1); other = XEXP (XEXP (XEXP (x, 0), 1), 1); } else if (GET_CODE (XEXP (XEXP (XEXP (x, 0), 1), 1)) == CONST_INT) { constant = XEXP (XEXP (XEXP (x, 0), 1), 1); other = XEXP (x, 1); } else constant = 0; if (constant) { changed = 1; x = gen_rtx_PLUS (Pmode, gen_rtx_PLUS (Pmode, XEXP (XEXP (x, 0), 0), XEXP (XEXP (XEXP (x, 0), 1), 0)), plus_constant (other, INTVAL (constant))); } } if (changed && legitimate_address_p (mode, x, FALSE)) return x; if (GET_CODE (XEXP (x, 0)) == MULT) { changed = 1; XEXP (x, 0) = force_operand (XEXP (x, 0), 0); } if (GET_CODE (XEXP (x, 1)) == MULT) { changed = 1; XEXP (x, 1) = force_operand (XEXP (x, 1), 0); } if (changed && GET_CODE (XEXP (x, 1)) == REG && GET_CODE (XEXP (x, 0)) == REG) return x; if (flag_pic && SYMBOLIC_CONST (XEXP (x, 1))) { changed = 1; x = legitimize_pic_address (x, 0); } if (changed && legitimate_address_p (mode, x, FALSE)) return x; if (GET_CODE (XEXP (x, 0)) == REG) { rtx temp = gen_reg_rtx (Pmode); rtx val = force_operand (XEXP (x, 1), temp); if (val != temp) emit_move_insn (temp, val); XEXP (x, 1) = temp; return x; } else if (GET_CODE (XEXP (x, 1)) == REG) { rtx temp = gen_reg_rtx (Pmode); rtx val = force_operand (XEXP (x, 0), temp); if (val != temp) emit_move_insn (temp, val); XEXP (x, 0) = temp; return x; } } return x; } /* Print an integer constant expression in assembler syntax. Addition and subtraction are the only arithmetic that may appear in these expressions. FILE is the stdio stream to write to, X is the rtx, and CODE is the operand print code from the output string. */ static void output_pic_addr_const (FILE *file, rtx x, int code) { char buf[256]; switch (GET_CODE (x)) { case PC: if (flag_pic) putc ('.', file); else abort (); break; case SYMBOL_REF: /* Mark the decl as referenced so that cgraph will output the function. */ if (SYMBOL_REF_DECL (x)) mark_decl_referenced (SYMBOL_REF_DECL (x)); assemble_name (file, XSTR (x, 0)); if (!TARGET_MACHO && code == 'P' && ! SYMBOL_REF_LOCAL_P (x)) fputs ("@PLT", file); break; case LABEL_REF: x = XEXP (x, 0); /* FALLTHRU */ case CODE_LABEL: ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x)); assemble_name (asm_out_file, buf); break; case CONST_INT: fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x)); break; case CONST: /* This used to output parentheses around the expression, but that does not work on the 386 (either ATT or BSD assembler). */ output_pic_addr_const (file, XEXP (x, 0), code); break; case CONST_DOUBLE: if (GET_MODE (x) == VOIDmode) { /* We can use %d if the number is <32 bits and positive. */ if (CONST_DOUBLE_HIGH (x) || CONST_DOUBLE_LOW (x) < 0) fprintf (file, "0x%lx%08lx", (unsigned long) CONST_DOUBLE_HIGH (x), (unsigned long) CONST_DOUBLE_LOW (x)); else fprintf (file, HOST_WIDE_INT_PRINT_DEC, CONST_DOUBLE_LOW (x)); } else /* We can't handle floating point constants; PRINT_OPERAND must handle them. */ output_operand_lossage ("floating constant misused"); break; case PLUS: /* Some assemblers need integer constants to appear first. */ if (GET_CODE (XEXP (x, 0)) == CONST_INT) { output_pic_addr_const (file, XEXP (x, 0), code); putc ('+', file); output_pic_addr_const (file, XEXP (x, 1), code); } else if (GET_CODE (XEXP (x, 1)) == CONST_INT) { output_pic_addr_const (file, XEXP (x, 1), code); putc ('+', file); output_pic_addr_const (file, XEXP (x, 0), code); } else abort (); break; case MINUS: if (!TARGET_MACHO) putc (ASSEMBLER_DIALECT == ASM_INTEL ? '(' : '[', file); output_pic_addr_const (file, XEXP (x, 0), code); putc ('-', file); output_pic_addr_const (file, XEXP (x, 1), code); if (!TARGET_MACHO) putc (ASSEMBLER_DIALECT == ASM_INTEL ? ')' : ']', file); break; case UNSPEC: if (XVECLEN (x, 0) != 1) abort (); output_pic_addr_const (file, XVECEXP (x, 0, 0), code); switch (XINT (x, 1)) { case UNSPEC_GOT: fputs ("@GOT", file); break; case UNSPEC_GOTOFF: fputs ("@GOTOFF", file); break; case UNSPEC_GOTPCREL: fputs ("@GOTPCREL(%rip)", file); break; case UNSPEC_GOTTPOFF: /* FIXME: This might be @TPOFF in Sun ld too. */ fputs ("@GOTTPOFF", file); break; case UNSPEC_TPOFF: fputs ("@TPOFF", file); break; case UNSPEC_NTPOFF: if (TARGET_64BIT) fputs ("@TPOFF", file); else fputs ("@NTPOFF", file); break; case UNSPEC_DTPOFF: fputs ("@DTPOFF", file); break; case UNSPEC_GOTNTPOFF: if (TARGET_64BIT) fputs ("@GOTTPOFF(%rip)", file); else fputs ("@GOTNTPOFF", file); break; case UNSPEC_INDNTPOFF: fputs ("@INDNTPOFF", file); break; default: output_operand_lossage ("invalid UNSPEC as operand"); break; } break; default: output_operand_lossage ("invalid expression as operand"); } } /* This is called from dwarf2out.c via ASM_OUTPUT_DWARF_DTPREL. We need to emit DTP-relative relocations. */ void i386_output_dwarf_dtprel (FILE *file, int size, rtx x) { fputs (ASM_LONG, file); output_addr_const (file, x); fputs ("@DTPOFF", file); switch (size) { case 4: break; case 8: fputs (", 0", file); break; default: abort (); } } /* In the name of slightly smaller debug output, and to cater to general assembler losage, recognize PIC+GOTOFF and turn it back into a direct symbol reference. */ static rtx ix86_delegitimize_address (rtx orig_x) { rtx x = orig_x, y; if (GET_CODE (x) == MEM) x = XEXP (x, 0); if (TARGET_64BIT) { if (GET_CODE (x) != CONST || GET_CODE (XEXP (x, 0)) != UNSPEC || XINT (XEXP (x, 0), 1) != UNSPEC_GOTPCREL || GET_CODE (orig_x) != MEM) return orig_x; return XVECEXP (XEXP (x, 0), 0, 0); } if (GET_CODE (x) != PLUS || GET_CODE (XEXP (x, 1)) != CONST) return orig_x; if (GET_CODE (XEXP (x, 0)) == REG && REGNO (XEXP (x, 0)) == PIC_OFFSET_TABLE_REGNUM) /* %ebx + GOT/GOTOFF */ y = NULL; else if (GET_CODE (XEXP (x, 0)) == PLUS) { /* %ebx + %reg * scale + GOT/GOTOFF */ y = XEXP (x, 0); if (GET_CODE (XEXP (y, 0)) == REG && REGNO (XEXP (y, 0)) == PIC_OFFSET_TABLE_REGNUM) y = XEXP (y, 1); else if (GET_CODE (XEXP (y, 1)) == REG && REGNO (XEXP (y, 1)) == PIC_OFFSET_TABLE_REGNUM) y = XEXP (y, 0); else return orig_x; if (GET_CODE (y) != REG && GET_CODE (y) != MULT && GET_CODE (y) != ASHIFT) return orig_x; } else return orig_x; x = XEXP (XEXP (x, 1), 0); if (GET_CODE (x) == UNSPEC && ((XINT (x, 1) == UNSPEC_GOT && GET_CODE (orig_x) == MEM) || (XINT (x, 1) == UNSPEC_GOTOFF && GET_CODE (orig_x) != MEM))) { if (y) return gen_rtx_PLUS (Pmode, y, XVECEXP (x, 0, 0)); return XVECEXP (x, 0, 0); } if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 0)) == UNSPEC && GET_CODE (XEXP (x, 1)) == CONST_INT && ((XINT (XEXP (x, 0), 1) == UNSPEC_GOT && GET_CODE (orig_x) == MEM) || (XINT (XEXP (x, 0), 1) == UNSPEC_GOTOFF && GET_CODE (orig_x) != MEM))) { x = gen_rtx_PLUS (VOIDmode, XVECEXP (XEXP (x, 0), 0, 0), XEXP (x, 1)); if (y) return gen_rtx_PLUS (Pmode, y, x); return x; } return orig_x; } static void put_condition_code (enum rtx_code code, enum machine_mode mode, int reverse, int fp, FILE *file) { const char *suffix; if (mode == CCFPmode || mode == CCFPUmode) { enum rtx_code second_code, bypass_code; ix86_fp_comparison_codes (code, &bypass_code, &code, &second_code); if (bypass_code != UNKNOWN || second_code != UNKNOWN) abort (); code = ix86_fp_compare_code_to_integer (code); mode = CCmode; } if (reverse) code = reverse_condition (code); switch (code) { case EQ: suffix = "e"; break; case NE: suffix = "ne"; break; case GT: if (mode != CCmode && mode != CCNOmode && mode != CCGCmode) abort (); suffix = "g"; break; case GTU: /* ??? Use "nbe" instead of "a" for fcmov losage on some assemblers. Those same assemblers have the same but opposite losage on cmov. */ if (mode != CCmode) abort (); suffix = fp ? "nbe" : "a"; break; case LT: if (mode == CCNOmode || mode == CCGOCmode) suffix = "s"; else if (mode == CCmode || mode == CCGCmode) suffix = "l"; else abort (); break; case LTU: if (mode != CCmode) abort (); suffix = "b"; break; case GE: if (mode == CCNOmode || mode == CCGOCmode) suffix = "ns"; else if (mode == CCmode || mode == CCGCmode) suffix = "ge"; else abort (); break; case GEU: /* ??? As above. */ if (mode != CCmode) abort (); suffix = fp ? "nb" : "ae"; break; case LE: if (mode != CCmode && mode != CCGCmode && mode != CCNOmode) abort (); suffix = "le"; break; case LEU: if (mode != CCmode) abort (); suffix = "be"; break; case UNORDERED: suffix = fp ? "u" : "p"; break; case ORDERED: suffix = fp ? "nu" : "np"; break; default: abort (); } fputs (suffix, file); } /* Print the name of register X to FILE based on its machine mode and number. If CODE is 'w', pretend the mode is HImode. If CODE is 'b', pretend the mode is QImode. If CODE is 'k', pretend the mode is SImode. If CODE is 'q', pretend the mode is DImode. If CODE is 'h', pretend the reg is the `high' byte register. If CODE is 'y', print "st(0)" instead of "st", if the reg is stack op. */ void print_reg (rtx x, int code, FILE *file) { if (REGNO (x) == ARG_POINTER_REGNUM || REGNO (x) == FRAME_POINTER_REGNUM || REGNO (x) == FLAGS_REG || REGNO (x) == FPSR_REG) abort (); if (ASSEMBLER_DIALECT == ASM_ATT || USER_LABEL_PREFIX[0] == 0) putc ('%', file); if (code == 'w' || MMX_REG_P (x)) code = 2; else if (code == 'b') code = 1; else if (code == 'k') code = 4; else if (code == 'q') code = 8; else if (code == 'y') code = 3; else if (code == 'h') code = 0; else code = GET_MODE_SIZE (GET_MODE (x)); /* Irritatingly, AMD extended registers use different naming convention from the normal registers. */ if (REX_INT_REG_P (x)) { if (!TARGET_64BIT) abort (); switch (code) { case 0: error ("extended registers have no high halves"); break; case 1: fprintf (file, "r%ib", REGNO (x) - FIRST_REX_INT_REG + 8); break; case 2: fprintf (file, "r%iw", REGNO (x) - FIRST_REX_INT_REG + 8); break; case 4: fprintf (file, "r%id", REGNO (x) - FIRST_REX_INT_REG + 8); break; case 8: fprintf (file, "r%i", REGNO (x) - FIRST_REX_INT_REG + 8); break; default: error ("unsupported operand size for extended register"); break; } return; } switch (code) { case 3: if (STACK_TOP_P (x)) { fputs ("st(0)", file); break; } /* FALLTHRU */ case 8: case 4: case 12: if (! ANY_FP_REG_P (x)) putc (code == 8 && TARGET_64BIT ? 'r' : 'e', file); /* FALLTHRU */ case 16: case 2: normal: fputs (hi_reg_name[REGNO (x)], file); break; case 1: if (REGNO (x) >= ARRAY_SIZE (qi_reg_name)) goto normal; fputs (qi_reg_name[REGNO (x)], file); break; case 0: if (REGNO (x) >= ARRAY_SIZE (qi_high_reg_name)) goto normal; fputs (qi_high_reg_name[REGNO (x)], file); break; default: abort (); } } /* Locate some local-dynamic symbol still in use by this function so that we can print its name in some tls_local_dynamic_base pattern. */ static const char * get_some_local_dynamic_name (void) { rtx insn; if (cfun->machine->some_ld_name) return cfun->machine->some_ld_name; for (insn = get_insns (); insn ; insn = NEXT_INSN (insn)) if (INSN_P (insn) && for_each_rtx (&PATTERN (insn), get_some_local_dynamic_name_1, 0)) return cfun->machine->some_ld_name; abort (); } static int get_some_local_dynamic_name_1 (rtx *px, void *data ATTRIBUTE_UNUSED) { rtx x = *px; if (GET_CODE (x) == SYMBOL_REF && local_dynamic_symbolic_operand (x, Pmode)) { cfun->machine->some_ld_name = XSTR (x, 0); return 1; } return 0; } /* Meaning of CODE: L,W,B,Q,S,T -- print the opcode suffix for specified size of operand. C -- print opcode suffix for set/cmov insn. c -- like C, but print reversed condition F,f -- likewise, but for floating-point. O -- if HAVE_AS_IX86_CMOV_SUN_SYNTAX, expand to "w.", "l." or "q.", otherwise nothing R -- print the prefix for register names. z -- print the opcode suffix for the size of the current operand. * -- print a star (in certain assembler syntax) A -- print an absolute memory reference. w -- print the operand as if it's a "word" (HImode) even if it isn't. s -- print a shift double count, followed by the assemblers argument delimiter. b -- print the QImode name of the register for the indicated operand. %b0 would print %al if operands[0] is reg 0. w -- likewise, print the HImode name of the register. k -- likewise, print the SImode name of the register. q -- likewise, print the DImode name of the register. h -- print the QImode name for a "high" register, either ah, bh, ch or dh. y -- print "st(0)" instead of "st" as a register. D -- print condition for SSE cmp instruction. P -- if PIC, print an @PLT suffix. X -- don't print any sort of PIC '@' suffix for a symbol. & -- print some in-use local-dynamic symbol name. H -- print a memory address offset by 8; used for sse high-parts */ void print_operand (FILE *file, rtx x, int code) { if (code) { switch (code) { case '*': if (ASSEMBLER_DIALECT == ASM_ATT) putc ('*', file); return; case '&': assemble_name (file, get_some_local_dynamic_name ()); return; case 'A': if (ASSEMBLER_DIALECT == ASM_ATT) putc ('*', file); else if (ASSEMBLER_DIALECT == ASM_INTEL) { /* Intel syntax. For absolute addresses, registers should not be surrounded by braces. */ if (GET_CODE (x) != REG) { putc ('[', file); PRINT_OPERAND (file, x, 0); putc (']', file); return; } } else abort (); PRINT_OPERAND (file, x, 0); return; case 'L': if (ASSEMBLER_DIALECT == ASM_ATT) putc ('l', file); return; case 'W': if (ASSEMBLER_DIALECT == ASM_ATT) putc ('w', file); return; case 'B': if (ASSEMBLER_DIALECT == ASM_ATT) putc ('b', file); return; case 'Q': if (ASSEMBLER_DIALECT == ASM_ATT) putc ('l', file); return; case 'S': if (ASSEMBLER_DIALECT == ASM_ATT) putc ('s', file); return; case 'T': if (ASSEMBLER_DIALECT == ASM_ATT) putc ('t', file); return; case 'z': /* 387 opcodes don't get size suffixes if the operands are registers. */ if (STACK_REG_P (x)) return; /* Likewise if using Intel opcodes. */ if (ASSEMBLER_DIALECT == ASM_INTEL) return; /* This is the size of op from size of operand. */ switch (GET_MODE_SIZE (GET_MODE (x))) { case 2: #ifdef HAVE_GAS_FILDS_FISTS putc ('s', file); #endif return; case 4: if (GET_MODE (x) == SFmode) { putc ('s', file); return; } else putc ('l', file); return; case 12: case 16: putc ('t', file); return; case 8: if (GET_MODE_CLASS (GET_MODE (x)) == MODE_INT) { #ifdef GAS_MNEMONICS putc ('q', file); #else putc ('l', file); putc ('l', file); #endif } else putc ('l', file); return; default: abort (); } case 'b': case 'w': case 'k': case 'q': case 'h': case 'y': case 'X': case 'P': break; case 's': if (GET_CODE (x) == CONST_INT || ! SHIFT_DOUBLE_OMITS_COUNT) { PRINT_OPERAND (file, x, 0); putc (',', file); } return; case 'D': /* Little bit of braindamage here. The SSE compare instructions does use completely different names for the comparisons that the fp conditional moves. */ switch (GET_CODE (x)) { case EQ: case UNEQ: fputs ("eq", file); break; case LT: case UNLT: fputs ("lt", file); break; case LE: case UNLE: fputs ("le", file); break; case UNORDERED: fputs ("unord", file); break; case NE: case LTGT: fputs ("neq", file); break; case UNGE: case GE: fputs ("nlt", file); break; case UNGT: case GT: fputs ("nle", file); break; case ORDERED: fputs ("ord", file); break; default: abort (); break; } return; case 'O': #ifdef HAVE_AS_IX86_CMOV_SUN_SYNTAX if (ASSEMBLER_DIALECT == ASM_ATT) { switch (GET_MODE (x)) { case HImode: putc ('w', file); break; case SImode: case SFmode: putc ('l', file); break; case DImode: case DFmode: putc ('q', file); break; default: abort (); } putc ('.', file); } #endif return; case 'C': put_condition_code (GET_CODE (x), GET_MODE (XEXP (x, 0)), 0, 0, file); return; case 'F': #ifdef HAVE_AS_IX86_CMOV_SUN_SYNTAX if (ASSEMBLER_DIALECT == ASM_ATT) putc ('.', file); #endif put_condition_code (GET_CODE (x), GET_MODE (XEXP (x, 0)), 0, 1, file); return; /* Like above, but reverse condition */ case 'c': /* Check to see if argument to %c is really a constant and not a condition code which needs to be reversed. */ if (!COMPARISON_P (x)) { output_operand_lossage ("operand is neither a constant nor a condition code, invalid operand code 'c'"); return; } put_condition_code (GET_CODE (x), GET_MODE (XEXP (x, 0)), 1, 0, file); return; case 'f': #ifdef HAVE_AS_IX86_CMOV_SUN_SYNTAX if (ASSEMBLER_DIALECT == ASM_ATT) putc ('.', file); #endif put_condition_code (GET_CODE (x), GET_MODE (XEXP (x, 0)), 1, 1, file); return; case 'H': /* It doesn't actually matter what mode we use here, as we're only going to use this for printing. */ x = adjust_address_nv (x, DImode, 8); break; case '+': { rtx x; if (!optimize || optimize_size || !TARGET_BRANCH_PREDICTION_HINTS) return; x = find_reg_note (current_output_insn, REG_BR_PROB, 0); if (x) { int pred_val = INTVAL (XEXP (x, 0)); if (pred_val < REG_BR_PROB_BASE * 45 / 100 || pred_val > REG_BR_PROB_BASE * 55 / 100) { int taken = pred_val > REG_BR_PROB_BASE / 2; int cputaken = final_forward_branch_p (current_output_insn) == 0; /* Emit hints only in the case default branch prediction heuristics would fail. */ if (taken != cputaken) { /* We use 3e (DS) prefix for taken branches and 2e (CS) prefix for not taken branches. */ if (taken) fputs ("ds ; ", file); else fputs ("cs ; ", file); } } } return; } default: output_operand_lossage ("invalid operand code '%c'", code); } } if (GET_CODE (x) == REG) print_reg (x, code, file); else if (GET_CODE (x) == MEM) { /* No `byte ptr' prefix for call instructions. */ if (ASSEMBLER_DIALECT == ASM_INTEL && code != 'X' && code != 'P') { const char * size; switch (GET_MODE_SIZE (GET_MODE (x))) { case 1: size = "BYTE"; break; case 2: size = "WORD"; break; case 4: size = "DWORD"; break; case 8: size = "QWORD"; break; case 12: size = "XWORD"; break; case 16: size = "XMMWORD"; break; default: abort (); } /* Check for explicit size override (codes 'b', 'w' and 'k') */ if (code == 'b') size = "BYTE"; else if (code == 'w') size = "WORD"; else if (code == 'k') size = "DWORD"; fputs (size, file); fputs (" PTR ", file); } x = XEXP (x, 0); /* Avoid (%rip) for call operands. */ if (CONSTANT_ADDRESS_P (x) && code == 'P' && GET_CODE (x) != CONST_INT) output_addr_const (file, x); else if (this_is_asm_operands && ! address_operand (x, VOIDmode)) output_operand_lossage ("invalid constraints for operand"); else output_address (x); } else if (GET_CODE (x) == CONST_DOUBLE && GET_MODE (x) == SFmode) { REAL_VALUE_TYPE r; long l; REAL_VALUE_FROM_CONST_DOUBLE (r, x); REAL_VALUE_TO_TARGET_SINGLE (r, l); if (ASSEMBLER_DIALECT == ASM_ATT) putc ('$', file); fprintf (file, "0x%08lx", l); } /* These float cases don't actually occur as immediate operands. */ else if (GET_CODE (x) == CONST_DOUBLE && GET_MODE (x) == DFmode) { char dstr[30]; real_to_decimal (dstr, CONST_DOUBLE_REAL_VALUE (x), sizeof (dstr), 0, 1); fprintf (file, "%s", dstr); } else if (GET_CODE (x) == CONST_DOUBLE && GET_MODE (x) == XFmode) { char dstr[30]; real_to_decimal (dstr, CONST_DOUBLE_REAL_VALUE (x), sizeof (dstr), 0, 1); fprintf (file, "%s", dstr); } else { /* We have patterns that allow zero sets of memory, for instance. In 64-bit mode, we should probably support all 8-byte vectors, since we can in fact encode that into an immediate. */ if (GET_CODE (x) == CONST_VECTOR) { if (x == CONST0_RTX (GET_MODE (x))) x = const0_rtx; else abort (); } if (code != 'P') { if (GET_CODE (x) == CONST_INT || GET_CODE (x) == CONST_DOUBLE) { if (ASSEMBLER_DIALECT == ASM_ATT) putc ('$', file); } else if (GET_CODE (x) == CONST || GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == LABEL_REF) { if (ASSEMBLER_DIALECT == ASM_ATT) putc ('$', file); else fputs ("OFFSET FLAT:", file); } } if (GET_CODE (x) == CONST_INT) fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x)); else if (flag_pic) output_pic_addr_const (file, x, code); else output_addr_const (file, x); } } /* Print a memory operand whose address is ADDR. */ void print_operand_address (FILE *file, rtx addr) { struct ix86_address parts; rtx base, index, disp; int scale; if (! ix86_decompose_address (addr, &parts)) abort (); base = parts.base; index = parts.index; disp = parts.disp; scale = parts.scale; switch (parts.seg) { case SEG_DEFAULT: break; case SEG_FS: case SEG_GS: if (USER_LABEL_PREFIX[0] == 0) putc ('%', file); fputs ((parts.seg == SEG_FS ? "fs:" : "gs:"), file); break; default: abort (); } if (!base && !index) { /* Displacement only requires special attention. */ if (GET_CODE (disp) == CONST_INT) { if (ASSEMBLER_DIALECT == ASM_INTEL && parts.seg == SEG_DEFAULT) { if (USER_LABEL_PREFIX[0] == 0) putc ('%', file); fputs ("ds:", file); } fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (disp)); } else if (flag_pic) output_pic_addr_const (file, disp, 0); else output_addr_const (file, disp); /* Use one byte shorter RIP relative addressing for 64bit mode. */ if (TARGET_64BIT && ((GET_CODE (disp) == SYMBOL_REF && ! tls_symbolic_operand (disp, GET_MODE (disp))) || GET_CODE (disp) == LABEL_REF || (GET_CODE (disp) == CONST && GET_CODE (XEXP (disp, 0)) == PLUS && (GET_CODE (XEXP (XEXP (disp, 0), 0)) == SYMBOL_REF || GET_CODE (XEXP (XEXP (disp, 0), 0)) == LABEL_REF) && GET_CODE (XEXP (XEXP (disp, 0), 1)) == CONST_INT))) fputs ("(%rip)", file); } else { if (ASSEMBLER_DIALECT == ASM_ATT) { if (disp) { if (flag_pic) output_pic_addr_const (file, disp, 0); else if (GET_CODE (disp) == LABEL_REF) output_asm_label (disp); else output_addr_const (file, disp); } putc ('(', file); if (base) print_reg (base, 0, file); if (index) { putc (',', file); print_reg (index, 0, file); if (scale != 1) fprintf (file, ",%d", scale); } putc (')', file); } else { rtx offset = NULL_RTX; if (disp) { /* Pull out the offset of a symbol; print any symbol itself. */ if (GET_CODE (disp) == CONST && GET_CODE (XEXP (disp, 0)) == PLUS && GET_CODE (XEXP (XEXP (disp, 0), 1)) == CONST_INT) { offset = XEXP (XEXP (disp, 0), 1); disp = gen_rtx_CONST (VOIDmode, XEXP (XEXP (disp, 0), 0)); } if (flag_pic) output_pic_addr_const (file, disp, 0); else if (GET_CODE (disp) == LABEL_REF) output_asm_label (disp); else if (GET_CODE (disp) == CONST_INT) offset = disp; else output_addr_const (file, disp); } putc ('[', file); if (base) { print_reg (base, 0, file); if (offset) { if (INTVAL (offset) >= 0) putc ('+', file); fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (offset)); } } else if (offset) fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (offset)); else putc ('0', file); if (index) { putc ('+', file); print_reg (index, 0, file); if (scale != 1) fprintf (file, "*%d", scale); } putc (']', file); } } } bool output_addr_const_extra (FILE *file, rtx x) { rtx op; if (GET_CODE (x) != UNSPEC) return false; op = XVECEXP (x, 0, 0); switch (XINT (x, 1)) { case UNSPEC_GOTTPOFF: output_addr_const (file, op); /* FIXME: This might be @TPOFF in Sun ld. */ fputs ("@GOTTPOFF", file); break; case UNSPEC_TPOFF: output_addr_const (file, op); fputs ("@TPOFF", file); break; case UNSPEC_NTPOFF: output_addr_const (file, op); if (TARGET_64BIT) fputs ("@TPOFF", file); else fputs ("@NTPOFF", file); break; case UNSPEC_DTPOFF: output_addr_const (file, op); fputs ("@DTPOFF", file); break; case UNSPEC_GOTNTPOFF: output_addr_const (file, op); if (TARGET_64BIT) fputs ("@GOTTPOFF(%rip)", file); else fputs ("@GOTNTPOFF", file); break; case UNSPEC_INDNTPOFF: output_addr_const (file, op); fputs ("@INDNTPOFF", file); break; default: return false; } return true; } /* Split one or more DImode RTL references into pairs of SImode references. The RTL can be REG, offsettable MEM, integer constant, or CONST_DOUBLE. "operands" is a pointer to an array of DImode RTL to split and "num" is its length. lo_half and hi_half are output arrays that parallel "operands". */ void split_di (rtx operands[], int num, rtx lo_half[], rtx hi_half[]) { while (num--) { rtx op = operands[num]; /* simplify_subreg refuse to split volatile memory addresses, but we still have to handle it. */ if (GET_CODE (op) == MEM) { lo_half[num] = adjust_address (op, SImode, 0); hi_half[num] = adjust_address (op, SImode, 4); } else { lo_half[num] = simplify_gen_subreg (SImode, op, GET_MODE (op) == VOIDmode ? DImode : GET_MODE (op), 0); hi_half[num] = simplify_gen_subreg (SImode, op, GET_MODE (op) == VOIDmode ? DImode : GET_MODE (op), 4); } } } /* Split one or more TImode RTL references into pairs of SImode references. The RTL can be REG, offsettable MEM, integer constant, or CONST_DOUBLE. "operands" is a pointer to an array of DImode RTL to split and "num" is its length. lo_half and hi_half are output arrays that parallel "operands". */ void split_ti (rtx operands[], int num, rtx lo_half[], rtx hi_half[]) { while (num--) { rtx op = operands[num]; /* simplify_subreg refuse to split volatile memory addresses, but we still have to handle it. */ if (GET_CODE (op) == MEM) { lo_half[num] = adjust_address (op, DImode, 0); hi_half[num] = adjust_address (op, DImode, 8); } else { lo_half[num] = simplify_gen_subreg (DImode, op, TImode, 0); hi_half[num] = simplify_gen_subreg (DImode, op, TImode, 8); } } } /* Output code to perform a 387 binary operation in INSN, one of PLUS, MINUS, MULT or DIV. OPERANDS are the insn operands, where operands[3] is the expression of the binary operation. The output may either be emitted here, or returned to the caller, like all output_* functions. There is no guarantee that the operands are the same mode, as they might be within FLOAT or FLOAT_EXTEND expressions. */ #ifndef SYSV386_COMPAT /* Set to 1 for compatibility with brain-damaged assemblers. No-one wants to fix the assemblers because that causes incompatibility with gcc. No-one wants to fix gcc because that causes incompatibility with assemblers... You can use the option of -DSYSV386_COMPAT=0 if you recompile both gcc and gas this way. */ #define SYSV386_COMPAT 1 #endif const char * output_387_binary_op (rtx insn, rtx *operands) { static char buf[30]; const char *p; const char *ssep; int is_sse = SSE_REG_P (operands[0]) || SSE_REG_P (operands[1]) || SSE_REG_P (operands[2]); #ifdef ENABLE_CHECKING /* Even if we do not want to check the inputs, this documents input constraints. Which helps in understanding the following code. */ if (STACK_REG_P (operands[0]) && ((REG_P (operands[1]) && REGNO (operands[0]) == REGNO (operands[1]) && (STACK_REG_P (operands[2]) || GET_CODE (operands[2]) == MEM)) || (REG_P (operands[2]) && REGNO (operands[0]) == REGNO (operands[2]) && (STACK_REG_P (operands[1]) || GET_CODE (operands[1]) == MEM))) && (STACK_TOP_P (operands[1]) || STACK_TOP_P (operands[2]))) ; /* ok */ else if (!is_sse) abort (); #endif switch (GET_CODE (operands[3])) { case PLUS: if (GET_MODE_CLASS (GET_MODE (operands[1])) == MODE_INT || GET_MODE_CLASS (GET_MODE (operands[2])) == MODE_INT) p = "fiadd"; else p = "fadd"; ssep = "add"; break; case MINUS: if (GET_MODE_CLASS (GET_MODE (operands[1])) == MODE_INT || GET_MODE_CLASS (GET_MODE (operands[2])) == MODE_INT) p = "fisub"; else p = "fsub"; ssep = "sub"; break; case MULT: if (GET_MODE_CLASS (GET_MODE (operands[1])) == MODE_INT || GET_MODE_CLASS (GET_MODE (operands[2])) == MODE_INT) p = "fimul"; else p = "fmul"; ssep = "mul"; break; case DIV: if (GET_MODE_CLASS (GET_MODE (operands[1])) == MODE_INT || GET_MODE_CLASS (GET_MODE (operands[2])) == MODE_INT) p = "fidiv"; else p = "fdiv"; ssep = "div"; break; default: abort (); } if (is_sse) { strcpy (buf, ssep); if (GET_MODE (operands[0]) == SFmode) strcat (buf, "ss\t{%2, %0|%0, %2}"); else strcat (buf, "sd\t{%2, %0|%0, %2}"); return buf; } strcpy (buf, p); switch (GET_CODE (operands[3])) { case MULT: case PLUS: if (REG_P (operands[2]) && REGNO (operands[0]) == REGNO (operands[2])) { rtx temp = operands[2]; operands[2] = operands[1]; operands[1] = temp; } /* know operands[0] == operands[1]. */ if (GET_CODE (operands[2]) == MEM) { p = "%z2\t%2"; break; } if (find_regno_note (insn, REG_DEAD, REGNO (operands[2]))) { if (STACK_TOP_P (operands[0])) /* How is it that we are storing to a dead operand[2]? Well, presumably operands[1] is dead too. We can't store the result to st(0) as st(0) gets popped on this instruction. Instead store to operands[2] (which I think has to be st(1)). st(1) will be popped later. gcc <= 2.8.1 didn't have this check and generated assembly code that the Unixware assembler rejected. */ p = "p\t{%0, %2|%2, %0}"; /* st(1) = st(0) op st(1); pop */ else p = "p\t{%2, %0|%0, %2}"; /* st(r1) = st(r1) op st(0); pop */ break; } if (STACK_TOP_P (operands[0])) p = "\t{%y2, %0|%0, %y2}"; /* st(0) = st(0) op st(r2) */ else p = "\t{%2, %0|%0, %2}"; /* st(r1) = st(r1) op st(0) */ break; case MINUS: case DIV: if (GET_CODE (operands[1]) == MEM) { p = "r%z1\t%1"; break; } if (GET_CODE (operands[2]) == MEM) { p = "%z2\t%2"; break; } if (find_regno_note (insn, REG_DEAD, REGNO (operands[2]))) { #if SYSV386_COMPAT /* The SystemV/386 SVR3.2 assembler, and probably all AT&T derived assemblers, confusingly reverse the direction of the operation for fsub{r} and fdiv{r} when the destination register is not st(0). The Intel assembler doesn't have this brain damage. Read !SYSV386_COMPAT to figure out what the hardware really does. */ if (STACK_TOP_P (operands[0])) p = "{p\t%0, %2|rp\t%2, %0}"; else p = "{rp\t%2, %0|p\t%0, %2}"; #else if (STACK_TOP_P (operands[0])) /* As above for fmul/fadd, we can't store to st(0). */ p = "rp\t{%0, %2|%2, %0}"; /* st(1) = st(0) op st(1); pop */ else p = "p\t{%2, %0|%0, %2}"; /* st(r1) = st(r1) op st(0); pop */ #endif break; } if (find_regno_note (insn, REG_DEAD, REGNO (operands[1]))) { #if SYSV386_COMPAT if (STACK_TOP_P (operands[0])) p = "{rp\t%0, %1|p\t%1, %0}"; else p = "{p\t%1, %0|rp\t%0, %1}"; #else if (STACK_TOP_P (operands[0])) p = "p\t{%0, %1|%1, %0}"; /* st(1) = st(1) op st(0); pop */ else p = "rp\t{%1, %0|%0, %1}"; /* st(r2) = st(0) op st(r2); pop */ #endif break; } if (STACK_TOP_P (operands[0])) { if (STACK_TOP_P (operands[1])) p = "\t{%y2, %0|%0, %y2}"; /* st(0) = st(0) op st(r2) */ else p = "r\t{%y1, %0|%0, %y1}"; /* st(0) = st(r1) op st(0) */ break; } else if (STACK_TOP_P (operands[1])) { #if SYSV386_COMPAT p = "{\t%1, %0|r\t%0, %1}"; #else p = "r\t{%1, %0|%0, %1}"; /* st(r2) = st(0) op st(r2) */ #endif } else { #if SYSV386_COMPAT p = "{r\t%2, %0|\t%0, %2}"; #else p = "\t{%2, %0|%0, %2}"; /* st(r1) = st(r1) op st(0) */ #endif } break; default: abort (); } strcat (buf, p); return buf; } /* Output code to initialize control word copies used by trunc?f?i and rounding patterns. CURRENT_MODE is set to current control word, while NEW_MODE is set to new control word. */ void emit_i387_cw_initialization (rtx current_mode, rtx new_mode, int mode) { rtx reg = gen_reg_rtx (HImode); emit_insn (gen_x86_fnstcw_1 (current_mode)); emit_move_insn (reg, current_mode); if (!TARGET_PARTIAL_REG_STALL && !optimize_size && !TARGET_64BIT) { switch (mode) { case I387_CW_FLOOR: /* round down toward -oo */ emit_insn (gen_movsi_insv_1 (reg, GEN_INT (0x4))); break; case I387_CW_CEIL: /* round up toward +oo */ emit_insn (gen_movsi_insv_1 (reg, GEN_INT (0x8))); break; case I387_CW_TRUNC: /* round toward zero (truncate) */ emit_insn (gen_movsi_insv_1 (reg, GEN_INT (0xc))); break; case I387_CW_MASK_PM: /* mask precision exception for nearbyint() */ emit_insn (gen_iorhi3 (reg, reg, GEN_INT (0x0020))); break; default: abort(); } } else { switch (mode) { case I387_CW_FLOOR: /* round down toward -oo */ emit_insn (gen_andhi3 (reg, reg, GEN_INT (~0x0c00))); emit_insn (gen_iorhi3 (reg, reg, GEN_INT (0x0400))); break; case I387_CW_CEIL: /* round up toward +oo */ emit_insn (gen_andhi3 (reg, reg, GEN_INT (~0x0c00))); emit_insn (gen_iorhi3 (reg, reg, GEN_INT (0x0800))); break; case I387_CW_TRUNC: /* round toward zero (truncate) */ emit_insn (gen_iorhi3 (reg, reg, GEN_INT (0x0c00))); break; case I387_CW_MASK_PM: /* mask precision exception for nearbyint() */ emit_insn (gen_iorhi3 (reg, reg, GEN_INT (0x0020))); break; default: abort(); } } emit_move_insn (new_mode, reg); } /* Output code for INSN to convert a float to a signed int. OPERANDS are the insn operands. The output may be [HSD]Imode and the input operand may be [SDX]Fmode. */ const char * output_fix_trunc (rtx insn, rtx *operands) { int stack_top_dies = find_regno_note (insn, REG_DEAD, FIRST_STACK_REG) != 0; int dimode_p = GET_MODE (operands[0]) == DImode; /* Jump through a hoop or two for DImode, since the hardware has no non-popping instruction. We used to do this a different way, but that was somewhat fragile and broke with post-reload splitters. */ if (dimode_p && !stack_top_dies) output_asm_insn ("fld\t%y1", operands); if (!STACK_TOP_P (operands[1])) abort (); if (GET_CODE (operands[0]) != MEM) abort (); output_asm_insn ("fldcw\t%3", operands); if (stack_top_dies || dimode_p) output_asm_insn ("fistp%z0\t%0", operands); else output_asm_insn ("fist%z0\t%0", operands); output_asm_insn ("fldcw\t%2", operands); return ""; } /* Output code for INSN to compare OPERANDS. EFLAGS_P is 1 when fcomi should be used. UNORDERED_P is true when fucom should be used. */ const char * output_fp_compare (rtx insn, rtx *operands, int eflags_p, int unordered_p) { int stack_top_dies; rtx cmp_op0, cmp_op1; int is_sse = SSE_REG_P (operands[0]) || SSE_REG_P (operands[1]); if (eflags_p) { cmp_op0 = operands[0]; cmp_op1 = operands[1]; } else { cmp_op0 = operands[1]; cmp_op1 = operands[2]; } if (is_sse) { if (GET_MODE (operands[0]) == SFmode) if (unordered_p) return "ucomiss\t{%1, %0|%0, %1}"; else return "comiss\t{%1, %0|%0, %1}"; else if (unordered_p) return "ucomisd\t{%1, %0|%0, %1}"; else return "comisd\t{%1, %0|%0, %1}"; } if (! STACK_TOP_P (cmp_op0)) abort (); stack_top_dies = find_regno_note (insn, REG_DEAD, FIRST_STACK_REG) != 0; if (cmp_op1 == CONST0_RTX (GET_MODE (cmp_op1))) { if (stack_top_dies) { output_asm_insn ("ftst\n\tfnstsw\t%0", operands); return TARGET_USE_FFREEP ? "ffreep\t%y1" : "fstp\t%y1"; } else return "ftst\n\tfnstsw\t%0"; } if (STACK_REG_P (cmp_op1) && stack_top_dies && find_regno_note (insn, REG_DEAD, REGNO (cmp_op1)) && REGNO (cmp_op1) != FIRST_STACK_REG) { /* If both the top of the 387 stack dies, and the other operand is also a stack register that dies, then this must be a `fcompp' float compare */ if (eflags_p) { /* There is no double popping fcomi variant. Fortunately, eflags is immune from the fstp's cc clobbering. */ if (unordered_p) output_asm_insn ("fucomip\t{%y1, %0|%0, %y1}", operands); else output_asm_insn ("fcomip\t{%y1, %0|%0, %y1}", operands); return TARGET_USE_FFREEP ? "ffreep\t%y0" : "fstp\t%y0"; } else { if (unordered_p) return "fucompp\n\tfnstsw\t%0"; else return "fcompp\n\tfnstsw\t%0"; } } else { /* Encoded here as eflags_p | intmode | unordered_p | stack_top_dies. */ static const char * const alt[16] = { "fcom%z2\t%y2\n\tfnstsw\t%0", "fcomp%z2\t%y2\n\tfnstsw\t%0", "fucom%z2\t%y2\n\tfnstsw\t%0", "fucomp%z2\t%y2\n\tfnstsw\t%0", "ficom%z2\t%y2\n\tfnstsw\t%0", "ficomp%z2\t%y2\n\tfnstsw\t%0", NULL, NULL, "fcomi\t{%y1, %0|%0, %y1}", "fcomip\t{%y1, %0|%0, %y1}", "fucomi\t{%y1, %0|%0, %y1}", "fucomip\t{%y1, %0|%0, %y1}", NULL, NULL, NULL, NULL }; int mask; const char *ret; mask = eflags_p << 3; mask |= (GET_MODE_CLASS (GET_MODE (cmp_op1)) == MODE_INT) << 2; mask |= unordered_p << 1; mask |= stack_top_dies; if (mask >= 16) abort (); ret = alt[mask]; if (ret == NULL) abort (); return ret; } } void ix86_output_addr_vec_elt (FILE *file, int value) { const char *directive = ASM_LONG; if (TARGET_64BIT) { #ifdef ASM_QUAD directive = ASM_QUAD; #else abort (); #endif } fprintf (file, "%s%s%d\n", directive, LPREFIX, value); } void ix86_output_addr_diff_elt (FILE *file, int value, int rel) { if (TARGET_64BIT) fprintf (file, "%s%s%d-%s%d\n", ASM_LONG, LPREFIX, value, LPREFIX, rel); else if (HAVE_AS_GOTOFF_IN_DATA) fprintf (file, "%s%s%d@GOTOFF\n", ASM_LONG, LPREFIX, value); #if TARGET_MACHO else if (TARGET_MACHO) { fprintf (file, "%s%s%d-", ASM_LONG, LPREFIX, value); machopic_output_function_base_name (file); fprintf(file, "\n"); } #endif else asm_fprintf (file, "%s%U%s+[.-%s%d]\n", ASM_LONG, GOT_SYMBOL_NAME, LPREFIX, value); } /* Generate either "mov $0, reg" or "xor reg, reg", as appropriate for the target. */ void ix86_expand_clear (rtx dest) { rtx tmp; /* We play register width games, which are only valid after reload. */ if (!reload_completed) abort (); /* Avoid HImode and its attendant prefix byte. */ if (GET_MODE_SIZE (GET_MODE (dest)) < 4) dest = gen_rtx_REG (SImode, REGNO (dest)); tmp = gen_rtx_SET (VOIDmode, dest, const0_rtx); /* This predicate should match that for movsi_xor and movdi_xor_rex64. */ if (reload_completed && (!TARGET_USE_MOV0 || optimize_size)) { rtx clob = gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (CCmode, 17)); tmp = gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, tmp, clob)); } emit_insn (tmp); } /* X is an unchanging MEM. If it is a constant pool reference, return the constant pool rtx, else NULL. */ rtx maybe_get_pool_constant (rtx x) { x = ix86_delegitimize_address (XEXP (x, 0)); if (GET_CODE (x) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (x)) return get_pool_constant (x); return NULL_RTX; } void ix86_expand_move (enum machine_mode mode, rtx operands[]) { int strict = (reload_in_progress || reload_completed); rtx op0, op1; enum tls_model model; op0 = operands[0]; op1 = operands[1]; if (GET_CODE (op1) == SYMBOL_REF) { model = SYMBOL_REF_TLS_MODEL (op1); if (model) { op1 = legitimize_tls_address (op1, model, true); op1 = force_operand (op1, op0); if (op1 == op0) return; } } else if (GET_CODE (op1) == CONST && GET_CODE (XEXP (op1, 0)) == PLUS && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SYMBOL_REF) { model = SYMBOL_REF_TLS_MODEL (XEXP (XEXP (op1, 0), 0)); if (model) { rtx addend = XEXP (XEXP (op1, 0), 1); op1 = legitimize_tls_address (XEXP (XEXP (op1, 0), 0), model, true); op1 = force_operand (op1, NULL); op1 = expand_simple_binop (Pmode, PLUS, op1, addend, op0, 1, OPTAB_DIRECT); if (op1 == op0) return; } } if (flag_pic && mode == Pmode && symbolic_operand (op1, Pmode)) { #if TARGET_MACHO if (MACHOPIC_PURE) { rtx temp = ((reload_in_progress || ((op0 && GET_CODE (op0) == REG) && mode == Pmode)) ? op0 : gen_reg_rtx (Pmode)); op1 = machopic_indirect_data_reference (op1, temp); op1 = machopic_legitimize_pic_address (op1, mode, temp == op1 ? 0 : temp); } else if (MACHOPIC_INDIRECT) op1 = machopic_indirect_data_reference (op1, 0); if (op0 == op1) return; #else if (GET_CODE (op0) == MEM) op1 = force_reg (Pmode, op1); else op1 = legitimize_address (op1, op1, Pmode); #endif /* TARGET_MACHO */ } else { if (GET_CODE (op0) == MEM && (PUSH_ROUNDING (GET_MODE_SIZE (mode)) != GET_MODE_SIZE (mode) || !push_operand (op0, mode)) && GET_CODE (op1) == MEM) op1 = force_reg (mode, op1); if (push_operand (op0, mode) && ! general_no_elim_operand (op1, mode)) op1 = copy_to_mode_reg (mode, op1); /* Force large constants in 64bit compilation into register to get them CSEed. */ if (TARGET_64BIT && mode == DImode && immediate_operand (op1, mode) && !x86_64_zext_immediate_operand (op1, VOIDmode) && !register_operand (op0, mode) && optimize && !reload_completed && !reload_in_progress) op1 = copy_to_mode_reg (mode, op1); if (FLOAT_MODE_P (mode)) { /* If we are loading a floating point constant to a register, force the value to memory now, since we'll get better code out the back end. */ if (strict) ; else if (GET_CODE (op1) == CONST_DOUBLE) { op1 = validize_mem (force_const_mem (mode, op1)); if (!register_operand (op0, mode)) { rtx temp = gen_reg_rtx (mode); emit_insn (gen_rtx_SET (VOIDmode, temp, op1)); emit_move_insn (op0, temp); return; } } } } emit_insn (gen_rtx_SET (VOIDmode, op0, op1)); } void ix86_expand_vector_move (enum machine_mode mode, rtx operands[]) { rtx op0 = operands[0], op1 = operands[1]; /* Force constants other than zero into memory. We do not know how the instructions used to build constants modify the upper 64 bits of the register, once we have that information we may be able to handle some of them more efficiently. */ if ((reload_in_progress | reload_completed) == 0 && register_operand (op0, mode) && CONSTANT_P (op1) && op1 != CONST0_RTX (mode)) op1 = validize_mem (force_const_mem (mode, op1)); /* Make operand1 a register if it isn't already. */ if (!no_new_pseudos && !register_operand (op0, mode) && !register_operand (op1, mode)) { emit_move_insn (op0, force_reg (GET_MODE (op0), op1)); return; } emit_insn (gen_rtx_SET (VOIDmode, op0, op1)); } /* Implement the movmisalign patterns for SSE. Non-SSE modes go straight to ix86_expand_vector_move. */ void ix86_expand_vector_move_misalign (enum machine_mode mode, rtx operands[]) { rtx op0, op1, m; op0 = operands[0]; op1 = operands[1]; if (MEM_P (op1)) { /* If we're optimizing for size, movups is the smallest. */ if (optimize_size) { op0 = gen_lowpart (V4SFmode, op0); op1 = gen_lowpart (V4SFmode, op1); emit_insn (gen_sse_movups (op0, op1)); return; } /* ??? If we have typed data, then it would appear that using movdqu is the only way to get unaligned data loaded with integer type. */ if (TARGET_SSE2 && GET_MODE_CLASS (mode) == MODE_VECTOR_INT) { op0 = gen_lowpart (V16QImode, op0); op1 = gen_lowpart (V16QImode, op1); emit_insn (gen_sse2_movdqu (op0, op1)); return; } if (TARGET_SSE2 && mode == V2DFmode) { rtx zero; /* When SSE registers are split into halves, we can avoid writing to the top half twice. */ if (TARGET_SSE_SPLIT_REGS) { emit_insn (gen_rtx_CLOBBER (VOIDmode, op0)); zero = op0; } else { /* ??? Not sure about the best option for the Intel chips. The following would seem to satisfy; the register is entirely cleared, breaking the dependency chain. We then store to the upper half, with a dependency depth of one. A rumor has it that Intel recommends two movsd followed by an unpacklpd, but this is unconfirmed. And given that the dependency depth of the unpacklpd would still be one, I'm not sure why this would be better. */ zero = CONST0_RTX (V2DFmode); } m = adjust_address (op1, DFmode, 0); emit_insn (gen_sse2_loadlpd (op0, zero, m)); m = adjust_address (op1, DFmode, 8); emit_insn (gen_sse2_loadhpd (op0, op0, m)); } else { if (TARGET_SSE_PARTIAL_REG_DEPENDENCY) emit_move_insn (op0, CONST0_RTX (mode)); else emit_insn (gen_rtx_CLOBBER (VOIDmode, op0)); if (mode != V4SFmode) op0 = gen_lowpart (V4SFmode, op0); m = adjust_address (op1, V2SFmode, 0); emit_insn (gen_sse_loadlps (op0, op0, m)); m = adjust_address (op1, V2SFmode, 8); emit_insn (gen_sse_loadhps (op0, op0, m)); } } else if (MEM_P (op0)) { /* If we're optimizing for size, movups is the smallest. */ if (optimize_size) { op0 = gen_lowpart (V4SFmode, op0); op1 = gen_lowpart (V4SFmode, op1); emit_insn (gen_sse_movups (op0, op1)); return; } /* ??? Similar to above, only less clear because of quote typeless stores unquote. */ if (TARGET_SSE2 && !TARGET_SSE_TYPELESS_STORES && GET_MODE_CLASS (mode) == MODE_VECTOR_INT) { op0 = gen_lowpart (V16QImode, op0); op1 = gen_lowpart (V16QImode, op1); emit_insn (gen_sse2_movdqu (op0, op1)); return; } if (TARGET_SSE2 && mode == V2DFmode) { m = adjust_address (op0, DFmode, 0); emit_insn (gen_sse2_storelpd (m, op1)); m = adjust_address (op0, DFmode, 8); emit_insn (gen_sse2_storehpd (m, op1)); } else { if (mode != V4SFmode) op1 = gen_lowpart (V4SFmode, op1); m = adjust_address (op0, V2SFmode, 0); emit_insn (gen_sse_storelps (m, op1)); m = adjust_address (op0, V2SFmode, 8); emit_insn (gen_sse_storehps (m, op1)); } } else gcc_unreachable (); } /* Expand a push in MODE. This is some mode for which we do not support proper push instructions, at least from the registers that we expect the value to live in. */ void ix86_expand_push (enum machine_mode mode, rtx x) { rtx tmp; tmp = expand_simple_binop (Pmode, PLUS, stack_pointer_rtx, GEN_INT (-GET_MODE_SIZE (mode)), stack_pointer_rtx, 1, OPTAB_DIRECT); if (tmp != stack_pointer_rtx) emit_move_insn (stack_pointer_rtx, tmp); tmp = gen_rtx_MEM (mode, stack_pointer_rtx); emit_move_insn (tmp, x); } /* Fix up OPERANDS to satisfy ix86_binary_operator_ok. Return the destination to use for the operation. If different from the true destination in operands[0], a copy operation will be required. */ rtx ix86_fixup_binary_operands (enum rtx_code code, enum machine_mode mode, rtx operands[]) { int matching_memory; rtx src1, src2, dst; dst = operands[0]; src1 = operands[1]; src2 = operands[2]; /* Recognize = for commutative operators */ if (GET_RTX_CLASS (code) == RTX_COMM_ARITH && (rtx_equal_p (dst, src2) || immediate_operand (src1, mode))) { rtx temp = src1; src1 = src2; src2 = temp; } /* If the destination is memory, and we do not have matching source operands, do things in registers. */ matching_memory = 0; if (GET_CODE (dst) == MEM) { if (rtx_equal_p (dst, src1)) matching_memory = 1; else if (GET_RTX_CLASS (code) == RTX_COMM_ARITH && rtx_equal_p (dst, src2)) matching_memory = 2; else dst = gen_reg_rtx (mode); } /* Both source operands cannot be in memory. */ if (GET_CODE (src1) == MEM && GET_CODE (src2) == MEM) { if (matching_memory != 2) src2 = force_reg (mode, src2); else src1 = force_reg (mode, src1); } /* If the operation is not commutable, source 1 cannot be a constant or non-matching memory. */ if ((CONSTANT_P (src1) || (!matching_memory && GET_CODE (src1) == MEM)) && GET_RTX_CLASS (code) != RTX_COMM_ARITH) src1 = force_reg (mode, src1); /* If optimizing, copy to regs to improve CSE */ if (optimize && ! no_new_pseudos) { if (GET_CODE (dst) == MEM) dst = gen_reg_rtx (mode); if (GET_CODE (src1) == MEM) src1 = force_reg (mode, src1); if (GET_CODE (src2) == MEM) src2 = force_reg (mode, src2); } src1 = operands[1] = src1; src2 = operands[2] = src2; return dst; } /* Similarly, but assume that the destination has already been set up properly. */ void ix86_fixup_binary_operands_no_copy (enum rtx_code code, enum machine_mode mode, rtx operands[]) { rtx dst = ix86_fixup_binary_operands (code, mode, operands); gcc_assert (dst == operands[0]); } /* Attempt to expand a binary operator. Make the expansion closer to the actual machine, then just general_operand, which will allow 3 separate memory references (one output, two input) in a single insn. */ void ix86_expand_binary_operator (enum rtx_code code, enum machine_mode mode, rtx operands[]) { rtx src1, src2, dst, op, clob; dst = ix86_fixup_binary_operands (code, mode, operands); src1 = operands[1]; src2 = operands[2]; /* Emit the instruction. */ op = gen_rtx_SET (VOIDmode, dst, gen_rtx_fmt_ee (code, mode, src1, src2)); if (reload_in_progress) { /* Reload doesn't know about the flags register, and doesn't know that it doesn't want to clobber it. We can only do this with PLUS. */ if (code != PLUS) abort (); emit_insn (op); } else { clob = gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (CCmode, FLAGS_REG)); emit_insn (gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, op, clob))); } /* Fix up the destination if needed. */ if (dst != operands[0]) emit_move_insn (operands[0], dst); } /* Return TRUE or FALSE depending on whether the binary operator meets the appropriate constraints. */ int ix86_binary_operator_ok (enum rtx_code code, enum machine_mode mode ATTRIBUTE_UNUSED, rtx operands[3]) { /* Both source operands cannot be in memory. */ if (GET_CODE (operands[1]) == MEM && GET_CODE (operands[2]) == MEM) return 0; /* If the operation is not commutable, source 1 cannot be a constant. */ if (CONSTANT_P (operands[1]) && GET_RTX_CLASS (code) != RTX_COMM_ARITH) return 0; /* If the destination is memory, we must have a matching source operand. */ if (GET_CODE (operands[0]) == MEM && ! (rtx_equal_p (operands[0], operands[1]) || (GET_RTX_CLASS (code) == RTX_COMM_ARITH && rtx_equal_p (operands[0], operands[2])))) return 0; /* If the operation is not commutable and the source 1 is memory, we must have a matching destination. */ if (GET_CODE (operands[1]) == MEM && GET_RTX_CLASS (code) != RTX_COMM_ARITH && ! rtx_equal_p (operands[0], operands[1])) return 0; return 1; } /* Attempt to expand a unary operator. Make the expansion closer to the actual machine, then just general_operand, which will allow 2 separate memory references (one output, one input) in a single insn. */ void ix86_expand_unary_operator (enum rtx_code code, enum machine_mode mode, rtx operands[]) { int matching_memory; rtx src, dst, op, clob; dst = operands[0]; src = operands[1]; /* If the destination is memory, and we do not have matching source operands, do things in registers. */ matching_memory = 0; if (MEM_P (dst)) { if (rtx_equal_p (dst, src)) matching_memory = 1; else dst = gen_reg_rtx (mode); } /* When source operand is memory, destination must match. */ if (MEM_P (src) && !matching_memory) src = force_reg (mode, src); /* If optimizing, copy to regs to improve CSE. */ if (optimize && ! no_new_pseudos) { if (GET_CODE (dst) == MEM) dst = gen_reg_rtx (mode); if (GET_CODE (src) == MEM) src = force_reg (mode, src); } /* Emit the instruction. */ op = gen_rtx_SET (VOIDmode, dst, gen_rtx_fmt_e (code, mode, src)); if (reload_in_progress || code == NOT) { /* Reload doesn't know about the flags register, and doesn't know that it doesn't want to clobber it. */ if (code != NOT) abort (); emit_insn (op); } else { clob = gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (CCmode, FLAGS_REG)); emit_insn (gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, op, clob))); } /* Fix up the destination if needed. */ if (dst != operands[0]) emit_move_insn (operands[0], dst); } /* Return TRUE or FALSE depending on whether the unary operator meets the appropriate constraints. */ int ix86_unary_operator_ok (enum rtx_code code ATTRIBUTE_UNUSED, enum machine_mode mode ATTRIBUTE_UNUSED, rtx operands[2] ATTRIBUTE_UNUSED) { /* If one of operands is memory, source and destination must match. */ if ((GET_CODE (operands[0]) == MEM || GET_CODE (operands[1]) == MEM) && ! rtx_equal_p (operands[0], operands[1])) return FALSE; return TRUE; } /* A subroutine of ix86_expand_fp_absneg_operator and copysign expanders. Create a mask for the sign bit in MODE for an SSE register. If VECT is true, then replicate the mask for all elements of the vector register. If INVERT is true, then create a mask excluding the sign bit. */ rtx ix86_build_signbit_mask (enum machine_mode mode, bool vect, bool invert) { enum machine_mode vec_mode; HOST_WIDE_INT hi, lo; int shift = 63; rtvec v; rtx mask; /* Find the sign bit, sign extended to 2*HWI. */ if (mode == SFmode) lo = 0x80000000, hi = lo < 0; else if (HOST_BITS_PER_WIDE_INT >= 64) lo = (HOST_WIDE_INT)1 << shift, hi = -1; else lo = 0, hi = (HOST_WIDE_INT)1 << (shift - HOST_BITS_PER_WIDE_INT); if (invert) lo = ~lo, hi = ~hi; /* Force this value into the low part of a fp vector constant. */ mask = immed_double_const (lo, hi, mode == SFmode ? SImode : DImode); mask = gen_lowpart (mode, mask); if (mode == SFmode) { if (vect) v = gen_rtvec (4, mask, mask, mask, mask); else v = gen_rtvec (4, mask, CONST0_RTX (SFmode), CONST0_RTX (SFmode), CONST0_RTX (SFmode)); vec_mode = V4SFmode; } else { if (vect) v = gen_rtvec (2, mask, mask); else v = gen_rtvec (2, mask, CONST0_RTX (DFmode)); vec_mode = V2DFmode; } return force_reg (vec_mode, gen_rtx_CONST_VECTOR (vec_mode, v)); } /* Generate code for floating point ABS or NEG. */ void ix86_expand_fp_absneg_operator (enum rtx_code code, enum machine_mode mode, rtx operands[]) { rtx mask, set, use, clob, dst, src; bool matching_memory; bool use_sse = false; bool vector_mode = VECTOR_MODE_P (mode); enum machine_mode elt_mode = mode; if (vector_mode) { elt_mode = GET_MODE_INNER (mode); use_sse = true; } else if (TARGET_SSE_MATH) use_sse = SSE_FLOAT_MODE_P (mode); /* NEG and ABS performed with SSE use bitwise mask operations. Create the appropriate mask now. */ if (use_sse) mask = ix86_build_signbit_mask (elt_mode, vector_mode, code == ABS); else { /* When not using SSE, we don't use the mask, but prefer to keep the same general form of the insn pattern to reduce duplication when it comes time to split. */ mask = const0_rtx; } dst = operands[0]; src = operands[1]; /* If the destination is memory, and we don't have matching source operands, do things in registers. */ matching_memory = false; if (MEM_P (dst)) { if (rtx_equal_p (dst, src) && (!optimize || no_new_pseudos)) matching_memory = true; else dst = gen_reg_rtx (mode); } if (MEM_P (src) && !matching_memory) src = force_reg (mode, src); if (vector_mode) { set = gen_rtx_fmt_ee (code == NEG ? XOR : AND, mode, src, mask); set = gen_rtx_SET (VOIDmode, dst, set); emit_insn (set); } else { set = gen_rtx_fmt_e (code, mode, src); set = gen_rtx_SET (VOIDmode, dst, set); use = gen_rtx_USE (VOIDmode, mask); clob = gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (CCmode, FLAGS_REG)); emit_insn (gen_rtx_PARALLEL (VOIDmode, gen_rtvec (3, set, use, clob))); } if (dst != operands[0]) emit_move_insn (operands[0], dst); } /* Expand a copysign operation. Special case operand 0 being a constant. */ void ix86_expand_copysign (rtx operands[]) { enum machine_mode mode, vmode; rtx dest, op0, op1, mask, nmask; dest = operands[0]; op0 = operands[1]; op1 = operands[2]; mode = GET_MODE (dest); vmode = mode == SFmode ? V4SFmode : V2DFmode; if (GET_CODE (op0) == CONST_DOUBLE) { rtvec v; if (real_isneg (CONST_DOUBLE_REAL_VALUE (op0))) op0 = simplify_unary_operation (ABS, mode, op0, mode); if (op0 == CONST0_RTX (mode)) op0 = CONST0_RTX (vmode); else { if (mode == SFmode) v = gen_rtvec (4, op0, CONST0_RTX (SFmode), CONST0_RTX (SFmode), CONST0_RTX (SFmode)); else v = gen_rtvec (2, op0, CONST0_RTX (DFmode)); op0 = force_reg (vmode, gen_rtx_CONST_VECTOR (vmode, v)); } mask = ix86_build_signbit_mask (mode, 0, 0); if (mode == SFmode) emit_insn (gen_copysignsf3_const (dest, op0, op1, mask)); else emit_insn (gen_copysigndf3_const (dest, op0, op1, mask)); } else { nmask = ix86_build_signbit_mask (mode, 0, 1); mask = ix86_build_signbit_mask (mode, 0, 0); if (mode == SFmode) emit_insn (gen_copysignsf3_var (dest, NULL, op0, op1, nmask, mask)); else emit_insn (gen_copysigndf3_var (dest, NULL, op0, op1, nmask, mask)); } } /* Deconstruct a copysign operation into bit masks. Operand 0 is known to be a constant, and so has already been expanded into a vector constant. */ void ix86_split_copysign_const (rtx operands[]) { enum machine_mode mode, vmode; rtx dest, op0, op1, mask, x; dest = operands[0]; op0 = operands[1]; op1 = operands[2]; mask = operands[3]; mode = GET_MODE (dest); vmode = GET_MODE (mask); dest = simplify_gen_subreg (vmode, dest, mode, 0); x = gen_rtx_AND (vmode, dest, mask); emit_insn (gen_rtx_SET (VOIDmode, dest, x)); if (op0 != CONST0_RTX (vmode)) { x = gen_rtx_IOR (vmode, dest, op0); emit_insn (gen_rtx_SET (VOIDmode, dest, x)); } } /* Deconstruct a copysign operation into bit masks. Operand 0 is variable, so we have to do two masks. */ void ix86_split_copysign_var (rtx operands[]) { enum machine_mode mode, vmode; rtx dest, scratch, op0, op1, mask, nmask, x; dest = operands[0]; scratch = operands[1]; op0 = operands[2]; op1 = operands[3]; nmask = operands[4]; mask = operands[5]; mode = GET_MODE (dest); vmode = GET_MODE (mask); if (rtx_equal_p (op0, op1)) { /* Shouldn't happen often (it's useless, obviously), but when it does we'd generate incorrect code if we continue below. */ emit_move_insn (dest, op0); return; } if (REG_P (mask) && REGNO (dest) == REGNO (mask)) /* alternative 0 */ { gcc_assert (REGNO (op1) == REGNO (scratch)); x = gen_rtx_AND (vmode, scratch, mask); emit_insn (gen_rtx_SET (VOIDmode, scratch, x)); dest = mask; op0 = simplify_gen_subreg (vmode, op0, mode, 0); x = gen_rtx_NOT (vmode, dest); x = gen_rtx_AND (vmode, x, op0); emit_insn (gen_rtx_SET (VOIDmode, dest, x)); } else { if (REGNO (op1) == REGNO (scratch)) /* alternative 1,3 */ { x = gen_rtx_AND (vmode, scratch, mask); } else /* alternative 2,4 */ { gcc_assert (REGNO (mask) == REGNO (scratch)); op1 = simplify_gen_subreg (vmode, op1, mode, 0); x = gen_rtx_AND (vmode, scratch, op1); } emit_insn (gen_rtx_SET (VOIDmode, scratch, x)); if (REGNO (op0) == REGNO (dest)) /* alternative 1,2 */ { dest = simplify_gen_subreg (vmode, op0, mode, 0); x = gen_rtx_AND (vmode, dest, nmask); } else /* alternative 3,4 */ { gcc_assert (REGNO (nmask) == REGNO (dest)); dest = nmask; op0 = simplify_gen_subreg (vmode, op0, mode, 0); x = gen_rtx_AND (vmode, dest, op0); } emit_insn (gen_rtx_SET (VOIDmode, dest, x)); } x = gen_rtx_IOR (vmode, dest, scratch); emit_insn (gen_rtx_SET (VOIDmode, dest, x)); } /* Return TRUE or FALSE depending on whether the first SET in INSN has source and destination with matching CC modes, and that the CC mode is at least as constrained as REQ_MODE. */ int ix86_match_ccmode (rtx insn, enum machine_mode req_mode) { rtx set; enum machine_mode set_mode; set = PATTERN (insn); if (GET_CODE (set) == PARALLEL) set = XVECEXP (set, 0, 0); if (GET_CODE (set) != SET) abort (); if (GET_CODE (SET_SRC (set)) != COMPARE) abort (); set_mode = GET_MODE (SET_DEST (set)); switch (set_mode) { case CCNOmode: if (req_mode != CCNOmode && (req_mode != CCmode || XEXP (SET_SRC (set), 1) != const0_rtx)) return 0; break; case CCmode: if (req_mode == CCGCmode) return 0; /* FALLTHRU */ case CCGCmode: if (req_mode == CCGOCmode || req_mode == CCNOmode) return 0; /* FALLTHRU */ case CCGOCmode: if (req_mode == CCZmode) return 0; /* FALLTHRU */ case CCZmode: break; default: abort (); } return (GET_MODE (SET_SRC (set)) == set_mode); } /* Generate insn patterns to do an integer compare of OPERANDS. */ static rtx ix86_expand_int_compare (enum rtx_code code, rtx op0, rtx op1) { enum machine_mode cmpmode; rtx tmp, flags; cmpmode = SELECT_CC_MODE (code, op0, op1); flags = gen_rtx_REG (cmpmode, FLAGS_REG); /* This is very simple, but making the interface the same as in the FP case makes the rest of the code easier. */ tmp = gen_rtx_COMPARE (cmpmode, op0, op1); emit_insn (gen_rtx_SET (VOIDmode, flags, tmp)); /* Return the test that should be put into the flags user, i.e. the bcc, scc, or cmov instruction. */ return gen_rtx_fmt_ee (code, VOIDmode, flags, const0_rtx); } /* Figure out whether to use ordered or unordered fp comparisons. Return the appropriate mode to use. */ enum machine_mode ix86_fp_compare_mode (enum rtx_code code ATTRIBUTE_UNUSED) { /* ??? In order to make all comparisons reversible, we do all comparisons non-trapping when compiling for IEEE. Once gcc is able to distinguish all forms trapping and nontrapping comparisons, we can make inequality comparisons trapping again, since it results in better code when using FCOM based compares. */ return TARGET_IEEE_FP ? CCFPUmode : CCFPmode; } enum machine_mode ix86_cc_mode (enum rtx_code code, rtx op0, rtx op1) { if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_FLOAT) return ix86_fp_compare_mode (code); switch (code) { /* Only zero flag is needed. */ case EQ: /* ZF=0 */ case NE: /* ZF!=0 */ return CCZmode; /* Codes needing carry flag. */ case GEU: /* CF=0 */ case GTU: /* CF=0 & ZF=0 */ case LTU: /* CF=1 */ case LEU: /* CF=1 | ZF=1 */ return CCmode; /* Codes possibly doable only with sign flag when comparing against zero. */ case GE: /* SF=OF or SF=0 */ case LT: /* SF<>OF or SF=1 */ if (op1 == const0_rtx) return CCGOCmode; else /* For other cases Carry flag is not required. */ return CCGCmode; /* Codes doable only with sign flag when comparing against zero, but we miss jump instruction for it so we need to use relational tests against overflow that thus needs to be zero. */ case GT: /* ZF=0 & SF=OF */ case LE: /* ZF=1 | SF<>OF */ if (op1 == const0_rtx) return CCNOmode; else return CCGCmode; /* strcmp pattern do (use flags) and combine may ask us for proper mode. */ case USE: return CCmode; default: abort (); } } /* Return the fixed registers used for condition codes. */ static bool ix86_fixed_condition_code_regs (unsigned int *p1, unsigned int *p2) { *p1 = FLAGS_REG; *p2 = FPSR_REG; return true; } /* If two condition code modes are compatible, return a condition code mode which is compatible with both. Otherwise, return VOIDmode. */ static enum machine_mode ix86_cc_modes_compatible (enum machine_mode m1, enum machine_mode m2) { if (m1 == m2) return m1; if (GET_MODE_CLASS (m1) != MODE_CC || GET_MODE_CLASS (m2) != MODE_CC) return VOIDmode; if ((m1 == CCGCmode && m2 == CCGOCmode) || (m1 == CCGOCmode && m2 == CCGCmode)) return CCGCmode; switch (m1) { default: abort (); case CCmode: case CCGCmode: case CCGOCmode: case CCNOmode: case CCZmode: switch (m2) { default: return VOIDmode; case CCmode: case CCGCmode: case CCGOCmode: case CCNOmode: case CCZmode: return CCmode; } case CCFPmode: case CCFPUmode: /* These are only compatible with themselves, which we already checked above. */ return VOIDmode; } } /* Return true if we should use an FCOMI instruction for this fp comparison. */ int ix86_use_fcomi_compare (enum rtx_code code ATTRIBUTE_UNUSED) { enum rtx_code swapped_code = swap_condition (code); return ((ix86_fp_comparison_cost (code) == ix86_fp_comparison_fcomi_cost (code)) || (ix86_fp_comparison_cost (swapped_code) == ix86_fp_comparison_fcomi_cost (swapped_code))); } /* Swap, force into registers, or otherwise massage the two operands to a fp comparison. The operands are updated in place; the new comparison code is returned. */ static enum rtx_code ix86_prepare_fp_compare_args (enum rtx_code code, rtx *pop0, rtx *pop1) { enum machine_mode fpcmp_mode = ix86_fp_compare_mode (code); rtx op0 = *pop0, op1 = *pop1; enum machine_mode op_mode = GET_MODE (op0); int is_sse = TARGET_SSE_MATH && SSE_FLOAT_MODE_P (op_mode); /* All of the unordered compare instructions only work on registers. The same is true of the fcomi compare instructions. The same is true of the XFmode compare instructions if not comparing with zero (ftst insn is used in this case). */ if (!is_sse && (fpcmp_mode == CCFPUmode || (op_mode == XFmode && ! (standard_80387_constant_p (op0) == 1 || standard_80387_constant_p (op1) == 1)) || ix86_use_fcomi_compare (code))) { op0 = force_reg (op_mode, op0); op1 = force_reg (op_mode, op1); } else { /* %%% We only allow op1 in memory; op0 must be st(0). So swap things around if they appear profitable, otherwise force op0 into a register. */ if (standard_80387_constant_p (op0) == 0 || (GET_CODE (op0) == MEM && ! (standard_80387_constant_p (op1) == 0 || GET_CODE (op1) == MEM))) { rtx tmp; tmp = op0, op0 = op1, op1 = tmp; code = swap_condition (code); } if (GET_CODE (op0) != REG) op0 = force_reg (op_mode, op0); if (CONSTANT_P (op1)) { int tmp = standard_80387_constant_p (op1); if (tmp == 0) op1 = validize_mem (force_const_mem (op_mode, op1)); else if (tmp == 1) { if (TARGET_CMOVE) op1 = force_reg (op_mode, op1); } else op1 = force_reg (op_mode, op1); } } /* Try to rearrange the comparison to make it cheaper. */ if (ix86_fp_comparison_cost (code) > ix86_fp_comparison_cost (swap_condition (code)) && (GET_CODE (op1) == REG || !no_new_pseudos)) { rtx tmp; tmp = op0, op0 = op1, op1 = tmp; code = swap_condition (code); if (GET_CODE (op0) != REG) op0 = force_reg (op_mode, op0); } *pop0 = op0; *pop1 = op1; return code; } /* Convert comparison codes we use to represent FP comparison to integer code that will result in proper branch. Return UNKNOWN if no such code is available. */ enum rtx_code ix86_fp_compare_code_to_integer (enum rtx_code code) { switch (code) { case GT: return GTU; case GE: return GEU; case ORDERED: case UNORDERED: return code; break; case UNEQ: return EQ; break; case UNLT: return LTU; break; case UNLE: return LEU; break; case LTGT: return NE; break; default: return UNKNOWN; } } /* Split comparison code CODE into comparisons we can do using branch instructions. BYPASS_CODE is comparison code for branch that will branch around FIRST_CODE and SECOND_CODE. If some of branches is not required, set value to UNKNOWN. We never require more than two branches. */ void ix86_fp_comparison_codes (enum rtx_code code, enum rtx_code *bypass_code, enum rtx_code *first_code, enum rtx_code *second_code) { *first_code = code; *bypass_code = UNKNOWN; *second_code = UNKNOWN; /* The fcomi comparison sets flags as follows: cmp ZF PF CF > 0 0 0 < 0 0 1 = 1 0 0 un 1 1 1 */ switch (code) { case GT: /* GTU - CF=0 & ZF=0 */ case GE: /* GEU - CF=0 */ case ORDERED: /* PF=0 */ case UNORDERED: /* PF=1 */ case UNEQ: /* EQ - ZF=1 */ case UNLT: /* LTU - CF=1 */ case UNLE: /* LEU - CF=1 | ZF=1 */ case LTGT: /* EQ - ZF=0 */ break; case LT: /* LTU - CF=1 - fails on unordered */ *first_code = UNLT; *bypass_code = UNORDERED; break; case LE: /* LEU - CF=1 | ZF=1 - fails on unordered */ *first_code = UNLE; *bypass_code = UNORDERED; break; case EQ: /* EQ - ZF=1 - fails on unordered */ *first_code = UNEQ; *bypass_code = UNORDERED; break; case NE: /* NE - ZF=0 - fails on unordered */ *first_code = LTGT; *second_code = UNORDERED; break; case UNGE: /* GEU - CF=0 - fails on unordered */ *first_code = GE; *second_code = UNORDERED; break; case UNGT: /* GTU - CF=0 & ZF=0 - fails on unordered */ *first_code = GT; *second_code = UNORDERED; break; default: abort (); } if (!TARGET_IEEE_FP) { *second_code = UNKNOWN; *bypass_code = UNKNOWN; } } /* Return cost of comparison done fcom + arithmetics operations on AX. All following functions do use number of instructions as a cost metrics. In future this should be tweaked to compute bytes for optimize_size and take into account performance of various instructions on various CPUs. */ static int ix86_fp_comparison_arithmetics_cost (enum rtx_code code) { if (!TARGET_IEEE_FP) return 4; /* The cost of code output by ix86_expand_fp_compare. */ switch (code) { case UNLE: case UNLT: case LTGT: case GT: case GE: case UNORDERED: case ORDERED: case UNEQ: return 4; break; case LT: case NE: case EQ: case UNGE: return 5; break; case LE: case UNGT: return 6; break; default: abort (); } } /* Return cost of comparison done using fcomi operation. See ix86_fp_comparison_arithmetics_cost for the metrics. */ static int ix86_fp_comparison_fcomi_cost (enum rtx_code code) { enum rtx_code bypass_code, first_code, second_code; /* Return arbitrarily high cost when instruction is not supported - this prevents gcc from using it. */ if (!TARGET_CMOVE) return 1024; ix86_fp_comparison_codes (code, &bypass_code, &first_code, &second_code); return (bypass_code != UNKNOWN || second_code != UNKNOWN) + 2; } /* Return cost of comparison done using sahf operation. See ix86_fp_comparison_arithmetics_cost for the metrics. */ static int ix86_fp_comparison_sahf_cost (enum rtx_code code) { enum rtx_code bypass_code, first_code, second_code; /* Return arbitrarily high cost when instruction is not preferred - this avoids gcc from using it. */ if (!TARGET_USE_SAHF && !optimize_size) return 1024; ix86_fp_comparison_codes (code, &bypass_code, &first_code, &second_code); return (bypass_code != UNKNOWN || second_code != UNKNOWN) + 3; } /* Compute cost of the comparison done using any method. See ix86_fp_comparison_arithmetics_cost for the metrics. */ static int ix86_fp_comparison_cost (enum rtx_code code) { int fcomi_cost, sahf_cost, arithmetics_cost = 1024; int min; fcomi_cost = ix86_fp_comparison_fcomi_cost (code); sahf_cost = ix86_fp_comparison_sahf_cost (code); min = arithmetics_cost = ix86_fp_comparison_arithmetics_cost (code); if (min > sahf_cost) min = sahf_cost; if (min > fcomi_cost) min = fcomi_cost; return min; } /* Generate insn patterns to do a floating point compare of OPERANDS. */ static rtx ix86_expand_fp_compare (enum rtx_code code, rtx op0, rtx op1, rtx scratch, rtx *second_test, rtx *bypass_test) { enum machine_mode fpcmp_mode, intcmp_mode; rtx tmp, tmp2; int cost = ix86_fp_comparison_cost (code); enum rtx_code bypass_code, first_code, second_code; fpcmp_mode = ix86_fp_compare_mode (code); code = ix86_prepare_fp_compare_args (code, &op0, &op1); if (second_test) *second_test = NULL_RTX; if (bypass_test) *bypass_test = NULL_RTX; ix86_fp_comparison_codes (code, &bypass_code, &first_code, &second_code); /* Do fcomi/sahf based test when profitable. */ if ((bypass_code == UNKNOWN || bypass_test) && (second_code == UNKNOWN || second_test) && ix86_fp_comparison_arithmetics_cost (code) > cost) { if (TARGET_CMOVE) { tmp = gen_rtx_COMPARE (fpcmp_mode, op0, op1); tmp = gen_rtx_SET (VOIDmode, gen_rtx_REG (fpcmp_mode, FLAGS_REG), tmp); emit_insn (tmp); } else { tmp = gen_rtx_COMPARE (fpcmp_mode, op0, op1); tmp2 = gen_rtx_UNSPEC (HImode, gen_rtvec (1, tmp), UNSPEC_FNSTSW); if (!scratch) scratch = gen_reg_rtx (HImode); emit_insn (gen_rtx_SET (VOIDmode, scratch, tmp2)); emit_insn (gen_x86_sahf_1 (scratch)); } /* The FP codes work out to act like unsigned. */ intcmp_mode = fpcmp_mode; code = first_code; if (bypass_code != UNKNOWN) *bypass_test = gen_rtx_fmt_ee (bypass_code, VOIDmode, gen_rtx_REG (intcmp_mode, FLAGS_REG), const0_rtx); if (second_code != UNKNOWN) *second_test = gen_rtx_fmt_ee (second_code, VOIDmode, gen_rtx_REG (intcmp_mode, FLAGS_REG), const0_rtx); } else { /* Sadness wrt reg-stack pops killing fpsr -- gotta get fnstsw first. */ tmp = gen_rtx_COMPARE (fpcmp_mode, op0, op1); tmp2 = gen_rtx_UNSPEC (HImode, gen_rtvec (1, tmp), UNSPEC_FNSTSW); if (!scratch) scratch = gen_reg_rtx (HImode); emit_insn (gen_rtx_SET (VOIDmode, scratch, tmp2)); /* In the unordered case, we have to check C2 for NaN's, which doesn't happen to work out to anything nice combination-wise. So do some bit twiddling on the value we've got in AH to come up with an appropriate set of condition codes. */ intcmp_mode = CCNOmode; switch (code) { case GT: case UNGT: if (code == GT || !TARGET_IEEE_FP) { emit_insn (gen_testqi_ext_ccno_0 (scratch, GEN_INT (0x45))); code = EQ; } else { emit_insn (gen_andqi_ext_0 (scratch, scratch, GEN_INT (0x45))); emit_insn (gen_addqi_ext_1 (scratch, scratch, constm1_rtx)); emit_insn (gen_cmpqi_ext_3 (scratch, GEN_INT (0x44))); intcmp_mode = CCmode; code = GEU; } break; case LT: case UNLT: if (code == LT && TARGET_IEEE_FP) { emit_insn (gen_andqi_ext_0 (scratch, scratch, GEN_INT (0x45))); emit_insn (gen_cmpqi_ext_3 (scratch, GEN_INT (0x01))); intcmp_mode = CCmode; code = EQ; } else { emit_insn (gen_testqi_ext_ccno_0 (scratch, GEN_INT (0x01))); code = NE; } break; case GE: case UNGE: if (code == GE || !TARGET_IEEE_FP) { emit_insn (gen_testqi_ext_ccno_0 (scratch, GEN_INT (0x05))); code = EQ; } else { emit_insn (gen_andqi_ext_0 (scratch, scratch, GEN_INT (0x45))); emit_insn (gen_xorqi_cc_ext_1 (scratch, scratch, GEN_INT (0x01))); code = NE; } break; case LE: case UNLE: if (code == LE && TARGET_IEEE_FP) { emit_insn (gen_andqi_ext_0 (scratch, scratch, GEN_INT (0x45))); emit_insn (gen_addqi_ext_1 (scratch, scratch, constm1_rtx)); emit_insn (gen_cmpqi_ext_3 (scratch, GEN_INT (0x40))); intcmp_mode = CCmode; code = LTU; } else { emit_insn (gen_testqi_ext_ccno_0 (scratch, GEN_INT (0x45))); code = NE; } break; case EQ: case UNEQ: if (code == EQ && TARGET_IEEE_FP) { emit_insn (gen_andqi_ext_0 (scratch, scratch, GEN_INT (0x45))); emit_insn (gen_cmpqi_ext_3 (scratch, GEN_INT (0x40))); intcmp_mode = CCmode; code = EQ; } else { emit_insn (gen_testqi_ext_ccno_0 (scratch, GEN_INT (0x40))); code = NE; break; } break; case NE: case LTGT: if (code == NE && TARGET_IEEE_FP) { emit_insn (gen_andqi_ext_0 (scratch, scratch, GEN_INT (0x45))); emit_insn (gen_xorqi_cc_ext_1 (scratch, scratch, GEN_INT (0x40))); code = NE; } else { emit_insn (gen_testqi_ext_ccno_0 (scratch, GEN_INT (0x40))); code = EQ; } break; case UNORDERED: emit_insn (gen_testqi_ext_ccno_0 (scratch, GEN_INT (0x04))); code = NE; break; case ORDERED: emit_insn (gen_testqi_ext_ccno_0 (scratch, GEN_INT (0x04))); code = EQ; break; default: abort (); } } /* Return the test that should be put into the flags user, i.e. the bcc, scc, or cmov instruction. */ return gen_rtx_fmt_ee (code, VOIDmode, gen_rtx_REG (intcmp_mode, FLAGS_REG), const0_rtx); } rtx ix86_expand_compare (enum rtx_code code, rtx *second_test, rtx *bypass_test) { rtx op0, op1, ret; op0 = ix86_compare_op0; op1 = ix86_compare_op1; if (second_test) *second_test = NULL_RTX; if (bypass_test) *bypass_test = NULL_RTX; if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_FLOAT) ret = ix86_expand_fp_compare (code, op0, op1, NULL_RTX, second_test, bypass_test); else ret = ix86_expand_int_compare (code, op0, op1); return ret; } /* Return true if the CODE will result in nontrivial jump sequence. */ bool ix86_fp_jump_nontrivial_p (enum rtx_code code) { enum rtx_code bypass_code, first_code, second_code; if (!TARGET_CMOVE) return true; ix86_fp_comparison_codes (code, &bypass_code, &first_code, &second_code); return bypass_code != UNKNOWN || second_code != UNKNOWN; } void ix86_expand_branch (enum rtx_code code, rtx label) { rtx tmp; switch (GET_MODE (ix86_compare_op0)) { case QImode: case HImode: case SImode: simple: tmp = ix86_expand_compare (code, NULL, NULL); tmp = gen_rtx_IF_THEN_ELSE (VOIDmode, tmp, gen_rtx_LABEL_REF (VOIDmode, label), pc_rtx); emit_jump_insn (gen_rtx_SET (VOIDmode, pc_rtx, tmp)); return; case SFmode: case DFmode: case XFmode: { rtvec vec; int use_fcomi; enum rtx_code bypass_code, first_code, second_code; code = ix86_prepare_fp_compare_args (code, &ix86_compare_op0, &ix86_compare_op1); ix86_fp_comparison_codes (code, &bypass_code, &first_code, &second_code); /* Check whether we will use the natural sequence with one jump. If so, we can expand jump early. Otherwise delay expansion by creating compound insn to not confuse optimizers. */ if (bypass_code == UNKNOWN && second_code == UNKNOWN && TARGET_CMOVE) { ix86_split_fp_branch (code, ix86_compare_op0, ix86_compare_op1, gen_rtx_LABEL_REF (VOIDmode, label), pc_rtx, NULL_RTX, NULL_RTX); } else { tmp = gen_rtx_fmt_ee (code, VOIDmode, ix86_compare_op0, ix86_compare_op1); tmp = gen_rtx_IF_THEN_ELSE (VOIDmode, tmp, gen_rtx_LABEL_REF (VOIDmode, label), pc_rtx); tmp = gen_rtx_SET (VOIDmode, pc_rtx, tmp); use_fcomi = ix86_use_fcomi_compare (code); vec = rtvec_alloc (3 + !use_fcomi); RTVEC_ELT (vec, 0) = tmp; RTVEC_ELT (vec, 1) = gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (CCFPmode, 18)); RTVEC_ELT (vec, 2) = gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (CCFPmode, 17)); if (! use_fcomi) RTVEC_ELT (vec, 3) = gen_rtx_CLOBBER (VOIDmode, gen_rtx_SCRATCH (HImode)); emit_jump_insn (gen_rtx_PARALLEL (VOIDmode, vec)); } return; } case DImode: if (TARGET_64BIT) goto simple; /* Expand DImode branch into multiple compare+branch. */ { rtx lo[2], hi[2], label2; enum rtx_code code1, code2, code3; if (CONSTANT_P (ix86_compare_op0) && ! CONSTANT_P (ix86_compare_op1)) { tmp = ix86_compare_op0; ix86_compare_op0 = ix86_compare_op1; ix86_compare_op1 = tmp; code = swap_condition (code); } split_di (&ix86_compare_op0, 1, lo+0, hi+0); split_di (&ix86_compare_op1, 1, lo+1, hi+1); /* When comparing for equality, we can use (hi0^hi1)|(lo0^lo1) to avoid two branches. This costs one extra insn, so disable when optimizing for size. */ if ((code == EQ || code == NE) && (!optimize_size || hi[1] == const0_rtx || lo[1] == const0_rtx)) { rtx xor0, xor1; xor1 = hi[0]; if (hi[1] != const0_rtx) xor1 = expand_binop (SImode, xor_optab, xor1, hi[1], NULL_RTX, 0, OPTAB_WIDEN); xor0 = lo[0]; if (lo[1] != const0_rtx) xor0 = expand_binop (SImode, xor_optab, xor0, lo[1], NULL_RTX, 0, OPTAB_WIDEN); tmp = expand_binop (SImode, ior_optab, xor1, xor0, NULL_RTX, 0, OPTAB_WIDEN); ix86_compare_op0 = tmp; ix86_compare_op1 = const0_rtx; ix86_expand_branch (code, label); return; } /* Otherwise, if we are doing less-than or greater-or-equal-than, op1 is a constant and the low word is zero, then we can just examine the high word. */ if (GET_CODE (hi[1]) == CONST_INT && lo[1] == const0_rtx) switch (code) { case LT: case LTU: case GE: case GEU: ix86_compare_op0 = hi[0]; ix86_compare_op1 = hi[1]; ix86_expand_branch (code, label); return; default: break; } /* Otherwise, we need two or three jumps. */ label2 = gen_label_rtx (); code1 = code; code2 = swap_condition (code); code3 = unsigned_condition (code); switch (code) { case LT: case GT: case LTU: case GTU: break; case LE: code1 = LT; code2 = GT; break; case GE: code1 = GT; code2 = LT; break; case LEU: code1 = LTU; code2 = GTU; break; case GEU: code1 = GTU; code2 = LTU; break; case EQ: code1 = UNKNOWN; code2 = NE; break; case NE: code2 = UNKNOWN; break; default: abort (); } /* * a < b => * if (hi(a) < hi(b)) goto true; * if (hi(a) > hi(b)) goto false; * if (lo(a) < lo(b)) goto true; * false: */ ix86_compare_op0 = hi[0]; ix86_compare_op1 = hi[1]; if (code1 != UNKNOWN) ix86_expand_branch (code1, label); if (code2 != UNKNOWN) ix86_expand_branch (code2, label2); ix86_compare_op0 = lo[0]; ix86_compare_op1 = lo[1]; ix86_expand_branch (code3, label); if (code2 != UNKNOWN) emit_label (label2); return; } default: abort (); } } /* Split branch based on floating point condition. */ void ix86_split_fp_branch (enum rtx_code code, rtx op1, rtx op2, rtx target1, rtx target2, rtx tmp, rtx pushed) { rtx second, bypass; rtx label = NULL_RTX; rtx condition; int bypass_probability = -1, second_probability = -1, probability = -1; rtx i; if (target2 != pc_rtx) { rtx tmp = target2; code = reverse_condition_maybe_unordered (code); target2 = target1; target1 = tmp; } condition = ix86_expand_fp_compare (code, op1, op2, tmp, &second, &bypass); /* Remove pushed operand from stack. */ if (pushed) ix86_free_from_memory (GET_MODE (pushed)); if (split_branch_probability >= 0) { /* Distribute the probabilities across the jumps. Assume the BYPASS and SECOND to be always test for UNORDERED. */ probability = split_branch_probability; /* Value of 1 is low enough to make no need for probability to be updated. Later we may run some experiments and see if unordered values are more frequent in practice. */ if (bypass) bypass_probability = 1; if (second) second_probability = 1; } if (bypass != NULL_RTX) { label = gen_label_rtx (); i = emit_jump_insn (gen_rtx_SET (VOIDmode, pc_rtx, gen_rtx_IF_THEN_ELSE (VOIDmode, bypass, gen_rtx_LABEL_REF (VOIDmode, label), pc_rtx))); if (bypass_probability >= 0) REG_NOTES (i) = gen_rtx_EXPR_LIST (REG_BR_PROB, GEN_INT (bypass_probability), REG_NOTES (i)); } i = emit_jump_insn (gen_rtx_SET (VOIDmode, pc_rtx, gen_rtx_IF_THEN_ELSE (VOIDmode, condition, target1, target2))); if (probability >= 0) REG_NOTES (i) = gen_rtx_EXPR_LIST (REG_BR_PROB, GEN_INT (probability), REG_NOTES (i)); if (second != NULL_RTX) { i = emit_jump_insn (gen_rtx_SET (VOIDmode, pc_rtx, gen_rtx_IF_THEN_ELSE (VOIDmode, second, target1, target2))); if (second_probability >= 0) REG_NOTES (i) = gen_rtx_EXPR_LIST (REG_BR_PROB, GEN_INT (second_probability), REG_NOTES (i)); } if (label != NULL_RTX) emit_label (label); } int ix86_expand_setcc (enum rtx_code code, rtx dest) { rtx ret, tmp, tmpreg, equiv; rtx second_test, bypass_test; if (GET_MODE (ix86_compare_op0) == DImode && !TARGET_64BIT) return 0; /* FAIL */ if (GET_MODE (dest) != QImode) abort (); ret = ix86_expand_compare (code, &second_test, &bypass_test); PUT_MODE (ret, QImode); tmp = dest; tmpreg = dest; emit_insn (gen_rtx_SET (VOIDmode, tmp, ret)); if (bypass_test || second_test) { rtx test = second_test; int bypass = 0; rtx tmp2 = gen_reg_rtx (QImode); if (bypass_test) { if (second_test) abort (); test = bypass_test; bypass = 1; PUT_CODE (test, reverse_condition_maybe_unordered (GET_CODE (test))); } PUT_MODE (test, QImode); emit_insn (gen_rtx_SET (VOIDmode, tmp2, test)); if (bypass) emit_insn (gen_andqi3 (tmp, tmpreg, tmp2)); else emit_insn (gen_iorqi3 (tmp, tmpreg, tmp2)); } /* Attach a REG_EQUAL note describing the comparison result. */ equiv = simplify_gen_relational (code, QImode, GET_MODE (ix86_compare_op0), ix86_compare_op0, ix86_compare_op1); set_unique_reg_note (get_last_insn (), REG_EQUAL, equiv); return 1; /* DONE */ } /* Expand comparison setting or clearing carry flag. Return true when successful and set pop for the operation. */ static bool ix86_expand_carry_flag_compare (enum rtx_code code, rtx op0, rtx op1, rtx *pop) { enum machine_mode mode = GET_MODE (op0) != VOIDmode ? GET_MODE (op0) : GET_MODE (op1); /* Do not handle DImode compares that go trought special path. Also we can't deal with FP compares yet. This is possible to add. */ if ((mode == DImode && !TARGET_64BIT)) return false; if (FLOAT_MODE_P (mode)) { rtx second_test = NULL, bypass_test = NULL; rtx compare_op, compare_seq; /* Shortcut: following common codes never translate into carry flag compares. */ if (code == EQ || code == NE || code == UNEQ || code == LTGT || code == ORDERED || code == UNORDERED) return false; /* These comparisons require zero flag; swap operands so they won't. */ if ((code == GT || code == UNLE || code == LE || code == UNGT) && !TARGET_IEEE_FP) { rtx tmp = op0; op0 = op1; op1 = tmp; code = swap_condition (code); } /* Try to expand the comparison and verify that we end up with carry flag based comparison. This is fails to be true only when we decide to expand comparison using arithmetic that is not too common scenario. */ start_sequence (); compare_op = ix86_expand_fp_compare (code, op0, op1, NULL_RTX, &second_test, &bypass_test); compare_seq = get_insns (); end_sequence (); if (second_test || bypass_test) return false; if (GET_MODE (XEXP (compare_op, 0)) == CCFPmode || GET_MODE (XEXP (compare_op, 0)) == CCFPUmode) code = ix86_fp_compare_code_to_integer (GET_CODE (compare_op)); else code = GET_CODE (compare_op); if (code != LTU && code != GEU) return false; emit_insn (compare_seq); *pop = compare_op; return true; } if (!INTEGRAL_MODE_P (mode)) return false; switch (code) { case LTU: case GEU: break; /* Convert a==0 into (unsigned)a<1. */ case EQ: case NE: if (op1 != const0_rtx) return false; op1 = const1_rtx; code = (code == EQ ? LTU : GEU); break; /* Convert a>b into b=b-1. */ case GTU: case LEU: if (GET_CODE (op1) == CONST_INT) { op1 = gen_int_mode (INTVAL (op1) + 1, GET_MODE (op0)); /* Bail out on overflow. We still can swap operands but that would force loading of the constant into register. */ if (op1 == const0_rtx || !x86_64_immediate_operand (op1, GET_MODE (op1))) return false; code = (code == GTU ? GEU : LTU); } else { rtx tmp = op1; op1 = op0; op0 = tmp; code = (code == GTU ? LTU : GEU); } break; /* Convert a>=0 into (unsigned)a<0x80000000. */ case LT: case GE: if (mode == DImode || op1 != const0_rtx) return false; op1 = gen_int_mode (1 << (GET_MODE_BITSIZE (mode) - 1), mode); code = (code == LT ? GEU : LTU); break; case LE: case GT: if (mode == DImode || op1 != constm1_rtx) return false; op1 = gen_int_mode (1 << (GET_MODE_BITSIZE (mode) - 1), mode); code = (code == LE ? GEU : LTU); break; default: return false; } /* Swapping operands may cause constant to appear as first operand. */ if (!nonimmediate_operand (op0, VOIDmode)) { if (no_new_pseudos) return false; op0 = force_reg (mode, op0); } ix86_compare_op0 = op0; ix86_compare_op1 = op1; *pop = ix86_expand_compare (code, NULL, NULL); if (GET_CODE (*pop) != LTU && GET_CODE (*pop) != GEU) abort (); return true; } int ix86_expand_int_movcc (rtx operands[]) { enum rtx_code code = GET_CODE (operands[1]), compare_code; rtx compare_seq, compare_op; rtx second_test, bypass_test; enum machine_mode mode = GET_MODE (operands[0]); bool sign_bit_compare_p = false;; start_sequence (); compare_op = ix86_expand_compare (code, &second_test, &bypass_test); compare_seq = get_insns (); end_sequence (); compare_code = GET_CODE (compare_op); if ((ix86_compare_op1 == const0_rtx && (code == GE || code == LT)) || (ix86_compare_op1 == constm1_rtx && (code == GT || code == LE))) sign_bit_compare_p = true; /* Don't attempt mode expansion here -- if we had to expand 5 or 6 HImode insns, we'd be swallowed in word prefix ops. */ if ((mode != HImode || TARGET_FAST_PREFIX) && (mode != DImode || TARGET_64BIT) && GET_CODE (operands[2]) == CONST_INT && GET_CODE (operands[3]) == CONST_INT) { rtx out = operands[0]; HOST_WIDE_INT ct = INTVAL (operands[2]); HOST_WIDE_INT cf = INTVAL (operands[3]); HOST_WIDE_INT diff; diff = ct - cf; /* Sign bit compares are better done using shifts than we do by using sbb. */ if (sign_bit_compare_p || ix86_expand_carry_flag_compare (code, ix86_compare_op0, ix86_compare_op1, &compare_op)) { /* Detect overlap between destination and compare sources. */ rtx tmp = out; if (!sign_bit_compare_p) { bool fpcmp = false; compare_code = GET_CODE (compare_op); if (GET_MODE (XEXP (compare_op, 0)) == CCFPmode || GET_MODE (XEXP (compare_op, 0)) == CCFPUmode) { fpcmp = true; compare_code = ix86_fp_compare_code_to_integer (compare_code); } /* To simplify rest of code, restrict to the GEU case. */ if (compare_code == LTU) { HOST_WIDE_INT tmp = ct; ct = cf; cf = tmp; compare_code = reverse_condition (compare_code); code = reverse_condition (code); } else { if (fpcmp) PUT_CODE (compare_op, reverse_condition_maybe_unordered (GET_CODE (compare_op))); else PUT_CODE (compare_op, reverse_condition (GET_CODE (compare_op))); } diff = ct - cf; if (reg_overlap_mentioned_p (out, ix86_compare_op0) || reg_overlap_mentioned_p (out, ix86_compare_op1)) tmp = gen_reg_rtx (mode); if (mode == DImode) emit_insn (gen_x86_movdicc_0_m1_rex64 (tmp, compare_op)); else emit_insn (gen_x86_movsicc_0_m1 (gen_lowpart (SImode, tmp), compare_op)); } else { if (code == GT || code == GE) code = reverse_condition (code); else { HOST_WIDE_INT tmp = ct; ct = cf; cf = tmp; diff = ct - cf; } tmp = emit_store_flag (tmp, code, ix86_compare_op0, ix86_compare_op1, VOIDmode, 0, -1); } if (diff == 1) { /* * cmpl op0,op1 * sbbl dest,dest * [addl dest, ct] * * Size 5 - 8. */ if (ct) tmp = expand_simple_binop (mode, PLUS, tmp, GEN_INT (ct), copy_rtx (tmp), 1, OPTAB_DIRECT); } else if (cf == -1) { /* * cmpl op0,op1 * sbbl dest,dest * orl $ct, dest * * Size 8. */ tmp = expand_simple_binop (mode, IOR, tmp, GEN_INT (ct), copy_rtx (tmp), 1, OPTAB_DIRECT); } else if (diff == -1 && ct) { /* * cmpl op0,op1 * sbbl dest,dest * notl dest * [addl dest, cf] * * Size 8 - 11. */ tmp = expand_simple_unop (mode, NOT, tmp, copy_rtx (tmp), 1); if (cf) tmp = expand_simple_binop (mode, PLUS, copy_rtx (tmp), GEN_INT (cf), copy_rtx (tmp), 1, OPTAB_DIRECT); } else { /* * cmpl op0,op1 * sbbl dest,dest * [notl dest] * andl cf - ct, dest * [addl dest, ct] * * Size 8 - 11. */ if (cf == 0) { cf = ct; ct = 0; tmp = expand_simple_unop (mode, NOT, tmp, copy_rtx (tmp), 1); } tmp = expand_simple_binop (mode, AND, copy_rtx (tmp), gen_int_mode (cf - ct, mode), copy_rtx (tmp), 1, OPTAB_DIRECT); if (ct) tmp = expand_simple_binop (mode, PLUS, copy_rtx (tmp), GEN_INT (ct), copy_rtx (tmp), 1, OPTAB_DIRECT); } if (!rtx_equal_p (tmp, out)) emit_move_insn (copy_rtx (out), copy_rtx (tmp)); return 1; /* DONE */ } if (diff < 0) { HOST_WIDE_INT tmp; tmp = ct, ct = cf, cf = tmp; diff = -diff; if (FLOAT_MODE_P (GET_MODE (ix86_compare_op0))) { /* We may be reversing unordered compare to normal compare, that is not valid in general (we may convert non-trapping condition to trapping one), however on i386 we currently emit all comparisons unordered. */ compare_code = reverse_condition_maybe_unordered (compare_code); code = reverse_condition_maybe_unordered (code); } else { compare_code = reverse_condition (compare_code); code = reverse_condition (code); } } compare_code = UNKNOWN; if (GET_MODE_CLASS (GET_MODE (ix86_compare_op0)) == MODE_INT && GET_CODE (ix86_compare_op1) == CONST_INT) { if (ix86_compare_op1 == const0_rtx && (code == LT || code == GE)) compare_code = code; else if (ix86_compare_op1 == constm1_rtx) { if (code == LE) compare_code = LT; else if (code == GT) compare_code = GE; } } /* Optimize dest = (op0 < 0) ? -1 : cf. */ if (compare_code != UNKNOWN && GET_MODE (ix86_compare_op0) == GET_MODE (out) && (cf == -1 || ct == -1)) { /* If lea code below could be used, only optimize if it results in a 2 insn sequence. */ if (! (diff == 1 || diff == 2 || diff == 4 || diff == 8 || diff == 3 || diff == 5 || diff == 9) || (compare_code == LT && ct == -1) || (compare_code == GE && cf == -1)) { /* * notl op1 (if necessary) * sarl $31, op1 * orl cf, op1 */ if (ct != -1) { cf = ct; ct = -1; code = reverse_condition (code); } out = emit_store_flag (out, code, ix86_compare_op0, ix86_compare_op1, VOIDmode, 0, -1); out = expand_simple_binop (mode, IOR, out, GEN_INT (cf), out, 1, OPTAB_DIRECT); if (out != operands[0]) emit_move_insn (operands[0], out); return 1; /* DONE */ } } if ((diff == 1 || diff == 2 || diff == 4 || diff == 8 || diff == 3 || diff == 5 || diff == 9) && ((mode != QImode && mode != HImode) || !TARGET_PARTIAL_REG_STALL) && (mode != DImode || x86_64_immediate_operand (GEN_INT (cf), VOIDmode))) { /* * xorl dest,dest * cmpl op1,op2 * setcc dest * lea cf(dest*(ct-cf)),dest * * Size 14. * * This also catches the degenerate setcc-only case. */ rtx tmp; int nops; out = emit_store_flag (out, code, ix86_compare_op0, ix86_compare_op1, VOIDmode, 0, 1); nops = 0; /* On x86_64 the lea instruction operates on Pmode, so we need to get arithmetics done in proper mode to match. */ if (diff == 1) tmp = copy_rtx (out); else { rtx out1; out1 = copy_rtx (out); tmp = gen_rtx_MULT (mode, out1, GEN_INT (diff & ~1)); nops++; if (diff & 1) { tmp = gen_rtx_PLUS (mode, tmp, out1); nops++; } } if (cf != 0) { tmp = gen_rtx_PLUS (mode, tmp, GEN_INT (cf)); nops++; } if (!rtx_equal_p (tmp, out)) { if (nops == 1) out = force_operand (tmp, copy_rtx (out)); else emit_insn (gen_rtx_SET (VOIDmode, copy_rtx (out), copy_rtx (tmp))); } if (!rtx_equal_p (out, operands[0])) emit_move_insn (operands[0], copy_rtx (out)); return 1; /* DONE */ } /* * General case: Jumpful: * xorl dest,dest cmpl op1, op2 * cmpl op1, op2 movl ct, dest * setcc dest jcc 1f * decl dest movl cf, dest * andl (cf-ct),dest 1: * addl ct,dest * * Size 20. Size 14. * * This is reasonably steep, but branch mispredict costs are * high on modern cpus, so consider failing only if optimizing * for space. */ if ((!TARGET_CMOVE || (mode == QImode && TARGET_PARTIAL_REG_STALL)) && BRANCH_COST >= 2) { if (cf == 0) { cf = ct; ct = 0; if (FLOAT_MODE_P (GET_MODE (ix86_compare_op0))) /* We may be reversing unordered compare to normal compare, that is not valid in general (we may convert non-trapping condition to trapping one), however on i386 we currently emit all comparisons unordered. */ code = reverse_condition_maybe_unordered (code); else { code = reverse_condition (code); if (compare_code != UNKNOWN) compare_code = reverse_condition (compare_code); } } if (compare_code != UNKNOWN) { /* notl op1 (if needed) sarl $31, op1 andl (cf-ct), op1 addl ct, op1 For x < 0 (resp. x <= -1) there will be no notl, so if possible swap the constants to get rid of the complement. True/false will be -1/0 while code below (store flag followed by decrement) is 0/-1, so the constants need to be exchanged once more. */ if (compare_code == GE || !cf) { code = reverse_condition (code); compare_code = LT; } else { HOST_WIDE_INT tmp = cf; cf = ct; ct = tmp; } out = emit_store_flag (out, code, ix86_compare_op0, ix86_compare_op1, VOIDmode, 0, -1); } else { out = emit_store_flag (out, code, ix86_compare_op0, ix86_compare_op1, VOIDmode, 0, 1); out = expand_simple_binop (mode, PLUS, copy_rtx (out), constm1_rtx, copy_rtx (out), 1, OPTAB_DIRECT); } out = expand_simple_binop (mode, AND, copy_rtx (out), gen_int_mode (cf - ct, mode), copy_rtx (out), 1, OPTAB_DIRECT); if (ct) out = expand_simple_binop (mode, PLUS, copy_rtx (out), GEN_INT (ct), copy_rtx (out), 1, OPTAB_DIRECT); if (!rtx_equal_p (out, operands[0])) emit_move_insn (operands[0], copy_rtx (out)); return 1; /* DONE */ } } if (!TARGET_CMOVE || (mode == QImode && TARGET_PARTIAL_REG_STALL)) { /* Try a few things more with specific constants and a variable. */ optab op; rtx var, orig_out, out, tmp; if (BRANCH_COST <= 2) return 0; /* FAIL */ /* If one of the two operands is an interesting constant, load a constant with the above and mask it in with a logical operation. */ if (GET_CODE (operands[2]) == CONST_INT) { var = operands[3]; if (INTVAL (operands[2]) == 0 && operands[3] != constm1_rtx) operands[3] = constm1_rtx, op = and_optab; else if (INTVAL (operands[2]) == -1 && operands[3] != const0_rtx) operands[3] = const0_rtx, op = ior_optab; else return 0; /* FAIL */ } else if (GET_CODE (operands[3]) == CONST_INT) { var = operands[2]; if (INTVAL (operands[3]) == 0 && operands[2] != constm1_rtx) operands[2] = constm1_rtx, op = and_optab; else if (INTVAL (operands[3]) == -1 && operands[3] != const0_rtx) operands[2] = const0_rtx, op = ior_optab; else return 0; /* FAIL */ } else return 0; /* FAIL */ orig_out = operands[0]; tmp = gen_reg_rtx (mode); operands[0] = tmp; /* Recurse to get the constant loaded. */ if (ix86_expand_int_movcc (operands) == 0) return 0; /* FAIL */ /* Mask in the interesting variable. */ out = expand_binop (mode, op, var, tmp, orig_out, 0, OPTAB_WIDEN); if (!rtx_equal_p (out, orig_out)) emit_move_insn (copy_rtx (orig_out), copy_rtx (out)); return 1; /* DONE */ } /* * For comparison with above, * * movl cf,dest * movl ct,tmp * cmpl op1,op2 * cmovcc tmp,dest * * Size 15. */ if (! nonimmediate_operand (operands[2], mode)) operands[2] = force_reg (mode, operands[2]); if (! nonimmediate_operand (operands[3], mode)) operands[3] = force_reg (mode, operands[3]); if (bypass_test && reg_overlap_mentioned_p (operands[0], operands[3])) { rtx tmp = gen_reg_rtx (mode); emit_move_insn (tmp, operands[3]); operands[3] = tmp; } if (second_test && reg_overlap_mentioned_p (operands[0], operands[2])) { rtx tmp = gen_reg_rtx (mode); emit_move_insn (tmp, operands[2]); operands[2] = tmp; } if (! register_operand (operands[2], VOIDmode) && (mode == QImode || ! register_operand (operands[3], VOIDmode))) operands[2] = force_reg (mode, operands[2]); if (mode == QImode && ! register_operand (operands[3], VOIDmode)) operands[3] = force_reg (mode, operands[3]); emit_insn (compare_seq); emit_insn (gen_rtx_SET (VOIDmode, operands[0], gen_rtx_IF_THEN_ELSE (mode, compare_op, operands[2], operands[3]))); if (bypass_test) emit_insn (gen_rtx_SET (VOIDmode, copy_rtx (operands[0]), gen_rtx_IF_THEN_ELSE (mode, bypass_test, copy_rtx (operands[3]), copy_rtx (operands[0])))); if (second_test) emit_insn (gen_rtx_SET (VOIDmode, copy_rtx (operands[0]), gen_rtx_IF_THEN_ELSE (mode, second_test, copy_rtx (operands[2]), copy_rtx (operands[0])))); return 1; /* DONE */ } int ix86_expand_fp_movcc (rtx operands[]) { enum machine_mode mode = GET_MODE (operands[0]); enum rtx_code code = GET_CODE (operands[1]); rtx tmp, compare_op, second_test, bypass_test; if (TARGET_SSE_MATH && SSE_FLOAT_MODE_P (mode)) { rtx cmp_op0, cmp_op1, if_true, if_false; rtx clob; enum machine_mode vmode, cmode; bool is_minmax = false; cmp_op0 = ix86_compare_op0; cmp_op1 = ix86_compare_op1; if_true = operands[2]; if_false = operands[3]; /* Since we've no cmove for sse registers, don't force bad register allocation just to gain access to it. Deny movcc when the comparison mode doesn't match the move mode. */ cmode = GET_MODE (cmp_op0); if (cmode == VOIDmode) cmode = GET_MODE (cmp_op1); if (cmode != mode) return 0; /* We have no LTGT as an operator. We could implement it with NE & ORDERED, but this requires an extra temporary. It's not clear that it's worth it. */ if (code == LTGT || code == UNEQ) return 0; /* Massage condition to satisfy sse_comparison_operator. Try to canonicalize the destination operand to be first in the comparison - this helps reload to avoid extra moves. */ if (!sse_comparison_operator (operands[1], VOIDmode) || (COMMUTATIVE_P (operands[1]) && rtx_equal_p (operands[0], cmp_op1))) { tmp = cmp_op0; cmp_op0 = cmp_op1; cmp_op1 = tmp; code = swap_condition (code); } /* Detect conditional moves that exactly match min/max operational semantics. Note that this is IEEE safe, as long as we don't interchange the operands. Which is why we keep this in the form if an IF_THEN_ELSE instead of reducing to SMIN/SMAX. */ if ((code == LT || code == UNGE) && REG_P (cmp_op0) && REG_P (cmp_op1)) { if (((cmp_op0 == if_true && cmp_op1 == if_false) || (cmp_op0 == if_false && cmp_op1 == if_true))) { is_minmax = true; if (code == UNGE) { code = LT; tmp = if_true; if_true = if_false; if_false = tmp; } } } if (mode == SFmode) vmode = V4SFmode; else if (mode == DFmode) vmode = V2DFmode; else gcc_unreachable (); cmp_op0 = force_reg (mode, cmp_op0); if (!nonimmediate_operand (cmp_op1, mode)) cmp_op1 = force_reg (mode, cmp_op1); tmp = gen_rtx_fmt_ee (code, mode, cmp_op0, cmp_op1); gcc_assert (sse_comparison_operator (tmp, VOIDmode)); tmp = gen_rtx_IF_THEN_ELSE (mode, tmp, if_true, if_false); tmp = gen_rtx_SET (VOIDmode, operands[0], tmp); if (!is_minmax) { clob = gen_rtx_CLOBBER (VOIDmode, gen_rtx_SCRATCH (vmode)); tmp = gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, tmp, clob)); } emit_insn (tmp); return 1; } /* The floating point conditional move instructions don't directly support conditions resulting from a signed integer comparison. */ compare_op = ix86_expand_compare (code, &second_test, &bypass_test); /* The floating point conditional move instructions don't directly support signed integer comparisons. */ if (!fcmov_comparison_operator (compare_op, VOIDmode)) { if (second_test != NULL || bypass_test != NULL) abort (); tmp = gen_reg_rtx (QImode); ix86_expand_setcc (code, tmp); code = NE; ix86_compare_op0 = tmp; ix86_compare_op1 = const0_rtx; compare_op = ix86_expand_compare (code, &second_test, &bypass_test); } if (bypass_test && reg_overlap_mentioned_p (operands[0], operands[3])) { tmp = gen_reg_rtx (mode); emit_move_insn (tmp, operands[3]); operands[3] = tmp; } if (second_test && reg_overlap_mentioned_p (operands[0], operands[2])) { tmp = gen_reg_rtx (mode); emit_move_insn (tmp, operands[2]); operands[2] = tmp; } emit_insn (gen_rtx_SET (VOIDmode, operands[0], gen_rtx_IF_THEN_ELSE (mode, compare_op, operands[2], operands[3]))); if (bypass_test) emit_insn (gen_rtx_SET (VOIDmode, operands[0], gen_rtx_IF_THEN_ELSE (mode, bypass_test, operands[3], operands[0]))); if (second_test) emit_insn (gen_rtx_SET (VOIDmode, operands[0], gen_rtx_IF_THEN_ELSE (mode, second_test, operands[2], operands[0]))); return 1; } void ix86_split_sse_movcc (rtx operands[]) { rtx dest, scratch, cmp, op_true, op_false, x; enum machine_mode mode, vmode; /* Note that the operator CMP has been set up with matching constraints such that dest is valid for the comparison. Unless one of the true or false operands are zero, the true operand has already been placed in SCRATCH. */ dest = operands[0]; scratch = operands[1]; op_true = operands[2]; op_false = operands[3]; cmp = operands[4]; mode = GET_MODE (dest); vmode = GET_MODE (scratch); /* We need to make sure that the TRUE and FALSE operands are out of the way of the destination. Marking the destination earlyclobber doesn't work, since we want matching constraints for the actual comparison, so at some point we always wind up having to do a copy ourselves here. We very much prefer the TRUE value to be in SCRATCH. If it turns out that FALSE overlaps DEST, then we invert the comparison so that we still only have to do one move. */ if (rtx_equal_p (op_false, dest)) { enum rtx_code code; if (rtx_equal_p (op_true, dest)) { /* ??? Really ought not happen. It means some optimizer managed to prove the operands were identical, but failed to fold the conditional move to a straight move. Do so here, because otherwise we'll generate incorrect code. And since they're both already in the destination register, nothing to do. */ return; } x = gen_rtx_REG (mode, REGNO (scratch)); emit_move_insn (x, op_false); op_false = op_true; op_true = x; code = GET_CODE (cmp); code = reverse_condition_maybe_unordered (code); cmp = gen_rtx_fmt_ee (code, mode, XEXP (cmp, 0), XEXP (cmp, 1)); } else if (op_true == CONST0_RTX (mode)) ; else if (op_false == CONST0_RTX (mode) && !rtx_equal_p (op_true, dest)) ; else { x = gen_rtx_REG (mode, REGNO (scratch)); emit_move_insn (x, op_true); op_true = x; } emit_insn (gen_rtx_SET (VOIDmode, dest, cmp)); dest = simplify_gen_subreg (vmode, dest, mode, 0); if (op_false == CONST0_RTX (mode)) { op_true = simplify_gen_subreg (vmode, op_true, mode, 0); x = gen_rtx_AND (vmode, dest, op_true); emit_insn (gen_rtx_SET (VOIDmode, dest, x)); } else { op_false = simplify_gen_subreg (vmode, op_false, mode, 0); if (op_true == CONST0_RTX (mode)) { x = gen_rtx_NOT (vmode, dest); x = gen_rtx_AND (vmode, x, op_false); emit_insn (gen_rtx_SET (VOIDmode, dest, x)); } else { x = gen_rtx_AND (vmode, scratch, dest); emit_insn (gen_rtx_SET (VOIDmode, scratch, x)); x = gen_rtx_NOT (vmode, dest); x = gen_rtx_AND (vmode, x, op_false); emit_insn (gen_rtx_SET (VOIDmode, dest, x)); x = gen_rtx_IOR (vmode, dest, scratch); emit_insn (gen_rtx_SET (VOIDmode, dest, x)); } } } /* Expand conditional increment or decrement using adb/sbb instructions. The default case using setcc followed by the conditional move can be done by generic code. */ int ix86_expand_int_addcc (rtx operands[]) { enum rtx_code code = GET_CODE (operands[1]); rtx compare_op; rtx val = const0_rtx; bool fpcmp = false; enum machine_mode mode = GET_MODE (operands[0]); if (operands[3] != const1_rtx && operands[3] != constm1_rtx) return 0; if (!ix86_expand_carry_flag_compare (code, ix86_compare_op0, ix86_compare_op1, &compare_op)) return 0; code = GET_CODE (compare_op); if (GET_MODE (XEXP (compare_op, 0)) == CCFPmode || GET_MODE (XEXP (compare_op, 0)) == CCFPUmode) { fpcmp = true; code = ix86_fp_compare_code_to_integer (code); } if (code != LTU) { val = constm1_rtx; if (fpcmp) PUT_CODE (compare_op, reverse_condition_maybe_unordered (GET_CODE (compare_op))); else PUT_CODE (compare_op, reverse_condition (GET_CODE (compare_op))); } PUT_MODE (compare_op, mode); /* Construct either adc or sbb insn. */ if ((code == LTU) == (operands[3] == constm1_rtx)) { switch (GET_MODE (operands[0])) { case QImode: emit_insn (gen_subqi3_carry (operands[0], operands[2], val, compare_op)); break; case HImode: emit_insn (gen_subhi3_carry (operands[0], operands[2], val, compare_op)); break; case SImode: emit_insn (gen_subsi3_carry (operands[0], operands[2], val, compare_op)); break; case DImode: emit_insn (gen_subdi3_carry_rex64 (operands[0], operands[2], val, compare_op)); break; default: abort (); } } else { switch (GET_MODE (operands[0])) { case QImode: emit_insn (gen_addqi3_carry (operands[0], operands[2], val, compare_op)); break; case HImode: emit_insn (gen_addhi3_carry (operands[0], operands[2], val, compare_op)); break; case SImode: emit_insn (gen_addsi3_carry (operands[0], operands[2], val, compare_op)); break; case DImode: emit_insn (gen_adddi3_carry_rex64 (operands[0], operands[2], val, compare_op)); break; default: abort (); } } return 1; /* DONE */ } /* Split operands 0 and 1 into SImode parts. Similar to split_di, but works for floating pointer parameters and nonoffsetable memories. For pushes, it returns just stack offsets; the values will be saved in the right order. Maximally three parts are generated. */ static int ix86_split_to_parts (rtx operand, rtx *parts, enum machine_mode mode) { int size; if (!TARGET_64BIT) size = mode==XFmode ? 3 : GET_MODE_SIZE (mode) / 4; else size = (GET_MODE_SIZE (mode) + 4) / 8; if (GET_CODE (operand) == REG && MMX_REGNO_P (REGNO (operand))) abort (); if (size < 2 || size > 3) abort (); /* Optimize constant pool reference to immediates. This is used by fp moves, that force all constants to memory to allow combining. */ if (GET_CODE (operand) == MEM && MEM_READONLY_P (operand)) { rtx tmp = maybe_get_pool_constant (operand); if (tmp) operand = tmp; } if (GET_CODE (operand) == MEM && !offsettable_memref_p (operand)) { /* The only non-offsetable memories we handle are pushes. */ if (! push_operand (operand, VOIDmode)) abort (); operand = copy_rtx (operand); PUT_MODE (operand, Pmode); parts[0] = parts[1] = parts[2] = operand; return size; } if (GET_CODE (operand) == CONST_VECTOR) { enum machine_mode imode = int_mode_for_mode (mode); /* Caution: if we looked through a constant pool memory above, the operand may actually have a different mode now. That's ok, since we want to pun this all the way back to an integer. */ operand = simplify_subreg (imode, operand, GET_MODE (operand), 0); gcc_assert (operand != NULL); mode = imode; } if (!TARGET_64BIT) { if (mode == DImode) split_di (&operand, 1, &parts[0], &parts[1]); else { if (REG_P (operand)) { if (!reload_completed) abort (); parts[0] = gen_rtx_REG (SImode, REGNO (operand) + 0); parts[1] = gen_rtx_REG (SImode, REGNO (operand) + 1); if (size == 3) parts[2] = gen_rtx_REG (SImode, REGNO (operand) + 2); } else if (offsettable_memref_p (operand)) { operand = adjust_address (operand, SImode, 0); parts[0] = operand; parts[1] = adjust_address (operand, SImode, 4); if (size == 3) parts[2] = adjust_address (operand, SImode, 8); } else if (GET_CODE (operand) == CONST_DOUBLE) { REAL_VALUE_TYPE r; long l[4]; REAL_VALUE_FROM_CONST_DOUBLE (r, operand); switch (mode) { case XFmode: REAL_VALUE_TO_TARGET_LONG_DOUBLE (r, l); parts[2] = gen_int_mode (l[2], SImode); break; case DFmode: REAL_VALUE_TO_TARGET_DOUBLE (r, l); break; default: abort (); } parts[1] = gen_int_mode (l[1], SImode); parts[0] = gen_int_mode (l[0], SImode); } else abort (); } } else { if (mode == TImode) split_ti (&operand, 1, &parts[0], &parts[1]); if (mode == XFmode || mode == TFmode) { enum machine_mode upper_mode = mode==XFmode ? SImode : DImode; if (REG_P (operand)) { if (!reload_completed) abort (); parts[0] = gen_rtx_REG (DImode, REGNO (operand) + 0); parts[1] = gen_rtx_REG (upper_mode, REGNO (operand) + 1); } else if (offsettable_memref_p (operand)) { operand = adjust_address (operand, DImode, 0); parts[0] = operand; parts[1] = adjust_address (operand, upper_mode, 8); } else if (GET_CODE (operand) == CONST_DOUBLE) { REAL_VALUE_TYPE r; long l[4]; REAL_VALUE_FROM_CONST_DOUBLE (r, operand); real_to_target (l, &r, mode); /* Do not use shift by 32 to avoid warning on 32bit systems. */ if (HOST_BITS_PER_WIDE_INT >= 64) parts[0] = gen_int_mode ((l[0] & (((HOST_WIDE_INT) 2 << 31) - 1)) + ((((HOST_WIDE_INT) l[1]) << 31) << 1), DImode); else parts[0] = immed_double_const (l[0], l[1], DImode); if (upper_mode == SImode) parts[1] = gen_int_mode (l[2], SImode); else if (HOST_BITS_PER_WIDE_INT >= 64) parts[1] = gen_int_mode ((l[2] & (((HOST_WIDE_INT) 2 << 31) - 1)) + ((((HOST_WIDE_INT) l[3]) << 31) << 1), DImode); else parts[1] = immed_double_const (l[2], l[3], DImode); } else abort (); } } return size; } /* Emit insns to perform a move or push of DI, DF, and XF values. Return false when normal moves are needed; true when all required insns have been emitted. Operands 2-4 contain the input values int the correct order; operands 5-7 contain the output values. */ void ix86_split_long_move (rtx operands[]) { rtx part[2][3]; int nparts; int push = 0; int collisions = 0; enum machine_mode mode = GET_MODE (operands[0]); /* The DFmode expanders may ask us to move double. For 64bit target this is single move. By hiding the fact here we simplify i386.md splitters. */ if (GET_MODE_SIZE (GET_MODE (operands[0])) == 8 && TARGET_64BIT) { /* Optimize constant pool reference to immediates. This is used by fp moves, that force all constants to memory to allow combining. */ if (GET_CODE (operands[1]) == MEM && GET_CODE (XEXP (operands[1], 0)) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (XEXP (operands[1], 0))) operands[1] = get_pool_constant (XEXP (operands[1], 0)); if (push_operand (operands[0], VOIDmode)) { operands[0] = copy_rtx (operands[0]); PUT_MODE (operands[0], Pmode); } else operands[0] = gen_lowpart (DImode, operands[0]); operands[1] = gen_lowpart (DImode, operands[1]); emit_move_insn (operands[0], operands[1]); return; } /* The only non-offsettable memory we handle is push. */ if (push_operand (operands[0], VOIDmode)) push = 1; else if (GET_CODE (operands[0]) == MEM && ! offsettable_memref_p (operands[0])) abort (); nparts = ix86_split_to_parts (operands[1], part[1], GET_MODE (operands[0])); ix86_split_to_parts (operands[0], part[0], GET_MODE (operands[0])); /* When emitting push, take care for source operands on the stack. */ if (push && GET_CODE (operands[1]) == MEM && reg_overlap_mentioned_p (stack_pointer_rtx, operands[1])) { if (nparts == 3) part[1][1] = change_address (part[1][1], GET_MODE (part[1][1]), XEXP (part[1][2], 0)); part[1][0] = change_address (part[1][0], GET_MODE (part[1][0]), XEXP (part[1][1], 0)); } /* We need to do copy in the right order in case an address register of the source overlaps the destination. */ if (REG_P (part[0][0]) && GET_CODE (part[1][0]) == MEM) { if (reg_overlap_mentioned_p (part[0][0], XEXP (part[1][0], 0))) collisions++; if (reg_overlap_mentioned_p (part[0][1], XEXP (part[1][0], 0))) collisions++; if (nparts == 3 && reg_overlap_mentioned_p (part[0][2], XEXP (part[1][0], 0))) collisions++; /* Collision in the middle part can be handled by reordering. */ if (collisions == 1 && nparts == 3 && reg_overlap_mentioned_p (part[0][1], XEXP (part[1][0], 0))) { rtx tmp; tmp = part[0][1]; part[0][1] = part[0][2]; part[0][2] = tmp; tmp = part[1][1]; part[1][1] = part[1][2]; part[1][2] = tmp; } /* If there are more collisions, we can't handle it by reordering. Do an lea to the last part and use only one colliding move. */ else if (collisions > 1) { rtx base; collisions = 1; base = part[0][nparts - 1]; /* Handle the case when the last part isn't valid for lea. Happens in 64-bit mode storing the 12-byte XFmode. */ if (GET_MODE (base) != Pmode) base = gen_rtx_REG (Pmode, REGNO (base)); emit_insn (gen_rtx_SET (VOIDmode, base, XEXP (part[1][0], 0))); part[1][0] = replace_equiv_address (part[1][0], base); part[1][1] = replace_equiv_address (part[1][1], plus_constant (base, UNITS_PER_WORD)); if (nparts == 3) part[1][2] = replace_equiv_address (part[1][2], plus_constant (base, 8)); } } if (push) { if (!TARGET_64BIT) { if (nparts == 3) { if (TARGET_128BIT_LONG_DOUBLE && mode == XFmode) emit_insn (gen_addsi3 (stack_pointer_rtx, stack_pointer_rtx, GEN_INT (-4))); emit_move_insn (part[0][2], part[1][2]); } } else { /* In 64bit mode we don't have 32bit push available. In case this is register, it is OK - we will just use larger counterpart. We also retype memory - these comes from attempt to avoid REX prefix on moving of second half of TFmode value. */ if (GET_MODE (part[1][1]) == SImode) { if (GET_CODE (part[1][1]) == MEM) part[1][1] = adjust_address (part[1][1], DImode, 0); else if (REG_P (part[1][1])) part[1][1] = gen_rtx_REG (DImode, REGNO (part[1][1])); else abort (); if (GET_MODE (part[1][0]) == SImode) part[1][0] = part[1][1]; } } emit_move_insn (part[0][1], part[1][1]); emit_move_insn (part[0][0], part[1][0]); return; } /* Choose correct order to not overwrite the source before it is copied. */ if ((REG_P (part[0][0]) && REG_P (part[1][1]) && (REGNO (part[0][0]) == REGNO (part[1][1]) || (nparts == 3 && REGNO (part[0][0]) == REGNO (part[1][2])))) || (collisions > 0 && reg_overlap_mentioned_p (part[0][0], XEXP (part[1][0], 0)))) { if (nparts == 3) { operands[2] = part[0][2]; operands[3] = part[0][1]; operands[4] = part[0][0]; operands[5] = part[1][2]; operands[6] = part[1][1]; operands[7] = part[1][0]; } else { operands[2] = part[0][1]; operands[3] = part[0][0]; operands[5] = part[1][1]; operands[6] = part[1][0]; } } else { if (nparts == 3) { operands[2] = part[0][0]; operands[3] = part[0][1]; operands[4] = part[0][2]; operands[5] = part[1][0]; operands[6] = part[1][1]; operands[7] = part[1][2]; } else { operands[2] = part[0][0]; operands[3] = part[0][1]; operands[5] = part[1][0]; operands[6] = part[1][1]; } } /* If optimizing for size, attempt to locally unCSE nonzero constants. */ if (optimize_size) { if (GET_CODE (operands[5]) == CONST_INT && operands[5] != const0_rtx && REG_P (operands[2])) { if (GET_CODE (operands[6]) == CONST_INT && INTVAL (operands[6]) == INTVAL (operands[5])) operands[6] = operands[2]; if (nparts == 3 && GET_CODE (operands[7]) == CONST_INT && INTVAL (operands[7]) == INTVAL (operands[5])) operands[7] = operands[2]; } if (nparts == 3 && GET_CODE (operands[6]) == CONST_INT && operands[6] != const0_rtx && REG_P (operands[3]) && GET_CODE (operands[7]) == CONST_INT && INTVAL (operands[7]) == INTVAL (operands[6])) operands[7] = operands[3]; } emit_move_insn (operands[2], operands[5]); emit_move_insn (operands[3], operands[6]); if (nparts == 3) emit_move_insn (operands[4], operands[7]); return; } /* Helper function of ix86_split_ashldi used to generate an SImode left shift by a constant, either using a single shift or a sequence of add instructions. */ static void ix86_expand_ashlsi3_const (rtx operand, int count) { if (count == 1) emit_insn (gen_addsi3 (operand, operand, operand)); else if (!optimize_size && count * ix86_cost->add <= ix86_cost->shift_const) { int i; for (i=0; i= 32) { emit_move_insn (high[0], low[1]); emit_move_insn (low[0], const0_rtx); if (count > 32) ix86_expand_ashlsi3_const (high[0], count - 32); } else { if (!rtx_equal_p (operands[0], operands[1])) emit_move_insn (operands[0], operands[1]); emit_insn (gen_x86_shld_1 (high[0], low[0], GEN_INT (count))); ix86_expand_ashlsi3_const (low[0], count); } return; } split_di (operands, 1, low, high); if (operands[1] == const1_rtx) { /* Assuming we've chosen a QImode capable registers, then 1LL << N can be done with two 32-bit shifts, no branches, no cmoves. */ if (ANY_QI_REG_P (low[0]) && ANY_QI_REG_P (high[0])) { rtx s, d, flags = gen_rtx_REG (CCZmode, FLAGS_REG); ix86_expand_clear (low[0]); ix86_expand_clear (high[0]); emit_insn (gen_testqi_ccz_1 (operands[2], GEN_INT (32))); d = gen_lowpart (QImode, low[0]); d = gen_rtx_STRICT_LOW_PART (VOIDmode, d); s = gen_rtx_EQ (QImode, flags, const0_rtx); emit_insn (gen_rtx_SET (VOIDmode, d, s)); d = gen_lowpart (QImode, high[0]); d = gen_rtx_STRICT_LOW_PART (VOIDmode, d); s = gen_rtx_NE (QImode, flags, const0_rtx); emit_insn (gen_rtx_SET (VOIDmode, d, s)); } /* Otherwise, we can get the same results by manually performing a bit extract operation on bit 5, and then performing the two shifts. The two methods of getting 0/1 into low/high are exactly the same size. Avoiding the shift in the bit extract case helps pentium4 a bit; no one else seems to care much either way. */ else { rtx x; if (TARGET_PARTIAL_REG_STALL && !optimize_size) x = gen_rtx_ZERO_EXTEND (SImode, operands[2]); else x = gen_lowpart (SImode, operands[2]); emit_insn (gen_rtx_SET (VOIDmode, high[0], x)); emit_insn (gen_lshrsi3 (high[0], high[0], GEN_INT (5))); emit_insn (gen_andsi3 (high[0], high[0], GEN_INT (1))); emit_move_insn (low[0], high[0]); emit_insn (gen_xorsi3 (low[0], low[0], GEN_INT (1))); } emit_insn (gen_ashlsi3 (low[0], low[0], operands[2])); emit_insn (gen_ashlsi3 (high[0], high[0], operands[2])); return; } if (operands[1] == constm1_rtx) { /* For -1LL << N, we can avoid the shld instruction, because we know that we're shifting 0...31 ones into a -1. */ emit_move_insn (low[0], constm1_rtx); if (optimize_size) emit_move_insn (high[0], low[0]); else emit_move_insn (high[0], constm1_rtx); } else { if (!rtx_equal_p (operands[0], operands[1])) emit_move_insn (operands[0], operands[1]); split_di (operands, 1, low, high); emit_insn (gen_x86_shld_1 (high[0], low[0], operands[2])); } emit_insn (gen_ashlsi3 (low[0], low[0], operands[2])); if (TARGET_CMOVE && scratch) { ix86_expand_clear (scratch); emit_insn (gen_x86_shift_adj_1 (high[0], low[0], operands[2], scratch)); } else emit_insn (gen_x86_shift_adj_2 (high[0], low[0], operands[2])); } void ix86_split_ashrdi (rtx *operands, rtx scratch) { rtx low[2], high[2]; int count; if (GET_CODE (operands[2]) == CONST_INT) { split_di (operands, 2, low, high); count = INTVAL (operands[2]) & 63; if (count == 63) { emit_move_insn (high[0], high[1]); emit_insn (gen_ashrsi3 (high[0], high[0], GEN_INT (31))); emit_move_insn (low[0], high[0]); } else if (count >= 32) { emit_move_insn (low[0], high[1]); emit_move_insn (high[0], low[0]); emit_insn (gen_ashrsi3 (high[0], high[0], GEN_INT (31))); if (count > 32) emit_insn (gen_ashrsi3 (low[0], low[0], GEN_INT (count - 32))); } else { if (!rtx_equal_p (operands[0], operands[1])) emit_move_insn (operands[0], operands[1]); emit_insn (gen_x86_shrd_1 (low[0], high[0], GEN_INT (count))); emit_insn (gen_ashrsi3 (high[0], high[0], GEN_INT (count))); } } else { if (!rtx_equal_p (operands[0], operands[1])) emit_move_insn (operands[0], operands[1]); split_di (operands, 1, low, high); emit_insn (gen_x86_shrd_1 (low[0], high[0], operands[2])); emit_insn (gen_ashrsi3 (high[0], high[0], operands[2])); if (TARGET_CMOVE && scratch) { emit_move_insn (scratch, high[0]); emit_insn (gen_ashrsi3 (scratch, scratch, GEN_INT (31))); emit_insn (gen_x86_shift_adj_1 (low[0], high[0], operands[2], scratch)); } else emit_insn (gen_x86_shift_adj_3 (low[0], high[0], operands[2])); } } void ix86_split_lshrdi (rtx *operands, rtx scratch) { rtx low[2], high[2]; int count; if (GET_CODE (operands[2]) == CONST_INT) { split_di (operands, 2, low, high); count = INTVAL (operands[2]) & 63; if (count >= 32) { emit_move_insn (low[0], high[1]); ix86_expand_clear (high[0]); if (count > 32) emit_insn (gen_lshrsi3 (low[0], low[0], GEN_INT (count - 32))); } else { if (!rtx_equal_p (operands[0], operands[1])) emit_move_insn (operands[0], operands[1]); emit_insn (gen_x86_shrd_1 (low[0], high[0], GEN_INT (count))); emit_insn (gen_lshrsi3 (high[0], high[0], GEN_INT (count))); } } else { if (!rtx_equal_p (operands[0], operands[1])) emit_move_insn (operands[0], operands[1]); split_di (operands, 1, low, high); emit_insn (gen_x86_shrd_1 (low[0], high[0], operands[2])); emit_insn (gen_lshrsi3 (high[0], high[0], operands[2])); /* Heh. By reversing the arguments, we can reuse this pattern. */ if (TARGET_CMOVE && scratch) { ix86_expand_clear (scratch); emit_insn (gen_x86_shift_adj_1 (low[0], high[0], operands[2], scratch)); } else emit_insn (gen_x86_shift_adj_2 (low[0], high[0], operands[2])); } } /* Helper function for the string operations below. Dest VARIABLE whether it is aligned to VALUE bytes. If true, jump to the label. */ static rtx ix86_expand_aligntest (rtx variable, int value) { rtx label = gen_label_rtx (); rtx tmpcount = gen_reg_rtx (GET_MODE (variable)); if (GET_MODE (variable) == DImode) emit_insn (gen_anddi3 (tmpcount, variable, GEN_INT (value))); else emit_insn (gen_andsi3 (tmpcount, variable, GEN_INT (value))); emit_cmp_and_jump_insns (tmpcount, const0_rtx, EQ, 0, GET_MODE (variable), 1, label); return label; } /* Adjust COUNTER by the VALUE. */ static void ix86_adjust_counter (rtx countreg, HOST_WIDE_INT value) { if (GET_MODE (countreg) == DImode) emit_insn (gen_adddi3 (countreg, countreg, GEN_INT (-value))); else emit_insn (gen_addsi3 (countreg, countreg, GEN_INT (-value))); } /* Zero extend possibly SImode EXP to Pmode register. */ rtx ix86_zero_extend_to_Pmode (rtx exp) { rtx r; if (GET_MODE (exp) == VOIDmode) return force_reg (Pmode, exp); if (GET_MODE (exp) == Pmode) return copy_to_mode_reg (Pmode, exp); r = gen_reg_rtx (Pmode); emit_insn (gen_zero_extendsidi2 (r, exp)); return r; } /* Expand string move (memcpy) operation. Use i386 string operations when profitable. expand_clrmem contains similar code. */ int ix86_expand_movmem (rtx dst, rtx src, rtx count_exp, rtx align_exp) { rtx srcreg, destreg, countreg, srcexp, destexp; enum machine_mode counter_mode; HOST_WIDE_INT align = 0; unsigned HOST_WIDE_INT count = 0; if (GET_CODE (align_exp) == CONST_INT) align = INTVAL (align_exp); /* Can't use any of this if the user has appropriated esi or edi. */ if (global_regs[4] || global_regs[5]) return 0; /* This simple hack avoids all inlining code and simplifies code below. */ if (!TARGET_ALIGN_STRINGOPS) align = 64; if (GET_CODE (count_exp) == CONST_INT) { count = INTVAL (count_exp); if (!TARGET_INLINE_ALL_STRINGOPS && count > 64) return 0; } /* Figure out proper mode for counter. For 32bits it is always SImode, for 64bits use SImode when possible, otherwise DImode. Set count to number of bytes copied when known at compile time. */ if (!TARGET_64BIT || GET_MODE (count_exp) == SImode || x86_64_zext_immediate_operand (count_exp, VOIDmode)) counter_mode = SImode; else counter_mode = DImode; if (counter_mode != SImode && counter_mode != DImode) abort (); destreg = copy_to_mode_reg (Pmode, XEXP (dst, 0)); if (destreg != XEXP (dst, 0)) dst = replace_equiv_address_nv (dst, destreg); srcreg = copy_to_mode_reg (Pmode, XEXP (src, 0)); if (srcreg != XEXP (src, 0)) src = replace_equiv_address_nv (src, srcreg); /* When optimizing for size emit simple rep ; movsb instruction for counts not divisible by 4. */ if ((!optimize || optimize_size) && (count == 0 || (count & 0x03))) { emit_insn (gen_cld ()); countreg = ix86_zero_extend_to_Pmode (count_exp); destexp = gen_rtx_PLUS (Pmode, destreg, countreg); srcexp = gen_rtx_PLUS (Pmode, srcreg, countreg); emit_insn (gen_rep_mov (destreg, dst, srcreg, src, countreg, destexp, srcexp)); } /* For constant aligned (or small unaligned) copies use rep movsl followed by code copying the rest. For PentiumPro ensure 8 byte alignment to allow rep movsl acceleration. */ else if (count != 0 && (align >= 8 || (!TARGET_PENTIUMPRO && !TARGET_64BIT && align >= 4) || optimize_size || count < (unsigned int) 64)) { unsigned HOST_WIDE_INT offset = 0; int size = TARGET_64BIT && !optimize_size ? 8 : 4; rtx srcmem, dstmem; emit_insn (gen_cld ()); if (count & ~(size - 1)) { countreg = copy_to_mode_reg (counter_mode, GEN_INT ((count >> (size == 4 ? 2 : 3)) & (TARGET_64BIT ? -1 : 0x3fffffff))); countreg = ix86_zero_extend_to_Pmode (countreg); destexp = gen_rtx_ASHIFT (Pmode, countreg, GEN_INT (size == 4 ? 2 : 3)); srcexp = gen_rtx_PLUS (Pmode, destexp, srcreg); destexp = gen_rtx_PLUS (Pmode, destexp, destreg); emit_insn (gen_rep_mov (destreg, dst, srcreg, src, countreg, destexp, srcexp)); offset = count & ~(size - 1); } if (size == 8 && (count & 0x04)) { srcmem = adjust_automodify_address_nv (src, SImode, srcreg, offset); dstmem = adjust_automodify_address_nv (dst, SImode, destreg, offset); emit_insn (gen_strmov (destreg, dstmem, srcreg, srcmem)); offset += 4; } if (count & 0x02) { srcmem = adjust_automodify_address_nv (src, HImode, srcreg, offset); dstmem = adjust_automodify_address_nv (dst, HImode, destreg, offset); emit_insn (gen_strmov (destreg, dstmem, srcreg, srcmem)); offset += 2; } if (count & 0x01) { srcmem = adjust_automodify_address_nv (src, QImode, srcreg, offset); dstmem = adjust_automodify_address_nv (dst, QImode, destreg, offset); emit_insn (gen_strmov (destreg, dstmem, srcreg, srcmem)); } } /* The generic code based on the glibc implementation: - align destination to 4 bytes (8 byte alignment is used for PentiumPro allowing accelerated copying there) - copy the data using rep movsl - copy the rest. */ else { rtx countreg2; rtx label = NULL; rtx srcmem, dstmem; int desired_alignment = (TARGET_PENTIUMPRO && (count == 0 || count >= (unsigned int) 260) ? 8 : UNITS_PER_WORD); /* Get rid of MEM_OFFSETs, they won't be accurate. */ dst = change_address (dst, BLKmode, destreg); src = change_address (src, BLKmode, srcreg); /* In case we don't know anything about the alignment, default to library version, since it is usually equally fast and result in shorter code. Also emit call when we know that the count is large and call overhead will not be important. */ if (!TARGET_INLINE_ALL_STRINGOPS && (align < UNITS_PER_WORD || !TARGET_REP_MOVL_OPTIMAL)) return 0; if (TARGET_SINGLE_STRINGOP) emit_insn (gen_cld ()); countreg2 = gen_reg_rtx (Pmode); countreg = copy_to_mode_reg (counter_mode, count_exp); /* We don't use loops to align destination and to copy parts smaller than 4 bytes, because gcc is able to optimize such code better (in the case the destination or the count really is aligned, gcc is often able to predict the branches) and also it is friendlier to the hardware branch prediction. Using loops is beneficial for generic case, because we can handle small counts using the loops. Many CPUs (such as Athlon) have large REP prefix setup costs. This is quite costly. Maybe we can revisit this decision later or add some customizability to this code. */ if (count == 0 && align < desired_alignment) { label = gen_label_rtx (); emit_cmp_and_jump_insns (countreg, GEN_INT (desired_alignment - 1), LEU, 0, counter_mode, 1, label); } if (align <= 1) { rtx label = ix86_expand_aligntest (destreg, 1); srcmem = change_address (src, QImode, srcreg); dstmem = change_address (dst, QImode, destreg); emit_insn (gen_strmov (destreg, dstmem, srcreg, srcmem)); ix86_adjust_counter (countreg, 1); emit_label (label); LABEL_NUSES (label) = 1; } if (align <= 2) { rtx label = ix86_expand_aligntest (destreg, 2); srcmem = change_address (src, HImode, srcreg); dstmem = change_address (dst, HImode, destreg); emit_insn (gen_strmov (destreg, dstmem, srcreg, srcmem)); ix86_adjust_counter (countreg, 2); emit_label (label); LABEL_NUSES (label) = 1; } if (align <= 4 && desired_alignment > 4) { rtx label = ix86_expand_aligntest (destreg, 4); srcmem = change_address (src, SImode, srcreg); dstmem = change_address (dst, SImode, destreg); emit_insn (gen_strmov (destreg, dstmem, srcreg, srcmem)); ix86_adjust_counter (countreg, 4); emit_label (label); LABEL_NUSES (label) = 1; } if (label && desired_alignment > 4 && !TARGET_64BIT) { emit_label (label); LABEL_NUSES (label) = 1; label = NULL_RTX; } if (!TARGET_SINGLE_STRINGOP) emit_insn (gen_cld ()); if (TARGET_64BIT) { emit_insn (gen_lshrdi3 (countreg2, ix86_zero_extend_to_Pmode (countreg), GEN_INT (3))); destexp = gen_rtx_ASHIFT (Pmode, countreg2, GEN_INT (3)); } else { emit_insn (gen_lshrsi3 (countreg2, countreg, const2_rtx)); destexp = gen_rtx_ASHIFT (Pmode, countreg2, const2_rtx); } srcexp = gen_rtx_PLUS (Pmode, destexp, srcreg); destexp = gen_rtx_PLUS (Pmode, destexp, destreg); emit_insn (gen_rep_mov (destreg, dst, srcreg, src, countreg2, destexp, srcexp)); if (label) { emit_label (label); LABEL_NUSES (label) = 1; } if (TARGET_64BIT && align > 4 && count != 0 && (count & 4)) { srcmem = change_address (src, SImode, srcreg); dstmem = change_address (dst, SImode, destreg); emit_insn (gen_strmov (destreg, dstmem, srcreg, srcmem)); } if ((align <= 4 || count == 0) && TARGET_64BIT) { rtx label = ix86_expand_aligntest (countreg, 4); srcmem = change_address (src, SImode, srcreg); dstmem = change_address (dst, SImode, destreg); emit_insn (gen_strmov (destreg, dstmem, srcreg, srcmem)); emit_label (label); LABEL_NUSES (label) = 1; } if (align > 2 && count != 0 && (count & 2)) { srcmem = change_address (src, HImode, srcreg); dstmem = change_address (dst, HImode, destreg); emit_insn (gen_strmov (destreg, dstmem, srcreg, srcmem)); } if (align <= 2 || count == 0) { rtx label = ix86_expand_aligntest (countreg, 2); srcmem = change_address (src, HImode, srcreg); dstmem = change_address (dst, HImode, destreg); emit_insn (gen_strmov (destreg, dstmem, srcreg, srcmem)); emit_label (label); LABEL_NUSES (label) = 1; } if (align > 1 && count != 0 && (count & 1)) { srcmem = change_address (src, QImode, srcreg); dstmem = change_address (dst, QImode, destreg); emit_insn (gen_strmov (destreg, dstmem, srcreg, srcmem)); } if (align <= 1 || count == 0) { rtx label = ix86_expand_aligntest (countreg, 1); srcmem = change_address (src, QImode, srcreg); dstmem = change_address (dst, QImode, destreg); emit_insn (gen_strmov (destreg, dstmem, srcreg, srcmem)); emit_label (label); LABEL_NUSES (label) = 1; } } return 1; } /* Expand string clear operation (bzero). Use i386 string operations when profitable. expand_movmem contains similar code. */ int ix86_expand_clrmem (rtx dst, rtx count_exp, rtx align_exp) { rtx destreg, zeroreg, countreg, destexp; enum machine_mode counter_mode; HOST_WIDE_INT align = 0; unsigned HOST_WIDE_INT count = 0; if (GET_CODE (align_exp) == CONST_INT) align = INTVAL (align_exp); /* Can't use any of this if the user has appropriated esi. */ if (global_regs[4]) return 0; /* This simple hack avoids all inlining code and simplifies code below. */ if (!TARGET_ALIGN_STRINGOPS) align = 32; if (GET_CODE (count_exp) == CONST_INT) { count = INTVAL (count_exp); if (!TARGET_INLINE_ALL_STRINGOPS && count > 64) return 0; } /* Figure out proper mode for counter. For 32bits it is always SImode, for 64bits use SImode when possible, otherwise DImode. Set count to number of bytes copied when known at compile time. */ if (!TARGET_64BIT || GET_MODE (count_exp) == SImode || x86_64_zext_immediate_operand (count_exp, VOIDmode)) counter_mode = SImode; else counter_mode = DImode; destreg = copy_to_mode_reg (Pmode, XEXP (dst, 0)); if (destreg != XEXP (dst, 0)) dst = replace_equiv_address_nv (dst, destreg); /* When optimizing for size emit simple rep ; movsb instruction for counts not divisible by 4. The movl $N, %ecx; rep; stosb sequence is 7 bytes long, so if optimizing for size and count is small enough that some stosl, stosw and stosb instructions without rep are shorter, fall back into the next if. */ if ((!optimize || optimize_size) && (count == 0 || ((count & 0x03) && (!optimize_size || (count & 0x03) + (count >> 2) > 7)))) { emit_insn (gen_cld ()); countreg = ix86_zero_extend_to_Pmode (count_exp); zeroreg = copy_to_mode_reg (QImode, const0_rtx); destexp = gen_rtx_PLUS (Pmode, destreg, countreg); emit_insn (gen_rep_stos (destreg, countreg, dst, zeroreg, destexp)); } else if (count != 0 && (align >= 8 || (!TARGET_PENTIUMPRO && !TARGET_64BIT && align >= 4) || optimize_size || count < (unsigned int) 64)) { int size = TARGET_64BIT && !optimize_size ? 8 : 4; unsigned HOST_WIDE_INT offset = 0; emit_insn (gen_cld ()); zeroreg = copy_to_mode_reg (size == 4 ? SImode : DImode, const0_rtx); if (count & ~(size - 1)) { unsigned HOST_WIDE_INT repcount; unsigned int max_nonrep; repcount = count >> (size == 4 ? 2 : 3); if (!TARGET_64BIT) repcount &= 0x3fffffff; /* movl $N, %ecx; rep; stosl is 7 bytes, while N x stosl is N bytes. movl $N, %ecx; rep; stosq is 8 bytes, while N x stosq is 2xN bytes. In both cases the latter seems to be faster for small values of N. */ max_nonrep = size == 4 ? 7 : 4; if (!optimize_size) switch (ix86_tune) { case PROCESSOR_PENTIUM4: case PROCESSOR_NOCONA: max_nonrep = 3; break; default: break; } if (repcount <= max_nonrep) while (repcount-- > 0) { rtx mem = adjust_automodify_address_nv (dst, GET_MODE (zeroreg), destreg, offset); emit_insn (gen_strset (destreg, mem, zeroreg)); offset += size; } else { countreg = copy_to_mode_reg (counter_mode, GEN_INT (repcount)); countreg = ix86_zero_extend_to_Pmode (countreg); destexp = gen_rtx_ASHIFT (Pmode, countreg, GEN_INT (size == 4 ? 2 : 3)); destexp = gen_rtx_PLUS (Pmode, destexp, destreg); emit_insn (gen_rep_stos (destreg, countreg, dst, zeroreg, destexp)); offset = count & ~(size - 1); } } if (size == 8 && (count & 0x04)) { rtx mem = adjust_automodify_address_nv (dst, SImode, destreg, offset); emit_insn (gen_strset (destreg, mem, gen_rtx_SUBREG (SImode, zeroreg, 0))); offset += 4; } if (count & 0x02) { rtx mem = adjust_automodify_address_nv (dst, HImode, destreg, offset); emit_insn (gen_strset (destreg, mem, gen_rtx_SUBREG (HImode, zeroreg, 0))); offset += 2; } if (count & 0x01) { rtx mem = adjust_automodify_address_nv (dst, QImode, destreg, offset); emit_insn (gen_strset (destreg, mem, gen_rtx_SUBREG (QImode, zeroreg, 0))); } } else { rtx countreg2; rtx label = NULL; /* Compute desired alignment of the string operation. */ int desired_alignment = (TARGET_PENTIUMPRO && (count == 0 || count >= (unsigned int) 260) ? 8 : UNITS_PER_WORD); /* In case we don't know anything about the alignment, default to library version, since it is usually equally fast and result in shorter code. Also emit call when we know that the count is large and call overhead will not be important. */ if (!TARGET_INLINE_ALL_STRINGOPS && (align < UNITS_PER_WORD || !TARGET_REP_MOVL_OPTIMAL)) return 0; if (TARGET_SINGLE_STRINGOP) emit_insn (gen_cld ()); countreg2 = gen_reg_rtx (Pmode); countreg = copy_to_mode_reg (counter_mode, count_exp); zeroreg = copy_to_mode_reg (Pmode, const0_rtx); /* Get rid of MEM_OFFSET, it won't be accurate. */ dst = change_address (dst, BLKmode, destreg); if (count == 0 && align < desired_alignment) { label = gen_label_rtx (); emit_cmp_and_jump_insns (countreg, GEN_INT (desired_alignment - 1), LEU, 0, counter_mode, 1, label); } if (align <= 1) { rtx label = ix86_expand_aligntest (destreg, 1); emit_insn (gen_strset (destreg, dst, gen_rtx_SUBREG (QImode, zeroreg, 0))); ix86_adjust_counter (countreg, 1); emit_label (label); LABEL_NUSES (label) = 1; } if (align <= 2) { rtx label = ix86_expand_aligntest (destreg, 2); emit_insn (gen_strset (destreg, dst, gen_rtx_SUBREG (HImode, zeroreg, 0))); ix86_adjust_counter (countreg, 2); emit_label (label); LABEL_NUSES (label) = 1; } if (align <= 4 && desired_alignment > 4) { rtx label = ix86_expand_aligntest (destreg, 4); emit_insn (gen_strset (destreg, dst, (TARGET_64BIT ? gen_rtx_SUBREG (SImode, zeroreg, 0) : zeroreg))); ix86_adjust_counter (countreg, 4); emit_label (label); LABEL_NUSES (label) = 1; } if (label && desired_alignment > 4 && !TARGET_64BIT) { emit_label (label); LABEL_NUSES (label) = 1; label = NULL_RTX; } if (!TARGET_SINGLE_STRINGOP) emit_insn (gen_cld ()); if (TARGET_64BIT) { emit_insn (gen_lshrdi3 (countreg2, ix86_zero_extend_to_Pmode (countreg), GEN_INT (3))); destexp = gen_rtx_ASHIFT (Pmode, countreg2, GEN_INT (3)); } else { emit_insn (gen_lshrsi3 (countreg2, countreg, const2_rtx)); destexp = gen_rtx_ASHIFT (Pmode, countreg2, const2_rtx); } destexp = gen_rtx_PLUS (Pmode, destexp, destreg); emit_insn (gen_rep_stos (destreg, countreg2, dst, zeroreg, destexp)); if (label) { emit_label (label); LABEL_NUSES (label) = 1; } if (TARGET_64BIT && align > 4 && count != 0 && (count & 4)) emit_insn (gen_strset (destreg, dst, gen_rtx_SUBREG (SImode, zeroreg, 0))); if (TARGET_64BIT && (align <= 4 || count == 0)) { rtx label = ix86_expand_aligntest (countreg, 4); emit_insn (gen_strset (destreg, dst, gen_rtx_SUBREG (SImode, zeroreg, 0))); emit_label (label); LABEL_NUSES (label) = 1; } if (align > 2 && count != 0 && (count & 2)) emit_insn (gen_strset (destreg, dst, gen_rtx_SUBREG (HImode, zeroreg, 0))); if (align <= 2 || count == 0) { rtx label = ix86_expand_aligntest (countreg, 2); emit_insn (gen_strset (destreg, dst, gen_rtx_SUBREG (HImode, zeroreg, 0))); emit_label (label); LABEL_NUSES (label) = 1; } if (align > 1 && count != 0 && (count & 1)) emit_insn (gen_strset (destreg, dst, gen_rtx_SUBREG (QImode, zeroreg, 0))); if (align <= 1 || count == 0) { rtx label = ix86_expand_aligntest (countreg, 1); emit_insn (gen_strset (destreg, dst, gen_rtx_SUBREG (QImode, zeroreg, 0))); emit_label (label); LABEL_NUSES (label) = 1; } } return 1; } /* Expand strlen. */ int ix86_expand_strlen (rtx out, rtx src, rtx eoschar, rtx align) { rtx addr, scratch1, scratch2, scratch3, scratch4; /* The generic case of strlen expander is long. Avoid it's expanding unless TARGET_INLINE_ALL_STRINGOPS. */ if (TARGET_UNROLL_STRLEN && eoschar == const0_rtx && optimize > 1 && !TARGET_INLINE_ALL_STRINGOPS && !optimize_size && (GET_CODE (align) != CONST_INT || INTVAL (align) < 4)) return 0; addr = force_reg (Pmode, XEXP (src, 0)); scratch1 = gen_reg_rtx (Pmode); if (TARGET_UNROLL_STRLEN && eoschar == const0_rtx && optimize > 1 && !optimize_size) { /* Well it seems that some optimizer does not combine a call like foo(strlen(bar), strlen(bar)); when the move and the subtraction is done here. It does calculate the length just once when these instructions are done inside of output_strlen_unroll(). But I think since &bar[strlen(bar)] is often used and I use one fewer register for the lifetime of output_strlen_unroll() this is better. */ emit_move_insn (out, addr); ix86_expand_strlensi_unroll_1 (out, src, align); /* strlensi_unroll_1 returns the address of the zero at the end of the string, like memchr(), so compute the length by subtracting the start address. */ if (TARGET_64BIT) emit_insn (gen_subdi3 (out, out, addr)); else emit_insn (gen_subsi3 (out, out, addr)); } else { rtx unspec; scratch2 = gen_reg_rtx (Pmode); scratch3 = gen_reg_rtx (Pmode); scratch4 = force_reg (Pmode, constm1_rtx); emit_move_insn (scratch3, addr); eoschar = force_reg (QImode, eoschar); emit_insn (gen_cld ()); src = replace_equiv_address_nv (src, scratch3); /* If .md starts supporting :P, this can be done in .md. */ unspec = gen_rtx_UNSPEC (Pmode, gen_rtvec (4, src, eoschar, align, scratch4), UNSPEC_SCAS); emit_insn (gen_strlenqi_1 (scratch1, scratch3, unspec)); if (TARGET_64BIT) { emit_insn (gen_one_cmpldi2 (scratch2, scratch1)); emit_insn (gen_adddi3 (out, scratch2, constm1_rtx)); } else { emit_insn (gen_one_cmplsi2 (scratch2, scratch1)); emit_insn (gen_addsi3 (out, scratch2, constm1_rtx)); } } return 1; } /* Expand the appropriate insns for doing strlen if not just doing repnz; scasb out = result, initialized with the start address align_rtx = alignment of the address. scratch = scratch register, initialized with the startaddress when not aligned, otherwise undefined This is just the body. It needs the initializations mentioned above and some address computing at the end. These things are done in i386.md. */ static void ix86_expand_strlensi_unroll_1 (rtx out, rtx src, rtx align_rtx) { int align; rtx tmp; rtx align_2_label = NULL_RTX; rtx align_3_label = NULL_RTX; rtx align_4_label = gen_label_rtx (); rtx end_0_label = gen_label_rtx (); rtx mem; rtx tmpreg = gen_reg_rtx (SImode); rtx scratch = gen_reg_rtx (SImode); rtx cmp; align = 0; if (GET_CODE (align_rtx) == CONST_INT) align = INTVAL (align_rtx); /* Loop to check 1..3 bytes for null to get an aligned pointer. */ /* Is there a known alignment and is it less than 4? */ if (align < 4) { rtx scratch1 = gen_reg_rtx (Pmode); emit_move_insn (scratch1, out); /* Is there a known alignment and is it not 2? */ if (align != 2) { align_3_label = gen_label_rtx (); /* Label when aligned to 3-byte */ align_2_label = gen_label_rtx (); /* Label when aligned to 2-byte */ /* Leave just the 3 lower bits. */ align_rtx = expand_binop (Pmode, and_optab, scratch1, GEN_INT (3), NULL_RTX, 0, OPTAB_WIDEN); emit_cmp_and_jump_insns (align_rtx, const0_rtx, EQ, NULL, Pmode, 1, align_4_label); emit_cmp_and_jump_insns (align_rtx, const2_rtx, EQ, NULL, Pmode, 1, align_2_label); emit_cmp_and_jump_insns (align_rtx, const2_rtx, GTU, NULL, Pmode, 1, align_3_label); } else { /* Since the alignment is 2, we have to check 2 or 0 bytes; check if is aligned to 4 - byte. */ align_rtx = expand_binop (Pmode, and_optab, scratch1, const2_rtx, NULL_RTX, 0, OPTAB_WIDEN); emit_cmp_and_jump_insns (align_rtx, const0_rtx, EQ, NULL, Pmode, 1, align_4_label); } mem = change_address (src, QImode, out); /* Now compare the bytes. */ /* Compare the first n unaligned byte on a byte per byte basis. */ emit_cmp_and_jump_insns (mem, const0_rtx, EQ, NULL, QImode, 1, end_0_label); /* Increment the address. */ if (TARGET_64BIT) emit_insn (gen_adddi3 (out, out, const1_rtx)); else emit_insn (gen_addsi3 (out, out, const1_rtx)); /* Not needed with an alignment of 2 */ if (align != 2) { emit_label (align_2_label); emit_cmp_and_jump_insns (mem, const0_rtx, EQ, NULL, QImode, 1, end_0_label); if (TARGET_64BIT) emit_insn (gen_adddi3 (out, out, const1_rtx)); else emit_insn (gen_addsi3 (out, out, const1_rtx)); emit_label (align_3_label); } emit_cmp_and_jump_insns (mem, const0_rtx, EQ, NULL, QImode, 1, end_0_label); if (TARGET_64BIT) emit_insn (gen_adddi3 (out, out, const1_rtx)); else emit_insn (gen_addsi3 (out, out, const1_rtx)); } /* Generate loop to check 4 bytes at a time. It is not a good idea to align this loop. It gives only huge programs, but does not help to speed up. */ emit_label (align_4_label); mem = change_address (src, SImode, out); emit_move_insn (scratch, mem); if (TARGET_64BIT) emit_insn (gen_adddi3 (out, out, GEN_INT (4))); else emit_insn (gen_addsi3 (out, out, GEN_INT (4))); /* This formula yields a nonzero result iff one of the bytes is zero. This saves three branches inside loop and many cycles. */ emit_insn (gen_addsi3 (tmpreg, scratch, GEN_INT (-0x01010101))); emit_insn (gen_one_cmplsi2 (scratch, scratch)); emit_insn (gen_andsi3 (tmpreg, tmpreg, scratch)); emit_insn (gen_andsi3 (tmpreg, tmpreg, gen_int_mode (0x80808080, SImode))); emit_cmp_and_jump_insns (tmpreg, const0_rtx, EQ, 0, SImode, 1, align_4_label); if (TARGET_CMOVE) { rtx reg = gen_reg_rtx (SImode); rtx reg2 = gen_reg_rtx (Pmode); emit_move_insn (reg, tmpreg); emit_insn (gen_lshrsi3 (reg, reg, GEN_INT (16))); /* If zero is not in the first two bytes, move two bytes forward. */ emit_insn (gen_testsi_ccno_1 (tmpreg, GEN_INT (0x8080))); tmp = gen_rtx_REG (CCNOmode, FLAGS_REG); tmp = gen_rtx_EQ (VOIDmode, tmp, const0_rtx); emit_insn (gen_rtx_SET (VOIDmode, tmpreg, gen_rtx_IF_THEN_ELSE (SImode, tmp, reg, tmpreg))); /* Emit lea manually to avoid clobbering of flags. */ emit_insn (gen_rtx_SET (SImode, reg2, gen_rtx_PLUS (Pmode, out, const2_rtx))); tmp = gen_rtx_REG (CCNOmode, FLAGS_REG); tmp = gen_rtx_EQ (VOIDmode, tmp, const0_rtx); emit_insn (gen_rtx_SET (VOIDmode, out, gen_rtx_IF_THEN_ELSE (Pmode, tmp, reg2, out))); } else { rtx end_2_label = gen_label_rtx (); /* Is zero in the first two bytes? */ emit_insn (gen_testsi_ccno_1 (tmpreg, GEN_INT (0x8080))); tmp = gen_rtx_REG (CCNOmode, FLAGS_REG); tmp = gen_rtx_NE (VOIDmode, tmp, const0_rtx); tmp = gen_rtx_IF_THEN_ELSE (VOIDmode, tmp, gen_rtx_LABEL_REF (VOIDmode, end_2_label), pc_rtx); tmp = emit_jump_insn (gen_rtx_SET (VOIDmode, pc_rtx, tmp)); JUMP_LABEL (tmp) = end_2_label; /* Not in the first two. Move two bytes forward. */ emit_insn (gen_lshrsi3 (tmpreg, tmpreg, GEN_INT (16))); if (TARGET_64BIT) emit_insn (gen_adddi3 (out, out, const2_rtx)); else emit_insn (gen_addsi3 (out, out, const2_rtx)); emit_label (end_2_label); } /* Avoid branch in fixing the byte. */ tmpreg = gen_lowpart (QImode, tmpreg); emit_insn (gen_addqi3_cc (tmpreg, tmpreg, tmpreg)); cmp = gen_rtx_LTU (Pmode, gen_rtx_REG (CCmode, 17), const0_rtx); if (TARGET_64BIT) emit_insn (gen_subdi3_carry_rex64 (out, out, GEN_INT (3), cmp)); else emit_insn (gen_subsi3_carry (out, out, GEN_INT (3), cmp)); emit_label (end_0_label); } void ix86_expand_call (rtx retval, rtx fnaddr, rtx callarg1, rtx callarg2 ATTRIBUTE_UNUSED, rtx pop, int sibcall) { rtx use = NULL, call; if (pop == const0_rtx) pop = NULL; if (TARGET_64BIT && pop) abort (); #if TARGET_MACHO if (flag_pic && GET_CODE (XEXP (fnaddr, 0)) == SYMBOL_REF) fnaddr = machopic_indirect_call_target (fnaddr); #else /* Static functions and indirect calls don't need the pic register. */ if (! TARGET_64BIT && flag_pic && GET_CODE (XEXP (fnaddr, 0)) == SYMBOL_REF && ! SYMBOL_REF_LOCAL_P (XEXP (fnaddr, 0))) use_reg (&use, pic_offset_table_rtx); if (TARGET_64BIT && INTVAL (callarg2) >= 0) { rtx al = gen_rtx_REG (QImode, 0); emit_move_insn (al, callarg2); use_reg (&use, al); } #endif /* TARGET_MACHO */ if (! call_insn_operand (XEXP (fnaddr, 0), Pmode)) { fnaddr = copy_to_mode_reg (Pmode, XEXP (fnaddr, 0)); fnaddr = gen_rtx_MEM (QImode, fnaddr); } if (sibcall && TARGET_64BIT && !constant_call_address_operand (XEXP (fnaddr, 0), Pmode)) { rtx addr; addr = copy_to_mode_reg (Pmode, XEXP (fnaddr, 0)); fnaddr = gen_rtx_REG (Pmode, FIRST_REX_INT_REG + 3 /* R11 */); emit_move_insn (fnaddr, addr); fnaddr = gen_rtx_MEM (QImode, fnaddr); } call = gen_rtx_CALL (VOIDmode, fnaddr, callarg1); if (retval) call = gen_rtx_SET (VOIDmode, retval, call); if (pop) { pop = gen_rtx_PLUS (Pmode, stack_pointer_rtx, pop); pop = gen_rtx_SET (VOIDmode, stack_pointer_rtx, pop); call = gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, call, pop)); } call = emit_call_insn (call); if (use) CALL_INSN_FUNCTION_USAGE (call) = use; } /* Clear stack slot assignments remembered from previous functions. This is called from INIT_EXPANDERS once before RTL is emitted for each function. */ static struct machine_function * ix86_init_machine_status (void) { struct machine_function *f; f = ggc_alloc_cleared (sizeof (struct machine_function)); f->use_fast_prologue_epilogue_nregs = -1; return f; } /* Return a MEM corresponding to a stack slot with mode MODE. Allocate a new slot if necessary. The RTL for a function can have several slots available: N is which slot to use. */ rtx assign_386_stack_local (enum machine_mode mode, int n) { struct stack_local_entry *s; if (n < 0 || n >= MAX_386_STACK_LOCALS) abort (); for (s = ix86_stack_locals; s; s = s->next) if (s->mode == mode && s->n == n) return s->rtl; s = (struct stack_local_entry *) ggc_alloc (sizeof (struct stack_local_entry)); s->n = n; s->mode = mode; s->rtl = assign_stack_local (mode, GET_MODE_SIZE (mode), 0); s->next = ix86_stack_locals; ix86_stack_locals = s; return s->rtl; } /* Construct the SYMBOL_REF for the tls_get_addr function. */ static GTY(()) rtx ix86_tls_symbol; rtx ix86_tls_get_addr (void) { if (!ix86_tls_symbol) { ix86_tls_symbol = gen_rtx_SYMBOL_REF (Pmode, (TARGET_GNU_TLS && !TARGET_64BIT) ? "___tls_get_addr" : "__tls_get_addr"); } return ix86_tls_symbol; } /* Calculate the length of the memory address in the instruction encoding. Does not include the one-byte modrm, opcode, or prefix. */ int memory_address_length (rtx addr) { struct ix86_address parts; rtx base, index, disp; int len; if (GET_CODE (addr) == PRE_DEC || GET_CODE (addr) == POST_INC || GET_CODE (addr) == PRE_MODIFY || GET_CODE (addr) == POST_MODIFY) return 0; if (! ix86_decompose_address (addr, &parts)) abort (); if (parts.base && GET_CODE (parts.base) == SUBREG) parts.base = SUBREG_REG (parts.base); if (parts.index && GET_CODE (parts.index) == SUBREG) parts.index = SUBREG_REG (parts.index); base = parts.base; index = parts.index; disp = parts.disp; len = 0; /* Rule of thumb: - esp as the base always wants an index, - ebp as the base always wants a displacement. */ /* Register Indirect. */ if (base && !index && !disp) { /* esp (for its index) and ebp (for its displacement) need the two-byte modrm form. */ if (addr == stack_pointer_rtx || addr == arg_pointer_rtx || addr == frame_pointer_rtx || addr == hard_frame_pointer_rtx) len = 1; } /* Direct Addressing. */ else if (disp && !base && !index) len = 4; else { /* Find the length of the displacement constant. */ if (disp) { if (GET_CODE (disp) == CONST_INT && CONST_OK_FOR_LETTER_P (INTVAL (disp), 'K') && base) len = 1; else len = 4; } /* ebp always wants a displacement. */ else if (base == hard_frame_pointer_rtx) len = 1; /* An index requires the two-byte modrm form.... */ if (index /* ...like esp, which always wants an index. */ || base == stack_pointer_rtx || base == arg_pointer_rtx || base == frame_pointer_rtx) len += 1; } return len; } /* Compute default value for "length_immediate" attribute. When SHORTFORM is set, expect that insn have 8bit immediate alternative. */ int ix86_attr_length_immediate_default (rtx insn, int shortform) { int len = 0; int i; extract_insn_cached (insn); for (i = recog_data.n_operands - 1; i >= 0; --i) if (CONSTANT_P (recog_data.operand[i])) { if (len) abort (); if (shortform && GET_CODE (recog_data.operand[i]) == CONST_INT && CONST_OK_FOR_LETTER_P (INTVAL (recog_data.operand[i]), 'K')) len = 1; else { switch (get_attr_mode (insn)) { case MODE_QI: len+=1; break; case MODE_HI: len+=2; break; case MODE_SI: len+=4; break; /* Immediates for DImode instructions are encoded as 32bit sign extended values. */ case MODE_DI: len+=4; break; default: fatal_insn ("unknown insn mode", insn); } } } return len; } /* Compute default value for "length_address" attribute. */ int ix86_attr_length_address_default (rtx insn) { int i; if (get_attr_type (insn) == TYPE_LEA) { rtx set = PATTERN (insn); if (GET_CODE (set) == SET) ; else if (GET_CODE (set) == PARALLEL && GET_CODE (XVECEXP (set, 0, 0)) == SET) set = XVECEXP (set, 0, 0); else { #ifdef ENABLE_CHECKING abort (); #endif return 0; } return memory_address_length (SET_SRC (set)); } extract_insn_cached (insn); for (i = recog_data.n_operands - 1; i >= 0; --i) if (GET_CODE (recog_data.operand[i]) == MEM) { return memory_address_length (XEXP (recog_data.operand[i], 0)); break; } return 0; } /* Return the maximum number of instructions a cpu can issue. */ static int ix86_issue_rate (void) { switch (ix86_tune) { case PROCESSOR_PENTIUM: case PROCESSOR_K6: return 2; case PROCESSOR_PENTIUMPRO: case PROCESSOR_PENTIUM4: case PROCESSOR_ATHLON: case PROCESSOR_K8: case PROCESSOR_NOCONA: return 3; default: return 1; } } /* A subroutine of ix86_adjust_cost -- return true iff INSN reads flags set by DEP_INSN and nothing set by DEP_INSN. */ static int ix86_flags_dependant (rtx insn, rtx dep_insn, enum attr_type insn_type) { rtx set, set2; /* Simplify the test for uninteresting insns. */ if (insn_type != TYPE_SETCC && insn_type != TYPE_ICMOV && insn_type != TYPE_FCMOV && insn_type != TYPE_IBR) return 0; if ((set = single_set (dep_insn)) != 0) { set = SET_DEST (set); set2 = NULL_RTX; } else if (GET_CODE (PATTERN (dep_insn)) == PARALLEL && XVECLEN (PATTERN (dep_insn), 0) == 2 && GET_CODE (XVECEXP (PATTERN (dep_insn), 0, 0)) == SET && GET_CODE (XVECEXP (PATTERN (dep_insn), 0, 1)) == SET) { set = SET_DEST (XVECEXP (PATTERN (dep_insn), 0, 0)); set2 = SET_DEST (XVECEXP (PATTERN (dep_insn), 0, 0)); } else return 0; if (GET_CODE (set) != REG || REGNO (set) != FLAGS_REG) return 0; /* This test is true if the dependent insn reads the flags but not any other potentially set register. */ if (!reg_overlap_mentioned_p (set, PATTERN (insn))) return 0; if (set2 && reg_overlap_mentioned_p (set2, PATTERN (insn))) return 0; return 1; } /* A subroutine of ix86_adjust_cost -- return true iff INSN has a memory address with operands set by DEP_INSN. */ static int ix86_agi_dependant (rtx insn, rtx dep_insn, enum attr_type insn_type) { rtx addr; if (insn_type == TYPE_LEA && TARGET_PENTIUM) { addr = PATTERN (insn); if (GET_CODE (addr) == SET) ; else if (GET_CODE (addr) == PARALLEL && GET_CODE (XVECEXP (addr, 0, 0)) == SET) addr = XVECEXP (addr, 0, 0); else abort (); addr = SET_SRC (addr); } else { int i; extract_insn_cached (insn); for (i = recog_data.n_operands - 1; i >= 0; --i) if (GET_CODE (recog_data.operand[i]) == MEM) { addr = XEXP (recog_data.operand[i], 0); goto found; } return 0; found:; } return modified_in_p (addr, dep_insn); } static int ix86_adjust_cost (rtx insn, rtx link, rtx dep_insn, int cost) { enum attr_type insn_type, dep_insn_type; enum attr_memory memory; rtx set, set2; int dep_insn_code_number; /* Anti and output dependencies have zero cost on all CPUs. */ if (REG_NOTE_KIND (link) != 0) return 0; dep_insn_code_number = recog_memoized (dep_insn); /* If we can't recognize the insns, we can't really do anything. */ if (dep_insn_code_number < 0 || recog_memoized (insn) < 0) return cost; insn_type = get_attr_type (insn); dep_insn_type = get_attr_type (dep_insn); switch (ix86_tune) { case PROCESSOR_PENTIUM: /* Address Generation Interlock adds a cycle of latency. */ if (ix86_agi_dependant (insn, dep_insn, insn_type)) cost += 1; /* ??? Compares pair with jump/setcc. */ if (ix86_flags_dependant (insn, dep_insn, insn_type)) cost = 0; /* Floating point stores require value to be ready one cycle earlier. */ if (insn_type == TYPE_FMOV && get_attr_memory (insn) == MEMORY_STORE && !ix86_agi_dependant (insn, dep_insn, insn_type)) cost += 1; break; case PROCESSOR_PENTIUMPRO: memory = get_attr_memory (insn); /* INT->FP conversion is expensive. */ if (get_attr_fp_int_src (dep_insn)) cost += 5; /* There is one cycle extra latency between an FP op and a store. */ if (insn_type == TYPE_FMOV && (set = single_set (dep_insn)) != NULL_RTX && (set2 = single_set (insn)) != NULL_RTX && rtx_equal_p (SET_DEST (set), SET_SRC (set2)) && GET_CODE (SET_DEST (set2)) == MEM) cost += 1; /* Show ability of reorder buffer to hide latency of load by executing in parallel with previous instruction in case previous instruction is not needed to compute the address. */ if ((memory == MEMORY_LOAD || memory == MEMORY_BOTH) && !ix86_agi_dependant (insn, dep_insn, insn_type)) { /* Claim moves to take one cycle, as core can issue one load at time and the next load can start cycle later. */ if (dep_insn_type == TYPE_IMOV || dep_insn_type == TYPE_FMOV) cost = 1; else if (cost > 1) cost--; } break; case PROCESSOR_K6: memory = get_attr_memory (insn); /* The esp dependency is resolved before the instruction is really finished. */ if ((insn_type == TYPE_PUSH || insn_type == TYPE_POP) && (dep_insn_type == TYPE_PUSH || dep_insn_type == TYPE_POP)) return 1; /* INT->FP conversion is expensive. */ if (get_attr_fp_int_src (dep_insn)) cost += 5; /* Show ability of reorder buffer to hide latency of load by executing in parallel with previous instruction in case previous instruction is not needed to compute the address. */ if ((memory == MEMORY_LOAD || memory == MEMORY_BOTH) && !ix86_agi_dependant (insn, dep_insn, insn_type)) { /* Claim moves to take one cycle, as core can issue one load at time and the next load can start cycle later. */ if (dep_insn_type == TYPE_IMOV || dep_insn_type == TYPE_FMOV) cost = 1; else if (cost > 2) cost -= 2; else cost = 1; } break; case PROCESSOR_ATHLON: case PROCESSOR_K8: memory = get_attr_memory (insn); /* Show ability of reorder buffer to hide latency of load by executing in parallel with previous instruction in case previous instruction is not needed to compute the address. */ if ((memory == MEMORY_LOAD || memory == MEMORY_BOTH) && !ix86_agi_dependant (insn, dep_insn, insn_type)) { enum attr_unit unit = get_attr_unit (insn); int loadcost = 3; /* Because of the difference between the length of integer and floating unit pipeline preparation stages, the memory operands for floating point are cheaper. ??? For Athlon it the difference is most probably 2. */ if (unit == UNIT_INTEGER || unit == UNIT_UNKNOWN) loadcost = 3; else loadcost = TARGET_ATHLON ? 2 : 0; if (cost >= loadcost) cost -= loadcost; else cost = 0; } default: break; } return cost; } /* How many alternative schedules to try. This should be as wide as the scheduling freedom in the DFA, but no wider. Making this value too large results extra work for the scheduler. */ static int ia32_multipass_dfa_lookahead (void) { if (ix86_tune == PROCESSOR_PENTIUM) return 2; if (ix86_tune == PROCESSOR_PENTIUMPRO || ix86_tune == PROCESSOR_K6) return 1; else return 0; } /* Compute the alignment given to a constant that is being placed in memory. EXP is the constant and ALIGN is the alignment that the object would ordinarily have. The value of this function is used instead of that alignment to align the object. */ int ix86_constant_alignment (tree exp, int align) { if (TREE_CODE (exp) == REAL_CST) { if (TYPE_MODE (TREE_TYPE (exp)) == DFmode && align < 64) return 64; else if (ALIGN_MODE_128 (TYPE_MODE (TREE_TYPE (exp))) && align < 128) return 128; } else if (!optimize_size && TREE_CODE (exp) == STRING_CST && TREE_STRING_LENGTH (exp) >= 31 && align < BITS_PER_WORD) return BITS_PER_WORD; return align; } /* Compute the alignment for a static variable. TYPE is the data type, and ALIGN is the alignment that the object would ordinarily have. The value of this function is used instead of that alignment to align the object. */ int ix86_data_alignment (tree type, int align) { if (AGGREGATE_TYPE_P (type) && TYPE_SIZE (type) && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST && (TREE_INT_CST_LOW (TYPE_SIZE (type)) >= 256 || TREE_INT_CST_HIGH (TYPE_SIZE (type))) && align < 256) return 256; /* x86-64 ABI requires arrays greater than 16 bytes to be aligned to 16byte boundary. */ if (TARGET_64BIT) { if (AGGREGATE_TYPE_P (type) && TYPE_SIZE (type) && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST && (TREE_INT_CST_LOW (TYPE_SIZE (type)) >= 128 || TREE_INT_CST_HIGH (TYPE_SIZE (type))) && align < 128) return 128; } if (TREE_CODE (type) == ARRAY_TYPE) { if (TYPE_MODE (TREE_TYPE (type)) == DFmode && align < 64) return 64; if (ALIGN_MODE_128 (TYPE_MODE (TREE_TYPE (type))) && align < 128) return 128; } else if (TREE_CODE (type) == COMPLEX_TYPE) { if (TYPE_MODE (type) == DCmode && align < 64) return 64; if (TYPE_MODE (type) == XCmode && align < 128) return 128; } else if ((TREE_CODE (type) == RECORD_TYPE || TREE_CODE (type) == UNION_TYPE || TREE_CODE (type) == QUAL_UNION_TYPE) && TYPE_FIELDS (type)) { if (DECL_MODE (TYPE_FIELDS (type)) == DFmode && align < 64) return 64; if (ALIGN_MODE_128 (DECL_MODE (TYPE_FIELDS (type))) && align < 128) return 128; } else if (TREE_CODE (type) == REAL_TYPE || TREE_CODE (type) == VECTOR_TYPE || TREE_CODE (type) == INTEGER_TYPE) { if (TYPE_MODE (type) == DFmode && align < 64) return 64; if (ALIGN_MODE_128 (TYPE_MODE (type)) && align < 128) return 128; } return align; } /* Compute the alignment for a local variable. TYPE is the data type, and ALIGN is the alignment that the object would ordinarily have. The value of this macro is used instead of that alignment to align the object. */ int ix86_local_alignment (tree type, int align) { /* x86-64 ABI requires arrays greater than 16 bytes to be aligned to 16byte boundary. */ if (TARGET_64BIT) { if (AGGREGATE_TYPE_P (type) && TYPE_SIZE (type) && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST && (TREE_INT_CST_LOW (TYPE_SIZE (type)) >= 16 || TREE_INT_CST_HIGH (TYPE_SIZE (type))) && align < 128) return 128; } if (TREE_CODE (type) == ARRAY_TYPE) { if (TYPE_MODE (TREE_TYPE (type)) == DFmode && align < 64) return 64; if (ALIGN_MODE_128 (TYPE_MODE (TREE_TYPE (type))) && align < 128) return 128; } else if (TREE_CODE (type) == COMPLEX_TYPE) { if (TYPE_MODE (type) == DCmode && align < 64) return 64; if (TYPE_MODE (type) == XCmode && align < 128) return 128; } else if ((TREE_CODE (type) == RECORD_TYPE || TREE_CODE (type) == UNION_TYPE || TREE_CODE (type) == QUAL_UNION_TYPE) && TYPE_FIELDS (type)) { if (DECL_MODE (TYPE_FIELDS (type)) == DFmode && align < 64) return 64; if (ALIGN_MODE_128 (DECL_MODE (TYPE_FIELDS (type))) && align < 128) return 128; } else if (TREE_CODE (type) == REAL_TYPE || TREE_CODE (type) == VECTOR_TYPE || TREE_CODE (type) == INTEGER_TYPE) { if (TYPE_MODE (type) == DFmode && align < 64) return 64; if (ALIGN_MODE_128 (TYPE_MODE (type)) && align < 128) return 128; } return align; } /* Emit RTL insns to initialize the variable parts of a trampoline. FNADDR is an RTX for the address of the function's pure code. CXT is an RTX for the static chain value for the function. */ void x86_initialize_trampoline (rtx tramp, rtx fnaddr, rtx cxt) { if (!TARGET_64BIT) { /* Compute offset from the end of the jmp to the target function. */ rtx disp = expand_binop (SImode, sub_optab, fnaddr, plus_constant (tramp, 10), NULL_RTX, 1, OPTAB_DIRECT); emit_move_insn (gen_rtx_MEM (QImode, tramp), gen_int_mode (0xb9, QImode)); emit_move_insn (gen_rtx_MEM (SImode, plus_constant (tramp, 1)), cxt); emit_move_insn (gen_rtx_MEM (QImode, plus_constant (tramp, 5)), gen_int_mode (0xe9, QImode)); emit_move_insn (gen_rtx_MEM (SImode, plus_constant (tramp, 6)), disp); } else { int offset = 0; /* Try to load address using shorter movl instead of movabs. We may want to support movq for kernel mode, but kernel does not use trampolines at the moment. */ if (x86_64_zext_immediate_operand (fnaddr, VOIDmode)) { fnaddr = copy_to_mode_reg (DImode, fnaddr); emit_move_insn (gen_rtx_MEM (HImode, plus_constant (tramp, offset)), gen_int_mode (0xbb41, HImode)); emit_move_insn (gen_rtx_MEM (SImode, plus_constant (tramp, offset + 2)), gen_lowpart (SImode, fnaddr)); offset += 6; } else { emit_move_insn (gen_rtx_MEM (HImode, plus_constant (tramp, offset)), gen_int_mode (0xbb49, HImode)); emit_move_insn (gen_rtx_MEM (DImode, plus_constant (tramp, offset + 2)), fnaddr); offset += 10; } /* Load static chain using movabs to r10. */ emit_move_insn (gen_rtx_MEM (HImode, plus_constant (tramp, offset)), gen_int_mode (0xba49, HImode)); emit_move_insn (gen_rtx_MEM (DImode, plus_constant (tramp, offset + 2)), cxt); offset += 10; /* Jump to the r11 */ emit_move_insn (gen_rtx_MEM (HImode, plus_constant (tramp, offset)), gen_int_mode (0xff49, HImode)); emit_move_insn (gen_rtx_MEM (QImode, plus_constant (tramp, offset+2)), gen_int_mode (0xe3, QImode)); offset += 3; if (offset > TRAMPOLINE_SIZE) abort (); } #ifdef ENABLE_EXECUTE_STACK emit_library_call (gen_rtx_SYMBOL_REF (Pmode, "__enable_execute_stack"), LCT_NORMAL, VOIDmode, 1, tramp, Pmode); #endif } /* Codes for all the SSE/MMX builtins. */ enum ix86_builtins { IX86_BUILTIN_ADDPS, IX86_BUILTIN_ADDSS, IX86_BUILTIN_DIVPS, IX86_BUILTIN_DIVSS, IX86_BUILTIN_MULPS, IX86_BUILTIN_MULSS, IX86_BUILTIN_SUBPS, IX86_BUILTIN_SUBSS, IX86_BUILTIN_CMPEQPS, IX86_BUILTIN_CMPLTPS, IX86_BUILTIN_CMPLEPS, IX86_BUILTIN_CMPGTPS, IX86_BUILTIN_CMPGEPS, IX86_BUILTIN_CMPNEQPS, IX86_BUILTIN_CMPNLTPS, IX86_BUILTIN_CMPNLEPS, IX86_BUILTIN_CMPNGTPS, IX86_BUILTIN_CMPNGEPS, IX86_BUILTIN_CMPORDPS, IX86_BUILTIN_CMPUNORDPS, IX86_BUILTIN_CMPNEPS, IX86_BUILTIN_CMPEQSS, IX86_BUILTIN_CMPLTSS, IX86_BUILTIN_CMPLESS, IX86_BUILTIN_CMPNEQSS, IX86_BUILTIN_CMPNLTSS, IX86_BUILTIN_CMPNLESS, IX86_BUILTIN_CMPNGTSS, IX86_BUILTIN_CMPNGESS, IX86_BUILTIN_CMPORDSS, IX86_BUILTIN_CMPUNORDSS, IX86_BUILTIN_CMPNESS, IX86_BUILTIN_COMIEQSS, IX86_BUILTIN_COMILTSS, IX86_BUILTIN_COMILESS, IX86_BUILTIN_COMIGTSS, IX86_BUILTIN_COMIGESS, IX86_BUILTIN_COMINEQSS, IX86_BUILTIN_UCOMIEQSS, IX86_BUILTIN_UCOMILTSS, IX86_BUILTIN_UCOMILESS, IX86_BUILTIN_UCOMIGTSS, IX86_BUILTIN_UCOMIGESS, IX86_BUILTIN_UCOMINEQSS, IX86_BUILTIN_CVTPI2PS, IX86_BUILTIN_CVTPS2PI, IX86_BUILTIN_CVTSI2SS, IX86_BUILTIN_CVTSI642SS, IX86_BUILTIN_CVTSS2SI, IX86_BUILTIN_CVTSS2SI64, IX86_BUILTIN_CVTTPS2PI, IX86_BUILTIN_CVTTSS2SI, IX86_BUILTIN_CVTTSS2SI64, IX86_BUILTIN_MAXPS, IX86_BUILTIN_MAXSS, IX86_BUILTIN_MINPS, IX86_BUILTIN_MINSS, IX86_BUILTIN_LOADUPS, IX86_BUILTIN_STOREUPS, IX86_BUILTIN_MOVSS, IX86_BUILTIN_MOVHLPS, IX86_BUILTIN_MOVLHPS, IX86_BUILTIN_LOADHPS, IX86_BUILTIN_LOADLPS, IX86_BUILTIN_STOREHPS, IX86_BUILTIN_STORELPS, IX86_BUILTIN_MASKMOVQ, IX86_BUILTIN_MOVMSKPS, IX86_BUILTIN_PMOVMSKB, IX86_BUILTIN_MOVNTPS, IX86_BUILTIN_MOVNTQ, IX86_BUILTIN_LOADDQU, IX86_BUILTIN_STOREDQU, IX86_BUILTIN_PACKSSWB, IX86_BUILTIN_PACKSSDW, IX86_BUILTIN_PACKUSWB, IX86_BUILTIN_PADDB, IX86_BUILTIN_PADDW, IX86_BUILTIN_PADDD, IX86_BUILTIN_PADDQ, IX86_BUILTIN_PADDSB, IX86_BUILTIN_PADDSW, IX86_BUILTIN_PADDUSB, IX86_BUILTIN_PADDUSW, IX86_BUILTIN_PSUBB, IX86_BUILTIN_PSUBW, IX86_BUILTIN_PSUBD, IX86_BUILTIN_PSUBQ, IX86_BUILTIN_PSUBSB, IX86_BUILTIN_PSUBSW, IX86_BUILTIN_PSUBUSB, IX86_BUILTIN_PSUBUSW, IX86_BUILTIN_PAND, IX86_BUILTIN_PANDN, IX86_BUILTIN_POR, IX86_BUILTIN_PXOR, IX86_BUILTIN_PAVGB, IX86_BUILTIN_PAVGW, IX86_BUILTIN_PCMPEQB, IX86_BUILTIN_PCMPEQW, IX86_BUILTIN_PCMPEQD, IX86_BUILTIN_PCMPGTB, IX86_BUILTIN_PCMPGTW, IX86_BUILTIN_PCMPGTD, IX86_BUILTIN_PMADDWD, IX86_BUILTIN_PMAXSW, IX86_BUILTIN_PMAXUB, IX86_BUILTIN_PMINSW, IX86_BUILTIN_PMINUB, IX86_BUILTIN_PMULHUW, IX86_BUILTIN_PMULHW, IX86_BUILTIN_PMULLW, IX86_BUILTIN_PSADBW, IX86_BUILTIN_PSHUFW, IX86_BUILTIN_PSLLW, IX86_BUILTIN_PSLLD, IX86_BUILTIN_PSLLQ, IX86_BUILTIN_PSRAW, IX86_BUILTIN_PSRAD, IX86_BUILTIN_PSRLW, IX86_BUILTIN_PSRLD, IX86_BUILTIN_PSRLQ, IX86_BUILTIN_PSLLWI, IX86_BUILTIN_PSLLDI, IX86_BUILTIN_PSLLQI, IX86_BUILTIN_PSRAWI, IX86_BUILTIN_PSRADI, IX86_BUILTIN_PSRLWI, IX86_BUILTIN_PSRLDI, IX86_BUILTIN_PSRLQI, IX86_BUILTIN_PUNPCKHBW, IX86_BUILTIN_PUNPCKHWD, IX86_BUILTIN_PUNPCKHDQ, IX86_BUILTIN_PUNPCKLBW, IX86_BUILTIN_PUNPCKLWD, IX86_BUILTIN_PUNPCKLDQ, IX86_BUILTIN_SHUFPS, IX86_BUILTIN_RCPPS, IX86_BUILTIN_RCPSS, IX86_BUILTIN_RSQRTPS, IX86_BUILTIN_RSQRTSS, IX86_BUILTIN_SQRTPS, IX86_BUILTIN_SQRTSS, IX86_BUILTIN_UNPCKHPS, IX86_BUILTIN_UNPCKLPS, IX86_BUILTIN_ANDPS, IX86_BUILTIN_ANDNPS, IX86_BUILTIN_ORPS, IX86_BUILTIN_XORPS, IX86_BUILTIN_EMMS, IX86_BUILTIN_LDMXCSR, IX86_BUILTIN_STMXCSR, IX86_BUILTIN_SFENCE, /* 3DNow! Original */ IX86_BUILTIN_FEMMS, IX86_BUILTIN_PAVGUSB, IX86_BUILTIN_PF2ID, IX86_BUILTIN_PFACC, IX86_BUILTIN_PFADD, IX86_BUILTIN_PFCMPEQ, IX86_BUILTIN_PFCMPGE, IX86_BUILTIN_PFCMPGT, IX86_BUILTIN_PFMAX, IX86_BUILTIN_PFMIN, IX86_BUILTIN_PFMUL, IX86_BUILTIN_PFRCP, IX86_BUILTIN_PFRCPIT1, IX86_BUILTIN_PFRCPIT2, IX86_BUILTIN_PFRSQIT1, IX86_BUILTIN_PFRSQRT, IX86_BUILTIN_PFSUB, IX86_BUILTIN_PFSUBR, IX86_BUILTIN_PI2FD, IX86_BUILTIN_PMULHRW, /* 3DNow! Athlon Extensions */ IX86_BUILTIN_PF2IW, IX86_BUILTIN_PFNACC, IX86_BUILTIN_PFPNACC, IX86_BUILTIN_PI2FW, IX86_BUILTIN_PSWAPDSI, IX86_BUILTIN_PSWAPDSF, /* SSE2 */ IX86_BUILTIN_ADDPD, IX86_BUILTIN_ADDSD, IX86_BUILTIN_DIVPD, IX86_BUILTIN_DIVSD, IX86_BUILTIN_MULPD, IX86_BUILTIN_MULSD, IX86_BUILTIN_SUBPD, IX86_BUILTIN_SUBSD, IX86_BUILTIN_CMPEQPD, IX86_BUILTIN_CMPLTPD, IX86_BUILTIN_CMPLEPD, IX86_BUILTIN_CMPGTPD, IX86_BUILTIN_CMPGEPD, IX86_BUILTIN_CMPNEQPD, IX86_BUILTIN_CMPNLTPD, IX86_BUILTIN_CMPNLEPD, IX86_BUILTIN_CMPNGTPD, IX86_BUILTIN_CMPNGEPD, IX86_BUILTIN_CMPORDPD, IX86_BUILTIN_CMPUNORDPD, IX86_BUILTIN_CMPNEPD, IX86_BUILTIN_CMPEQSD, IX86_BUILTIN_CMPLTSD, IX86_BUILTIN_CMPLESD, IX86_BUILTIN_CMPNEQSD, IX86_BUILTIN_CMPNLTSD, IX86_BUILTIN_CMPNLESD, IX86_BUILTIN_CMPORDSD, IX86_BUILTIN_CMPUNORDSD, IX86_BUILTIN_CMPNESD, IX86_BUILTIN_COMIEQSD, IX86_BUILTIN_COMILTSD, IX86_BUILTIN_COMILESD, IX86_BUILTIN_COMIGTSD, IX86_BUILTIN_COMIGESD, IX86_BUILTIN_COMINEQSD, IX86_BUILTIN_UCOMIEQSD, IX86_BUILTIN_UCOMILTSD, IX86_BUILTIN_UCOMILESD, IX86_BUILTIN_UCOMIGTSD, IX86_BUILTIN_UCOMIGESD, IX86_BUILTIN_UCOMINEQSD, IX86_BUILTIN_MAXPD, IX86_BUILTIN_MAXSD, IX86_BUILTIN_MINPD, IX86_BUILTIN_MINSD, IX86_BUILTIN_ANDPD, IX86_BUILTIN_ANDNPD, IX86_BUILTIN_ORPD, IX86_BUILTIN_XORPD, IX86_BUILTIN_SQRTPD, IX86_BUILTIN_SQRTSD, IX86_BUILTIN_UNPCKHPD, IX86_BUILTIN_UNPCKLPD, IX86_BUILTIN_SHUFPD, IX86_BUILTIN_LOADUPD, IX86_BUILTIN_STOREUPD, IX86_BUILTIN_MOVSD, IX86_BUILTIN_LOADHPD, IX86_BUILTIN_LOADLPD, IX86_BUILTIN_CVTDQ2PD, IX86_BUILTIN_CVTDQ2PS, IX86_BUILTIN_CVTPD2DQ, IX86_BUILTIN_CVTPD2PI, IX86_BUILTIN_CVTPD2PS, IX86_BUILTIN_CVTTPD2DQ, IX86_BUILTIN_CVTTPD2PI, IX86_BUILTIN_CVTPI2PD, IX86_BUILTIN_CVTSI2SD, IX86_BUILTIN_CVTSI642SD, IX86_BUILTIN_CVTSD2SI, IX86_BUILTIN_CVTSD2SI64, IX86_BUILTIN_CVTSD2SS, IX86_BUILTIN_CVTSS2SD, IX86_BUILTIN_CVTTSD2SI, IX86_BUILTIN_CVTTSD2SI64, IX86_BUILTIN_CVTPS2DQ, IX86_BUILTIN_CVTPS2PD, IX86_BUILTIN_CVTTPS2DQ, IX86_BUILTIN_MOVNTI, IX86_BUILTIN_MOVNTPD, IX86_BUILTIN_MOVNTDQ, /* SSE2 MMX */ IX86_BUILTIN_MASKMOVDQU, IX86_BUILTIN_MOVMSKPD, IX86_BUILTIN_PMOVMSKB128, IX86_BUILTIN_PACKSSWB128, IX86_BUILTIN_PACKSSDW128, IX86_BUILTIN_PACKUSWB128, IX86_BUILTIN_PADDB128, IX86_BUILTIN_PADDW128, IX86_BUILTIN_PADDD128, IX86_BUILTIN_PADDQ128, IX86_BUILTIN_PADDSB128, IX86_BUILTIN_PADDSW128, IX86_BUILTIN_PADDUSB128, IX86_BUILTIN_PADDUSW128, IX86_BUILTIN_PSUBB128, IX86_BUILTIN_PSUBW128, IX86_BUILTIN_PSUBD128, IX86_BUILTIN_PSUBQ128, IX86_BUILTIN_PSUBSB128, IX86_BUILTIN_PSUBSW128, IX86_BUILTIN_PSUBUSB128, IX86_BUILTIN_PSUBUSW128, IX86_BUILTIN_PAND128, IX86_BUILTIN_PANDN128, IX86_BUILTIN_POR128, IX86_BUILTIN_PXOR128, IX86_BUILTIN_PAVGB128, IX86_BUILTIN_PAVGW128, IX86_BUILTIN_PCMPEQB128, IX86_BUILTIN_PCMPEQW128, IX86_BUILTIN_PCMPEQD128, IX86_BUILTIN_PCMPGTB128, IX86_BUILTIN_PCMPGTW128, IX86_BUILTIN_PCMPGTD128, IX86_BUILTIN_PMADDWD128, IX86_BUILTIN_PMAXSW128, IX86_BUILTIN_PMAXUB128, IX86_BUILTIN_PMINSW128, IX86_BUILTIN_PMINUB128, IX86_BUILTIN_PMULUDQ, IX86_BUILTIN_PMULUDQ128, IX86_BUILTIN_PMULHUW128, IX86_BUILTIN_PMULHW128, IX86_BUILTIN_PMULLW128, IX86_BUILTIN_PSADBW128, IX86_BUILTIN_PSHUFHW, IX86_BUILTIN_PSHUFLW, IX86_BUILTIN_PSHUFD, IX86_BUILTIN_PSLLW128, IX86_BUILTIN_PSLLD128, IX86_BUILTIN_PSLLQ128, IX86_BUILTIN_PSRAW128, IX86_BUILTIN_PSRAD128, IX86_BUILTIN_PSRLW128, IX86_BUILTIN_PSRLD128, IX86_BUILTIN_PSRLQ128, IX86_BUILTIN_PSLLDQI128, IX86_BUILTIN_PSLLWI128, IX86_BUILTIN_PSLLDI128, IX86_BUILTIN_PSLLQI128, IX86_BUILTIN_PSRAWI128, IX86_BUILTIN_PSRADI128, IX86_BUILTIN_PSRLDQI128, IX86_BUILTIN_PSRLWI128, IX86_BUILTIN_PSRLDI128, IX86_BUILTIN_PSRLQI128, IX86_BUILTIN_PUNPCKHBW128, IX86_BUILTIN_PUNPCKHWD128, IX86_BUILTIN_PUNPCKHDQ128, IX86_BUILTIN_PUNPCKHQDQ128, IX86_BUILTIN_PUNPCKLBW128, IX86_BUILTIN_PUNPCKLWD128, IX86_BUILTIN_PUNPCKLDQ128, IX86_BUILTIN_PUNPCKLQDQ128, IX86_BUILTIN_CLFLUSH, IX86_BUILTIN_MFENCE, IX86_BUILTIN_LFENCE, /* Prescott New Instructions. */ IX86_BUILTIN_ADDSUBPS, IX86_BUILTIN_HADDPS, IX86_BUILTIN_HSUBPS, IX86_BUILTIN_MOVSHDUP, IX86_BUILTIN_MOVSLDUP, IX86_BUILTIN_ADDSUBPD, IX86_BUILTIN_HADDPD, IX86_BUILTIN_HSUBPD, IX86_BUILTIN_LDDQU, IX86_BUILTIN_MONITOR, IX86_BUILTIN_MWAIT, IX86_BUILTIN_VEC_INIT_V2SI, IX86_BUILTIN_VEC_INIT_V4HI, IX86_BUILTIN_VEC_INIT_V8QI, IX86_BUILTIN_VEC_EXT_V2DF, IX86_BUILTIN_VEC_EXT_V2DI, IX86_BUILTIN_VEC_EXT_V4SF, IX86_BUILTIN_VEC_EXT_V4SI, IX86_BUILTIN_VEC_EXT_V8HI, IX86_BUILTIN_VEC_EXT_V2SI, IX86_BUILTIN_VEC_EXT_V4HI, IX86_BUILTIN_VEC_SET_V8HI, IX86_BUILTIN_VEC_SET_V4HI, IX86_BUILTIN_MAX }; #define def_builtin(MASK, NAME, TYPE, CODE) \ do { \ if ((MASK) & target_flags \ && (!((MASK) & MASK_64BIT) || TARGET_64BIT)) \ lang_hooks.builtin_function ((NAME), (TYPE), (CODE), BUILT_IN_MD, \ NULL, NULL_TREE); \ } while (0) /* Bits for builtin_description.flag. */ /* Set when we don't support the comparison natively, and should swap_comparison in order to support it. */ #define BUILTIN_DESC_SWAP_OPERANDS 1 struct builtin_description { const unsigned int mask; const enum insn_code icode; const char *const name; const enum ix86_builtins code; const enum rtx_code comparison; const unsigned int flag; }; static const struct builtin_description bdesc_comi[] = { { MASK_SSE, CODE_FOR_sse_comi, "__builtin_ia32_comieq", IX86_BUILTIN_COMIEQSS, UNEQ, 0 }, { MASK_SSE, CODE_FOR_sse_comi, "__builtin_ia32_comilt", IX86_BUILTIN_COMILTSS, UNLT, 0 }, { MASK_SSE, CODE_FOR_sse_comi, "__builtin_ia32_comile", IX86_BUILTIN_COMILESS, UNLE, 0 }, { MASK_SSE, CODE_FOR_sse_comi, "__builtin_ia32_comigt", IX86_BUILTIN_COMIGTSS, GT, 0 }, { MASK_SSE, CODE_FOR_sse_comi, "__builtin_ia32_comige", IX86_BUILTIN_COMIGESS, GE, 0 }, { MASK_SSE, CODE_FOR_sse_comi, "__builtin_ia32_comineq", IX86_BUILTIN_COMINEQSS, LTGT, 0 }, { MASK_SSE, CODE_FOR_sse_ucomi, "__builtin_ia32_ucomieq", IX86_BUILTIN_UCOMIEQSS, UNEQ, 0 }, { MASK_SSE, CODE_FOR_sse_ucomi, "__builtin_ia32_ucomilt", IX86_BUILTIN_UCOMILTSS, UNLT, 0 }, { MASK_SSE, CODE_FOR_sse_ucomi, "__builtin_ia32_ucomile", IX86_BUILTIN_UCOMILESS, UNLE, 0 }, { MASK_SSE, CODE_FOR_sse_ucomi, "__builtin_ia32_ucomigt", IX86_BUILTIN_UCOMIGTSS, GT, 0 }, { MASK_SSE, CODE_FOR_sse_ucomi, "__builtin_ia32_ucomige", IX86_BUILTIN_UCOMIGESS, GE, 0 }, { MASK_SSE, CODE_FOR_sse_ucomi, "__builtin_ia32_ucomineq", IX86_BUILTIN_UCOMINEQSS, LTGT, 0 }, { MASK_SSE2, CODE_FOR_sse2_comi, "__builtin_ia32_comisdeq", IX86_BUILTIN_COMIEQSD, UNEQ, 0 }, { MASK_SSE2, CODE_FOR_sse2_comi, "__builtin_ia32_comisdlt", IX86_BUILTIN_COMILTSD, UNLT, 0 }, { MASK_SSE2, CODE_FOR_sse2_comi, "__builtin_ia32_comisdle", IX86_BUILTIN_COMILESD, UNLE, 0 }, { MASK_SSE2, CODE_FOR_sse2_comi, "__builtin_ia32_comisdgt", IX86_BUILTIN_COMIGTSD, GT, 0 }, { MASK_SSE2, CODE_FOR_sse2_comi, "__builtin_ia32_comisdge", IX86_BUILTIN_COMIGESD, GE, 0 }, { MASK_SSE2, CODE_FOR_sse2_comi, "__builtin_ia32_comisdneq", IX86_BUILTIN_COMINEQSD, LTGT, 0 }, { MASK_SSE2, CODE_FOR_sse2_ucomi, "__builtin_ia32_ucomisdeq", IX86_BUILTIN_UCOMIEQSD, UNEQ, 0 }, { MASK_SSE2, CODE_FOR_sse2_ucomi, "__builtin_ia32_ucomisdlt", IX86_BUILTIN_UCOMILTSD, UNLT, 0 }, { MASK_SSE2, CODE_FOR_sse2_ucomi, "__builtin_ia32_ucomisdle", IX86_BUILTIN_UCOMILESD, UNLE, 0 }, { MASK_SSE2, CODE_FOR_sse2_ucomi, "__builtin_ia32_ucomisdgt", IX86_BUILTIN_UCOMIGTSD, GT, 0 }, { MASK_SSE2, CODE_FOR_sse2_ucomi, "__builtin_ia32_ucomisdge", IX86_BUILTIN_UCOMIGESD, GE, 0 }, { MASK_SSE2, CODE_FOR_sse2_ucomi, "__builtin_ia32_ucomisdneq", IX86_BUILTIN_UCOMINEQSD, LTGT, 0 }, }; static const struct builtin_description bdesc_2arg[] = { /* SSE */ { MASK_SSE, CODE_FOR_addv4sf3, "__builtin_ia32_addps", IX86_BUILTIN_ADDPS, 0, 0 }, { MASK_SSE, CODE_FOR_subv4sf3, "__builtin_ia32_subps", IX86_BUILTIN_SUBPS, 0, 0 }, { MASK_SSE, CODE_FOR_mulv4sf3, "__builtin_ia32_mulps", IX86_BUILTIN_MULPS, 0, 0 }, { MASK_SSE, CODE_FOR_divv4sf3, "__builtin_ia32_divps", IX86_BUILTIN_DIVPS, 0, 0 }, { MASK_SSE, CODE_FOR_sse_vmaddv4sf3, "__builtin_ia32_addss", IX86_BUILTIN_ADDSS, 0, 0 }, { MASK_SSE, CODE_FOR_sse_vmsubv4sf3, "__builtin_ia32_subss", IX86_BUILTIN_SUBSS, 0, 0 }, { MASK_SSE, CODE_FOR_sse_vmmulv4sf3, "__builtin_ia32_mulss", IX86_BUILTIN_MULSS, 0, 0 }, { MASK_SSE, CODE_FOR_sse_vmdivv4sf3, "__builtin_ia32_divss", IX86_BUILTIN_DIVSS, 0, 0 }, { MASK_SSE, CODE_FOR_sse_maskcmpv4sf3, "__builtin_ia32_cmpeqps", IX86_BUILTIN_CMPEQPS, EQ, 0 }, { MASK_SSE, CODE_FOR_sse_maskcmpv4sf3, "__builtin_ia32_cmpltps", IX86_BUILTIN_CMPLTPS, LT, 0 }, { MASK_SSE, CODE_FOR_sse_maskcmpv4sf3, "__builtin_ia32_cmpleps", IX86_BUILTIN_CMPLEPS, LE, 0 }, { MASK_SSE, CODE_FOR_sse_maskcmpv4sf3, "__builtin_ia32_cmpgtps", IX86_BUILTIN_CMPGTPS, LT, BUILTIN_DESC_SWAP_OPERANDS }, { MASK_SSE, CODE_FOR_sse_maskcmpv4sf3, "__builtin_ia32_cmpgeps", IX86_BUILTIN_CMPGEPS, LE, BUILTIN_DESC_SWAP_OPERANDS }, { MASK_SSE, CODE_FOR_sse_maskcmpv4sf3, "__builtin_ia32_cmpunordps", IX86_BUILTIN_CMPUNORDPS, UNORDERED, 0 }, { MASK_SSE, CODE_FOR_sse_maskcmpv4sf3, "__builtin_ia32_cmpneqps", IX86_BUILTIN_CMPNEQPS, NE, 0 }, { MASK_SSE, CODE_FOR_sse_maskcmpv4sf3, "__builtin_ia32_cmpnltps", IX86_BUILTIN_CMPNLTPS, UNGE, 0 }, { MASK_SSE, CODE_FOR_sse_maskcmpv4sf3, "__builtin_ia32_cmpnleps", IX86_BUILTIN_CMPNLEPS, UNGT, 0 }, { MASK_SSE, CODE_FOR_sse_maskcmpv4sf3, "__builtin_ia32_cmpngtps", IX86_BUILTIN_CMPNGTPS, UNGE, BUILTIN_DESC_SWAP_OPERANDS }, { MASK_SSE, CODE_FOR_sse_maskcmpv4sf3, "__builtin_ia32_cmpngeps", IX86_BUILTIN_CMPNGEPS, UNGT, BUILTIN_DESC_SWAP_OPERANDS }, { MASK_SSE, CODE_FOR_sse_maskcmpv4sf3, "__builtin_ia32_cmpordps", IX86_BUILTIN_CMPORDPS, ORDERED, 0 }, { MASK_SSE, CODE_FOR_sse_vmmaskcmpv4sf3, "__builtin_ia32_cmpeqss", IX86_BUILTIN_CMPEQSS, EQ, 0 }, { MASK_SSE, CODE_FOR_sse_vmmaskcmpv4sf3, "__builtin_ia32_cmpltss", IX86_BUILTIN_CMPLTSS, LT, 0 }, { MASK_SSE, CODE_FOR_sse_vmmaskcmpv4sf3, "__builtin_ia32_cmpless", IX86_BUILTIN_CMPLESS, LE, 0 }, { MASK_SSE, CODE_FOR_sse_vmmaskcmpv4sf3, "__builtin_ia32_cmpunordss", IX86_BUILTIN_CMPUNORDSS, UNORDERED, 0 }, { MASK_SSE, CODE_FOR_sse_vmmaskcmpv4sf3, "__builtin_ia32_cmpneqss", IX86_BUILTIN_CMPNEQSS, NE, 0 }, { MASK_SSE, CODE_FOR_sse_vmmaskcmpv4sf3, "__builtin_ia32_cmpnltss", IX86_BUILTIN_CMPNLTSS, UNGE, 0 }, { MASK_SSE, CODE_FOR_sse_vmmaskcmpv4sf3, "__builtin_ia32_cmpnless", IX86_BUILTIN_CMPNLESS, UNGT, 0 }, { MASK_SSE, CODE_FOR_sse_vmmaskcmpv4sf3, "__builtin_ia32_cmpngtss", IX86_BUILTIN_CMPNGTSS, UNGE, BUILTIN_DESC_SWAP_OPERANDS }, { MASK_SSE, CODE_FOR_sse_vmmaskcmpv4sf3, "__builtin_ia32_cmpngess", IX86_BUILTIN_CMPNGESS, UNGT, BUILTIN_DESC_SWAP_OPERANDS }, { MASK_SSE, CODE_FOR_sse_vmmaskcmpv4sf3, "__builtin_ia32_cmpordss", IX86_BUILTIN_CMPORDSS, UNORDERED, 0 }, { MASK_SSE, CODE_FOR_sminv4sf3, "__builtin_ia32_minps", IX86_BUILTIN_MINPS, 0, 0 }, { MASK_SSE, CODE_FOR_smaxv4sf3, "__builtin_ia32_maxps", IX86_BUILTIN_MAXPS, 0, 0 }, { MASK_SSE, CODE_FOR_sse_vmsminv4sf3, "__builtin_ia32_minss", IX86_BUILTIN_MINSS, 0, 0 }, { MASK_SSE, CODE_FOR_sse_vmsmaxv4sf3, "__builtin_ia32_maxss", IX86_BUILTIN_MAXSS, 0, 0 }, { MASK_SSE, CODE_FOR_andv4sf3, "__builtin_ia32_andps", IX86_BUILTIN_ANDPS, 0, 0 }, { MASK_SSE, CODE_FOR_sse_nandv4sf3, "__builtin_ia32_andnps", IX86_BUILTIN_ANDNPS, 0, 0 }, { MASK_SSE, CODE_FOR_iorv4sf3, "__builtin_ia32_orps", IX86_BUILTIN_ORPS, 0, 0 }, { MASK_SSE, CODE_FOR_xorv4sf3, "__builtin_ia32_xorps", IX86_BUILTIN_XORPS, 0, 0 }, { MASK_SSE, CODE_FOR_sse_movss, "__builtin_ia32_movss", IX86_BUILTIN_MOVSS, 0, 0 }, { MASK_SSE, CODE_FOR_sse_movhlps, "__builtin_ia32_movhlps", IX86_BUILTIN_MOVHLPS, 0, 0 }, { MASK_SSE, CODE_FOR_sse_movlhps, "__builtin_ia32_movlhps", IX86_BUILTIN_MOVLHPS, 0, 0 }, { MASK_SSE, CODE_FOR_sse_unpckhps, "__builtin_ia32_unpckhps", IX86_BUILTIN_UNPCKHPS, 0, 0 }, { MASK_SSE, CODE_FOR_sse_unpcklps, "__builtin_ia32_unpcklps", IX86_BUILTIN_UNPCKLPS, 0, 0 }, /* MMX */ { MASK_MMX, CODE_FOR_mmx_addv8qi3, "__builtin_ia32_paddb", IX86_BUILTIN_PADDB, 0, 0 }, { MASK_MMX, CODE_FOR_mmx_addv4hi3, "__builtin_ia32_paddw", IX86_BUILTIN_PADDW, 0, 0 }, { MASK_MMX, CODE_FOR_mmx_addv2si3, "__builtin_ia32_paddd", IX86_BUILTIN_PADDD, 0, 0 }, { MASK_MMX, CODE_FOR_mmx_adddi3, "__builtin_ia32_paddq", IX86_BUILTIN_PADDQ, 0, 0 }, { MASK_MMX, CODE_FOR_mmx_subv8qi3, "__builtin_ia32_psubb", IX86_BUILTIN_PSUBB, 0, 0 }, { MASK_MMX, CODE_FOR_mmx_subv4hi3, "__builtin_ia32_psubw", IX86_BUILTIN_PSUBW, 0, 0 }, { MASK_MMX, CODE_FOR_mmx_subv2si3, "__builtin_ia32_psubd", IX86_BUILTIN_PSUBD, 0, 0 }, { MASK_MMX, CODE_FOR_mmx_subdi3, "__builtin_ia32_psubq", IX86_BUILTIN_PSUBQ, 0, 0 }, { MASK_MMX, CODE_FOR_mmx_ssaddv8qi3, "__builtin_ia32_paddsb", IX86_BUILTIN_PADDSB, 0, 0 }, { MASK_MMX, CODE_FOR_mmx_ssaddv4hi3, "__builtin_ia32_paddsw", IX86_BUILTIN_PADDSW, 0, 0 }, { MASK_MMX, CODE_FOR_mmx_sssubv8qi3, "__builtin_ia32_psubsb", IX86_BUILTIN_PSUBSB, 0, 0 }, { MASK_MMX, CODE_FOR_mmx_sssubv4hi3, "__builtin_ia32_psubsw", IX86_BUILTIN_PSUBSW, 0, 0 }, { MASK_MMX, CODE_FOR_mmx_usaddv8qi3, "__builtin_ia32_paddusb", IX86_BUILTIN_PADDUSB, 0, 0 }, { MASK_MMX, CODE_FOR_mmx_usaddv4hi3, "__builtin_ia32_paddusw", IX86_BUILTIN_PADDUSW, 0, 0 }, { MASK_MMX, CODE_FOR_mmx_ussubv8qi3, "__builtin_ia32_psubusb", IX86_BUILTIN_PSUBUSB, 0, 0 }, { MASK_MMX, CODE_FOR_mmx_ussubv4hi3, "__builtin_ia32_psubusw", IX86_BUILTIN_PSUBUSW, 0, 0 }, { MASK_MMX, CODE_FOR_mmx_mulv4hi3, "__builtin_ia32_pmullw", IX86_BUILTIN_PMULLW, 0, 0 }, { MASK_MMX, CODE_FOR_mmx_smulv4hi3_highpart, "__builtin_ia32_pmulhw", IX86_BUILTIN_PMULHW, 0, 0 }, { MASK_SSE | MASK_3DNOW_A, CODE_FOR_mmx_umulv4hi3_highpart, "__builtin_ia32_pmulhuw", IX86_BUILTIN_PMULHUW, 0, 0 }, { MASK_MMX, CODE_FOR_mmx_andv2si3, "__builtin_ia32_pand", IX86_BUILTIN_PAND, 0, 0 }, { MASK_MMX, CODE_FOR_mmx_nandv2si3, "__builtin_ia32_pandn", IX86_BUILTIN_PANDN, 0, 0 }, { MASK_MMX, CODE_FOR_mmx_iorv2si3, "__builtin_ia32_por", IX86_BUILTIN_POR, 0, 0 }, { MASK_MMX, CODE_FOR_mmx_xorv2si3, "__builtin_ia32_pxor", IX86_BUILTIN_PXOR, 0, 0 }, { MASK_SSE | MASK_3DNOW_A, CODE_FOR_mmx_uavgv8qi3, "__builtin_ia32_pavgb", IX86_BUILTIN_PAVGB, 0, 0 }, { MASK_SSE | MASK_3DNOW_A, CODE_FOR_mmx_uavgv4hi3, "__builtin_ia32_pavgw", IX86_BUILTIN_PAVGW, 0, 0 }, { MASK_MMX, CODE_FOR_mmx_eqv8qi3, "__builtin_ia32_pcmpeqb", IX86_BUILTIN_PCMPEQB, 0, 0 }, { MASK_MMX, CODE_FOR_mmx_eqv4hi3, "__builtin_ia32_pcmpeqw", IX86_BUILTIN_PCMPEQW, 0, 0 }, { MASK_MMX, CODE_FOR_mmx_eqv2si3, "__builtin_ia32_pcmpeqd", IX86_BUILTIN_PCMPEQD, 0, 0 }, { MASK_MMX, CODE_FOR_mmx_gtv8qi3, "__builtin_ia32_pcmpgtb", IX86_BUILTIN_PCMPGTB, 0, 0 }, { MASK_MMX, CODE_FOR_mmx_gtv4hi3, "__builtin_ia32_pcmpgtw", IX86_BUILTIN_PCMPGTW, 0, 0 }, { MASK_MMX, CODE_FOR_mmx_gtv2si3, "__builtin_ia32_pcmpgtd", IX86_BUILTIN_PCMPGTD, 0, 0 }, { MASK_SSE | MASK_3DNOW_A, CODE_FOR_mmx_umaxv8qi3, "__builtin_ia32_pmaxub", IX86_BUILTIN_PMAXUB, 0, 0 }, { MASK_SSE | MASK_3DNOW_A, CODE_FOR_mmx_smaxv4hi3, "__builtin_ia32_pmaxsw", IX86_BUILTIN_PMAXSW, 0, 0 }, { MASK_SSE | MASK_3DNOW_A, CODE_FOR_mmx_uminv8qi3, "__builtin_ia32_pminub", IX86_BUILTIN_PMINUB, 0, 0 }, { MASK_SSE | MASK_3DNOW_A, CODE_FOR_mmx_sminv4hi3, "__builtin_ia32_pminsw", IX86_BUILTIN_PMINSW, 0, 0 }, { MASK_MMX, CODE_FOR_mmx_punpckhbw, "__builtin_ia32_punpckhbw", IX86_BUILTIN_PUNPCKHBW, 0, 0 }, { MASK_MMX, CODE_FOR_mmx_punpckhwd, "__builtin_ia32_punpckhwd", IX86_BUILTIN_PUNPCKHWD, 0, 0 }, { MASK_MMX, CODE_FOR_mmx_punpckhdq, "__builtin_ia32_punpckhdq", IX86_BUILTIN_PUNPCKHDQ, 0, 0 }, { MASK_MMX, CODE_FOR_mmx_punpcklbw, "__builtin_ia32_punpcklbw", IX86_BUILTIN_PUNPCKLBW, 0, 0 }, { MASK_MMX, CODE_FOR_mmx_punpcklwd, "__builtin_ia32_punpcklwd", IX86_BUILTIN_PUNPCKLWD, 0, 0 }, { MASK_MMX, CODE_FOR_mmx_punpckldq, "__builtin_ia32_punpckldq", IX86_BUILTIN_PUNPCKLDQ, 0, 0 }, /* Special. */ { MASK_MMX, CODE_FOR_mmx_packsswb, 0, IX86_BUILTIN_PACKSSWB, 0, 0 }, { MASK_MMX, CODE_FOR_mmx_packssdw, 0, IX86_BUILTIN_PACKSSDW, 0, 0 }, { MASK_MMX, CODE_FOR_mmx_packuswb, 0, IX86_BUILTIN_PACKUSWB, 0, 0 }, { MASK_SSE, CODE_FOR_sse_cvtpi2ps, 0, IX86_BUILTIN_CVTPI2PS, 0, 0 }, { MASK_SSE, CODE_FOR_sse_cvtsi2ss, 0, IX86_BUILTIN_CVTSI2SS, 0, 0 }, { MASK_SSE | MASK_64BIT, CODE_FOR_sse_cvtsi2ssq, 0, IX86_BUILTIN_CVTSI642SS, 0, 0 }, { MASK_MMX, CODE_FOR_mmx_ashlv4hi3, 0, IX86_BUILTIN_PSLLW, 0, 0 }, { MASK_MMX, CODE_FOR_mmx_ashlv4hi3, 0, IX86_BUILTIN_PSLLWI, 0, 0 }, { MASK_MMX, CODE_FOR_mmx_ashlv2si3, 0, IX86_BUILTIN_PSLLD, 0, 0 }, { MASK_MMX, CODE_FOR_mmx_ashlv2si3, 0, IX86_BUILTIN_PSLLDI, 0, 0 }, { MASK_MMX, CODE_FOR_mmx_ashldi3, 0, IX86_BUILTIN_PSLLQ, 0, 0 }, { MASK_MMX, CODE_FOR_mmx_ashldi3, 0, IX86_BUILTIN_PSLLQI, 0, 0 }, { MASK_MMX, CODE_FOR_mmx_lshrv4hi3, 0, IX86_BUILTIN_PSRLW, 0, 0 }, { MASK_MMX, CODE_FOR_mmx_lshrv4hi3, 0, IX86_BUILTIN_PSRLWI, 0, 0 }, { MASK_MMX, CODE_FOR_mmx_lshrv2si3, 0, IX86_BUILTIN_PSRLD, 0, 0 }, { MASK_MMX, CODE_FOR_mmx_lshrv2si3, 0, IX86_BUILTIN_PSRLDI, 0, 0 }, { MASK_MMX, CODE_FOR_mmx_lshrdi3, 0, IX86_BUILTIN_PSRLQ, 0, 0 }, { MASK_MMX, CODE_FOR_mmx_lshrdi3, 0, IX86_BUILTIN_PSRLQI, 0, 0 }, { MASK_MMX, CODE_FOR_mmx_ashrv4hi3, 0, IX86_BUILTIN_PSRAW, 0, 0 }, { MASK_MMX, CODE_FOR_mmx_ashrv4hi3, 0, IX86_BUILTIN_PSRAWI, 0, 0 }, { MASK_MMX, CODE_FOR_mmx_ashrv2si3, 0, IX86_BUILTIN_PSRAD, 0, 0 }, { MASK_MMX, CODE_FOR_mmx_ashrv2si3, 0, IX86_BUILTIN_PSRADI, 0, 0 }, { MASK_SSE | MASK_3DNOW_A, CODE_FOR_mmx_psadbw, 0, IX86_BUILTIN_PSADBW, 0, 0 }, { MASK_MMX, CODE_FOR_mmx_pmaddwd, 0, IX86_BUILTIN_PMADDWD, 0, 0 }, /* SSE2 */ { MASK_SSE2, CODE_FOR_addv2df3, "__builtin_ia32_addpd", IX86_BUILTIN_ADDPD, 0, 0 }, { MASK_SSE2, CODE_FOR_subv2df3, "__builtin_ia32_subpd", IX86_BUILTIN_SUBPD, 0, 0 }, { MASK_SSE2, CODE_FOR_mulv2df3, "__builtin_ia32_mulpd", IX86_BUILTIN_MULPD, 0, 0 }, { MASK_SSE2, CODE_FOR_divv2df3, "__builtin_ia32_divpd", IX86_BUILTIN_DIVPD, 0, 0 }, { MASK_SSE2, CODE_FOR_sse2_vmaddv2df3, "__builtin_ia32_addsd", IX86_BUILTIN_ADDSD, 0, 0 }, { MASK_SSE2, CODE_FOR_sse2_vmsubv2df3, "__builtin_ia32_subsd", IX86_BUILTIN_SUBSD, 0, 0 }, { MASK_SSE2, CODE_FOR_sse2_vmmulv2df3, "__builtin_ia32_mulsd", IX86_BUILTIN_MULSD, 0, 0 }, { MASK_SSE2, CODE_FOR_sse2_vmdivv2df3, "__builtin_ia32_divsd", IX86_BUILTIN_DIVSD, 0, 0 }, { MASK_SSE2, CODE_FOR_sse2_maskcmpv2df3, "__builtin_ia32_cmpeqpd", IX86_BUILTIN_CMPEQPD, EQ, 0 }, { MASK_SSE2, CODE_FOR_sse2_maskcmpv2df3, "__builtin_ia32_cmpltpd", IX86_BUILTIN_CMPLTPD, LT, 0 }, { MASK_SSE2, CODE_FOR_sse2_maskcmpv2df3, "__builtin_ia32_cmplepd", IX86_BUILTIN_CMPLEPD, LE, 0 }, { MASK_SSE2, CODE_FOR_sse2_maskcmpv2df3, "__builtin_ia32_cmpgtpd", IX86_BUILTIN_CMPGTPD, LT, BUILTIN_DESC_SWAP_OPERANDS }, { MASK_SSE2, CODE_FOR_sse2_maskcmpv2df3, "__builtin_ia32_cmpgepd", IX86_BUILTIN_CMPGEPD, LE, BUILTIN_DESC_SWAP_OPERANDS }, { MASK_SSE2, CODE_FOR_sse2_maskcmpv2df3, "__builtin_ia32_cmpunordpd", IX86_BUILTIN_CMPUNORDPD, UNORDERED, 0 }, { MASK_SSE2, CODE_FOR_sse2_maskcmpv2df3, "__builtin_ia32_cmpneqpd", IX86_BUILTIN_CMPNEQPD, NE, 0 }, { MASK_SSE2, CODE_FOR_sse2_maskcmpv2df3, "__builtin_ia32_cmpnltpd", IX86_BUILTIN_CMPNLTPD, UNGE, 0 }, { MASK_SSE2, CODE_FOR_sse2_maskcmpv2df3, "__builtin_ia32_cmpnlepd", IX86_BUILTIN_CMPNLEPD, UNGT, 0 }, { MASK_SSE2, CODE_FOR_sse2_maskcmpv2df3, "__builtin_ia32_cmpngtpd", IX86_BUILTIN_CMPNGTPD, UNGE, BUILTIN_DESC_SWAP_OPERANDS }, { MASK_SSE2, CODE_FOR_sse2_maskcmpv2df3, "__builtin_ia32_cmpngepd", IX86_BUILTIN_CMPNGEPD, UNGT, BUILTIN_DESC_SWAP_OPERANDS }, { MASK_SSE2, CODE_FOR_sse2_maskcmpv2df3, "__builtin_ia32_cmpordpd", IX86_BUILTIN_CMPORDPD, ORDERED, 0 }, { MASK_SSE2, CODE_FOR_sse2_vmmaskcmpv2df3, "__builtin_ia32_cmpeqsd", IX86_BUILTIN_CMPEQSD, EQ, 0 }, { MASK_SSE2, CODE_FOR_sse2_vmmaskcmpv2df3, "__builtin_ia32_cmpltsd", IX86_BUILTIN_CMPLTSD, LT, 0 }, { MASK_SSE2, CODE_FOR_sse2_vmmaskcmpv2df3, "__builtin_ia32_cmplesd", IX86_BUILTIN_CMPLESD, LE, 0 }, { MASK_SSE2, CODE_FOR_sse2_vmmaskcmpv2df3, "__builtin_ia32_cmpunordsd", IX86_BUILTIN_CMPUNORDSD, UNORDERED, 0 }, { MASK_SSE2, CODE_FOR_sse2_vmmaskcmpv2df3, "__builtin_ia32_cmpneqsd", IX86_BUILTIN_CMPNEQSD, NE, 0 }, { MASK_SSE2, CODE_FOR_sse2_vmmaskcmpv2df3, "__builtin_ia32_cmpnltsd", IX86_BUILTIN_CMPNLTSD, UNGE, 0 }, { MASK_SSE2, CODE_FOR_sse2_vmmaskcmpv2df3, "__builtin_ia32_cmpnlesd", IX86_BUILTIN_CMPNLESD, UNGT, 0 }, { MASK_SSE2, CODE_FOR_sse2_vmmaskcmpv2df3, "__builtin_ia32_cmpordsd", IX86_BUILTIN_CMPORDSD, ORDERED, 0 }, { MASK_SSE2, CODE_FOR_sminv2df3, "__builtin_ia32_minpd", IX86_BUILTIN_MINPD, 0, 0 }, { MASK_SSE2, CODE_FOR_smaxv2df3, "__builtin_ia32_maxpd", IX86_BUILTIN_MAXPD, 0, 0 }, { MASK_SSE2, CODE_FOR_sse2_vmsminv2df3, "__builtin_ia32_minsd", IX86_BUILTIN_MINSD, 0, 0 }, { MASK_SSE2, CODE_FOR_sse2_vmsmaxv2df3, "__builtin_ia32_maxsd", IX86_BUILTIN_MAXSD, 0, 0 }, { MASK_SSE2, CODE_FOR_andv2df3, "__builtin_ia32_andpd", IX86_BUILTIN_ANDPD, 0, 0 }, { MASK_SSE2, CODE_FOR_sse2_nandv2df3, "__builtin_ia32_andnpd", IX86_BUILTIN_ANDNPD, 0, 0 }, { MASK_SSE2, CODE_FOR_iorv2df3, "__builtin_ia32_orpd", IX86_BUILTIN_ORPD, 0, 0 }, { MASK_SSE2, CODE_FOR_xorv2df3, "__builtin_ia32_xorpd", IX86_BUILTIN_XORPD, 0, 0 }, { MASK_SSE2, CODE_FOR_sse2_movsd, "__builtin_ia32_movsd", IX86_BUILTIN_MOVSD, 0, 0 }, { MASK_SSE2, CODE_FOR_sse2_unpckhpd, "__builtin_ia32_unpckhpd", IX86_BUILTIN_UNPCKHPD, 0, 0 }, { MASK_SSE2, CODE_FOR_sse2_unpcklpd, "__builtin_ia32_unpcklpd", IX86_BUILTIN_UNPCKLPD, 0, 0 }, /* SSE2 MMX */ { MASK_SSE2, CODE_FOR_addv16qi3, "__builtin_ia32_paddb128", IX86_BUILTIN_PADDB128, 0, 0 }, { MASK_SSE2, CODE_FOR_addv8hi3, "__builtin_ia32_paddw128", IX86_BUILTIN_PADDW128, 0, 0 }, { MASK_SSE2, CODE_FOR_addv4si3, "__builtin_ia32_paddd128", IX86_BUILTIN_PADDD128, 0, 0 }, { MASK_SSE2, CODE_FOR_addv2di3, "__builtin_ia32_paddq128", IX86_BUILTIN_PADDQ128, 0, 0 }, { MASK_SSE2, CODE_FOR_subv16qi3, "__builtin_ia32_psubb128", IX86_BUILTIN_PSUBB128, 0, 0 }, { MASK_SSE2, CODE_FOR_subv8hi3, "__builtin_ia32_psubw128", IX86_BUILTIN_PSUBW128, 0, 0 }, { MASK_SSE2, CODE_FOR_subv4si3, "__builtin_ia32_psubd128", IX86_BUILTIN_PSUBD128, 0, 0 }, { MASK_SSE2, CODE_FOR_subv2di3, "__builtin_ia32_psubq128", IX86_BUILTIN_PSUBQ128, 0, 0 }, { MASK_MMX, CODE_FOR_sse2_ssaddv16qi3, "__builtin_ia32_paddsb128", IX86_BUILTIN_PADDSB128, 0, 0 }, { MASK_MMX, CODE_FOR_sse2_ssaddv8hi3, "__builtin_ia32_paddsw128", IX86_BUILTIN_PADDSW128, 0, 0 }, { MASK_MMX, CODE_FOR_sse2_sssubv16qi3, "__builtin_ia32_psubsb128", IX86_BUILTIN_PSUBSB128, 0, 0 }, { MASK_MMX, CODE_FOR_sse2_sssubv8hi3, "__builtin_ia32_psubsw128", IX86_BUILTIN_PSUBSW128, 0, 0 }, { MASK_MMX, CODE_FOR_sse2_usaddv16qi3, "__builtin_ia32_paddusb128", IX86_BUILTIN_PADDUSB128, 0, 0 }, { MASK_MMX, CODE_FOR_sse2_usaddv8hi3, "__builtin_ia32_paddusw128", IX86_BUILTIN_PADDUSW128, 0, 0 }, { MASK_MMX, CODE_FOR_sse2_ussubv16qi3, "__builtin_ia32_psubusb128", IX86_BUILTIN_PSUBUSB128, 0, 0 }, { MASK_MMX, CODE_FOR_sse2_ussubv8hi3, "__builtin_ia32_psubusw128", IX86_BUILTIN_PSUBUSW128, 0, 0 }, { MASK_SSE2, CODE_FOR_mulv8hi3, "__builtin_ia32_pmullw128", IX86_BUILTIN_PMULLW128, 0, 0 }, { MASK_SSE2, CODE_FOR_sse2_smulv8hi3_highpart, "__builtin_ia32_pmulhw128", IX86_BUILTIN_PMULHW128, 0, 0 }, { MASK_SSE2, CODE_FOR_andv2di3, "__builtin_ia32_pand128", IX86_BUILTIN_PAND128, 0, 0 }, { MASK_SSE2, CODE_FOR_sse2_nandv2di3, "__builtin_ia32_pandn128", IX86_BUILTIN_PANDN128, 0, 0 }, { MASK_SSE2, CODE_FOR_iorv2di3, "__builtin_ia32_por128", IX86_BUILTIN_POR128, 0, 0 }, { MASK_SSE2, CODE_FOR_xorv2di3, "__builtin_ia32_pxor128", IX86_BUILTIN_PXOR128, 0, 0 }, { MASK_SSE2, CODE_FOR_sse2_uavgv16qi3, "__builtin_ia32_pavgb128", IX86_BUILTIN_PAVGB128, 0, 0 }, { MASK_SSE2, CODE_FOR_sse2_uavgv8hi3, "__builtin_ia32_pavgw128", IX86_BUILTIN_PAVGW128, 0, 0 }, { MASK_SSE2, CODE_FOR_sse2_eqv16qi3, "__builtin_ia32_pcmpeqb128", IX86_BUILTIN_PCMPEQB128, 0, 0 }, { MASK_SSE2, CODE_FOR_sse2_eqv8hi3, "__builtin_ia32_pcmpeqw128", IX86_BUILTIN_PCMPEQW128, 0, 0 }, { MASK_SSE2, CODE_FOR_sse2_eqv4si3, "__builtin_ia32_pcmpeqd128", IX86_BUILTIN_PCMPEQD128, 0, 0 }, { MASK_SSE2, CODE_FOR_sse2_gtv16qi3, "__builtin_ia32_pcmpgtb128", IX86_BUILTIN_PCMPGTB128, 0, 0 }, { MASK_SSE2, CODE_FOR_sse2_gtv8hi3, "__builtin_ia32_pcmpgtw128", IX86_BUILTIN_PCMPGTW128, 0, 0 }, { MASK_SSE2, CODE_FOR_sse2_gtv4si3, "__builtin_ia32_pcmpgtd128", IX86_BUILTIN_PCMPGTD128, 0, 0 }, { MASK_SSE2, CODE_FOR_umaxv16qi3, "__builtin_ia32_pmaxub128", IX86_BUILTIN_PMAXUB128, 0, 0 }, { MASK_SSE2, CODE_FOR_smaxv8hi3, "__builtin_ia32_pmaxsw128", IX86_BUILTIN_PMAXSW128, 0, 0 }, { MASK_SSE2, CODE_FOR_uminv16qi3, "__builtin_ia32_pminub128", IX86_BUILTIN_PMINUB128, 0, 0 }, { MASK_SSE2, CODE_FOR_sminv8hi3, "__builtin_ia32_pminsw128", IX86_BUILTIN_PMINSW128, 0, 0 }, { MASK_SSE2, CODE_FOR_sse2_punpckhbw, "__builtin_ia32_punpckhbw128", IX86_BUILTIN_PUNPCKHBW128, 0, 0 }, { MASK_SSE2, CODE_FOR_sse2_punpckhwd, "__builtin_ia32_punpckhwd128", IX86_BUILTIN_PUNPCKHWD128, 0, 0 }, { MASK_SSE2, CODE_FOR_sse2_punpckhdq, "__builtin_ia32_punpckhdq128", IX86_BUILTIN_PUNPCKHDQ128, 0, 0 }, { MASK_SSE2, CODE_FOR_sse2_punpckhqdq, "__builtin_ia32_punpckhqdq128", IX86_BUILTIN_PUNPCKHQDQ128, 0, 0 }, { MASK_SSE2, CODE_FOR_sse2_punpcklbw, "__builtin_ia32_punpcklbw128", IX86_BUILTIN_PUNPCKLBW128, 0, 0 }, { MASK_SSE2, CODE_FOR_sse2_punpcklwd, "__builtin_ia32_punpcklwd128", IX86_BUILTIN_PUNPCKLWD128, 0, 0 }, { MASK_SSE2, CODE_FOR_sse2_punpckldq, "__builtin_ia32_punpckldq128", IX86_BUILTIN_PUNPCKLDQ128, 0, 0 }, { MASK_SSE2, CODE_FOR_sse2_punpcklqdq, "__builtin_ia32_punpcklqdq128", IX86_BUILTIN_PUNPCKLQDQ128, 0, 0 }, { MASK_SSE2, CODE_FOR_sse2_packsswb, "__builtin_ia32_packsswb128", IX86_BUILTIN_PACKSSWB128, 0, 0 }, { MASK_SSE2, CODE_FOR_sse2_packssdw, "__builtin_ia32_packssdw128", IX86_BUILTIN_PACKSSDW128, 0, 0 }, { MASK_SSE2, CODE_FOR_sse2_packuswb, "__builtin_ia32_packuswb128", IX86_BUILTIN_PACKUSWB128, 0, 0 }, { MASK_SSE2, CODE_FOR_sse2_umulv8hi3_highpart, "__builtin_ia32_pmulhuw128", IX86_BUILTIN_PMULHUW128, 0, 0 }, { MASK_SSE2, CODE_FOR_sse2_psadbw, 0, IX86_BUILTIN_PSADBW128, 0, 0 }, { MASK_SSE2, CODE_FOR_sse2_umulsidi3, 0, IX86_BUILTIN_PMULUDQ, 0, 0 }, { MASK_SSE2, CODE_FOR_sse2_umulv2siv2di3, 0, IX86_BUILTIN_PMULUDQ128, 0, 0 }, { MASK_SSE2, CODE_FOR_ashlv8hi3, 0, IX86_BUILTIN_PSLLWI128, 0, 0 }, { MASK_SSE2, CODE_FOR_ashlv4si3, 0, IX86_BUILTIN_PSLLDI128, 0, 0 }, { MASK_SSE2, CODE_FOR_ashlv2di3, 0, IX86_BUILTIN_PSLLQI128, 0, 0 }, { MASK_SSE2, CODE_FOR_lshrv8hi3, 0, IX86_BUILTIN_PSRLWI128, 0, 0 }, { MASK_SSE2, CODE_FOR_lshrv4si3, 0, IX86_BUILTIN_PSRLDI128, 0, 0 }, { MASK_SSE2, CODE_FOR_lshrv2di3, 0, IX86_BUILTIN_PSRLQI128, 0, 0 }, { MASK_SSE2, CODE_FOR_ashrv8hi3, 0, IX86_BUILTIN_PSRAWI128, 0, 0 }, { MASK_SSE2, CODE_FOR_ashrv4si3, 0, IX86_BUILTIN_PSRADI128, 0, 0 }, { MASK_SSE2, CODE_FOR_sse2_pmaddwd, 0, IX86_BUILTIN_PMADDWD128, 0, 0 }, { MASK_SSE2, CODE_FOR_sse2_cvtsi2sd, 0, IX86_BUILTIN_CVTSI2SD, 0, 0 }, { MASK_SSE2 | MASK_64BIT, CODE_FOR_sse2_cvtsi2sdq, 0, IX86_BUILTIN_CVTSI642SD, 0, 0 }, { MASK_SSE2, CODE_FOR_sse2_cvtsd2ss, 0, IX86_BUILTIN_CVTSD2SS, 0, 0 }, { MASK_SSE2, CODE_FOR_sse2_cvtss2sd, 0, IX86_BUILTIN_CVTSS2SD, 0, 0 }, /* SSE3 MMX */ { MASK_SSE3, CODE_FOR_sse3_addsubv4sf3, "__builtin_ia32_addsubps", IX86_BUILTIN_ADDSUBPS, 0, 0 }, { MASK_SSE3, CODE_FOR_sse3_addsubv2df3, "__builtin_ia32_addsubpd", IX86_BUILTIN_ADDSUBPD, 0, 0 }, { MASK_SSE3, CODE_FOR_sse3_haddv4sf3, "__builtin_ia32_haddps", IX86_BUILTIN_HADDPS, 0, 0 }, { MASK_SSE3, CODE_FOR_sse3_haddv2df3, "__builtin_ia32_haddpd", IX86_BUILTIN_HADDPD, 0, 0 }, { MASK_SSE3, CODE_FOR_sse3_hsubv4sf3, "__builtin_ia32_hsubps", IX86_BUILTIN_HSUBPS, 0, 0 }, { MASK_SSE3, CODE_FOR_sse3_hsubv2df3, "__builtin_ia32_hsubpd", IX86_BUILTIN_HSUBPD, 0, 0 } }; static const struct builtin_description bdesc_1arg[] = { { MASK_SSE | MASK_3DNOW_A, CODE_FOR_mmx_pmovmskb, 0, IX86_BUILTIN_PMOVMSKB, 0, 0 }, { MASK_SSE, CODE_FOR_sse_movmskps, 0, IX86_BUILTIN_MOVMSKPS, 0, 0 }, { MASK_SSE, CODE_FOR_sqrtv4sf2, 0, IX86_BUILTIN_SQRTPS, 0, 0 }, { MASK_SSE, CODE_FOR_sse_rsqrtv4sf2, 0, IX86_BUILTIN_RSQRTPS, 0, 0 }, { MASK_SSE, CODE_FOR_sse_rcpv4sf2, 0, IX86_BUILTIN_RCPPS, 0, 0 }, { MASK_SSE, CODE_FOR_sse_cvtps2pi, 0, IX86_BUILTIN_CVTPS2PI, 0, 0 }, { MASK_SSE, CODE_FOR_sse_cvtss2si, 0, IX86_BUILTIN_CVTSS2SI, 0, 0 }, { MASK_SSE | MASK_64BIT, CODE_FOR_sse_cvtss2siq, 0, IX86_BUILTIN_CVTSS2SI64, 0, 0 }, { MASK_SSE, CODE_FOR_sse_cvttps2pi, 0, IX86_BUILTIN_CVTTPS2PI, 0, 0 }, { MASK_SSE, CODE_FOR_sse_cvttss2si, 0, IX86_BUILTIN_CVTTSS2SI, 0, 0 }, { MASK_SSE | MASK_64BIT, CODE_FOR_sse_cvttss2siq, 0, IX86_BUILTIN_CVTTSS2SI64, 0, 0 }, { MASK_SSE2, CODE_FOR_sse2_pmovmskb, 0, IX86_BUILTIN_PMOVMSKB128, 0, 0 }, { MASK_SSE2, CODE_FOR_sse2_movmskpd, 0, IX86_BUILTIN_MOVMSKPD, 0, 0 }, { MASK_SSE2, CODE_FOR_sqrtv2df2, 0, IX86_BUILTIN_SQRTPD, 0, 0 }, { MASK_SSE2, CODE_FOR_sse2_cvtdq2pd, 0, IX86_BUILTIN_CVTDQ2PD, 0, 0 }, { MASK_SSE2, CODE_FOR_sse2_cvtdq2ps, 0, IX86_BUILTIN_CVTDQ2PS, 0, 0 }, { MASK_SSE2, CODE_FOR_sse2_cvtpd2dq, 0, IX86_BUILTIN_CVTPD2DQ, 0, 0 }, { MASK_SSE2, CODE_FOR_sse2_cvtpd2pi, 0, IX86_BUILTIN_CVTPD2PI, 0, 0 }, { MASK_SSE2, CODE_FOR_sse2_cvtpd2ps, 0, IX86_BUILTIN_CVTPD2PS, 0, 0 }, { MASK_SSE2, CODE_FOR_sse2_cvttpd2dq, 0, IX86_BUILTIN_CVTTPD2DQ, 0, 0 }, { MASK_SSE2, CODE_FOR_sse2_cvttpd2pi, 0, IX86_BUILTIN_CVTTPD2PI, 0, 0 }, { MASK_SSE2, CODE_FOR_sse2_cvtpi2pd, 0, IX86_BUILTIN_CVTPI2PD, 0, 0 }, { MASK_SSE2, CODE_FOR_sse2_cvtsd2si, 0, IX86_BUILTIN_CVTSD2SI, 0, 0 }, { MASK_SSE2, CODE_FOR_sse2_cvttsd2si, 0, IX86_BUILTIN_CVTTSD2SI, 0, 0 }, { MASK_SSE2 | MASK_64BIT, CODE_FOR_sse2_cvtsd2siq, 0, IX86_BUILTIN_CVTSD2SI64, 0, 0 }, { MASK_SSE2 | MASK_64BIT, CODE_FOR_sse2_cvttsd2siq, 0, IX86_BUILTIN_CVTTSD2SI64, 0, 0 }, { MASK_SSE2, CODE_FOR_sse2_cvtps2dq, 0, IX86_BUILTIN_CVTPS2DQ, 0, 0 }, { MASK_SSE2, CODE_FOR_sse2_cvtps2pd, 0, IX86_BUILTIN_CVTPS2PD, 0, 0 }, { MASK_SSE2, CODE_FOR_sse2_cvttps2dq, 0, IX86_BUILTIN_CVTTPS2DQ, 0, 0 }, /* SSE3 */ { MASK_SSE3, CODE_FOR_sse3_movshdup, 0, IX86_BUILTIN_MOVSHDUP, 0, 0 }, { MASK_SSE3, CODE_FOR_sse3_movsldup, 0, IX86_BUILTIN_MOVSLDUP, 0, 0 }, }; static void ix86_init_builtins (void) { if (TARGET_MMX) ix86_init_mmx_sse_builtins (); } /* Set up all the MMX/SSE builtins. This is not called if TARGET_MMX is zero. Otherwise, if TARGET_SSE is not set, only expand the MMX builtins. */ static void ix86_init_mmx_sse_builtins (void) { const struct builtin_description * d; size_t i; tree V16QI_type_node = build_vector_type_for_mode (intQI_type_node, V16QImode); tree V2SI_type_node = build_vector_type_for_mode (intSI_type_node, V2SImode); tree V2SF_type_node = build_vector_type_for_mode (float_type_node, V2SFmode); tree V2DI_type_node = build_vector_type_for_mode (long_long_integer_type_node, V2DImode); tree V2DF_type_node = build_vector_type_for_mode (double_type_node, V2DFmode); tree V4SF_type_node = build_vector_type_for_mode (float_type_node, V4SFmode); tree V4SI_type_node = build_vector_type_for_mode (intSI_type_node, V4SImode); tree V4HI_type_node = build_vector_type_for_mode (intHI_type_node, V4HImode); tree V8QI_type_node = build_vector_type_for_mode (intQI_type_node, V8QImode); tree V8HI_type_node = build_vector_type_for_mode (intHI_type_node, V8HImode); tree pchar_type_node = build_pointer_type (char_type_node); tree pcchar_type_node = build_pointer_type ( build_type_variant (char_type_node, 1, 0)); tree pfloat_type_node = build_pointer_type (float_type_node); tree pcfloat_type_node = build_pointer_type ( build_type_variant (float_type_node, 1, 0)); tree pv2si_type_node = build_pointer_type (V2SI_type_node); tree pv2di_type_node = build_pointer_type (V2DI_type_node); tree pdi_type_node = build_pointer_type (long_long_unsigned_type_node); /* Comparisons. */ tree int_ftype_v4sf_v4sf = build_function_type_list (integer_type_node, V4SF_type_node, V4SF_type_node, NULL_TREE); tree v4si_ftype_v4sf_v4sf = build_function_type_list (V4SI_type_node, V4SF_type_node, V4SF_type_node, NULL_TREE); /* MMX/SSE/integer conversions. */ tree int_ftype_v4sf = build_function_type_list (integer_type_node, V4SF_type_node, NULL_TREE); tree int64_ftype_v4sf = build_function_type_list (long_long_integer_type_node, V4SF_type_node, NULL_TREE); tree int_ftype_v8qi = build_function_type_list (integer_type_node, V8QI_type_node, NULL_TREE); tree v4sf_ftype_v4sf_int = build_function_type_list (V4SF_type_node, V4SF_type_node, integer_type_node, NULL_TREE); tree v4sf_ftype_v4sf_int64 = build_function_type_list (V4SF_type_node, V4SF_type_node, long_long_integer_type_node, NULL_TREE); tree v4sf_ftype_v4sf_v2si = build_function_type_list (V4SF_type_node, V4SF_type_node, V2SI_type_node, NULL_TREE); /* Miscellaneous. */ tree v8qi_ftype_v4hi_v4hi = build_function_type_list (V8QI_type_node, V4HI_type_node, V4HI_type_node, NULL_TREE); tree v4hi_ftype_v2si_v2si = build_function_type_list (V4HI_type_node, V2SI_type_node, V2SI_type_node, NULL_TREE); tree v4sf_ftype_v4sf_v4sf_int = build_function_type_list (V4SF_type_node, V4SF_type_node, V4SF_type_node, integer_type_node, NULL_TREE); tree v2si_ftype_v4hi_v4hi = build_function_type_list (V2SI_type_node, V4HI_type_node, V4HI_type_node, NULL_TREE); tree v4hi_ftype_v4hi_int = build_function_type_list (V4HI_type_node, V4HI_type_node, integer_type_node, NULL_TREE); tree v4hi_ftype_v4hi_di = build_function_type_list (V4HI_type_node, V4HI_type_node, long_long_unsigned_type_node, NULL_TREE); tree v2si_ftype_v2si_di = build_function_type_list (V2SI_type_node, V2SI_type_node, long_long_unsigned_type_node, NULL_TREE); tree void_ftype_void = build_function_type (void_type_node, void_list_node); tree void_ftype_unsigned = build_function_type_list (void_type_node, unsigned_type_node, NULL_TREE); tree void_ftype_unsigned_unsigned = build_function_type_list (void_type_node, unsigned_type_node, unsigned_type_node, NULL_TREE); tree void_ftype_pcvoid_unsigned_unsigned = build_function_type_list (void_type_node, const_ptr_type_node, unsigned_type_node, unsigned_type_node, NULL_TREE); tree unsigned_ftype_void = build_function_type (unsigned_type_node, void_list_node); tree v2si_ftype_v4sf = build_function_type_list (V2SI_type_node, V4SF_type_node, NULL_TREE); /* Loads/stores. */ tree void_ftype_v8qi_v8qi_pchar = build_function_type_list (void_type_node, V8QI_type_node, V8QI_type_node, pchar_type_node, NULL_TREE); tree v4sf_ftype_pcfloat = build_function_type_list (V4SF_type_node, pcfloat_type_node, NULL_TREE); /* @@@ the type is bogus */ tree v4sf_ftype_v4sf_pv2si = build_function_type_list (V4SF_type_node, V4SF_type_node, pv2si_type_node, NULL_TREE); tree void_ftype_pv2si_v4sf = build_function_type_list (void_type_node, pv2si_type_node, V4SF_type_node, NULL_TREE); tree void_ftype_pfloat_v4sf = build_function_type_list (void_type_node, pfloat_type_node, V4SF_type_node, NULL_TREE); tree void_ftype_pdi_di = build_function_type_list (void_type_node, pdi_type_node, long_long_unsigned_type_node, NULL_TREE); tree void_ftype_pv2di_v2di = build_function_type_list (void_type_node, pv2di_type_node, V2DI_type_node, NULL_TREE); /* Normal vector unops. */ tree v4sf_ftype_v4sf = build_function_type_list (V4SF_type_node, V4SF_type_node, NULL_TREE); /* Normal vector binops. */ tree v4sf_ftype_v4sf_v4sf = build_function_type_list (V4SF_type_node, V4SF_type_node, V4SF_type_node, NULL_TREE); tree v8qi_ftype_v8qi_v8qi = build_function_type_list (V8QI_type_node, V8QI_type_node, V8QI_type_node, NULL_TREE); tree v4hi_ftype_v4hi_v4hi = build_function_type_list (V4HI_type_node, V4HI_type_node, V4HI_type_node, NULL_TREE); tree v2si_ftype_v2si_v2si = build_function_type_list (V2SI_type_node, V2SI_type_node, V2SI_type_node, NULL_TREE); tree di_ftype_di_di = build_function_type_list (long_long_unsigned_type_node, long_long_unsigned_type_node, long_long_unsigned_type_node, NULL_TREE); tree v2si_ftype_v2sf = build_function_type_list (V2SI_type_node, V2SF_type_node, NULL_TREE); tree v2sf_ftype_v2si = build_function_type_list (V2SF_type_node, V2SI_type_node, NULL_TREE); tree v2si_ftype_v2si = build_function_type_list (V2SI_type_node, V2SI_type_node, NULL_TREE); tree v2sf_ftype_v2sf = build_function_type_list (V2SF_type_node, V2SF_type_node, NULL_TREE); tree v2sf_ftype_v2sf_v2sf = build_function_type_list (V2SF_type_node, V2SF_type_node, V2SF_type_node, NULL_TREE); tree v2si_ftype_v2sf_v2sf = build_function_type_list (V2SI_type_node, V2SF_type_node, V2SF_type_node, NULL_TREE); tree pint_type_node = build_pointer_type (integer_type_node); tree pdouble_type_node = build_pointer_type (double_type_node); tree pcdouble_type_node = build_pointer_type ( build_type_variant (double_type_node, 1, 0)); tree int_ftype_v2df_v2df = build_function_type_list (integer_type_node, V2DF_type_node, V2DF_type_node, NULL_TREE); tree ti_ftype_ti_ti = build_function_type_list (intTI_type_node, intTI_type_node, intTI_type_node, NULL_TREE); tree void_ftype_pcvoid = build_function_type_list (void_type_node, const_ptr_type_node, NULL_TREE); tree v4sf_ftype_v4si = build_function_type_list (V4SF_type_node, V4SI_type_node, NULL_TREE); tree v4si_ftype_v4sf = build_function_type_list (V4SI_type_node, V4SF_type_node, NULL_TREE); tree v2df_ftype_v4si = build_function_type_list (V2DF_type_node, V4SI_type_node, NULL_TREE); tree v4si_ftype_v2df = build_function_type_list (V4SI_type_node, V2DF_type_node, NULL_TREE); tree v2si_ftype_v2df = build_function_type_list (V2SI_type_node, V2DF_type_node, NULL_TREE); tree v4sf_ftype_v2df = build_function_type_list (V4SF_type_node, V2DF_type_node, NULL_TREE); tree v2df_ftype_v2si = build_function_type_list (V2DF_type_node, V2SI_type_node, NULL_TREE); tree v2df_ftype_v4sf = build_function_type_list (V2DF_type_node, V4SF_type_node, NULL_TREE); tree int_ftype_v2df = build_function_type_list (integer_type_node, V2DF_type_node, NULL_TREE); tree int64_ftype_v2df = build_function_type_list (long_long_integer_type_node, V2DF_type_node, NULL_TREE); tree v2df_ftype_v2df_int = build_function_type_list (V2DF_type_node, V2DF_type_node, integer_type_node, NULL_TREE); tree v2df_ftype_v2df_int64 = build_function_type_list (V2DF_type_node, V2DF_type_node, long_long_integer_type_node, NULL_TREE); tree v4sf_ftype_v4sf_v2df = build_function_type_list (V4SF_type_node, V4SF_type_node, V2DF_type_node, NULL_TREE); tree v2df_ftype_v2df_v4sf = build_function_type_list (V2DF_type_node, V2DF_type_node, V4SF_type_node, NULL_TREE); tree v2df_ftype_v2df_v2df_int = build_function_type_list (V2DF_type_node, V2DF_type_node, V2DF_type_node, integer_type_node, NULL_TREE); tree v2df_ftype_v2df_pcdouble = build_function_type_list (V2DF_type_node, V2DF_type_node, pcdouble_type_node, NULL_TREE); tree void_ftype_pdouble_v2df = build_function_type_list (void_type_node, pdouble_type_node, V2DF_type_node, NULL_TREE); tree void_ftype_pint_int = build_function_type_list (void_type_node, pint_type_node, integer_type_node, NULL_TREE); tree void_ftype_v16qi_v16qi_pchar = build_function_type_list (void_type_node, V16QI_type_node, V16QI_type_node, pchar_type_node, NULL_TREE); tree v2df_ftype_pcdouble = build_function_type_list (V2DF_type_node, pcdouble_type_node, NULL_TREE); tree v2df_ftype_v2df_v2df = build_function_type_list (V2DF_type_node, V2DF_type_node, V2DF_type_node, NULL_TREE); tree v16qi_ftype_v16qi_v16qi = build_function_type_list (V16QI_type_node, V16QI_type_node, V16QI_type_node, NULL_TREE); tree v8hi_ftype_v8hi_v8hi = build_function_type_list (V8HI_type_node, V8HI_type_node, V8HI_type_node, NULL_TREE); tree v4si_ftype_v4si_v4si = build_function_type_list (V4SI_type_node, V4SI_type_node, V4SI_type_node, NULL_TREE); tree v2di_ftype_v2di_v2di = build_function_type_list (V2DI_type_node, V2DI_type_node, V2DI_type_node, NULL_TREE); tree v2di_ftype_v2df_v2df = build_function_type_list (V2DI_type_node, V2DF_type_node, V2DF_type_node, NULL_TREE); tree v2df_ftype_v2df = build_function_type_list (V2DF_type_node, V2DF_type_node, NULL_TREE); tree v2di_ftype_v2di_int = build_function_type_list (V2DI_type_node, V2DI_type_node, integer_type_node, NULL_TREE); tree v4si_ftype_v4si_int = build_function_type_list (V4SI_type_node, V4SI_type_node, integer_type_node, NULL_TREE); tree v8hi_ftype_v8hi_int = build_function_type_list (V8HI_type_node, V8HI_type_node, integer_type_node, NULL_TREE); tree v8hi_ftype_v8hi_v2di = build_function_type_list (V8HI_type_node, V8HI_type_node, V2DI_type_node, NULL_TREE); tree v4si_ftype_v4si_v2di = build_function_type_list (V4SI_type_node, V4SI_type_node, V2DI_type_node, NULL_TREE); tree v4si_ftype_v8hi_v8hi = build_function_type_list (V4SI_type_node, V8HI_type_node, V8HI_type_node, NULL_TREE); tree di_ftype_v8qi_v8qi = build_function_type_list (long_long_unsigned_type_node, V8QI_type_node, V8QI_type_node, NULL_TREE); tree di_ftype_v2si_v2si = build_function_type_list (long_long_unsigned_type_node, V2SI_type_node, V2SI_type_node, NULL_TREE); tree v2di_ftype_v16qi_v16qi = build_function_type_list (V2DI_type_node, V16QI_type_node, V16QI_type_node, NULL_TREE); tree v2di_ftype_v4si_v4si = build_function_type_list (V2DI_type_node, V4SI_type_node, V4SI_type_node, NULL_TREE); tree int_ftype_v16qi = build_function_type_list (integer_type_node, V16QI_type_node, NULL_TREE); tree v16qi_ftype_pcchar = build_function_type_list (V16QI_type_node, pcchar_type_node, NULL_TREE); tree void_ftype_pchar_v16qi = build_function_type_list (void_type_node, pchar_type_node, V16QI_type_node, NULL_TREE); tree float80_type; tree float128_type; tree ftype; /* The __float80 type. */ if (TYPE_MODE (long_double_type_node) == XFmode) (*lang_hooks.types.register_builtin_type) (long_double_type_node, "__float80"); else { /* The __float80 type. */ float80_type = make_node (REAL_TYPE); TYPE_PRECISION (float80_type) = 80; layout_type (float80_type); (*lang_hooks.types.register_builtin_type) (float80_type, "__float80"); } float128_type = make_node (REAL_TYPE); TYPE_PRECISION (float128_type) = 128; layout_type (float128_type); (*lang_hooks.types.register_builtin_type) (float128_type, "__float128"); /* Add all builtins that are more or less simple operations on two operands. */ for (i = 0, d = bdesc_2arg; i < ARRAY_SIZE (bdesc_2arg); i++, d++) { /* Use one of the operands; the target can have a different mode for mask-generating compares. */ enum machine_mode mode; tree type; if (d->name == 0) continue; mode = insn_data[d->icode].operand[1].mode; switch (mode) { case V16QImode: type = v16qi_ftype_v16qi_v16qi; break; case V8HImode: type = v8hi_ftype_v8hi_v8hi; break; case V4SImode: type = v4si_ftype_v4si_v4si; break; case V2DImode: type = v2di_ftype_v2di_v2di; break; case V2DFmode: type = v2df_ftype_v2df_v2df; break; case TImode: type = ti_ftype_ti_ti; break; case V4SFmode: type = v4sf_ftype_v4sf_v4sf; break; case V8QImode: type = v8qi_ftype_v8qi_v8qi; break; case V4HImode: type = v4hi_ftype_v4hi_v4hi; break; case V2SImode: type = v2si_ftype_v2si_v2si; break; case DImode: type = di_ftype_di_di; break; default: abort (); } /* Override for comparisons. */ if (d->icode == CODE_FOR_sse_maskcmpv4sf3 || d->icode == CODE_FOR_sse_vmmaskcmpv4sf3) type = v4si_ftype_v4sf_v4sf; if (d->icode == CODE_FOR_sse2_maskcmpv2df3 || d->icode == CODE_FOR_sse2_vmmaskcmpv2df3) type = v2di_ftype_v2df_v2df; def_builtin (d->mask, d->name, type, d->code); } /* Add the remaining MMX insns with somewhat more complicated types. */ def_builtin (MASK_MMX, "__builtin_ia32_emms", void_ftype_void, IX86_BUILTIN_EMMS); def_builtin (MASK_MMX, "__builtin_ia32_psllw", v4hi_ftype_v4hi_di, IX86_BUILTIN_PSLLW); def_builtin (MASK_MMX, "__builtin_ia32_pslld", v2si_ftype_v2si_di, IX86_BUILTIN_PSLLD); def_builtin (MASK_MMX, "__builtin_ia32_psllq", di_ftype_di_di, IX86_BUILTIN_PSLLQ); def_builtin (MASK_MMX, "__builtin_ia32_psrlw", v4hi_ftype_v4hi_di, IX86_BUILTIN_PSRLW); def_builtin (MASK_MMX, "__builtin_ia32_psrld", v2si_ftype_v2si_di, IX86_BUILTIN_PSRLD); def_builtin (MASK_MMX, "__builtin_ia32_psrlq", di_ftype_di_di, IX86_BUILTIN_PSRLQ); def_builtin (MASK_MMX, "__builtin_ia32_psraw", v4hi_ftype_v4hi_di, IX86_BUILTIN_PSRAW); def_builtin (MASK_MMX, "__builtin_ia32_psrad", v2si_ftype_v2si_di, IX86_BUILTIN_PSRAD); def_builtin (MASK_MMX, "__builtin_ia32_pshufw", v4hi_ftype_v4hi_int, IX86_BUILTIN_PSHUFW); def_builtin (MASK_MMX, "__builtin_ia32_pmaddwd", v2si_ftype_v4hi_v4hi, IX86_BUILTIN_PMADDWD); /* comi/ucomi insns. */ for (i = 0, d = bdesc_comi; i < ARRAY_SIZE (bdesc_comi); i++, d++) if (d->mask == MASK_SSE2) def_builtin (d->mask, d->name, int_ftype_v2df_v2df, d->code); else def_builtin (d->mask, d->name, int_ftype_v4sf_v4sf, d->code); def_builtin (MASK_MMX, "__builtin_ia32_packsswb", v8qi_ftype_v4hi_v4hi, IX86_BUILTIN_PACKSSWB); def_builtin (MASK_MMX, "__builtin_ia32_packssdw", v4hi_ftype_v2si_v2si, IX86_BUILTIN_PACKSSDW); def_builtin (MASK_MMX, "__builtin_ia32_packuswb", v8qi_ftype_v4hi_v4hi, IX86_BUILTIN_PACKUSWB); def_builtin (MASK_SSE, "__builtin_ia32_ldmxcsr", void_ftype_unsigned, IX86_BUILTIN_LDMXCSR); def_builtin (MASK_SSE, "__builtin_ia32_stmxcsr", unsigned_ftype_void, IX86_BUILTIN_STMXCSR); def_builtin (MASK_SSE, "__builtin_ia32_cvtpi2ps", v4sf_ftype_v4sf_v2si, IX86_BUILTIN_CVTPI2PS); def_builtin (MASK_SSE, "__builtin_ia32_cvtps2pi", v2si_ftype_v4sf, IX86_BUILTIN_CVTPS2PI); def_builtin (MASK_SSE, "__builtin_ia32_cvtsi2ss", v4sf_ftype_v4sf_int, IX86_BUILTIN_CVTSI2SS); def_builtin (MASK_SSE | MASK_64BIT, "__builtin_ia32_cvtsi642ss", v4sf_ftype_v4sf_int64, IX86_BUILTIN_CVTSI642SS); def_builtin (MASK_SSE, "__builtin_ia32_cvtss2si", int_ftype_v4sf, IX86_BUILTIN_CVTSS2SI); def_builtin (MASK_SSE | MASK_64BIT, "__builtin_ia32_cvtss2si64", int64_ftype_v4sf, IX86_BUILTIN_CVTSS2SI64); def_builtin (MASK_SSE, "__builtin_ia32_cvttps2pi", v2si_ftype_v4sf, IX86_BUILTIN_CVTTPS2PI); def_builtin (MASK_SSE, "__builtin_ia32_cvttss2si", int_ftype_v4sf, IX86_BUILTIN_CVTTSS2SI); def_builtin (MASK_SSE | MASK_64BIT, "__builtin_ia32_cvttss2si64", int64_ftype_v4sf, IX86_BUILTIN_CVTTSS2SI64); def_builtin (MASK_SSE | MASK_3DNOW_A, "__builtin_ia32_maskmovq", void_ftype_v8qi_v8qi_pchar, IX86_BUILTIN_MASKMOVQ); def_builtin (MASK_SSE, "__builtin_ia32_loadups", v4sf_ftype_pcfloat, IX86_BUILTIN_LOADUPS); def_builtin (MASK_SSE, "__builtin_ia32_storeups", void_ftype_pfloat_v4sf, IX86_BUILTIN_STOREUPS); def_builtin (MASK_SSE, "__builtin_ia32_loadhps", v4sf_ftype_v4sf_pv2si, IX86_BUILTIN_LOADHPS); def_builtin (MASK_SSE, "__builtin_ia32_loadlps", v4sf_ftype_v4sf_pv2si, IX86_BUILTIN_LOADLPS); def_builtin (MASK_SSE, "__builtin_ia32_storehps", void_ftype_pv2si_v4sf, IX86_BUILTIN_STOREHPS); def_builtin (MASK_SSE, "__builtin_ia32_storelps", void_ftype_pv2si_v4sf, IX86_BUILTIN_STORELPS); def_builtin (MASK_SSE, "__builtin_ia32_movmskps", int_ftype_v4sf, IX86_BUILTIN_MOVMSKPS); def_builtin (MASK_SSE | MASK_3DNOW_A, "__builtin_ia32_pmovmskb", int_ftype_v8qi, IX86_BUILTIN_PMOVMSKB); def_builtin (MASK_SSE, "__builtin_ia32_movntps", void_ftype_pfloat_v4sf, IX86_BUILTIN_MOVNTPS); def_builtin (MASK_SSE | MASK_3DNOW_A, "__builtin_ia32_movntq", void_ftype_pdi_di, IX86_BUILTIN_MOVNTQ); def_builtin (MASK_SSE | MASK_3DNOW_A, "__builtin_ia32_sfence", void_ftype_void, IX86_BUILTIN_SFENCE); def_builtin (MASK_SSE | MASK_3DNOW_A, "__builtin_ia32_psadbw", di_ftype_v8qi_v8qi, IX86_BUILTIN_PSADBW); def_builtin (MASK_SSE, "__builtin_ia32_rcpps", v4sf_ftype_v4sf, IX86_BUILTIN_RCPPS); def_builtin (MASK_SSE, "__builtin_ia32_rcpss", v4sf_ftype_v4sf, IX86_BUILTIN_RCPSS); def_builtin (MASK_SSE, "__builtin_ia32_rsqrtps", v4sf_ftype_v4sf, IX86_BUILTIN_RSQRTPS); def_builtin (MASK_SSE, "__builtin_ia32_rsqrtss", v4sf_ftype_v4sf, IX86_BUILTIN_RSQRTSS); def_builtin (MASK_SSE, "__builtin_ia32_sqrtps", v4sf_ftype_v4sf, IX86_BUILTIN_SQRTPS); def_builtin (MASK_SSE, "__builtin_ia32_sqrtss", v4sf_ftype_v4sf, IX86_BUILTIN_SQRTSS); def_builtin (MASK_SSE, "__builtin_ia32_shufps", v4sf_ftype_v4sf_v4sf_int, IX86_BUILTIN_SHUFPS); /* Original 3DNow! */ def_builtin (MASK_3DNOW, "__builtin_ia32_femms", void_ftype_void, IX86_BUILTIN_FEMMS); def_builtin (MASK_3DNOW, "__builtin_ia32_pavgusb", v8qi_ftype_v8qi_v8qi, IX86_BUILTIN_PAVGUSB); def_builtin (MASK_3DNOW, "__builtin_ia32_pf2id", v2si_ftype_v2sf, IX86_BUILTIN_PF2ID); def_builtin (MASK_3DNOW, "__builtin_ia32_pfacc", v2sf_ftype_v2sf_v2sf, IX86_BUILTIN_PFACC); def_builtin (MASK_3DNOW, "__builtin_ia32_pfadd", v2sf_ftype_v2sf_v2sf, IX86_BUILTIN_PFADD); def_builtin (MASK_3DNOW, "__builtin_ia32_pfcmpeq", v2si_ftype_v2sf_v2sf, IX86_BUILTIN_PFCMPEQ); def_builtin (MASK_3DNOW, "__builtin_ia32_pfcmpge", v2si_ftype_v2sf_v2sf, IX86_BUILTIN_PFCMPGE); def_builtin (MASK_3DNOW, "__builtin_ia32_pfcmpgt", v2si_ftype_v2sf_v2sf, IX86_BUILTIN_PFCMPGT); def_builtin (MASK_3DNOW, "__builtin_ia32_pfmax", v2sf_ftype_v2sf_v2sf, IX86_BUILTIN_PFMAX); def_builtin (MASK_3DNOW, "__builtin_ia32_pfmin", v2sf_ftype_v2sf_v2sf, IX86_BUILTIN_PFMIN); def_builtin (MASK_3DNOW, "__builtin_ia32_pfmul", v2sf_ftype_v2sf_v2sf, IX86_BUILTIN_PFMUL); def_builtin (MASK_3DNOW, "__builtin_ia32_pfrcp", v2sf_ftype_v2sf, IX86_BUILTIN_PFRCP); def_builtin (MASK_3DNOW, "__builtin_ia32_pfrcpit1", v2sf_ftype_v2sf_v2sf, IX86_BUILTIN_PFRCPIT1); def_builtin (MASK_3DNOW, "__builtin_ia32_pfrcpit2", v2sf_ftype_v2sf_v2sf, IX86_BUILTIN_PFRCPIT2); def_builtin (MASK_3DNOW, "__builtin_ia32_pfrsqrt", v2sf_ftype_v2sf, IX86_BUILTIN_PFRSQRT); def_builtin (MASK_3DNOW, "__builtin_ia32_pfrsqit1", v2sf_ftype_v2sf_v2sf, IX86_BUILTIN_PFRSQIT1); def_builtin (MASK_3DNOW, "__builtin_ia32_pfsub", v2sf_ftype_v2sf_v2sf, IX86_BUILTIN_PFSUB); def_builtin (MASK_3DNOW, "__builtin_ia32_pfsubr", v2sf_ftype_v2sf_v2sf, IX86_BUILTIN_PFSUBR); def_builtin (MASK_3DNOW, "__builtin_ia32_pi2fd", v2sf_ftype_v2si, IX86_BUILTIN_PI2FD); def_builtin (MASK_3DNOW, "__builtin_ia32_pmulhrw", v4hi_ftype_v4hi_v4hi, IX86_BUILTIN_PMULHRW); /* 3DNow! extension as used in the Athlon CPU. */ def_builtin (MASK_3DNOW_A, "__builtin_ia32_pf2iw", v2si_ftype_v2sf, IX86_BUILTIN_PF2IW); def_builtin (MASK_3DNOW_A, "__builtin_ia32_pfnacc", v2sf_ftype_v2sf_v2sf, IX86_BUILTIN_PFNACC); def_builtin (MASK_3DNOW_A, "__builtin_ia32_pfpnacc", v2sf_ftype_v2sf_v2sf, IX86_BUILTIN_PFPNACC); def_builtin (MASK_3DNOW_A, "__builtin_ia32_pi2fw", v2sf_ftype_v2si, IX86_BUILTIN_PI2FW); def_builtin (MASK_3DNOW_A, "__builtin_ia32_pswapdsf", v2sf_ftype_v2sf, IX86_BUILTIN_PSWAPDSF); def_builtin (MASK_3DNOW_A, "__builtin_ia32_pswapdsi", v2si_ftype_v2si, IX86_BUILTIN_PSWAPDSI); /* SSE2 */ def_builtin (MASK_SSE2, "__builtin_ia32_maskmovdqu", void_ftype_v16qi_v16qi_pchar, IX86_BUILTIN_MASKMOVDQU); def_builtin (MASK_SSE2, "__builtin_ia32_loadupd", v2df_ftype_pcdouble, IX86_BUILTIN_LOADUPD); def_builtin (MASK_SSE2, "__builtin_ia32_storeupd", void_ftype_pdouble_v2df, IX86_BUILTIN_STOREUPD); def_builtin (MASK_SSE2, "__builtin_ia32_loadhpd", v2df_ftype_v2df_pcdouble, IX86_BUILTIN_LOADHPD); def_builtin (MASK_SSE2, "__builtin_ia32_loadlpd", v2df_ftype_v2df_pcdouble, IX86_BUILTIN_LOADLPD); def_builtin (MASK_SSE2, "__builtin_ia32_movmskpd", int_ftype_v2df, IX86_BUILTIN_MOVMSKPD); def_builtin (MASK_SSE2, "__builtin_ia32_pmovmskb128", int_ftype_v16qi, IX86_BUILTIN_PMOVMSKB128); def_builtin (MASK_SSE2, "__builtin_ia32_movnti", void_ftype_pint_int, IX86_BUILTIN_MOVNTI); def_builtin (MASK_SSE2, "__builtin_ia32_movntpd", void_ftype_pdouble_v2df, IX86_BUILTIN_MOVNTPD); def_builtin (MASK_SSE2, "__builtin_ia32_movntdq", void_ftype_pv2di_v2di, IX86_BUILTIN_MOVNTDQ); def_builtin (MASK_SSE2, "__builtin_ia32_pshufd", v4si_ftype_v4si_int, IX86_BUILTIN_PSHUFD); def_builtin (MASK_SSE2, "__builtin_ia32_pshuflw", v8hi_ftype_v8hi_int, IX86_BUILTIN_PSHUFLW); def_builtin (MASK_SSE2, "__builtin_ia32_pshufhw", v8hi_ftype_v8hi_int, IX86_BUILTIN_PSHUFHW); def_builtin (MASK_SSE2, "__builtin_ia32_psadbw128", v2di_ftype_v16qi_v16qi, IX86_BUILTIN_PSADBW128); def_builtin (MASK_SSE2, "__builtin_ia32_sqrtpd", v2df_ftype_v2df, IX86_BUILTIN_SQRTPD); def_builtin (MASK_SSE2, "__builtin_ia32_sqrtsd", v2df_ftype_v2df, IX86_BUILTIN_SQRTSD); def_builtin (MASK_SSE2, "__builtin_ia32_shufpd", v2df_ftype_v2df_v2df_int, IX86_BUILTIN_SHUFPD); def_builtin (MASK_SSE2, "__builtin_ia32_cvtdq2pd", v2df_ftype_v4si, IX86_BUILTIN_CVTDQ2PD); def_builtin (MASK_SSE2, "__builtin_ia32_cvtdq2ps", v4sf_ftype_v4si, IX86_BUILTIN_CVTDQ2PS); def_builtin (MASK_SSE2, "__builtin_ia32_cvtpd2dq", v4si_ftype_v2df, IX86_BUILTIN_CVTPD2DQ); def_builtin (MASK_SSE2, "__builtin_ia32_cvtpd2pi", v2si_ftype_v2df, IX86_BUILTIN_CVTPD2PI); def_builtin (MASK_SSE2, "__builtin_ia32_cvtpd2ps", v4sf_ftype_v2df, IX86_BUILTIN_CVTPD2PS); def_builtin (MASK_SSE2, "__builtin_ia32_cvttpd2dq", v4si_ftype_v2df, IX86_BUILTIN_CVTTPD2DQ); def_builtin (MASK_SSE2, "__builtin_ia32_cvttpd2pi", v2si_ftype_v2df, IX86_BUILTIN_CVTTPD2PI); def_builtin (MASK_SSE2, "__builtin_ia32_cvtpi2pd", v2df_ftype_v2si, IX86_BUILTIN_CVTPI2PD); def_builtin (MASK_SSE2, "__builtin_ia32_cvtsd2si", int_ftype_v2df, IX86_BUILTIN_CVTSD2SI); def_builtin (MASK_SSE2, "__builtin_ia32_cvttsd2si", int_ftype_v2df, IX86_BUILTIN_CVTTSD2SI); def_builtin (MASK_SSE2 | MASK_64BIT, "__builtin_ia32_cvtsd2si64", int64_ftype_v2df, IX86_BUILTIN_CVTSD2SI64); def_builtin (MASK_SSE2 | MASK_64BIT, "__builtin_ia32_cvttsd2si64", int64_ftype_v2df, IX86_BUILTIN_CVTTSD2SI64); def_builtin (MASK_SSE2, "__builtin_ia32_cvtps2dq", v4si_ftype_v4sf, IX86_BUILTIN_CVTPS2DQ); def_builtin (MASK_SSE2, "__builtin_ia32_cvtps2pd", v2df_ftype_v4sf, IX86_BUILTIN_CVTPS2PD); def_builtin (MASK_SSE2, "__builtin_ia32_cvttps2dq", v4si_ftype_v4sf, IX86_BUILTIN_CVTTPS2DQ); def_builtin (MASK_SSE2, "__builtin_ia32_cvtsi2sd", v2df_ftype_v2df_int, IX86_BUILTIN_CVTSI2SD); def_builtin (MASK_SSE2 | MASK_64BIT, "__builtin_ia32_cvtsi642sd", v2df_ftype_v2df_int64, IX86_BUILTIN_CVTSI642SD); def_builtin (MASK_SSE2, "__builtin_ia32_cvtsd2ss", v4sf_ftype_v4sf_v2df, IX86_BUILTIN_CVTSD2SS); def_builtin (MASK_SSE2, "__builtin_ia32_cvtss2sd", v2df_ftype_v2df_v4sf, IX86_BUILTIN_CVTSS2SD); def_builtin (MASK_SSE2, "__builtin_ia32_clflush", void_ftype_pcvoid, IX86_BUILTIN_CLFLUSH); def_builtin (MASK_SSE2, "__builtin_ia32_lfence", void_ftype_void, IX86_BUILTIN_LFENCE); def_builtin (MASK_SSE2, "__builtin_ia32_mfence", void_ftype_void, IX86_BUILTIN_MFENCE); def_builtin (MASK_SSE2, "__builtin_ia32_loaddqu", v16qi_ftype_pcchar, IX86_BUILTIN_LOADDQU); def_builtin (MASK_SSE2, "__builtin_ia32_storedqu", void_ftype_pchar_v16qi, IX86_BUILTIN_STOREDQU); def_builtin (MASK_SSE2, "__builtin_ia32_pmuludq", di_ftype_v2si_v2si, IX86_BUILTIN_PMULUDQ); def_builtin (MASK_SSE2, "__builtin_ia32_pmuludq128", v2di_ftype_v4si_v4si, IX86_BUILTIN_PMULUDQ128); def_builtin (MASK_SSE2, "__builtin_ia32_psllw128", v8hi_ftype_v8hi_v2di, IX86_BUILTIN_PSLLW128); def_builtin (MASK_SSE2, "__builtin_ia32_pslld128", v4si_ftype_v4si_v2di, IX86_BUILTIN_PSLLD128); def_builtin (MASK_SSE2, "__builtin_ia32_psllq128", v2di_ftype_v2di_v2di, IX86_BUILTIN_PSLLQ128); def_builtin (MASK_SSE2, "__builtin_ia32_psrlw128", v8hi_ftype_v8hi_v2di, IX86_BUILTIN_PSRLW128); def_builtin (MASK_SSE2, "__builtin_ia32_psrld128", v4si_ftype_v4si_v2di, IX86_BUILTIN_PSRLD128); def_builtin (MASK_SSE2, "__builtin_ia32_psrlq128", v2di_ftype_v2di_v2di, IX86_BUILTIN_PSRLQ128); def_builtin (MASK_SSE2, "__builtin_ia32_psraw128", v8hi_ftype_v8hi_v2di, IX86_BUILTIN_PSRAW128); def_builtin (MASK_SSE2, "__builtin_ia32_psrad128", v4si_ftype_v4si_v2di, IX86_BUILTIN_PSRAD128); def_builtin (MASK_SSE2, "__builtin_ia32_pslldqi128", v2di_ftype_v2di_int, IX86_BUILTIN_PSLLDQI128); def_builtin (MASK_SSE2, "__builtin_ia32_psllwi128", v8hi_ftype_v8hi_int, IX86_BUILTIN_PSLLWI128); def_builtin (MASK_SSE2, "__builtin_ia32_pslldi128", v4si_ftype_v4si_int, IX86_BUILTIN_PSLLDI128); def_builtin (MASK_SSE2, "__builtin_ia32_psllqi128", v2di_ftype_v2di_int, IX86_BUILTIN_PSLLQI128); def_builtin (MASK_SSE2, "__builtin_ia32_psrldqi128", v2di_ftype_v2di_int, IX86_BUILTIN_PSRLDQI128); def_builtin (MASK_SSE2, "__builtin_ia32_psrlwi128", v8hi_ftype_v8hi_int, IX86_BUILTIN_PSRLWI128); def_builtin (MASK_SSE2, "__builtin_ia32_psrldi128", v4si_ftype_v4si_int, IX86_BUILTIN_PSRLDI128); def_builtin (MASK_SSE2, "__builtin_ia32_psrlqi128", v2di_ftype_v2di_int, IX86_BUILTIN_PSRLQI128); def_builtin (MASK_SSE2, "__builtin_ia32_psrawi128", v8hi_ftype_v8hi_int, IX86_BUILTIN_PSRAWI128); def_builtin (MASK_SSE2, "__builtin_ia32_psradi128", v4si_ftype_v4si_int, IX86_BUILTIN_PSRADI128); def_builtin (MASK_SSE2, "__builtin_ia32_pmaddwd128", v4si_ftype_v8hi_v8hi, IX86_BUILTIN_PMADDWD128); /* Prescott New Instructions. */ def_builtin (MASK_SSE3, "__builtin_ia32_monitor", void_ftype_pcvoid_unsigned_unsigned, IX86_BUILTIN_MONITOR); def_builtin (MASK_SSE3, "__builtin_ia32_mwait", void_ftype_unsigned_unsigned, IX86_BUILTIN_MWAIT); def_builtin (MASK_SSE3, "__builtin_ia32_movshdup", v4sf_ftype_v4sf, IX86_BUILTIN_MOVSHDUP); def_builtin (MASK_SSE3, "__builtin_ia32_movsldup", v4sf_ftype_v4sf, IX86_BUILTIN_MOVSLDUP); def_builtin (MASK_SSE3, "__builtin_ia32_lddqu", v16qi_ftype_pcchar, IX86_BUILTIN_LDDQU); /* Access to the vec_init patterns. */ ftype = build_function_type_list (V2SI_type_node, integer_type_node, integer_type_node, NULL_TREE); def_builtin (MASK_MMX, "__builtin_ia32_vec_init_v2si", ftype, IX86_BUILTIN_VEC_INIT_V2SI); ftype = build_function_type_list (V4HI_type_node, short_integer_type_node, short_integer_type_node, short_integer_type_node, short_integer_type_node, NULL_TREE); def_builtin (MASK_MMX, "__builtin_ia32_vec_init_v4hi", ftype, IX86_BUILTIN_VEC_INIT_V4HI); ftype = build_function_type_list (V8QI_type_node, char_type_node, char_type_node, char_type_node, char_type_node, char_type_node, char_type_node, char_type_node, char_type_node, NULL_TREE); def_builtin (MASK_MMX, "__builtin_ia32_vec_init_v8qi", ftype, IX86_BUILTIN_VEC_INIT_V8QI); /* Access to the vec_extract patterns. */ ftype = build_function_type_list (double_type_node, V2DF_type_node, integer_type_node, NULL_TREE); def_builtin (MASK_SSE, "__builtin_ia32_vec_ext_v2df", ftype, IX86_BUILTIN_VEC_EXT_V2DF); ftype = build_function_type_list (long_long_integer_type_node, V2DI_type_node, integer_type_node, NULL_TREE); def_builtin (MASK_SSE, "__builtin_ia32_vec_ext_v2di", ftype, IX86_BUILTIN_VEC_EXT_V2DI); ftype = build_function_type_list (float_type_node, V4SF_type_node, integer_type_node, NULL_TREE); def_builtin (MASK_SSE, "__builtin_ia32_vec_ext_v4sf", ftype, IX86_BUILTIN_VEC_EXT_V4SF); ftype = build_function_type_list (intSI_type_node, V4SI_type_node, integer_type_node, NULL_TREE); def_builtin (MASK_SSE, "__builtin_ia32_vec_ext_v4si", ftype, IX86_BUILTIN_VEC_EXT_V4SI); ftype = build_function_type_list (intHI_type_node, V8HI_type_node, integer_type_node, NULL_TREE); def_builtin (MASK_SSE, "__builtin_ia32_vec_ext_v8hi", ftype, IX86_BUILTIN_VEC_EXT_V8HI); ftype = build_function_type_list (intHI_type_node, V4HI_type_node, integer_type_node, NULL_TREE); def_builtin (MASK_SSE | MASK_3DNOW_A, "__builtin_ia32_vec_ext_v4hi", ftype, IX86_BUILTIN_VEC_EXT_V4HI); ftype = build_function_type_list (intSI_type_node, V2SI_type_node, integer_type_node, NULL_TREE); def_builtin (MASK_MMX, "__builtin_ia32_vec_ext_v2si", ftype, IX86_BUILTIN_VEC_EXT_V2SI); /* Access to the vec_set patterns. */ ftype = build_function_type_list (V8HI_type_node, V8HI_type_node, intHI_type_node, integer_type_node, NULL_TREE); def_builtin (MASK_SSE, "__builtin_ia32_vec_set_v8hi", ftype, IX86_BUILTIN_VEC_SET_V8HI); ftype = build_function_type_list (V4HI_type_node, V4HI_type_node, intHI_type_node, integer_type_node, NULL_TREE); def_builtin (MASK_SSE | MASK_3DNOW_A, "__builtin_ia32_vec_set_v4hi", ftype, IX86_BUILTIN_VEC_SET_V4HI); } /* Errors in the source file can cause expand_expr to return const0_rtx where we expect a vector. To avoid crashing, use one of the vector clear instructions. */ static rtx safe_vector_operand (rtx x, enum machine_mode mode) { if (x == const0_rtx) x = CONST0_RTX (mode); return x; } /* Subroutine of ix86_expand_builtin to take care of binop insns. */ static rtx ix86_expand_binop_builtin (enum insn_code icode, tree arglist, rtx target) { rtx pat, xops[3]; tree arg0 = TREE_VALUE (arglist); tree arg1 = TREE_VALUE (TREE_CHAIN (arglist)); rtx op0 = expand_expr (arg0, NULL_RTX, VOIDmode, 0); rtx op1 = expand_expr (arg1, NULL_RTX, VOIDmode, 0); enum machine_mode tmode = insn_data[icode].operand[0].mode; enum machine_mode mode0 = insn_data[icode].operand[1].mode; enum machine_mode mode1 = insn_data[icode].operand[2].mode; if (VECTOR_MODE_P (mode0)) op0 = safe_vector_operand (op0, mode0); if (VECTOR_MODE_P (mode1)) op1 = safe_vector_operand (op1, mode1); if (optimize || !target || GET_MODE (target) != tmode || ! (*insn_data[icode].operand[0].predicate) (target, tmode)) target = gen_reg_rtx (tmode); if (GET_MODE (op1) == SImode && mode1 == TImode) { rtx x = gen_reg_rtx (V4SImode); emit_insn (gen_sse2_loadd (x, op1)); op1 = gen_lowpart (TImode, x); } /* In case the insn wants input operands in modes different from the result, abort. */ if ((GET_MODE (op0) != mode0 && GET_MODE (op0) != VOIDmode) || (GET_MODE (op1) != mode1 && GET_MODE (op1) != VOIDmode)) abort (); if (!(*insn_data[icode].operand[1].predicate) (op0, mode0)) op0 = copy_to_mode_reg (mode0, op0); if (!(*insn_data[icode].operand[2].predicate) (op1, mode1)) op1 = copy_to_mode_reg (mode1, op1); /* ??? Using ix86_fixup_binary_operands is problematic when we've got mismatched modes. Fake it. */ xops[0] = target; xops[1] = op0; xops[2] = op1; if (tmode == mode0 && tmode == mode1) { target = ix86_fixup_binary_operands (UNKNOWN, tmode, xops); op0 = xops[1]; op1 = xops[2]; } else if (optimize || !ix86_binary_operator_ok (UNKNOWN, tmode, xops)) { op0 = force_reg (mode0, op0); op1 = force_reg (mode1, op1); target = gen_reg_rtx (tmode); } pat = GEN_FCN (icode) (target, op0, op1); if (! pat) return 0; emit_insn (pat); return target; } /* Subroutine of ix86_expand_builtin to take care of stores. */ static rtx ix86_expand_store_builtin (enum insn_code icode, tree arglist) { rtx pat; tree arg0 = TREE_VALUE (arglist); tree arg1 = TREE_VALUE (TREE_CHAIN (arglist)); rtx op0 = expand_expr (arg0, NULL_RTX, VOIDmode, 0); rtx op1 = expand_expr (arg1, NULL_RTX, VOIDmode, 0); enum machine_mode mode0 = insn_data[icode].operand[0].mode; enum machine_mode mode1 = insn_data[icode].operand[1].mode; if (VECTOR_MODE_P (mode1)) op1 = safe_vector_operand (op1, mode1); op0 = gen_rtx_MEM (mode0, copy_to_mode_reg (Pmode, op0)); op1 = copy_to_mode_reg (mode1, op1); pat = GEN_FCN (icode) (op0, op1); if (pat) emit_insn (pat); return 0; } /* Subroutine of ix86_expand_builtin to take care of unop insns. */ static rtx ix86_expand_unop_builtin (enum insn_code icode, tree arglist, rtx target, int do_load) { rtx pat; tree arg0 = TREE_VALUE (arglist); rtx op0 = expand_expr (arg0, NULL_RTX, VOIDmode, 0); enum machine_mode tmode = insn_data[icode].operand[0].mode; enum machine_mode mode0 = insn_data[icode].operand[1].mode; if (optimize || !target || GET_MODE (target) != tmode || ! (*insn_data[icode].operand[0].predicate) (target, tmode)) target = gen_reg_rtx (tmode); if (do_load) op0 = gen_rtx_MEM (mode0, copy_to_mode_reg (Pmode, op0)); else { if (VECTOR_MODE_P (mode0)) op0 = safe_vector_operand (op0, mode0); if ((optimize && !register_operand (op0, mode0)) || ! (*insn_data[icode].operand[1].predicate) (op0, mode0)) op0 = copy_to_mode_reg (mode0, op0); } pat = GEN_FCN (icode) (target, op0); if (! pat) return 0; emit_insn (pat); return target; } /* Subroutine of ix86_expand_builtin to take care of three special unop insns: sqrtss, rsqrtss, rcpss. */ static rtx ix86_expand_unop1_builtin (enum insn_code icode, tree arglist, rtx target) { rtx pat; tree arg0 = TREE_VALUE (arglist); rtx op1, op0 = expand_expr (arg0, NULL_RTX, VOIDmode, 0); enum machine_mode tmode = insn_data[icode].operand[0].mode; enum machine_mode mode0 = insn_data[icode].operand[1].mode; if (optimize || !target || GET_MODE (target) != tmode || ! (*insn_data[icode].operand[0].predicate) (target, tmode)) target = gen_reg_rtx (tmode); if (VECTOR_MODE_P (mode0)) op0 = safe_vector_operand (op0, mode0); if ((optimize && !register_operand (op0, mode0)) || ! (*insn_data[icode].operand[1].predicate) (op0, mode0)) op0 = copy_to_mode_reg (mode0, op0); op1 = op0; if (! (*insn_data[icode].operand[2].predicate) (op1, mode0)) op1 = copy_to_mode_reg (mode0, op1); pat = GEN_FCN (icode) (target, op0, op1); if (! pat) return 0; emit_insn (pat); return target; } /* Subroutine of ix86_expand_builtin to take care of comparison insns. */ static rtx ix86_expand_sse_compare (const struct builtin_description *d, tree arglist, rtx target) { rtx pat; tree arg0 = TREE_VALUE (arglist); tree arg1 = TREE_VALUE (TREE_CHAIN (arglist)); rtx op0 = expand_expr (arg0, NULL_RTX, VOIDmode, 0); rtx op1 = expand_expr (arg1, NULL_RTX, VOIDmode, 0); rtx op2; enum machine_mode tmode = insn_data[d->icode].operand[0].mode; enum machine_mode mode0 = insn_data[d->icode].operand[1].mode; enum machine_mode mode1 = insn_data[d->icode].operand[2].mode; enum rtx_code comparison = d->comparison; if (VECTOR_MODE_P (mode0)) op0 = safe_vector_operand (op0, mode0); if (VECTOR_MODE_P (mode1)) op1 = safe_vector_operand (op1, mode1); /* Swap operands if we have a comparison that isn't available in hardware. */ if (d->flag & BUILTIN_DESC_SWAP_OPERANDS) { rtx tmp = gen_reg_rtx (mode1); emit_move_insn (tmp, op1); op1 = op0; op0 = tmp; } if (optimize || !target || GET_MODE (target) != tmode || ! (*insn_data[d->icode].operand[0].predicate) (target, tmode)) target = gen_reg_rtx (tmode); if ((optimize && !register_operand (op0, mode0)) || ! (*insn_data[d->icode].operand[1].predicate) (op0, mode0)) op0 = copy_to_mode_reg (mode0, op0); if ((optimize && !register_operand (op1, mode1)) || ! (*insn_data[d->icode].operand[2].predicate) (op1, mode1)) op1 = copy_to_mode_reg (mode1, op1); op2 = gen_rtx_fmt_ee (comparison, mode0, op0, op1); pat = GEN_FCN (d->icode) (target, op0, op1, op2); if (! pat) return 0; emit_insn (pat); return target; } /* Subroutine of ix86_expand_builtin to take care of comi insns. */ static rtx ix86_expand_sse_comi (const struct builtin_description *d, tree arglist, rtx target) { rtx pat; tree arg0 = TREE_VALUE (arglist); tree arg1 = TREE_VALUE (TREE_CHAIN (arglist)); rtx op0 = expand_expr (arg0, NULL_RTX, VOIDmode, 0); rtx op1 = expand_expr (arg1, NULL_RTX, VOIDmode, 0); rtx op2; enum machine_mode mode0 = insn_data[d->icode].operand[0].mode; enum machine_mode mode1 = insn_data[d->icode].operand[1].mode; enum rtx_code comparison = d->comparison; if (VECTOR_MODE_P (mode0)) op0 = safe_vector_operand (op0, mode0); if (VECTOR_MODE_P (mode1)) op1 = safe_vector_operand (op1, mode1); /* Swap operands if we have a comparison that isn't available in hardware. */ if (d->flag & BUILTIN_DESC_SWAP_OPERANDS) { rtx tmp = op1; op1 = op0; op0 = tmp; } target = gen_reg_rtx (SImode); emit_move_insn (target, const0_rtx); target = gen_rtx_SUBREG (QImode, target, 0); if ((optimize && !register_operand (op0, mode0)) || !(*insn_data[d->icode].operand[0].predicate) (op0, mode0)) op0 = copy_to_mode_reg (mode0, op0); if ((optimize && !register_operand (op1, mode1)) || !(*insn_data[d->icode].operand[1].predicate) (op1, mode1)) op1 = copy_to_mode_reg (mode1, op1); op2 = gen_rtx_fmt_ee (comparison, mode0, op0, op1); pat = GEN_FCN (d->icode) (op0, op1); if (! pat) return 0; emit_insn (pat); emit_insn (gen_rtx_SET (VOIDmode, gen_rtx_STRICT_LOW_PART (VOIDmode, target), gen_rtx_fmt_ee (comparison, QImode, SET_DEST (pat), const0_rtx))); return SUBREG_REG (target); } /* Return the integer constant in ARG. Constrain it to be in the range of the subparts of VEC_TYPE; issue an error if not. */ static int get_element_number (tree vec_type, tree arg) { unsigned HOST_WIDE_INT elt, max = TYPE_VECTOR_SUBPARTS (vec_type) - 1; if (!host_integerp (arg, 1) || (elt = tree_low_cst (arg, 1), elt > max)) { error ("selector must be an integer constant in the range 0..%i", max); return 0; } return elt; } /* A subroutine of ix86_expand_builtin. These builtins are a wrapper around ix86_expand_vector_init. We DO have language-level syntax for this, in the form of (type){ init-list }. Except that since we can't place emms instructions from inside the compiler, we can't allow the use of MMX registers unless the user explicitly asks for it. So we do *not* define vec_set/vec_extract/vec_init patterns for MMX modes in mmx.md. Instead we have builtins invoked by mmintrin.h that gives us license to emit these sorts of instructions. */ static rtx ix86_expand_vec_init_builtin (tree type, tree arglist, rtx target) { enum machine_mode tmode = TYPE_MODE (type); enum machine_mode inner_mode = GET_MODE_INNER (tmode); int i, n_elt = GET_MODE_NUNITS (tmode); rtvec v = rtvec_alloc (n_elt); gcc_assert (VECTOR_MODE_P (tmode)); for (i = 0; i < n_elt; ++i, arglist = TREE_CHAIN (arglist)) { rtx x = expand_expr (TREE_VALUE (arglist), NULL_RTX, VOIDmode, 0); RTVEC_ELT (v, i) = gen_lowpart (inner_mode, x); } gcc_assert (arglist == NULL); if (!target || !register_operand (target, tmode)) target = gen_reg_rtx (tmode); ix86_expand_vector_init (true, target, gen_rtx_PARALLEL (tmode, v)); return target; } /* A subroutine of ix86_expand_builtin. These builtins are a wrapper around ix86_expand_vector_extract. They would be redundant (for non-MMX) if we had a language-level syntax for referencing vector elements. */ static rtx ix86_expand_vec_ext_builtin (tree arglist, rtx target) { enum machine_mode tmode, mode0; tree arg0, arg1; int elt; rtx op0; arg0 = TREE_VALUE (arglist); arg1 = TREE_VALUE (TREE_CHAIN (arglist)); op0 = expand_expr (arg0, NULL_RTX, VOIDmode, 0); elt = get_element_number (TREE_TYPE (arg0), arg1); tmode = TYPE_MODE (TREE_TYPE (TREE_TYPE (arg0))); mode0 = TYPE_MODE (TREE_TYPE (arg0)); gcc_assert (VECTOR_MODE_P (mode0)); op0 = force_reg (mode0, op0); if (optimize || !target || !register_operand (target, tmode)) target = gen_reg_rtx (tmode); ix86_expand_vector_extract (true, target, op0, elt); return target; } /* A subroutine of ix86_expand_builtin. These builtins are a wrapper around ix86_expand_vector_set. They would be redundant (for non-MMX) if we had a language-level syntax for referencing vector elements. */ static rtx ix86_expand_vec_set_builtin (tree arglist) { enum machine_mode tmode, mode1; tree arg0, arg1, arg2; int elt; rtx op0, op1; arg0 = TREE_VALUE (arglist); arg1 = TREE_VALUE (TREE_CHAIN (arglist)); arg2 = TREE_VALUE (TREE_CHAIN (TREE_CHAIN (arglist))); tmode = TYPE_MODE (TREE_TYPE (arg0)); mode1 = TYPE_MODE (TREE_TYPE (TREE_TYPE (arg0))); gcc_assert (VECTOR_MODE_P (tmode)); op0 = expand_expr (arg0, NULL_RTX, tmode, 0); op1 = expand_expr (arg1, NULL_RTX, mode1, 0); elt = get_element_number (TREE_TYPE (arg0), arg2); if (GET_MODE (op1) != mode1 && GET_MODE (op1) != VOIDmode) op1 = convert_modes (mode1, GET_MODE (op1), op1, true); op0 = force_reg (tmode, op0); op1 = force_reg (mode1, op1); ix86_expand_vector_set (true, op0, op1, elt); return op0; } /* Expand an expression EXP that calls a built-in function, with result going to TARGET if that's convenient (and in mode MODE if that's convenient). SUBTARGET may be used as the target for computing one of EXP's operands. IGNORE is nonzero if the value is to be ignored. */ static rtx ix86_expand_builtin (tree exp, rtx target, rtx subtarget ATTRIBUTE_UNUSED, enum machine_mode mode ATTRIBUTE_UNUSED, int ignore ATTRIBUTE_UNUSED) { const struct builtin_description *d; size_t i; enum insn_code icode; tree fndecl = TREE_OPERAND (TREE_OPERAND (exp, 0), 0); tree arglist = TREE_OPERAND (exp, 1); tree arg0, arg1, arg2; rtx op0, op1, op2, pat; enum machine_mode tmode, mode0, mode1, mode2; unsigned int fcode = DECL_FUNCTION_CODE (fndecl); switch (fcode) { case IX86_BUILTIN_EMMS: emit_insn (gen_mmx_emms ()); return 0; case IX86_BUILTIN_SFENCE: emit_insn (gen_sse_sfence ()); return 0; case IX86_BUILTIN_MASKMOVQ: case IX86_BUILTIN_MASKMOVDQU: icode = (fcode == IX86_BUILTIN_MASKMOVQ ? CODE_FOR_mmx_maskmovq : CODE_FOR_sse2_maskmovdqu); /* Note the arg order is different from the operand order. */ arg1 = TREE_VALUE (arglist); arg2 = TREE_VALUE (TREE_CHAIN (arglist)); arg0 = TREE_VALUE (TREE_CHAIN (TREE_CHAIN (arglist))); op0 = expand_expr (arg0, NULL_RTX, VOIDmode, 0); op1 = expand_expr (arg1, NULL_RTX, VOIDmode, 0); op2 = expand_expr (arg2, NULL_RTX, VOIDmode, 0); mode0 = insn_data[icode].operand[0].mode; mode1 = insn_data[icode].operand[1].mode; mode2 = insn_data[icode].operand[2].mode; op0 = force_reg (Pmode, op0); op0 = gen_rtx_MEM (mode1, op0); if (! (*insn_data[icode].operand[0].predicate) (op0, mode0)) op0 = copy_to_mode_reg (mode0, op0); if (! (*insn_data[icode].operand[1].predicate) (op1, mode1)) op1 = copy_to_mode_reg (mode1, op1); if (! (*insn_data[icode].operand[2].predicate) (op2, mode2)) op2 = copy_to_mode_reg (mode2, op2); pat = GEN_FCN (icode) (op0, op1, op2); if (! pat) return 0; emit_insn (pat); return 0; case IX86_BUILTIN_SQRTSS: return ix86_expand_unop1_builtin (CODE_FOR_sse_vmsqrtv4sf2, arglist, target); case IX86_BUILTIN_RSQRTSS: return ix86_expand_unop1_builtin (CODE_FOR_sse_vmrsqrtv4sf2, arglist, target); case IX86_BUILTIN_RCPSS: return ix86_expand_unop1_builtin (CODE_FOR_sse_vmrcpv4sf2, arglist, target); case IX86_BUILTIN_LOADUPS: return ix86_expand_unop_builtin (CODE_FOR_sse_movups, arglist, target, 1); case IX86_BUILTIN_STOREUPS: return ix86_expand_store_builtin (CODE_FOR_sse_movups, arglist); case IX86_BUILTIN_LOADHPS: case IX86_BUILTIN_LOADLPS: case IX86_BUILTIN_LOADHPD: case IX86_BUILTIN_LOADLPD: icode = (fcode == IX86_BUILTIN_LOADHPS ? CODE_FOR_sse_loadhps : fcode == IX86_BUILTIN_LOADLPS ? CODE_FOR_sse_loadlps : fcode == IX86_BUILTIN_LOADHPD ? CODE_FOR_sse2_loadhpd : CODE_FOR_sse2_loadlpd); arg0 = TREE_VALUE (arglist); arg1 = TREE_VALUE (TREE_CHAIN (arglist)); op0 = expand_expr (arg0, NULL_RTX, VOIDmode, 0); op1 = expand_expr (arg1, NULL_RTX, VOIDmode, 0); tmode = insn_data[icode].operand[0].mode; mode0 = insn_data[icode].operand[1].mode; mode1 = insn_data[icode].operand[2].mode; op0 = force_reg (mode0, op0); op1 = gen_rtx_MEM (mode1, copy_to_mode_reg (Pmode, op1)); if (optimize || target == 0 || GET_MODE (target) != tmode || !register_operand (target, tmode)) target = gen_reg_rtx (tmode); pat = GEN_FCN (icode) (target, op0, op1); if (! pat) return 0; emit_insn (pat); return target; case IX86_BUILTIN_STOREHPS: case IX86_BUILTIN_STORELPS: icode = (fcode == IX86_BUILTIN_STOREHPS ? CODE_FOR_sse_storehps : CODE_FOR_sse_storelps); arg0 = TREE_VALUE (arglist); arg1 = TREE_VALUE (TREE_CHAIN (arglist)); op0 = expand_expr (arg0, NULL_RTX, VOIDmode, 0); op1 = expand_expr (arg1, NULL_RTX, VOIDmode, 0); mode0 = insn_data[icode].operand[0].mode; mode1 = insn_data[icode].operand[1].mode; op0 = gen_rtx_MEM (mode0, copy_to_mode_reg (Pmode, op0)); op1 = force_reg (mode1, op1); pat = GEN_FCN (icode) (op0, op1); if (! pat) return 0; emit_insn (pat); return const0_rtx; case IX86_BUILTIN_MOVNTPS: return ix86_expand_store_builtin (CODE_FOR_sse_movntv4sf, arglist); case IX86_BUILTIN_MOVNTQ: return ix86_expand_store_builtin (CODE_FOR_sse_movntdi, arglist); case IX86_BUILTIN_LDMXCSR: op0 = expand_expr (TREE_VALUE (arglist), NULL_RTX, VOIDmode, 0); target = assign_386_stack_local (SImode, 0); emit_move_insn (target, op0); emit_insn (gen_sse_ldmxcsr (target)); return 0; case IX86_BUILTIN_STMXCSR: target = assign_386_stack_local (SImode, 0); emit_insn (gen_sse_stmxcsr (target)); return copy_to_mode_reg (SImode, target); case IX86_BUILTIN_SHUFPS: case IX86_BUILTIN_SHUFPD: icode = (fcode == IX86_BUILTIN_SHUFPS ? CODE_FOR_sse_shufps : CODE_FOR_sse2_shufpd); arg0 = TREE_VALUE (arglist); arg1 = TREE_VALUE (TREE_CHAIN (arglist)); arg2 = TREE_VALUE (TREE_CHAIN (TREE_CHAIN (arglist))); op0 = expand_expr (arg0, NULL_RTX, VOIDmode, 0); op1 = expand_expr (arg1, NULL_RTX, VOIDmode, 0); op2 = expand_expr (arg2, NULL_RTX, VOIDmode, 0); tmode = insn_data[icode].operand[0].mode; mode0 = insn_data[icode].operand[1].mode; mode1 = insn_data[icode].operand[2].mode; mode2 = insn_data[icode].operand[3].mode; if (! (*insn_data[icode].operand[1].predicate) (op0, mode0)) op0 = copy_to_mode_reg (mode0, op0); if ((optimize && !register_operand (op1, mode1)) || !(*insn_data[icode].operand[2].predicate) (op1, mode1)) op1 = copy_to_mode_reg (mode1, op1); if (! (*insn_data[icode].operand[3].predicate) (op2, mode2)) { /* @@@ better error message */ error ("mask must be an immediate"); return gen_reg_rtx (tmode); } if (optimize || target == 0 || GET_MODE (target) != tmode || ! (*insn_data[icode].operand[0].predicate) (target, tmode)) target = gen_reg_rtx (tmode); pat = GEN_FCN (icode) (target, op0, op1, op2); if (! pat) return 0; emit_insn (pat); return target; case IX86_BUILTIN_PSHUFW: case IX86_BUILTIN_PSHUFD: case IX86_BUILTIN_PSHUFHW: case IX86_BUILTIN_PSHUFLW: icode = ( fcode == IX86_BUILTIN_PSHUFHW ? CODE_FOR_sse2_pshufhw : fcode == IX86_BUILTIN_PSHUFLW ? CODE_FOR_sse2_pshuflw : fcode == IX86_BUILTIN_PSHUFD ? CODE_FOR_sse2_pshufd : CODE_FOR_mmx_pshufw); arg0 = TREE_VALUE (arglist); arg1 = TREE_VALUE (TREE_CHAIN (arglist)); op0 = expand_expr (arg0, NULL_RTX, VOIDmode, 0); op1 = expand_expr (arg1, NULL_RTX, VOIDmode, 0); tmode = insn_data[icode].operand[0].mode; mode1 = insn_data[icode].operand[1].mode; mode2 = insn_data[icode].operand[2].mode; if (! (*insn_data[icode].operand[1].predicate) (op0, mode1)) op0 = copy_to_mode_reg (mode1, op0); if (! (*insn_data[icode].operand[2].predicate) (op1, mode2)) { /* @@@ better error message */ error ("mask must be an immediate"); return const0_rtx; } if (target == 0 || GET_MODE (target) != tmode || ! (*insn_data[icode].operand[0].predicate) (target, tmode)) target = gen_reg_rtx (tmode); pat = GEN_FCN (icode) (target, op0, op1); if (! pat) return 0; emit_insn (pat); return target; case IX86_BUILTIN_PSLLDQI128: case IX86_BUILTIN_PSRLDQI128: icode = ( fcode == IX86_BUILTIN_PSLLDQI128 ? CODE_FOR_sse2_ashlti3 : CODE_FOR_sse2_lshrti3); arg0 = TREE_VALUE (arglist); arg1 = TREE_VALUE (TREE_CHAIN (arglist)); op0 = expand_expr (arg0, NULL_RTX, VOIDmode, 0); op1 = expand_expr (arg1, NULL_RTX, VOIDmode, 0); tmode = insn_data[icode].operand[0].mode; mode1 = insn_data[icode].operand[1].mode; mode2 = insn_data[icode].operand[2].mode; if (! (*insn_data[icode].operand[1].predicate) (op0, mode1)) { op0 = copy_to_reg (op0); op0 = simplify_gen_subreg (mode1, op0, GET_MODE (op0), 0); } if (! (*insn_data[icode].operand[2].predicate) (op1, mode2)) { error ("shift must be an immediate"); return const0_rtx; } target = gen_reg_rtx (V2DImode); pat = GEN_FCN (icode) (simplify_gen_subreg (tmode, target, V2DImode, 0), op0, op1); if (! pat) return 0; emit_insn (pat); return target; case IX86_BUILTIN_FEMMS: emit_insn (gen_mmx_femms ()); return NULL_RTX; case IX86_BUILTIN_PAVGUSB: return ix86_expand_binop_builtin (CODE_FOR_mmx_uavgv8qi3, arglist, target); case IX86_BUILTIN_PF2ID: return ix86_expand_unop_builtin (CODE_FOR_mmx_pf2id, arglist, target, 0); case IX86_BUILTIN_PFACC: return ix86_expand_binop_builtin (CODE_FOR_mmx_haddv2sf3, arglist, target); case IX86_BUILTIN_PFADD: return ix86_expand_binop_builtin (CODE_FOR_mmx_addv2sf3, arglist, target); case IX86_BUILTIN_PFCMPEQ: return ix86_expand_binop_builtin (CODE_FOR_mmx_eqv2sf3, arglist, target); case IX86_BUILTIN_PFCMPGE: return ix86_expand_binop_builtin (CODE_FOR_mmx_gev2sf3, arglist, target); case IX86_BUILTIN_PFCMPGT: return ix86_expand_binop_builtin (CODE_FOR_mmx_gtv2sf3, arglist, target); case IX86_BUILTIN_PFMAX: return ix86_expand_binop_builtin (CODE_FOR_mmx_smaxv2sf3, arglist, target); case IX86_BUILTIN_PFMIN: return ix86_expand_binop_builtin (CODE_FOR_mmx_sminv2sf3, arglist, target); case IX86_BUILTIN_PFMUL: return ix86_expand_binop_builtin (CODE_FOR_mmx_mulv2sf3, arglist, target); case IX86_BUILTIN_PFRCP: return ix86_expand_unop_builtin (CODE_FOR_mmx_rcpv2sf2, arglist, target, 0); case IX86_BUILTIN_PFRCPIT1: return ix86_expand_binop_builtin (CODE_FOR_mmx_rcpit1v2sf3, arglist, target); case IX86_BUILTIN_PFRCPIT2: return ix86_expand_binop_builtin (CODE_FOR_mmx_rcpit2v2sf3, arglist, target); case IX86_BUILTIN_PFRSQIT1: return ix86_expand_binop_builtin (CODE_FOR_mmx_rsqit1v2sf3, arglist, target); case IX86_BUILTIN_PFRSQRT: return ix86_expand_unop_builtin (CODE_FOR_mmx_rsqrtv2sf2, arglist, target, 0); case IX86_BUILTIN_PFSUB: return ix86_expand_binop_builtin (CODE_FOR_mmx_subv2sf3, arglist, target); case IX86_BUILTIN_PFSUBR: return ix86_expand_binop_builtin (CODE_FOR_mmx_subrv2sf3, arglist, target); case IX86_BUILTIN_PI2FD: return ix86_expand_unop_builtin (CODE_FOR_mmx_floatv2si2, arglist, target, 0); case IX86_BUILTIN_PMULHRW: return ix86_expand_binop_builtin (CODE_FOR_mmx_pmulhrwv4hi3, arglist, target); case IX86_BUILTIN_PF2IW: return ix86_expand_unop_builtin (CODE_FOR_mmx_pf2iw, arglist, target, 0); case IX86_BUILTIN_PFNACC: return ix86_expand_binop_builtin (CODE_FOR_mmx_hsubv2sf3, arglist, target); case IX86_BUILTIN_PFPNACC: return ix86_expand_binop_builtin (CODE_FOR_mmx_addsubv2sf3, arglist, target); case IX86_BUILTIN_PI2FW: return ix86_expand_unop_builtin (CODE_FOR_mmx_pi2fw, arglist, target, 0); case IX86_BUILTIN_PSWAPDSI: return ix86_expand_unop_builtin (CODE_FOR_mmx_pswapdv2si2, arglist, target, 0); case IX86_BUILTIN_PSWAPDSF: return ix86_expand_unop_builtin (CODE_FOR_mmx_pswapdv2sf2, arglist, target, 0); case IX86_BUILTIN_SQRTSD: return ix86_expand_unop1_builtin (CODE_FOR_sse2_vmsqrtv2df2, arglist, target); case IX86_BUILTIN_LOADUPD: return ix86_expand_unop_builtin (CODE_FOR_sse2_movupd, arglist, target, 1); case IX86_BUILTIN_STOREUPD: return ix86_expand_store_builtin (CODE_FOR_sse2_movupd, arglist); case IX86_BUILTIN_MFENCE: emit_insn (gen_sse2_mfence ()); return 0; case IX86_BUILTIN_LFENCE: emit_insn (gen_sse2_lfence ()); return 0; case IX86_BUILTIN_CLFLUSH: arg0 = TREE_VALUE (arglist); op0 = expand_expr (arg0, NULL_RTX, VOIDmode, 0); icode = CODE_FOR_sse2_clflush; if (! (*insn_data[icode].operand[0].predicate) (op0, Pmode)) op0 = copy_to_mode_reg (Pmode, op0); emit_insn (gen_sse2_clflush (op0)); return 0; case IX86_BUILTIN_MOVNTPD: return ix86_expand_store_builtin (CODE_FOR_sse2_movntv2df, arglist); case IX86_BUILTIN_MOVNTDQ: return ix86_expand_store_builtin (CODE_FOR_sse2_movntv2di, arglist); case IX86_BUILTIN_MOVNTI: return ix86_expand_store_builtin (CODE_FOR_sse2_movntsi, arglist); case IX86_BUILTIN_LOADDQU: return ix86_expand_unop_builtin (CODE_FOR_sse2_movdqu, arglist, target, 1); case IX86_BUILTIN_STOREDQU: return ix86_expand_store_builtin (CODE_FOR_sse2_movdqu, arglist); case IX86_BUILTIN_MONITOR: arg0 = TREE_VALUE (arglist); arg1 = TREE_VALUE (TREE_CHAIN (arglist)); arg2 = TREE_VALUE (TREE_CHAIN (TREE_CHAIN (arglist))); op0 = expand_expr (arg0, NULL_RTX, VOIDmode, 0); op1 = expand_expr (arg1, NULL_RTX, VOIDmode, 0); op2 = expand_expr (arg2, NULL_RTX, VOIDmode, 0); if (!REG_P (op0)) op0 = copy_to_mode_reg (SImode, op0); if (!REG_P (op1)) op1 = copy_to_mode_reg (SImode, op1); if (!REG_P (op2)) op2 = copy_to_mode_reg (SImode, op2); emit_insn (gen_sse3_monitor (op0, op1, op2)); return 0; case IX86_BUILTIN_MWAIT: arg0 = TREE_VALUE (arglist); arg1 = TREE_VALUE (TREE_CHAIN (arglist)); op0 = expand_expr (arg0, NULL_RTX, VOIDmode, 0); op1 = expand_expr (arg1, NULL_RTX, VOIDmode, 0); if (!REG_P (op0)) op0 = copy_to_mode_reg (SImode, op0); if (!REG_P (op1)) op1 = copy_to_mode_reg (SImode, op1); emit_insn (gen_sse3_mwait (op0, op1)); return 0; case IX86_BUILTIN_LDDQU: return ix86_expand_unop_builtin (CODE_FOR_sse3_lddqu, arglist, target, 1); case IX86_BUILTIN_VEC_INIT_V2SI: case IX86_BUILTIN_VEC_INIT_V4HI: case IX86_BUILTIN_VEC_INIT_V8QI: return ix86_expand_vec_init_builtin (TREE_TYPE (exp), arglist, target); case IX86_BUILTIN_VEC_EXT_V2DF: case IX86_BUILTIN_VEC_EXT_V2DI: case IX86_BUILTIN_VEC_EXT_V4SF: case IX86_BUILTIN_VEC_EXT_V4SI: case IX86_BUILTIN_VEC_EXT_V8HI: case IX86_BUILTIN_VEC_EXT_V2SI: case IX86_BUILTIN_VEC_EXT_V4HI: return ix86_expand_vec_ext_builtin (arglist, target); case IX86_BUILTIN_VEC_SET_V8HI: case IX86_BUILTIN_VEC_SET_V4HI: return ix86_expand_vec_set_builtin (arglist); default: break; } for (i = 0, d = bdesc_2arg; i < ARRAY_SIZE (bdesc_2arg); i++, d++) if (d->code == fcode) { /* Compares are treated specially. */ if (d->icode == CODE_FOR_sse_maskcmpv4sf3 || d->icode == CODE_FOR_sse_vmmaskcmpv4sf3 || d->icode == CODE_FOR_sse2_maskcmpv2df3 || d->icode == CODE_FOR_sse2_vmmaskcmpv2df3) return ix86_expand_sse_compare (d, arglist, target); return ix86_expand_binop_builtin (d->icode, arglist, target); } for (i = 0, d = bdesc_1arg; i < ARRAY_SIZE (bdesc_1arg); i++, d++) if (d->code == fcode) return ix86_expand_unop_builtin (d->icode, arglist, target, 0); for (i = 0, d = bdesc_comi; i < ARRAY_SIZE (bdesc_comi); i++, d++) if (d->code == fcode) return ix86_expand_sse_comi (d, arglist, target); gcc_unreachable (); } /* Store OPERAND to the memory after reload is completed. This means that we can't easily use assign_stack_local. */ rtx ix86_force_to_memory (enum machine_mode mode, rtx operand) { rtx result; if (!reload_completed) abort (); if (TARGET_RED_ZONE) { result = gen_rtx_MEM (mode, gen_rtx_PLUS (Pmode, stack_pointer_rtx, GEN_INT (-RED_ZONE_SIZE))); emit_move_insn (result, operand); } else if (!TARGET_RED_ZONE && TARGET_64BIT) { switch (mode) { case HImode: case SImode: operand = gen_lowpart (DImode, operand); /* FALLTHRU */ case DImode: emit_insn ( gen_rtx_SET (VOIDmode, gen_rtx_MEM (DImode, gen_rtx_PRE_DEC (DImode, stack_pointer_rtx)), operand)); break; default: abort (); } result = gen_rtx_MEM (mode, stack_pointer_rtx); } else { switch (mode) { case DImode: { rtx operands[2]; split_di (&operand, 1, operands, operands + 1); emit_insn ( gen_rtx_SET (VOIDmode, gen_rtx_MEM (SImode, gen_rtx_PRE_DEC (Pmode, stack_pointer_rtx)), operands[1])); emit_insn ( gen_rtx_SET (VOIDmode, gen_rtx_MEM (SImode, gen_rtx_PRE_DEC (Pmode, stack_pointer_rtx)), operands[0])); } break; case HImode: /* It is better to store HImodes as SImodes. */ if (!TARGET_PARTIAL_REG_STALL) operand = gen_lowpart (SImode, operand); /* FALLTHRU */ case SImode: emit_insn ( gen_rtx_SET (VOIDmode, gen_rtx_MEM (GET_MODE (operand), gen_rtx_PRE_DEC (SImode, stack_pointer_rtx)), operand)); break; default: abort (); } result = gen_rtx_MEM (mode, stack_pointer_rtx); } return result; } /* Free operand from the memory. */ void ix86_free_from_memory (enum machine_mode mode) { if (!TARGET_RED_ZONE) { int size; if (mode == DImode || TARGET_64BIT) size = 8; else if (mode == HImode && TARGET_PARTIAL_REG_STALL) size = 2; else size = 4; /* Use LEA to deallocate stack space. In peephole2 it will be converted to pop or add instruction if registers are available. */ emit_insn (gen_rtx_SET (VOIDmode, stack_pointer_rtx, gen_rtx_PLUS (Pmode, stack_pointer_rtx, GEN_INT (size)))); } } /* Put float CONST_DOUBLE in the constant pool instead of fp regs. QImode must go into class Q_REGS. Narrow ALL_REGS to GENERAL_REGS. This supports allowing movsf and movdf to do mem-to-mem moves through integer regs. */ enum reg_class ix86_preferred_reload_class (rtx x, enum reg_class class) { /* We're only allowed to return a subclass of CLASS. Many of the following checks fail for NO_REGS, so eliminate that early. */ if (class == NO_REGS) return NO_REGS; /* All classes can load zeros. */ if (x == CONST0_RTX (GET_MODE (x))) return class; /* Floating-point constants need more complex checks. */ if (GET_CODE (x) == CONST_DOUBLE && GET_MODE (x) != VOIDmode) { /* General regs can load everything. */ if (reg_class_subset_p (class, GENERAL_REGS)) return class; /* Floats can load 0 and 1 plus some others. Note that we eliminated zero above. We only want to wind up preferring 80387 registers if we plan on doing computation with them. */ if (TARGET_80387 && (TARGET_MIX_SSE_I387 || !(TARGET_SSE_MATH && SSE_FLOAT_MODE_P (GET_MODE (x)))) && standard_80387_constant_p (x)) { /* Limit class to non-sse. */ if (class == FLOAT_SSE_REGS) return FLOAT_REGS; if (class == FP_TOP_SSE_REGS) return FP_TOP_REG; if (class == FP_SECOND_SSE_REGS) return FP_SECOND_REG; if (class == FLOAT_INT_REGS || class == FLOAT_REGS) return class; } return NO_REGS; } if (MAYBE_MMX_CLASS_P (class) && CONSTANT_P (x)) return NO_REGS; if (MAYBE_SSE_CLASS_P (class) && CONSTANT_P (x)) return NO_REGS; /* Generally when we see PLUS here, it's the function invariant (plus soft-fp const_int). Which can only be computed into general regs. */ if (GET_CODE (x) == PLUS) return reg_class_subset_p (class, GENERAL_REGS) ? class : NO_REGS; /* QImode constants are easy to load, but non-constant QImode data must go into Q_REGS. */ if (GET_MODE (x) == QImode && !CONSTANT_P (x)) { if (reg_class_subset_p (class, Q_REGS)) return class; if (reg_class_subset_p (Q_REGS, class)) return Q_REGS; return NO_REGS; } return class; } /* If we are copying between general and FP registers, we need a memory location. The same is true for SSE and MMX registers. The macro can't work reliably when one of the CLASSES is class containing registers from multiple units (SSE, MMX, integer). We avoid this by never combining those units in single alternative in the machine description. Ensure that this constraint holds to avoid unexpected surprises. When STRICT is false, we are being called from REGISTER_MOVE_COST, so do not enforce these sanity checks. */ int ix86_secondary_memory_needed (enum reg_class class1, enum reg_class class2, enum machine_mode mode, int strict) { if (MAYBE_FLOAT_CLASS_P (class1) != FLOAT_CLASS_P (class1) || MAYBE_FLOAT_CLASS_P (class2) != FLOAT_CLASS_P (class2) || MAYBE_SSE_CLASS_P (class1) != SSE_CLASS_P (class1) || MAYBE_SSE_CLASS_P (class2) != SSE_CLASS_P (class2) || MAYBE_MMX_CLASS_P (class1) != MMX_CLASS_P (class1) || MAYBE_MMX_CLASS_P (class2) != MMX_CLASS_P (class2)) { if (strict) abort (); return true; } if (FLOAT_CLASS_P (class1) != FLOAT_CLASS_P (class2)) return true; /* ??? This is a lie. We do have moves between mmx/general, and for mmx/sse2. But by saying we need secondary memory we discourage the register allocator from using the mmx registers unless needed. */ if (MMX_CLASS_P (class1) != MMX_CLASS_P (class2)) return true; if (SSE_CLASS_P (class1) != SSE_CLASS_P (class2)) { /* SSE1 doesn't have any direct moves from other classes. */ if (!TARGET_SSE2) return true; /* If the target says that inter-unit moves are more expensive than moving through memory, then don't generate them. */ if (!TARGET_INTER_UNIT_MOVES && !optimize_size) return true; /* Between SSE and general, we have moves no larger than word size. */ if (GET_MODE_SIZE (mode) > UNITS_PER_WORD) return true; /* ??? For the cost of one register reformat penalty, we could use the same instructions to move SFmode and DFmode data, but the relevant move patterns don't support those alternatives. */ if (mode == SFmode || mode == DFmode) return true; } return false; } /* Return true if the registers in CLASS cannot represent the change from modes FROM to TO. */ bool ix86_cannot_change_mode_class (enum machine_mode from, enum machine_mode to, enum reg_class class) { if (from == to) return false; /* x87 registers can't do subreg at all, as all values are reformated to extended precision. */ if (MAYBE_FLOAT_CLASS_P (class)) return true; if (MAYBE_SSE_CLASS_P (class) || MAYBE_MMX_CLASS_P (class)) { /* Vector registers do not support QI or HImode loads. If we don't disallow a change to these modes, reload will assume it's ok to drop the subreg from (subreg:SI (reg:HI 100) 0). This affects the vec_dupv4hi pattern. */ if (GET_MODE_SIZE (from) < 4) return true; /* Vector registers do not support subreg with nonzero offsets, which are otherwise valid for integer registers. Since we can't see whether we have a nonzero offset from here, prohibit all nonparadoxical subregs changing size. */ if (GET_MODE_SIZE (to) < GET_MODE_SIZE (from)) return true; } return false; } /* Return the cost of moving data from a register in class CLASS1 to one in class CLASS2. It is not required that the cost always equal 2 when FROM is the same as TO; on some machines it is expensive to move between registers if they are not general registers. */ int ix86_register_move_cost (enum machine_mode mode, enum reg_class class1, enum reg_class class2) { /* In case we require secondary memory, compute cost of the store followed by load. In order to avoid bad register allocation choices, we need for this to be *at least* as high as the symmetric MEMORY_MOVE_COST. */ if (ix86_secondary_memory_needed (class1, class2, mode, 0)) { int cost = 1; cost += MAX (MEMORY_MOVE_COST (mode, class1, 0), MEMORY_MOVE_COST (mode, class1, 1)); cost += MAX (MEMORY_MOVE_COST (mode, class2, 0), MEMORY_MOVE_COST (mode, class2, 1)); /* In case of copying from general_purpose_register we may emit multiple stores followed by single load causing memory size mismatch stall. Count this as arbitrarily high cost of 20. */ if (CLASS_MAX_NREGS (class1, mode) > CLASS_MAX_NREGS (class2, mode)) cost += 20; /* In the case of FP/MMX moves, the registers actually overlap, and we have to switch modes in order to treat them differently. */ if ((MMX_CLASS_P (class1) && MAYBE_FLOAT_CLASS_P (class2)) || (MMX_CLASS_P (class2) && MAYBE_FLOAT_CLASS_P (class1))) cost += 20; return cost; } /* Moves between SSE/MMX and integer unit are expensive. */ if (MMX_CLASS_P (class1) != MMX_CLASS_P (class2) || SSE_CLASS_P (class1) != SSE_CLASS_P (class2)) return ix86_cost->mmxsse_to_integer; if (MAYBE_FLOAT_CLASS_P (class1)) return ix86_cost->fp_move; if (MAYBE_SSE_CLASS_P (class1)) return ix86_cost->sse_move; if (MAYBE_MMX_CLASS_P (class1)) return ix86_cost->mmx_move; return 2; } /* Return 1 if hard register REGNO can hold a value of machine-mode MODE. */ bool ix86_hard_regno_mode_ok (int regno, enum machine_mode mode) { /* Flags and only flags can only hold CCmode values. */ if (CC_REGNO_P (regno)) return GET_MODE_CLASS (mode) == MODE_CC; if (GET_MODE_CLASS (mode) == MODE_CC || GET_MODE_CLASS (mode) == MODE_RANDOM || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT) return 0; if (FP_REGNO_P (regno)) return VALID_FP_MODE_P (mode); if (SSE_REGNO_P (regno)) { /* We implement the move patterns for all vector modes into and out of SSE registers, even when no operation instructions are available. */ return (VALID_SSE_REG_MODE (mode) || VALID_SSE2_REG_MODE (mode) || VALID_MMX_REG_MODE (mode) || VALID_MMX_REG_MODE_3DNOW (mode)); } if (MMX_REGNO_P (regno)) { /* We implement the move patterns for 3DNOW modes even in MMX mode, so if the register is available at all, then we can move data of the given mode into or out of it. */ return (VALID_MMX_REG_MODE (mode) || VALID_MMX_REG_MODE_3DNOW (mode)); } if (mode == QImode) { /* Take care for QImode values - they can be in non-QI regs, but then they do cause partial register stalls. */ if (regno < 4 || TARGET_64BIT) return 1; if (!TARGET_PARTIAL_REG_STALL) return 1; return reload_in_progress || reload_completed; } /* We handle both integer and floats in the general purpose registers. */ else if (VALID_INT_MODE_P (mode)) return 1; else if (VALID_FP_MODE_P (mode)) return 1; /* Lots of MMX code casts 8 byte vector modes to DImode. If we then go on to use that value in smaller contexts, this can easily force a pseudo to be allocated to GENERAL_REGS. Since this is no worse than supporting DImode, allow it. */ else if (VALID_MMX_REG_MODE_3DNOW (mode) || VALID_MMX_REG_MODE (mode)) return 1; return 0; } /* A subroutine of ix86_modes_tieable_p. Return true if MODE is a tieable integer mode. */ static bool ix86_tieable_integer_mode_p (enum machine_mode mode) { switch (mode) { case HImode: case SImode: return true; case QImode: return TARGET_64BIT || !TARGET_PARTIAL_REG_STALL; case DImode: return TARGET_64BIT; default: return false; } } /* Return true if MODE1 is accessible in a register that can hold MODE2 without copying. That is, all register classes that can hold MODE2 can also hold MODE1. */ bool ix86_modes_tieable_p (enum machine_mode mode1, enum machine_mode mode2) { if (mode1 == mode2) return true; if (ix86_tieable_integer_mode_p (mode1) && ix86_tieable_integer_mode_p (mode2)) return true; /* MODE2 being XFmode implies fp stack or general regs, which means we can tie any smaller floating point modes to it. Note that we do not tie this with TFmode. */ if (mode2 == XFmode) return mode1 == SFmode || mode1 == DFmode; /* MODE2 being DFmode implies fp stack, general or sse regs, which means that we can tie it with SFmode. */ if (mode2 == DFmode) return mode1 == SFmode; /* If MODE2 is only appropriate for an SSE register, then tie with any other mode acceptable to SSE registers. */ if (GET_MODE_SIZE (mode2) >= 8 && ix86_hard_regno_mode_ok (FIRST_SSE_REG, mode2)) return ix86_hard_regno_mode_ok (FIRST_SSE_REG, mode1); /* If MODE2 is appropriate for an MMX (or SSE) register, then tie with any other mode acceptable to MMX registers. */ if (GET_MODE_SIZE (mode2) == 8 && ix86_hard_regno_mode_ok (FIRST_MMX_REG, mode2)) return ix86_hard_regno_mode_ok (FIRST_MMX_REG, mode1); return false; } /* Return the cost of moving data of mode M between a register and memory. A value of 2 is the default; this cost is relative to those in `REGISTER_MOVE_COST'. If moving between registers and memory is more expensive than between two registers, you should define this macro to express the relative cost. Model also increased moving costs of QImode registers in non Q_REGS classes. */ int ix86_memory_move_cost (enum machine_mode mode, enum reg_class class, int in) { if (FLOAT_CLASS_P (class)) { int index; switch (mode) { case SFmode: index = 0; break; case DFmode: index = 1; break; case XFmode: index = 2; break; default: return 100; } return in ? ix86_cost->fp_load [index] : ix86_cost->fp_store [index]; } if (SSE_CLASS_P (class)) { int index; switch (GET_MODE_SIZE (mode)) { case 4: index = 0; break; case 8: index = 1; break; case 16: index = 2; break; default: return 100; } return in ? ix86_cost->sse_load [index] : ix86_cost->sse_store [index]; } if (MMX_CLASS_P (class)) { int index; switch (GET_MODE_SIZE (mode)) { case 4: index = 0; break; case 8: index = 1; break; default: return 100; } return in ? ix86_cost->mmx_load [index] : ix86_cost->mmx_store [index]; } switch (GET_MODE_SIZE (mode)) { case 1: if (in) return (Q_CLASS_P (class) ? ix86_cost->int_load[0] : ix86_cost->movzbl_load); else return (Q_CLASS_P (class) ? ix86_cost->int_store[0] : ix86_cost->int_store[0] + 4); break; case 2: return in ? ix86_cost->int_load[1] : ix86_cost->int_store[1]; default: /* Compute number of 32bit moves needed. TFmode is moved as XFmode. */ if (mode == TFmode) mode = XFmode; return ((in ? ix86_cost->int_load[2] : ix86_cost->int_store[2]) * (((int) GET_MODE_SIZE (mode) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)); } } /* Compute a (partial) cost for rtx X. Return true if the complete cost has been computed, and false if subexpressions should be scanned. In either case, *TOTAL contains the cost result. */ static bool ix86_rtx_costs (rtx x, int code, int outer_code, int *total) { enum machine_mode mode = GET_MODE (x); switch (code) { case CONST_INT: case CONST: case LABEL_REF: case SYMBOL_REF: if (TARGET_64BIT && !x86_64_immediate_operand (x, VOIDmode)) *total = 3; else if (TARGET_64BIT && !x86_64_zext_immediate_operand (x, VOIDmode)) *total = 2; else if (flag_pic && SYMBOLIC_CONST (x) && (!TARGET_64BIT || (!GET_CODE (x) != LABEL_REF && (GET_CODE (x) != SYMBOL_REF || !SYMBOL_REF_LOCAL_P (x))))) *total = 1; else *total = 0; return true; case CONST_DOUBLE: if (mode == VOIDmode) *total = 0; else switch (standard_80387_constant_p (x)) { case 1: /* 0.0 */ *total = 1; break; default: /* Other constants */ *total = 2; break; case 0: case -1: /* Start with (MEM (SYMBOL_REF)), since that's where it'll probably end up. Add a penalty for size. */ *total = (COSTS_N_INSNS (1) + (flag_pic != 0 && !TARGET_64BIT) + (mode == SFmode ? 0 : mode == DFmode ? 1 : 2)); break; } return true; case ZERO_EXTEND: /* The zero extensions is often completely free on x86_64, so make it as cheap as possible. */ if (TARGET_64BIT && mode == DImode && GET_MODE (XEXP (x, 0)) == SImode) *total = 1; else if (TARGET_ZERO_EXTEND_WITH_AND) *total = COSTS_N_INSNS (ix86_cost->add); else *total = COSTS_N_INSNS (ix86_cost->movzx); return false; case SIGN_EXTEND: *total = COSTS_N_INSNS (ix86_cost->movsx); return false; case ASHIFT: if (GET_CODE (XEXP (x, 1)) == CONST_INT && (GET_MODE (XEXP (x, 0)) != DImode || TARGET_64BIT)) { HOST_WIDE_INT value = INTVAL (XEXP (x, 1)); if (value == 1) { *total = COSTS_N_INSNS (ix86_cost->add); return false; } if ((value == 2 || value == 3) && ix86_cost->lea <= ix86_cost->shift_const) { *total = COSTS_N_INSNS (ix86_cost->lea); return false; } } /* FALLTHRU */ case ROTATE: case ASHIFTRT: case LSHIFTRT: case ROTATERT: if (!TARGET_64BIT && GET_MODE (XEXP (x, 0)) == DImode) { if (GET_CODE (XEXP (x, 1)) == CONST_INT) { if (INTVAL (XEXP (x, 1)) > 32) *total = COSTS_N_INSNS(ix86_cost->shift_const + 2); else *total = COSTS_N_INSNS(ix86_cost->shift_const * 2); } else { if (GET_CODE (XEXP (x, 1)) == AND) *total = COSTS_N_INSNS(ix86_cost->shift_var * 2); else *total = COSTS_N_INSNS(ix86_cost->shift_var * 6 + 2); } } else { if (GET_CODE (XEXP (x, 1)) == CONST_INT) *total = COSTS_N_INSNS (ix86_cost->shift_const); else *total = COSTS_N_INSNS (ix86_cost->shift_var); } return false; case MULT: if (FLOAT_MODE_P (mode)) { *total = COSTS_N_INSNS (ix86_cost->fmul); return false; } else { rtx op0 = XEXP (x, 0); rtx op1 = XEXP (x, 1); int nbits; if (GET_CODE (XEXP (x, 1)) == CONST_INT) { unsigned HOST_WIDE_INT value = INTVAL (XEXP (x, 1)); for (nbits = 0; value != 0; value &= value - 1) nbits++; } else /* This is arbitrary. */ nbits = 7; /* Compute costs correctly for widening multiplication. */ if ((GET_CODE (op0) == SIGN_EXTEND || GET_CODE (op1) == ZERO_EXTEND) && GET_MODE_SIZE (GET_MODE (XEXP (op0, 0))) * 2 == GET_MODE_SIZE (mode)) { int is_mulwiden = 0; enum machine_mode inner_mode = GET_MODE (op0); if (GET_CODE (op0) == GET_CODE (op1)) is_mulwiden = 1, op1 = XEXP (op1, 0); else if (GET_CODE (op1) == CONST_INT) { if (GET_CODE (op0) == SIGN_EXTEND) is_mulwiden = trunc_int_for_mode (INTVAL (op1), inner_mode) == INTVAL (op1); else is_mulwiden = !(INTVAL (op1) & ~GET_MODE_MASK (inner_mode)); } if (is_mulwiden) op0 = XEXP (op0, 0), mode = GET_MODE (op0); } *total = COSTS_N_INSNS (ix86_cost->mult_init[MODE_INDEX (mode)] + nbits * ix86_cost->mult_bit) + rtx_cost (op0, outer_code) + rtx_cost (op1, outer_code); return true; } case DIV: case UDIV: case MOD: case UMOD: if (FLOAT_MODE_P (mode)) *total = COSTS_N_INSNS (ix86_cost->fdiv); else *total = COSTS_N_INSNS (ix86_cost->divide[MODE_INDEX (mode)]); return false; case PLUS: if (FLOAT_MODE_P (mode)) *total = COSTS_N_INSNS (ix86_cost->fadd); else if (GET_MODE_CLASS (mode) == MODE_INT && GET_MODE_BITSIZE (mode) <= GET_MODE_BITSIZE (Pmode)) { if (GET_CODE (XEXP (x, 0)) == PLUS && GET_CODE (XEXP (XEXP (x, 0), 0)) == MULT && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == CONST_INT && CONSTANT_P (XEXP (x, 1))) { HOST_WIDE_INT val = INTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1)); if (val == 2 || val == 4 || val == 8) { *total = COSTS_N_INSNS (ix86_cost->lea); *total += rtx_cost (XEXP (XEXP (x, 0), 1), outer_code); *total += rtx_cost (XEXP (XEXP (XEXP (x, 0), 0), 0), outer_code); *total += rtx_cost (XEXP (x, 1), outer_code); return true; } } else if (GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT) { HOST_WIDE_INT val = INTVAL (XEXP (XEXP (x, 0), 1)); if (val == 2 || val == 4 || val == 8) { *total = COSTS_N_INSNS (ix86_cost->lea); *total += rtx_cost (XEXP (XEXP (x, 0), 0), outer_code); *total += rtx_cost (XEXP (x, 1), outer_code); return true; } } else if (GET_CODE (XEXP (x, 0)) == PLUS) { *total = COSTS_N_INSNS (ix86_cost->lea); *total += rtx_cost (XEXP (XEXP (x, 0), 0), outer_code); *total += rtx_cost (XEXP (XEXP (x, 0), 1), outer_code); *total += rtx_cost (XEXP (x, 1), outer_code); return true; } } /* FALLTHRU */ case MINUS: if (FLOAT_MODE_P (mode)) { *total = COSTS_N_INSNS (ix86_cost->fadd); return false; } /* FALLTHRU */ case AND: case IOR: case XOR: if (!TARGET_64BIT && mode == DImode) { *total = (COSTS_N_INSNS (ix86_cost->add) * 2 + (rtx_cost (XEXP (x, 0), outer_code) << (GET_MODE (XEXP (x, 0)) != DImode)) + (rtx_cost (XEXP (x, 1), outer_code) << (GET_MODE (XEXP (x, 1)) != DImode))); return true; } /* FALLTHRU */ case NEG: if (FLOAT_MODE_P (mode)) { *total = COSTS_N_INSNS (ix86_cost->fchs); return false; } /* FALLTHRU */ case NOT: if (!TARGET_64BIT && mode == DImode) *total = COSTS_N_INSNS (ix86_cost->add * 2); else *total = COSTS_N_INSNS (ix86_cost->add); return false; case COMPARE: if (GET_CODE (XEXP (x, 0)) == ZERO_EXTRACT && XEXP (XEXP (x, 0), 1) == const1_rtx && GET_CODE (XEXP (XEXP (x, 0), 2)) == CONST_INT && XEXP (x, 1) == const0_rtx) { /* This kind of construct is implemented using test[bwl]. Treat it as if we had an AND. */ *total = (COSTS_N_INSNS (ix86_cost->add) + rtx_cost (XEXP (XEXP (x, 0), 0), outer_code) + rtx_cost (const1_rtx, outer_code)); return true; } return false; case FLOAT_EXTEND: if (!TARGET_SSE_MATH || mode == XFmode || (mode == DFmode && !TARGET_SSE2)) *total = 0; return false; case ABS: if (FLOAT_MODE_P (mode)) *total = COSTS_N_INSNS (ix86_cost->fabs); return false; case SQRT: if (FLOAT_MODE_P (mode)) *total = COSTS_N_INSNS (ix86_cost->fsqrt); return false; case UNSPEC: if (XINT (x, 1) == UNSPEC_TP) *total = 0; return false; default: return false; } } #if TARGET_MACHO static int current_machopic_label_num; /* Given a symbol name and its associated stub, write out the definition of the stub. */ void machopic_output_stub (FILE *file, const char *symb, const char *stub) { unsigned int length; char *binder_name, *symbol_name, lazy_ptr_name[32]; int label = ++current_machopic_label_num; /* Lose our funky encoding stuff so it doesn't contaminate the stub. */ symb = (*targetm.strip_name_encoding) (symb); length = strlen (stub); binder_name = alloca (length + 32); GEN_BINDER_NAME_FOR_STUB (binder_name, stub, length); length = strlen (symb); symbol_name = alloca (length + 32); GEN_SYMBOL_NAME_FOR_SYMBOL (symbol_name, symb, length); sprintf (lazy_ptr_name, "L%d$lz", label); if (MACHOPIC_PURE) machopic_picsymbol_stub_section (); else machopic_symbol_stub_section (); fprintf (file, "%s:\n", stub); fprintf (file, "\t.indirect_symbol %s\n", symbol_name); if (MACHOPIC_PURE) { fprintf (file, "\tcall LPC$%d\nLPC$%d:\tpopl %%eax\n", label, label); fprintf (file, "\tmovl %s-LPC$%d(%%eax),%%edx\n", lazy_ptr_name, label); fprintf (file, "\tjmp %%edx\n"); } else fprintf (file, "\tjmp *%s\n", lazy_ptr_name); fprintf (file, "%s:\n", binder_name); if (MACHOPIC_PURE) { fprintf (file, "\tlea %s-LPC$%d(%%eax),%%eax\n", lazy_ptr_name, label); fprintf (file, "\tpushl %%eax\n"); } else fprintf (file, "\t pushl $%s\n", lazy_ptr_name); fprintf (file, "\tjmp dyld_stub_binding_helper\n"); machopic_lazy_symbol_ptr_section (); fprintf (file, "%s:\n", lazy_ptr_name); fprintf (file, "\t.indirect_symbol %s\n", symbol_name); fprintf (file, "\t.long %s\n", binder_name); } #endif /* TARGET_MACHO */ /* Order the registers for register allocator. */ void x86_order_regs_for_local_alloc (void) { int pos = 0; int i; /* First allocate the local general purpose registers. */ for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) if (GENERAL_REGNO_P (i) && call_used_regs[i]) reg_alloc_order [pos++] = i; /* Global general purpose registers. */ for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) if (GENERAL_REGNO_P (i) && !call_used_regs[i]) reg_alloc_order [pos++] = i; /* x87 registers come first in case we are doing FP math using them. */ if (!TARGET_SSE_MATH) for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++) reg_alloc_order [pos++] = i; /* SSE registers. */ for (i = FIRST_SSE_REG; i <= LAST_SSE_REG; i++) reg_alloc_order [pos++] = i; for (i = FIRST_REX_SSE_REG; i <= LAST_REX_SSE_REG; i++) reg_alloc_order [pos++] = i; /* x87 registers. */ if (TARGET_SSE_MATH) for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++) reg_alloc_order [pos++] = i; for (i = FIRST_MMX_REG; i <= LAST_MMX_REG; i++) reg_alloc_order [pos++] = i; /* Initialize the rest of array as we do not allocate some registers at all. */ while (pos < FIRST_PSEUDO_REGISTER) reg_alloc_order [pos++] = 0; } #ifndef TARGET_USE_MS_BITFIELD_LAYOUT #define TARGET_USE_MS_BITFIELD_LAYOUT 0 #endif /* Handle a "ms_struct" or "gcc_struct" attribute; arguments as in struct attribute_spec.handler. */ static tree ix86_handle_struct_attribute (tree *node, tree name, tree args ATTRIBUTE_UNUSED, int flags ATTRIBUTE_UNUSED, bool *no_add_attrs) { tree *type = NULL; if (DECL_P (*node)) { if (TREE_CODE (*node) == TYPE_DECL) type = &TREE_TYPE (*node); } else type = node; if (!(type && (TREE_CODE (*type) == RECORD_TYPE || TREE_CODE (*type) == UNION_TYPE))) { warning ("%qs attribute ignored", IDENTIFIER_POINTER (name)); *no_add_attrs = true; } else if ((is_attribute_p ("ms_struct", name) && lookup_attribute ("gcc_struct", TYPE_ATTRIBUTES (*type))) || ((is_attribute_p ("gcc_struct", name) && lookup_attribute ("ms_struct", TYPE_ATTRIBUTES (*type))))) { warning ("%qs incompatible attribute ignored", IDENTIFIER_POINTER (name)); *no_add_attrs = true; } return NULL_TREE; } static bool ix86_ms_bitfield_layout_p (tree record_type) { return (TARGET_USE_MS_BITFIELD_LAYOUT && !lookup_attribute ("gcc_struct", TYPE_ATTRIBUTES (record_type))) || lookup_attribute ("ms_struct", TYPE_ATTRIBUTES (record_type)); } /* Returns an expression indicating where the this parameter is located on entry to the FUNCTION. */ static rtx x86_this_parameter (tree function) { tree type = TREE_TYPE (function); if (TARGET_64BIT) { int n = aggregate_value_p (TREE_TYPE (type), type) != 0; return gen_rtx_REG (DImode, x86_64_int_parameter_registers[n]); } if (ix86_function_regparm (type, function) > 0) { tree parm; parm = TYPE_ARG_TYPES (type); /* Figure out whether or not the function has a variable number of arguments. */ for (; parm; parm = TREE_CHAIN (parm)) if (TREE_VALUE (parm) == void_type_node) break; /* If not, the this parameter is in the first argument. */ if (parm) { int regno = 0; if (lookup_attribute ("fastcall", TYPE_ATTRIBUTES (type))) regno = 2; return gen_rtx_REG (SImode, regno); } } if (aggregate_value_p (TREE_TYPE (type), type)) return gen_rtx_MEM (SImode, plus_constant (stack_pointer_rtx, 8)); else return gen_rtx_MEM (SImode, plus_constant (stack_pointer_rtx, 4)); } /* Determine whether x86_output_mi_thunk can succeed. */ static bool x86_can_output_mi_thunk (tree thunk ATTRIBUTE_UNUSED, HOST_WIDE_INT delta ATTRIBUTE_UNUSED, HOST_WIDE_INT vcall_offset, tree function) { /* 64-bit can handle anything. */ if (TARGET_64BIT) return true; /* For 32-bit, everything's fine if we have one free register. */ if (ix86_function_regparm (TREE_TYPE (function), function) < 3) return true; /* Need a free register for vcall_offset. */ if (vcall_offset) return false; /* Need a free register for GOT references. */ if (flag_pic && !(*targetm.binds_local_p) (function)) return false; /* Otherwise ok. */ return true; } /* Output the assembler code for a thunk function. THUNK_DECL is the declaration for the thunk function itself, FUNCTION is the decl for the target function. DELTA is an immediate constant offset to be added to THIS. If VCALL_OFFSET is nonzero, the word at *(*this + vcall_offset) should be added to THIS. */ static void x86_output_mi_thunk (FILE *file ATTRIBUTE_UNUSED, tree thunk ATTRIBUTE_UNUSED, HOST_WIDE_INT delta, HOST_WIDE_INT vcall_offset, tree function) { rtx xops[3]; rtx this = x86_this_parameter (function); rtx this_reg, tmp; /* If VCALL_OFFSET, we'll need THIS in a register. Might as well pull it in now and let DELTA benefit. */ if (REG_P (this)) this_reg = this; else if (vcall_offset) { /* Put the this parameter into %eax. */ xops[0] = this; xops[1] = this_reg = gen_rtx_REG (Pmode, 0); output_asm_insn ("mov{l}\t{%0, %1|%1, %0}", xops); } else this_reg = NULL_RTX; /* Adjust the this parameter by a fixed constant. */ if (delta) { xops[0] = GEN_INT (delta); xops[1] = this_reg ? this_reg : this; if (TARGET_64BIT) { if (!x86_64_general_operand (xops[0], DImode)) { tmp = gen_rtx_REG (DImode, FIRST_REX_INT_REG + 2 /* R10 */); xops[1] = tmp; output_asm_insn ("mov{q}\t{%1, %0|%0, %1}", xops); xops[0] = tmp; xops[1] = this; } output_asm_insn ("add{q}\t{%0, %1|%1, %0}", xops); } else output_asm_insn ("add{l}\t{%0, %1|%1, %0}", xops); } /* Adjust the this parameter by a value stored in the vtable. */ if (vcall_offset) { if (TARGET_64BIT) tmp = gen_rtx_REG (DImode, FIRST_REX_INT_REG + 2 /* R10 */); else { int tmp_regno = 2 /* ECX */; if (lookup_attribute ("fastcall", TYPE_ATTRIBUTES (TREE_TYPE (function)))) tmp_regno = 0 /* EAX */; tmp = gen_rtx_REG (SImode, tmp_regno); } xops[0] = gen_rtx_MEM (Pmode, this_reg); xops[1] = tmp; if (TARGET_64BIT) output_asm_insn ("mov{q}\t{%0, %1|%1, %0}", xops); else output_asm_insn ("mov{l}\t{%0, %1|%1, %0}", xops); /* Adjust the this parameter. */ xops[0] = gen_rtx_MEM (Pmode, plus_constant (tmp, vcall_offset)); if (TARGET_64BIT && !memory_operand (xops[0], Pmode)) { rtx tmp2 = gen_rtx_REG (DImode, FIRST_REX_INT_REG + 3 /* R11 */); xops[0] = GEN_INT (vcall_offset); xops[1] = tmp2; output_asm_insn ("mov{q}\t{%0, %1|%1, %0}", xops); xops[0] = gen_rtx_MEM (Pmode, gen_rtx_PLUS (Pmode, tmp, tmp2)); } xops[1] = this_reg; if (TARGET_64BIT) output_asm_insn ("add{q}\t{%0, %1|%1, %0}", xops); else output_asm_insn ("add{l}\t{%0, %1|%1, %0}", xops); } /* If necessary, drop THIS back to its stack slot. */ if (this_reg && this_reg != this) { xops[0] = this_reg; xops[1] = this; output_asm_insn ("mov{l}\t{%0, %1|%1, %0}", xops); } xops[0] = XEXP (DECL_RTL (function), 0); if (TARGET_64BIT) { if (!flag_pic || (*targetm.binds_local_p) (function)) output_asm_insn ("jmp\t%P0", xops); else { tmp = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, xops[0]), UNSPEC_GOTPCREL); tmp = gen_rtx_CONST (Pmode, tmp); tmp = gen_rtx_MEM (QImode, tmp); xops[0] = tmp; output_asm_insn ("jmp\t%A0", xops); } } else { if (!flag_pic || (*targetm.binds_local_p) (function)) output_asm_insn ("jmp\t%P0", xops); else #if TARGET_MACHO if (TARGET_MACHO) { rtx sym_ref = XEXP (DECL_RTL (function), 0); tmp = (gen_rtx_SYMBOL_REF (Pmode, machopic_indirection_name (sym_ref, /*stub_p=*/true))); tmp = gen_rtx_MEM (QImode, tmp); xops[0] = tmp; output_asm_insn ("jmp\t%0", xops); } else #endif /* TARGET_MACHO */ { tmp = gen_rtx_REG (SImode, 2 /* ECX */); output_set_got (tmp); xops[1] = tmp; output_asm_insn ("mov{l}\t{%0@GOT(%1), %1|%1, %0@GOT[%1]}", xops); output_asm_insn ("jmp\t{*}%1", xops); } } } static void x86_file_start (void) { default_file_start (); if (X86_FILE_START_VERSION_DIRECTIVE) fputs ("\t.version\t\"01.01\"\n", asm_out_file); if (X86_FILE_START_FLTUSED) fputs ("\t.global\t__fltused\n", asm_out_file); if (ix86_asm_dialect == ASM_INTEL) fputs ("\t.intel_syntax\n", asm_out_file); } int x86_field_alignment (tree field, int computed) { enum machine_mode mode; tree type = TREE_TYPE (field); if (TARGET_64BIT || TARGET_ALIGN_DOUBLE) return computed; mode = TYPE_MODE (TREE_CODE (type) == ARRAY_TYPE ? get_inner_array_type (type) : type); if (mode == DFmode || mode == DCmode || GET_MODE_CLASS (mode) == MODE_INT || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT) return MIN (32, computed); return computed; } /* Output assembler code to FILE to increment profiler label # LABELNO for profiling a function entry. */ void x86_function_profiler (FILE *file, int labelno ATTRIBUTE_UNUSED) { if (TARGET_64BIT) if (flag_pic) { #ifndef NO_PROFILE_COUNTERS fprintf (file, "\tleaq\t%sP%d@(%%rip),%%r11\n", LPREFIX, labelno); #endif fprintf (file, "\tcall\t*%s@GOTPCREL(%%rip)\n", MCOUNT_NAME); } else { #ifndef NO_PROFILE_COUNTERS fprintf (file, "\tmovq\t$%sP%d,%%r11\n", LPREFIX, labelno); #endif fprintf (file, "\tcall\t%s\n", MCOUNT_NAME); } else if (flag_pic) { #ifndef NO_PROFILE_COUNTERS fprintf (file, "\tleal\t%sP%d@GOTOFF(%%ebx),%%%s\n", LPREFIX, labelno, PROFILE_COUNT_REGISTER); #endif fprintf (file, "\tcall\t*%s@GOT(%%ebx)\n", MCOUNT_NAME); } else { #ifndef NO_PROFILE_COUNTERS fprintf (file, "\tmovl\t$%sP%d,%%%s\n", LPREFIX, labelno, PROFILE_COUNT_REGISTER); #endif fprintf (file, "\tcall\t%s\n", MCOUNT_NAME); } } /* We don't have exact information about the insn sizes, but we may assume quite safely that we are informed about all 1 byte insns and memory address sizes. This is enough to eliminate unnecessary padding in 99% of cases. */ static int min_insn_size (rtx insn) { int l = 0; if (!INSN_P (insn) || !active_insn_p (insn)) return 0; /* Discard alignments we've emit and jump instructions. */ if (GET_CODE (PATTERN (insn)) == UNSPEC_VOLATILE && XINT (PATTERN (insn), 1) == UNSPECV_ALIGN) return 0; if (GET_CODE (insn) == JUMP_INSN && (GET_CODE (PATTERN (insn)) == ADDR_VEC || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)) return 0; /* Important case - calls are always 5 bytes. It is common to have many calls in the row. */ if (GET_CODE (insn) == CALL_INSN && symbolic_reference_mentioned_p (PATTERN (insn)) && !SIBLING_CALL_P (insn)) return 5; if (get_attr_length (insn) <= 1) return 1; /* For normal instructions we may rely on the sizes of addresses and the presence of symbol to require 4 bytes of encoding. This is not the case for jumps where references are PC relative. */ if (GET_CODE (insn) != JUMP_INSN) { l = get_attr_length_address (insn); if (l < 4 && symbolic_reference_mentioned_p (PATTERN (insn))) l = 4; } if (l) return 1+l; else return 2; } /* AMD K8 core mispredicts jumps when there are more than 3 jumps in 16 byte window. */ static void ix86_avoid_jump_misspredicts (void) { rtx insn, start = get_insns (); int nbytes = 0, njumps = 0; int isjump = 0; /* Look for all minimal intervals of instructions containing 4 jumps. The intervals are bounded by START and INSN. NBYTES is the total size of instructions in the interval including INSN and not including START. When the NBYTES is smaller than 16 bytes, it is possible that the end of START and INSN ends up in the same 16byte page. The smallest offset in the page INSN can start is the case where START ends on the offset 0. Offset of INSN is then NBYTES - sizeof (INSN). We add p2align to 16byte window with maxskip 17 - NBYTES + sizeof (INSN). */ for (insn = get_insns (); insn; insn = NEXT_INSN (insn)) { nbytes += min_insn_size (insn); if (dump_file) fprintf(dump_file, "Insn %i estimated to %i bytes\n", INSN_UID (insn), min_insn_size (insn)); if ((GET_CODE (insn) == JUMP_INSN && GET_CODE (PATTERN (insn)) != ADDR_VEC && GET_CODE (PATTERN (insn)) != ADDR_DIFF_VEC) || GET_CODE (insn) == CALL_INSN) njumps++; else continue; while (njumps > 3) { start = NEXT_INSN (start); if ((GET_CODE (start) == JUMP_INSN && GET_CODE (PATTERN (start)) != ADDR_VEC && GET_CODE (PATTERN (start)) != ADDR_DIFF_VEC) || GET_CODE (start) == CALL_INSN) njumps--, isjump = 1; else isjump = 0; nbytes -= min_insn_size (start); } if (njumps < 0) abort (); if (dump_file) fprintf (dump_file, "Interval %i to %i has %i bytes\n", INSN_UID (start), INSN_UID (insn), nbytes); if (njumps == 3 && isjump && nbytes < 16) { int padsize = 15 - nbytes + min_insn_size (insn); if (dump_file) fprintf (dump_file, "Padding insn %i by %i bytes!\n", INSN_UID (insn), padsize); emit_insn_before (gen_align (GEN_INT (padsize)), insn); } } } /* AMD Athlon works faster when RET is not destination of conditional jump or directly preceded by other jump instruction. We avoid the penalty by inserting NOP just before the RET instructions in such cases. */ static void ix86_pad_returns (void) { edge e; edge_iterator ei; FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds) { basic_block bb = e->src; rtx ret = BB_END (bb); rtx prev; bool replace = false; if (GET_CODE (ret) != JUMP_INSN || GET_CODE (PATTERN (ret)) != RETURN || !maybe_hot_bb_p (bb)) continue; for (prev = PREV_INSN (ret); prev; prev = PREV_INSN (prev)) if (active_insn_p (prev) || GET_CODE (prev) == CODE_LABEL) break; if (prev && GET_CODE (prev) == CODE_LABEL) { edge e; edge_iterator ei; FOR_EACH_EDGE (e, ei, bb->preds) if (EDGE_FREQUENCY (e) && e->src->index >= 0 && !(e->flags & EDGE_FALLTHRU)) replace = true; } if (!replace) { prev = prev_active_insn (ret); if (prev && ((GET_CODE (prev) == JUMP_INSN && any_condjump_p (prev)) || GET_CODE (prev) == CALL_INSN)) replace = true; /* Empty functions get branch mispredict even when the jump destination is not visible to us. */ if (!prev && cfun->function_frequency > FUNCTION_FREQUENCY_UNLIKELY_EXECUTED) replace = true; } if (replace) { emit_insn_before (gen_return_internal_long (), ret); delete_insn (ret); } } } /* Implement machine specific optimizations. We implement padding of returns for K8 CPUs and pass to avoid 4 jumps in the single 16 byte window. */ static void ix86_reorg (void) { if (TARGET_ATHLON_K8 && optimize && !optimize_size) ix86_pad_returns (); if (TARGET_FOUR_JUMP_LIMIT && optimize && !optimize_size) ix86_avoid_jump_misspredicts (); } /* Return nonzero when QImode register that must be represented via REX prefix is used. */ bool x86_extended_QIreg_mentioned_p (rtx insn) { int i; extract_insn_cached (insn); for (i = 0; i < recog_data.n_operands; i++) if (REG_P (recog_data.operand[i]) && REGNO (recog_data.operand[i]) >= 4) return true; return false; } /* Return nonzero when P points to register encoded via REX prefix. Called via for_each_rtx. */ static int extended_reg_mentioned_1 (rtx *p, void *data ATTRIBUTE_UNUSED) { unsigned int regno; if (!REG_P (*p)) return 0; regno = REGNO (*p); return REX_INT_REGNO_P (regno) || REX_SSE_REGNO_P (regno); } /* Return true when INSN mentions register that must be encoded using REX prefix. */ bool x86_extended_reg_mentioned_p (rtx insn) { return for_each_rtx (&PATTERN (insn), extended_reg_mentioned_1, NULL); } /* Generate an unsigned DImode/SImode to FP conversion. This is the same code optabs would emit if we didn't have TFmode patterns. */ void x86_emit_floatuns (rtx operands[2]) { rtx neglab, donelab, i0, i1, f0, in, out; enum machine_mode mode, inmode; inmode = GET_MODE (operands[1]); if (inmode != SImode && inmode != DImode) abort (); out = operands[0]; in = force_reg (inmode, operands[1]); mode = GET_MODE (out); neglab = gen_label_rtx (); donelab = gen_label_rtx (); i1 = gen_reg_rtx (Pmode); f0 = gen_reg_rtx (mode); emit_cmp_and_jump_insns (in, const0_rtx, LT, const0_rtx, Pmode, 0, neglab); emit_insn (gen_rtx_SET (VOIDmode, out, gen_rtx_FLOAT (mode, in))); emit_jump_insn (gen_jump (donelab)); emit_barrier (); emit_label (neglab); i0 = expand_simple_binop (Pmode, LSHIFTRT, in, const1_rtx, NULL, 1, OPTAB_DIRECT); i1 = expand_simple_binop (Pmode, AND, in, const1_rtx, NULL, 1, OPTAB_DIRECT); i0 = expand_simple_binop (Pmode, IOR, i0, i1, i0, 1, OPTAB_DIRECT); expand_float (f0, i0, 0); emit_insn (gen_rtx_SET (VOIDmode, out, gen_rtx_PLUS (mode, f0, f0))); emit_label (donelab); } /* A subroutine of ix86_expand_vector_init. Store into TARGET a vector with all elements equal to VAR. Return true if successful. */ static bool ix86_expand_vector_init_duplicate (bool mmx_ok, enum machine_mode mode, rtx target, rtx val) { enum machine_mode smode, wsmode, wvmode; rtx x; switch (mode) { case V2SImode: case V2SFmode: if (!mmx_ok && !TARGET_SSE) return false; /* FALLTHRU */ case V2DFmode: case V2DImode: case V4SFmode: case V4SImode: val = force_reg (GET_MODE_INNER (mode), val); x = gen_rtx_VEC_DUPLICATE (mode, val); emit_insn (gen_rtx_SET (VOIDmode, target, x)); return true; case V4HImode: if (!mmx_ok) return false; if (TARGET_SSE || TARGET_3DNOW_A) { val = gen_lowpart (SImode, val); x = gen_rtx_TRUNCATE (HImode, val); x = gen_rtx_VEC_DUPLICATE (mode, x); emit_insn (gen_rtx_SET (VOIDmode, target, x)); return true; } else { smode = HImode; wsmode = SImode; wvmode = V2SImode; goto widen; } case V8QImode: if (!mmx_ok) return false; smode = QImode; wsmode = HImode; wvmode = V4HImode; goto widen; case V8HImode: smode = HImode; wsmode = SImode; wvmode = V4SImode; goto widen; case V16QImode: smode = QImode; wsmode = HImode; wvmode = V8HImode; goto widen; widen: /* Replicate the value once into the next wider mode and recurse. */ val = convert_modes (wsmode, smode, val, true); x = expand_simple_binop (wsmode, ASHIFT, val, GEN_INT (GET_MODE_BITSIZE (smode)), NULL_RTX, 1, OPTAB_LIB_WIDEN); val = expand_simple_binop (wsmode, IOR, val, x, x, 1, OPTAB_LIB_WIDEN); x = gen_reg_rtx (wvmode); if (!ix86_expand_vector_init_duplicate (mmx_ok, wvmode, x, val)) gcc_unreachable (); emit_move_insn (target, gen_lowpart (mode, x)); return true; default: return false; } } /* A subroutine of ix86_expand_vector_init. Store into TARGET a vector whose low element is VAR, and other elements are zero. Return true if successful. */ static bool ix86_expand_vector_init_low_nonzero (bool mmx_ok, enum machine_mode mode, rtx target, rtx var) { enum machine_mode vsimode; rtx x; switch (mode) { case V2SFmode: case V2SImode: if (!mmx_ok && !TARGET_SSE) return false; /* FALLTHRU */ case V2DFmode: case V2DImode: var = force_reg (GET_MODE_INNER (mode), var); x = gen_rtx_VEC_CONCAT (mode, var, CONST0_RTX (GET_MODE_INNER (mode))); emit_insn (gen_rtx_SET (VOIDmode, target, x)); return true; case V4SFmode: case V4SImode: var = force_reg (GET_MODE_INNER (mode), var); x = gen_rtx_VEC_DUPLICATE (mode, var); x = gen_rtx_VEC_MERGE (mode, x, CONST0_RTX (mode), const1_rtx); emit_insn (gen_rtx_SET (VOIDmode, target, x)); return true; case V8HImode: case V16QImode: vsimode = V4SImode; goto widen; case V4HImode: case V8QImode: if (!mmx_ok) return false; vsimode = V2SImode; goto widen; widen: /* Zero extend the variable element to SImode and recurse. */ var = convert_modes (SImode, GET_MODE_INNER (mode), var, true); x = gen_reg_rtx (vsimode); if (!ix86_expand_vector_init_low_nonzero (mmx_ok, vsimode, x, var)) gcc_unreachable (); emit_move_insn (target, gen_lowpart (mode, x)); return true; default: return false; } } /* A subroutine of ix86_expand_vector_init. Store into TARGET a vector consisting of the values in VALS. It is known that all elements except ONE_VAR are constants. Return true if successful. */ static bool ix86_expand_vector_init_one_var (bool mmx_ok, enum machine_mode mode, rtx target, rtx vals, int one_var) { rtx var = XVECEXP (vals, 0, one_var); enum machine_mode wmode; rtx const_vec, x; XVECEXP (vals, 0, one_var) = CONST0_RTX (GET_MODE_INNER (mode)); const_vec = gen_rtx_CONST_VECTOR (mode, XVEC (vals, 0)); switch (mode) { case V2DFmode: case V2DImode: case V2SFmode: case V2SImode: /* For the two element vectors, it's just as easy to use the general case. */ return false; case V4SFmode: case V4SImode: case V8HImode: case V4HImode: break; case V16QImode: wmode = V8HImode; goto widen; case V8QImode: wmode = V4HImode; goto widen; widen: /* There's no way to set one QImode entry easily. Combine the variable value with its adjacent constant value, and promote to an HImode set. */ x = XVECEXP (vals, 0, one_var ^ 1); if (one_var & 1) { var = convert_modes (HImode, QImode, var, true); var = expand_simple_binop (HImode, ASHIFT, var, GEN_INT (8), NULL_RTX, 1, OPTAB_LIB_WIDEN); x = GEN_INT (INTVAL (x) & 0xff); } else { var = convert_modes (HImode, QImode, var, true); x = gen_int_mode (INTVAL (x) << 8, HImode); } if (x != const0_rtx) var = expand_simple_binop (HImode, IOR, var, x, var, 1, OPTAB_LIB_WIDEN); x = gen_reg_rtx (wmode); emit_move_insn (x, gen_lowpart (wmode, const_vec)); ix86_expand_vector_set (mmx_ok, x, var, one_var >> 1); emit_move_insn (target, gen_lowpart (mode, x)); return true; default: return false; } emit_move_insn (target, const_vec); ix86_expand_vector_set (mmx_ok, target, var, one_var); return true; } /* A subroutine of ix86_expand_vector_init. Handle the most general case: all values variable, and none identical. */ static void ix86_expand_vector_init_general (bool mmx_ok, enum machine_mode mode, rtx target, rtx vals) { enum machine_mode half_mode = GET_MODE_INNER (mode); rtx op0 = NULL, op1 = NULL; bool use_vec_concat = false; switch (mode) { case V2SFmode: case V2SImode: if (!mmx_ok && !TARGET_SSE) break; /* FALLTHRU */ case V2DFmode: case V2DImode: /* For the two element vectors, we always implement VEC_CONCAT. */ op0 = XVECEXP (vals, 0, 0); op1 = XVECEXP (vals, 0, 1); use_vec_concat = true; break; case V4SFmode: half_mode = V2SFmode; goto half; case V4SImode: half_mode = V2SImode; goto half; half: { rtvec v; /* For V4SF and V4SI, we implement a concat of two V2 vectors. Recurse to load the two halves. */ op0 = gen_reg_rtx (half_mode); v = gen_rtvec (2, XVECEXP (vals, 0, 0), XVECEXP (vals, 0, 1)); ix86_expand_vector_init (false, op0, gen_rtx_PARALLEL (half_mode, v)); op1 = gen_reg_rtx (half_mode); v = gen_rtvec (2, XVECEXP (vals, 0, 2), XVECEXP (vals, 0, 3)); ix86_expand_vector_init (false, op1, gen_rtx_PARALLEL (half_mode, v)); use_vec_concat = true; } break; case V8HImode: case V16QImode: case V4HImode: case V8QImode: break; default: gcc_unreachable (); } if (use_vec_concat) { if (!register_operand (op0, half_mode)) op0 = force_reg (half_mode, op0); if (!register_operand (op1, half_mode)) op1 = force_reg (half_mode, op1); emit_insn (gen_rtx_SET (VOIDmode, target, gen_rtx_VEC_CONCAT (mode, op0, op1))); } else { int i, j, n_elts, n_words, n_elt_per_word; enum machine_mode inner_mode; rtx words[4], shift; inner_mode = GET_MODE_INNER (mode); n_elts = GET_MODE_NUNITS (mode); n_words = GET_MODE_SIZE (mode) / UNITS_PER_WORD; n_elt_per_word = n_elts / n_words; shift = GEN_INT (GET_MODE_BITSIZE (inner_mode)); for (i = 0; i < n_words; ++i) { rtx word = NULL_RTX; for (j = 0; j < n_elt_per_word; ++j) { rtx elt = XVECEXP (vals, 0, (i+1)*n_elt_per_word - j - 1); elt = convert_modes (word_mode, inner_mode, elt, true); if (j == 0) word = elt; else { word = expand_simple_binop (word_mode, ASHIFT, word, shift, word, 1, OPTAB_LIB_WIDEN); word = expand_simple_binop (word_mode, IOR, word, elt, word, 1, OPTAB_LIB_WIDEN); } } words[i] = word; } if (n_words == 1) emit_move_insn (target, gen_lowpart (mode, words[0])); else if (n_words == 2) { rtx tmp = gen_reg_rtx (mode); emit_insn (gen_rtx_CLOBBER (VOIDmode, tmp)); emit_move_insn (gen_lowpart (word_mode, tmp), words[0]); emit_move_insn (gen_highpart (word_mode, tmp), words[1]); emit_move_insn (target, tmp); } else if (n_words == 4) { rtx tmp = gen_reg_rtx (V4SImode); vals = gen_rtx_PARALLEL (V4SImode, gen_rtvec_v (4, words)); ix86_expand_vector_init_general (false, V4SImode, tmp, vals); emit_move_insn (target, gen_lowpart (mode, tmp)); } else gcc_unreachable (); } } /* Initialize vector TARGET via VALS. Suppress the use of MMX instructions unless MMX_OK is true. */ void ix86_expand_vector_init (bool mmx_ok, rtx target, rtx vals) { enum machine_mode mode = GET_MODE (target); enum machine_mode inner_mode = GET_MODE_INNER (mode); int n_elts = GET_MODE_NUNITS (mode); int n_var = 0, one_var = -1; bool all_same = true, all_const_zero = true; int i; rtx x; for (i = 0; i < n_elts; ++i) { x = XVECEXP (vals, 0, i); if (!CONSTANT_P (x)) n_var++, one_var = i; else if (x != CONST0_RTX (inner_mode)) all_const_zero = false; if (i > 0 && !rtx_equal_p (x, XVECEXP (vals, 0, 0))) all_same = false; } /* Constants are best loaded from the constant pool. */ if (n_var == 0) { emit_move_insn (target, gen_rtx_CONST_VECTOR (mode, XVEC (vals, 0))); return; } /* If all values are identical, broadcast the value. */ if (all_same && ix86_expand_vector_init_duplicate (mmx_ok, mode, target, XVECEXP (vals, 0, 0))) return; /* Values where only one field is non-constant are best loaded from the pool and overwritten via move later. */ if (n_var == 1) { if (all_const_zero && one_var == 0 && ix86_expand_vector_init_low_nonzero (mmx_ok, mode, target, XVECEXP (vals, 0, 0))) return; if (ix86_expand_vector_init_one_var (mmx_ok, mode, target, vals, one_var)) return; } ix86_expand_vector_init_general (mmx_ok, mode, target, vals); } void ix86_expand_vector_set (bool mmx_ok, rtx target, rtx val, int elt) { enum machine_mode mode = GET_MODE (target); enum machine_mode inner_mode = GET_MODE_INNER (mode); bool use_vec_merge = false; rtx tmp; switch (mode) { case V2SFmode: case V2SImode: if (mmx_ok) { tmp = gen_reg_rtx (GET_MODE_INNER (mode)); ix86_expand_vector_extract (true, tmp, target, 1 - elt); if (elt == 0) tmp = gen_rtx_VEC_CONCAT (mode, tmp, val); else tmp = gen_rtx_VEC_CONCAT (mode, val, tmp); emit_insn (gen_rtx_SET (VOIDmode, target, tmp)); return; } break; case V2DFmode: case V2DImode: { rtx op0, op1; /* For the two element vectors, we implement a VEC_CONCAT with the extraction of the other element. */ tmp = gen_rtx_PARALLEL (VOIDmode, gen_rtvec (1, GEN_INT (1 - elt))); tmp = gen_rtx_VEC_SELECT (inner_mode, target, tmp); if (elt == 0) op0 = val, op1 = tmp; else op0 = tmp, op1 = val; tmp = gen_rtx_VEC_CONCAT (mode, op0, op1); emit_insn (gen_rtx_SET (VOIDmode, target, tmp)); } return; case V4SFmode: switch (elt) { case 0: use_vec_merge = true; break; case 1: /* tmp = target = A B C D */ tmp = copy_to_reg (target); /* target = A A B B */ emit_insn (gen_sse_unpcklps (target, target, target)); /* target = X A B B */ ix86_expand_vector_set (false, target, val, 0); /* target = A X C D */ emit_insn (gen_sse_shufps_1 (target, target, tmp, GEN_INT (1), GEN_INT (0), GEN_INT (2+4), GEN_INT (3+4))); return; case 2: /* tmp = target = A B C D */ tmp = copy_to_reg (target); /* tmp = X B C D */ ix86_expand_vector_set (false, tmp, val, 0); /* target = A B X D */ emit_insn (gen_sse_shufps_1 (target, target, tmp, GEN_INT (0), GEN_INT (1), GEN_INT (0+4), GEN_INT (3+4))); return; case 3: /* tmp = target = A B C D */ tmp = copy_to_reg (target); /* tmp = X B C D */ ix86_expand_vector_set (false, tmp, val, 0); /* target = A B X D */ emit_insn (gen_sse_shufps_1 (target, target, tmp, GEN_INT (0), GEN_INT (1), GEN_INT (2+4), GEN_INT (0+4))); return; default: gcc_unreachable (); } break; case V4SImode: /* Element 0 handled by vec_merge below. */ if (elt == 0) { use_vec_merge = true; break; } if (TARGET_SSE2) { /* With SSE2, use integer shuffles to swap element 0 and ELT, store into element 0, then shuffle them back. */ rtx order[4]; order[0] = GEN_INT (elt); order[1] = const1_rtx; order[2] = const2_rtx; order[3] = GEN_INT (3); order[elt] = const0_rtx; emit_insn (gen_sse2_pshufd_1 (target, target, order[0], order[1], order[2], order[3])); ix86_expand_vector_set (false, target, val, 0); emit_insn (gen_sse2_pshufd_1 (target, target, order[0], order[1], order[2], order[3])); } else { /* For SSE1, we have to reuse the V4SF code. */ ix86_expand_vector_set (false, gen_lowpart (V4SFmode, target), gen_lowpart (SFmode, val), elt); } return; case V8HImode: use_vec_merge = TARGET_SSE2; break; case V4HImode: use_vec_merge = mmx_ok && (TARGET_SSE || TARGET_3DNOW_A); break; case V16QImode: case V8QImode: default: break; } if (use_vec_merge) { tmp = gen_rtx_VEC_DUPLICATE (mode, val); tmp = gen_rtx_VEC_MERGE (mode, tmp, target, GEN_INT (1 << elt)); emit_insn (gen_rtx_SET (VOIDmode, target, tmp)); } else { rtx mem = assign_stack_temp (mode, GET_MODE_SIZE (mode), false); emit_move_insn (mem, target); tmp = adjust_address (mem, inner_mode, elt*GET_MODE_SIZE (inner_mode)); emit_move_insn (tmp, val); emit_move_insn (target, mem); } } void ix86_expand_vector_extract (bool mmx_ok, rtx target, rtx vec, int elt) { enum machine_mode mode = GET_MODE (vec); enum machine_mode inner_mode = GET_MODE_INNER (mode); bool use_vec_extr = false; rtx tmp; switch (mode) { case V2SImode: case V2SFmode: if (!mmx_ok) break; /* FALLTHRU */ case V2DFmode: case V2DImode: use_vec_extr = true; break; case V4SFmode: switch (elt) { case 0: tmp = vec; break; case 1: case 3: tmp = gen_reg_rtx (mode); emit_insn (gen_sse_shufps_1 (tmp, vec, vec, GEN_INT (elt), GEN_INT (elt), GEN_INT (elt+4), GEN_INT (elt+4))); break; case 2: tmp = gen_reg_rtx (mode); emit_insn (gen_sse_unpckhps (tmp, vec, vec)); break; default: gcc_unreachable (); } vec = tmp; use_vec_extr = true; elt = 0; break; case V4SImode: if (TARGET_SSE2) { switch (elt) { case 0: tmp = vec; break; case 1: case 3: tmp = gen_reg_rtx (mode); emit_insn (gen_sse2_pshufd_1 (tmp, vec, GEN_INT (elt), GEN_INT (elt), GEN_INT (elt), GEN_INT (elt))); break; case 2: tmp = gen_reg_rtx (mode); emit_insn (gen_sse2_punpckhdq (tmp, vec, vec)); break; default: gcc_unreachable (); } vec = tmp; use_vec_extr = true; elt = 0; } else { /* For SSE1, we have to reuse the V4SF code. */ ix86_expand_vector_extract (false, gen_lowpart (SFmode, target), gen_lowpart (V4SFmode, vec), elt); return; } break; case V8HImode: use_vec_extr = TARGET_SSE2; break; case V4HImode: use_vec_extr = mmx_ok && (TARGET_SSE || TARGET_3DNOW_A); break; case V16QImode: case V8QImode: /* ??? Could extract the appropriate HImode element and shift. */ default: break; } if (use_vec_extr) { tmp = gen_rtx_PARALLEL (VOIDmode, gen_rtvec (1, GEN_INT (elt))); tmp = gen_rtx_VEC_SELECT (inner_mode, vec, tmp); /* Let the rtl optimizers know about the zero extension performed. */ if (inner_mode == HImode) { tmp = gen_rtx_ZERO_EXTEND (SImode, tmp); target = gen_lowpart (SImode, target); } emit_insn (gen_rtx_SET (VOIDmode, target, tmp)); } else { rtx mem = assign_stack_temp (mode, GET_MODE_SIZE (mode), false); emit_move_insn (mem, vec); tmp = adjust_address (mem, inner_mode, elt*GET_MODE_SIZE (inner_mode)); emit_move_insn (target, tmp); } } /* Implements target hook vector_mode_supported_p. */ static bool ix86_vector_mode_supported_p (enum machine_mode mode) { if (TARGET_SSE && VALID_SSE_REG_MODE (mode)) return true; if (TARGET_SSE2 && VALID_SSE2_REG_MODE (mode)) return true; if (TARGET_MMX && VALID_MMX_REG_MODE (mode)) return true; if (TARGET_3DNOW && VALID_MMX_REG_MODE_3DNOW (mode)) return true; return false; } /* Worker function for TARGET_MD_ASM_CLOBBERS. We do this in the new i386 backend to maintain source compatibility with the old cc0-based compiler. */ static tree ix86_md_asm_clobbers (tree clobbers) { clobbers = tree_cons (NULL_TREE, build_string (5, "flags"), clobbers); clobbers = tree_cons (NULL_TREE, build_string (4, "fpsr"), clobbers); clobbers = tree_cons (NULL_TREE, build_string (7, "dirflag"), clobbers); return clobbers; } /* Worker function for REVERSE_CONDITION. */ enum rtx_code ix86_reverse_condition (enum rtx_code code, enum machine_mode mode) { return (mode != CCFPmode && mode != CCFPUmode ? reverse_condition (code) : reverse_condition_maybe_unordered (code)); } /* Output code to perform an x87 FP register move, from OPERANDS[1] to OPERANDS[0]. */ const char * output_387_reg_move (rtx insn, rtx *operands) { if (REG_P (operands[1]) && find_regno_note (insn, REG_DEAD, REGNO (operands[1]))) { if (REGNO (operands[0]) == FIRST_STACK_REG && TARGET_USE_FFREEP) return "ffreep\t%y0"; return "fstp\t%y0"; } if (STACK_TOP_P (operands[0])) return "fld%z1\t%y1"; return "fst\t%y0"; } /* Output code to perform a conditional jump to LABEL, if C2 flag in FP status register is set. */ void ix86_emit_fp_unordered_jump (rtx label) { rtx reg = gen_reg_rtx (HImode); rtx temp; emit_insn (gen_x86_fnstsw_1 (reg)); if (TARGET_USE_SAHF) { emit_insn (gen_x86_sahf_1 (reg)); temp = gen_rtx_REG (CCmode, FLAGS_REG); temp = gen_rtx_UNORDERED (VOIDmode, temp, const0_rtx); } else { emit_insn (gen_testqi_ext_ccno_0 (reg, GEN_INT (0x04))); temp = gen_rtx_REG (CCNOmode, FLAGS_REG); temp = gen_rtx_NE (VOIDmode, temp, const0_rtx); } temp = gen_rtx_IF_THEN_ELSE (VOIDmode, temp, gen_rtx_LABEL_REF (VOIDmode, label), pc_rtx); temp = gen_rtx_SET (VOIDmode, pc_rtx, temp); emit_jump_insn (temp); } /* Output code to perform a log1p XFmode calculation. */ void ix86_emit_i387_log1p (rtx op0, rtx op1) { rtx label1 = gen_label_rtx (); rtx label2 = gen_label_rtx (); rtx tmp = gen_reg_rtx (XFmode); rtx tmp2 = gen_reg_rtx (XFmode); emit_insn (gen_absxf2 (tmp, op1)); emit_insn (gen_cmpxf (tmp, CONST_DOUBLE_FROM_REAL_VALUE ( REAL_VALUE_ATOF ("0.29289321881345247561810596348408353", XFmode), XFmode))); emit_jump_insn (gen_bge (label1)); emit_move_insn (tmp2, standard_80387_constant_rtx (4)); /* fldln2 */ emit_insn (gen_fyl2xp1_xf3 (op0, tmp2, op1)); emit_jump (label2); emit_label (label1); emit_move_insn (tmp, CONST1_RTX (XFmode)); emit_insn (gen_addxf3 (tmp, op1, tmp)); emit_move_insn (tmp2, standard_80387_constant_rtx (4)); /* fldln2 */ emit_insn (gen_fyl2x_xf3 (op0, tmp2, tmp)); emit_label (label2); } /* Solaris named-section hook. Parameters are as for named_section_real. */ static void i386_solaris_elf_named_section (const char *name, unsigned int flags, tree decl) { /* With Binutils 2.15, the "@unwind" marker must be specified on every occurrence of the ".eh_frame" section, not just the first one. */ if (TARGET_64BIT && strcmp (name, ".eh_frame") == 0) { fprintf (asm_out_file, "\t.section\t%s,\"%s\",@unwind\n", name, flags & SECTION_WRITE ? "aw" : "a"); return; } default_elf_asm_named_section (name, flags, decl); } #include "gt-i386.h"