/* ssl/ssl_ciph.c */ /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) * All rights reserved. * * This package is an SSL implementation written * by Eric Young (eay@cryptsoft.com). * The implementation was written so as to conform with Netscapes SSL. * * This library is free for commercial and non-commercial use as long as * the following conditions are aheared to. The following conditions * apply to all code found in this distribution, be it the RC4, RSA, * lhash, DES, etc., code; not just the SSL code. The SSL documentation * included with this distribution is covered by the same copyright terms * except that the holder is Tim Hudson (tjh@cryptsoft.com). * * Copyright remains Eric Young's, and as such any Copyright notices in * the code are not to be removed. * If this package is used in a product, Eric Young should be given attribution * as the author of the parts of the library used. * This can be in the form of a textual message at program startup or * in documentation (online or textual) provided with the package. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * "This product includes cryptographic software written by * Eric Young (eay@cryptsoft.com)" * The word 'cryptographic' can be left out if the rouines from the library * being used are not cryptographic related :-). * 4. If you include any Windows specific code (or a derivative thereof) from * the apps directory (application code) you must include an acknowledgement: * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" * * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * The licence and distribution terms for any publically available version or * derivative of this code cannot be changed. i.e. this code cannot simply be * copied and put under another distribution licence * [including the GNU Public Licence.] */ #include #include #include #include "ssl_locl.h" #define SSL_ENC_DES_IDX 0 #define SSL_ENC_3DES_IDX 1 #define SSL_ENC_RC4_IDX 2 #define SSL_ENC_RC2_IDX 3 #define SSL_ENC_IDEA_IDX 4 #define SSL_ENC_eFZA_IDX 5 #define SSL_ENC_NULL_IDX 6 #define SSL_ENC_AES128_IDX 7 #define SSL_ENC_AES256_IDX 8 #define SSL_ENC_NUM_IDX 9 static const EVP_CIPHER *ssl_cipher_methods[SSL_ENC_NUM_IDX]={ NULL,NULL,NULL,NULL,NULL,NULL, }; static STACK_OF(SSL_COMP) *ssl_comp_methods=NULL; #define SSL_MD_MD5_IDX 0 #define SSL_MD_SHA1_IDX 1 #define SSL_MD_NUM_IDX 2 static const EVP_MD *ssl_digest_methods[SSL_MD_NUM_IDX]={ NULL,NULL, }; #define CIPHER_ADD 1 #define CIPHER_KILL 2 #define CIPHER_DEL 3 #define CIPHER_ORD 4 #define CIPHER_SPECIAL 5 typedef struct cipher_order_st { SSL_CIPHER *cipher; int active; int dead; struct cipher_order_st *next,*prev; } CIPHER_ORDER; static const SSL_CIPHER cipher_aliases[]={ /* Don't include eNULL unless specifically enabled. */ {0,SSL_TXT_ALL, 0,SSL_ALL & ~SSL_eNULL, SSL_ALL ,0,0,0,SSL_ALL,SSL_ALL}, /* must be first */ {0,SSL_TXT_CMPALL,0,SSL_eNULL,0,0,0,0,SSL_ENC_MASK,0}, /* COMPLEMENT OF ALL */ {0,SSL_TXT_CMPDEF,0,SSL_ADH, 0,0,0,0,SSL_AUTH_MASK,0}, {0,SSL_TXT_kKRB5,0,SSL_kKRB5,0,0,0,0,SSL_MKEY_MASK,0}, /* VRS Kerberos5 */ {0,SSL_TXT_kRSA,0,SSL_kRSA, 0,0,0,0,SSL_MKEY_MASK,0}, {0,SSL_TXT_kDHr,0,SSL_kDHr, 0,0,0,0,SSL_MKEY_MASK,0}, {0,SSL_TXT_kDHd,0,SSL_kDHd, 0,0,0,0,SSL_MKEY_MASK,0}, {0,SSL_TXT_kEDH,0,SSL_kEDH, 0,0,0,0,SSL_MKEY_MASK,0}, {0,SSL_TXT_kFZA,0,SSL_kFZA, 0,0,0,0,SSL_MKEY_MASK,0}, {0,SSL_TXT_DH, 0,SSL_DH, 0,0,0,0,SSL_MKEY_MASK,0}, {0,SSL_TXT_EDH, 0,SSL_EDH, 0,0,0,0,SSL_MKEY_MASK|SSL_AUTH_MASK,0}, {0,SSL_TXT_aKRB5,0,SSL_aKRB5,0,0,0,0,SSL_AUTH_MASK,0}, /* VRS Kerberos5 */ {0,SSL_TXT_aRSA,0,SSL_aRSA, 0,0,0,0,SSL_AUTH_MASK,0}, {0,SSL_TXT_aDSS,0,SSL_aDSS, 0,0,0,0,SSL_AUTH_MASK,0}, {0,SSL_TXT_aFZA,0,SSL_aFZA, 0,0,0,0,SSL_AUTH_MASK,0}, {0,SSL_TXT_aNULL,0,SSL_aNULL,0,0,0,0,SSL_AUTH_MASK,0}, {0,SSL_TXT_aDH, 0,SSL_aDH, 0,0,0,0,SSL_AUTH_MASK,0}, {0,SSL_TXT_DSS, 0,SSL_DSS, 0,0,0,0,SSL_AUTH_MASK,0}, {0,SSL_TXT_DES, 0,SSL_DES, 0,0,0,0,SSL_ENC_MASK,0}, {0,SSL_TXT_3DES,0,SSL_3DES, 0,0,0,0,SSL_ENC_MASK,0}, {0,SSL_TXT_RC4, 0,SSL_RC4, 0,0,0,0,SSL_ENC_MASK,0}, {0,SSL_TXT_RC2, 0,SSL_RC2, 0,0,0,0,SSL_ENC_MASK,0}, #ifndef OPENSSL_NO_IDEA {0,SSL_TXT_IDEA,0,SSL_IDEA, 0,0,0,0,SSL_ENC_MASK,0}, #endif {0,SSL_TXT_eNULL,0,SSL_eNULL,0,0,0,0,SSL_ENC_MASK,0}, {0,SSL_TXT_eFZA,0,SSL_eFZA, 0,0,0,0,SSL_ENC_MASK,0}, {0,SSL_TXT_AES, 0,SSL_AES, 0,0,0,0,SSL_ENC_MASK,0}, {0,SSL_TXT_MD5, 0,SSL_MD5, 0,0,0,0,SSL_MAC_MASK,0}, {0,SSL_TXT_SHA1,0,SSL_SHA1, 0,0,0,0,SSL_MAC_MASK,0}, {0,SSL_TXT_SHA, 0,SSL_SHA, 0,0,0,0,SSL_MAC_MASK,0}, {0,SSL_TXT_NULL,0,SSL_NULL, 0,0,0,0,SSL_ENC_MASK,0}, {0,SSL_TXT_KRB5,0,SSL_KRB5, 0,0,0,0,SSL_AUTH_MASK|SSL_MKEY_MASK,0}, {0,SSL_TXT_RSA, 0,SSL_RSA, 0,0,0,0,SSL_AUTH_MASK|SSL_MKEY_MASK,0}, {0,SSL_TXT_ADH, 0,SSL_ADH, 0,0,0,0,SSL_AUTH_MASK|SSL_MKEY_MASK,0}, {0,SSL_TXT_FZA, 0,SSL_FZA, 0,0,0,0,SSL_AUTH_MASK|SSL_MKEY_MASK|SSL_ENC_MASK,0}, {0,SSL_TXT_SSLV2, 0,SSL_SSLV2, 0,0,0,0,SSL_SSL_MASK,0}, {0,SSL_TXT_SSLV3, 0,SSL_SSLV3, 0,0,0,0,SSL_SSL_MASK,0}, {0,SSL_TXT_TLSV1, 0,SSL_TLSV1, 0,0,0,0,SSL_SSL_MASK,0}, {0,SSL_TXT_EXP ,0, 0,SSL_EXPORT, 0,0,0,0,SSL_EXP_MASK}, {0,SSL_TXT_EXPORT,0, 0,SSL_EXPORT, 0,0,0,0,SSL_EXP_MASK}, {0,SSL_TXT_EXP40, 0, 0, SSL_EXP40, 0,0,0,0,SSL_STRONG_MASK}, {0,SSL_TXT_EXP56, 0, 0, SSL_EXP56, 0,0,0,0,SSL_STRONG_MASK}, {0,SSL_TXT_LOW, 0, 0, SSL_LOW, 0,0,0,0,SSL_STRONG_MASK}, {0,SSL_TXT_MEDIUM,0, 0,SSL_MEDIUM, 0,0,0,0,SSL_STRONG_MASK}, {0,SSL_TXT_HIGH, 0, 0, SSL_HIGH, 0,0,0,0,SSL_STRONG_MASK}, }; static int init_ciphers=1; static void load_ciphers(void) { init_ciphers=0; ssl_cipher_methods[SSL_ENC_DES_IDX]= EVP_get_cipherbyname(SN_des_cbc); ssl_cipher_methods[SSL_ENC_3DES_IDX]= EVP_get_cipherbyname(SN_des_ede3_cbc); ssl_cipher_methods[SSL_ENC_RC4_IDX]= EVP_get_cipherbyname(SN_rc4); ssl_cipher_methods[SSL_ENC_RC2_IDX]= EVP_get_cipherbyname(SN_rc2_cbc); #ifndef OPENSSL_NO_IDEA ssl_cipher_methods[SSL_ENC_IDEA_IDX]= EVP_get_cipherbyname(SN_idea_cbc); #else ssl_cipher_methods[SSL_ENC_IDEA_IDX]= NULL; #endif ssl_cipher_methods[SSL_ENC_AES128_IDX]= EVP_get_cipherbyname(SN_aes_128_cbc); ssl_cipher_methods[SSL_ENC_AES256_IDX]= EVP_get_cipherbyname(SN_aes_256_cbc); ssl_digest_methods[SSL_MD_MD5_IDX]= EVP_get_digestbyname(SN_md5); ssl_digest_methods[SSL_MD_SHA1_IDX]= EVP_get_digestbyname(SN_sha1); } int ssl_cipher_get_evp(SSL_SESSION *s, const EVP_CIPHER **enc, const EVP_MD **md, SSL_COMP **comp) { int i; SSL_CIPHER *c; c=s->cipher; if (c == NULL) return(0); if (comp != NULL) { SSL_COMP ctmp; if (s->compress_meth == 0) *comp=NULL; else if (ssl_comp_methods == NULL) { /* bad */ *comp=NULL; } else { ctmp.id=s->compress_meth; i=sk_SSL_COMP_find(ssl_comp_methods,&ctmp); if (i >= 0) *comp=sk_SSL_COMP_value(ssl_comp_methods,i); else *comp=NULL; } } if ((enc == NULL) || (md == NULL)) return(0); switch (c->algorithms & SSL_ENC_MASK) { case SSL_DES: i=SSL_ENC_DES_IDX; break; case SSL_3DES: i=SSL_ENC_3DES_IDX; break; case SSL_RC4: i=SSL_ENC_RC4_IDX; break; case SSL_RC2: i=SSL_ENC_RC2_IDX; break; case SSL_IDEA: i=SSL_ENC_IDEA_IDX; break; case SSL_eNULL: i=SSL_ENC_NULL_IDX; break; case SSL_AES: switch(c->alg_bits) { case 128: i=SSL_ENC_AES128_IDX; break; case 256: i=SSL_ENC_AES256_IDX; break; default: i=-1; break; } break; default: i= -1; break; } if ((i < 0) || (i > SSL_ENC_NUM_IDX)) *enc=NULL; else { if (i == SSL_ENC_NULL_IDX) *enc=EVP_enc_null(); else *enc=ssl_cipher_methods[i]; } switch (c->algorithms & SSL_MAC_MASK) { case SSL_MD5: i=SSL_MD_MD5_IDX; break; case SSL_SHA1: i=SSL_MD_SHA1_IDX; break; default: i= -1; break; } if ((i < 0) || (i > SSL_MD_NUM_IDX)) *md=NULL; else *md=ssl_digest_methods[i]; if ((*enc != NULL) && (*md != NULL)) return(1); else return(0); } #define ITEM_SEP(a) \ (((a) == ':') || ((a) == ' ') || ((a) == ';') || ((a) == ',')) static void ll_append_tail(CIPHER_ORDER **head, CIPHER_ORDER *curr, CIPHER_ORDER **tail) { if (curr == *tail) return; if (curr == *head) *head=curr->next; if (curr->prev != NULL) curr->prev->next=curr->next; if (curr->next != NULL) /* should always be true */ curr->next->prev=curr->prev; (*tail)->next=curr; curr->prev= *tail; curr->next=NULL; *tail=curr; } static unsigned long ssl_cipher_get_disabled(void) { unsigned long mask; mask = SSL_kFZA; #ifdef OPENSSL_NO_RSA mask |= SSL_aRSA|SSL_kRSA; #endif #ifdef OPENSSL_NO_DSA mask |= SSL_aDSS; #endif #ifdef OPENSSL_NO_DH mask |= SSL_kDHr|SSL_kDHd|SSL_kEDH|SSL_aDH; #endif #ifdef OPENSSL_NO_KRB5 mask |= SSL_kKRB5|SSL_aKRB5; #endif #ifdef SSL_FORBID_ENULL mask |= SSL_eNULL; #endif mask |= (ssl_cipher_methods[SSL_ENC_DES_IDX ] == NULL) ? SSL_DES :0; mask |= (ssl_cipher_methods[SSL_ENC_3DES_IDX] == NULL) ? SSL_3DES:0; mask |= (ssl_cipher_methods[SSL_ENC_RC4_IDX ] == NULL) ? SSL_RC4 :0; mask |= (ssl_cipher_methods[SSL_ENC_RC2_IDX ] == NULL) ? SSL_RC2 :0; mask |= (ssl_cipher_methods[SSL_ENC_IDEA_IDX] == NULL) ? SSL_IDEA:0; mask |= (ssl_cipher_methods[SSL_ENC_eFZA_IDX] == NULL) ? SSL_eFZA:0; mask |= (ssl_cipher_methods[SSL_ENC_AES128_IDX] == NULL) ? SSL_AES:0; mask |= (ssl_digest_methods[SSL_MD_MD5_IDX ] == NULL) ? SSL_MD5 :0; mask |= (ssl_digest_methods[SSL_MD_SHA1_IDX] == NULL) ? SSL_SHA1:0; return(mask); } static void ssl_cipher_collect_ciphers(const SSL_METHOD *ssl_method, int num_of_ciphers, unsigned long mask, CIPHER_ORDER *co_list, CIPHER_ORDER **head_p, CIPHER_ORDER **tail_p) { int i, co_list_num; SSL_CIPHER *c; /* * We have num_of_ciphers descriptions compiled in, depending on the * method selected (SSLv2 and/or SSLv3, TLSv1 etc). * These will later be sorted in a linked list with at most num * entries. */ /* Get the initial list of ciphers */ co_list_num = 0; /* actual count of ciphers */ for (i = 0; i < num_of_ciphers; i++) { c = ssl_method->get_cipher(i); /* drop those that use any of that is not available */ if ((c != NULL) && c->valid && !(c->algorithms & mask)) { co_list[co_list_num].cipher = c; co_list[co_list_num].next = NULL; co_list[co_list_num].prev = NULL; co_list[co_list_num].active = 0; co_list_num++; #ifdef KSSL_DEBUG printf("\t%d: %s %lx %lx\n",i,c->name,c->id,c->algorithms); #endif /* KSSL_DEBUG */ /* if (!sk_push(ca_list,(char *)c)) goto err; */ } } /* * Prepare linked list from list entries */ for (i = 1; i < co_list_num - 1; i++) { co_list[i].prev = &(co_list[i-1]); co_list[i].next = &(co_list[i+1]); } if (co_list_num > 0) { (*head_p) = &(co_list[0]); (*head_p)->prev = NULL; (*head_p)->next = &(co_list[1]); (*tail_p) = &(co_list[co_list_num - 1]); (*tail_p)->prev = &(co_list[co_list_num - 2]); (*tail_p)->next = NULL; } } static void ssl_cipher_collect_aliases(SSL_CIPHER **ca_list, int num_of_group_aliases, unsigned long mask, CIPHER_ORDER *head) { CIPHER_ORDER *ciph_curr; SSL_CIPHER **ca_curr; int i; /* * First, add the real ciphers as already collected */ ciph_curr = head; ca_curr = ca_list; while (ciph_curr != NULL) { *ca_curr = ciph_curr->cipher; ca_curr++; ciph_curr = ciph_curr->next; } /* * Now we add the available ones from the cipher_aliases[] table. * They represent either an algorithm, that must be fully * supported (not match any bit in mask) or represent a cipher * strength value (will be added in any case because algorithms=0). */ for (i = 0; i < num_of_group_aliases; i++) { if ((i == 0) || /* always fetch "ALL" */ !(cipher_aliases[i].algorithms & mask)) { *ca_curr = (SSL_CIPHER *)(cipher_aliases + i); ca_curr++; } } *ca_curr = NULL; /* end of list */ } static void ssl_cipher_apply_rule(unsigned long algorithms, unsigned long mask, unsigned long algo_strength, unsigned long mask_strength, int rule, int strength_bits, CIPHER_ORDER *co_list, CIPHER_ORDER **head_p, CIPHER_ORDER **tail_p) { CIPHER_ORDER *head, *tail, *curr, *curr2, *tail2; SSL_CIPHER *cp; unsigned long ma, ma_s; #ifdef CIPHER_DEBUG printf("Applying rule %d with %08lx %08lx %08lx %08lx (%d)\n", rule, algorithms, mask, algo_strength, mask_strength, strength_bits); #endif curr = head = *head_p; curr2 = head; tail2 = tail = *tail_p; for (;;) { if ((curr == NULL) || (curr == tail2)) break; curr = curr2; curr2 = curr->next; cp = curr->cipher; /* * Selection criteria is either the number of strength_bits * or the algorithm used. */ if (strength_bits == -1) { ma = mask & cp->algorithms; ma_s = mask_strength & cp->algo_strength; #ifdef CIPHER_DEBUG printf("\nName: %s:\nAlgo = %08lx Algo_strength = %08lx\nMask = %08lx Mask_strength %08lx\n", cp->name, cp->algorithms, cp->algo_strength, mask, mask_strength); printf("ma = %08lx ma_s %08lx, ma&algo=%08lx, ma_s&algos=%08lx\n", ma, ma_s, ma&algorithms, ma_s&algo_strength); #endif /* * Select: if none of the mask bit was met from the * cipher or not all of the bits were met, the * selection does not apply. */ if (((ma == 0) && (ma_s == 0)) || ((ma & algorithms) != ma) || ((ma_s & algo_strength) != ma_s)) continue; /* does not apply */ } else if (strength_bits != cp->strength_bits) continue; /* does not apply */ #ifdef CIPHER_DEBUG printf("Action = %d\n", rule); #endif /* add the cipher if it has not been added yet. */ if (rule == CIPHER_ADD) { if (!curr->active) { ll_append_tail(&head, curr, &tail); curr->active = 1; } } /* Move the added cipher to this location */ else if (rule == CIPHER_ORD) { if (curr->active) { ll_append_tail(&head, curr, &tail); } } else if (rule == CIPHER_DEL) curr->active = 0; else if (rule == CIPHER_KILL) { if (head == curr) head = curr->next; else curr->prev->next = curr->next; if (tail == curr) tail = curr->prev; curr->active = 0; if (curr->next != NULL) curr->next->prev = curr->prev; if (curr->prev != NULL) curr->prev->next = curr->next; curr->next = NULL; curr->prev = NULL; } } *head_p = head; *tail_p = tail; } static int ssl_cipher_strength_sort(CIPHER_ORDER *co_list, CIPHER_ORDER **head_p, CIPHER_ORDER **tail_p) { int max_strength_bits, i, *number_uses; CIPHER_ORDER *curr; /* * This routine sorts the ciphers with descending strength. The sorting * must keep the pre-sorted sequence, so we apply the normal sorting * routine as '+' movement to the end of the list. */ max_strength_bits = 0; curr = *head_p; while (curr != NULL) { if (curr->active && (curr->cipher->strength_bits > max_strength_bits)) max_strength_bits = curr->cipher->strength_bits; curr = curr->next; } number_uses = OPENSSL_malloc((max_strength_bits + 1) * sizeof(int)); if (!number_uses) { SSLerr(SSL_F_SSL_CIPHER_STRENGTH_SORT,ERR_R_MALLOC_FAILURE); return(0); } memset(number_uses, 0, (max_strength_bits + 1) * sizeof(int)); /* * Now find the strength_bits values actually used */ curr = *head_p; while (curr != NULL) { if (curr->active) number_uses[curr->cipher->strength_bits]++; curr = curr->next; } /* * Go through the list of used strength_bits values in descending * order. */ for (i = max_strength_bits; i >= 0; i--) if (number_uses[i] > 0) ssl_cipher_apply_rule(0, 0, 0, 0, CIPHER_ORD, i, co_list, head_p, tail_p); OPENSSL_free(number_uses); return(1); } static int ssl_cipher_process_rulestr(const char *rule_str, CIPHER_ORDER *co_list, CIPHER_ORDER **head_p, CIPHER_ORDER **tail_p, SSL_CIPHER **ca_list) { unsigned long algorithms, mask, algo_strength, mask_strength; const char *l, *start, *buf; int j, multi, found, rule, retval, ok, buflen; char ch; retval = 1; l = rule_str; for (;;) { ch = *l; if (ch == '\0') break; /* done */ if (ch == '-') { rule = CIPHER_DEL; l++; } else if (ch == '+') { rule = CIPHER_ORD; l++; } else if (ch == '!') { rule = CIPHER_KILL; l++; } else if (ch == '@') { rule = CIPHER_SPECIAL; l++; } else { rule = CIPHER_ADD; } if (ITEM_SEP(ch)) { l++; continue; } algorithms = mask = algo_strength = mask_strength = 0; start=l; for (;;) { ch = *l; buf = l; buflen = 0; #ifndef CHARSET_EBCDIC while ( ((ch >= 'A') && (ch <= 'Z')) || ((ch >= '0') && (ch <= '9')) || ((ch >= 'a') && (ch <= 'z')) || (ch == '-')) #else while ( isalnum(ch) || (ch == '-')) #endif { ch = *(++l); buflen++; } if (buflen == 0) { /* * We hit something we cannot deal with, * it is no command or separator nor * alphanumeric, so we call this an error. */ SSLerr(SSL_F_SSL_CIPHER_PROCESS_RULESTR, SSL_R_INVALID_COMMAND); retval = found = 0; l++; break; } if (rule == CIPHER_SPECIAL) { found = 0; /* unused -- avoid compiler warning */ break; /* special treatment */ } /* check for multi-part specification */ if (ch == '+') { multi=1; l++; } else multi=0; /* * Now search for the cipher alias in the ca_list. Be careful * with the strncmp, because the "buflen" limitation * will make the rule "ADH:SOME" and the cipher * "ADH-MY-CIPHER" look like a match for buflen=3. * So additionally check whether the cipher name found * has the correct length. We can save a strlen() call: * just checking for the '\0' at the right place is * sufficient, we have to strncmp() anyway. (We cannot * use strcmp(), because buf is not '\0' terminated.) */ j = found = 0; while (ca_list[j]) { if (!strncmp(buf, ca_list[j]->name, buflen) && (ca_list[j]->name[buflen] == '\0')) { found = 1; break; } else j++; } if (!found) break; /* ignore this entry */ algorithms |= ca_list[j]->algorithms; mask |= ca_list[j]->mask; algo_strength |= ca_list[j]->algo_strength; mask_strength |= ca_list[j]->mask_strength; if (!multi) break; } /* * Ok, we have the rule, now apply it */ if (rule == CIPHER_SPECIAL) { /* special command */ ok = 0; if ((buflen == 8) && !strncmp(buf, "STRENGTH", 8)) ok = ssl_cipher_strength_sort(co_list, head_p, tail_p); else SSLerr(SSL_F_SSL_CIPHER_PROCESS_RULESTR, SSL_R_INVALID_COMMAND); if (ok == 0) retval = 0; /* * We do not support any "multi" options * together with "@", so throw away the * rest of the command, if any left, until * end or ':' is found. */ while ((*l != '\0') && ITEM_SEP(*l)) l++; } else if (found) { ssl_cipher_apply_rule(algorithms, mask, algo_strength, mask_strength, rule, -1, co_list, head_p, tail_p); } else { while ((*l != '\0') && ITEM_SEP(*l)) l++; } if (*l == '\0') break; /* done */ } return(retval); } STACK_OF(SSL_CIPHER) *ssl_create_cipher_list(const SSL_METHOD *ssl_method, STACK_OF(SSL_CIPHER) **cipher_list, STACK_OF(SSL_CIPHER) **cipher_list_by_id, const char *rule_str) { int ok, num_of_ciphers, num_of_alias_max, num_of_group_aliases; unsigned long disabled_mask; STACK_OF(SSL_CIPHER) *cipherstack; const char *rule_p; CIPHER_ORDER *co_list = NULL, *head = NULL, *tail = NULL, *curr; SSL_CIPHER **ca_list = NULL; /* * Return with error if nothing to do. */ if (rule_str == NULL) return(NULL); if (init_ciphers) { CRYPTO_w_lock(CRYPTO_LOCK_SSL); if (init_ciphers) load_ciphers(); CRYPTO_w_unlock(CRYPTO_LOCK_SSL); } /* * To reduce the work to do we only want to process the compiled * in algorithms, so we first get the mask of disabled ciphers. */ disabled_mask = ssl_cipher_get_disabled(); /* * Now we have to collect the available ciphers from the compiled * in ciphers. We cannot get more than the number compiled in, so * it is used for allocation. */ num_of_ciphers = ssl_method->num_ciphers(); #ifdef KSSL_DEBUG printf("ssl_create_cipher_list() for %d ciphers\n", num_of_ciphers); #endif /* KSSL_DEBUG */ co_list = (CIPHER_ORDER *)OPENSSL_malloc(sizeof(CIPHER_ORDER) * num_of_ciphers); if (co_list == NULL) { SSLerr(SSL_F_SSL_CREATE_CIPHER_LIST,ERR_R_MALLOC_FAILURE); return(NULL); /* Failure */ } ssl_cipher_collect_ciphers(ssl_method, num_of_ciphers, disabled_mask, co_list, &head, &tail); /* * We also need cipher aliases for selecting based on the rule_str. * There might be two types of entries in the rule_str: 1) names * of ciphers themselves 2) aliases for groups of ciphers. * For 1) we need the available ciphers and for 2) the cipher * groups of cipher_aliases added together in one list (otherwise * we would be happy with just the cipher_aliases table). */ num_of_group_aliases = sizeof(cipher_aliases) / sizeof(SSL_CIPHER); num_of_alias_max = num_of_ciphers + num_of_group_aliases + 1; ca_list = (SSL_CIPHER **)OPENSSL_malloc(sizeof(SSL_CIPHER *) * num_of_alias_max); if (ca_list == NULL) { OPENSSL_free(co_list); SSLerr(SSL_F_SSL_CREATE_CIPHER_LIST,ERR_R_MALLOC_FAILURE); return(NULL); /* Failure */ } ssl_cipher_collect_aliases(ca_list, num_of_group_aliases, disabled_mask, head); /* * If the rule_string begins with DEFAULT, apply the default rule * before using the (possibly available) additional rules. */ ok = 1; rule_p = rule_str; if (strncmp(rule_str,"DEFAULT",7) == 0) { ok = ssl_cipher_process_rulestr(SSL_DEFAULT_CIPHER_LIST, co_list, &head, &tail, ca_list); rule_p += 7; if (*rule_p == ':') rule_p++; } if (ok && (strlen(rule_p) > 0)) ok = ssl_cipher_process_rulestr(rule_p, co_list, &head, &tail, ca_list); OPENSSL_free(ca_list); /* Not needed anymore */ if (!ok) { /* Rule processing failure */ OPENSSL_free(co_list); return(NULL); } /* * Allocate new "cipherstack" for the result, return with error * if we cannot get one. */ if ((cipherstack = sk_SSL_CIPHER_new_null()) == NULL) { OPENSSL_free(co_list); return(NULL); } /* * The cipher selection for the list is done. The ciphers are added * to the resulting precedence to the STACK_OF(SSL_CIPHER). */ for (curr = head; curr != NULL; curr = curr->next) { if (curr->active) { sk_SSL_CIPHER_push(cipherstack, curr->cipher); #ifdef CIPHER_DEBUG printf("<%s>\n",curr->cipher->name); #endif } } OPENSSL_free(co_list); /* Not needed any longer */ /* * The following passage is a little bit odd. If pointer variables * were supplied to hold STACK_OF(SSL_CIPHER) return information, * the old memory pointed to is free()ed. Then, however, the * cipher_list entry will be assigned just a copy of the returned * cipher stack. For cipher_list_by_id a copy of the cipher stack * will be created. See next comment... */ if (cipher_list != NULL) { if (*cipher_list != NULL) sk_SSL_CIPHER_free(*cipher_list); *cipher_list = cipherstack; } if (cipher_list_by_id != NULL) { if (*cipher_list_by_id != NULL) sk_SSL_CIPHER_free(*cipher_list_by_id); *cipher_list_by_id = sk_SSL_CIPHER_dup(cipherstack); } /* * Now it is getting really strange. If something failed during * the previous pointer assignment or if one of the pointers was * not requested, the error condition is met. That might be * discussable. The strange thing is however that in this case * the memory "ret" pointed to is "free()ed" and hence the pointer * cipher_list becomes wild. The memory reserved for * cipher_list_by_id however is not "free()ed" and stays intact. */ if ( (cipher_list_by_id == NULL) || (*cipher_list_by_id == NULL) || (cipher_list == NULL) || (*cipher_list == NULL)) { sk_SSL_CIPHER_free(cipherstack); return(NULL); } sk_SSL_CIPHER_set_cmp_func(*cipher_list_by_id,ssl_cipher_ptr_id_cmp); return(cipherstack); } char *SSL_CIPHER_description(SSL_CIPHER *cipher, char *buf, int len) { int is_export,pkl,kl; char *ver,*exp_str; char *kx,*au,*enc,*mac; unsigned long alg,alg2,alg_s; #ifdef KSSL_DEBUG static char *format="%-23s %s Kx=%-8s Au=%-4s Enc=%-9s Mac=%-4s%s AL=%lx\n"; #else static char *format="%-23s %s Kx=%-8s Au=%-4s Enc=%-9s Mac=%-4s%s\n"; #endif /* KSSL_DEBUG */ alg=cipher->algorithms; alg_s=cipher->algo_strength; alg2=cipher->algorithm2; is_export=SSL_C_IS_EXPORT(cipher); pkl=SSL_C_EXPORT_PKEYLENGTH(cipher); kl=SSL_C_EXPORT_KEYLENGTH(cipher); exp_str=is_export?" export":""; if (alg & SSL_SSLV2) ver="SSLv2"; else if (alg & SSL_SSLV3) ver="SSLv3"; else ver="unknown"; switch (alg&SSL_MKEY_MASK) { case SSL_kRSA: kx=is_export?(pkl == 512 ? "RSA(512)" : "RSA(1024)"):"RSA"; break; case SSL_kDHr: kx="DH/RSA"; break; case SSL_kDHd: kx="DH/DSS"; break; case SSL_kKRB5: /* VRS */ case SSL_KRB5: /* VRS */ kx="KRB5"; break; case SSL_kFZA: kx="Fortezza"; break; case SSL_kEDH: kx=is_export?(pkl == 512 ? "DH(512)" : "DH(1024)"):"DH"; break; default: kx="unknown"; } switch (alg&SSL_AUTH_MASK) { case SSL_aRSA: au="RSA"; break; case SSL_aDSS: au="DSS"; break; case SSL_aDH: au="DH"; break; case SSL_aKRB5: /* VRS */ case SSL_KRB5: /* VRS */ au="KRB5"; break; case SSL_aFZA: case SSL_aNULL: au="None"; break; default: au="unknown"; break; } switch (alg&SSL_ENC_MASK) { case SSL_DES: enc=(is_export && kl == 5)?"DES(40)":"DES(56)"; break; case SSL_3DES: enc="3DES(168)"; break; case SSL_RC4: enc=is_export?(kl == 5 ? "RC4(40)" : "RC4(56)") :((alg2&SSL2_CF_8_BYTE_ENC)?"RC4(64)":"RC4(128)"); break; case SSL_RC2: enc=is_export?(kl == 5 ? "RC2(40)" : "RC2(56)"):"RC2(128)"; break; case SSL_IDEA: enc="IDEA(128)"; break; case SSL_eFZA: enc="Fortezza"; break; case SSL_eNULL: enc="None"; break; case SSL_AES: switch(cipher->strength_bits) { case 128: enc="AES(128)"; break; case 192: enc="AES(192)"; break; case 256: enc="AES(256)"; break; default: enc="AES(?""?""?)"; break; } break; default: enc="unknown"; break; } switch (alg&SSL_MAC_MASK) { case SSL_MD5: mac="MD5"; break; case SSL_SHA1: mac="SHA1"; break; default: mac="unknown"; break; } if (buf == NULL) { len=128; buf=OPENSSL_malloc(len); if (buf == NULL) return("OPENSSL_malloc Error"); } else if (len < 128) return("Buffer too small"); #ifdef KSSL_DEBUG BIO_snprintf(buf,len,format,cipher->name,ver,kx,au,enc,mac,exp_str,alg); #else BIO_snprintf(buf,len,format,cipher->name,ver,kx,au,enc,mac,exp_str); #endif /* KSSL_DEBUG */ return(buf); } char *SSL_CIPHER_get_version(SSL_CIPHER *c) { int i; if (c == NULL) return("(NONE)"); i=(int)(c->id>>24L); if (i == 3) return("TLSv1/SSLv3"); else if (i == 2) return("SSLv2"); else return("unknown"); } /* return the actual cipher being used */ const char *SSL_CIPHER_get_name(SSL_CIPHER *c) { if (c != NULL) return(c->name); return("(NONE)"); } /* number of bits for symmetric cipher */ int SSL_CIPHER_get_bits(SSL_CIPHER *c, int *alg_bits) { int ret=0; if (c != NULL) { if (alg_bits != NULL) *alg_bits = c->alg_bits; ret = c->strength_bits; } return(ret); } SSL_COMP *ssl3_comp_find(STACK_OF(SSL_COMP) *sk, int n) { SSL_COMP *ctmp; int i,nn; if ((n == 0) || (sk == NULL)) return(NULL); nn=sk_SSL_COMP_num(sk); for (i=0; iid == n) return(ctmp); } return(NULL); } static int sk_comp_cmp(const SSL_COMP * const *a, const SSL_COMP * const *b) { return((*a)->id-(*b)->id); } STACK_OF(SSL_COMP) *SSL_COMP_get_compression_methods(void) { return(ssl_comp_methods); } int SSL_COMP_add_compression_method(int id, COMP_METHOD *cm) { SSL_COMP *comp; STACK_OF(SSL_COMP) *sk; if (cm == NULL || cm->type == NID_undef) return 1; MemCheck_off(); comp=(SSL_COMP *)OPENSSL_malloc(sizeof(SSL_COMP)); comp->id=id; comp->method=cm; if (ssl_comp_methods == NULL) sk=ssl_comp_methods=sk_SSL_COMP_new(sk_comp_cmp); else sk=ssl_comp_methods; if ((sk == NULL) || !sk_SSL_COMP_push(sk,comp)) { MemCheck_on(); SSLerr(SSL_F_SSL_COMP_ADD_COMPRESSION_METHOD,ERR_R_MALLOC_FAILURE); return(1); } else { MemCheck_on(); return(0); } }