/* Convert tree expression to rtl instructions, for GNU compiler. Copyright (C) 1988-2018 Free Software Foundation, Inc. This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see . */ #include "config.h" #include "system.h" #include "coretypes.h" #include "backend.h" #include "target.h" #include "rtl.h" #include "tree.h" #include "gimple.h" #include "predict.h" #include "memmodel.h" #include "tm_p.h" #include "ssa.h" #include "expmed.h" #include "optabs.h" #include "regs.h" #include "emit-rtl.h" #include "recog.h" #include "cgraph.h" #include "diagnostic.h" #include "alias.h" #include "fold-const.h" #include "stor-layout.h" #include "attribs.h" #include "varasm.h" #include "except.h" #include "insn-attr.h" #include "dojump.h" #include "explow.h" #include "calls.h" #include "stmt.h" /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */ #include "expr.h" #include "optabs-tree.h" #include "libfuncs.h" #include "reload.h" #include "langhooks.h" #include "common/common-target.h" #include "tree-ssa-live.h" #include "tree-outof-ssa.h" #include "tree-ssa-address.h" #include "builtins.h" #include "tree-chkp.h" #include "rtl-chkp.h" #include "ccmp.h" #include "rtx-vector-builder.h" /* If this is nonzero, we do not bother generating VOLATILE around volatile memory references, and we are willing to output indirect addresses. If cse is to follow, we reject indirect addresses so a useful potential cse is generated; if it is used only once, instruction combination will produce the same indirect address eventually. */ int cse_not_expected; static bool block_move_libcall_safe_for_call_parm (void); static bool emit_block_move_via_movmem (rtx, rtx, rtx, unsigned, unsigned, HOST_WIDE_INT, unsigned HOST_WIDE_INT, unsigned HOST_WIDE_INT, unsigned HOST_WIDE_INT); static void emit_block_move_via_loop (rtx, rtx, rtx, unsigned); static void clear_by_pieces (rtx, unsigned HOST_WIDE_INT, unsigned int); static rtx_insn *compress_float_constant (rtx, rtx); static rtx get_subtarget (rtx); static void store_constructor (tree, rtx, int, poly_int64, bool); static rtx store_field (rtx, poly_int64, poly_int64, poly_uint64, poly_uint64, machine_mode, tree, alias_set_type, bool, bool); static unsigned HOST_WIDE_INT highest_pow2_factor_for_target (const_tree, const_tree); static int is_aligning_offset (const_tree, const_tree); static rtx reduce_to_bit_field_precision (rtx, rtx, tree); static rtx do_store_flag (sepops, rtx, machine_mode); #ifdef PUSH_ROUNDING static void emit_single_push_insn (machine_mode, rtx, tree); #endif static void do_tablejump (rtx, machine_mode, rtx, rtx, rtx, profile_probability); static rtx const_vector_from_tree (tree); static rtx const_scalar_mask_from_tree (scalar_int_mode, tree); static tree tree_expr_size (const_tree); static HOST_WIDE_INT int_expr_size (tree); static void convert_mode_scalar (rtx, rtx, int); /* This is run to set up which modes can be used directly in memory and to initialize the block move optab. It is run at the beginning of compilation and when the target is reinitialized. */ void init_expr_target (void) { rtx pat; int num_clobbers; rtx mem, mem1; rtx reg; /* Try indexing by frame ptr and try by stack ptr. It is known that on the Convex the stack ptr isn't a valid index. With luck, one or the other is valid on any machine. */ mem = gen_rtx_MEM (word_mode, stack_pointer_rtx); mem1 = gen_rtx_MEM (word_mode, frame_pointer_rtx); /* A scratch register we can modify in-place below to avoid useless RTL allocations. */ reg = gen_rtx_REG (word_mode, LAST_VIRTUAL_REGISTER + 1); rtx_insn *insn = as_a (rtx_alloc (INSN)); pat = gen_rtx_SET (NULL_RTX, NULL_RTX); PATTERN (insn) = pat; for (machine_mode mode = VOIDmode; (int) mode < NUM_MACHINE_MODES; mode = (machine_mode) ((int) mode + 1)) { int regno; direct_load[(int) mode] = direct_store[(int) mode] = 0; PUT_MODE (mem, mode); PUT_MODE (mem1, mode); /* See if there is some register that can be used in this mode and directly loaded or stored from memory. */ if (mode != VOIDmode && mode != BLKmode) for (regno = 0; regno < FIRST_PSEUDO_REGISTER && (direct_load[(int) mode] == 0 || direct_store[(int) mode] == 0); regno++) { if (!targetm.hard_regno_mode_ok (regno, mode)) continue; set_mode_and_regno (reg, mode, regno); SET_SRC (pat) = mem; SET_DEST (pat) = reg; if (recog (pat, insn, &num_clobbers) >= 0) direct_load[(int) mode] = 1; SET_SRC (pat) = mem1; SET_DEST (pat) = reg; if (recog (pat, insn, &num_clobbers) >= 0) direct_load[(int) mode] = 1; SET_SRC (pat) = reg; SET_DEST (pat) = mem; if (recog (pat, insn, &num_clobbers) >= 0) direct_store[(int) mode] = 1; SET_SRC (pat) = reg; SET_DEST (pat) = mem1; if (recog (pat, insn, &num_clobbers) >= 0) direct_store[(int) mode] = 1; } } mem = gen_rtx_MEM (VOIDmode, gen_raw_REG (Pmode, LAST_VIRTUAL_REGISTER + 1)); opt_scalar_float_mode mode_iter; FOR_EACH_MODE_IN_CLASS (mode_iter, MODE_FLOAT) { scalar_float_mode mode = mode_iter.require (); scalar_float_mode srcmode; FOR_EACH_MODE_UNTIL (srcmode, mode) { enum insn_code ic; ic = can_extend_p (mode, srcmode, 0); if (ic == CODE_FOR_nothing) continue; PUT_MODE (mem, srcmode); if (insn_operand_matches (ic, 1, mem)) float_extend_from_mem[mode][srcmode] = true; } } } /* This is run at the start of compiling a function. */ void init_expr (void) { memset (&crtl->expr, 0, sizeof (crtl->expr)); } /* Copy data from FROM to TO, where the machine modes are not the same. Both modes may be integer, or both may be floating, or both may be fixed-point. UNSIGNEDP should be nonzero if FROM is an unsigned type. This causes zero-extension instead of sign-extension. */ void convert_move (rtx to, rtx from, int unsignedp) { machine_mode to_mode = GET_MODE (to); machine_mode from_mode = GET_MODE (from); gcc_assert (to_mode != BLKmode); gcc_assert (from_mode != BLKmode); /* If the source and destination are already the same, then there's nothing to do. */ if (to == from) return; /* If FROM is a SUBREG that indicates that we have already done at least the required extension, strip it. We don't handle such SUBREGs as TO here. */ scalar_int_mode to_int_mode; if (GET_CODE (from) == SUBREG && SUBREG_PROMOTED_VAR_P (from) && is_a (to_mode, &to_int_mode) && (GET_MODE_PRECISION (subreg_promoted_mode (from)) >= GET_MODE_PRECISION (to_int_mode)) && SUBREG_CHECK_PROMOTED_SIGN (from, unsignedp)) from = gen_lowpart (to_int_mode, from), from_mode = to_int_mode; gcc_assert (GET_CODE (to) != SUBREG || !SUBREG_PROMOTED_VAR_P (to)); if (to_mode == from_mode || (from_mode == VOIDmode && CONSTANT_P (from))) { emit_move_insn (to, from); return; } if (VECTOR_MODE_P (to_mode) || VECTOR_MODE_P (from_mode)) { gcc_assert (known_eq (GET_MODE_BITSIZE (from_mode), GET_MODE_BITSIZE (to_mode))); if (VECTOR_MODE_P (to_mode)) from = simplify_gen_subreg (to_mode, from, GET_MODE (from), 0); else to = simplify_gen_subreg (from_mode, to, GET_MODE (to), 0); emit_move_insn (to, from); return; } if (GET_CODE (to) == CONCAT && GET_CODE (from) == CONCAT) { convert_move (XEXP (to, 0), XEXP (from, 0), unsignedp); convert_move (XEXP (to, 1), XEXP (from, 1), unsignedp); return; } convert_mode_scalar (to, from, unsignedp); } /* Like convert_move, but deals only with scalar modes. */ static void convert_mode_scalar (rtx to, rtx from, int unsignedp) { /* Both modes should be scalar types. */ scalar_mode from_mode = as_a (GET_MODE (from)); scalar_mode to_mode = as_a (GET_MODE (to)); bool to_real = SCALAR_FLOAT_MODE_P (to_mode); bool from_real = SCALAR_FLOAT_MODE_P (from_mode); enum insn_code code; rtx libcall; gcc_assert (to_real == from_real); /* rtx code for making an equivalent value. */ enum rtx_code equiv_code = (unsignedp < 0 ? UNKNOWN : (unsignedp ? ZERO_EXTEND : SIGN_EXTEND)); if (to_real) { rtx value; rtx_insn *insns; convert_optab tab; gcc_assert ((GET_MODE_PRECISION (from_mode) != GET_MODE_PRECISION (to_mode)) || (DECIMAL_FLOAT_MODE_P (from_mode) != DECIMAL_FLOAT_MODE_P (to_mode))); if (GET_MODE_PRECISION (from_mode) == GET_MODE_PRECISION (to_mode)) /* Conversion between decimal float and binary float, same size. */ tab = DECIMAL_FLOAT_MODE_P (from_mode) ? trunc_optab : sext_optab; else if (GET_MODE_PRECISION (from_mode) < GET_MODE_PRECISION (to_mode)) tab = sext_optab; else tab = trunc_optab; /* Try converting directly if the insn is supported. */ code = convert_optab_handler (tab, to_mode, from_mode); if (code != CODE_FOR_nothing) { emit_unop_insn (code, to, from, tab == sext_optab ? FLOAT_EXTEND : FLOAT_TRUNCATE); return; } /* Otherwise use a libcall. */ libcall = convert_optab_libfunc (tab, to_mode, from_mode); /* Is this conversion implemented yet? */ gcc_assert (libcall); start_sequence (); value = emit_library_call_value (libcall, NULL_RTX, LCT_CONST, to_mode, from, from_mode); insns = get_insns (); end_sequence (); emit_libcall_block (insns, to, value, tab == trunc_optab ? gen_rtx_FLOAT_TRUNCATE (to_mode, from) : gen_rtx_FLOAT_EXTEND (to_mode, from)); return; } /* Handle pointer conversion. */ /* SPEE 900220. */ /* If the target has a converter from FROM_MODE to TO_MODE, use it. */ { convert_optab ctab; if (GET_MODE_PRECISION (from_mode) > GET_MODE_PRECISION (to_mode)) ctab = trunc_optab; else if (unsignedp) ctab = zext_optab; else ctab = sext_optab; if (convert_optab_handler (ctab, to_mode, from_mode) != CODE_FOR_nothing) { emit_unop_insn (convert_optab_handler (ctab, to_mode, from_mode), to, from, UNKNOWN); return; } } /* Targets are expected to provide conversion insns between PxImode and xImode for all MODE_PARTIAL_INT modes they use, but no others. */ if (GET_MODE_CLASS (to_mode) == MODE_PARTIAL_INT) { scalar_int_mode full_mode = smallest_int_mode_for_size (GET_MODE_BITSIZE (to_mode)); gcc_assert (convert_optab_handler (trunc_optab, to_mode, full_mode) != CODE_FOR_nothing); if (full_mode != from_mode) from = convert_to_mode (full_mode, from, unsignedp); emit_unop_insn (convert_optab_handler (trunc_optab, to_mode, full_mode), to, from, UNKNOWN); return; } if (GET_MODE_CLASS (from_mode) == MODE_PARTIAL_INT) { rtx new_from; scalar_int_mode full_mode = smallest_int_mode_for_size (GET_MODE_BITSIZE (from_mode)); convert_optab ctab = unsignedp ? zext_optab : sext_optab; enum insn_code icode; icode = convert_optab_handler (ctab, full_mode, from_mode); gcc_assert (icode != CODE_FOR_nothing); if (to_mode == full_mode) { emit_unop_insn (icode, to, from, UNKNOWN); return; } new_from = gen_reg_rtx (full_mode); emit_unop_insn (icode, new_from, from, UNKNOWN); /* else proceed to integer conversions below. */ from_mode = full_mode; from = new_from; } /* Make sure both are fixed-point modes or both are not. */ gcc_assert (ALL_SCALAR_FIXED_POINT_MODE_P (from_mode) == ALL_SCALAR_FIXED_POINT_MODE_P (to_mode)); if (ALL_SCALAR_FIXED_POINT_MODE_P (from_mode)) { /* If we widen from_mode to to_mode and they are in the same class, we won't saturate the result. Otherwise, always saturate the result to play safe. */ if (GET_MODE_CLASS (from_mode) == GET_MODE_CLASS (to_mode) && GET_MODE_SIZE (from_mode) < GET_MODE_SIZE (to_mode)) expand_fixed_convert (to, from, 0, 0); else expand_fixed_convert (to, from, 0, 1); return; } /* Now both modes are integers. */ /* Handle expanding beyond a word. */ if (GET_MODE_PRECISION (from_mode) < GET_MODE_PRECISION (to_mode) && GET_MODE_PRECISION (to_mode) > BITS_PER_WORD) { rtx_insn *insns; rtx lowpart; rtx fill_value; rtx lowfrom; int i; scalar_mode lowpart_mode; int nwords = CEIL (GET_MODE_SIZE (to_mode), UNITS_PER_WORD); /* Try converting directly if the insn is supported. */ if ((code = can_extend_p (to_mode, from_mode, unsignedp)) != CODE_FOR_nothing) { /* If FROM is a SUBREG, put it into a register. Do this so that we always generate the same set of insns for better cse'ing; if an intermediate assignment occurred, we won't be doing the operation directly on the SUBREG. */ if (optimize > 0 && GET_CODE (from) == SUBREG) from = force_reg (from_mode, from); emit_unop_insn (code, to, from, equiv_code); return; } /* Next, try converting via full word. */ else if (GET_MODE_PRECISION (from_mode) < BITS_PER_WORD && ((code = can_extend_p (to_mode, word_mode, unsignedp)) != CODE_FOR_nothing)) { rtx word_to = gen_reg_rtx (word_mode); if (REG_P (to)) { if (reg_overlap_mentioned_p (to, from)) from = force_reg (from_mode, from); emit_clobber (to); } convert_move (word_to, from, unsignedp); emit_unop_insn (code, to, word_to, equiv_code); return; } /* No special multiword conversion insn; do it by hand. */ start_sequence (); /* Since we will turn this into a no conflict block, we must ensure the source does not overlap the target so force it into an isolated register when maybe so. Likewise for any MEM input, since the conversion sequence might require several references to it and we must ensure we're getting the same value every time. */ if (MEM_P (from) || reg_overlap_mentioned_p (to, from)) from = force_reg (from_mode, from); /* Get a copy of FROM widened to a word, if necessary. */ if (GET_MODE_PRECISION (from_mode) < BITS_PER_WORD) lowpart_mode = word_mode; else lowpart_mode = from_mode; lowfrom = convert_to_mode (lowpart_mode, from, unsignedp); lowpart = gen_lowpart (lowpart_mode, to); emit_move_insn (lowpart, lowfrom); /* Compute the value to put in each remaining word. */ if (unsignedp) fill_value = const0_rtx; else fill_value = emit_store_flag_force (gen_reg_rtx (word_mode), LT, lowfrom, const0_rtx, lowpart_mode, 0, -1); /* Fill the remaining words. */ for (i = GET_MODE_SIZE (lowpart_mode) / UNITS_PER_WORD; i < nwords; i++) { int index = (WORDS_BIG_ENDIAN ? nwords - i - 1 : i); rtx subword = operand_subword (to, index, 1, to_mode); gcc_assert (subword); if (fill_value != subword) emit_move_insn (subword, fill_value); } insns = get_insns (); end_sequence (); emit_insn (insns); return; } /* Truncating multi-word to a word or less. */ if (GET_MODE_PRECISION (from_mode) > BITS_PER_WORD && GET_MODE_PRECISION (to_mode) <= BITS_PER_WORD) { if (!((MEM_P (from) && ! MEM_VOLATILE_P (from) && direct_load[(int) to_mode] && ! mode_dependent_address_p (XEXP (from, 0), MEM_ADDR_SPACE (from))) || REG_P (from) || GET_CODE (from) == SUBREG)) from = force_reg (from_mode, from); convert_move (to, gen_lowpart (word_mode, from), 0); return; } /* Now follow all the conversions between integers no more than a word long. */ /* For truncation, usually we can just refer to FROM in a narrower mode. */ if (GET_MODE_BITSIZE (to_mode) < GET_MODE_BITSIZE (from_mode) && TRULY_NOOP_TRUNCATION_MODES_P (to_mode, from_mode)) { if (!((MEM_P (from) && ! MEM_VOLATILE_P (from) && direct_load[(int) to_mode] && ! mode_dependent_address_p (XEXP (from, 0), MEM_ADDR_SPACE (from))) || REG_P (from) || GET_CODE (from) == SUBREG)) from = force_reg (from_mode, from); if (REG_P (from) && REGNO (from) < FIRST_PSEUDO_REGISTER && !targetm.hard_regno_mode_ok (REGNO (from), to_mode)) from = copy_to_reg (from); emit_move_insn (to, gen_lowpart (to_mode, from)); return; } /* Handle extension. */ if (GET_MODE_PRECISION (to_mode) > GET_MODE_PRECISION (from_mode)) { /* Convert directly if that works. */ if ((code = can_extend_p (to_mode, from_mode, unsignedp)) != CODE_FOR_nothing) { emit_unop_insn (code, to, from, equiv_code); return; } else { scalar_mode intermediate; rtx tmp; int shift_amount; /* Search for a mode to convert via. */ opt_scalar_mode intermediate_iter; FOR_EACH_MODE_FROM (intermediate_iter, from_mode) { scalar_mode intermediate = intermediate_iter.require (); if (((can_extend_p (to_mode, intermediate, unsignedp) != CODE_FOR_nothing) || (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (intermediate) && TRULY_NOOP_TRUNCATION_MODES_P (to_mode, intermediate))) && (can_extend_p (intermediate, from_mode, unsignedp) != CODE_FOR_nothing)) { convert_move (to, convert_to_mode (intermediate, from, unsignedp), unsignedp); return; } } /* No suitable intermediate mode. Generate what we need with shifts. */ shift_amount = (GET_MODE_PRECISION (to_mode) - GET_MODE_PRECISION (from_mode)); from = gen_lowpart (to_mode, force_reg (from_mode, from)); tmp = expand_shift (LSHIFT_EXPR, to_mode, from, shift_amount, to, unsignedp); tmp = expand_shift (RSHIFT_EXPR, to_mode, tmp, shift_amount, to, unsignedp); if (tmp != to) emit_move_insn (to, tmp); return; } } /* Support special truncate insns for certain modes. */ if (convert_optab_handler (trunc_optab, to_mode, from_mode) != CODE_FOR_nothing) { emit_unop_insn (convert_optab_handler (trunc_optab, to_mode, from_mode), to, from, UNKNOWN); return; } /* Handle truncation of volatile memrefs, and so on; the things that couldn't be truncated directly, and for which there was no special instruction. ??? Code above formerly short-circuited this, for most integer mode pairs, with a force_reg in from_mode followed by a recursive call to this routine. Appears always to have been wrong. */ if (GET_MODE_PRECISION (to_mode) < GET_MODE_PRECISION (from_mode)) { rtx temp = force_reg (to_mode, gen_lowpart (to_mode, from)); emit_move_insn (to, temp); return; } /* Mode combination is not recognized. */ gcc_unreachable (); } /* Return an rtx for a value that would result from converting X to mode MODE. Both X and MODE may be floating, or both integer. UNSIGNEDP is nonzero if X is an unsigned value. This can be done by referring to a part of X in place or by copying to a new temporary with conversion. */ rtx convert_to_mode (machine_mode mode, rtx x, int unsignedp) { return convert_modes (mode, VOIDmode, x, unsignedp); } /* Return an rtx for a value that would result from converting X from mode OLDMODE to mode MODE. Both modes may be floating, or both integer. UNSIGNEDP is nonzero if X is an unsigned value. This can be done by referring to a part of X in place or by copying to a new temporary with conversion. You can give VOIDmode for OLDMODE, if you are sure X has a nonvoid mode. */ rtx convert_modes (machine_mode mode, machine_mode oldmode, rtx x, int unsignedp) { rtx temp; scalar_int_mode int_mode; /* If FROM is a SUBREG that indicates that we have already done at least the required extension, strip it. */ if (GET_CODE (x) == SUBREG && SUBREG_PROMOTED_VAR_P (x) && is_a (mode, &int_mode) && (GET_MODE_PRECISION (subreg_promoted_mode (x)) >= GET_MODE_PRECISION (int_mode)) && SUBREG_CHECK_PROMOTED_SIGN (x, unsignedp)) x = gen_lowpart (int_mode, SUBREG_REG (x)); if (GET_MODE (x) != VOIDmode) oldmode = GET_MODE (x); if (mode == oldmode) return x; if (CONST_SCALAR_INT_P (x) && is_int_mode (mode, &int_mode)) { /* If the caller did not tell us the old mode, then there is not much to do with respect to canonicalization. We have to assume that all the bits are significant. */ if (GET_MODE_CLASS (oldmode) != MODE_INT) oldmode = MAX_MODE_INT; wide_int w = wide_int::from (rtx_mode_t (x, oldmode), GET_MODE_PRECISION (int_mode), unsignedp ? UNSIGNED : SIGNED); return immed_wide_int_const (w, int_mode); } /* We can do this with a gen_lowpart if both desired and current modes are integer, and this is either a constant integer, a register, or a non-volatile MEM. */ scalar_int_mode int_oldmode; if (is_int_mode (mode, &int_mode) && is_int_mode (oldmode, &int_oldmode) && GET_MODE_PRECISION (int_mode) <= GET_MODE_PRECISION (int_oldmode) && ((MEM_P (x) && !MEM_VOLATILE_P (x) && direct_load[(int) int_mode]) || CONST_POLY_INT_P (x) || (REG_P (x) && (!HARD_REGISTER_P (x) || targetm.hard_regno_mode_ok (REGNO (x), int_mode)) && TRULY_NOOP_TRUNCATION_MODES_P (int_mode, GET_MODE (x))))) return gen_lowpart (int_mode, x); /* Converting from integer constant into mode is always equivalent to an subreg operation. */ if (VECTOR_MODE_P (mode) && GET_MODE (x) == VOIDmode) { gcc_assert (known_eq (GET_MODE_BITSIZE (mode), GET_MODE_BITSIZE (oldmode))); return simplify_gen_subreg (mode, x, oldmode, 0); } temp = gen_reg_rtx (mode); convert_move (temp, x, unsignedp); return temp; } /* Return the largest alignment we can use for doing a move (or store) of MAX_PIECES. ALIGN is the largest alignment we could use. */ static unsigned int alignment_for_piecewise_move (unsigned int max_pieces, unsigned int align) { scalar_int_mode tmode = int_mode_for_size (max_pieces * BITS_PER_UNIT, 1).require (); if (align >= GET_MODE_ALIGNMENT (tmode)) align = GET_MODE_ALIGNMENT (tmode); else { scalar_int_mode xmode = NARROWEST_INT_MODE; opt_scalar_int_mode mode_iter; FOR_EACH_MODE_IN_CLASS (mode_iter, MODE_INT) { tmode = mode_iter.require (); if (GET_MODE_SIZE (tmode) > max_pieces || targetm.slow_unaligned_access (tmode, align)) break; xmode = tmode; } align = MAX (align, GET_MODE_ALIGNMENT (xmode)); } return align; } /* Return the widest integer mode that is narrower than SIZE bytes. */ static scalar_int_mode widest_int_mode_for_size (unsigned int size) { scalar_int_mode result = NARROWEST_INT_MODE; gcc_checking_assert (size > 1); opt_scalar_int_mode tmode; FOR_EACH_MODE_IN_CLASS (tmode, MODE_INT) if (GET_MODE_SIZE (tmode.require ()) < size) result = tmode.require (); return result; } /* Determine whether an operation OP on LEN bytes with alignment ALIGN can and should be performed piecewise. */ static bool can_do_by_pieces (unsigned HOST_WIDE_INT len, unsigned int align, enum by_pieces_operation op) { return targetm.use_by_pieces_infrastructure_p (len, align, op, optimize_insn_for_speed_p ()); } /* Determine whether the LEN bytes can be moved by using several move instructions. Return nonzero if a call to move_by_pieces should succeed. */ bool can_move_by_pieces (unsigned HOST_WIDE_INT len, unsigned int align) { return can_do_by_pieces (len, align, MOVE_BY_PIECES); } /* Return number of insns required to perform operation OP by pieces for L bytes. ALIGN (in bits) is maximum alignment we can assume. */ unsigned HOST_WIDE_INT by_pieces_ninsns (unsigned HOST_WIDE_INT l, unsigned int align, unsigned int max_size, by_pieces_operation op) { unsigned HOST_WIDE_INT n_insns = 0; align = alignment_for_piecewise_move (MOVE_MAX_PIECES, align); while (max_size > 1 && l > 0) { scalar_int_mode mode = widest_int_mode_for_size (max_size); enum insn_code icode; unsigned int modesize = GET_MODE_SIZE (mode); icode = optab_handler (mov_optab, mode); if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode)) { unsigned HOST_WIDE_INT n_pieces = l / modesize; l %= modesize; switch (op) { default: n_insns += n_pieces; break; case COMPARE_BY_PIECES: int batch = targetm.compare_by_pieces_branch_ratio (mode); int batch_ops = 4 * batch - 1; unsigned HOST_WIDE_INT full = n_pieces / batch; n_insns += full * batch_ops; if (n_pieces % batch != 0) n_insns++; break; } } max_size = modesize; } gcc_assert (!l); return n_insns; } /* Used when performing piecewise block operations, holds information about one of the memory objects involved. The member functions can be used to generate code for loading from the object and updating the address when iterating. */ class pieces_addr { /* The object being referenced, a MEM. Can be NULL_RTX to indicate stack pushes. */ rtx m_obj; /* The address of the object. Can differ from that seen in the MEM rtx if we copied the address to a register. */ rtx m_addr; /* Nonzero if the address on the object has an autoincrement already, signifies whether that was an increment or decrement. */ signed char m_addr_inc; /* Nonzero if we intend to use autoinc without the address already having autoinc form. We will insert add insns around each memory reference, expecting later passes to form autoinc addressing modes. The only supported options are predecrement and postincrement. */ signed char m_explicit_inc; /* True if we have either of the two possible cases of using autoincrement. */ bool m_auto; /* True if this is an address to be used for load operations rather than stores. */ bool m_is_load; /* Optionally, a function to obtain constants for any given offset into the objects, and data associated with it. */ by_pieces_constfn m_constfn; void *m_cfndata; public: pieces_addr (rtx, bool, by_pieces_constfn, void *); rtx adjust (scalar_int_mode, HOST_WIDE_INT); void increment_address (HOST_WIDE_INT); void maybe_predec (HOST_WIDE_INT); void maybe_postinc (HOST_WIDE_INT); void decide_autoinc (machine_mode, bool, HOST_WIDE_INT); int get_addr_inc () { return m_addr_inc; } }; /* Initialize a pieces_addr structure from an object OBJ. IS_LOAD is true if the operation to be performed on this object is a load rather than a store. For stores, OBJ can be NULL, in which case we assume the operation is a stack push. For loads, the optional CONSTFN and its associated CFNDATA can be used in place of the memory load. */ pieces_addr::pieces_addr (rtx obj, bool is_load, by_pieces_constfn constfn, void *cfndata) : m_obj (obj), m_is_load (is_load), m_constfn (constfn), m_cfndata (cfndata) { m_addr_inc = 0; m_auto = false; if (obj) { rtx addr = XEXP (obj, 0); rtx_code code = GET_CODE (addr); m_addr = addr; bool dec = code == PRE_DEC || code == POST_DEC; bool inc = code == PRE_INC || code == POST_INC; m_auto = inc || dec; if (m_auto) m_addr_inc = dec ? -1 : 1; /* While we have always looked for these codes here, the code implementing the memory operation has never handled them. Support could be added later if necessary or beneficial. */ gcc_assert (code != PRE_INC && code != POST_DEC); } else { m_addr = NULL_RTX; if (!is_load) { m_auto = true; if (STACK_GROWS_DOWNWARD) m_addr_inc = -1; else m_addr_inc = 1; } else gcc_assert (constfn != NULL); } m_explicit_inc = 0; if (constfn) gcc_assert (is_load); } /* Decide whether to use autoinc for an address involved in a memory op. MODE is the mode of the accesses, REVERSE is true if we've decided to perform the operation starting from the end, and LEN is the length of the operation. Don't override an earlier decision to set m_auto. */ void pieces_addr::decide_autoinc (machine_mode ARG_UNUSED (mode), bool reverse, HOST_WIDE_INT len) { if (m_auto || m_obj == NULL_RTX) return; bool use_predec = (m_is_load ? USE_LOAD_PRE_DECREMENT (mode) : USE_STORE_PRE_DECREMENT (mode)); bool use_postinc = (m_is_load ? USE_LOAD_POST_INCREMENT (mode) : USE_STORE_POST_INCREMENT (mode)); machine_mode addr_mode = get_address_mode (m_obj); if (use_predec && reverse) { m_addr = copy_to_mode_reg (addr_mode, plus_constant (addr_mode, m_addr, len)); m_auto = true; m_explicit_inc = -1; } else if (use_postinc && !reverse) { m_addr = copy_to_mode_reg (addr_mode, m_addr); m_auto = true; m_explicit_inc = 1; } else if (CONSTANT_P (m_addr)) m_addr = copy_to_mode_reg (addr_mode, m_addr); } /* Adjust the address to refer to the data at OFFSET in MODE. If we are using autoincrement for this address, we don't add the offset, but we still modify the MEM's properties. */ rtx pieces_addr::adjust (scalar_int_mode mode, HOST_WIDE_INT offset) { if (m_constfn) return m_constfn (m_cfndata, offset, mode); if (m_obj == NULL_RTX) return NULL_RTX; if (m_auto) return adjust_automodify_address (m_obj, mode, m_addr, offset); else return adjust_address (m_obj, mode, offset); } /* Emit an add instruction to increment the address by SIZE. */ void pieces_addr::increment_address (HOST_WIDE_INT size) { rtx amount = gen_int_mode (size, GET_MODE (m_addr)); emit_insn (gen_add2_insn (m_addr, amount)); } /* If we are supposed to decrement the address after each access, emit code to do so now. Increment by SIZE (which has should have the correct sign already). */ void pieces_addr::maybe_predec (HOST_WIDE_INT size) { if (m_explicit_inc >= 0) return; gcc_assert (HAVE_PRE_DECREMENT); increment_address (size); } /* If we are supposed to decrement the address after each access, emit code to do so now. Increment by SIZE. */ void pieces_addr::maybe_postinc (HOST_WIDE_INT size) { if (m_explicit_inc <= 0) return; gcc_assert (HAVE_POST_INCREMENT); increment_address (size); } /* This structure is used by do_op_by_pieces to describe the operation to be performed. */ class op_by_pieces_d { protected: pieces_addr m_to, m_from; unsigned HOST_WIDE_INT m_len; HOST_WIDE_INT m_offset; unsigned int m_align; unsigned int m_max_size; bool m_reverse; /* Virtual functions, overriden by derived classes for the specific operation. */ virtual void generate (rtx, rtx, machine_mode) = 0; virtual bool prepare_mode (machine_mode, unsigned int) = 0; virtual void finish_mode (machine_mode) { } public: op_by_pieces_d (rtx, bool, rtx, bool, by_pieces_constfn, void *, unsigned HOST_WIDE_INT, unsigned int); void run (); }; /* The constructor for an op_by_pieces_d structure. We require two objects named TO and FROM, which are identified as loads or stores by TO_LOAD and FROM_LOAD. If FROM is a load, the optional FROM_CFN and its associated FROM_CFN_DATA can be used to replace loads with constant values. LEN describes the length of the operation. */ op_by_pieces_d::op_by_pieces_d (rtx to, bool to_load, rtx from, bool from_load, by_pieces_constfn from_cfn, void *from_cfn_data, unsigned HOST_WIDE_INT len, unsigned int align) : m_to (to, to_load, NULL, NULL), m_from (from, from_load, from_cfn, from_cfn_data), m_len (len), m_max_size (MOVE_MAX_PIECES + 1) { int toi = m_to.get_addr_inc (); int fromi = m_from.get_addr_inc (); if (toi >= 0 && fromi >= 0) m_reverse = false; else if (toi <= 0 && fromi <= 0) m_reverse = true; else gcc_unreachable (); m_offset = m_reverse ? len : 0; align = MIN (to ? MEM_ALIGN (to) : align, from ? MEM_ALIGN (from) : align); /* If copying requires more than two move insns, copy addresses to registers (to make displacements shorter) and use post-increment if available. */ if (by_pieces_ninsns (len, align, m_max_size, MOVE_BY_PIECES) > 2) { /* Find the mode of the largest comparison. */ scalar_int_mode mode = widest_int_mode_for_size (m_max_size); m_from.decide_autoinc (mode, m_reverse, len); m_to.decide_autoinc (mode, m_reverse, len); } align = alignment_for_piecewise_move (MOVE_MAX_PIECES, align); m_align = align; } /* This function contains the main loop used for expanding a block operation. First move what we can in the largest integer mode, then go to successively smaller modes. For every access, call GENFUN with the two operands and the EXTRA_DATA. */ void op_by_pieces_d::run () { while (m_max_size > 1 && m_len > 0) { scalar_int_mode mode = widest_int_mode_for_size (m_max_size); if (prepare_mode (mode, m_align)) { unsigned int size = GET_MODE_SIZE (mode); rtx to1 = NULL_RTX, from1; while (m_len >= size) { if (m_reverse) m_offset -= size; to1 = m_to.adjust (mode, m_offset); from1 = m_from.adjust (mode, m_offset); m_to.maybe_predec (-(HOST_WIDE_INT)size); m_from.maybe_predec (-(HOST_WIDE_INT)size); generate (to1, from1, mode); m_to.maybe_postinc (size); m_from.maybe_postinc (size); if (!m_reverse) m_offset += size; m_len -= size; } finish_mode (mode); } m_max_size = GET_MODE_SIZE (mode); } /* The code above should have handled everything. */ gcc_assert (!m_len); } /* Derived class from op_by_pieces_d, providing support for block move operations. */ class move_by_pieces_d : public op_by_pieces_d { insn_gen_fn m_gen_fun; void generate (rtx, rtx, machine_mode); bool prepare_mode (machine_mode, unsigned int); public: move_by_pieces_d (rtx to, rtx from, unsigned HOST_WIDE_INT len, unsigned int align) : op_by_pieces_d (to, false, from, true, NULL, NULL, len, align) { } rtx finish_endp (int); }; /* Return true if MODE can be used for a set of copies, given an alignment ALIGN. Prepare whatever data is necessary for later calls to generate. */ bool move_by_pieces_d::prepare_mode (machine_mode mode, unsigned int align) { insn_code icode = optab_handler (mov_optab, mode); m_gen_fun = GEN_FCN (icode); return icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode); } /* A callback used when iterating for a compare_by_pieces_operation. OP0 and OP1 are the values that have been loaded and should be compared in MODE. If OP0 is NULL, this means we should generate a push; otherwise EXTRA_DATA holds a pointer to a pointer to the insn gen function that should be used to generate the mode. */ void move_by_pieces_d::generate (rtx op0, rtx op1, machine_mode mode ATTRIBUTE_UNUSED) { #ifdef PUSH_ROUNDING if (op0 == NULL_RTX) { emit_single_push_insn (mode, op1, NULL); return; } #endif emit_insn (m_gen_fun (op0, op1)); } /* Perform the final adjustment at the end of a string to obtain the correct return value for the block operation. If ENDP is 1 return memory at the end ala mempcpy, and if ENDP is 2 return memory the end minus one byte ala stpcpy. */ rtx move_by_pieces_d::finish_endp (int endp) { gcc_assert (!m_reverse); if (endp == 2) { m_to.maybe_postinc (-1); --m_offset; } return m_to.adjust (QImode, m_offset); } /* Generate several move instructions to copy LEN bytes from block FROM to block TO. (These are MEM rtx's with BLKmode). If PUSH_ROUNDING is defined and TO is NULL, emit_single_push_insn is used to push FROM to the stack. ALIGN is maximum stack alignment we can assume. If ENDP is 0 return to, if ENDP is 1 return memory at the end ala mempcpy, and if ENDP is 2 return memory the end minus one byte ala stpcpy. */ rtx move_by_pieces (rtx to, rtx from, unsigned HOST_WIDE_INT len, unsigned int align, int endp) { #ifndef PUSH_ROUNDING if (to == NULL) gcc_unreachable (); #endif move_by_pieces_d data (to, from, len, align); data.run (); if (endp) return data.finish_endp (endp); else return to; } /* Derived class from op_by_pieces_d, providing support for block move operations. */ class store_by_pieces_d : public op_by_pieces_d { insn_gen_fn m_gen_fun; void generate (rtx, rtx, machine_mode); bool prepare_mode (machine_mode, unsigned int); public: store_by_pieces_d (rtx to, by_pieces_constfn cfn, void *cfn_data, unsigned HOST_WIDE_INT len, unsigned int align) : op_by_pieces_d (to, false, NULL_RTX, true, cfn, cfn_data, len, align) { } rtx finish_endp (int); }; /* Return true if MODE can be used for a set of stores, given an alignment ALIGN. Prepare whatever data is necessary for later calls to generate. */ bool store_by_pieces_d::prepare_mode (machine_mode mode, unsigned int align) { insn_code icode = optab_handler (mov_optab, mode); m_gen_fun = GEN_FCN (icode); return icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode); } /* A callback used when iterating for a store_by_pieces_operation. OP0 and OP1 are the values that have been loaded and should be compared in MODE. If OP0 is NULL, this means we should generate a push; otherwise EXTRA_DATA holds a pointer to a pointer to the insn gen function that should be used to generate the mode. */ void store_by_pieces_d::generate (rtx op0, rtx op1, machine_mode) { emit_insn (m_gen_fun (op0, op1)); } /* Perform the final adjustment at the end of a string to obtain the correct return value for the block operation. If ENDP is 1 return memory at the end ala mempcpy, and if ENDP is 2 return memory the end minus one byte ala stpcpy. */ rtx store_by_pieces_d::finish_endp (int endp) { gcc_assert (!m_reverse); if (endp == 2) { m_to.maybe_postinc (-1); --m_offset; } return m_to.adjust (QImode, m_offset); } /* Determine whether the LEN bytes generated by CONSTFUN can be stored to memory using several move instructions. CONSTFUNDATA is a pointer which will be passed as argument in every CONSTFUN call. ALIGN is maximum alignment we can assume. MEMSETP is true if this is a memset operation and false if it's a copy of a constant string. Return nonzero if a call to store_by_pieces should succeed. */ int can_store_by_pieces (unsigned HOST_WIDE_INT len, rtx (*constfun) (void *, HOST_WIDE_INT, scalar_int_mode), void *constfundata, unsigned int align, bool memsetp) { unsigned HOST_WIDE_INT l; unsigned int max_size; HOST_WIDE_INT offset = 0; enum insn_code icode; int reverse; /* cst is set but not used if LEGITIMATE_CONSTANT doesn't use it. */ rtx cst ATTRIBUTE_UNUSED; if (len == 0) return 1; if (!targetm.use_by_pieces_infrastructure_p (len, align, memsetp ? SET_BY_PIECES : STORE_BY_PIECES, optimize_insn_for_speed_p ())) return 0; align = alignment_for_piecewise_move (STORE_MAX_PIECES, align); /* We would first store what we can in the largest integer mode, then go to successively smaller modes. */ for (reverse = 0; reverse <= (HAVE_PRE_DECREMENT || HAVE_POST_DECREMENT); reverse++) { l = len; max_size = STORE_MAX_PIECES + 1; while (max_size > 1 && l > 0) { scalar_int_mode mode = widest_int_mode_for_size (max_size); icode = optab_handler (mov_optab, mode); if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode)) { unsigned int size = GET_MODE_SIZE (mode); while (l >= size) { if (reverse) offset -= size; cst = (*constfun) (constfundata, offset, mode); if (!targetm.legitimate_constant_p (mode, cst)) return 0; if (!reverse) offset += size; l -= size; } } max_size = GET_MODE_SIZE (mode); } /* The code above should have handled everything. */ gcc_assert (!l); } return 1; } /* Generate several move instructions to store LEN bytes generated by CONSTFUN to block TO. (A MEM rtx with BLKmode). CONSTFUNDATA is a pointer which will be passed as argument in every CONSTFUN call. ALIGN is maximum alignment we can assume. MEMSETP is true if this is a memset operation and false if it's a copy of a constant string. If ENDP is 0 return to, if ENDP is 1 return memory at the end ala mempcpy, and if ENDP is 2 return memory the end minus one byte ala stpcpy. */ rtx store_by_pieces (rtx to, unsigned HOST_WIDE_INT len, rtx (*constfun) (void *, HOST_WIDE_INT, scalar_int_mode), void *constfundata, unsigned int align, bool memsetp, int endp) { if (len == 0) { gcc_assert (endp != 2); return to; } gcc_assert (targetm.use_by_pieces_infrastructure_p (len, align, memsetp ? SET_BY_PIECES : STORE_BY_PIECES, optimize_insn_for_speed_p ())); store_by_pieces_d data (to, constfun, constfundata, len, align); data.run (); if (endp) return data.finish_endp (endp); else return to; } /* Callback routine for clear_by_pieces. Return const0_rtx unconditionally. */ static rtx clear_by_pieces_1 (void *, HOST_WIDE_INT, scalar_int_mode) { return const0_rtx; } /* Generate several move instructions to clear LEN bytes of block TO. (A MEM rtx with BLKmode). ALIGN is maximum alignment we can assume. */ static void clear_by_pieces (rtx to, unsigned HOST_WIDE_INT len, unsigned int align) { if (len == 0) return; store_by_pieces_d data (to, clear_by_pieces_1, NULL, len, align); data.run (); } /* Context used by compare_by_pieces_genfn. It stores the fail label to jump to in case of miscomparison, and for branch ratios greater than 1, it stores an accumulator and the current and maximum counts before emitting another branch. */ class compare_by_pieces_d : public op_by_pieces_d { rtx_code_label *m_fail_label; rtx m_accumulator; int m_count, m_batch; void generate (rtx, rtx, machine_mode); bool prepare_mode (machine_mode, unsigned int); void finish_mode (machine_mode); public: compare_by_pieces_d (rtx op0, rtx op1, by_pieces_constfn op1_cfn, void *op1_cfn_data, HOST_WIDE_INT len, int align, rtx_code_label *fail_label) : op_by_pieces_d (op0, true, op1, true, op1_cfn, op1_cfn_data, len, align) { m_fail_label = fail_label; } }; /* A callback used when iterating for a compare_by_pieces_operation. OP0 and OP1 are the values that have been loaded and should be compared in MODE. DATA holds a pointer to the compare_by_pieces_data context structure. */ void compare_by_pieces_d::generate (rtx op0, rtx op1, machine_mode mode) { if (m_batch > 1) { rtx temp = expand_binop (mode, sub_optab, op0, op1, NULL_RTX, true, OPTAB_LIB_WIDEN); if (m_count != 0) temp = expand_binop (mode, ior_optab, m_accumulator, temp, temp, true, OPTAB_LIB_WIDEN); m_accumulator = temp; if (++m_count < m_batch) return; m_count = 0; op0 = m_accumulator; op1 = const0_rtx; m_accumulator = NULL_RTX; } do_compare_rtx_and_jump (op0, op1, NE, true, mode, NULL_RTX, NULL, m_fail_label, profile_probability::uninitialized ()); } /* Return true if MODE can be used for a set of moves and comparisons, given an alignment ALIGN. Prepare whatever data is necessary for later calls to generate. */ bool compare_by_pieces_d::prepare_mode (machine_mode mode, unsigned int align) { insn_code icode = optab_handler (mov_optab, mode); if (icode == CODE_FOR_nothing || align < GET_MODE_ALIGNMENT (mode) || !can_compare_p (EQ, mode, ccp_jump)) return false; m_batch = targetm.compare_by_pieces_branch_ratio (mode); if (m_batch < 0) return false; m_accumulator = NULL_RTX; m_count = 0; return true; } /* Called after expanding a series of comparisons in MODE. If we have accumulated results for which we haven't emitted a branch yet, do so now. */ void compare_by_pieces_d::finish_mode (machine_mode mode) { if (m_accumulator != NULL_RTX) do_compare_rtx_and_jump (m_accumulator, const0_rtx, NE, true, mode, NULL_RTX, NULL, m_fail_label, profile_probability::uninitialized ()); } /* Generate several move instructions to compare LEN bytes from blocks ARG0 and ARG1. (These are MEM rtx's with BLKmode). If PUSH_ROUNDING is defined and TO is NULL, emit_single_push_insn is used to push FROM to the stack. ALIGN is maximum stack alignment we can assume. Optionally, the caller can pass a constfn and associated data in A1_CFN and A1_CFN_DATA. describing that the second operand being compared is a known constant and how to obtain its data. */ static rtx compare_by_pieces (rtx arg0, rtx arg1, unsigned HOST_WIDE_INT len, rtx target, unsigned int align, by_pieces_constfn a1_cfn, void *a1_cfn_data) { rtx_code_label *fail_label = gen_label_rtx (); rtx_code_label *end_label = gen_label_rtx (); if (target == NULL_RTX || !REG_P (target) || REGNO (target) < FIRST_PSEUDO_REGISTER) target = gen_reg_rtx (TYPE_MODE (integer_type_node)); compare_by_pieces_d data (arg0, arg1, a1_cfn, a1_cfn_data, len, align, fail_label); data.run (); emit_move_insn (target, const0_rtx); emit_jump (end_label); emit_barrier (); emit_label (fail_label); emit_move_insn (target, const1_rtx); emit_label (end_label); return target; } /* Emit code to move a block Y to a block X. This may be done with string-move instructions, with multiple scalar move instructions, or with a library call. Both X and Y must be MEM rtx's (perhaps inside VOLATILE) with mode BLKmode. SIZE is an rtx that says how long they are. ALIGN is the maximum alignment we can assume they have. METHOD describes what kind of copy this is, and what mechanisms may be used. MIN_SIZE is the minimal size of block to move MAX_SIZE is the maximal size of block to move, if it can not be represented in unsigned HOST_WIDE_INT, than it is mask of all ones. Return the address of the new block, if memcpy is called and returns it, 0 otherwise. */ rtx emit_block_move_hints (rtx x, rtx y, rtx size, enum block_op_methods method, unsigned int expected_align, HOST_WIDE_INT expected_size, unsigned HOST_WIDE_INT min_size, unsigned HOST_WIDE_INT max_size, unsigned HOST_WIDE_INT probable_max_size) { int may_use_call; rtx retval = 0; unsigned int align; gcc_assert (size); if (CONST_INT_P (size) && INTVAL (size) == 0) return 0; switch (method) { case BLOCK_OP_NORMAL: case BLOCK_OP_TAILCALL: may_use_call = 1; break; case BLOCK_OP_CALL_PARM: may_use_call = block_move_libcall_safe_for_call_parm (); /* Make inhibit_defer_pop nonzero around the library call to force it to pop the arguments right away. */ NO_DEFER_POP; break; case BLOCK_OP_NO_LIBCALL: may_use_call = 0; break; case BLOCK_OP_NO_LIBCALL_RET: may_use_call = -1; break; default: gcc_unreachable (); } gcc_assert (MEM_P (x) && MEM_P (y)); align = MIN (MEM_ALIGN (x), MEM_ALIGN (y)); gcc_assert (align >= BITS_PER_UNIT); /* Make sure we've got BLKmode addresses; store_one_arg can decide that block copy is more efficient for other large modes, e.g. DCmode. */ x = adjust_address (x, BLKmode, 0); y = adjust_address (y, BLKmode, 0); /* Set MEM_SIZE as appropriate for this block copy. The main place this can be incorrect is coming from __builtin_memcpy. */ if (CONST_INT_P (size)) { x = shallow_copy_rtx (x); y = shallow_copy_rtx (y); set_mem_size (x, INTVAL (size)); set_mem_size (y, INTVAL (size)); } if (CONST_INT_P (size) && can_move_by_pieces (INTVAL (size), align)) move_by_pieces (x, y, INTVAL (size), align, 0); else if (emit_block_move_via_movmem (x, y, size, align, expected_align, expected_size, min_size, max_size, probable_max_size)) ; else if (may_use_call && ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (x)) && ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (y))) { if (may_use_call < 0) return pc_rtx; retval = emit_block_copy_via_libcall (x, y, size, method == BLOCK_OP_TAILCALL); } else emit_block_move_via_loop (x, y, size, align); if (method == BLOCK_OP_CALL_PARM) OK_DEFER_POP; return retval; } rtx emit_block_move (rtx x, rtx y, rtx size, enum block_op_methods method) { unsigned HOST_WIDE_INT max, min = 0; if (GET_CODE (size) == CONST_INT) min = max = UINTVAL (size); else max = GET_MODE_MASK (GET_MODE (size)); return emit_block_move_hints (x, y, size, method, 0, -1, min, max, max); } /* A subroutine of emit_block_move. Returns true if calling the block move libcall will not clobber any parameters which may have already been placed on the stack. */ static bool block_move_libcall_safe_for_call_parm (void) { #if defined (REG_PARM_STACK_SPACE) tree fn; #endif /* If arguments are pushed on the stack, then they're safe. */ if (PUSH_ARGS) return true; /* If registers go on the stack anyway, any argument is sure to clobber an outgoing argument. */ #if defined (REG_PARM_STACK_SPACE) fn = builtin_decl_implicit (BUILT_IN_MEMCPY); /* Avoid set but not used warning if *REG_PARM_STACK_SPACE doesn't depend on its argument. */ (void) fn; if (OUTGOING_REG_PARM_STACK_SPACE ((!fn ? NULL_TREE : TREE_TYPE (fn))) && REG_PARM_STACK_SPACE (fn) != 0) return false; #endif /* If any argument goes in memory, then it might clobber an outgoing argument. */ { CUMULATIVE_ARGS args_so_far_v; cumulative_args_t args_so_far; tree fn, arg; fn = builtin_decl_implicit (BUILT_IN_MEMCPY); INIT_CUMULATIVE_ARGS (args_so_far_v, TREE_TYPE (fn), NULL_RTX, 0, 3); args_so_far = pack_cumulative_args (&args_so_far_v); arg = TYPE_ARG_TYPES (TREE_TYPE (fn)); for ( ; arg != void_list_node ; arg = TREE_CHAIN (arg)) { machine_mode mode = TYPE_MODE (TREE_VALUE (arg)); rtx tmp = targetm.calls.function_arg (args_so_far, mode, NULL_TREE, true); if (!tmp || !REG_P (tmp)) return false; if (targetm.calls.arg_partial_bytes (args_so_far, mode, NULL, 1)) return false; targetm.calls.function_arg_advance (args_so_far, mode, NULL_TREE, true); } } return true; } /* A subroutine of emit_block_move. Expand a movmem pattern; return true if successful. */ static bool emit_block_move_via_movmem (rtx x, rtx y, rtx size, unsigned int align, unsigned int expected_align, HOST_WIDE_INT expected_size, unsigned HOST_WIDE_INT min_size, unsigned HOST_WIDE_INT max_size, unsigned HOST_WIDE_INT probable_max_size) { int save_volatile_ok = volatile_ok; if (expected_align < align) expected_align = align; if (expected_size != -1) { if ((unsigned HOST_WIDE_INT)expected_size > probable_max_size) expected_size = probable_max_size; if ((unsigned HOST_WIDE_INT)expected_size < min_size) expected_size = min_size; } /* Since this is a move insn, we don't care about volatility. */ volatile_ok = 1; /* Try the most limited insn first, because there's no point including more than one in the machine description unless the more limited one has some advantage. */ opt_scalar_int_mode mode_iter; FOR_EACH_MODE_IN_CLASS (mode_iter, MODE_INT) { scalar_int_mode mode = mode_iter.require (); enum insn_code code = direct_optab_handler (movmem_optab, mode); if (code != CODE_FOR_nothing /* We don't need MODE to be narrower than BITS_PER_HOST_WIDE_INT here because if SIZE is less than the mode mask, as it is returned by the macro, it will definitely be less than the actual mode mask. Since SIZE is within the Pmode address space, we limit MODE to Pmode. */ && ((CONST_INT_P (size) && ((unsigned HOST_WIDE_INT) INTVAL (size) <= (GET_MODE_MASK (mode) >> 1))) || max_size <= (GET_MODE_MASK (mode) >> 1) || GET_MODE_BITSIZE (mode) >= GET_MODE_BITSIZE (Pmode))) { struct expand_operand ops[9]; unsigned int nops; /* ??? When called via emit_block_move_for_call, it'd be nice if there were some way to inform the backend, so that it doesn't fail the expansion because it thinks emitting the libcall would be more efficient. */ nops = insn_data[(int) code].n_generator_args; gcc_assert (nops == 4 || nops == 6 || nops == 8 || nops == 9); create_fixed_operand (&ops[0], x); create_fixed_operand (&ops[1], y); /* The check above guarantees that this size conversion is valid. */ create_convert_operand_to (&ops[2], size, mode, true); create_integer_operand (&ops[3], align / BITS_PER_UNIT); if (nops >= 6) { create_integer_operand (&ops[4], expected_align / BITS_PER_UNIT); create_integer_operand (&ops[5], expected_size); } if (nops >= 8) { create_integer_operand (&ops[6], min_size); /* If we can not represent the maximal size, make parameter NULL. */ if ((HOST_WIDE_INT) max_size != -1) create_integer_operand (&ops[7], max_size); else create_fixed_operand (&ops[7], NULL); } if (nops == 9) { /* If we can not represent the maximal size, make parameter NULL. */ if ((HOST_WIDE_INT) probable_max_size != -1) create_integer_operand (&ops[8], probable_max_size); else create_fixed_operand (&ops[8], NULL); } if (maybe_expand_insn (code, nops, ops)) { volatile_ok = save_volatile_ok; return true; } } } volatile_ok = save_volatile_ok; return false; } /* A subroutine of emit_block_move. Copy the data via an explicit loop. This is used only when libcalls are forbidden. */ /* ??? It'd be nice to copy in hunks larger than QImode. */ static void emit_block_move_via_loop (rtx x, rtx y, rtx size, unsigned int align ATTRIBUTE_UNUSED) { rtx_code_label *cmp_label, *top_label; rtx iter, x_addr, y_addr, tmp; machine_mode x_addr_mode = get_address_mode (x); machine_mode y_addr_mode = get_address_mode (y); machine_mode iter_mode; iter_mode = GET_MODE (size); if (iter_mode == VOIDmode) iter_mode = word_mode; top_label = gen_label_rtx (); cmp_label = gen_label_rtx (); iter = gen_reg_rtx (iter_mode); emit_move_insn (iter, const0_rtx); x_addr = force_operand (XEXP (x, 0), NULL_RTX); y_addr = force_operand (XEXP (y, 0), NULL_RTX); do_pending_stack_adjust (); emit_jump (cmp_label); emit_label (top_label); tmp = convert_modes (x_addr_mode, iter_mode, iter, true); x_addr = simplify_gen_binary (PLUS, x_addr_mode, x_addr, tmp); if (x_addr_mode != y_addr_mode) tmp = convert_modes (y_addr_mode, iter_mode, iter, true); y_addr = simplify_gen_binary (PLUS, y_addr_mode, y_addr, tmp); x = change_address (x, QImode, x_addr); y = change_address (y, QImode, y_addr); emit_move_insn (x, y); tmp = expand_simple_binop (iter_mode, PLUS, iter, const1_rtx, iter, true, OPTAB_LIB_WIDEN); if (tmp != iter) emit_move_insn (iter, tmp); emit_label (cmp_label); emit_cmp_and_jump_insns (iter, size, LT, NULL_RTX, iter_mode, true, top_label, profile_probability::guessed_always () .apply_scale (9, 10)); } /* Expand a call to memcpy or memmove or memcmp, and return the result. TAILCALL is true if this is a tail call. */ rtx emit_block_op_via_libcall (enum built_in_function fncode, rtx dst, rtx src, rtx size, bool tailcall) { rtx dst_addr, src_addr; tree call_expr, dst_tree, src_tree, size_tree; machine_mode size_mode; /* Since dst and src are passed to a libcall, mark the corresponding tree EXPR as addressable. */ tree dst_expr = MEM_EXPR (dst); tree src_expr = MEM_EXPR (src); if (dst_expr) mark_addressable (dst_expr); if (src_expr) mark_addressable (src_expr); dst_addr = copy_addr_to_reg (XEXP (dst, 0)); dst_addr = convert_memory_address (ptr_mode, dst_addr); dst_tree = make_tree (ptr_type_node, dst_addr); src_addr = copy_addr_to_reg (XEXP (src, 0)); src_addr = convert_memory_address (ptr_mode, src_addr); src_tree = make_tree (ptr_type_node, src_addr); size_mode = TYPE_MODE (sizetype); size = convert_to_mode (size_mode, size, 1); size = copy_to_mode_reg (size_mode, size); size_tree = make_tree (sizetype, size); /* It is incorrect to use the libcall calling conventions for calls to memcpy/memmove/memcmp because they can be provided by the user. */ tree fn = builtin_decl_implicit (fncode); call_expr = build_call_expr (fn, 3, dst_tree, src_tree, size_tree); CALL_EXPR_TAILCALL (call_expr) = tailcall; return expand_call (call_expr, NULL_RTX, false); } /* Try to expand cmpstrn or cmpmem operation ICODE with the given operands. ARG3_TYPE is the type of ARG3_RTX. Return the result rtx on success, otherwise return null. */ rtx expand_cmpstrn_or_cmpmem (insn_code icode, rtx target, rtx arg1_rtx, rtx arg2_rtx, tree arg3_type, rtx arg3_rtx, HOST_WIDE_INT align) { machine_mode insn_mode = insn_data[icode].operand[0].mode; if (target && (!REG_P (target) || HARD_REGISTER_P (target))) target = NULL_RTX; struct expand_operand ops[5]; create_output_operand (&ops[0], target, insn_mode); create_fixed_operand (&ops[1], arg1_rtx); create_fixed_operand (&ops[2], arg2_rtx); create_convert_operand_from (&ops[3], arg3_rtx, TYPE_MODE (arg3_type), TYPE_UNSIGNED (arg3_type)); create_integer_operand (&ops[4], align); if (maybe_expand_insn (icode, 5, ops)) return ops[0].value; return NULL_RTX; } /* Expand a block compare between X and Y with length LEN using the cmpmem optab, placing the result in TARGET. LEN_TYPE is the type of the expression that was used to calculate the length. ALIGN gives the known minimum common alignment. */ static rtx emit_block_cmp_via_cmpmem (rtx x, rtx y, rtx len, tree len_type, rtx target, unsigned align) { /* Note: The cmpstrnsi pattern, if it exists, is not suitable for implementing memcmp because it will stop if it encounters two zero bytes. */ insn_code icode = direct_optab_handler (cmpmem_optab, SImode); if (icode == CODE_FOR_nothing) return NULL_RTX; return expand_cmpstrn_or_cmpmem (icode, target, x, y, len_type, len, align); } /* Emit code to compare a block Y to a block X. This may be done with string-compare instructions, with multiple scalar instructions, or with a library call. Both X and Y must be MEM rtx's. LEN is an rtx that says how long they are. LEN_TYPE is the type of the expression that was used to calculate it. If EQUALITY_ONLY is true, it means we don't have to return the tri-state value of a normal memcmp call, instead we can just compare for equality. If FORCE_LIBCALL is true, we should emit a call to memcmp rather than returning NULL_RTX. Optionally, the caller can pass a constfn and associated data in Y_CFN and Y_CFN_DATA. describing that the second operand being compared is a known constant and how to obtain its data. Return the result of the comparison, or NULL_RTX if we failed to perform the operation. */ rtx emit_block_cmp_hints (rtx x, rtx y, rtx len, tree len_type, rtx target, bool equality_only, by_pieces_constfn y_cfn, void *y_cfndata) { rtx result = 0; if (CONST_INT_P (len) && INTVAL (len) == 0) return const0_rtx; gcc_assert (MEM_P (x) && MEM_P (y)); unsigned int align = MIN (MEM_ALIGN (x), MEM_ALIGN (y)); gcc_assert (align >= BITS_PER_UNIT); x = adjust_address (x, BLKmode, 0); y = adjust_address (y, BLKmode, 0); if (equality_only && CONST_INT_P (len) && can_do_by_pieces (INTVAL (len), align, COMPARE_BY_PIECES)) result = compare_by_pieces (x, y, INTVAL (len), target, align, y_cfn, y_cfndata); else result = emit_block_cmp_via_cmpmem (x, y, len, len_type, target, align); return result; } /* Copy all or part of a value X into registers starting at REGNO. The number of registers to be filled is NREGS. */ void move_block_to_reg (int regno, rtx x, int nregs, machine_mode mode) { if (nregs == 0) return; if (CONSTANT_P (x) && !targetm.legitimate_constant_p (mode, x)) x = validize_mem (force_const_mem (mode, x)); /* See if the machine can do this with a load multiple insn. */ if (targetm.have_load_multiple ()) { rtx_insn *last = get_last_insn (); rtx first = gen_rtx_REG (word_mode, regno); if (rtx_insn *pat = targetm.gen_load_multiple (first, x, GEN_INT (nregs))) { emit_insn (pat); return; } else delete_insns_since (last); } for (int i = 0; i < nregs; i++) emit_move_insn (gen_rtx_REG (word_mode, regno + i), operand_subword_force (x, i, mode)); } /* Copy all or part of a BLKmode value X out of registers starting at REGNO. The number of registers to be filled is NREGS. */ void move_block_from_reg (int regno, rtx x, int nregs) { if (nregs == 0) return; /* See if the machine can do this with a store multiple insn. */ if (targetm.have_store_multiple ()) { rtx_insn *last = get_last_insn (); rtx first = gen_rtx_REG (word_mode, regno); if (rtx_insn *pat = targetm.gen_store_multiple (x, first, GEN_INT (nregs))) { emit_insn (pat); return; } else delete_insns_since (last); } for (int i = 0; i < nregs; i++) { rtx tem = operand_subword (x, i, 1, BLKmode); gcc_assert (tem); emit_move_insn (tem, gen_rtx_REG (word_mode, regno + i)); } } /* Generate a PARALLEL rtx for a new non-consecutive group of registers from ORIG, where ORIG is a non-consecutive group of registers represented by a PARALLEL. The clone is identical to the original except in that the original set of registers is replaced by a new set of pseudo registers. The new set has the same modes as the original set. */ rtx gen_group_rtx (rtx orig) { int i, length; rtx *tmps; gcc_assert (GET_CODE (orig) == PARALLEL); length = XVECLEN (orig, 0); tmps = XALLOCAVEC (rtx, length); /* Skip a NULL entry in first slot. */ i = XEXP (XVECEXP (orig, 0, 0), 0) ? 0 : 1; if (i) tmps[0] = 0; for (; i < length; i++) { machine_mode mode = GET_MODE (XEXP (XVECEXP (orig, 0, i), 0)); rtx offset = XEXP (XVECEXP (orig, 0, i), 1); tmps[i] = gen_rtx_EXPR_LIST (VOIDmode, gen_reg_rtx (mode), offset); } return gen_rtx_PARALLEL (GET_MODE (orig), gen_rtvec_v (length, tmps)); } /* A subroutine of emit_group_load. Arguments as for emit_group_load, except that values are placed in TMPS[i], and must later be moved into corresponding XEXP (XVECEXP (DST, 0, i), 0) element. */ static void emit_group_load_1 (rtx *tmps, rtx dst, rtx orig_src, tree type, poly_int64 ssize) { rtx src; int start, i; machine_mode m = GET_MODE (orig_src); gcc_assert (GET_CODE (dst) == PARALLEL); if (m != VOIDmode && !SCALAR_INT_MODE_P (m) && !MEM_P (orig_src) && GET_CODE (orig_src) != CONCAT) { scalar_int_mode imode; if (int_mode_for_mode (GET_MODE (orig_src)).exists (&imode)) { src = gen_reg_rtx (imode); emit_move_insn (gen_lowpart (GET_MODE (orig_src), src), orig_src); } else { src = assign_stack_temp (GET_MODE (orig_src), ssize); emit_move_insn (src, orig_src); } emit_group_load_1 (tmps, dst, src, type, ssize); return; } /* Check for a NULL entry, used to indicate that the parameter goes both on the stack and in registers. */ if (XEXP (XVECEXP (dst, 0, 0), 0)) start = 0; else start = 1; /* Process the pieces. */ for (i = start; i < XVECLEN (dst, 0); i++) { machine_mode mode = GET_MODE (XEXP (XVECEXP (dst, 0, i), 0)); poly_int64 bytepos = INTVAL (XEXP (XVECEXP (dst, 0, i), 1)); poly_int64 bytelen = GET_MODE_SIZE (mode); poly_int64 shift = 0; /* Handle trailing fragments that run over the size of the struct. It's the target's responsibility to make sure that the fragment cannot be strictly smaller in some cases and strictly larger in others. */ gcc_checking_assert (ordered_p (bytepos + bytelen, ssize)); if (known_size_p (ssize) && maybe_gt (bytepos + bytelen, ssize)) { /* Arrange to shift the fragment to where it belongs. extract_bit_field loads to the lsb of the reg. */ if ( #ifdef BLOCK_REG_PADDING BLOCK_REG_PADDING (GET_MODE (orig_src), type, i == start) == (BYTES_BIG_ENDIAN ? PAD_UPWARD : PAD_DOWNWARD) #else BYTES_BIG_ENDIAN #endif ) shift = (bytelen - (ssize - bytepos)) * BITS_PER_UNIT; bytelen = ssize - bytepos; gcc_assert (maybe_gt (bytelen, 0)); } /* If we won't be loading directly from memory, protect the real source from strange tricks we might play; but make sure that the source can be loaded directly into the destination. */ src = orig_src; if (!MEM_P (orig_src) && (!CONSTANT_P (orig_src) || (GET_MODE (orig_src) != mode && GET_MODE (orig_src) != VOIDmode))) { if (GET_MODE (orig_src) == VOIDmode) src = gen_reg_rtx (mode); else src = gen_reg_rtx (GET_MODE (orig_src)); emit_move_insn (src, orig_src); } /* Optimize the access just a bit. */ if (MEM_P (src) && (! targetm.slow_unaligned_access (mode, MEM_ALIGN (src)) || MEM_ALIGN (src) >= GET_MODE_ALIGNMENT (mode)) && multiple_p (bytepos * BITS_PER_UNIT, GET_MODE_ALIGNMENT (mode)) && known_eq (bytelen, GET_MODE_SIZE (mode))) { tmps[i] = gen_reg_rtx (mode); emit_move_insn (tmps[i], adjust_address (src, mode, bytepos)); } else if (COMPLEX_MODE_P (mode) && GET_MODE (src) == mode && known_eq (bytelen, GET_MODE_SIZE (mode))) /* Let emit_move_complex do the bulk of the work. */ tmps[i] = src; else if (GET_CODE (src) == CONCAT) { poly_int64 slen = GET_MODE_SIZE (GET_MODE (src)); poly_int64 slen0 = GET_MODE_SIZE (GET_MODE (XEXP (src, 0))); unsigned int elt; poly_int64 subpos; if (can_div_trunc_p (bytepos, slen0, &elt, &subpos) && known_le (subpos + bytelen, slen0)) { /* The following assumes that the concatenated objects all have the same size. In this case, a simple calculation can be used to determine the object and the bit field to be extracted. */ tmps[i] = XEXP (src, elt); if (maybe_ne (subpos, 0) || maybe_ne (subpos + bytelen, slen0) || (!CONSTANT_P (tmps[i]) && (!REG_P (tmps[i]) || GET_MODE (tmps[i]) != mode))) tmps[i] = extract_bit_field (tmps[i], bytelen * BITS_PER_UNIT, subpos * BITS_PER_UNIT, 1, NULL_RTX, mode, mode, false, NULL); } else { rtx mem; gcc_assert (known_eq (bytepos, 0)); mem = assign_stack_temp (GET_MODE (src), slen); emit_move_insn (mem, src); tmps[i] = extract_bit_field (mem, bytelen * BITS_PER_UNIT, 0, 1, NULL_RTX, mode, mode, false, NULL); } } /* FIXME: A SIMD parallel will eventually lead to a subreg of a SIMD register, which is currently broken. While we get GCC to emit proper RTL for these cases, let's dump to memory. */ else if (VECTOR_MODE_P (GET_MODE (dst)) && REG_P (src)) { poly_uint64 slen = GET_MODE_SIZE (GET_MODE (src)); rtx mem; mem = assign_stack_temp (GET_MODE (src), slen); emit_move_insn (mem, src); tmps[i] = adjust_address (mem, mode, bytepos); } else if (CONSTANT_P (src) && GET_MODE (dst) != BLKmode && XVECLEN (dst, 0) > 1) tmps[i] = simplify_gen_subreg (mode, src, GET_MODE (dst), bytepos); else if (CONSTANT_P (src)) { if (known_eq (bytelen, ssize)) tmps[i] = src; else { rtx first, second; /* TODO: const_wide_int can have sizes other than this... */ gcc_assert (known_eq (2 * bytelen, ssize)); split_double (src, &first, &second); if (i) tmps[i] = second; else tmps[i] = first; } } else if (REG_P (src) && GET_MODE (src) == mode) tmps[i] = src; else tmps[i] = extract_bit_field (src, bytelen * BITS_PER_UNIT, bytepos * BITS_PER_UNIT, 1, NULL_RTX, mode, mode, false, NULL); if (maybe_ne (shift, 0)) tmps[i] = expand_shift (LSHIFT_EXPR, mode, tmps[i], shift, tmps[i], 0); } } /* Emit code to move a block SRC of type TYPE to a block DST, where DST is non-consecutive registers represented by a PARALLEL. SSIZE represents the total size of block ORIG_SRC in bytes, or -1 if not known. */ void emit_group_load (rtx dst, rtx src, tree type, poly_int64 ssize) { rtx *tmps; int i; tmps = XALLOCAVEC (rtx, XVECLEN (dst, 0)); emit_group_load_1 (tmps, dst, src, type, ssize); /* Copy the extracted pieces into the proper (probable) hard regs. */ for (i = 0; i < XVECLEN (dst, 0); i++) { rtx d = XEXP (XVECEXP (dst, 0, i), 0); if (d == NULL) continue; emit_move_insn (d, tmps[i]); } } /* Similar, but load SRC into new pseudos in a format that looks like PARALLEL. This can later be fed to emit_group_move to get things in the right place. */ rtx emit_group_load_into_temps (rtx parallel, rtx src, tree type, poly_int64 ssize) { rtvec vec; int i; vec = rtvec_alloc (XVECLEN (parallel, 0)); emit_group_load_1 (&RTVEC_ELT (vec, 0), parallel, src, type, ssize); /* Convert the vector to look just like the original PARALLEL, except with the computed values. */ for (i = 0; i < XVECLEN (parallel, 0); i++) { rtx e = XVECEXP (parallel, 0, i); rtx d = XEXP (e, 0); if (d) { d = force_reg (GET_MODE (d), RTVEC_ELT (vec, i)); e = alloc_EXPR_LIST (REG_NOTE_KIND (e), d, XEXP (e, 1)); } RTVEC_ELT (vec, i) = e; } return gen_rtx_PARALLEL (GET_MODE (parallel), vec); } /* Emit code to move a block SRC to block DST, where SRC and DST are non-consecutive groups of registers, each represented by a PARALLEL. */ void emit_group_move (rtx dst, rtx src) { int i; gcc_assert (GET_CODE (src) == PARALLEL && GET_CODE (dst) == PARALLEL && XVECLEN (src, 0) == XVECLEN (dst, 0)); /* Skip first entry if NULL. */ for (i = XEXP (XVECEXP (src, 0, 0), 0) ? 0 : 1; i < XVECLEN (src, 0); i++) emit_move_insn (XEXP (XVECEXP (dst, 0, i), 0), XEXP (XVECEXP (src, 0, i), 0)); } /* Move a group of registers represented by a PARALLEL into pseudos. */ rtx emit_group_move_into_temps (rtx src) { rtvec vec = rtvec_alloc (XVECLEN (src, 0)); int i; for (i = 0; i < XVECLEN (src, 0); i++) { rtx e = XVECEXP (src, 0, i); rtx d = XEXP (e, 0); if (d) e = alloc_EXPR_LIST (REG_NOTE_KIND (e), copy_to_reg (d), XEXP (e, 1)); RTVEC_ELT (vec, i) = e; } return gen_rtx_PARALLEL (GET_MODE (src), vec); } /* Emit code to move a block SRC to a block ORIG_DST of type TYPE, where SRC is non-consecutive registers represented by a PARALLEL. SSIZE represents the total size of block ORIG_DST, or -1 if not known. */ void emit_group_store (rtx orig_dst, rtx src, tree type ATTRIBUTE_UNUSED, poly_int64 ssize) { rtx *tmps, dst; int start, finish, i; machine_mode m = GET_MODE (orig_dst); gcc_assert (GET_CODE (src) == PARALLEL); if (!SCALAR_INT_MODE_P (m) && !MEM_P (orig_dst) && GET_CODE (orig_dst) != CONCAT) { scalar_int_mode imode; if (int_mode_for_mode (GET_MODE (orig_dst)).exists (&imode)) { dst = gen_reg_rtx (imode); emit_group_store (dst, src, type, ssize); dst = gen_lowpart (GET_MODE (orig_dst), dst); } else { dst = assign_stack_temp (GET_MODE (orig_dst), ssize); emit_group_store (dst, src, type, ssize); } emit_move_insn (orig_dst, dst); return; } /* Check for a NULL entry, used to indicate that the parameter goes both on the stack and in registers. */ if (XEXP (XVECEXP (src, 0, 0), 0)) start = 0; else start = 1; finish = XVECLEN (src, 0); tmps = XALLOCAVEC (rtx, finish); /* Copy the (probable) hard regs into pseudos. */ for (i = start; i < finish; i++) { rtx reg = XEXP (XVECEXP (src, 0, i), 0); if (!REG_P (reg) || REGNO (reg) < FIRST_PSEUDO_REGISTER) { tmps[i] = gen_reg_rtx (GET_MODE (reg)); emit_move_insn (tmps[i], reg); } else tmps[i] = reg; } /* If we won't be storing directly into memory, protect the real destination from strange tricks we might play. */ dst = orig_dst; if (GET_CODE (dst) == PARALLEL) { rtx temp; /* We can get a PARALLEL dst if there is a conditional expression in a return statement. In that case, the dst and src are the same, so no action is necessary. */ if (rtx_equal_p (dst, src)) return; /* It is unclear if we can ever reach here, but we may as well handle it. Allocate a temporary, and split this into a store/load to/from the temporary. */ temp = assign_stack_temp (GET_MODE (dst), ssize); emit_group_store (temp, src, type, ssize); emit_group_load (dst, temp, type, ssize); return; } else if (!MEM_P (dst) && GET_CODE (dst) != CONCAT) { machine_mode outer = GET_MODE (dst); machine_mode inner; poly_int64 bytepos; bool done = false; rtx temp; if (!REG_P (dst) || REGNO (dst) < FIRST_PSEUDO_REGISTER) dst = gen_reg_rtx (outer); /* Make life a bit easier for combine. */ /* If the first element of the vector is the low part of the destination mode, use a paradoxical subreg to initialize the destination. */ if (start < finish) { inner = GET_MODE (tmps[start]); bytepos = subreg_lowpart_offset (inner, outer); if (known_eq (INTVAL (XEXP (XVECEXP (src, 0, start), 1)), bytepos)) { temp = simplify_gen_subreg (outer, tmps[start], inner, 0); if (temp) { emit_move_insn (dst, temp); done = true; start++; } } } /* If the first element wasn't the low part, try the last. */ if (!done && start < finish - 1) { inner = GET_MODE (tmps[finish - 1]); bytepos = subreg_lowpart_offset (inner, outer); if (known_eq (INTVAL (XEXP (XVECEXP (src, 0, finish - 1), 1)), bytepos)) { temp = simplify_gen_subreg (outer, tmps[finish - 1], inner, 0); if (temp) { emit_move_insn (dst, temp); done = true; finish--; } } } /* Otherwise, simply initialize the result to zero. */ if (!done) emit_move_insn (dst, CONST0_RTX (outer)); } /* Process the pieces. */ for (i = start; i < finish; i++) { poly_int64 bytepos = INTVAL (XEXP (XVECEXP (src, 0, i), 1)); machine_mode mode = GET_MODE (tmps[i]); poly_int64 bytelen = GET_MODE_SIZE (mode); poly_uint64 adj_bytelen; rtx dest = dst; /* Handle trailing fragments that run over the size of the struct. It's the target's responsibility to make sure that the fragment cannot be strictly smaller in some cases and strictly larger in others. */ gcc_checking_assert (ordered_p (bytepos + bytelen, ssize)); if (known_size_p (ssize) && maybe_gt (bytepos + bytelen, ssize)) adj_bytelen = ssize - bytepos; else adj_bytelen = bytelen; if (GET_CODE (dst) == CONCAT) { if (known_le (bytepos + adj_bytelen, GET_MODE_SIZE (GET_MODE (XEXP (dst, 0))))) dest = XEXP (dst, 0); else if (known_ge (bytepos, GET_MODE_SIZE (GET_MODE (XEXP (dst, 0))))) { bytepos -= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0))); dest = XEXP (dst, 1); } else { machine_mode dest_mode = GET_MODE (dest); machine_mode tmp_mode = GET_MODE (tmps[i]); gcc_assert (known_eq (bytepos, 0) && XVECLEN (src, 0)); if (GET_MODE_ALIGNMENT (dest_mode) >= GET_MODE_ALIGNMENT (tmp_mode)) { dest = assign_stack_temp (dest_mode, GET_MODE_SIZE (dest_mode)); emit_move_insn (adjust_address (dest, tmp_mode, bytepos), tmps[i]); dst = dest; } else { dest = assign_stack_temp (tmp_mode, GET_MODE_SIZE (tmp_mode)); emit_move_insn (dest, tmps[i]); dst = adjust_address (dest, dest_mode, bytepos); } break; } } /* Handle trailing fragments that run over the size of the struct. */ if (known_size_p (ssize) && maybe_gt (bytepos + bytelen, ssize)) { /* store_bit_field always takes its value from the lsb. Move the fragment to the lsb if it's not already there. */ if ( #ifdef BLOCK_REG_PADDING BLOCK_REG_PADDING (GET_MODE (orig_dst), type, i == start) == (BYTES_BIG_ENDIAN ? PAD_UPWARD : PAD_DOWNWARD) #else BYTES_BIG_ENDIAN #endif ) { poly_int64 shift = (bytelen - (ssize - bytepos)) * BITS_PER_UNIT; tmps[i] = expand_shift (RSHIFT_EXPR, mode, tmps[i], shift, tmps[i], 0); } /* Make sure not to write past the end of the struct. */ store_bit_field (dest, adj_bytelen * BITS_PER_UNIT, bytepos * BITS_PER_UNIT, bytepos * BITS_PER_UNIT, ssize * BITS_PER_UNIT - 1, VOIDmode, tmps[i], false); } /* Optimize the access just a bit. */ else if (MEM_P (dest) && (!targetm.slow_unaligned_access (mode, MEM_ALIGN (dest)) || MEM_ALIGN (dest) >= GET_MODE_ALIGNMENT (mode)) && multiple_p (bytepos * BITS_PER_UNIT, GET_MODE_ALIGNMENT (mode)) && known_eq (bytelen, GET_MODE_SIZE (mode))) emit_move_insn (adjust_address (dest, mode, bytepos), tmps[i]); else store_bit_field (dest, bytelen * BITS_PER_UNIT, bytepos * BITS_PER_UNIT, 0, 0, mode, tmps[i], false); } /* Copy from the pseudo into the (probable) hard reg. */ if (orig_dst != dst) emit_move_insn (orig_dst, dst); } /* Return a form of X that does not use a PARALLEL. TYPE is the type of the value stored in X. */ rtx maybe_emit_group_store (rtx x, tree type) { machine_mode mode = TYPE_MODE (type); gcc_checking_assert (GET_MODE (x) == VOIDmode || GET_MODE (x) == mode); if (GET_CODE (x) == PARALLEL) { rtx result = gen_reg_rtx (mode); emit_group_store (result, x, type, int_size_in_bytes (type)); return result; } return x; } /* Copy a BLKmode object of TYPE out of a register SRCREG into TARGET. This is used on targets that return BLKmode values in registers. */ static void copy_blkmode_from_reg (rtx target, rtx srcreg, tree type) { unsigned HOST_WIDE_INT bytes = int_size_in_bytes (type); rtx src = NULL, dst = NULL; unsigned HOST_WIDE_INT bitsize = MIN (TYPE_ALIGN (type), BITS_PER_WORD); unsigned HOST_WIDE_INT bitpos, xbitpos, padding_correction = 0; /* No current ABI uses variable-sized modes to pass a BLKmnode type. */ fixed_size_mode mode = as_a (GET_MODE (srcreg)); fixed_size_mode tmode = as_a (GET_MODE (target)); fixed_size_mode copy_mode; /* BLKmode registers created in the back-end shouldn't have survived. */ gcc_assert (mode != BLKmode); /* If the structure doesn't take up a whole number of words, see whether SRCREG is padded on the left or on the right. If it's on the left, set PADDING_CORRECTION to the number of bits to skip. In most ABIs, the structure will be returned at the least end of the register, which translates to right padding on little-endian targets and left padding on big-endian targets. The opposite holds if the structure is returned at the most significant end of the register. */ if (bytes % UNITS_PER_WORD != 0 && (targetm.calls.return_in_msb (type) ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN)) padding_correction = (BITS_PER_WORD - ((bytes % UNITS_PER_WORD) * BITS_PER_UNIT)); /* We can use a single move if we have an exact mode for the size. */ else if (MEM_P (target) && (!targetm.slow_unaligned_access (mode, MEM_ALIGN (target)) || MEM_ALIGN (target) >= GET_MODE_ALIGNMENT (mode)) && bytes == GET_MODE_SIZE (mode)) { emit_move_insn (adjust_address (target, mode, 0), srcreg); return; } /* And if we additionally have the same mode for a register. */ else if (REG_P (target) && GET_MODE (target) == mode && bytes == GET_MODE_SIZE (mode)) { emit_move_insn (target, srcreg); return; } /* This code assumes srcreg is at least a full word. If it isn't, copy it into a new pseudo which is a full word. */ if (GET_MODE_SIZE (mode) < UNITS_PER_WORD) { srcreg = convert_to_mode (word_mode, srcreg, TYPE_UNSIGNED (type)); mode = word_mode; } /* Copy the structure BITSIZE bits at a time. If the target lives in memory, take care of not reading/writing past its end by selecting a copy mode suited to BITSIZE. This should always be possible given how it is computed. If the target lives in register, make sure not to select a copy mode larger than the mode of the register. We could probably emit more efficient code for machines which do not use strict alignment, but it doesn't seem worth the effort at the current time. */ copy_mode = word_mode; if (MEM_P (target)) { opt_scalar_int_mode mem_mode = int_mode_for_size (bitsize, 1); if (mem_mode.exists ()) copy_mode = mem_mode.require (); } else if (REG_P (target) && GET_MODE_BITSIZE (tmode) < BITS_PER_WORD) copy_mode = tmode; for (bitpos = 0, xbitpos = padding_correction; bitpos < bytes * BITS_PER_UNIT; bitpos += bitsize, xbitpos += bitsize) { /* We need a new source operand each time xbitpos is on a word boundary and when xbitpos == padding_correction (the first time through). */ if (xbitpos % BITS_PER_WORD == 0 || xbitpos == padding_correction) src = operand_subword_force (srcreg, xbitpos / BITS_PER_WORD, mode); /* We need a new destination operand each time bitpos is on a word boundary. */ if (REG_P (target) && GET_MODE_BITSIZE (tmode) < BITS_PER_WORD) dst = target; else if (bitpos % BITS_PER_WORD == 0) dst = operand_subword (target, bitpos / BITS_PER_WORD, 1, tmode); /* Use xbitpos for the source extraction (right justified) and bitpos for the destination store (left justified). */ store_bit_field (dst, bitsize, bitpos % BITS_PER_WORD, 0, 0, copy_mode, extract_bit_field (src, bitsize, xbitpos % BITS_PER_WORD, 1, NULL_RTX, copy_mode, copy_mode, false, NULL), false); } } /* Copy BLKmode value SRC into a register of mode MODE_IN. Return the register if it contains any data, otherwise return null. This is used on targets that return BLKmode values in registers. */ rtx copy_blkmode_to_reg (machine_mode mode_in, tree src) { int i, n_regs; unsigned HOST_WIDE_INT bitpos, xbitpos, padding_correction = 0, bytes; unsigned int bitsize; rtx *dst_words, dst, x, src_word = NULL_RTX, dst_word = NULL_RTX; /* No current ABI uses variable-sized modes to pass a BLKmnode type. */ fixed_size_mode mode = as_a (mode_in); fixed_size_mode dst_mode; gcc_assert (TYPE_MODE (TREE_TYPE (src)) == BLKmode); x = expand_normal (src); bytes = arg_int_size_in_bytes (TREE_TYPE (src)); if (bytes == 0) return NULL_RTX; /* If the structure doesn't take up a whole number of words, see whether the register value should be padded on the left or on the right. Set PADDING_CORRECTION to the number of padding bits needed on the left side. In most ABIs, the structure will be returned at the least end of the register, which translates to right padding on little-endian targets and left padding on big-endian targets. The opposite holds if the structure is returned at the most significant end of the register. */ if (bytes % UNITS_PER_WORD != 0 && (targetm.calls.return_in_msb (TREE_TYPE (src)) ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN)) padding_correction = (BITS_PER_WORD - ((bytes % UNITS_PER_WORD) * BITS_PER_UNIT)); n_regs = (bytes + UNITS_PER_WORD - 1) / UNITS_PER_WORD; dst_words = XALLOCAVEC (rtx, n_regs); bitsize = MIN (TYPE_ALIGN (TREE_TYPE (src)), BITS_PER_WORD); /* Copy the structure BITSIZE bits at a time. */ for (bitpos = 0, xbitpos = padding_correction; bitpos < bytes * BITS_PER_UNIT; bitpos += bitsize, xbitpos += bitsize) { /* We need a new destination pseudo each time xbitpos is on a word boundary and when xbitpos == padding_correction (the first time through). */ if (xbitpos % BITS_PER_WORD == 0 || xbitpos == padding_correction) { /* Generate an appropriate register. */ dst_word = gen_reg_rtx (word_mode); dst_words[xbitpos / BITS_PER_WORD] = dst_word; /* Clear the destination before we move anything into it. */ emit_move_insn (dst_word, CONST0_RTX (word_mode)); } /* We need a new source operand each time bitpos is on a word boundary. */ if (bitpos % BITS_PER_WORD == 0) src_word = operand_subword_force (x, bitpos / BITS_PER_WORD, BLKmode); /* Use bitpos for the source extraction (left justified) and xbitpos for the destination store (right justified). */ store_bit_field (dst_word, bitsize, xbitpos % BITS_PER_WORD, 0, 0, word_mode, extract_bit_field (src_word, bitsize, bitpos % BITS_PER_WORD, 1, NULL_RTX, word_mode, word_mode, false, NULL), false); } if (mode == BLKmode) { /* Find the smallest integer mode large enough to hold the entire structure. */ opt_scalar_int_mode mode_iter; FOR_EACH_MODE_IN_CLASS (mode_iter, MODE_INT) if (GET_MODE_SIZE (mode_iter.require ()) >= bytes) break; /* A suitable mode should have been found. */ mode = mode_iter.require (); } if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (word_mode)) dst_mode = word_mode; else dst_mode = mode; dst = gen_reg_rtx (dst_mode); for (i = 0; i < n_regs; i++) emit_move_insn (operand_subword (dst, i, 0, dst_mode), dst_words[i]); if (mode != dst_mode) dst = gen_lowpart (mode, dst); return dst; } /* Add a USE expression for REG to the (possibly empty) list pointed to by CALL_FUSAGE. REG must denote a hard register. */ void use_reg_mode (rtx *call_fusage, rtx reg, machine_mode mode) { gcc_assert (REG_P (reg)); if (!HARD_REGISTER_P (reg)) return; *call_fusage = gen_rtx_EXPR_LIST (mode, gen_rtx_USE (VOIDmode, reg), *call_fusage); } /* Add a CLOBBER expression for REG to the (possibly empty) list pointed to by CALL_FUSAGE. REG must denote a hard register. */ void clobber_reg_mode (rtx *call_fusage, rtx reg, machine_mode mode) { gcc_assert (REG_P (reg) && REGNO (reg) < FIRST_PSEUDO_REGISTER); *call_fusage = gen_rtx_EXPR_LIST (mode, gen_rtx_CLOBBER (VOIDmode, reg), *call_fusage); } /* Add USE expressions to *CALL_FUSAGE for each of NREGS consecutive regs, starting at REGNO. All of these registers must be hard registers. */ void use_regs (rtx *call_fusage, int regno, int nregs) { int i; gcc_assert (regno + nregs <= FIRST_PSEUDO_REGISTER); for (i = 0; i < nregs; i++) use_reg (call_fusage, regno_reg_rtx[regno + i]); } /* Add USE expressions to *CALL_FUSAGE for each REG contained in the PARALLEL REGS. This is for calls that pass values in multiple non-contiguous locations. The Irix 6 ABI has examples of this. */ void use_group_regs (rtx *call_fusage, rtx regs) { int i; for (i = 0; i < XVECLEN (regs, 0); i++) { rtx reg = XEXP (XVECEXP (regs, 0, i), 0); /* A NULL entry means the parameter goes both on the stack and in registers. This can also be a MEM for targets that pass values partially on the stack and partially in registers. */ if (reg != 0 && REG_P (reg)) use_reg (call_fusage, reg); } } /* Return the defining gimple statement for SSA_NAME NAME if it is an assigment and the code of the expresion on the RHS is CODE. Return NULL otherwise. */ static gimple * get_def_for_expr (tree name, enum tree_code code) { gimple *def_stmt; if (TREE_CODE (name) != SSA_NAME) return NULL; def_stmt = get_gimple_for_ssa_name (name); if (!def_stmt || gimple_assign_rhs_code (def_stmt) != code) return NULL; return def_stmt; } /* Return the defining gimple statement for SSA_NAME NAME if it is an assigment and the class of the expresion on the RHS is CLASS. Return NULL otherwise. */ static gimple * get_def_for_expr_class (tree name, enum tree_code_class tclass) { gimple *def_stmt; if (TREE_CODE (name) != SSA_NAME) return NULL; def_stmt = get_gimple_for_ssa_name (name); if (!def_stmt || TREE_CODE_CLASS (gimple_assign_rhs_code (def_stmt)) != tclass) return NULL; return def_stmt; } /* Write zeros through the storage of OBJECT. If OBJECT has BLKmode, SIZE is its length in bytes. */ rtx clear_storage_hints (rtx object, rtx size, enum block_op_methods method, unsigned int expected_align, HOST_WIDE_INT expected_size, unsigned HOST_WIDE_INT min_size, unsigned HOST_WIDE_INT max_size, unsigned HOST_WIDE_INT probable_max_size) { machine_mode mode = GET_MODE (object); unsigned int align; gcc_assert (method == BLOCK_OP_NORMAL || method == BLOCK_OP_TAILCALL); /* If OBJECT is not BLKmode and SIZE is the same size as its mode, just move a zero. Otherwise, do this a piece at a time. */ if (mode != BLKmode && CONST_INT_P (size) && known_eq (INTVAL (size), GET_MODE_SIZE (mode))) { rtx zero = CONST0_RTX (mode); if (zero != NULL) { emit_move_insn (object, zero); return NULL; } if (COMPLEX_MODE_P (mode)) { zero = CONST0_RTX (GET_MODE_INNER (mode)); if (zero != NULL) { write_complex_part (object, zero, 0); write_complex_part (object, zero, 1); return NULL; } } } if (size == const0_rtx) return NULL; align = MEM_ALIGN (object); if (CONST_INT_P (size) && targetm.use_by_pieces_infrastructure_p (INTVAL (size), align, CLEAR_BY_PIECES, optimize_insn_for_speed_p ())) clear_by_pieces (object, INTVAL (size), align); else if (set_storage_via_setmem (object, size, const0_rtx, align, expected_align, expected_size, min_size, max_size, probable_max_size)) ; else if (ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (object))) return set_storage_via_libcall (object, size, const0_rtx, method == BLOCK_OP_TAILCALL); else gcc_unreachable (); return NULL; } rtx clear_storage (rtx object, rtx size, enum block_op_methods method) { unsigned HOST_WIDE_INT max, min = 0; if (GET_CODE (size) == CONST_INT) min = max = UINTVAL (size); else max = GET_MODE_MASK (GET_MODE (size)); return clear_storage_hints (object, size, method, 0, -1, min, max, max); } /* A subroutine of clear_storage. Expand a call to memset. Return the return value of memset, 0 otherwise. */ rtx set_storage_via_libcall (rtx object, rtx size, rtx val, bool tailcall) { tree call_expr, fn, object_tree, size_tree, val_tree; machine_mode size_mode; object = copy_addr_to_reg (XEXP (object, 0)); object_tree = make_tree (ptr_type_node, object); if (!CONST_INT_P (val)) val = convert_to_mode (TYPE_MODE (integer_type_node), val, 1); val_tree = make_tree (integer_type_node, val); size_mode = TYPE_MODE (sizetype); size = convert_to_mode (size_mode, size, 1); size = copy_to_mode_reg (size_mode, size); size_tree = make_tree (sizetype, size); /* It is incorrect to use the libcall calling conventions for calls to memset because it can be provided by the user. */ fn = builtin_decl_implicit (BUILT_IN_MEMSET); call_expr = build_call_expr (fn, 3, object_tree, val_tree, size_tree); CALL_EXPR_TAILCALL (call_expr) = tailcall; return expand_call (call_expr, NULL_RTX, false); } /* Expand a setmem pattern; return true if successful. */ bool set_storage_via_setmem (rtx object, rtx size, rtx val, unsigned int align, unsigned int expected_align, HOST_WIDE_INT expected_size, unsigned HOST_WIDE_INT min_size, unsigned HOST_WIDE_INT max_size, unsigned HOST_WIDE_INT probable_max_size) { /* Try the most limited insn first, because there's no point including more than one in the machine description unless the more limited one has some advantage. */ if (expected_align < align) expected_align = align; if (expected_size != -1) { if ((unsigned HOST_WIDE_INT)expected_size > max_size) expected_size = max_size; if ((unsigned HOST_WIDE_INT)expected_size < min_size) expected_size = min_size; } opt_scalar_int_mode mode_iter; FOR_EACH_MODE_IN_CLASS (mode_iter, MODE_INT) { scalar_int_mode mode = mode_iter.require (); enum insn_code code = direct_optab_handler (setmem_optab, mode); if (code != CODE_FOR_nothing /* We don't need MODE to be narrower than BITS_PER_HOST_WIDE_INT here because if SIZE is less than the mode mask, as it is returned by the macro, it will definitely be less than the actual mode mask. Since SIZE is within the Pmode address space, we limit MODE to Pmode. */ && ((CONST_INT_P (size) && ((unsigned HOST_WIDE_INT) INTVAL (size) <= (GET_MODE_MASK (mode) >> 1))) || max_size <= (GET_MODE_MASK (mode) >> 1) || GET_MODE_BITSIZE (mode) >= GET_MODE_BITSIZE (Pmode))) { struct expand_operand ops[9]; unsigned int nops; nops = insn_data[(int) code].n_generator_args; gcc_assert (nops == 4 || nops == 6 || nops == 8 || nops == 9); create_fixed_operand (&ops[0], object); /* The check above guarantees that this size conversion is valid. */ create_convert_operand_to (&ops[1], size, mode, true); create_convert_operand_from (&ops[2], val, byte_mode, true); create_integer_operand (&ops[3], align / BITS_PER_UNIT); if (nops >= 6) { create_integer_operand (&ops[4], expected_align / BITS_PER_UNIT); create_integer_operand (&ops[5], expected_size); } if (nops >= 8) { create_integer_operand (&ops[6], min_size); /* If we can not represent the maximal size, make parameter NULL. */ if ((HOST_WIDE_INT) max_size != -1) create_integer_operand (&ops[7], max_size); else create_fixed_operand (&ops[7], NULL); } if (nops == 9) { /* If we can not represent the maximal size, make parameter NULL. */ if ((HOST_WIDE_INT) probable_max_size != -1) create_integer_operand (&ops[8], probable_max_size); else create_fixed_operand (&ops[8], NULL); } if (maybe_expand_insn (code, nops, ops)) return true; } } return false; } /* Write to one of the components of the complex value CPLX. Write VAL to the real part if IMAG_P is false, and the imaginary part if its true. */ void write_complex_part (rtx cplx, rtx val, bool imag_p) { machine_mode cmode; scalar_mode imode; unsigned ibitsize; if (GET_CODE (cplx) == CONCAT) { emit_move_insn (XEXP (cplx, imag_p), val); return; } cmode = GET_MODE (cplx); imode = GET_MODE_INNER (cmode); ibitsize = GET_MODE_BITSIZE (imode); /* For MEMs simplify_gen_subreg may generate an invalid new address because, e.g., the original address is considered mode-dependent by the target, which restricts simplify_subreg from invoking adjust_address_nv. Instead of preparing fallback support for an invalid address, we call adjust_address_nv directly. */ if (MEM_P (cplx)) { emit_move_insn (adjust_address_nv (cplx, imode, imag_p ? GET_MODE_SIZE (imode) : 0), val); return; } /* If the sub-object is at least word sized, then we know that subregging will work. This special case is important, since store_bit_field wants to operate on integer modes, and there's rarely an OImode to correspond to TCmode. */ if (ibitsize >= BITS_PER_WORD /* For hard regs we have exact predicates. Assume we can split the original object if it spans an even number of hard regs. This special case is important for SCmode on 64-bit platforms where the natural size of floating-point regs is 32-bit. */ || (REG_P (cplx) && REGNO (cplx) < FIRST_PSEUDO_REGISTER && REG_NREGS (cplx) % 2 == 0)) { rtx part = simplify_gen_subreg (imode, cplx, cmode, imag_p ? GET_MODE_SIZE (imode) : 0); if (part) { emit_move_insn (part, val); return; } else /* simplify_gen_subreg may fail for sub-word MEMs. */ gcc_assert (MEM_P (cplx) && ibitsize < BITS_PER_WORD); } store_bit_field (cplx, ibitsize, imag_p ? ibitsize : 0, 0, 0, imode, val, false); } /* Extract one of the components of the complex value CPLX. Extract the real part if IMAG_P is false, and the imaginary part if it's true. */ rtx read_complex_part (rtx cplx, bool imag_p) { machine_mode cmode; scalar_mode imode; unsigned ibitsize; if (GET_CODE (cplx) == CONCAT) return XEXP (cplx, imag_p); cmode = GET_MODE (cplx); imode = GET_MODE_INNER (cmode); ibitsize = GET_MODE_BITSIZE (imode); /* Special case reads from complex constants that got spilled to memory. */ if (MEM_P (cplx) && GET_CODE (XEXP (cplx, 0)) == SYMBOL_REF) { tree decl = SYMBOL_REF_DECL (XEXP (cplx, 0)); if (decl && TREE_CODE (decl) == COMPLEX_CST) { tree part = imag_p ? TREE_IMAGPART (decl) : TREE_REALPART (decl); if (CONSTANT_CLASS_P (part)) return expand_expr (part, NULL_RTX, imode, EXPAND_NORMAL); } } /* For MEMs simplify_gen_subreg may generate an invalid new address because, e.g., the original address is considered mode-dependent by the target, which restricts simplify_subreg from invoking adjust_address_nv. Instead of preparing fallback support for an invalid address, we call adjust_address_nv directly. */ if (MEM_P (cplx)) return adjust_address_nv (cplx, imode, imag_p ? GET_MODE_SIZE (imode) : 0); /* If the sub-object is at least word sized, then we know that subregging will work. This special case is important, since extract_bit_field wants to operate on integer modes, and there's rarely an OImode to correspond to TCmode. */ if (ibitsize >= BITS_PER_WORD /* For hard regs we have exact predicates. Assume we can split the original object if it spans an even number of hard regs. This special case is important for SCmode on 64-bit platforms where the natural size of floating-point regs is 32-bit. */ || (REG_P (cplx) && REGNO (cplx) < FIRST_PSEUDO_REGISTER && REG_NREGS (cplx) % 2 == 0)) { rtx ret = simplify_gen_subreg (imode, cplx, cmode, imag_p ? GET_MODE_SIZE (imode) : 0); if (ret) return ret; else /* simplify_gen_subreg may fail for sub-word MEMs. */ gcc_assert (MEM_P (cplx) && ibitsize < BITS_PER_WORD); } return extract_bit_field (cplx, ibitsize, imag_p ? ibitsize : 0, true, NULL_RTX, imode, imode, false, NULL); } /* A subroutine of emit_move_insn_1. Yet another lowpart generator. NEW_MODE and OLD_MODE are the same size. Return NULL if X cannot be represented in NEW_MODE. If FORCE is true, this will never happen, as we'll force-create a SUBREG if needed. */ static rtx emit_move_change_mode (machine_mode new_mode, machine_mode old_mode, rtx x, bool force) { rtx ret; if (push_operand (x, GET_MODE (x))) { ret = gen_rtx_MEM (new_mode, XEXP (x, 0)); MEM_COPY_ATTRIBUTES (ret, x); } else if (MEM_P (x)) { /* We don't have to worry about changing the address since the size in bytes is supposed to be the same. */ if (reload_in_progress) { /* Copy the MEM to change the mode and move any substitutions from the old MEM to the new one. */ ret = adjust_address_nv (x, new_mode, 0); copy_replacements (x, ret); } else ret = adjust_address (x, new_mode, 0); } else { /* Note that we do want simplify_subreg's behavior of validating that the new mode is ok for a hard register. If we were to use simplify_gen_subreg, we would create the subreg, but would probably run into the target not being able to implement it. */ /* Except, of course, when FORCE is true, when this is exactly what we want. Which is needed for CCmodes on some targets. */ if (force) ret = simplify_gen_subreg (new_mode, x, old_mode, 0); else ret = simplify_subreg (new_mode, x, old_mode, 0); } return ret; } /* A subroutine of emit_move_insn_1. Generate a move from Y into X using an integer mode of the same size as MODE. Returns the instruction emitted, or NULL if such a move could not be generated. */ static rtx_insn * emit_move_via_integer (machine_mode mode, rtx x, rtx y, bool force) { scalar_int_mode imode; enum insn_code code; /* There must exist a mode of the exact size we require. */ if (!int_mode_for_mode (mode).exists (&imode)) return NULL; /* The target must support moves in this mode. */ code = optab_handler (mov_optab, imode); if (code == CODE_FOR_nothing) return NULL; x = emit_move_change_mode (imode, mode, x, force); if (x == NULL_RTX) return NULL; y = emit_move_change_mode (imode, mode, y, force); if (y == NULL_RTX) return NULL; return emit_insn (GEN_FCN (code) (x, y)); } /* A subroutine of emit_move_insn_1. X is a push_operand in MODE. Return an equivalent MEM that does not use an auto-increment. */ rtx emit_move_resolve_push (machine_mode mode, rtx x) { enum rtx_code code = GET_CODE (XEXP (x, 0)); rtx temp; poly_int64 adjust = GET_MODE_SIZE (mode); #ifdef PUSH_ROUNDING adjust = PUSH_ROUNDING (adjust); #endif if (code == PRE_DEC || code == POST_DEC) adjust = -adjust; else if (code == PRE_MODIFY || code == POST_MODIFY) { rtx expr = XEXP (XEXP (x, 0), 1); gcc_assert (GET_CODE (expr) == PLUS || GET_CODE (expr) == MINUS); poly_int64 val = rtx_to_poly_int64 (XEXP (expr, 1)); if (GET_CODE (expr) == MINUS) val = -val; gcc_assert (known_eq (adjust, val) || known_eq (adjust, -val)); adjust = val; } /* Do not use anti_adjust_stack, since we don't want to update stack_pointer_delta. */ temp = expand_simple_binop (Pmode, PLUS, stack_pointer_rtx, gen_int_mode (adjust, Pmode), stack_pointer_rtx, 0, OPTAB_LIB_WIDEN); if (temp != stack_pointer_rtx) emit_move_insn (stack_pointer_rtx, temp); switch (code) { case PRE_INC: case PRE_DEC: case PRE_MODIFY: temp = stack_pointer_rtx; break; case POST_INC: case POST_DEC: case POST_MODIFY: temp = plus_constant (Pmode, stack_pointer_rtx, -adjust); break; default: gcc_unreachable (); } return replace_equiv_address (x, temp); } /* A subroutine of emit_move_complex. Generate a move from Y into X. X is known to satisfy push_operand, and MODE is known to be complex. Returns the last instruction emitted. */ rtx_insn * emit_move_complex_push (machine_mode mode, rtx x, rtx y) { scalar_mode submode = GET_MODE_INNER (mode); bool imag_first; #ifdef PUSH_ROUNDING poly_int64 submodesize = GET_MODE_SIZE (submode); /* In case we output to the stack, but the size is smaller than the machine can push exactly, we need to use move instructions. */ if (maybe_ne (PUSH_ROUNDING (submodesize), submodesize)) { x = emit_move_resolve_push (mode, x); return emit_move_insn (x, y); } #endif /* Note that the real part always precedes the imag part in memory regardless of machine's endianness. */ switch (GET_CODE (XEXP (x, 0))) { case PRE_DEC: case POST_DEC: imag_first = true; break; case PRE_INC: case POST_INC: imag_first = false; break; default: gcc_unreachable (); } emit_move_insn (gen_rtx_MEM (submode, XEXP (x, 0)), read_complex_part (y, imag_first)); return emit_move_insn (gen_rtx_MEM (submode, XEXP (x, 0)), read_complex_part (y, !imag_first)); } /* A subroutine of emit_move_complex. Perform the move from Y to X via two moves of the parts. Returns the last instruction emitted. */ rtx_insn * emit_move_complex_parts (rtx x, rtx y) { /* Show the output dies here. This is necessary for SUBREGs of pseudos since we cannot track their lifetimes correctly; hard regs shouldn't appear here except as return values. */ if (!reload_completed && !reload_in_progress && REG_P (x) && !reg_overlap_mentioned_p (x, y)) emit_clobber (x); write_complex_part (x, read_complex_part (y, false), false); write_complex_part (x, read_complex_part (y, true), true); return get_last_insn (); } /* A subroutine of emit_move_insn_1. Generate a move from Y into X. MODE is known to be complex. Returns the last instruction emitted. */ static rtx_insn * emit_move_complex (machine_mode mode, rtx x, rtx y) { bool try_int; /* Need to take special care for pushes, to maintain proper ordering of the data, and possibly extra padding. */ if (push_operand (x, mode)) return emit_move_complex_push (mode, x, y); /* See if we can coerce the target into moving both values at once, except for floating point where we favor moving as parts if this is easy. */ if (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT && optab_handler (mov_optab, GET_MODE_INNER (mode)) != CODE_FOR_nothing && !(REG_P (x) && HARD_REGISTER_P (x) && REG_NREGS (x) == 1) && !(REG_P (y) && HARD_REGISTER_P (y) && REG_NREGS (y) == 1)) try_int = false; /* Not possible if the values are inherently not adjacent. */ else if (GET_CODE (x) == CONCAT || GET_CODE (y) == CONCAT) try_int = false; /* Is possible if both are registers (or subregs of registers). */ else if (register_operand (x, mode) && register_operand (y, mode)) try_int = true; /* If one of the operands is a memory, and alignment constraints are friendly enough, we may be able to do combined memory operations. We do not attempt this if Y is a constant because that combination is usually better with the by-parts thing below. */ else if ((MEM_P (x) ? !CONSTANT_P (y) : MEM_P (y)) && (!STRICT_ALIGNMENT || get_mode_alignment (mode) == BIGGEST_ALIGNMENT)) try_int = true; else try_int = false; if (try_int) { rtx_insn *ret; /* For memory to memory moves, optimal behavior can be had with the existing block move logic. */ if (MEM_P (x) && MEM_P (y)) { emit_block_move (x, y, gen_int_mode (GET_MODE_SIZE (mode), Pmode), BLOCK_OP_NO_LIBCALL); return get_last_insn (); } ret = emit_move_via_integer (mode, x, y, true); if (ret) return ret; } return emit_move_complex_parts (x, y); } /* A subroutine of emit_move_insn_1. Generate a move from Y into X. MODE is known to be MODE_CC. Returns the last instruction emitted. */ static rtx_insn * emit_move_ccmode (machine_mode mode, rtx x, rtx y) { rtx_insn *ret; /* Assume all MODE_CC modes are equivalent; if we have movcc, use it. */ if (mode != CCmode) { enum insn_code code = optab_handler (mov_optab, CCmode); if (code != CODE_FOR_nothing) { x = emit_move_change_mode (CCmode, mode, x, true); y = emit_move_change_mode (CCmode, mode, y, true); return emit_insn (GEN_FCN (code) (x, y)); } } /* Otherwise, find the MODE_INT mode of the same width. */ ret = emit_move_via_integer (mode, x, y, false); gcc_assert (ret != NULL); return ret; } /* Return true if word I of OP lies entirely in the undefined bits of a paradoxical subreg. */ static bool undefined_operand_subword_p (const_rtx op, int i) { if (GET_CODE (op) != SUBREG) return false; machine_mode innermostmode = GET_MODE (SUBREG_REG (op)); poly_int64 offset = i * UNITS_PER_WORD + subreg_memory_offset (op); return (known_ge (offset, GET_MODE_SIZE (innermostmode)) || known_le (offset, -UNITS_PER_WORD)); } /* A subroutine of emit_move_insn_1. Generate a move from Y into X. MODE is any multi-word or full-word mode that lacks a move_insn pattern. Note that you will get better code if you define such patterns, even if they must turn into multiple assembler instructions. */ static rtx_insn * emit_move_multi_word (machine_mode mode, rtx x, rtx y) { rtx_insn *last_insn = 0; rtx_insn *seq; rtx inner; bool need_clobber; int i, mode_size; /* This function can only handle cases where the number of words is known at compile time. */ mode_size = GET_MODE_SIZE (mode).to_constant (); gcc_assert (mode_size >= UNITS_PER_WORD); /* If X is a push on the stack, do the push now and replace X with a reference to the stack pointer. */ if (push_operand (x, mode)) x = emit_move_resolve_push (mode, x); /* If we are in reload, see if either operand is a MEM whose address is scheduled for replacement. */ if (reload_in_progress && MEM_P (x) && (inner = find_replacement (&XEXP (x, 0))) != XEXP (x, 0)) x = replace_equiv_address_nv (x, inner); if (reload_in_progress && MEM_P (y) && (inner = find_replacement (&XEXP (y, 0))) != XEXP (y, 0)) y = replace_equiv_address_nv (y, inner); start_sequence (); need_clobber = false; for (i = 0; i < CEIL (mode_size, UNITS_PER_WORD); i++) { rtx xpart = operand_subword (x, i, 1, mode); rtx ypart; /* Do not generate code for a move if it would come entirely from the undefined bits of a paradoxical subreg. */ if (undefined_operand_subword_p (y, i)) continue; ypart = operand_subword (y, i, 1, mode); /* If we can't get a part of Y, put Y into memory if it is a constant. Otherwise, force it into a register. Then we must be able to get a part of Y. */ if (ypart == 0 && CONSTANT_P (y)) { y = use_anchored_address (force_const_mem (mode, y)); ypart = operand_subword (y, i, 1, mode); } else if (ypart == 0) ypart = operand_subword_force (y, i, mode); gcc_assert (xpart && ypart); need_clobber |= (GET_CODE (xpart) == SUBREG); last_insn = emit_move_insn (xpart, ypart); } seq = get_insns (); end_sequence (); /* Show the output dies here. This is necessary for SUBREGs of pseudos since we cannot track their lifetimes correctly; hard regs shouldn't appear here except as return values. We never want to emit such a clobber after reload. */ if (x != y && ! (reload_in_progress || reload_completed) && need_clobber != 0) emit_clobber (x); emit_insn (seq); return last_insn; } /* Low level part of emit_move_insn. Called just like emit_move_insn, but assumes X and Y are basically valid. */ rtx_insn * emit_move_insn_1 (rtx x, rtx y) { machine_mode mode = GET_MODE (x); enum insn_code code; gcc_assert ((unsigned int) mode < (unsigned int) MAX_MACHINE_MODE); code = optab_handler (mov_optab, mode); if (code != CODE_FOR_nothing) return emit_insn (GEN_FCN (code) (x, y)); /* Expand complex moves by moving real part and imag part. */ if (COMPLEX_MODE_P (mode)) return emit_move_complex (mode, x, y); if (GET_MODE_CLASS (mode) == MODE_DECIMAL_FLOAT || ALL_FIXED_POINT_MODE_P (mode)) { rtx_insn *result = emit_move_via_integer (mode, x, y, true); /* If we can't find an integer mode, use multi words. */ if (result) return result; else return emit_move_multi_word (mode, x, y); } if (GET_MODE_CLASS (mode) == MODE_CC) return emit_move_ccmode (mode, x, y); /* Try using a move pattern for the corresponding integer mode. This is only safe when simplify_subreg can convert MODE constants into integer constants. At present, it can only do this reliably if the value fits within a HOST_WIDE_INT. */ if (!CONSTANT_P (y) || known_le (GET_MODE_BITSIZE (mode), HOST_BITS_PER_WIDE_INT)) { rtx_insn *ret = emit_move_via_integer (mode, x, y, lra_in_progress); if (ret) { if (! lra_in_progress || recog (PATTERN (ret), ret, 0) >= 0) return ret; } } return emit_move_multi_word (mode, x, y); } /* Generate code to copy Y into X. Both Y and X must have the same mode, except that Y can be a constant with VOIDmode. This mode cannot be BLKmode; use emit_block_move for that. Return the last instruction emitted. */ rtx_insn * emit_move_insn (rtx x, rtx y) { machine_mode mode = GET_MODE (x); rtx y_cst = NULL_RTX; rtx_insn *last_insn; rtx set; gcc_assert (mode != BLKmode && (GET_MODE (y) == mode || GET_MODE (y) == VOIDmode)); if (CONSTANT_P (y)) { if (optimize && SCALAR_FLOAT_MODE_P (GET_MODE (x)) && (last_insn = compress_float_constant (x, y))) return last_insn; y_cst = y; if (!targetm.legitimate_constant_p (mode, y)) { y = force_const_mem (mode, y); /* If the target's cannot_force_const_mem prevented the spill, assume that the target's move expanders will also take care of the non-legitimate constant. */ if (!y) y = y_cst; else y = use_anchored_address (y); } } /* If X or Y are memory references, verify that their addresses are valid for the machine. */ if (MEM_P (x) && (! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0), MEM_ADDR_SPACE (x)) && ! push_operand (x, GET_MODE (x)))) x = validize_mem (x); if (MEM_P (y) && ! memory_address_addr_space_p (GET_MODE (y), XEXP (y, 0), MEM_ADDR_SPACE (y))) y = validize_mem (y); gcc_assert (mode != BLKmode); last_insn = emit_move_insn_1 (x, y); if (y_cst && REG_P (x) && (set = single_set (last_insn)) != NULL_RTX && SET_DEST (set) == x && ! rtx_equal_p (y_cst, SET_SRC (set))) set_unique_reg_note (last_insn, REG_EQUAL, copy_rtx (y_cst)); return last_insn; } /* Generate the body of an instruction to copy Y into X. It may be a list of insns, if one insn isn't enough. */ rtx_insn * gen_move_insn (rtx x, rtx y) { rtx_insn *seq; start_sequence (); emit_move_insn_1 (x, y); seq = get_insns (); end_sequence (); return seq; } /* If Y is representable exactly in a narrower mode, and the target can perform the extension directly from constant or memory, then emit the move as an extension. */ static rtx_insn * compress_float_constant (rtx x, rtx y) { machine_mode dstmode = GET_MODE (x); machine_mode orig_srcmode = GET_MODE (y); machine_mode srcmode; const REAL_VALUE_TYPE *r; int oldcost, newcost; bool speed = optimize_insn_for_speed_p (); r = CONST_DOUBLE_REAL_VALUE (y); if (targetm.legitimate_constant_p (dstmode, y)) oldcost = set_src_cost (y, orig_srcmode, speed); else oldcost = set_src_cost (force_const_mem (dstmode, y), dstmode, speed); FOR_EACH_MODE_UNTIL (srcmode, orig_srcmode) { enum insn_code ic; rtx trunc_y; rtx_insn *last_insn; /* Skip if the target can't extend this way. */ ic = can_extend_p (dstmode, srcmode, 0); if (ic == CODE_FOR_nothing) continue; /* Skip if the narrowed value isn't exact. */ if (! exact_real_truncate (srcmode, r)) continue; trunc_y = const_double_from_real_value (*r, srcmode); if (targetm.legitimate_constant_p (srcmode, trunc_y)) { /* Skip if the target needs extra instructions to perform the extension. */ if (!insn_operand_matches (ic, 1, trunc_y)) continue; /* This is valid, but may not be cheaper than the original. */ newcost = set_src_cost (gen_rtx_FLOAT_EXTEND (dstmode, trunc_y), dstmode, speed); if (oldcost < newcost) continue; } else if (float_extend_from_mem[dstmode][srcmode]) { trunc_y = force_const_mem (srcmode, trunc_y); /* This is valid, but may not be cheaper than the original. */ newcost = set_src_cost (gen_rtx_FLOAT_EXTEND (dstmode, trunc_y), dstmode, speed); if (oldcost < newcost) continue; trunc_y = validize_mem (trunc_y); } else continue; /* For CSE's benefit, force the compressed constant pool entry into a new pseudo. This constant may be used in different modes, and if not, combine will put things back together for us. */ trunc_y = force_reg (srcmode, trunc_y); /* If x is a hard register, perform the extension into a pseudo, so that e.g. stack realignment code is aware of it. */ rtx target = x; if (REG_P (x) && HARD_REGISTER_P (x)) target = gen_reg_rtx (dstmode); emit_unop_insn (ic, target, trunc_y, UNKNOWN); last_insn = get_last_insn (); if (REG_P (target)) set_unique_reg_note (last_insn, REG_EQUAL, y); if (target != x) return emit_move_insn (x, target); return last_insn; } return NULL; } /* Pushing data onto the stack. */ /* Push a block of length SIZE (perhaps variable) and return an rtx to address the beginning of the block. The value may be virtual_outgoing_args_rtx. EXTRA is the number of bytes of padding to push in addition to SIZE. BELOW nonzero means this padding comes at low addresses; otherwise, the padding comes at high addresses. */ rtx push_block (rtx size, poly_int64 extra, int below) { rtx temp; size = convert_modes (Pmode, ptr_mode, size, 1); if (CONSTANT_P (size)) anti_adjust_stack (plus_constant (Pmode, size, extra)); else if (REG_P (size) && known_eq (extra, 0)) anti_adjust_stack (size); else { temp = copy_to_mode_reg (Pmode, size); if (maybe_ne (extra, 0)) temp = expand_binop (Pmode, add_optab, temp, gen_int_mode (extra, Pmode), temp, 0, OPTAB_LIB_WIDEN); anti_adjust_stack (temp); } if (STACK_GROWS_DOWNWARD) { temp = virtual_outgoing_args_rtx; if (maybe_ne (extra, 0) && below) temp = plus_constant (Pmode, temp, extra); } else { if (CONST_INT_P (size)) temp = plus_constant (Pmode, virtual_outgoing_args_rtx, -INTVAL (size) - (below ? 0 : extra)); else if (maybe_ne (extra, 0) && !below) temp = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx, negate_rtx (Pmode, plus_constant (Pmode, size, extra))); else temp = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx, negate_rtx (Pmode, size)); } return memory_address (NARROWEST_INT_MODE, temp); } /* A utility routine that returns the base of an auto-inc memory, or NULL. */ static rtx mem_autoinc_base (rtx mem) { if (MEM_P (mem)) { rtx addr = XEXP (mem, 0); if (GET_RTX_CLASS (GET_CODE (addr)) == RTX_AUTOINC) return XEXP (addr, 0); } return NULL; } /* A utility routine used here, in reload, and in try_split. The insns after PREV up to and including LAST are known to adjust the stack, with a final value of END_ARGS_SIZE. Iterate backward from LAST placing notes as appropriate. PREV may be NULL, indicating the entire insn sequence prior to LAST should be scanned. The set of allowed stack pointer modifications is small: (1) One or more auto-inc style memory references (aka pushes), (2) One or more addition/subtraction with the SP as destination, (3) A single move insn with the SP as destination, (4) A call_pop insn, (5) Noreturn call insns if !ACCUMULATE_OUTGOING_ARGS. Insns in the sequence that do not modify the SP are ignored, except for noreturn calls. The return value is the amount of adjustment that can be trivially verified, via immediate operand or auto-inc. If the adjustment cannot be trivially extracted, the return value is HOST_WIDE_INT_MIN. */ poly_int64 find_args_size_adjust (rtx_insn *insn) { rtx dest, set, pat; int i; pat = PATTERN (insn); set = NULL; /* Look for a call_pop pattern. */ if (CALL_P (insn)) { /* We have to allow non-call_pop patterns for the case of emit_single_push_insn of a TLS address. */ if (GET_CODE (pat) != PARALLEL) return 0; /* All call_pop have a stack pointer adjust in the parallel. The call itself is always first, and the stack adjust is usually last, so search from the end. */ for (i = XVECLEN (pat, 0) - 1; i > 0; --i) { set = XVECEXP (pat, 0, i); if (GET_CODE (set) != SET) continue; dest = SET_DEST (set); if (dest == stack_pointer_rtx) break; } /* We'd better have found the stack pointer adjust. */ if (i == 0) return 0; /* Fall through to process the extracted SET and DEST as if it was a standalone insn. */ } else if (GET_CODE (pat) == SET) set = pat; else if ((set = single_set (insn)) != NULL) ; else if (GET_CODE (pat) == PARALLEL) { /* ??? Some older ports use a parallel with a stack adjust and a store for a PUSH_ROUNDING pattern, rather than a PRE/POST_MODIFY rtx. Don't force them to update yet... */ /* ??? See h8300 and m68k, pushqi1. */ for (i = XVECLEN (pat, 0) - 1; i >= 0; --i) { set = XVECEXP (pat, 0, i); if (GET_CODE (set) != SET) continue; dest = SET_DEST (set); if (dest == stack_pointer_rtx) break; /* We do not expect an auto-inc of the sp in the parallel. */ gcc_checking_assert (mem_autoinc_base (dest) != stack_pointer_rtx); gcc_checking_assert (mem_autoinc_base (SET_SRC (set)) != stack_pointer_rtx); } if (i < 0) return 0; } else return 0; dest = SET_DEST (set); /* Look for direct modifications of the stack pointer. */ if (REG_P (dest) && REGNO (dest) == STACK_POINTER_REGNUM) { /* Look for a trivial adjustment, otherwise assume nothing. */ /* Note that the SPU restore_stack_block pattern refers to the stack pointer in V4SImode. Consider that non-trivial. */ if (SCALAR_INT_MODE_P (GET_MODE (dest)) && GET_CODE (SET_SRC (set)) == PLUS && XEXP (SET_SRC (set), 0) == stack_pointer_rtx && CONST_INT_P (XEXP (SET_SRC (set), 1))) return INTVAL (XEXP (SET_SRC (set), 1)); /* ??? Reload can generate no-op moves, which will be cleaned up later. Recognize it and continue searching. */ else if (rtx_equal_p (dest, SET_SRC (set))) return 0; else return HOST_WIDE_INT_MIN; } else { rtx mem, addr; /* Otherwise only think about autoinc patterns. */ if (mem_autoinc_base (dest) == stack_pointer_rtx) { mem = dest; gcc_checking_assert (mem_autoinc_base (SET_SRC (set)) != stack_pointer_rtx); } else if (mem_autoinc_base (SET_SRC (set)) == stack_pointer_rtx) mem = SET_SRC (set); else return 0; addr = XEXP (mem, 0); switch (GET_CODE (addr)) { case PRE_INC: case POST_INC: return GET_MODE_SIZE (GET_MODE (mem)); case PRE_DEC: case POST_DEC: return -GET_MODE_SIZE (GET_MODE (mem)); case PRE_MODIFY: case POST_MODIFY: addr = XEXP (addr, 1); gcc_assert (GET_CODE (addr) == PLUS); gcc_assert (XEXP (addr, 0) == stack_pointer_rtx); gcc_assert (CONST_INT_P (XEXP (addr, 1))); return INTVAL (XEXP (addr, 1)); default: gcc_unreachable (); } } } poly_int64 fixup_args_size_notes (rtx_insn *prev, rtx_insn *last, poly_int64 end_args_size) { poly_int64 args_size = end_args_size; bool saw_unknown = false; rtx_insn *insn; for (insn = last; insn != prev; insn = PREV_INSN (insn)) { if (!NONDEBUG_INSN_P (insn)) continue; /* We might have existing REG_ARGS_SIZE notes, e.g. when pushing a call argument containing a TLS address that itself requires a call to __tls_get_addr. The handling of stack_pointer_delta in emit_single_push_insn is supposed to ensure that any such notes are already correct. */ rtx note = find_reg_note (insn, REG_ARGS_SIZE, NULL_RTX); gcc_assert (!note || known_eq (args_size, get_args_size (note))); poly_int64 this_delta = find_args_size_adjust (insn); if (known_eq (this_delta, 0)) { if (!CALL_P (insn) || ACCUMULATE_OUTGOING_ARGS || find_reg_note (insn, REG_NORETURN, NULL_RTX) == NULL_RTX) continue; } gcc_assert (!saw_unknown); if (known_eq (this_delta, HOST_WIDE_INT_MIN)) saw_unknown = true; if (!note) add_args_size_note (insn, args_size); if (STACK_GROWS_DOWNWARD) this_delta = -poly_uint64 (this_delta); if (saw_unknown) args_size = HOST_WIDE_INT_MIN; else args_size -= this_delta; } return args_size; } #ifdef PUSH_ROUNDING /* Emit single push insn. */ static void emit_single_push_insn_1 (machine_mode mode, rtx x, tree type) { rtx dest_addr; poly_int64 rounded_size = PUSH_ROUNDING (GET_MODE_SIZE (mode)); rtx dest; enum insn_code icode; /* If there is push pattern, use it. Otherwise try old way of throwing MEM representing push operation to move expander. */ icode = optab_handler (push_optab, mode); if (icode != CODE_FOR_nothing) { struct expand_operand ops[1]; create_input_operand (&ops[0], x, mode); if (maybe_expand_insn (icode, 1, ops)) return; } if (known_eq (GET_MODE_SIZE (mode), rounded_size)) dest_addr = gen_rtx_fmt_e (STACK_PUSH_CODE, Pmode, stack_pointer_rtx); /* If we are to pad downward, adjust the stack pointer first and then store X into the stack location using an offset. This is because emit_move_insn does not know how to pad; it does not have access to type. */ else if (targetm.calls.function_arg_padding (mode, type) == PAD_DOWNWARD) { emit_move_insn (stack_pointer_rtx, expand_binop (Pmode, STACK_GROWS_DOWNWARD ? sub_optab : add_optab, stack_pointer_rtx, gen_int_mode (rounded_size, Pmode), NULL_RTX, 0, OPTAB_LIB_WIDEN)); poly_int64 offset = rounded_size - GET_MODE_SIZE (mode); if (STACK_GROWS_DOWNWARD && STACK_PUSH_CODE == POST_DEC) /* We have already decremented the stack pointer, so get the previous value. */ offset += rounded_size; if (!STACK_GROWS_DOWNWARD && STACK_PUSH_CODE == POST_INC) /* We have already incremented the stack pointer, so get the previous value. */ offset -= rounded_size; dest_addr = plus_constant (Pmode, stack_pointer_rtx, offset); } else { if (STACK_GROWS_DOWNWARD) /* ??? This seems wrong if STACK_PUSH_CODE == POST_DEC. */ dest_addr = plus_constant (Pmode, stack_pointer_rtx, -rounded_size); else /* ??? This seems wrong if STACK_PUSH_CODE == POST_INC. */ dest_addr = plus_constant (Pmode, stack_pointer_rtx, rounded_size); dest_addr = gen_rtx_PRE_MODIFY (Pmode, stack_pointer_rtx, dest_addr); } dest = gen_rtx_MEM (mode, dest_addr); if (type != 0) { set_mem_attributes (dest, type, 1); if (cfun->tail_call_marked) /* Function incoming arguments may overlap with sibling call outgoing arguments and we cannot allow reordering of reads from function arguments with stores to outgoing arguments of sibling calls. */ set_mem_alias_set (dest, 0); } emit_move_insn (dest, x); } /* Emit and annotate a single push insn. */ static void emit_single_push_insn (machine_mode mode, rtx x, tree type) { poly_int64 delta, old_delta = stack_pointer_delta; rtx_insn *prev = get_last_insn (); rtx_insn *last; emit_single_push_insn_1 (mode, x, type); /* Adjust stack_pointer_delta to describe the situation after the push we just performed. Note that we must do this after the push rather than before the push in case calculating X needs pushes and pops of its own (e.g. if calling __tls_get_addr). The REG_ARGS_SIZE notes for such pushes and pops must not include the effect of the future push of X. */ stack_pointer_delta += PUSH_ROUNDING (GET_MODE_SIZE (mode)); last = get_last_insn (); /* Notice the common case where we emitted exactly one insn. */ if (PREV_INSN (last) == prev) { add_args_size_note (last, stack_pointer_delta); return; } delta = fixup_args_size_notes (prev, last, stack_pointer_delta); gcc_assert (known_eq (delta, HOST_WIDE_INT_MIN) || known_eq (delta, old_delta)); } #endif /* If reading SIZE bytes from X will end up reading from Y return the number of bytes that overlap. Return -1 if there is no overlap or -2 if we can't determine (for example when X and Y have different base registers). */ static int memory_load_overlap (rtx x, rtx y, HOST_WIDE_INT size) { rtx tmp = plus_constant (Pmode, x, size); rtx sub = simplify_gen_binary (MINUS, Pmode, tmp, y); if (!CONST_INT_P (sub)) return -2; HOST_WIDE_INT val = INTVAL (sub); return IN_RANGE (val, 1, size) ? val : -1; } /* Generate code to push X onto the stack, assuming it has mode MODE and type TYPE. MODE is redundant except when X is a CONST_INT (since they don't carry mode info). SIZE is an rtx for the size of data to be copied (in bytes), needed only if X is BLKmode. Return true if successful. May return false if asked to push a partial argument during a sibcall optimization (as specified by SIBCALL_P) and the incoming and outgoing pointers cannot be shown to not overlap. ALIGN (in bits) is maximum alignment we can assume. If PARTIAL and REG are both nonzero, then copy that many of the first bytes of X into registers starting with REG, and push the rest of X. The amount of space pushed is decreased by PARTIAL bytes. REG must be a hard register in this case. If REG is zero but PARTIAL is not, take any all others actions for an argument partially in registers, but do not actually load any registers. EXTRA is the amount in bytes of extra space to leave next to this arg. This is ignored if an argument block has already been allocated. On a machine that lacks real push insns, ARGS_ADDR is the address of the bottom of the argument block for this call. We use indexing off there to store the arg. On machines with push insns, ARGS_ADDR is 0 when a argument block has not been preallocated. ARGS_SO_FAR is the size of args previously pushed for this call. REG_PARM_STACK_SPACE is nonzero if functions require stack space for arguments passed in registers. If nonzero, it will be the number of bytes required. */ bool emit_push_insn (rtx x, machine_mode mode, tree type, rtx size, unsigned int align, int partial, rtx reg, poly_int64 extra, rtx args_addr, rtx args_so_far, int reg_parm_stack_space, rtx alignment_pad, bool sibcall_p) { rtx xinner; pad_direction stack_direction = STACK_GROWS_DOWNWARD ? PAD_DOWNWARD : PAD_UPWARD; /* Decide where to pad the argument: PAD_DOWNWARD for below, PAD_UPWARD for above, or PAD_NONE for don't pad it. Default is below for small data on big-endian machines; else above. */ pad_direction where_pad = targetm.calls.function_arg_padding (mode, type); /* Invert direction if stack is post-decrement. FIXME: why? */ if (STACK_PUSH_CODE == POST_DEC) if (where_pad != PAD_NONE) where_pad = (where_pad == PAD_DOWNWARD ? PAD_UPWARD : PAD_DOWNWARD); xinner = x; int nregs = partial / UNITS_PER_WORD; rtx *tmp_regs = NULL; int overlapping = 0; if (mode == BLKmode || (STRICT_ALIGNMENT && align < GET_MODE_ALIGNMENT (mode))) { /* Copy a block into the stack, entirely or partially. */ rtx temp; int used; int offset; int skip; offset = partial % (PARM_BOUNDARY / BITS_PER_UNIT); used = partial - offset; if (mode != BLKmode) { /* A value is to be stored in an insufficiently aligned stack slot; copy via a suitably aligned slot if necessary. */ size = gen_int_mode (GET_MODE_SIZE (mode), Pmode); if (!MEM_P (xinner)) { temp = assign_temp (type, 1, 1); emit_move_insn (temp, xinner); xinner = temp; } } gcc_assert (size); /* USED is now the # of bytes we need not copy to the stack because registers will take care of them. */ if (partial != 0) xinner = adjust_address (xinner, BLKmode, used); /* If the partial register-part of the arg counts in its stack size, skip the part of stack space corresponding to the registers. Otherwise, start copying to the beginning of the stack space, by setting SKIP to 0. */ skip = (reg_parm_stack_space == 0) ? 0 : used; #ifdef PUSH_ROUNDING /* Do it with several push insns if that doesn't take lots of insns and if there is no difficulty with push insns that skip bytes on the stack for alignment purposes. */ if (args_addr == 0 && PUSH_ARGS && CONST_INT_P (size) && skip == 0 && MEM_ALIGN (xinner) >= align && can_move_by_pieces ((unsigned) INTVAL (size) - used, align) /* Here we avoid the case of a structure whose weak alignment forces many pushes of a small amount of data, and such small pushes do rounding that causes trouble. */ && ((!targetm.slow_unaligned_access (word_mode, align)) || align >= BIGGEST_ALIGNMENT || known_eq (PUSH_ROUNDING (align / BITS_PER_UNIT), align / BITS_PER_UNIT)) && known_eq (PUSH_ROUNDING (INTVAL (size)), INTVAL (size))) { /* Push padding now if padding above and stack grows down, or if padding below and stack grows up. But if space already allocated, this has already been done. */ if (maybe_ne (extra, 0) && args_addr == 0 && where_pad != PAD_NONE && where_pad != stack_direction) anti_adjust_stack (gen_int_mode (extra, Pmode)); move_by_pieces (NULL, xinner, INTVAL (size) - used, align, 0); } else #endif /* PUSH_ROUNDING */ { rtx target; /* Otherwise make space on the stack and copy the data to the address of that space. */ /* Deduct words put into registers from the size we must copy. */ if (partial != 0) { if (CONST_INT_P (size)) size = GEN_INT (INTVAL (size) - used); else size = expand_binop (GET_MODE (size), sub_optab, size, gen_int_mode (used, GET_MODE (size)), NULL_RTX, 0, OPTAB_LIB_WIDEN); } /* Get the address of the stack space. In this case, we do not deal with EXTRA separately. A single stack adjust will do. */ if (! args_addr) { temp = push_block (size, extra, where_pad == PAD_DOWNWARD); extra = 0; } else if (CONST_INT_P (args_so_far)) temp = memory_address (BLKmode, plus_constant (Pmode, args_addr, skip + INTVAL (args_so_far))); else temp = memory_address (BLKmode, plus_constant (Pmode, gen_rtx_PLUS (Pmode, args_addr, args_so_far), skip)); if (!ACCUMULATE_OUTGOING_ARGS) { /* If the source is referenced relative to the stack pointer, copy it to another register to stabilize it. We do not need to do this if we know that we won't be changing sp. */ if (reg_mentioned_p (virtual_stack_dynamic_rtx, temp) || reg_mentioned_p (virtual_outgoing_args_rtx, temp)) temp = copy_to_reg (temp); } target = gen_rtx_MEM (BLKmode, temp); /* We do *not* set_mem_attributes here, because incoming arguments may overlap with sibling call outgoing arguments and we cannot allow reordering of reads from function arguments with stores to outgoing arguments of sibling calls. We do, however, want to record the alignment of the stack slot. */ /* ALIGN may well be better aligned than TYPE, e.g. due to PARM_BOUNDARY. Assume the caller isn't lying. */ set_mem_align (target, align); /* If part should go in registers and pushing to that part would overwrite some of the values that need to go into regs, load the overlapping values into temporary pseudos to be moved into the hard regs at the end after the stack pushing has completed. We cannot load them directly into the hard regs here because they can be clobbered by the block move expansions. See PR 65358. */ if (partial > 0 && reg != 0 && mode == BLKmode && GET_CODE (reg) != PARALLEL) { overlapping = memory_load_overlap (XEXP (x, 0), temp, partial); if (overlapping > 0) { gcc_assert (overlapping % UNITS_PER_WORD == 0); overlapping /= UNITS_PER_WORD; tmp_regs = XALLOCAVEC (rtx, overlapping); for (int i = 0; i < overlapping; i++) tmp_regs[i] = gen_reg_rtx (word_mode); for (int i = 0; i < overlapping; i++) emit_move_insn (tmp_regs[i], operand_subword_force (target, i, mode)); } else if (overlapping == -1) overlapping = 0; /* Could not determine whether there is overlap. Fail the sibcall. */ else { overlapping = 0; if (sibcall_p) return false; } } emit_block_move (target, xinner, size, BLOCK_OP_CALL_PARM); } } else if (partial > 0) { /* Scalar partly in registers. This case is only supported for fixed-wdth modes. */ int size = GET_MODE_SIZE (mode).to_constant (); size /= UNITS_PER_WORD; int i; int not_stack; /* # bytes of start of argument that we must make space for but need not store. */ int offset = partial % (PARM_BOUNDARY / BITS_PER_UNIT); int args_offset = INTVAL (args_so_far); int skip; /* Push padding now if padding above and stack grows down, or if padding below and stack grows up. But if space already allocated, this has already been done. */ if (maybe_ne (extra, 0) && args_addr == 0 && where_pad != PAD_NONE && where_pad != stack_direction) anti_adjust_stack (gen_int_mode (extra, Pmode)); /* If we make space by pushing it, we might as well push the real data. Otherwise, we can leave OFFSET nonzero and leave the space uninitialized. */ if (args_addr == 0) offset = 0; /* Now NOT_STACK gets the number of words that we don't need to allocate on the stack. Convert OFFSET to words too. */ not_stack = (partial - offset) / UNITS_PER_WORD; offset /= UNITS_PER_WORD; /* If the partial register-part of the arg counts in its stack size, skip the part of stack space corresponding to the registers. Otherwise, start copying to the beginning of the stack space, by setting SKIP to 0. */ skip = (reg_parm_stack_space == 0) ? 0 : not_stack; if (CONSTANT_P (x) && !targetm.legitimate_constant_p (mode, x)) x = validize_mem (force_const_mem (mode, x)); /* If X is a hard register in a non-integer mode, copy it into a pseudo; SUBREGs of such registers are not allowed. */ if ((REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER && GET_MODE_CLASS (GET_MODE (x)) != MODE_INT)) x = copy_to_reg (x); /* Loop over all the words allocated on the stack for this arg. */ /* We can do it by words, because any scalar bigger than a word has a size a multiple of a word. */ for (i = size - 1; i >= not_stack; i--) if (i >= not_stack + offset) if (!emit_push_insn (operand_subword_force (x, i, mode), word_mode, NULL_TREE, NULL_RTX, align, 0, NULL_RTX, 0, args_addr, GEN_INT (args_offset + ((i - not_stack + skip) * UNITS_PER_WORD)), reg_parm_stack_space, alignment_pad, sibcall_p)) return false; } else { rtx addr; rtx dest; /* Push padding now if padding above and stack grows down, or if padding below and stack grows up. But if space already allocated, this has already been done. */ if (maybe_ne (extra, 0) && args_addr == 0 && where_pad != PAD_NONE && where_pad != stack_direction) anti_adjust_stack (gen_int_mode (extra, Pmode)); #ifdef PUSH_ROUNDING if (args_addr == 0 && PUSH_ARGS) emit_single_push_insn (mode, x, type); else #endif { addr = simplify_gen_binary (PLUS, Pmode, args_addr, args_so_far); dest = gen_rtx_MEM (mode, memory_address (mode, addr)); /* We do *not* set_mem_attributes here, because incoming arguments may overlap with sibling call outgoing arguments and we cannot allow reordering of reads from function arguments with stores to outgoing arguments of sibling calls. We do, however, want to record the alignment of the stack slot. */ /* ALIGN may well be better aligned than TYPE, e.g. due to PARM_BOUNDARY. Assume the caller isn't lying. */ set_mem_align (dest, align); emit_move_insn (dest, x); } } /* Move the partial arguments into the registers and any overlapping values that we moved into the pseudos in tmp_regs. */ if (partial > 0 && reg != 0) { /* Handle calls that pass values in multiple non-contiguous locations. The Irix 6 ABI has examples of this. */ if (GET_CODE (reg) == PARALLEL) emit_group_load (reg, x, type, -1); else { gcc_assert (partial % UNITS_PER_WORD == 0); move_block_to_reg (REGNO (reg), x, nregs - overlapping, mode); for (int i = 0; i < overlapping; i++) emit_move_insn (gen_rtx_REG (word_mode, REGNO (reg) + nregs - overlapping + i), tmp_regs[i]); } } if (maybe_ne (extra, 0) && args_addr == 0 && where_pad == stack_direction) anti_adjust_stack (gen_int_mode (extra, Pmode)); if (alignment_pad && args_addr == 0) anti_adjust_stack (alignment_pad); return true; } /* Return X if X can be used as a subtarget in a sequence of arithmetic operations. */ static rtx get_subtarget (rtx x) { return (optimize || x == 0 /* Only registers can be subtargets. */ || !REG_P (x) /* Don't use hard regs to avoid extending their life. */ || REGNO (x) < FIRST_PSEUDO_REGISTER ? 0 : x); } /* A subroutine of expand_assignment. Optimize FIELD op= VAL, where FIELD is a bitfield. Returns true if the optimization was successful, and there's nothing else to do. */ static bool optimize_bitfield_assignment_op (poly_uint64 pbitsize, poly_uint64 pbitpos, poly_uint64 pbitregion_start, poly_uint64 pbitregion_end, machine_mode mode1, rtx str_rtx, tree to, tree src, bool reverse) { /* str_mode is not guaranteed to be a scalar type. */ machine_mode str_mode = GET_MODE (str_rtx); unsigned int str_bitsize; tree op0, op1; rtx value, result; optab binop; gimple *srcstmt; enum tree_code code; unsigned HOST_WIDE_INT bitsize, bitpos, bitregion_start, bitregion_end; if (mode1 != VOIDmode || !pbitsize.is_constant (&bitsize) || !pbitpos.is_constant (&bitpos) || !pbitregion_start.is_constant (&bitregion_start) || !pbitregion_end.is_constant (&bitregion_end) || bitsize >= BITS_PER_WORD || !GET_MODE_BITSIZE (str_mode).is_constant (&str_bitsize) || str_bitsize > BITS_PER_WORD || TREE_SIDE_EFFECTS (to) || TREE_THIS_VOLATILE (to)) return false; STRIP_NOPS (src); if (TREE_CODE (src) != SSA_NAME) return false; if (TREE_CODE (TREE_TYPE (src)) != INTEGER_TYPE) return false; srcstmt = get_gimple_for_ssa_name (src); if (!srcstmt || TREE_CODE_CLASS (gimple_assign_rhs_code (srcstmt)) != tcc_binary) return false; code = gimple_assign_rhs_code (srcstmt); op0 = gimple_assign_rhs1 (srcstmt); /* If OP0 is an SSA_NAME, then we want to walk the use-def chain to find its initialization. Hopefully the initialization will be from a bitfield load. */ if (TREE_CODE (op0) == SSA_NAME) { gimple *op0stmt = get_gimple_for_ssa_name (op0); /* We want to eventually have OP0 be the same as TO, which should be a bitfield. */ if (!op0stmt || !is_gimple_assign (op0stmt) || gimple_assign_rhs_code (op0stmt) != TREE_CODE (to)) return false; op0 = gimple_assign_rhs1 (op0stmt); } op1 = gimple_assign_rhs2 (srcstmt); if (!operand_equal_p (to, op0, 0)) return false; if (MEM_P (str_rtx)) { unsigned HOST_WIDE_INT offset1; if (str_bitsize == 0 || str_bitsize > BITS_PER_WORD) str_bitsize = BITS_PER_WORD; scalar_int_mode best_mode; if (!get_best_mode (bitsize, bitpos, bitregion_start, bitregion_end, MEM_ALIGN (str_rtx), str_bitsize, false, &best_mode)) return false; str_mode = best_mode; str_bitsize = GET_MODE_BITSIZE (best_mode); offset1 = bitpos; bitpos %= str_bitsize; offset1 = (offset1 - bitpos) / BITS_PER_UNIT; str_rtx = adjust_address (str_rtx, str_mode, offset1); } else if (!REG_P (str_rtx) && GET_CODE (str_rtx) != SUBREG) return false; /* If the bit field covers the whole REG/MEM, store_field will likely generate better code. */ if (bitsize >= str_bitsize) return false; /* We can't handle fields split across multiple entities. */ if (bitpos + bitsize > str_bitsize) return false; if (reverse ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN) bitpos = str_bitsize - bitpos - bitsize; switch (code) { case PLUS_EXPR: case MINUS_EXPR: /* For now, just optimize the case of the topmost bitfield where we don't need to do any masking and also 1 bit bitfields where xor can be used. We might win by one instruction for the other bitfields too if insv/extv instructions aren't used, so that can be added later. */ if ((reverse || bitpos + bitsize != str_bitsize) && (bitsize != 1 || TREE_CODE (op1) != INTEGER_CST)) break; value = expand_expr (op1, NULL_RTX, str_mode, EXPAND_NORMAL); value = convert_modes (str_mode, TYPE_MODE (TREE_TYPE (op1)), value, TYPE_UNSIGNED (TREE_TYPE (op1))); /* We may be accessing data outside the field, which means we can alias adjacent data. */ if (MEM_P (str_rtx)) { str_rtx = shallow_copy_rtx (str_rtx); set_mem_alias_set (str_rtx, 0); set_mem_expr (str_rtx, 0); } if (bitsize == 1 && (reverse || bitpos + bitsize != str_bitsize)) { value = expand_and (str_mode, value, const1_rtx, NULL); binop = xor_optab; } else binop = code == PLUS_EXPR ? add_optab : sub_optab; value = expand_shift (LSHIFT_EXPR, str_mode, value, bitpos, NULL_RTX, 1); if (reverse) value = flip_storage_order (str_mode, value); result = expand_binop (str_mode, binop, str_rtx, value, str_rtx, 1, OPTAB_WIDEN); if (result != str_rtx) emit_move_insn (str_rtx, result); return true; case BIT_IOR_EXPR: case BIT_XOR_EXPR: if (TREE_CODE (op1) != INTEGER_CST) break; value = expand_expr (op1, NULL_RTX, str_mode, EXPAND_NORMAL); value = convert_modes (str_mode, TYPE_MODE (TREE_TYPE (op1)), value, TYPE_UNSIGNED (TREE_TYPE (op1))); /* We may be accessing data outside the field, which means we can alias adjacent data. */ if (MEM_P (str_rtx)) { str_rtx = shallow_copy_rtx (str_rtx); set_mem_alias_set (str_rtx, 0); set_mem_expr (str_rtx, 0); } binop = code == BIT_IOR_EXPR ? ior_optab : xor_optab; if (bitpos + bitsize != str_bitsize) { rtx mask = gen_int_mode ((HOST_WIDE_INT_1U << bitsize) - 1, str_mode); value = expand_and (str_mode, value, mask, NULL_RTX); } value = expand_shift (LSHIFT_EXPR, str_mode, value, bitpos, NULL_RTX, 1); if (reverse) value = flip_storage_order (str_mode, value); result = expand_binop (str_mode, binop, str_rtx, value, str_rtx, 1, OPTAB_WIDEN); if (result != str_rtx) emit_move_insn (str_rtx, result); return true; default: break; } return false; } /* In the C++ memory model, consecutive bit fields in a structure are considered one memory location. Given a COMPONENT_REF EXP at position (BITPOS, OFFSET), this function returns the bit range of consecutive bits in which this COMPONENT_REF belongs. The values are returned in *BITSTART and *BITEND. *BITPOS and *OFFSET may be adjusted in the process. If the access does not need to be restricted, 0 is returned in both *BITSTART and *BITEND. */ void get_bit_range (poly_uint64_pod *bitstart, poly_uint64_pod *bitend, tree exp, poly_int64_pod *bitpos, tree *offset) { poly_int64 bitoffset; tree field, repr; gcc_assert (TREE_CODE (exp) == COMPONENT_REF); field = TREE_OPERAND (exp, 1); repr = DECL_BIT_FIELD_REPRESENTATIVE (field); /* If we do not have a DECL_BIT_FIELD_REPRESENTATIVE there is no need to limit the range we can access. */ if (!repr) { *bitstart = *bitend = 0; return; } /* If we have a DECL_BIT_FIELD_REPRESENTATIVE but the enclosing record is part of a larger bit field, then the representative does not serve any useful purpose. This can occur in Ada. */ if (handled_component_p (TREE_OPERAND (exp, 0))) { machine_mode rmode; poly_int64 rbitsize, rbitpos; tree roffset; int unsignedp, reversep, volatilep = 0; get_inner_reference (TREE_OPERAND (exp, 0), &rbitsize, &rbitpos, &roffset, &rmode, &unsignedp, &reversep, &volatilep); if (!multiple_p (rbitpos, BITS_PER_UNIT)) { *bitstart = *bitend = 0; return; } } /* Compute the adjustment to bitpos from the offset of the field relative to the representative. DECL_FIELD_OFFSET of field and repr are the same by construction if they are not constants, see finish_bitfield_layout. */ poly_uint64 field_offset, repr_offset; if (poly_int_tree_p (DECL_FIELD_OFFSET (field), &field_offset) && poly_int_tree_p (DECL_FIELD_OFFSET (repr), &repr_offset)) bitoffset = (field_offset - repr_offset) * BITS_PER_UNIT; else bitoffset = 0; bitoffset += (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field)) - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr))); /* If the adjustment is larger than bitpos, we would have a negative bit position for the lower bound and this may wreak havoc later. Adjust offset and bitpos to make the lower bound non-negative in that case. */ if (maybe_gt (bitoffset, *bitpos)) { poly_int64 adjust_bits = upper_bound (bitoffset, *bitpos) - *bitpos; poly_int64 adjust_bytes = exact_div (adjust_bits, BITS_PER_UNIT); *bitpos += adjust_bits; if (*offset == NULL_TREE) *offset = size_int (-adjust_bytes); else *offset = size_binop (MINUS_EXPR, *offset, size_int (adjust_bytes)); *bitstart = 0; } else *bitstart = *bitpos - bitoffset; *bitend = *bitstart + tree_to_uhwi (DECL_SIZE (repr)) - 1; } /* Returns true if ADDR is an ADDR_EXPR of a DECL that does not reside in memory and has non-BLKmode. DECL_RTL must not be a MEM; if DECL_RTL was not set yet, return NORTL. */ static inline bool addr_expr_of_non_mem_decl_p_1 (tree addr, bool nortl) { if (TREE_CODE (addr) != ADDR_EXPR) return false; tree base = TREE_OPERAND (addr, 0); if (!DECL_P (base) || TREE_ADDRESSABLE (base) || DECL_MODE (base) == BLKmode) return false; if (!DECL_RTL_SET_P (base)) return nortl; return (!MEM_P (DECL_RTL (base))); } /* Returns true if the MEM_REF REF refers to an object that does not reside in memory and has non-BLKmode. */ static inline bool mem_ref_refers_to_non_mem_p (tree ref) { tree base = TREE_OPERAND (ref, 0); return addr_expr_of_non_mem_decl_p_1 (base, false); } /* Expand an assignment that stores the value of FROM into TO. If NONTEMPORAL is true, try generating a nontemporal store. */ void expand_assignment (tree to, tree from, bool nontemporal) { rtx to_rtx = 0; rtx result; machine_mode mode; unsigned int align; enum insn_code icode; /* Don't crash if the lhs of the assignment was erroneous. */ if (TREE_CODE (to) == ERROR_MARK) { expand_normal (from); return; } /* Optimize away no-op moves without side-effects. */ if (operand_equal_p (to, from, 0)) return; /* Handle misaligned stores. */ mode = TYPE_MODE (TREE_TYPE (to)); if ((TREE_CODE (to) == MEM_REF || TREE_CODE (to) == TARGET_MEM_REF) && mode != BLKmode && !mem_ref_refers_to_non_mem_p (to) && ((align = get_object_alignment (to)) < GET_MODE_ALIGNMENT (mode)) && (((icode = optab_handler (movmisalign_optab, mode)) != CODE_FOR_nothing) || targetm.slow_unaligned_access (mode, align))) { rtx reg, mem; reg = expand_expr (from, NULL_RTX, VOIDmode, EXPAND_NORMAL); reg = force_not_mem (reg); mem = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE); if (TREE_CODE (to) == MEM_REF && REF_REVERSE_STORAGE_ORDER (to)) reg = flip_storage_order (mode, reg); if (icode != CODE_FOR_nothing) { struct expand_operand ops[2]; create_fixed_operand (&ops[0], mem); create_input_operand (&ops[1], reg, mode); /* The movmisalign pattern cannot fail, else the assignment would silently be omitted. */ expand_insn (icode, 2, ops); } else store_bit_field (mem, GET_MODE_BITSIZE (mode), 0, 0, 0, mode, reg, false); return; } /* Assignment of a structure component needs special treatment if the structure component's rtx is not simply a MEM. Assignment of an array element at a constant index, and assignment of an array element in an unaligned packed structure field, has the same problem. Same for (partially) storing into a non-memory object. */ if (handled_component_p (to) || (TREE_CODE (to) == MEM_REF && (REF_REVERSE_STORAGE_ORDER (to) || mem_ref_refers_to_non_mem_p (to))) || TREE_CODE (TREE_TYPE (to)) == ARRAY_TYPE) { machine_mode mode1; poly_int64 bitsize, bitpos; poly_uint64 bitregion_start = 0; poly_uint64 bitregion_end = 0; tree offset; int unsignedp, reversep, volatilep = 0; tree tem; push_temp_slots (); tem = get_inner_reference (to, &bitsize, &bitpos, &offset, &mode1, &unsignedp, &reversep, &volatilep); /* Make sure bitpos is not negative, it can wreak havoc later. */ if (maybe_lt (bitpos, 0)) { gcc_assert (offset == NULL_TREE); offset = size_int (bits_to_bytes_round_down (bitpos)); bitpos = num_trailing_bits (bitpos); } if (TREE_CODE (to) == COMPONENT_REF && DECL_BIT_FIELD_TYPE (TREE_OPERAND (to, 1))) get_bit_range (&bitregion_start, &bitregion_end, to, &bitpos, &offset); /* The C++ memory model naturally applies to byte-aligned fields. However, if we do not have a DECL_BIT_FIELD_TYPE but BITPOS or BITSIZE are not byte-aligned, there is no need to limit the range we can access. This can occur with packed structures in Ada. */ else if (maybe_gt (bitsize, 0) && multiple_p (bitsize, BITS_PER_UNIT) && multiple_p (bitpos, BITS_PER_UNIT)) { bitregion_start = bitpos; bitregion_end = bitpos + bitsize - 1; } to_rtx = expand_expr (tem, NULL_RTX, VOIDmode, EXPAND_WRITE); /* If the field has a mode, we want to access it in the field's mode, not the computed mode. If a MEM has VOIDmode (external with incomplete type), use BLKmode for it instead. */ if (MEM_P (to_rtx)) { if (mode1 != VOIDmode) to_rtx = adjust_address (to_rtx, mode1, 0); else if (GET_MODE (to_rtx) == VOIDmode) to_rtx = adjust_address (to_rtx, BLKmode, 0); } if (offset != 0) { machine_mode address_mode; rtx offset_rtx; if (!MEM_P (to_rtx)) { /* We can get constant negative offsets into arrays with broken user code. Translate this to a trap instead of ICEing. */ gcc_assert (TREE_CODE (offset) == INTEGER_CST); expand_builtin_trap (); to_rtx = gen_rtx_MEM (BLKmode, const0_rtx); } offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode, EXPAND_SUM); address_mode = get_address_mode (to_rtx); if (GET_MODE (offset_rtx) != address_mode) { /* We cannot be sure that the RTL in offset_rtx is valid outside of a memory address context, so force it into a register before attempting to convert it to the desired mode. */ offset_rtx = force_operand (offset_rtx, NULL_RTX); offset_rtx = convert_to_mode (address_mode, offset_rtx, 0); } /* If we have an expression in OFFSET_RTX and a non-zero byte offset in BITPOS, adding the byte offset before the OFFSET_RTX results in better intermediate code, which makes later rtl optimization passes perform better. We prefer intermediate code like this: r124:DI=r123:DI+0x18 [r124:DI]=r121:DI ... instead of ... r124:DI=r123:DI+0x10 [r124:DI+0x8]=r121:DI This is only done for aligned data values, as these can be expected to result in single move instructions. */ poly_int64 bytepos; if (mode1 != VOIDmode && maybe_ne (bitpos, 0) && maybe_gt (bitsize, 0) && multiple_p (bitpos, BITS_PER_UNIT, &bytepos) && multiple_p (bitpos, bitsize) && multiple_p (bitsize, GET_MODE_ALIGNMENT (mode1)) && MEM_ALIGN (to_rtx) >= GET_MODE_ALIGNMENT (mode1)) { to_rtx = adjust_address (to_rtx, mode1, bytepos); bitregion_start = 0; if (known_ge (bitregion_end, poly_uint64 (bitpos))) bitregion_end -= bitpos; bitpos = 0; } to_rtx = offset_address (to_rtx, offset_rtx, highest_pow2_factor_for_target (to, offset)); } /* No action is needed if the target is not a memory and the field lies completely outside that target. This can occur if the source code contains an out-of-bounds access to a small array. */ if (!MEM_P (to_rtx) && GET_MODE (to_rtx) != BLKmode && known_ge (bitpos, GET_MODE_PRECISION (GET_MODE (to_rtx)))) { expand_normal (from); result = NULL; } /* Handle expand_expr of a complex value returning a CONCAT. */ else if (GET_CODE (to_rtx) == CONCAT) { machine_mode to_mode = GET_MODE (to_rtx); gcc_checking_assert (COMPLEX_MODE_P (to_mode)); poly_int64 mode_bitsize = GET_MODE_BITSIZE (to_mode); unsigned short inner_bitsize = GET_MODE_UNIT_BITSIZE (to_mode); if (TYPE_MODE (TREE_TYPE (from)) == to_mode && known_eq (bitpos, 0) && known_eq (bitsize, mode_bitsize)) result = store_expr (from, to_rtx, false, nontemporal, reversep); else if (TYPE_MODE (TREE_TYPE (from)) == GET_MODE_INNER (to_mode) && known_eq (bitsize, inner_bitsize) && (known_eq (bitpos, 0) || known_eq (bitpos, inner_bitsize))) result = store_expr (from, XEXP (to_rtx, maybe_ne (bitpos, 0)), false, nontemporal, reversep); else if (known_le (bitpos + bitsize, inner_bitsize)) result = store_field (XEXP (to_rtx, 0), bitsize, bitpos, bitregion_start, bitregion_end, mode1, from, get_alias_set (to), nontemporal, reversep); else if (known_ge (bitpos, inner_bitsize)) result = store_field (XEXP (to_rtx, 1), bitsize, bitpos - inner_bitsize, bitregion_start, bitregion_end, mode1, from, get_alias_set (to), nontemporal, reversep); else if (known_eq (bitpos, 0) && known_eq (bitsize, mode_bitsize)) { result = expand_normal (from); if (GET_CODE (result) == CONCAT) { to_mode = GET_MODE_INNER (to_mode); machine_mode from_mode = GET_MODE_INNER (GET_MODE (result)); rtx from_real = simplify_gen_subreg (to_mode, XEXP (result, 0), from_mode, 0); rtx from_imag = simplify_gen_subreg (to_mode, XEXP (result, 1), from_mode, 0); if (!from_real || !from_imag) goto concat_store_slow; emit_move_insn (XEXP (to_rtx, 0), from_real); emit_move_insn (XEXP (to_rtx, 1), from_imag); } else { rtx from_rtx = simplify_gen_subreg (to_mode, result, TYPE_MODE (TREE_TYPE (from)), 0); if (from_rtx) { emit_move_insn (XEXP (to_rtx, 0), read_complex_part (from_rtx, false)); emit_move_insn (XEXP (to_rtx, 1), read_complex_part (from_rtx, true)); } else { machine_mode to_mode = GET_MODE_INNER (GET_MODE (to_rtx)); rtx from_real = simplify_gen_subreg (to_mode, result, TYPE_MODE (TREE_TYPE (from)), 0); rtx from_imag = simplify_gen_subreg (to_mode, result, TYPE_MODE (TREE_TYPE (from)), GET_MODE_SIZE (to_mode)); if (!from_real || !from_imag) goto concat_store_slow; emit_move_insn (XEXP (to_rtx, 0), from_real); emit_move_insn (XEXP (to_rtx, 1), from_imag); } } } else { concat_store_slow:; rtx temp = assign_stack_temp (to_mode, GET_MODE_SIZE (GET_MODE (to_rtx))); write_complex_part (temp, XEXP (to_rtx, 0), false); write_complex_part (temp, XEXP (to_rtx, 1), true); result = store_field (temp, bitsize, bitpos, bitregion_start, bitregion_end, mode1, from, get_alias_set (to), nontemporal, reversep); emit_move_insn (XEXP (to_rtx, 0), read_complex_part (temp, false)); emit_move_insn (XEXP (to_rtx, 1), read_complex_part (temp, true)); } } /* For calls to functions returning variable length structures, if TO_RTX is not a MEM, go through a MEM because we must not create temporaries of the VLA type. */ else if (!MEM_P (to_rtx) && TREE_CODE (from) == CALL_EXPR && COMPLETE_TYPE_P (TREE_TYPE (from)) && TREE_CODE (TYPE_SIZE (TREE_TYPE (from))) != INTEGER_CST) { rtx temp = assign_stack_temp (GET_MODE (to_rtx), GET_MODE_SIZE (GET_MODE (to_rtx))); result = store_field (temp, bitsize, bitpos, bitregion_start, bitregion_end, mode1, from, get_alias_set (to), nontemporal, reversep); emit_move_insn (to_rtx, temp); } else { if (MEM_P (to_rtx)) { /* If the field is at offset zero, we could have been given the DECL_RTX of the parent struct. Don't munge it. */ to_rtx = shallow_copy_rtx (to_rtx); set_mem_attributes_minus_bitpos (to_rtx, to, 0, bitpos); if (volatilep) MEM_VOLATILE_P (to_rtx) = 1; } if (optimize_bitfield_assignment_op (bitsize, bitpos, bitregion_start, bitregion_end, mode1, to_rtx, to, from, reversep)) result = NULL; else result = store_field (to_rtx, bitsize, bitpos, bitregion_start, bitregion_end, mode1, from, get_alias_set (to), nontemporal, reversep); } if (result) preserve_temp_slots (result); pop_temp_slots (); return; } /* If the rhs is a function call and its value is not an aggregate, call the function before we start to compute the lhs. This is needed for correct code for cases such as val = setjmp (buf) on machines where reference to val requires loading up part of an address in a separate insn. Don't do this if TO is a VAR_DECL or PARM_DECL whose DECL_RTL is REG since it might be a promoted variable where the zero- or sign- extension needs to be done. Handling this in the normal way is safe because no computation is done before the call. The same is true for SSA names. */ if (TREE_CODE (from) == CALL_EXPR && ! aggregate_value_p (from, from) && COMPLETE_TYPE_P (TREE_TYPE (from)) && TREE_CODE (TYPE_SIZE (TREE_TYPE (from))) == INTEGER_CST && ! (((VAR_P (to) || TREE_CODE (to) == PARM_DECL || TREE_CODE (to) == RESULT_DECL) && REG_P (DECL_RTL (to))) || TREE_CODE (to) == SSA_NAME)) { rtx value; rtx bounds; push_temp_slots (); value = expand_normal (from); /* Split value and bounds to store them separately. */ chkp_split_slot (value, &value, &bounds); if (to_rtx == 0) to_rtx = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE); /* Handle calls that return values in multiple non-contiguous locations. The Irix 6 ABI has examples of this. */ if (GET_CODE (to_rtx) == PARALLEL) { if (GET_CODE (value) == PARALLEL) emit_group_move (to_rtx, value); else emit_group_load (to_rtx, value, TREE_TYPE (from), int_size_in_bytes (TREE_TYPE (from))); } else if (GET_CODE (value) == PARALLEL) emit_group_store (to_rtx, value, TREE_TYPE (from), int_size_in_bytes (TREE_TYPE (from))); else if (GET_MODE (to_rtx) == BLKmode) { /* Handle calls that return BLKmode values in registers. */ if (REG_P (value)) copy_blkmode_from_reg (to_rtx, value, TREE_TYPE (from)); else emit_block_move (to_rtx, value, expr_size (from), BLOCK_OP_NORMAL); } else { if (POINTER_TYPE_P (TREE_TYPE (to))) value = convert_memory_address_addr_space (as_a (GET_MODE (to_rtx)), value, TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (to)))); emit_move_insn (to_rtx, value); } /* Store bounds if required. */ if (bounds && (BOUNDED_P (to) || chkp_type_has_pointer (TREE_TYPE (to)))) { gcc_assert (MEM_P (to_rtx)); chkp_emit_bounds_store (bounds, value, to_rtx); } preserve_temp_slots (to_rtx); pop_temp_slots (); return; } /* Ordinary treatment. Expand TO to get a REG or MEM rtx. */ to_rtx = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE); /* Don't move directly into a return register. */ if (TREE_CODE (to) == RESULT_DECL && (REG_P (to_rtx) || GET_CODE (to_rtx) == PARALLEL)) { rtx temp; push_temp_slots (); /* If the source is itself a return value, it still is in a pseudo at this point so we can move it back to the return register directly. */ if (REG_P (to_rtx) && TYPE_MODE (TREE_TYPE (from)) == BLKmode && TREE_CODE (from) != CALL_EXPR) temp = copy_blkmode_to_reg (GET_MODE (to_rtx), from); else temp = expand_expr (from, NULL_RTX, GET_MODE (to_rtx), EXPAND_NORMAL); /* Handle calls that return values in multiple non-contiguous locations. The Irix 6 ABI has examples of this. */ if (GET_CODE (to_rtx) == PARALLEL) { if (GET_CODE (temp) == PARALLEL) emit_group_move (to_rtx, temp); else emit_group_load (to_rtx, temp, TREE_TYPE (from), int_size_in_bytes (TREE_TYPE (from))); } else if (temp) emit_move_insn (to_rtx, temp); preserve_temp_slots (to_rtx); pop_temp_slots (); return; } /* In case we are returning the contents of an object which overlaps the place the value is being stored, use a safe function when copying a value through a pointer into a structure value return block. */ if (TREE_CODE (to) == RESULT_DECL && TREE_CODE (from) == INDIRECT_REF && ADDR_SPACE_GENERIC_P (TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (from, 0))))) && refs_may_alias_p (to, from) && cfun->returns_struct && !cfun->returns_pcc_struct) { rtx from_rtx, size; push_temp_slots (); size = expr_size (from); from_rtx = expand_normal (from); emit_block_move_via_libcall (XEXP (to_rtx, 0), XEXP (from_rtx, 0), size); preserve_temp_slots (to_rtx); pop_temp_slots (); return; } /* Compute FROM and store the value in the rtx we got. */ push_temp_slots (); result = store_expr_with_bounds (from, to_rtx, 0, nontemporal, false, to); preserve_temp_slots (result); pop_temp_slots (); return; } /* Emits nontemporal store insn that moves FROM to TO. Returns true if this succeeded, false otherwise. */ bool emit_storent_insn (rtx to, rtx from) { struct expand_operand ops[2]; machine_mode mode = GET_MODE (to); enum insn_code code = optab_handler (storent_optab, mode); if (code == CODE_FOR_nothing) return false; create_fixed_operand (&ops[0], to); create_input_operand (&ops[1], from, mode); return maybe_expand_insn (code, 2, ops); } /* Generate code for computing expression EXP, and storing the value into TARGET. If the mode is BLKmode then we may return TARGET itself. It turns out that in BLKmode it doesn't cause a problem. because C has no operators that could combine two different assignments into the same BLKmode object with different values with no sequence point. Will other languages need this to be more thorough? If CALL_PARAM_P is nonzero, this is a store into a call param on the stack, and block moves may need to be treated specially. If NONTEMPORAL is true, try using a nontemporal store instruction. If REVERSE is true, the store is to be done in reverse order. If BTARGET is not NULL then computed bounds of EXP are associated with BTARGET. */ rtx store_expr_with_bounds (tree exp, rtx target, int call_param_p, bool nontemporal, bool reverse, tree btarget) { rtx temp; rtx alt_rtl = NULL_RTX; location_t loc = curr_insn_location (); if (VOID_TYPE_P (TREE_TYPE (exp))) { /* C++ can generate ?: expressions with a throw expression in one branch and an rvalue in the other. Here, we resolve attempts to store the throw expression's nonexistent result. */ gcc_assert (!call_param_p); expand_expr (exp, const0_rtx, VOIDmode, EXPAND_NORMAL); return NULL_RTX; } if (TREE_CODE (exp) == COMPOUND_EXPR) { /* Perform first part of compound expression, then assign from second part. */ expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode, call_param_p ? EXPAND_STACK_PARM : EXPAND_NORMAL); return store_expr_with_bounds (TREE_OPERAND (exp, 1), target, call_param_p, nontemporal, reverse, btarget); } else if (TREE_CODE (exp) == COND_EXPR && GET_MODE (target) == BLKmode) { /* For conditional expression, get safe form of the target. Then test the condition, doing the appropriate assignment on either side. This avoids the creation of unnecessary temporaries. For non-BLKmode, it is more efficient not to do this. */ rtx_code_label *lab1 = gen_label_rtx (), *lab2 = gen_label_rtx (); do_pending_stack_adjust (); NO_DEFER_POP; jumpifnot (TREE_OPERAND (exp, 0), lab1, profile_probability::uninitialized ()); store_expr_with_bounds (TREE_OPERAND (exp, 1), target, call_param_p, nontemporal, reverse, btarget); emit_jump_insn (targetm.gen_jump (lab2)); emit_barrier (); emit_label (lab1); store_expr_with_bounds (TREE_OPERAND (exp, 2), target, call_param_p, nontemporal, reverse, btarget); emit_label (lab2); OK_DEFER_POP; return NULL_RTX; } else if (GET_CODE (target) == SUBREG && SUBREG_PROMOTED_VAR_P (target)) /* If this is a scalar in a register that is stored in a wider mode than the declared mode, compute the result into its declared mode and then convert to the wider mode. Our value is the computed expression. */ { rtx inner_target = 0; scalar_int_mode outer_mode = subreg_unpromoted_mode (target); scalar_int_mode inner_mode = subreg_promoted_mode (target); /* We can do the conversion inside EXP, which will often result in some optimizations. Do the conversion in two steps: first change the signedness, if needed, then the extend. But don't do this if the type of EXP is a subtype of something else since then the conversion might involve more than just converting modes. */ if (INTEGRAL_TYPE_P (TREE_TYPE (exp)) && TREE_TYPE (TREE_TYPE (exp)) == 0 && GET_MODE_PRECISION (outer_mode) == TYPE_PRECISION (TREE_TYPE (exp))) { if (!SUBREG_CHECK_PROMOTED_SIGN (target, TYPE_UNSIGNED (TREE_TYPE (exp)))) { /* Some types, e.g. Fortran's logical*4, won't have a signed version, so use the mode instead. */ tree ntype = (signed_or_unsigned_type_for (SUBREG_PROMOTED_SIGN (target), TREE_TYPE (exp))); if (ntype == NULL) ntype = lang_hooks.types.type_for_mode (TYPE_MODE (TREE_TYPE (exp)), SUBREG_PROMOTED_SIGN (target)); exp = fold_convert_loc (loc, ntype, exp); } exp = fold_convert_loc (loc, lang_hooks.types.type_for_mode (inner_mode, SUBREG_PROMOTED_SIGN (target)), exp); inner_target = SUBREG_REG (target); } temp = expand_expr (exp, inner_target, VOIDmode, call_param_p ? EXPAND_STACK_PARM : EXPAND_NORMAL); /* Handle bounds returned by call. */ if (TREE_CODE (exp) == CALL_EXPR) { rtx bounds; chkp_split_slot (temp, &temp, &bounds); if (bounds && btarget) { gcc_assert (TREE_CODE (btarget) == SSA_NAME); rtx tmp = targetm.calls.load_returned_bounds (bounds); chkp_set_rtl_bounds (btarget, tmp); } } /* If TEMP is a VOIDmode constant, use convert_modes to make sure that we properly convert it. */ if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode) { temp = convert_modes (outer_mode, TYPE_MODE (TREE_TYPE (exp)), temp, SUBREG_PROMOTED_SIGN (target)); temp = convert_modes (inner_mode, outer_mode, temp, SUBREG_PROMOTED_SIGN (target)); } convert_move (SUBREG_REG (target), temp, SUBREG_PROMOTED_SIGN (target)); return NULL_RTX; } else if ((TREE_CODE (exp) == STRING_CST || (TREE_CODE (exp) == MEM_REF && TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR && TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0)) == STRING_CST && integer_zerop (TREE_OPERAND (exp, 1)))) && !nontemporal && !call_param_p && MEM_P (target)) { /* Optimize initialization of an array with a STRING_CST. */ HOST_WIDE_INT exp_len, str_copy_len; rtx dest_mem; tree str = TREE_CODE (exp) == STRING_CST ? exp : TREE_OPERAND (TREE_OPERAND (exp, 0), 0); exp_len = int_expr_size (exp); if (exp_len <= 0) goto normal_expr; if (TREE_STRING_LENGTH (str) <= 0) goto normal_expr; str_copy_len = strlen (TREE_STRING_POINTER (str)); if (str_copy_len < TREE_STRING_LENGTH (str) - 1) goto normal_expr; str_copy_len = TREE_STRING_LENGTH (str); if ((STORE_MAX_PIECES & (STORE_MAX_PIECES - 1)) == 0 && TREE_STRING_POINTER (str)[TREE_STRING_LENGTH (str) - 1] == '\0') { str_copy_len += STORE_MAX_PIECES - 1; str_copy_len &= ~(STORE_MAX_PIECES - 1); } str_copy_len = MIN (str_copy_len, exp_len); if (!can_store_by_pieces (str_copy_len, builtin_strncpy_read_str, CONST_CAST (char *, TREE_STRING_POINTER (str)), MEM_ALIGN (target), false)) goto normal_expr; dest_mem = target; dest_mem = store_by_pieces (dest_mem, str_copy_len, builtin_strncpy_read_str, CONST_CAST (char *, TREE_STRING_POINTER (str)), MEM_ALIGN (target), false, exp_len > str_copy_len ? 1 : 0); if (exp_len > str_copy_len) clear_storage (adjust_address (dest_mem, BLKmode, 0), GEN_INT (exp_len - str_copy_len), BLOCK_OP_NORMAL); return NULL_RTX; } else { rtx tmp_target; normal_expr: /* If we want to use a nontemporal or a reverse order store, force the value into a register first. */ tmp_target = nontemporal || reverse ? NULL_RTX : target; temp = expand_expr_real (exp, tmp_target, GET_MODE (target), (call_param_p ? EXPAND_STACK_PARM : EXPAND_NORMAL), &alt_rtl, false); /* Handle bounds returned by call. */ if (TREE_CODE (exp) == CALL_EXPR) { rtx bounds; chkp_split_slot (temp, &temp, &bounds); if (bounds && btarget) { gcc_assert (TREE_CODE (btarget) == SSA_NAME); rtx tmp = targetm.calls.load_returned_bounds (bounds); chkp_set_rtl_bounds (btarget, tmp); } } } /* If TEMP is a VOIDmode constant and the mode of the type of EXP is not the same as that of TARGET, adjust the constant. This is needed, for example, in case it is a CONST_DOUBLE or CONST_WIDE_INT and we want only a word-sized value. */ if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode && TREE_CODE (exp) != ERROR_MARK && GET_MODE (target) != TYPE_MODE (TREE_TYPE (exp))) { if (GET_MODE_CLASS (GET_MODE (target)) != GET_MODE_CLASS (TYPE_MODE (TREE_TYPE (exp))) && known_eq (GET_MODE_BITSIZE (GET_MODE (target)), GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (exp))))) { rtx t = simplify_gen_subreg (GET_MODE (target), temp, TYPE_MODE (TREE_TYPE (exp)), 0); if (t) temp = t; } if (GET_MODE (temp) == VOIDmode) temp = convert_modes (GET_MODE (target), TYPE_MODE (TREE_TYPE (exp)), temp, TYPE_UNSIGNED (TREE_TYPE (exp))); } /* If value was not generated in the target, store it there. Convert the value to TARGET's type first if necessary and emit the pending incrementations that have been queued when expanding EXP. Note that we cannot emit the whole queue blindly because this will effectively disable the POST_INC optimization later. If TEMP and TARGET compare equal according to rtx_equal_p, but one or both of them are volatile memory refs, we have to distinguish two cases: - expand_expr has used TARGET. In this case, we must not generate another copy. This can be detected by TARGET being equal according to == . - expand_expr has not used TARGET - that means that the source just happens to have the same RTX form. Since temp will have been created by expand_expr, it will compare unequal according to == . We must generate a copy in this case, to reach the correct number of volatile memory references. */ if ((! rtx_equal_p (temp, target) || (temp != target && (side_effects_p (temp) || side_effects_p (target)))) && TREE_CODE (exp) != ERROR_MARK /* If store_expr stores a DECL whose DECL_RTL(exp) == TARGET, but TARGET is not valid memory reference, TEMP will differ from TARGET although it is really the same location. */ && !(alt_rtl && rtx_equal_p (alt_rtl, target) && !side_effects_p (alt_rtl) && !side_effects_p (target)) /* If there's nothing to copy, don't bother. Don't call expr_size unless necessary, because some front-ends (C++) expr_size-hook must not be given objects that are not supposed to be bit-copied or bit-initialized. */ && expr_size (exp) != const0_rtx) { if (GET_MODE (temp) != GET_MODE (target) && GET_MODE (temp) != VOIDmode) { if (GET_MODE (target) == BLKmode) { /* Handle calls that return BLKmode values in registers. */ if (REG_P (temp) && TREE_CODE (exp) == CALL_EXPR) copy_blkmode_from_reg (target, temp, TREE_TYPE (exp)); else store_bit_field (target, INTVAL (expr_size (exp)) * BITS_PER_UNIT, 0, 0, 0, GET_MODE (temp), temp, reverse); } else convert_move (target, temp, TYPE_UNSIGNED (TREE_TYPE (exp))); } else if (GET_MODE (temp) == BLKmode && TREE_CODE (exp) == STRING_CST) { /* Handle copying a string constant into an array. The string constant may be shorter than the array. So copy just the string's actual length, and clear the rest. First get the size of the data type of the string, which is actually the size of the target. */ rtx size = expr_size (exp); if (CONST_INT_P (size) && INTVAL (size) < TREE_STRING_LENGTH (exp)) emit_block_move (target, temp, size, (call_param_p ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL)); else { machine_mode pointer_mode = targetm.addr_space.pointer_mode (MEM_ADDR_SPACE (target)); machine_mode address_mode = get_address_mode (target); /* Compute the size of the data to copy from the string. */ tree copy_size = size_binop_loc (loc, MIN_EXPR, make_tree (sizetype, size), size_int (TREE_STRING_LENGTH (exp))); rtx copy_size_rtx = expand_expr (copy_size, NULL_RTX, VOIDmode, (call_param_p ? EXPAND_STACK_PARM : EXPAND_NORMAL)); rtx_code_label *label = 0; /* Copy that much. */ copy_size_rtx = convert_to_mode (pointer_mode, copy_size_rtx, TYPE_UNSIGNED (sizetype)); emit_block_move (target, temp, copy_size_rtx, (call_param_p ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL)); /* Figure out how much is left in TARGET that we have to clear. Do all calculations in pointer_mode. */ if (CONST_INT_P (copy_size_rtx)) { size = plus_constant (address_mode, size, -INTVAL (copy_size_rtx)); target = adjust_address (target, BLKmode, INTVAL (copy_size_rtx)); } else { size = expand_binop (TYPE_MODE (sizetype), sub_optab, size, copy_size_rtx, NULL_RTX, 0, OPTAB_LIB_WIDEN); if (GET_MODE (copy_size_rtx) != address_mode) copy_size_rtx = convert_to_mode (address_mode, copy_size_rtx, TYPE_UNSIGNED (sizetype)); target = offset_address (target, copy_size_rtx, highest_pow2_factor (copy_size)); label = gen_label_rtx (); emit_cmp_and_jump_insns (size, const0_rtx, LT, NULL_RTX, GET_MODE (size), 0, label); } if (size != const0_rtx) clear_storage (target, size, BLOCK_OP_NORMAL); if (label) emit_label (label); } } /* Handle calls that return values in multiple non-contiguous locations. The Irix 6 ABI has examples of this. */ else if (GET_CODE (target) == PARALLEL) { if (GET_CODE (temp) == PARALLEL) emit_group_move (target, temp); else emit_group_load (target, temp, TREE_TYPE (exp), int_size_in_bytes (TREE_TYPE (exp))); } else if (GET_CODE (temp) == PARALLEL) emit_group_store (target, temp, TREE_TYPE (exp), int_size_in_bytes (TREE_TYPE (exp))); else if (GET_MODE (temp) == BLKmode) emit_block_move (target, temp, expr_size (exp), (call_param_p ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL)); /* If we emit a nontemporal store, there is nothing else to do. */ else if (nontemporal && emit_storent_insn (target, temp)) ; else { if (reverse) temp = flip_storage_order (GET_MODE (target), temp); temp = force_operand (temp, target); if (temp != target) emit_move_insn (target, temp); } } return NULL_RTX; } /* Same as store_expr_with_bounds but ignoring bounds of EXP. */ rtx store_expr (tree exp, rtx target, int call_param_p, bool nontemporal, bool reverse) { return store_expr_with_bounds (exp, target, call_param_p, nontemporal, reverse, NULL); } /* Return true if field F of structure TYPE is a flexible array. */ static bool flexible_array_member_p (const_tree f, const_tree type) { const_tree tf; tf = TREE_TYPE (f); return (DECL_CHAIN (f) == NULL && TREE_CODE (tf) == ARRAY_TYPE && TYPE_DOMAIN (tf) && TYPE_MIN_VALUE (TYPE_DOMAIN (tf)) && integer_zerop (TYPE_MIN_VALUE (TYPE_DOMAIN (tf))) && !TYPE_MAX_VALUE (TYPE_DOMAIN (tf)) && int_size_in_bytes (type) >= 0); } /* If FOR_CTOR_P, return the number of top-level elements that a constructor must have in order for it to completely initialize a value of type TYPE. Return -1 if the number isn't known. If !FOR_CTOR_P, return an estimate of the number of scalars in TYPE. */ static HOST_WIDE_INT count_type_elements (const_tree type, bool for_ctor_p) { switch (TREE_CODE (type)) { case ARRAY_TYPE: { tree nelts; nelts = array_type_nelts (type); if (nelts && tree_fits_uhwi_p (nelts)) { unsigned HOST_WIDE_INT n; n = tree_to_uhwi (nelts) + 1; if (n == 0 || for_ctor_p) return n; else return n * count_type_elements (TREE_TYPE (type), false); } return for_ctor_p ? -1 : 1; } case RECORD_TYPE: { unsigned HOST_WIDE_INT n; tree f; n = 0; for (f = TYPE_FIELDS (type); f ; f = DECL_CHAIN (f)) if (TREE_CODE (f) == FIELD_DECL) { if (!for_ctor_p) n += count_type_elements (TREE_TYPE (f), false); else if (!flexible_array_member_p (f, type)) /* Don't count flexible arrays, which are not supposed to be initialized. */ n += 1; } return n; } case UNION_TYPE: case QUAL_UNION_TYPE: { tree f; HOST_WIDE_INT n, m; gcc_assert (!for_ctor_p); /* Estimate the number of scalars in each field and pick the maximum. Other estimates would do instead; the idea is simply to make sure that the estimate is not sensitive to the ordering of the fields. */ n = 1; for (f = TYPE_FIELDS (type); f ; f = DECL_CHAIN (f)) if (TREE_CODE (f) == FIELD_DECL) { m = count_type_elements (TREE_TYPE (f), false); /* If the field doesn't span the whole union, add an extra scalar for the rest. */ if (simple_cst_equal (TYPE_SIZE (TREE_TYPE (f)), TYPE_SIZE (type)) != 1) m++; if (n < m) n = m; } return n; } case COMPLEX_TYPE: return 2; case VECTOR_TYPE: { unsigned HOST_WIDE_INT nelts; if (TYPE_VECTOR_SUBPARTS (type).is_constant (&nelts)) return nelts; else return -1; } case INTEGER_TYPE: case REAL_TYPE: case FIXED_POINT_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE: case POINTER_TYPE: case OFFSET_TYPE: case REFERENCE_TYPE: case NULLPTR_TYPE: return 1; case ERROR_MARK: return 0; case VOID_TYPE: case METHOD_TYPE: case FUNCTION_TYPE: case LANG_TYPE: default: gcc_unreachable (); } } /* Helper for categorize_ctor_elements. Identical interface. */ static bool categorize_ctor_elements_1 (const_tree ctor, HOST_WIDE_INT *p_nz_elts, HOST_WIDE_INT *p_unique_nz_elts, HOST_WIDE_INT *p_init_elts, bool *p_complete) { unsigned HOST_WIDE_INT idx; HOST_WIDE_INT nz_elts, unique_nz_elts, init_elts, num_fields; tree value, purpose, elt_type; /* Whether CTOR is a valid constant initializer, in accordance with what initializer_constant_valid_p does. If inferred from the constructor elements, true until proven otherwise. */ bool const_from_elts_p = constructor_static_from_elts_p (ctor); bool const_p = const_from_elts_p ? true : TREE_STATIC (ctor); nz_elts = 0; unique_nz_elts = 0; init_elts = 0; num_fields = 0; elt_type = NULL_TREE; FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor), idx, purpose, value) { HOST_WIDE_INT mult = 1; if (purpose && TREE_CODE (purpose) == RANGE_EXPR) { tree lo_index = TREE_OPERAND (purpose, 0); tree hi_index = TREE_OPERAND (purpose, 1); if (tree_fits_uhwi_p (lo_index) && tree_fits_uhwi_p (hi_index)) mult = (tree_to_uhwi (hi_index) - tree_to_uhwi (lo_index) + 1); } num_fields += mult; elt_type = TREE_TYPE (value); switch (TREE_CODE (value)) { case CONSTRUCTOR: { HOST_WIDE_INT nz = 0, unz = 0, ic = 0; bool const_elt_p = categorize_ctor_elements_1 (value, &nz, &unz, &ic, p_complete); nz_elts += mult * nz; unique_nz_elts += unz; init_elts += mult * ic; if (const_from_elts_p && const_p) const_p = const_elt_p; } break; case INTEGER_CST: case REAL_CST: case FIXED_CST: if (!initializer_zerop (value)) { nz_elts += mult; unique_nz_elts++; } init_elts += mult; break; case STRING_CST: nz_elts += mult * TREE_STRING_LENGTH (value); unique_nz_elts += TREE_STRING_LENGTH (value); init_elts += mult * TREE_STRING_LENGTH (value); break; case COMPLEX_CST: if (!initializer_zerop (TREE_REALPART (value))) { nz_elts += mult; unique_nz_elts++; } if (!initializer_zerop (TREE_IMAGPART (value))) { nz_elts += mult; unique_nz_elts++; } init_elts += 2 * mult; break; case VECTOR_CST: { /* We can only construct constant-length vectors using CONSTRUCTOR. */ unsigned int nunits = VECTOR_CST_NELTS (value).to_constant (); for (unsigned int i = 0; i < nunits; ++i) { tree v = VECTOR_CST_ELT (value, i); if (!initializer_zerop (v)) { nz_elts += mult; unique_nz_elts++; } init_elts += mult; } } break; default: { HOST_WIDE_INT tc = count_type_elements (elt_type, false); nz_elts += mult * tc; unique_nz_elts += tc; init_elts += mult * tc; if (const_from_elts_p && const_p) const_p = initializer_constant_valid_p (value, elt_type, TYPE_REVERSE_STORAGE_ORDER (TREE_TYPE (ctor))) != NULL_TREE; } break; } } if (*p_complete && !complete_ctor_at_level_p (TREE_TYPE (ctor), num_fields, elt_type)) *p_complete = false; *p_nz_elts += nz_elts; *p_unique_nz_elts += unique_nz_elts; *p_init_elts += init_elts; return const_p; } /* Examine CTOR to discover: * how many scalar fields are set to nonzero values, and place it in *P_NZ_ELTS; * the same, but counting RANGE_EXPRs as multiplier of 1 instead of high - low + 1 (this can be useful for callers to determine ctors that could be cheaply initialized with - perhaps nested - loops compared to copied from huge read-only data), and place it in *P_UNIQUE_NZ_ELTS; * how many scalar fields in total are in CTOR, and place it in *P_ELT_COUNT. * whether the constructor is complete -- in the sense that every meaningful byte is explicitly given a value -- and place it in *P_COMPLETE. Return whether or not CTOR is a valid static constant initializer, the same as "initializer_constant_valid_p (CTOR, TREE_TYPE (CTOR)) != 0". */ bool categorize_ctor_elements (const_tree ctor, HOST_WIDE_INT *p_nz_elts, HOST_WIDE_INT *p_unique_nz_elts, HOST_WIDE_INT *p_init_elts, bool *p_complete) { *p_nz_elts = 0; *p_unique_nz_elts = 0; *p_init_elts = 0; *p_complete = true; return categorize_ctor_elements_1 (ctor, p_nz_elts, p_unique_nz_elts, p_init_elts, p_complete); } /* TYPE is initialized by a constructor with NUM_ELTS elements, the last of which had type LAST_TYPE. Each element was itself a complete initializer, in the sense that every meaningful byte was explicitly given a value. Return true if the same is true for the constructor as a whole. */ bool complete_ctor_at_level_p (const_tree type, HOST_WIDE_INT num_elts, const_tree last_type) { if (TREE_CODE (type) == UNION_TYPE || TREE_CODE (type) == QUAL_UNION_TYPE) { if (num_elts == 0) return false; gcc_assert (num_elts == 1 && last_type); /* ??? We could look at each element of the union, and find the largest element. Which would avoid comparing the size of the initialized element against any tail padding in the union. Doesn't seem worth the effort... */ return simple_cst_equal (TYPE_SIZE (type), TYPE_SIZE (last_type)) == 1; } return count_type_elements (type, true) == num_elts; } /* Return 1 if EXP contains mostly (3/4) zeros. */ static int mostly_zeros_p (const_tree exp) { if (TREE_CODE (exp) == CONSTRUCTOR) { HOST_WIDE_INT nz_elts, unz_elts, init_elts; bool complete_p; categorize_ctor_elements (exp, &nz_elts, &unz_elts, &init_elts, &complete_p); return !complete_p || nz_elts < init_elts / 4; } return initializer_zerop (exp); } /* Return 1 if EXP contains all zeros. */ static int all_zeros_p (const_tree exp) { if (TREE_CODE (exp) == CONSTRUCTOR) { HOST_WIDE_INT nz_elts, unz_elts, init_elts; bool complete_p; categorize_ctor_elements (exp, &nz_elts, &unz_elts, &init_elts, &complete_p); return nz_elts == 0; } return initializer_zerop (exp); } /* Helper function for store_constructor. TARGET, BITSIZE, BITPOS, MODE, EXP are as for store_field. CLEARED is as for store_constructor. ALIAS_SET is the alias set to use for any stores. If REVERSE is true, the store is to be done in reverse order. This provides a recursive shortcut back to store_constructor when it isn't necessary to go through store_field. This is so that we can pass through the cleared field to let store_constructor know that we may not have to clear a substructure if the outer structure has already been cleared. */ static void store_constructor_field (rtx target, poly_uint64 bitsize, poly_int64 bitpos, poly_uint64 bitregion_start, poly_uint64 bitregion_end, machine_mode mode, tree exp, int cleared, alias_set_type alias_set, bool reverse) { poly_int64 bytepos; poly_uint64 bytesize; if (TREE_CODE (exp) == CONSTRUCTOR /* We can only call store_constructor recursively if the size and bit position are on a byte boundary. */ && multiple_p (bitpos, BITS_PER_UNIT, &bytepos) && maybe_ne (bitsize, 0U) && multiple_p (bitsize, BITS_PER_UNIT, &bytesize) /* If we have a nonzero bitpos for a register target, then we just let store_field do the bitfield handling. This is unlikely to generate unnecessary clear instructions anyways. */ && (known_eq (bitpos, 0) || MEM_P (target))) { if (MEM_P (target)) { machine_mode target_mode = GET_MODE (target); if (target_mode != BLKmode && !multiple_p (bitpos, GET_MODE_ALIGNMENT (target_mode))) target_mode = BLKmode; target = adjust_address (target, target_mode, bytepos); } /* Update the alias set, if required. */ if (MEM_P (target) && ! MEM_KEEP_ALIAS_SET_P (target) && MEM_ALIAS_SET (target) != 0) { target = copy_rtx (target); set_mem_alias_set (target, alias_set); } store_constructor (exp, target, cleared, bytesize, reverse); } else store_field (target, bitsize, bitpos, bitregion_start, bitregion_end, mode, exp, alias_set, false, reverse); } /* Returns the number of FIELD_DECLs in TYPE. */ static int fields_length (const_tree type) { tree t = TYPE_FIELDS (type); int count = 0; for (; t; t = DECL_CHAIN (t)) if (TREE_CODE (t) == FIELD_DECL) ++count; return count; } /* Store the value of constructor EXP into the rtx TARGET. TARGET is either a REG or a MEM; we know it cannot conflict, since safe_from_p has been called. CLEARED is true if TARGET is known to have been zero'd. SIZE is the number of bytes of TARGET we are allowed to modify: this may not be the same as the size of EXP if we are assigning to a field which has been packed to exclude padding bits. If REVERSE is true, the store is to be done in reverse order. */ static void store_constructor (tree exp, rtx target, int cleared, poly_int64 size, bool reverse) { tree type = TREE_TYPE (exp); HOST_WIDE_INT exp_size = int_size_in_bytes (type); poly_int64 bitregion_end = known_gt (size, 0) ? size * BITS_PER_UNIT - 1 : 0; switch (TREE_CODE (type)) { case RECORD_TYPE: case UNION_TYPE: case QUAL_UNION_TYPE: { unsigned HOST_WIDE_INT idx; tree field, value; /* The storage order is specified for every aggregate type. */ reverse = TYPE_REVERSE_STORAGE_ORDER (type); /* If size is zero or the target is already cleared, do nothing. */ if (known_eq (size, 0) || cleared) cleared = 1; /* We either clear the aggregate or indicate the value is dead. */ else if ((TREE_CODE (type) == UNION_TYPE || TREE_CODE (type) == QUAL_UNION_TYPE) && ! CONSTRUCTOR_ELTS (exp)) /* If the constructor is empty, clear the union. */ { clear_storage (target, expr_size (exp), BLOCK_OP_NORMAL); cleared = 1; } /* If we are building a static constructor into a register, set the initial value as zero so we can fold the value into a constant. But if more than one register is involved, this probably loses. */ else if (REG_P (target) && TREE_STATIC (exp) && known_le (GET_MODE_SIZE (GET_MODE (target)), REGMODE_NATURAL_SIZE (GET_MODE (target)))) { emit_move_insn (target, CONST0_RTX (GET_MODE (target))); cleared = 1; } /* If the constructor has fewer fields than the structure or if we are initializing the structure to mostly zeros, clear the whole structure first. Don't do this if TARGET is a register whose mode size isn't equal to SIZE since clear_storage can't handle this case. */ else if (known_size_p (size) && (((int) CONSTRUCTOR_NELTS (exp) != fields_length (type)) || mostly_zeros_p (exp)) && (!REG_P (target) || known_eq (GET_MODE_SIZE (GET_MODE (target)), size))) { clear_storage (target, gen_int_mode (size, Pmode), BLOCK_OP_NORMAL); cleared = 1; } if (REG_P (target) && !cleared) emit_clobber (target); /* Store each element of the constructor into the corresponding field of TARGET. */ FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), idx, field, value) { machine_mode mode; HOST_WIDE_INT bitsize; HOST_WIDE_INT bitpos = 0; tree offset; rtx to_rtx = target; /* Just ignore missing fields. We cleared the whole structure, above, if any fields are missing. */ if (field == 0) continue; if (cleared && initializer_zerop (value)) continue; if (tree_fits_uhwi_p (DECL_SIZE (field))) bitsize = tree_to_uhwi (DECL_SIZE (field)); else gcc_unreachable (); mode = DECL_MODE (field); if (DECL_BIT_FIELD (field)) mode = VOIDmode; offset = DECL_FIELD_OFFSET (field); if (tree_fits_shwi_p (offset) && tree_fits_shwi_p (bit_position (field))) { bitpos = int_bit_position (field); offset = NULL_TREE; } else gcc_unreachable (); /* If this initializes a field that is smaller than a word, at the start of a word, try to widen it to a full word. This special case allows us to output C++ member function initializations in a form that the optimizers can understand. */ if (WORD_REGISTER_OPERATIONS && REG_P (target) && bitsize < BITS_PER_WORD && bitpos % BITS_PER_WORD == 0 && GET_MODE_CLASS (mode) == MODE_INT && TREE_CODE (value) == INTEGER_CST && exp_size >= 0 && bitpos + BITS_PER_WORD <= exp_size * BITS_PER_UNIT) { tree type = TREE_TYPE (value); if (TYPE_PRECISION (type) < BITS_PER_WORD) { type = lang_hooks.types.type_for_mode (word_mode, TYPE_UNSIGNED (type)); value = fold_convert (type, value); /* Make sure the bits beyond the original bitsize are zero so that we can correctly avoid extra zeroing stores in later constructor elements. */ tree bitsize_mask = wide_int_to_tree (type, wi::mask (bitsize, false, BITS_PER_WORD)); value = fold_build2 (BIT_AND_EXPR, type, value, bitsize_mask); } if (BYTES_BIG_ENDIAN) value = fold_build2 (LSHIFT_EXPR, type, value, build_int_cst (type, BITS_PER_WORD - bitsize)); bitsize = BITS_PER_WORD; mode = word_mode; } if (MEM_P (to_rtx) && !MEM_KEEP_ALIAS_SET_P (to_rtx) && DECL_NONADDRESSABLE_P (field)) { to_rtx = copy_rtx (to_rtx); MEM_KEEP_ALIAS_SET_P (to_rtx) = 1; } store_constructor_field (to_rtx, bitsize, bitpos, 0, bitregion_end, mode, value, cleared, get_alias_set (TREE_TYPE (field)), reverse); } break; } case ARRAY_TYPE: { tree value, index; unsigned HOST_WIDE_INT i; int need_to_clear; tree domain; tree elttype = TREE_TYPE (type); int const_bounds_p; HOST_WIDE_INT minelt = 0; HOST_WIDE_INT maxelt = 0; /* The storage order is specified for every aggregate type. */ reverse = TYPE_REVERSE_STORAGE_ORDER (type); domain = TYPE_DOMAIN (type); const_bounds_p = (TYPE_MIN_VALUE (domain) && TYPE_MAX_VALUE (domain) && tree_fits_shwi_p (TYPE_MIN_VALUE (domain)) && tree_fits_shwi_p (TYPE_MAX_VALUE (domain))); /* If we have constant bounds for the range of the type, get them. */ if (const_bounds_p) { minelt = tree_to_shwi (TYPE_MIN_VALUE (domain)); maxelt = tree_to_shwi (TYPE_MAX_VALUE (domain)); } /* If the constructor has fewer elements than the array, clear the whole array first. Similarly if this is static constructor of a non-BLKmode object. */ if (cleared) need_to_clear = 0; else if (REG_P (target) && TREE_STATIC (exp)) need_to_clear = 1; else { unsigned HOST_WIDE_INT idx; tree index, value; HOST_WIDE_INT count = 0, zero_count = 0; need_to_clear = ! const_bounds_p; /* This loop is a more accurate version of the loop in mostly_zeros_p (it handles RANGE_EXPR in an index). It is also needed to check for missing elements. */ FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), idx, index, value) { HOST_WIDE_INT this_node_count; if (need_to_clear) break; if (index != NULL_TREE && TREE_CODE (index) == RANGE_EXPR) { tree lo_index = TREE_OPERAND (index, 0); tree hi_index = TREE_OPERAND (index, 1); if (! tree_fits_uhwi_p (lo_index) || ! tree_fits_uhwi_p (hi_index)) { need_to_clear = 1; break; } this_node_count = (tree_to_uhwi (hi_index) - tree_to_uhwi (lo_index) + 1); } else this_node_count = 1; count += this_node_count; if (mostly_zeros_p (value)) zero_count += this_node_count; } /* Clear the entire array first if there are any missing elements, or if the incidence of zero elements is >= 75%. */ if (! need_to_clear && (count < maxelt - minelt + 1 || 4 * zero_count >= 3 * count)) need_to_clear = 1; } if (need_to_clear && maybe_gt (size, 0)) { if (REG_P (target)) emit_move_insn (target, CONST0_RTX (GET_MODE (target))); else clear_storage (target, gen_int_mode (size, Pmode), BLOCK_OP_NORMAL); cleared = 1; } if (!cleared && REG_P (target)) /* Inform later passes that the old value is dead. */ emit_clobber (target); /* Store each element of the constructor into the corresponding element of TARGET, determined by counting the elements. */ FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), i, index, value) { machine_mode mode; poly_int64 bitsize; HOST_WIDE_INT bitpos; rtx xtarget = target; if (cleared && initializer_zerop (value)) continue; mode = TYPE_MODE (elttype); if (mode == BLKmode) bitsize = (tree_fits_uhwi_p (TYPE_SIZE (elttype)) ? tree_to_uhwi (TYPE_SIZE (elttype)) : -1); else bitsize = GET_MODE_BITSIZE (mode); if (index != NULL_TREE && TREE_CODE (index) == RANGE_EXPR) { tree lo_index = TREE_OPERAND (index, 0); tree hi_index = TREE_OPERAND (index, 1); rtx index_r, pos_rtx; HOST_WIDE_INT lo, hi, count; tree position; /* If the range is constant and "small", unroll the loop. */ if (const_bounds_p && tree_fits_shwi_p (lo_index) && tree_fits_shwi_p (hi_index) && (lo = tree_to_shwi (lo_index), hi = tree_to_shwi (hi_index), count = hi - lo + 1, (!MEM_P (target) || count <= 2 || (tree_fits_uhwi_p (TYPE_SIZE (elttype)) && (tree_to_uhwi (TYPE_SIZE (elttype)) * count <= 40 * 8))))) { lo -= minelt; hi -= minelt; for (; lo <= hi; lo++) { bitpos = lo * tree_to_shwi (TYPE_SIZE (elttype)); if (MEM_P (target) && !MEM_KEEP_ALIAS_SET_P (target) && TREE_CODE (type) == ARRAY_TYPE && TYPE_NONALIASED_COMPONENT (type)) { target = copy_rtx (target); MEM_KEEP_ALIAS_SET_P (target) = 1; } store_constructor_field (target, bitsize, bitpos, 0, bitregion_end, mode, value, cleared, get_alias_set (elttype), reverse); } } else { rtx_code_label *loop_start = gen_label_rtx (); rtx_code_label *loop_end = gen_label_rtx (); tree exit_cond; expand_normal (hi_index); index = build_decl (EXPR_LOCATION (exp), VAR_DECL, NULL_TREE, domain); index_r = gen_reg_rtx (promote_decl_mode (index, NULL)); SET_DECL_RTL (index, index_r); store_expr (lo_index, index_r, 0, false, reverse); /* Build the head of the loop. */ do_pending_stack_adjust (); emit_label (loop_start); /* Assign value to element index. */ position = fold_convert (ssizetype, fold_build2 (MINUS_EXPR, TREE_TYPE (index), index, TYPE_MIN_VALUE (domain))); position = size_binop (MULT_EXPR, position, fold_convert (ssizetype, TYPE_SIZE_UNIT (elttype))); pos_rtx = expand_normal (position); xtarget = offset_address (target, pos_rtx, highest_pow2_factor (position)); xtarget = adjust_address (xtarget, mode, 0); if (TREE_CODE (value) == CONSTRUCTOR) store_constructor (value, xtarget, cleared, exact_div (bitsize, BITS_PER_UNIT), reverse); else store_expr (value, xtarget, 0, false, reverse); /* Generate a conditional jump to exit the loop. */ exit_cond = build2 (LT_EXPR, integer_type_node, index, hi_index); jumpif (exit_cond, loop_end, profile_probability::uninitialized ()); /* Update the loop counter, and jump to the head of the loop. */ expand_assignment (index, build2 (PLUS_EXPR, TREE_TYPE (index), index, integer_one_node), false); emit_jump (loop_start); /* Build the end of the loop. */ emit_label (loop_end); } } else if ((index != 0 && ! tree_fits_shwi_p (index)) || ! tree_fits_uhwi_p (TYPE_SIZE (elttype))) { tree position; if (index == 0) index = ssize_int (1); if (minelt) index = fold_convert (ssizetype, fold_build2 (MINUS_EXPR, TREE_TYPE (index), index, TYPE_MIN_VALUE (domain))); position = size_binop (MULT_EXPR, index, fold_convert (ssizetype, TYPE_SIZE_UNIT (elttype))); xtarget = offset_address (target, expand_normal (position), highest_pow2_factor (position)); xtarget = adjust_address (xtarget, mode, 0); store_expr (value, xtarget, 0, false, reverse); } else { if (index != 0) bitpos = ((tree_to_shwi (index) - minelt) * tree_to_uhwi (TYPE_SIZE (elttype))); else bitpos = (i * tree_to_uhwi (TYPE_SIZE (elttype))); if (MEM_P (target) && !MEM_KEEP_ALIAS_SET_P (target) && TREE_CODE (type) == ARRAY_TYPE && TYPE_NONALIASED_COMPONENT (type)) { target = copy_rtx (target); MEM_KEEP_ALIAS_SET_P (target) = 1; } store_constructor_field (target, bitsize, bitpos, 0, bitregion_end, mode, value, cleared, get_alias_set (elttype), reverse); } } break; } case VECTOR_TYPE: { unsigned HOST_WIDE_INT idx; constructor_elt *ce; int i; int need_to_clear; insn_code icode = CODE_FOR_nothing; tree elt; tree elttype = TREE_TYPE (type); int elt_size = tree_to_uhwi (TYPE_SIZE (elttype)); machine_mode eltmode = TYPE_MODE (elttype); HOST_WIDE_INT bitsize; HOST_WIDE_INT bitpos; rtvec vector = NULL; poly_uint64 n_elts; unsigned HOST_WIDE_INT const_n_elts; alias_set_type alias; bool vec_vec_init_p = false; machine_mode mode = GET_MODE (target); gcc_assert (eltmode != BLKmode); /* Try using vec_duplicate_optab for uniform vectors. */ if (!TREE_SIDE_EFFECTS (exp) && VECTOR_MODE_P (mode) && eltmode == GET_MODE_INNER (mode) && ((icode = optab_handler (vec_duplicate_optab, mode)) != CODE_FOR_nothing) && (elt = uniform_vector_p (exp))) { struct expand_operand ops[2]; create_output_operand (&ops[0], target, mode); create_input_operand (&ops[1], expand_normal (elt), eltmode); expand_insn (icode, 2, ops); if (!rtx_equal_p (target, ops[0].value)) emit_move_insn (target, ops[0].value); break; } n_elts = TYPE_VECTOR_SUBPARTS (type); if (REG_P (target) && VECTOR_MODE_P (mode) && n_elts.is_constant (&const_n_elts)) { machine_mode emode = eltmode; if (CONSTRUCTOR_NELTS (exp) && (TREE_CODE (TREE_TYPE (CONSTRUCTOR_ELT (exp, 0)->value)) == VECTOR_TYPE)) { tree etype = TREE_TYPE (CONSTRUCTOR_ELT (exp, 0)->value); gcc_assert (known_eq (CONSTRUCTOR_NELTS (exp) * TYPE_VECTOR_SUBPARTS (etype), n_elts)); emode = TYPE_MODE (etype); } icode = convert_optab_handler (vec_init_optab, mode, emode); if (icode != CODE_FOR_nothing) { unsigned int i, n = const_n_elts; if (emode != eltmode) { n = CONSTRUCTOR_NELTS (exp); vec_vec_init_p = true; } vector = rtvec_alloc (n); for (i = 0; i < n; i++) RTVEC_ELT (vector, i) = CONST0_RTX (emode); } } /* If the constructor has fewer elements than the vector, clear the whole array first. Similarly if this is static constructor of a non-BLKmode object. */ if (cleared) need_to_clear = 0; else if (REG_P (target) && TREE_STATIC (exp)) need_to_clear = 1; else { unsigned HOST_WIDE_INT count = 0, zero_count = 0; tree value; FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), idx, value) { tree sz = TYPE_SIZE (TREE_TYPE (value)); int n_elts_here = tree_to_uhwi (int_const_binop (TRUNC_DIV_EXPR, sz, TYPE_SIZE (elttype))); count += n_elts_here; if (mostly_zeros_p (value)) zero_count += n_elts_here; } /* Clear the entire vector first if there are any missing elements, or if the incidence of zero elements is >= 75%. */ need_to_clear = (maybe_lt (count, n_elts) || 4 * zero_count >= 3 * count); } if (need_to_clear && maybe_gt (size, 0) && !vector) { if (REG_P (target)) emit_move_insn (target, CONST0_RTX (mode)); else clear_storage (target, gen_int_mode (size, Pmode), BLOCK_OP_NORMAL); cleared = 1; } /* Inform later passes that the old value is dead. */ if (!cleared && !vector && REG_P (target)) emit_move_insn (target, CONST0_RTX (mode)); if (MEM_P (target)) alias = MEM_ALIAS_SET (target); else alias = get_alias_set (elttype); /* Store each element of the constructor into the corresponding element of TARGET, determined by counting the elements. */ for (idx = 0, i = 0; vec_safe_iterate (CONSTRUCTOR_ELTS (exp), idx, &ce); idx++, i += bitsize / elt_size) { HOST_WIDE_INT eltpos; tree value = ce->value; bitsize = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (value))); if (cleared && initializer_zerop (value)) continue; if (ce->index) eltpos = tree_to_uhwi (ce->index); else eltpos = i; if (vector) { if (vec_vec_init_p) { gcc_assert (ce->index == NULL_TREE); gcc_assert (TREE_CODE (TREE_TYPE (value)) == VECTOR_TYPE); eltpos = idx; } else gcc_assert (TREE_CODE (TREE_TYPE (value)) != VECTOR_TYPE); RTVEC_ELT (vector, eltpos) = expand_normal (value); } else { machine_mode value_mode = (TREE_CODE (TREE_TYPE (value)) == VECTOR_TYPE ? TYPE_MODE (TREE_TYPE (value)) : eltmode); bitpos = eltpos * elt_size; store_constructor_field (target, bitsize, bitpos, 0, bitregion_end, value_mode, value, cleared, alias, reverse); } } if (vector) emit_insn (GEN_FCN (icode) (target, gen_rtx_PARALLEL (mode, vector))); break; } default: gcc_unreachable (); } } /* Store the value of EXP (an expression tree) into a subfield of TARGET which has mode MODE and occupies BITSIZE bits, starting BITPOS bits from the start of TARGET. If MODE is VOIDmode, it means that we are storing into a bit-field. BITREGION_START is bitpos of the first bitfield in this region. BITREGION_END is the bitpos of the ending bitfield in this region. These two fields are 0, if the C++ memory model does not apply, or we are not interested in keeping track of bitfield regions. Always return const0_rtx unless we have something particular to return. ALIAS_SET is the alias set for the destination. This value will (in general) be different from that for TARGET, since TARGET is a reference to the containing structure. If NONTEMPORAL is true, try generating a nontemporal store. If REVERSE is true, the store is to be done in reverse order. */ static rtx store_field (rtx target, poly_int64 bitsize, poly_int64 bitpos, poly_uint64 bitregion_start, poly_uint64 bitregion_end, machine_mode mode, tree exp, alias_set_type alias_set, bool nontemporal, bool reverse) { if (TREE_CODE (exp) == ERROR_MARK) return const0_rtx; /* If we have nothing to store, do nothing unless the expression has side-effects. Don't do that for zero sized addressable lhs of calls. */ if (known_eq (bitsize, 0) && (!TREE_ADDRESSABLE (TREE_TYPE (exp)) || TREE_CODE (exp) != CALL_EXPR)) return expand_expr (exp, const0_rtx, VOIDmode, EXPAND_NORMAL); if (GET_CODE (target) == CONCAT) { /* We're storing into a struct containing a single __complex. */ gcc_assert (known_eq (bitpos, 0)); return store_expr (exp, target, 0, nontemporal, reverse); } /* If the structure is in a register or if the component is a bit field, we cannot use addressing to access it. Use bit-field techniques or SUBREG to store in it. */ poly_int64 decl_bitsize; if (mode == VOIDmode || (mode != BLKmode && ! direct_store[(int) mode] && GET_MODE_CLASS (mode) != MODE_COMPLEX_INT && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT) || REG_P (target) || GET_CODE (target) == SUBREG /* If the field isn't aligned enough to store as an ordinary memref, store it as a bit field. */ || (mode != BLKmode && ((((MEM_ALIGN (target) < GET_MODE_ALIGNMENT (mode)) || !multiple_p (bitpos, GET_MODE_ALIGNMENT (mode))) && targetm.slow_unaligned_access (mode, MEM_ALIGN (target))) || !multiple_p (bitpos, BITS_PER_UNIT))) || (known_size_p (bitsize) && mode != BLKmode && maybe_gt (GET_MODE_BITSIZE (mode), bitsize)) /* If the RHS and field are a constant size and the size of the RHS isn't the same size as the bitfield, we must use bitfield operations. */ || (known_size_p (bitsize) && poly_int_tree_p (TYPE_SIZE (TREE_TYPE (exp))) && maybe_ne (wi::to_poly_offset (TYPE_SIZE (TREE_TYPE (exp))), bitsize) /* Except for initialization of full bytes from a CONSTRUCTOR, which we will handle specially below. */ && !(TREE_CODE (exp) == CONSTRUCTOR && multiple_p (bitsize, BITS_PER_UNIT)) /* And except for bitwise copying of TREE_ADDRESSABLE types, where the FIELD_DECL has the right bitsize, but TREE_TYPE (exp) includes some extra padding. store_expr / expand_expr will in that case call get_inner_reference that will have the bitsize we check here and thus the block move will not clobber the padding that shouldn't be clobbered. In the future we could replace the TREE_ADDRESSABLE check with a check that get_base_address needs to live in memory. */ && (!TREE_ADDRESSABLE (TREE_TYPE (exp)) || TREE_CODE (exp) != COMPONENT_REF || !multiple_p (bitsize, BITS_PER_UNIT) || !multiple_p (bitpos, BITS_PER_UNIT) || !poly_int_tree_p (DECL_SIZE (TREE_OPERAND (exp, 1)), &decl_bitsize) || maybe_ne (decl_bitsize, bitsize))) /* If we are expanding a MEM_REF of a non-BLKmode non-addressable decl we must use bitfield operations. */ || (known_size_p (bitsize) && TREE_CODE (exp) == MEM_REF && TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR && DECL_P (TREE_OPERAND (TREE_OPERAND (exp, 0), 0)) && !TREE_ADDRESSABLE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0)) && DECL_MODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0)) != BLKmode)) { rtx temp; gimple *nop_def; /* If EXP is a NOP_EXPR of precision less than its mode, then that implies a mask operation. If the precision is the same size as the field we're storing into, that mask is redundant. This is particularly common with bit field assignments generated by the C front end. */ nop_def = get_def_for_expr (exp, NOP_EXPR); if (nop_def) { tree type = TREE_TYPE (exp); if (INTEGRAL_TYPE_P (type) && maybe_ne (TYPE_PRECISION (type), GET_MODE_BITSIZE (TYPE_MODE (type))) && known_eq (bitsize, TYPE_PRECISION (type))) { tree op = gimple_assign_rhs1 (nop_def); type = TREE_TYPE (op); if (INTEGRAL_TYPE_P (type) && known_ge (TYPE_PRECISION (type), bitsize)) exp = op; } } temp = expand_normal (exp); /* We don't support variable-sized BLKmode bitfields, since our handling of BLKmode is bound up with the ability to break things into words. */ gcc_assert (mode != BLKmode || bitsize.is_constant ()); /* Handle calls that return values in multiple non-contiguous locations. The Irix 6 ABI has examples of this. */ if (GET_CODE (temp) == PARALLEL) { HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (exp)); machine_mode temp_mode = GET_MODE (temp); if (temp_mode == BLKmode || temp_mode == VOIDmode) temp_mode = smallest_int_mode_for_size (size * BITS_PER_UNIT); rtx temp_target = gen_reg_rtx (temp_mode); emit_group_store (temp_target, temp, TREE_TYPE (exp), size); temp = temp_target; } /* Handle calls that return BLKmode values in registers. */ else if (mode == BLKmode && REG_P (temp) && TREE_CODE (exp) == CALL_EXPR) { rtx temp_target = gen_reg_rtx (GET_MODE (temp)); copy_blkmode_from_reg (temp_target, temp, TREE_TYPE (exp)); temp = temp_target; } /* If the value has aggregate type and an integral mode then, if BITSIZE is narrower than this mode and this is for big-endian data, we first need to put the value into the low-order bits for store_bit_field, except when MODE is BLKmode and BITSIZE larger than the word size (see the handling of fields larger than a word in store_bit_field). Moreover, the field may be not aligned on a byte boundary; in this case, if it has reverse storage order, it needs to be accessed as a scalar field with reverse storage order and we must first put the value into target order. */ scalar_int_mode temp_mode; if (AGGREGATE_TYPE_P (TREE_TYPE (exp)) && is_int_mode (GET_MODE (temp), &temp_mode)) { HOST_WIDE_INT size = GET_MODE_BITSIZE (temp_mode); reverse = TYPE_REVERSE_STORAGE_ORDER (TREE_TYPE (exp)); if (reverse) temp = flip_storage_order (temp_mode, temp); gcc_checking_assert (known_le (bitsize, size)); if (maybe_lt (bitsize, size) && reverse ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN /* Use of to_constant for BLKmode was checked above. */ && !(mode == BLKmode && bitsize.to_constant () > BITS_PER_WORD)) temp = expand_shift (RSHIFT_EXPR, temp_mode, temp, size - bitsize, NULL_RTX, 1); } /* Unless MODE is VOIDmode or BLKmode, convert TEMP to MODE. */ if (mode != VOIDmode && mode != BLKmode && mode != TYPE_MODE (TREE_TYPE (exp))) temp = convert_modes (mode, TYPE_MODE (TREE_TYPE (exp)), temp, 1); /* If the mode of TEMP and TARGET is BLKmode, both must be in memory and BITPOS must be aligned on a byte boundary. If so, we simply do a block copy. Likewise for a BLKmode-like TARGET. */ if (GET_MODE (temp) == BLKmode && (GET_MODE (target) == BLKmode || (MEM_P (target) && GET_MODE_CLASS (GET_MODE (target)) == MODE_INT && multiple_p (bitpos, BITS_PER_UNIT) && multiple_p (bitsize, BITS_PER_UNIT)))) { gcc_assert (MEM_P (target) && MEM_P (temp)); poly_int64 bytepos = exact_div (bitpos, BITS_PER_UNIT); poly_int64 bytesize = bits_to_bytes_round_up (bitsize); target = adjust_address (target, VOIDmode, bytepos); emit_block_move (target, temp, gen_int_mode (bytesize, Pmode), BLOCK_OP_NORMAL); return const0_rtx; } /* If the mode of TEMP is still BLKmode and BITSIZE not larger than the word size, we need to load the value (see again store_bit_field). */ if (GET_MODE (temp) == BLKmode && known_le (bitsize, BITS_PER_WORD)) { scalar_int_mode temp_mode = smallest_int_mode_for_size (bitsize); temp = extract_bit_field (temp, bitsize, 0, 1, NULL_RTX, temp_mode, temp_mode, false, NULL); } /* Store the value in the bitfield. */ store_bit_field (target, bitsize, bitpos, bitregion_start, bitregion_end, mode, temp, reverse); return const0_rtx; } else { /* Now build a reference to just the desired component. */ rtx to_rtx = adjust_address (target, mode, exact_div (bitpos, BITS_PER_UNIT)); if (to_rtx == target) to_rtx = copy_rtx (to_rtx); if (!MEM_KEEP_ALIAS_SET_P (to_rtx) && MEM_ALIAS_SET (to_rtx) != 0) set_mem_alias_set (to_rtx, alias_set); /* Above we avoided using bitfield operations for storing a CONSTRUCTOR into a target smaller than its type; handle that case now. */ if (TREE_CODE (exp) == CONSTRUCTOR && known_size_p (bitsize)) { poly_int64 bytesize = exact_div (bitsize, BITS_PER_UNIT); store_constructor (exp, to_rtx, 0, bytesize, reverse); return to_rtx; } return store_expr (exp, to_rtx, 0, nontemporal, reverse); } } /* Given an expression EXP that may be a COMPONENT_REF, a BIT_FIELD_REF, an ARRAY_REF, or an ARRAY_RANGE_REF, look for nested operations of these codes and find the ultimate containing object, which we return. We set *PBITSIZE to the size in bits that we want, *PBITPOS to the bit position, *PUNSIGNEDP to the signedness and *PREVERSEP to the storage order of the field. If the position of the field is variable, we store a tree giving the variable offset (in units) in *POFFSET. This offset is in addition to the bit position. If the position is not variable, we store 0 in *POFFSET. If any of the extraction expressions is volatile, we store 1 in *PVOLATILEP. Otherwise we don't change that. If the field is a non-BLKmode bit-field, *PMODE is set to VOIDmode. Otherwise, it is a mode that can be used to access the field. If the field describes a variable-sized object, *PMODE is set to BLKmode and *PBITSIZE is set to -1. An access cannot be made in this case, but the address of the object can be found. */ tree get_inner_reference (tree exp, poly_int64_pod *pbitsize, poly_int64_pod *pbitpos, tree *poffset, machine_mode *pmode, int *punsignedp, int *preversep, int *pvolatilep) { tree size_tree = 0; machine_mode mode = VOIDmode; bool blkmode_bitfield = false; tree offset = size_zero_node; poly_offset_int bit_offset = 0; /* First get the mode, signedness, storage order and size. We do this from just the outermost expression. */ *pbitsize = -1; if (TREE_CODE (exp) == COMPONENT_REF) { tree field = TREE_OPERAND (exp, 1); size_tree = DECL_SIZE (field); if (flag_strict_volatile_bitfields > 0 && TREE_THIS_VOLATILE (exp) && DECL_BIT_FIELD_TYPE (field) && DECL_MODE (field) != BLKmode) /* Volatile bitfields should be accessed in the mode of the field's type, not the mode computed based on the bit size. */ mode = TYPE_MODE (DECL_BIT_FIELD_TYPE (field)); else if (!DECL_BIT_FIELD (field)) { mode = DECL_MODE (field); /* For vector fields re-check the target flags, as DECL_MODE could have been set with different target flags than the current function has. */ if (mode == BLKmode && VECTOR_TYPE_P (TREE_TYPE (field)) && VECTOR_MODE_P (TYPE_MODE_RAW (TREE_TYPE (field)))) mode = TYPE_MODE (TREE_TYPE (field)); } else if (DECL_MODE (field) == BLKmode) blkmode_bitfield = true; *punsignedp = DECL_UNSIGNED (field); } else if (TREE_CODE (exp) == BIT_FIELD_REF) { size_tree = TREE_OPERAND (exp, 1); *punsignedp = (! INTEGRAL_TYPE_P (TREE_TYPE (exp)) || TYPE_UNSIGNED (TREE_TYPE (exp))); /* For vector types, with the correct size of access, use the mode of inner type. */ if (TREE_CODE (TREE_TYPE (TREE_OPERAND (exp, 0))) == VECTOR_TYPE && TREE_TYPE (exp) == TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0))) && tree_int_cst_equal (size_tree, TYPE_SIZE (TREE_TYPE (exp)))) mode = TYPE_MODE (TREE_TYPE (exp)); } else { mode = TYPE_MODE (TREE_TYPE (exp)); *punsignedp = TYPE_UNSIGNED (TREE_TYPE (exp)); if (mode == BLKmode) size_tree = TYPE_SIZE (TREE_TYPE (exp)); else *pbitsize = GET_MODE_BITSIZE (mode); } if (size_tree != 0) { if (! tree_fits_uhwi_p (size_tree)) mode = BLKmode, *pbitsize = -1; else *pbitsize = tree_to_uhwi (size_tree); } *preversep = reverse_storage_order_for_component_p (exp); /* Compute cumulative bit-offset for nested component-refs and array-refs, and find the ultimate containing object. */ while (1) { switch (TREE_CODE (exp)) { case BIT_FIELD_REF: bit_offset += wi::to_poly_offset (TREE_OPERAND (exp, 2)); break; case COMPONENT_REF: { tree field = TREE_OPERAND (exp, 1); tree this_offset = component_ref_field_offset (exp); /* If this field hasn't been filled in yet, don't go past it. This should only happen when folding expressions made during type construction. */ if (this_offset == 0) break; offset = size_binop (PLUS_EXPR, offset, this_offset); bit_offset += wi::to_poly_offset (DECL_FIELD_BIT_OFFSET (field)); /* ??? Right now we don't do anything with DECL_OFFSET_ALIGN. */ } break; case ARRAY_REF: case ARRAY_RANGE_REF: { tree index = TREE_OPERAND (exp, 1); tree low_bound = array_ref_low_bound (exp); tree unit_size = array_ref_element_size (exp); /* We assume all arrays have sizes that are a multiple of a byte. First subtract the lower bound, if any, in the type of the index, then convert to sizetype and multiply by the size of the array element. */ if (! integer_zerop (low_bound)) index = fold_build2 (MINUS_EXPR, TREE_TYPE (index), index, low_bound); offset = size_binop (PLUS_EXPR, offset, size_binop (MULT_EXPR, fold_convert (sizetype, index), unit_size)); } break; case REALPART_EXPR: break; case IMAGPART_EXPR: bit_offset += *pbitsize; break; case VIEW_CONVERT_EXPR: break; case MEM_REF: /* Hand back the decl for MEM[&decl, off]. */ if (TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR) { tree off = TREE_OPERAND (exp, 1); if (!integer_zerop (off)) { poly_offset_int boff = mem_ref_offset (exp); boff <<= LOG2_BITS_PER_UNIT; bit_offset += boff; } exp = TREE_OPERAND (TREE_OPERAND (exp, 0), 0); } goto done; default: goto done; } /* If any reference in the chain is volatile, the effect is volatile. */ if (TREE_THIS_VOLATILE (exp)) *pvolatilep = 1; exp = TREE_OPERAND (exp, 0); } done: /* If OFFSET is constant, see if we can return the whole thing as a constant bit position. Make sure to handle overflow during this conversion. */ if (poly_int_tree_p (offset)) { poly_offset_int tem = wi::sext (wi::to_poly_offset (offset), TYPE_PRECISION (sizetype)); tem <<= LOG2_BITS_PER_UNIT; tem += bit_offset; if (tem.to_shwi (pbitpos)) *poffset = offset = NULL_TREE; } /* Otherwise, split it up. */ if (offset) { /* Avoid returning a negative bitpos as this may wreak havoc later. */ if (!bit_offset.to_shwi (pbitpos) || maybe_lt (*pbitpos, 0)) { *pbitpos = num_trailing_bits (bit_offset.force_shwi ()); poly_offset_int bytes = bits_to_bytes_round_down (bit_offset); offset = size_binop (PLUS_EXPR, offset, build_int_cst (sizetype, bytes.force_shwi ())); } *poffset = offset; } /* We can use BLKmode for a byte-aligned BLKmode bitfield. */ if (mode == VOIDmode && blkmode_bitfield && multiple_p (*pbitpos, BITS_PER_UNIT) && multiple_p (*pbitsize, BITS_PER_UNIT)) *pmode = BLKmode; else *pmode = mode; return exp; } /* Alignment in bits the TARGET of an assignment may be assumed to have. */ static unsigned HOST_WIDE_INT target_align (const_tree target) { /* We might have a chain of nested references with intermediate misaligning bitfields components, so need to recurse to find out. */ unsigned HOST_WIDE_INT this_align, outer_align; switch (TREE_CODE (target)) { case BIT_FIELD_REF: return 1; case COMPONENT_REF: this_align = DECL_ALIGN (TREE_OPERAND (target, 1)); outer_align = target_align (TREE_OPERAND (target, 0)); return MIN (this_align, outer_align); case ARRAY_REF: case ARRAY_RANGE_REF: this_align = TYPE_ALIGN (TREE_TYPE (target)); outer_align = target_align (TREE_OPERAND (target, 0)); return MIN (this_align, outer_align); CASE_CONVERT: case NON_LVALUE_EXPR: case VIEW_CONVERT_EXPR: this_align = TYPE_ALIGN (TREE_TYPE (target)); outer_align = target_align (TREE_OPERAND (target, 0)); return MAX (this_align, outer_align); default: return TYPE_ALIGN (TREE_TYPE (target)); } } /* Given an rtx VALUE that may contain additions and multiplications, return an equivalent value that just refers to a register, memory, or constant. This is done by generating instructions to perform the arithmetic and returning a pseudo-register containing the value. The returned value may be a REG, SUBREG, MEM or constant. */ rtx force_operand (rtx value, rtx target) { rtx op1, op2; /* Use subtarget as the target for operand 0 of a binary operation. */ rtx subtarget = get_subtarget (target); enum rtx_code code = GET_CODE (value); /* Check for subreg applied to an expression produced by loop optimizer. */ if (code == SUBREG && !REG_P (SUBREG_REG (value)) && !MEM_P (SUBREG_REG (value))) { value = simplify_gen_subreg (GET_MODE (value), force_reg (GET_MODE (SUBREG_REG (value)), force_operand (SUBREG_REG (value), NULL_RTX)), GET_MODE (SUBREG_REG (value)), SUBREG_BYTE (value)); code = GET_CODE (value); } /* Check for a PIC address load. */ if ((code == PLUS || code == MINUS) && XEXP (value, 0) == pic_offset_table_rtx && (GET_CODE (XEXP (value, 1)) == SYMBOL_REF || GET_CODE (XEXP (value, 1)) == LABEL_REF || GET_CODE (XEXP (value, 1)) == CONST)) { if (!subtarget) subtarget = gen_reg_rtx (GET_MODE (value)); emit_move_insn (subtarget, value); return subtarget; } if (ARITHMETIC_P (value)) { op2 = XEXP (value, 1); if (!CONSTANT_P (op2) && !(REG_P (op2) && op2 != subtarget)) subtarget = 0; if (code == MINUS && CONST_INT_P (op2)) { code = PLUS; op2 = negate_rtx (GET_MODE (value), op2); } /* Check for an addition with OP2 a constant integer and our first operand a PLUS of a virtual register and something else. In that case, we want to emit the sum of the virtual register and the constant first and then add the other value. This allows virtual register instantiation to simply modify the constant rather than creating another one around this addition. */ if (code == PLUS && CONST_INT_P (op2) && GET_CODE (XEXP (value, 0)) == PLUS && REG_P (XEXP (XEXP (value, 0), 0)) && REGNO (XEXP (XEXP (value, 0), 0)) >= FIRST_VIRTUAL_REGISTER && REGNO (XEXP (XEXP (value, 0), 0)) <= LAST_VIRTUAL_REGISTER) { rtx temp = expand_simple_binop (GET_MODE (value), code, XEXP (XEXP (value, 0), 0), op2, subtarget, 0, OPTAB_LIB_WIDEN); return expand_simple_binop (GET_MODE (value), code, temp, force_operand (XEXP (XEXP (value, 0), 1), 0), target, 0, OPTAB_LIB_WIDEN); } op1 = force_operand (XEXP (value, 0), subtarget); op2 = force_operand (op2, NULL_RTX); switch (code) { case MULT: return expand_mult (GET_MODE (value), op1, op2, target, 1); case DIV: if (!INTEGRAL_MODE_P (GET_MODE (value))) return expand_simple_binop (GET_MODE (value), code, op1, op2, target, 1, OPTAB_LIB_WIDEN); else return expand_divmod (0, FLOAT_MODE_P (GET_MODE (value)) ? RDIV_EXPR : TRUNC_DIV_EXPR, GET_MODE (value), op1, op2, target, 0); case MOD: return expand_divmod (1, TRUNC_MOD_EXPR, GET_MODE (value), op1, op2, target, 0); case UDIV: return expand_divmod (0, TRUNC_DIV_EXPR, GET_MODE (value), op1, op2, target, 1); case UMOD: return expand_divmod (1, TRUNC_MOD_EXPR, GET_MODE (value), op1, op2, target, 1); case ASHIFTRT: return expand_simple_binop (GET_MODE (value), code, op1, op2, target, 0, OPTAB_LIB_WIDEN); default: return expand_simple_binop (GET_MODE (value), code, op1, op2, target, 1, OPTAB_LIB_WIDEN); } } if (UNARY_P (value)) { if (!target) target = gen_reg_rtx (GET_MODE (value)); op1 = force_operand (XEXP (value, 0), NULL_RTX); switch (code) { case ZERO_EXTEND: case SIGN_EXTEND: case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE: convert_move (target, op1, code == ZERO_EXTEND); return target; case FIX: case UNSIGNED_FIX: expand_fix (target, op1, code == UNSIGNED_FIX); return target; case FLOAT: case UNSIGNED_FLOAT: expand_float (target, op1, code == UNSIGNED_FLOAT); return target; default: return expand_simple_unop (GET_MODE (value), code, op1, target, 0); } } #ifdef INSN_SCHEDULING /* On machines that have insn scheduling, we want all memory reference to be explicit, so we need to deal with such paradoxical SUBREGs. */ if (paradoxical_subreg_p (value) && MEM_P (SUBREG_REG (value))) value = simplify_gen_subreg (GET_MODE (value), force_reg (GET_MODE (SUBREG_REG (value)), force_operand (SUBREG_REG (value), NULL_RTX)), GET_MODE (SUBREG_REG (value)), SUBREG_BYTE (value)); #endif return value; } /* Subroutine of expand_expr: return nonzero iff there is no way that EXP can reference X, which is being modified. TOP_P is nonzero if this call is going to be used to determine whether we need a temporary for EXP, as opposed to a recursive call to this function. It is always safe for this routine to return zero since it merely searches for optimization opportunities. */ int safe_from_p (const_rtx x, tree exp, int top_p) { rtx exp_rtl = 0; int i, nops; if (x == 0 /* If EXP has varying size, we MUST use a target since we currently have no way of allocating temporaries of variable size (except for arrays that have TYPE_ARRAY_MAX_SIZE set). So we assume here that something at a higher level has prevented a clash. This is somewhat bogus, but the best we can do. Only do this when X is BLKmode and when we are at the top level. */ || (top_p && TREE_TYPE (exp) != 0 && COMPLETE_TYPE_P (TREE_TYPE (exp)) && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) != INTEGER_CST && (TREE_CODE (TREE_TYPE (exp)) != ARRAY_TYPE || TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp)) == NULL_TREE || TREE_CODE (TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp))) != INTEGER_CST) && GET_MODE (x) == BLKmode) /* If X is in the outgoing argument area, it is always safe. */ || (MEM_P (x) && (XEXP (x, 0) == virtual_outgoing_args_rtx || (GET_CODE (XEXP (x, 0)) == PLUS && XEXP (XEXP (x, 0), 0) == virtual_outgoing_args_rtx)))) return 1; /* If this is a subreg of a hard register, declare it unsafe, otherwise, find the underlying pseudo. */ if (GET_CODE (x) == SUBREG) { x = SUBREG_REG (x); if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER) return 0; } /* Now look at our tree code and possibly recurse. */ switch (TREE_CODE_CLASS (TREE_CODE (exp))) { case tcc_declaration: exp_rtl = DECL_RTL_IF_SET (exp); break; case tcc_constant: return 1; case tcc_exceptional: if (TREE_CODE (exp) == TREE_LIST) { while (1) { if (TREE_VALUE (exp) && !safe_from_p (x, TREE_VALUE (exp), 0)) return 0; exp = TREE_CHAIN (exp); if (!exp) return 1; if (TREE_CODE (exp) != TREE_LIST) return safe_from_p (x, exp, 0); } } else if (TREE_CODE (exp) == CONSTRUCTOR) { constructor_elt *ce; unsigned HOST_WIDE_INT idx; FOR_EACH_VEC_SAFE_ELT (CONSTRUCTOR_ELTS (exp), idx, ce) if ((ce->index != NULL_TREE && !safe_from_p (x, ce->index, 0)) || !safe_from_p (x, ce->value, 0)) return 0; return 1; } else if (TREE_CODE (exp) == ERROR_MARK) return 1; /* An already-visited SAVE_EXPR? */ else return 0; case tcc_statement: /* The only case we look at here is the DECL_INITIAL inside a DECL_EXPR. */ return (TREE_CODE (exp) != DECL_EXPR || TREE_CODE (DECL_EXPR_DECL (exp)) != VAR_DECL || !DECL_INITIAL (DECL_EXPR_DECL (exp)) || safe_from_p (x, DECL_INITIAL (DECL_EXPR_DECL (exp)), 0)); case tcc_binary: case tcc_comparison: if (!safe_from_p (x, TREE_OPERAND (exp, 1), 0)) return 0; /* Fall through. */ case tcc_unary: return safe_from_p (x, TREE_OPERAND (exp, 0), 0); case tcc_expression: case tcc_reference: case tcc_vl_exp: /* Now do code-specific tests. EXP_RTL is set to any rtx we find in the expression. If it is set, we conflict iff we are that rtx or both are in memory. Otherwise, we check all operands of the expression recursively. */ switch (TREE_CODE (exp)) { case ADDR_EXPR: /* If the operand is static or we are static, we can't conflict. Likewise if we don't conflict with the operand at all. */ if (staticp (TREE_OPERAND (exp, 0)) || TREE_STATIC (exp) || safe_from_p (x, TREE_OPERAND (exp, 0), 0)) return 1; /* Otherwise, the only way this can conflict is if we are taking the address of a DECL a that address if part of X, which is very rare. */ exp = TREE_OPERAND (exp, 0); if (DECL_P (exp)) { if (!DECL_RTL_SET_P (exp) || !MEM_P (DECL_RTL (exp))) return 0; else exp_rtl = XEXP (DECL_RTL (exp), 0); } break; case MEM_REF: if (MEM_P (x) && alias_sets_conflict_p (MEM_ALIAS_SET (x), get_alias_set (exp))) return 0; break; case CALL_EXPR: /* Assume that the call will clobber all hard registers and all of memory. */ if ((REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER) || MEM_P (x)) return 0; break; case WITH_CLEANUP_EXPR: case CLEANUP_POINT_EXPR: /* Lowered by gimplify.c. */ gcc_unreachable (); case SAVE_EXPR: return safe_from_p (x, TREE_OPERAND (exp, 0), 0); default: break; } /* If we have an rtx, we do not need to scan our operands. */ if (exp_rtl) break; nops = TREE_OPERAND_LENGTH (exp); for (i = 0; i < nops; i++) if (TREE_OPERAND (exp, i) != 0 && ! safe_from_p (x, TREE_OPERAND (exp, i), 0)) return 0; break; case tcc_type: /* Should never get a type here. */ gcc_unreachable (); } /* If we have an rtl, find any enclosed object. Then see if we conflict with it. */ if (exp_rtl) { if (GET_CODE (exp_rtl) == SUBREG) { exp_rtl = SUBREG_REG (exp_rtl); if (REG_P (exp_rtl) && REGNO (exp_rtl) < FIRST_PSEUDO_REGISTER) return 0; } /* If the rtl is X, then it is not safe. Otherwise, it is unless both are memory and they conflict. */ return ! (rtx_equal_p (x, exp_rtl) || (MEM_P (x) && MEM_P (exp_rtl) && true_dependence (exp_rtl, VOIDmode, x))); } /* If we reach here, it is safe. */ return 1; } /* Return the highest power of two that EXP is known to be a multiple of. This is used in updating alignment of MEMs in array references. */ unsigned HOST_WIDE_INT highest_pow2_factor (const_tree exp) { unsigned HOST_WIDE_INT ret; int trailing_zeros = tree_ctz (exp); if (trailing_zeros >= HOST_BITS_PER_WIDE_INT) return BIGGEST_ALIGNMENT; ret = HOST_WIDE_INT_1U << trailing_zeros; if (ret > BIGGEST_ALIGNMENT) return BIGGEST_ALIGNMENT; return ret; } /* Similar, except that the alignment requirements of TARGET are taken into account. Assume it is at least as aligned as its type, unless it is a COMPONENT_REF in which case the layout of the structure gives the alignment. */ static unsigned HOST_WIDE_INT highest_pow2_factor_for_target (const_tree target, const_tree exp) { unsigned HOST_WIDE_INT talign = target_align (target) / BITS_PER_UNIT; unsigned HOST_WIDE_INT factor = highest_pow2_factor (exp); return MAX (factor, talign); } /* Convert the tree comparison code TCODE to the rtl one where the signedness is UNSIGNEDP. */ static enum rtx_code convert_tree_comp_to_rtx (enum tree_code tcode, int unsignedp) { enum rtx_code code; switch (tcode) { case EQ_EXPR: code = EQ; break; case NE_EXPR: code = NE; break; case LT_EXPR: code = unsignedp ? LTU : LT; break; case LE_EXPR: code = unsignedp ? LEU : LE; break; case GT_EXPR: code = unsignedp ? GTU : GT; break; case GE_EXPR: code = unsignedp ? GEU : GE; break; case UNORDERED_EXPR: code = UNORDERED; break; case ORDERED_EXPR: code = ORDERED; break; case UNLT_EXPR: code = UNLT; break; case UNLE_EXPR: code = UNLE; break; case UNGT_EXPR: code = UNGT; break; case UNGE_EXPR: code = UNGE; break; case UNEQ_EXPR: code = UNEQ; break; case LTGT_EXPR: code = LTGT; break; default: gcc_unreachable (); } return code; } /* Subroutine of expand_expr. Expand the two operands of a binary expression EXP0 and EXP1 placing the results in OP0 and OP1. The value may be stored in TARGET if TARGET is nonzero. The MODIFIER argument is as documented by expand_expr. */ void expand_operands (tree exp0, tree exp1, rtx target, rtx *op0, rtx *op1, enum expand_modifier modifier) { if (! safe_from_p (target, exp1, 1)) target = 0; if (operand_equal_p (exp0, exp1, 0)) { *op0 = expand_expr (exp0, target, VOIDmode, modifier); *op1 = copy_rtx (*op0); } else { *op0 = expand_expr (exp0, target, VOIDmode, modifier); *op1 = expand_expr (exp1, NULL_RTX, VOIDmode, modifier); } } /* Return a MEM that contains constant EXP. DEFER is as for output_constant_def and MODIFIER is as for expand_expr. */ static rtx expand_expr_constant (tree exp, int defer, enum expand_modifier modifier) { rtx mem; mem = output_constant_def (exp, defer); if (modifier != EXPAND_INITIALIZER) mem = use_anchored_address (mem); return mem; } /* A subroutine of expand_expr_addr_expr. Evaluate the address of EXP. The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */ static rtx expand_expr_addr_expr_1 (tree exp, rtx target, scalar_int_mode tmode, enum expand_modifier modifier, addr_space_t as) { rtx result, subtarget; tree inner, offset; poly_int64 bitsize, bitpos; int unsignedp, reversep, volatilep = 0; machine_mode mode1; /* If we are taking the address of a constant and are at the top level, we have to use output_constant_def since we can't call force_const_mem at top level. */ /* ??? This should be considered a front-end bug. We should not be generating ADDR_EXPR of something that isn't an LVALUE. The only exception here is STRING_CST. */ if (CONSTANT_CLASS_P (exp)) { result = XEXP (expand_expr_constant (exp, 0, modifier), 0); if (modifier < EXPAND_SUM) result = force_operand (result, target); return result; } /* Everything must be something allowed by is_gimple_addressable. */ switch (TREE_CODE (exp)) { case INDIRECT_REF: /* This case will happen via recursion for &a->b. */ return expand_expr (TREE_OPERAND (exp, 0), target, tmode, modifier); case MEM_REF: { tree tem = TREE_OPERAND (exp, 0); if (!integer_zerop (TREE_OPERAND (exp, 1))) tem = fold_build_pointer_plus (tem, TREE_OPERAND (exp, 1)); return expand_expr (tem, target, tmode, modifier); } case TARGET_MEM_REF: return addr_for_mem_ref (exp, as, true); case CONST_DECL: /* Expand the initializer like constants above. */ result = XEXP (expand_expr_constant (DECL_INITIAL (exp), 0, modifier), 0); if (modifier < EXPAND_SUM) result = force_operand (result, target); return result; case REALPART_EXPR: /* The real part of the complex number is always first, therefore the address is the same as the address of the parent object. */ offset = 0; bitpos = 0; inner = TREE_OPERAND (exp, 0); break; case IMAGPART_EXPR: /* The imaginary part of the complex number is always second. The expression is therefore always offset by the size of the scalar type. */ offset = 0; bitpos = GET_MODE_BITSIZE (SCALAR_TYPE_MODE (TREE_TYPE (exp))); inner = TREE_OPERAND (exp, 0); break; case COMPOUND_LITERAL_EXPR: /* Allow COMPOUND_LITERAL_EXPR in initializers or coming from initializers, if e.g. rtl_for_decl_init is called on DECL_INITIAL with COMPOUND_LITERAL_EXPRs in it, or ARRAY_REF on a const static array with address of COMPOUND_LITERAL_EXPR in DECL_INITIAL; the initializers aren't gimplified. */ if (COMPOUND_LITERAL_EXPR_DECL (exp) && TREE_STATIC (COMPOUND_LITERAL_EXPR_DECL (exp))) return expand_expr_addr_expr_1 (COMPOUND_LITERAL_EXPR_DECL (exp), target, tmode, modifier, as); /* FALLTHRU */ default: /* If the object is a DECL, then expand it for its rtl. Don't bypass expand_expr, as that can have various side effects; LABEL_DECLs for example, may not have their DECL_RTL set yet. Expand the rtl of CONSTRUCTORs too, which should yield a memory reference for the constructor's contents. Assume language specific tree nodes can be expanded in some interesting way. */ gcc_assert (TREE_CODE (exp) < LAST_AND_UNUSED_TREE_CODE); if (DECL_P (exp) || TREE_CODE (exp) == CONSTRUCTOR || TREE_CODE (exp) == COMPOUND_LITERAL_EXPR) { result = expand_expr (exp, target, tmode, modifier == EXPAND_INITIALIZER ? EXPAND_INITIALIZER : EXPAND_CONST_ADDRESS); /* If the DECL isn't in memory, then the DECL wasn't properly marked TREE_ADDRESSABLE, which will be either a front-end or a tree optimizer bug. */ gcc_assert (MEM_P (result)); result = XEXP (result, 0); /* ??? Is this needed anymore? */ if (DECL_P (exp)) TREE_USED (exp) = 1; if (modifier != EXPAND_INITIALIZER && modifier != EXPAND_CONST_ADDRESS && modifier != EXPAND_SUM) result = force_operand (result, target); return result; } /* Pass FALSE as the last argument to get_inner_reference although we are expanding to RTL. The rationale is that we know how to handle "aligning nodes" here: we can just bypass them because they won't change the final object whose address will be returned (they actually exist only for that purpose). */ inner = get_inner_reference (exp, &bitsize, &bitpos, &offset, &mode1, &unsignedp, &reversep, &volatilep); break; } /* We must have made progress. */ gcc_assert (inner != exp); subtarget = offset || maybe_ne (bitpos, 0) ? NULL_RTX : target; /* For VIEW_CONVERT_EXPR, where the outer alignment is bigger than inner alignment, force the inner to be sufficiently aligned. */ if (CONSTANT_CLASS_P (inner) && TYPE_ALIGN (TREE_TYPE (inner)) < TYPE_ALIGN (TREE_TYPE (exp))) { inner = copy_node (inner); TREE_TYPE (inner) = copy_node (TREE_TYPE (inner)); SET_TYPE_ALIGN (TREE_TYPE (inner), TYPE_ALIGN (TREE_TYPE (exp))); TYPE_USER_ALIGN (TREE_TYPE (inner)) = 1; } result = expand_expr_addr_expr_1 (inner, subtarget, tmode, modifier, as); if (offset) { rtx tmp; if (modifier != EXPAND_NORMAL) result = force_operand (result, NULL); tmp = expand_expr (offset, NULL_RTX, tmode, modifier == EXPAND_INITIALIZER ? EXPAND_INITIALIZER : EXPAND_NORMAL); /* expand_expr is allowed to return an object in a mode other than TMODE. If it did, we need to convert. */ if (GET_MODE (tmp) != VOIDmode && tmode != GET_MODE (tmp)) tmp = convert_modes (tmode, GET_MODE (tmp), tmp, TYPE_UNSIGNED (TREE_TYPE (offset))); result = convert_memory_address_addr_space (tmode, result, as); tmp = convert_memory_address_addr_space (tmode, tmp, as); if (modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER) result = simplify_gen_binary (PLUS, tmode, result, tmp); else { subtarget = maybe_ne (bitpos, 0) ? NULL_RTX : target; result = expand_simple_binop (tmode, PLUS, result, tmp, subtarget, 1, OPTAB_LIB_WIDEN); } } if (maybe_ne (bitpos, 0)) { /* Someone beforehand should have rejected taking the address of an object that isn't byte-aligned. */ poly_int64 bytepos = exact_div (bitpos, BITS_PER_UNIT); result = convert_memory_address_addr_space (tmode, result, as); result = plus_constant (tmode, result, bytepos); if (modifier < EXPAND_SUM) result = force_operand (result, target); } return result; } /* A subroutine of expand_expr. Evaluate EXP, which is an ADDR_EXPR. The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */ static rtx expand_expr_addr_expr (tree exp, rtx target, machine_mode tmode, enum expand_modifier modifier) { addr_space_t as = ADDR_SPACE_GENERIC; scalar_int_mode address_mode = Pmode; scalar_int_mode pointer_mode = ptr_mode; machine_mode rmode; rtx result; /* Target mode of VOIDmode says "whatever's natural". */ if (tmode == VOIDmode) tmode = TYPE_MODE (TREE_TYPE (exp)); if (POINTER_TYPE_P (TREE_TYPE (exp))) { as = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (exp))); address_mode = targetm.addr_space.address_mode (as); pointer_mode = targetm.addr_space.pointer_mode (as); } /* We can get called with some Weird Things if the user does silliness like "(short) &a". In that case, convert_memory_address won't do the right thing, so ignore the given target mode. */ scalar_int_mode new_tmode = (tmode == pointer_mode ? pointer_mode : address_mode); result = expand_expr_addr_expr_1 (TREE_OPERAND (exp, 0), target, new_tmode, modifier, as); /* Despite expand_expr claims concerning ignoring TMODE when not strictly convenient, stuff breaks if we don't honor it. Note that combined with the above, we only do this for pointer modes. */ rmode = GET_MODE (result); if (rmode == VOIDmode) rmode = new_tmode; if (rmode != new_tmode) result = convert_memory_address_addr_space (new_tmode, result, as); return result; } /* Generate code for computing CONSTRUCTOR EXP. An rtx for the computed value is returned. If AVOID_TEMP_MEM is TRUE, instead of creating a temporary variable in memory NULL is returned and the caller needs to handle it differently. */ static rtx expand_constructor (tree exp, rtx target, enum expand_modifier modifier, bool avoid_temp_mem) { tree type = TREE_TYPE (exp); machine_mode mode = TYPE_MODE (type); /* Try to avoid creating a temporary at all. This is possible if all of the initializer is zero. FIXME: try to handle all [0..255] initializers we can handle with memset. */ if (TREE_STATIC (exp) && !TREE_ADDRESSABLE (exp) && target != 0 && mode == BLKmode && all_zeros_p (exp)) { clear_storage (target, expr_size (exp), BLOCK_OP_NORMAL); return target; } /* All elts simple constants => refer to a constant in memory. But if this is a non-BLKmode mode, let it store a field at a time since that should make a CONST_INT, CONST_WIDE_INT or CONST_DOUBLE when we fold. Likewise, if we have a target we can use, it is best to store directly into the target unless the type is large enough that memcpy will be used. If we are making an initializer and all operands are constant, put it in memory as well. FIXME: Avoid trying to fill vector constructors piece-meal. Output them with output_constant_def below unless we're sure they're zeros. This should go away when vector initializers are treated like VECTOR_CST instead of arrays. */ if ((TREE_STATIC (exp) && ((mode == BLKmode && ! (target != 0 && safe_from_p (target, exp, 1))) || TREE_ADDRESSABLE (exp) || (tree_fits_uhwi_p (TYPE_SIZE_UNIT (type)) && (! can_move_by_pieces (tree_to_uhwi (TYPE_SIZE_UNIT (type)), TYPE_ALIGN (type))) && ! mostly_zeros_p (exp)))) || ((modifier == EXPAND_INITIALIZER || modifier == EXPAND_CONST_ADDRESS) && TREE_CONSTANT (exp))) { rtx constructor; if (avoid_temp_mem) return NULL_RTX; constructor = expand_expr_constant (exp, 1, modifier); if (modifier != EXPAND_CONST_ADDRESS && modifier != EXPAND_INITIALIZER && modifier != EXPAND_SUM) constructor = validize_mem (constructor); return constructor; } /* Handle calls that pass values in multiple non-contiguous locations. The Irix 6 ABI has examples of this. */ if (target == 0 || ! safe_from_p (target, exp, 1) || GET_CODE (target) == PARALLEL || modifier == EXPAND_STACK_PARM) { if (avoid_temp_mem) return NULL_RTX; target = assign_temp (type, TREE_ADDRESSABLE (exp), 1); } store_constructor (exp, target, 0, int_expr_size (exp), false); return target; } /* expand_expr: generate code for computing expression EXP. An rtx for the computed value is returned. The value is never null. In the case of a void EXP, const0_rtx is returned. The value may be stored in TARGET if TARGET is nonzero. TARGET is just a suggestion; callers must assume that the rtx returned may not be the same as TARGET. If TARGET is CONST0_RTX, it means that the value will be ignored. If TMODE is not VOIDmode, it suggests generating the result in mode TMODE. But this is done only when convenient. Otherwise, TMODE is ignored and the value generated in its natural mode. TMODE is just a suggestion; callers must assume that the rtx returned may not have mode TMODE. Note that TARGET may have neither TMODE nor MODE. In that case, it probably will not be used. If MODIFIER is EXPAND_SUM then when EXP is an addition we can return an rtx of the form (MULT (REG ...) (CONST_INT ...)) or a nest of (PLUS ...) and (MINUS ...) where the terms are products as above, or REG or MEM, or constant. Ordinarily in such cases we would output mul or add instructions and then return a pseudo reg containing the sum. EXPAND_INITIALIZER is much like EXPAND_SUM except that it also marks a label as absolutely required (it can't be dead). It also makes a ZERO_EXTEND or SIGN_EXTEND instead of emitting extend insns. This is used for outputting expressions used in initializers. EXPAND_CONST_ADDRESS says that it is okay to return a MEM with a constant address even if that address is not normally legitimate. EXPAND_INITIALIZER and EXPAND_SUM also have this effect. EXPAND_STACK_PARM is used when expanding to a TARGET on the stack for a call parameter. Such targets require special care as we haven't yet marked TARGET so that it's safe from being trashed by libcalls. We don't want to use TARGET for anything but the final result; Intermediate values must go elsewhere. Additionally, calls to emit_block_move will be flagged with BLOCK_OP_CALL_PARM. If EXP is a VAR_DECL whose DECL_RTL was a MEM with an invalid address, and ALT_RTL is non-NULL, then *ALT_RTL is set to the DECL_RTL of the VAR_DECL. *ALT_RTL is also set if EXP is a COMPOUND_EXPR whose second argument is such a VAR_DECL, and so on recursively. If INNER_REFERENCE_P is true, we are expanding an inner reference. In this case, we don't adjust a returned MEM rtx that wouldn't be sufficiently aligned for its mode; instead, it's up to the caller to deal with it afterwards. This is used to make sure that unaligned base objects for which out-of-bounds accesses are supported, for example record types with trailing arrays, aren't realigned behind the back of the caller. The normal operating mode is to pass FALSE for this parameter. */ rtx expand_expr_real (tree exp, rtx target, machine_mode tmode, enum expand_modifier modifier, rtx *alt_rtl, bool inner_reference_p) { rtx ret; /* Handle ERROR_MARK before anybody tries to access its type. */ if (TREE_CODE (exp) == ERROR_MARK || (TREE_CODE (TREE_TYPE (exp)) == ERROR_MARK)) { ret = CONST0_RTX (tmode); return ret ? ret : const0_rtx; } ret = expand_expr_real_1 (exp, target, tmode, modifier, alt_rtl, inner_reference_p); return ret; } /* Try to expand the conditional expression which is represented by TREEOP0 ? TREEOP1 : TREEOP2 using conditonal moves. If it succeeds return the rtl reg which represents the result. Otherwise return NULL_RTX. */ static rtx expand_cond_expr_using_cmove (tree treeop0 ATTRIBUTE_UNUSED, tree treeop1 ATTRIBUTE_UNUSED, tree treeop2 ATTRIBUTE_UNUSED) { rtx insn; rtx op00, op01, op1, op2; enum rtx_code comparison_code; machine_mode comparison_mode; gimple *srcstmt; rtx temp; tree type = TREE_TYPE (treeop1); int unsignedp = TYPE_UNSIGNED (type); machine_mode mode = TYPE_MODE (type); machine_mode orig_mode = mode; static bool expanding_cond_expr_using_cmove = false; /* Conditional move expansion can end up TERing two operands which, when recursively hitting conditional expressions can result in exponential behavior if the cmove expansion ultimatively fails. It's hardly profitable to TER a cmove into a cmove so avoid doing that by failing early if we end up recursing. */ if (expanding_cond_expr_using_cmove) return NULL_RTX; /* If we cannot do a conditional move on the mode, try doing it with the promoted mode. */ if (!can_conditionally_move_p (mode)) { mode = promote_mode (type, mode, &unsignedp); if (!can_conditionally_move_p (mode)) return NULL_RTX; temp = assign_temp (type, 0, 0); /* Use promoted mode for temp. */ } else temp = assign_temp (type, 0, 1); expanding_cond_expr_using_cmove = true; start_sequence (); expand_operands (treeop1, treeop2, temp, &op1, &op2, EXPAND_NORMAL); if (TREE_CODE (treeop0) == SSA_NAME && (srcstmt = get_def_for_expr_class (treeop0, tcc_comparison))) { tree type = TREE_TYPE (gimple_assign_rhs1 (srcstmt)); enum tree_code cmpcode = gimple_assign_rhs_code (srcstmt); op00 = expand_normal (gimple_assign_rhs1 (srcstmt)); op01 = expand_normal (gimple_assign_rhs2 (srcstmt)); comparison_mode = TYPE_MODE (type); unsignedp = TYPE_UNSIGNED (type); comparison_code = convert_tree_comp_to_rtx (cmpcode, unsignedp); } else if (COMPARISON_CLASS_P (treeop0)) { tree type = TREE_TYPE (TREE_OPERAND (treeop0, 0)); enum tree_code cmpcode = TREE_CODE (treeop0); op00 = expand_normal (TREE_OPERAND (treeop0, 0)); op01 = expand_normal (TREE_OPERAND (treeop0, 1)); unsignedp = TYPE_UNSIGNED (type); comparison_mode = TYPE_MODE (type); comparison_code = convert_tree_comp_to_rtx (cmpcode, unsignedp); } else { op00 = expand_normal (treeop0); op01 = const0_rtx; comparison_code = NE; comparison_mode = GET_MODE (op00); if (comparison_mode == VOIDmode) comparison_mode = TYPE_MODE (TREE_TYPE (treeop0)); } expanding_cond_expr_using_cmove = false; if (GET_MODE (op1) != mode) op1 = gen_lowpart (mode, op1); if (GET_MODE (op2) != mode) op2 = gen_lowpart (mode, op2); /* Try to emit the conditional move. */ insn = emit_conditional_move (temp, comparison_code, op00, op01, comparison_mode, op1, op2, mode, unsignedp); /* If we could do the conditional move, emit the sequence, and return. */ if (insn) { rtx_insn *seq = get_insns (); end_sequence (); emit_insn (seq); return convert_modes (orig_mode, mode, temp, 0); } /* Otherwise discard the sequence and fall back to code with branches. */ end_sequence (); return NULL_RTX; } rtx expand_expr_real_2 (sepops ops, rtx target, machine_mode tmode, enum expand_modifier modifier) { rtx op0, op1, op2, temp; rtx_code_label *lab; tree type; int unsignedp; machine_mode mode; scalar_int_mode int_mode; enum tree_code code = ops->code; optab this_optab; rtx subtarget, original_target; int ignore; bool reduce_bit_field; location_t loc = ops->location; tree treeop0, treeop1, treeop2; #define REDUCE_BIT_FIELD(expr) (reduce_bit_field \ ? reduce_to_bit_field_precision ((expr), \ target, \ type) \ : (expr)) type = ops->type; mode = TYPE_MODE (type); unsignedp = TYPE_UNSIGNED (type); treeop0 = ops->op0; treeop1 = ops->op1; treeop2 = ops->op2; /* We should be called only on simple (binary or unary) expressions, exactly those that are valid in gimple expressions that aren't GIMPLE_SINGLE_RHS (or invalid). */ gcc_assert (get_gimple_rhs_class (code) == GIMPLE_UNARY_RHS || get_gimple_rhs_class (code) == GIMPLE_BINARY_RHS || get_gimple_rhs_class (code) == GIMPLE_TERNARY_RHS); ignore = (target == const0_rtx || ((CONVERT_EXPR_CODE_P (code) || code == COND_EXPR || code == VIEW_CONVERT_EXPR) && TREE_CODE (type) == VOID_TYPE)); /* We should be called only if we need the result. */ gcc_assert (!ignore); /* An operation in what may be a bit-field type needs the result to be reduced to the precision of the bit-field type, which is narrower than that of the type's mode. */ reduce_bit_field = (INTEGRAL_TYPE_P (type) && !type_has_mode_precision_p (type)); if (reduce_bit_field && modifier == EXPAND_STACK_PARM) target = 0; /* Use subtarget as the target for operand 0 of a binary operation. */ subtarget = get_subtarget (target); original_target = target; switch (code) { case NON_LVALUE_EXPR: case PAREN_EXPR: CASE_CONVERT: if (treeop0 == error_mark_node) return const0_rtx; if (TREE_CODE (type) == UNION_TYPE) { tree valtype = TREE_TYPE (treeop0); /* If both input and output are BLKmode, this conversion isn't doing anything except possibly changing memory attribute. */ if (mode == BLKmode && TYPE_MODE (valtype) == BLKmode) { rtx result = expand_expr (treeop0, target, tmode, modifier); result = copy_rtx (result); set_mem_attributes (result, type, 0); return result; } if (target == 0) { if (TYPE_MODE (type) != BLKmode) target = gen_reg_rtx (TYPE_MODE (type)); else target = assign_temp (type, 1, 1); } if (MEM_P (target)) /* Store data into beginning of memory target. */ store_expr (treeop0, adjust_address (target, TYPE_MODE (valtype), 0), modifier == EXPAND_STACK_PARM, false, TYPE_REVERSE_STORAGE_ORDER (type)); else { gcc_assert (REG_P (target) && !TYPE_REVERSE_STORAGE_ORDER (type)); /* Store this field into a union of the proper type. */ poly_uint64 op0_size = tree_to_poly_uint64 (TYPE_SIZE (TREE_TYPE (treeop0))); poly_uint64 union_size = GET_MODE_BITSIZE (mode); store_field (target, /* The conversion must be constructed so that we know at compile time how many bits to preserve. */ ordered_min (op0_size, union_size), 0, 0, 0, TYPE_MODE (valtype), treeop0, 0, false, false); } /* Return the entire union. */ return target; } if (mode == TYPE_MODE (TREE_TYPE (treeop0))) { op0 = expand_expr (treeop0, target, VOIDmode, modifier); /* If the signedness of the conversion differs and OP0 is a promoted SUBREG, clear that indication since we now have to do the proper extension. */ if (TYPE_UNSIGNED (TREE_TYPE (treeop0)) != unsignedp && GET_CODE (op0) == SUBREG) SUBREG_PROMOTED_VAR_P (op0) = 0; return REDUCE_BIT_FIELD (op0); } op0 = expand_expr (treeop0, NULL_RTX, mode, modifier == EXPAND_SUM ? EXPAND_NORMAL : modifier); if (GET_MODE (op0) == mode) ; /* If OP0 is a constant, just convert it into the proper mode. */ else if (CONSTANT_P (op0)) { tree inner_type = TREE_TYPE (treeop0); machine_mode inner_mode = GET_MODE (op0); if (inner_mode == VOIDmode) inner_mode = TYPE_MODE (inner_type); if (modifier == EXPAND_INITIALIZER) op0 = lowpart_subreg (mode, op0, inner_mode); else op0= convert_modes (mode, inner_mode, op0, TYPE_UNSIGNED (inner_type)); } else if (modifier == EXPAND_INITIALIZER) op0 = gen_rtx_fmt_e (TYPE_UNSIGNED (TREE_TYPE (treeop0)) ? ZERO_EXTEND : SIGN_EXTEND, mode, op0); else if (target == 0) op0 = convert_to_mode (mode, op0, TYPE_UNSIGNED (TREE_TYPE (treeop0))); else { convert_move (target, op0, TYPE_UNSIGNED (TREE_TYPE (treeop0))); op0 = target; } return REDUCE_BIT_FIELD (op0); case ADDR_SPACE_CONVERT_EXPR: { tree treeop0_type = TREE_TYPE (treeop0); gcc_assert (POINTER_TYPE_P (type)); gcc_assert (POINTER_TYPE_P (treeop0_type)); addr_space_t as_to = TYPE_ADDR_SPACE (TREE_TYPE (type)); addr_space_t as_from = TYPE_ADDR_SPACE (TREE_TYPE (treeop0_type)); /* Conversions between pointers to the same address space should have been implemented via CONVERT_EXPR / NOP_EXPR. */ gcc_assert (as_to != as_from); op0 = expand_expr (treeop0, NULL_RTX, VOIDmode, modifier); /* Ask target code to handle conversion between pointers to overlapping address spaces. */ if (targetm.addr_space.subset_p (as_to, as_from) || targetm.addr_space.subset_p (as_from, as_to)) { op0 = targetm.addr_space.convert (op0, treeop0_type, type); } else { /* For disjoint address spaces, converting anything but a null pointer invokes undefined behavior. We truncate or extend the value as if we'd converted via integers, which handles 0 as required, and all others as the programmer likely expects. */ #ifndef POINTERS_EXTEND_UNSIGNED const int POINTERS_EXTEND_UNSIGNED = 1; #endif op0 = convert_modes (mode, TYPE_MODE (treeop0_type), op0, POINTERS_EXTEND_UNSIGNED); } gcc_assert (op0); return op0; } case POINTER_PLUS_EXPR: /* Even though the sizetype mode and the pointer's mode can be different expand is able to handle this correctly and get the correct result out of the PLUS_EXPR code. */ /* Make sure to sign-extend the sizetype offset in a POINTER_PLUS_EXPR if sizetype precision is smaller than pointer precision. */ if (TYPE_PRECISION (sizetype) < TYPE_PRECISION (type)) treeop1 = fold_convert_loc (loc, type, fold_convert_loc (loc, ssizetype, treeop1)); /* If sizetype precision is larger than pointer precision, truncate the offset to have matching modes. */ else if (TYPE_PRECISION (sizetype) > TYPE_PRECISION (type)) treeop1 = fold_convert_loc (loc, type, treeop1); /* FALLTHRU */ case PLUS_EXPR: /* If we are adding a constant, a VAR_DECL that is sp, fp, or ap, and something else, make sure we add the register to the constant and then to the other thing. This case can occur during strength reduction and doing it this way will produce better code if the frame pointer or argument pointer is eliminated. fold-const.c will ensure that the constant is always in the inner PLUS_EXPR, so the only case we need to do anything about is if sp, ap, or fp is our second argument, in which case we must swap the innermost first argument and our second argument. */ if (TREE_CODE (treeop0) == PLUS_EXPR && TREE_CODE (TREE_OPERAND (treeop0, 1)) == INTEGER_CST && VAR_P (treeop1) && (DECL_RTL (treeop1) == frame_pointer_rtx || DECL_RTL (treeop1) == stack_pointer_rtx || DECL_RTL (treeop1) == arg_pointer_rtx)) { gcc_unreachable (); } /* If the result is to be ptr_mode and we are adding an integer to something, we might be forming a constant. So try to use plus_constant. If it produces a sum and we can't accept it, use force_operand. This allows P = &ARR[const] to generate efficient code on machines where a SYMBOL_REF is not a valid address. If this is an EXPAND_SUM call, always return the sum. */ if (modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER || (mode == ptr_mode && (unsignedp || ! flag_trapv))) { if (modifier == EXPAND_STACK_PARM) target = 0; if (TREE_CODE (treeop0) == INTEGER_CST && HWI_COMPUTABLE_MODE_P (mode) && TREE_CONSTANT (treeop1)) { rtx constant_part; HOST_WIDE_INT wc; machine_mode wmode = TYPE_MODE (TREE_TYPE (treeop1)); op1 = expand_expr (treeop1, subtarget, VOIDmode, EXPAND_SUM); /* Use wi::shwi to ensure that the constant is truncated according to the mode of OP1, then sign extended to a HOST_WIDE_INT. Using the constant directly can result in non-canonical RTL in a 64x32 cross compile. */ wc = TREE_INT_CST_LOW (treeop0); constant_part = immed_wide_int_const (wi::shwi (wc, wmode), wmode); op1 = plus_constant (mode, op1, INTVAL (constant_part)); if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER) op1 = force_operand (op1, target); return REDUCE_BIT_FIELD (op1); } else if (TREE_CODE (treeop1) == INTEGER_CST && HWI_COMPUTABLE_MODE_P (mode) && TREE_CONSTANT (treeop0)) { rtx constant_part; HOST_WIDE_INT wc; machine_mode wmode = TYPE_MODE (TREE_TYPE (treeop0)); op0 = expand_expr (treeop0, subtarget, VOIDmode, (modifier == EXPAND_INITIALIZER ? EXPAND_INITIALIZER : EXPAND_SUM)); if (! CONSTANT_P (op0)) { op1 = expand_expr (treeop1, NULL_RTX, VOIDmode, modifier); /* Return a PLUS if modifier says it's OK. */ if (modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER) return simplify_gen_binary (PLUS, mode, op0, op1); goto binop2; } /* Use wi::shwi to ensure that the constant is truncated according to the mode of OP1, then sign extended to a HOST_WIDE_INT. Using the constant directly can result in non-canonical RTL in a 64x32 cross compile. */ wc = TREE_INT_CST_LOW (treeop1); constant_part = immed_wide_int_const (wi::shwi (wc, wmode), wmode); op0 = plus_constant (mode, op0, INTVAL (constant_part)); if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER) op0 = force_operand (op0, target); return REDUCE_BIT_FIELD (op0); } } /* Use TER to expand pointer addition of a negated value as pointer subtraction. */ if ((POINTER_TYPE_P (TREE_TYPE (treeop0)) || (TREE_CODE (TREE_TYPE (treeop0)) == VECTOR_TYPE && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (treeop0))))) && TREE_CODE (treeop1) == SSA_NAME && TYPE_MODE (TREE_TYPE (treeop0)) == TYPE_MODE (TREE_TYPE (treeop1))) { gimple *def = get_def_for_expr (treeop1, NEGATE_EXPR); if (def) { treeop1 = gimple_assign_rhs1 (def); code = MINUS_EXPR; goto do_minus; } } /* No sense saving up arithmetic to be done if it's all in the wrong mode to form part of an address. And force_operand won't know whether to sign-extend or zero-extend. */ if (modifier != EXPAND_INITIALIZER && (modifier != EXPAND_SUM || mode != ptr_mode)) { expand_operands (treeop0, treeop1, subtarget, &op0, &op1, modifier); if (op0 == const0_rtx) return op1; if (op1 == const0_rtx) return op0; goto binop2; } expand_operands (treeop0, treeop1, subtarget, &op0, &op1, modifier); return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS, mode, op0, op1)); case MINUS_EXPR: case POINTER_DIFF_EXPR: do_minus: /* For initializers, we are allowed to return a MINUS of two symbolic constants. Here we handle all cases when both operands are constant. */ /* Handle difference of two symbolic constants, for the sake of an initializer. */ if ((modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER) && really_constant_p (treeop0) && really_constant_p (treeop1)) { expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1, modifier); return simplify_gen_binary (MINUS, mode, op0, op1); } /* No sense saving up arithmetic to be done if it's all in the wrong mode to form part of an address. And force_operand won't know whether to sign-extend or zero-extend. */ if (modifier != EXPAND_INITIALIZER && (modifier != EXPAND_SUM || mode != ptr_mode)) goto binop; expand_operands (treeop0, treeop1, subtarget, &op0, &op1, modifier); /* Convert A - const to A + (-const). */ if (CONST_INT_P (op1)) { op1 = negate_rtx (mode, op1); return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS, mode, op0, op1)); } goto binop2; case WIDEN_MULT_PLUS_EXPR: case WIDEN_MULT_MINUS_EXPR: expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1, EXPAND_NORMAL); op2 = expand_normal (treeop2); target = expand_widen_pattern_expr (ops, op0, op1, op2, target, unsignedp); return target; case WIDEN_MULT_EXPR: /* If first operand is constant, swap them. Thus the following special case checks need only check the second operand. */ if (TREE_CODE (treeop0) == INTEGER_CST) std::swap (treeop0, treeop1); /* First, check if we have a multiplication of one signed and one unsigned operand. */ if (TREE_CODE (treeop1) != INTEGER_CST && (TYPE_UNSIGNED (TREE_TYPE (treeop0)) != TYPE_UNSIGNED (TREE_TYPE (treeop1)))) { machine_mode innermode = TYPE_MODE (TREE_TYPE (treeop0)); this_optab = usmul_widen_optab; if (find_widening_optab_handler (this_optab, mode, innermode) != CODE_FOR_nothing) { if (TYPE_UNSIGNED (TREE_TYPE (treeop0))) expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1, EXPAND_NORMAL); else expand_operands (treeop0, treeop1, NULL_RTX, &op1, &op0, EXPAND_NORMAL); /* op0 and op1 might still be constant, despite the above != INTEGER_CST check. Handle it. */ if (GET_MODE (op0) == VOIDmode && GET_MODE (op1) == VOIDmode) { op0 = convert_modes (mode, innermode, op0, true); op1 = convert_modes (mode, innermode, op1, false); return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1, target, unsignedp)); } goto binop3; } } /* Check for a multiplication with matching signedness. */ else if ((TREE_CODE (treeop1) == INTEGER_CST && int_fits_type_p (treeop1, TREE_TYPE (treeop0))) || (TYPE_UNSIGNED (TREE_TYPE (treeop1)) == TYPE_UNSIGNED (TREE_TYPE (treeop0)))) { tree op0type = TREE_TYPE (treeop0); machine_mode innermode = TYPE_MODE (op0type); bool zextend_p = TYPE_UNSIGNED (op0type); optab other_optab = zextend_p ? smul_widen_optab : umul_widen_optab; this_optab = zextend_p ? umul_widen_optab : smul_widen_optab; if (TREE_CODE (treeop0) != INTEGER_CST) { if (find_widening_optab_handler (this_optab, mode, innermode) != CODE_FOR_nothing) { expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1, EXPAND_NORMAL); /* op0 and op1 might still be constant, despite the above != INTEGER_CST check. Handle it. */ if (GET_MODE (op0) == VOIDmode && GET_MODE (op1) == VOIDmode) { widen_mult_const: op0 = convert_modes (mode, innermode, op0, zextend_p); op1 = convert_modes (mode, innermode, op1, TYPE_UNSIGNED (TREE_TYPE (treeop1))); return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1, target, unsignedp)); } temp = expand_widening_mult (mode, op0, op1, target, unsignedp, this_optab); return REDUCE_BIT_FIELD (temp); } if (find_widening_optab_handler (other_optab, mode, innermode) != CODE_FOR_nothing && innermode == word_mode) { rtx htem, hipart; op0 = expand_normal (treeop0); op1 = expand_normal (treeop1); /* op0 and op1 might be constants, despite the above != INTEGER_CST check. Handle it. */ if (GET_MODE (op0) == VOIDmode && GET_MODE (op1) == VOIDmode) goto widen_mult_const; if (TREE_CODE (treeop1) == INTEGER_CST) op1 = convert_modes (mode, word_mode, op1, TYPE_UNSIGNED (TREE_TYPE (treeop1))); temp = expand_binop (mode, other_optab, op0, op1, target, unsignedp, OPTAB_LIB_WIDEN); hipart = gen_highpart (word_mode, temp); htem = expand_mult_highpart_adjust (word_mode, hipart, op0, op1, hipart, zextend_p); if (htem != hipart) emit_move_insn (hipart, htem); return REDUCE_BIT_FIELD (temp); } } } treeop0 = fold_build1 (CONVERT_EXPR, type, treeop0); treeop1 = fold_build1 (CONVERT_EXPR, type, treeop1); expand_operands (treeop0, treeop1, subtarget, &op0, &op1, EXPAND_NORMAL); return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1, target, unsignedp)); case FMA_EXPR: { optab opt = fma_optab; gimple *def0, *def2; /* If there is no insn for FMA, emit it as __builtin_fma{,f,l} call. */ if (optab_handler (fma_optab, mode) == CODE_FOR_nothing) { tree fn = mathfn_built_in (TREE_TYPE (treeop0), BUILT_IN_FMA); tree call_expr; gcc_assert (fn != NULL_TREE); call_expr = build_call_expr (fn, 3, treeop0, treeop1, treeop2); return expand_builtin (call_expr, target, subtarget, mode, false); } def0 = get_def_for_expr (treeop0, NEGATE_EXPR); /* The multiplication is commutative - look at its 2nd operand if the first isn't fed by a negate. */ if (!def0) { def0 = get_def_for_expr (treeop1, NEGATE_EXPR); /* Swap operands if the 2nd operand is fed by a negate. */ if (def0) std::swap (treeop0, treeop1); } def2 = get_def_for_expr (treeop2, NEGATE_EXPR); op0 = op2 = NULL; if (def0 && def2 && optab_handler (fnms_optab, mode) != CODE_FOR_nothing) { opt = fnms_optab; op0 = expand_normal (gimple_assign_rhs1 (def0)); op2 = expand_normal (gimple_assign_rhs1 (def2)); } else if (def0 && optab_handler (fnma_optab, mode) != CODE_FOR_nothing) { opt = fnma_optab; op0 = expand_normal (gimple_assign_rhs1 (def0)); } else if (def2 && optab_handler (fms_optab, mode) != CODE_FOR_nothing) { opt = fms_optab; op2 = expand_normal (gimple_assign_rhs1 (def2)); } if (op0 == NULL) op0 = expand_expr (treeop0, subtarget, VOIDmode, EXPAND_NORMAL); if (op2 == NULL) op2 = expand_normal (treeop2); op1 = expand_normal (treeop1); return expand_ternary_op (TYPE_MODE (type), opt, op0, op1, op2, target, 0); } case MULT_EXPR: /* If this is a fixed-point operation, then we cannot use the code below because "expand_mult" doesn't support sat/no-sat fixed-point multiplications. */ if (ALL_FIXED_POINT_MODE_P (mode)) goto binop; /* If first operand is constant, swap them. Thus the following special case checks need only check the second operand. */ if (TREE_CODE (treeop0) == INTEGER_CST) std::swap (treeop0, treeop1); /* Attempt to return something suitable for generating an indexed address, for machines that support that. */ if (modifier == EXPAND_SUM && mode == ptr_mode && tree_fits_shwi_p (treeop1)) { tree exp1 = treeop1; op0 = expand_expr (treeop0, subtarget, VOIDmode, EXPAND_SUM); if (!REG_P (op0)) op0 = force_operand (op0, NULL_RTX); if (!REG_P (op0)) op0 = copy_to_mode_reg (mode, op0); return REDUCE_BIT_FIELD (gen_rtx_MULT (mode, op0, gen_int_mode (tree_to_shwi (exp1), TYPE_MODE (TREE_TYPE (exp1))))); } if (modifier == EXPAND_STACK_PARM) target = 0; expand_operands (treeop0, treeop1, subtarget, &op0, &op1, EXPAND_NORMAL); return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1, target, unsignedp)); case TRUNC_MOD_EXPR: case FLOOR_MOD_EXPR: case CEIL_MOD_EXPR: case ROUND_MOD_EXPR: case TRUNC_DIV_EXPR: case FLOOR_DIV_EXPR: case CEIL_DIV_EXPR: case ROUND_DIV_EXPR: case EXACT_DIV_EXPR: { /* If this is a fixed-point operation, then we cannot use the code below because "expand_divmod" doesn't support sat/no-sat fixed-point divisions. */ if (ALL_FIXED_POINT_MODE_P (mode)) goto binop; if (modifier == EXPAND_STACK_PARM) target = 0; /* Possible optimization: compute the dividend with EXPAND_SUM then if the divisor is constant can optimize the case where some terms of the dividend have coeffs divisible by it. */ expand_operands (treeop0, treeop1, subtarget, &op0, &op1, EXPAND_NORMAL); bool mod_p = code == TRUNC_MOD_EXPR || code == FLOOR_MOD_EXPR || code == CEIL_MOD_EXPR || code == ROUND_MOD_EXPR; if (SCALAR_INT_MODE_P (mode) && optimize >= 2 && get_range_pos_neg (treeop0) == 1 && get_range_pos_neg (treeop1) == 1) { /* If both arguments are known to be positive when interpreted as signed, we can expand it as both signed and unsigned division or modulo. Choose the cheaper sequence in that case. */ bool speed_p = optimize_insn_for_speed_p (); do_pending_stack_adjust (); start_sequence (); rtx uns_ret = expand_divmod (mod_p, code, mode, op0, op1, target, 1); rtx_insn *uns_insns = get_insns (); end_sequence (); start_sequence (); rtx sgn_ret = expand_divmod (mod_p, code, mode, op0, op1, target, 0); rtx_insn *sgn_insns = get_insns (); end_sequence (); unsigned uns_cost = seq_cost (uns_insns, speed_p); unsigned sgn_cost = seq_cost (sgn_insns, speed_p); /* If costs are the same then use as tie breaker the other other factor. */ if (uns_cost == sgn_cost) { uns_cost = seq_cost (uns_insns, !speed_p); sgn_cost = seq_cost (sgn_insns, !speed_p); } if (uns_cost < sgn_cost || (uns_cost == sgn_cost && unsignedp)) { emit_insn (uns_insns); return uns_ret; } emit_insn (sgn_insns); return sgn_ret; } return expand_divmod (mod_p, code, mode, op0, op1, target, unsignedp); } case RDIV_EXPR: goto binop; case MULT_HIGHPART_EXPR: expand_operands (treeop0, treeop1, subtarget, &op0, &op1, EXPAND_NORMAL); temp = expand_mult_highpart (mode, op0, op1, target, unsignedp); gcc_assert (temp); return temp; case FIXED_CONVERT_EXPR: op0 = expand_normal (treeop0); if (target == 0 || modifier == EXPAND_STACK_PARM) target = gen_reg_rtx (mode); if ((TREE_CODE (TREE_TYPE (treeop0)) == INTEGER_TYPE && TYPE_UNSIGNED (TREE_TYPE (treeop0))) || (TREE_CODE (type) == INTEGER_TYPE && TYPE_UNSIGNED (type))) expand_fixed_convert (target, op0, 1, TYPE_SATURATING (type)); else expand_fixed_convert (target, op0, 0, TYPE_SATURATING (type)); return target; case FIX_TRUNC_EXPR: op0 = expand_normal (treeop0); if (target == 0 || modifier == EXPAND_STACK_PARM) target = gen_reg_rtx (mode); expand_fix (target, op0, unsignedp); return target; case FLOAT_EXPR: op0 = expand_normal (treeop0); if (target == 0 || modifier == EXPAND_STACK_PARM) target = gen_reg_rtx (mode); /* expand_float can't figure out what to do if FROM has VOIDmode. So give it the correct mode. With -O, cse will optimize this. */ if (GET_MODE (op0) == VOIDmode) op0 = copy_to_mode_reg (TYPE_MODE (TREE_TYPE (treeop0)), op0); expand_float (target, op0, TYPE_UNSIGNED (TREE_TYPE (treeop0))); return target; case NEGATE_EXPR: op0 = expand_expr (treeop0, subtarget, VOIDmode, EXPAND_NORMAL); if (modifier == EXPAND_STACK_PARM) target = 0; temp = expand_unop (mode, optab_for_tree_code (NEGATE_EXPR, type, optab_default), op0, target, 0); gcc_assert (temp); return REDUCE_BIT_FIELD (temp); case ABS_EXPR: op0 = expand_expr (treeop0, subtarget, VOIDmode, EXPAND_NORMAL); if (modifier == EXPAND_STACK_PARM) target = 0; /* ABS_EXPR is not valid for complex arguments. */ gcc_assert (GET_MODE_CLASS (mode) != MODE_COMPLEX_INT && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT); /* Unsigned abs is simply the operand. Testing here means we don't risk generating incorrect code below. */ if (TYPE_UNSIGNED (type)) return op0; return expand_abs (mode, op0, target, unsignedp, safe_from_p (target, treeop0, 1)); case MAX_EXPR: case MIN_EXPR: target = original_target; if (target == 0 || modifier == EXPAND_STACK_PARM || (MEM_P (target) && MEM_VOLATILE_P (target)) || GET_MODE (target) != mode || (REG_P (target) && REGNO (target) < FIRST_PSEUDO_REGISTER)) target = gen_reg_rtx (mode); expand_operands (treeop0, treeop1, target, &op0, &op1, EXPAND_NORMAL); /* First try to do it with a special MIN or MAX instruction. If that does not win, use a conditional jump to select the proper value. */ this_optab = optab_for_tree_code (code, type, optab_default); temp = expand_binop (mode, this_optab, op0, op1, target, unsignedp, OPTAB_WIDEN); if (temp != 0) return temp; /* For vector MIN , expand it a VEC_COND_EXPR and similarly for MAX . */ if (VECTOR_TYPE_P (type)) { tree t0 = make_tree (type, op0); tree t1 = make_tree (type, op1); tree comparison = build2 (code == MIN_EXPR ? LE_EXPR : GE_EXPR, type, t0, t1); return expand_vec_cond_expr (type, comparison, t0, t1, original_target); } /* At this point, a MEM target is no longer useful; we will get better code without it. */ if (! REG_P (target)) target = gen_reg_rtx (mode); /* If op1 was placed in target, swap op0 and op1. */ if (target != op0 && target == op1) std::swap (op0, op1); /* We generate better code and avoid problems with op1 mentioning target by forcing op1 into a pseudo if it isn't a constant. */ if (! CONSTANT_P (op1)) op1 = force_reg (mode, op1); { enum rtx_code comparison_code; rtx cmpop1 = op1; if (code == MAX_EXPR) comparison_code = unsignedp ? GEU : GE; else comparison_code = unsignedp ? LEU : LE; /* Canonicalize to comparisons against 0. */ if (op1 == const1_rtx) { /* Converting (a >= 1 ? a : 1) into (a > 0 ? a : 1) or (a != 0 ? a : 1) for unsigned. For MIN we are safe converting (a <= 1 ? a : 1) into (a <= 0 ? a : 1) */ cmpop1 = const0_rtx; if (code == MAX_EXPR) comparison_code = unsignedp ? NE : GT; } if (op1 == constm1_rtx && !unsignedp) { /* Converting (a >= -1 ? a : -1) into (a >= 0 ? a : -1) and (a <= -1 ? a : -1) into (a < 0 ? a : -1) */ cmpop1 = const0_rtx; if (code == MIN_EXPR) comparison_code = LT; } /* Use a conditional move if possible. */ if (can_conditionally_move_p (mode)) { rtx insn; start_sequence (); /* Try to emit the conditional move. */ insn = emit_conditional_move (target, comparison_code, op0, cmpop1, mode, op0, op1, mode, unsignedp); /* If we could do the conditional move, emit the sequence, and return. */ if (insn) { rtx_insn *seq = get_insns (); end_sequence (); emit_insn (seq); return target; } /* Otherwise discard the sequence and fall back to code with branches. */ end_sequence (); } if (target != op0) emit_move_insn (target, op0); lab = gen_label_rtx (); do_compare_rtx_and_jump (target, cmpop1, comparison_code, unsignedp, mode, NULL_RTX, NULL, lab, profile_probability::uninitialized ()); } emit_move_insn (target, op1); emit_label (lab); return target; case BIT_NOT_EXPR: op0 = expand_expr (treeop0, subtarget, VOIDmode, EXPAND_NORMAL); if (modifier == EXPAND_STACK_PARM) target = 0; /* In case we have to reduce the result to bitfield precision for unsigned bitfield expand this as XOR with a proper constant instead. */ if (reduce_bit_field && TYPE_UNSIGNED (type)) { int_mode = SCALAR_INT_TYPE_MODE (type); wide_int mask = wi::mask (TYPE_PRECISION (type), false, GET_MODE_PRECISION (int_mode)); temp = expand_binop (int_mode, xor_optab, op0, immed_wide_int_const (mask, int_mode), target, 1, OPTAB_LIB_WIDEN); } else temp = expand_unop (mode, one_cmpl_optab, op0, target, 1); gcc_assert (temp); return temp; /* ??? Can optimize bitwise operations with one arg constant. Can optimize (a bitwise1 n) bitwise2 (a bitwise3 b) and (a bitwise1 b) bitwise2 b (etc) but that is probably not worth while. */ case BIT_AND_EXPR: case BIT_IOR_EXPR: case BIT_XOR_EXPR: goto binop; case LROTATE_EXPR: case RROTATE_EXPR: gcc_assert (VECTOR_MODE_P (TYPE_MODE (type)) || type_has_mode_precision_p (type)); /* fall through */ case LSHIFT_EXPR: case RSHIFT_EXPR: { /* If this is a fixed-point operation, then we cannot use the code below because "expand_shift" doesn't support sat/no-sat fixed-point shifts. */ if (ALL_FIXED_POINT_MODE_P (mode)) goto binop; if (! safe_from_p (subtarget, treeop1, 1)) subtarget = 0; if (modifier == EXPAND_STACK_PARM) target = 0; op0 = expand_expr (treeop0, subtarget, VOIDmode, EXPAND_NORMAL); /* Left shift optimization when shifting across word_size boundary. If mode == GET_MODE_WIDER_MODE (word_mode), then normally there isn't native instruction to support this wide mode left shift. Given below scenario: Type A = (Type) B << C |< T >| | dest_high | dest_low | | word_size | If the shift amount C caused we shift B to across the word size boundary, i.e part of B shifted into high half of destination register, and part of B remains in the low half, then GCC will use the following left shift expand logic: 1. Initialize dest_low to B. 2. Initialize every bit of dest_high to the sign bit of B. 3. Logic left shift dest_low by C bit to finalize dest_low. The value of dest_low before this shift is kept in a temp D. 4. Logic left shift dest_high by C. 5. Logic right shift D by (word_size - C). 6. Or the result of 4 and 5 to finalize dest_high. While, by checking gimple statements, if operand B is coming from signed extension, then we can simplify above expand logic into: 1. dest_high = src_low >> (word_size - C). 2. dest_low = src_low << C. We can use one arithmetic right shift to finish all the purpose of steps 2, 4, 5, 6, thus we reduce the steps needed from 6 into 2. The case is similar for zero extension, except that we initialize dest_high to zero rather than copies of the sign bit from B. Furthermore, we need to use a logical right shift in this case. The choice of sign-extension versus zero-extension is determined entirely by whether or not B is signed and is independent of the current setting of unsignedp. */ temp = NULL_RTX; if (code == LSHIFT_EXPR && target && REG_P (target) && GET_MODE_2XWIDER_MODE (word_mode).exists (&int_mode) && mode == int_mode && TREE_CONSTANT (treeop1) && TREE_CODE (treeop0) == SSA_NAME) { gimple *def = SSA_NAME_DEF_STMT (treeop0); if (is_gimple_assign (def) && gimple_assign_rhs_code (def) == NOP_EXPR) { scalar_int_mode rmode = SCALAR_INT_TYPE_MODE (TREE_TYPE (gimple_assign_rhs1 (def))); if (GET_MODE_SIZE (rmode) < GET_MODE_SIZE (int_mode) && TREE_INT_CST_LOW (treeop1) < GET_MODE_BITSIZE (word_mode) && ((TREE_INT_CST_LOW (treeop1) + GET_MODE_BITSIZE (rmode)) >= GET_MODE_BITSIZE (word_mode))) { rtx_insn *seq, *seq_old; poly_uint64 high_off = subreg_highpart_offset (word_mode, int_mode); bool extend_unsigned = TYPE_UNSIGNED (TREE_TYPE (gimple_assign_rhs1 (def))); rtx low = lowpart_subreg (word_mode, op0, int_mode); rtx dest_low = lowpart_subreg (word_mode, target, int_mode); rtx dest_high = simplify_gen_subreg (word_mode, target, int_mode, high_off); HOST_WIDE_INT ramount = (BITS_PER_WORD - TREE_INT_CST_LOW (treeop1)); tree rshift = build_int_cst (TREE_TYPE (treeop1), ramount); start_sequence (); /* dest_high = src_low >> (word_size - C). */ temp = expand_variable_shift (RSHIFT_EXPR, word_mode, low, rshift, dest_high, extend_unsigned); if (temp != dest_high) emit_move_insn (dest_high, temp); /* dest_low = src_low << C. */ temp = expand_variable_shift (LSHIFT_EXPR, word_mode, low, treeop1, dest_low, unsignedp); if (temp != dest_low) emit_move_insn (dest_low, temp); seq = get_insns (); end_sequence (); temp = target ; if (have_insn_for (ASHIFT, int_mode)) { bool speed_p = optimize_insn_for_speed_p (); start_sequence (); rtx ret_old = expand_variable_shift (code, int_mode, op0, treeop1, target, unsignedp); seq_old = get_insns (); end_sequence (); if (seq_cost (seq, speed_p) >= seq_cost (seq_old, speed_p)) { seq = seq_old; temp = ret_old; } } emit_insn (seq); } } } if (temp == NULL_RTX) temp = expand_variable_shift (code, mode, op0, treeop1, target, unsignedp); if (code == LSHIFT_EXPR) temp = REDUCE_BIT_FIELD (temp); return temp; } /* Could determine the answer when only additive constants differ. Also, the addition of one can be handled by changing the condition. */ case LT_EXPR: case LE_EXPR: case GT_EXPR: case GE_EXPR: case EQ_EXPR: case NE_EXPR: case UNORDERED_EXPR: case ORDERED_EXPR: case UNLT_EXPR: case UNLE_EXPR: case UNGT_EXPR: case UNGE_EXPR: case UNEQ_EXPR: case LTGT_EXPR: { temp = do_store_flag (ops, modifier != EXPAND_STACK_PARM ? target : NULL_RTX, tmode != VOIDmode ? tmode : mode); if (temp) return temp; /* Use a compare and a jump for BLKmode comparisons, or for function type comparisons is have_canonicalize_funcptr_for_compare. */ if ((target == 0 || modifier == EXPAND_STACK_PARM || ! safe_from_p (target, treeop0, 1) || ! safe_from_p (target, treeop1, 1) /* Make sure we don't have a hard reg (such as function's return value) live across basic blocks, if not optimizing. */ || (!optimize && REG_P (target) && REGNO (target) < FIRST_PSEUDO_REGISTER))) target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode); emit_move_insn (target, const0_rtx); rtx_code_label *lab1 = gen_label_rtx (); jumpifnot_1 (code, treeop0, treeop1, lab1, profile_probability::uninitialized ()); if (TYPE_PRECISION (type) == 1 && !TYPE_UNSIGNED (type)) emit_move_insn (target, constm1_rtx); else emit_move_insn (target, const1_rtx); emit_label (lab1); return target; } case COMPLEX_EXPR: /* Get the rtx code of the operands. */ op0 = expand_normal (treeop0); op1 = expand_normal (treeop1); if (!target) target = gen_reg_rtx (TYPE_MODE (type)); else /* If target overlaps with op1, then either we need to force op1 into a pseudo (if target also overlaps with op0), or write the complex parts in reverse order. */ switch (GET_CODE (target)) { case CONCAT: if (reg_overlap_mentioned_p (XEXP (target, 0), op1)) { if (reg_overlap_mentioned_p (XEXP (target, 1), op0)) { complex_expr_force_op1: temp = gen_reg_rtx (GET_MODE_INNER (GET_MODE (target))); emit_move_insn (temp, op1); op1 = temp; break; } complex_expr_swap_order: /* Move the imaginary (op1) and real (op0) parts to their location. */ write_complex_part (target, op1, true); write_complex_part (target, op0, false); return target; } break; case MEM: temp = adjust_address_nv (target, GET_MODE_INNER (GET_MODE (target)), 0); if (reg_overlap_mentioned_p (temp, op1)) { scalar_mode imode = GET_MODE_INNER (GET_MODE (target)); temp = adjust_address_nv (target, imode, GET_MODE_SIZE (imode)); if (reg_overlap_mentioned_p (temp, op0)) goto complex_expr_force_op1; goto complex_expr_swap_order; } break; default: if (reg_overlap_mentioned_p (target, op1)) { if (reg_overlap_mentioned_p (target, op0)) goto complex_expr_force_op1; goto complex_expr_swap_order; } break; } /* Move the real (op0) and imaginary (op1) parts to their location. */ write_complex_part (target, op0, false); write_complex_part (target, op1, true); return target; case WIDEN_SUM_EXPR: { tree oprnd0 = treeop0; tree oprnd1 = treeop1; expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL); target = expand_widen_pattern_expr (ops, op0, NULL_RTX, op1, target, unsignedp); return target; } case VEC_UNPACK_HI_EXPR: case VEC_UNPACK_LO_EXPR: { op0 = expand_normal (treeop0); temp = expand_widen_pattern_expr (ops, op0, NULL_RTX, NULL_RTX, target, unsignedp); gcc_assert (temp); return temp; } case VEC_UNPACK_FLOAT_HI_EXPR: case VEC_UNPACK_FLOAT_LO_EXPR: { op0 = expand_normal (treeop0); /* The signedness is determined from input operand. */ temp = expand_widen_pattern_expr (ops, op0, NULL_RTX, NULL_RTX, target, TYPE_UNSIGNED (TREE_TYPE (treeop0))); gcc_assert (temp); return temp; } case VEC_WIDEN_MULT_HI_EXPR: case VEC_WIDEN_MULT_LO_EXPR: case VEC_WIDEN_MULT_EVEN_EXPR: case VEC_WIDEN_MULT_ODD_EXPR: case VEC_WIDEN_LSHIFT_HI_EXPR: case VEC_WIDEN_LSHIFT_LO_EXPR: expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1, EXPAND_NORMAL); target = expand_widen_pattern_expr (ops, op0, op1, NULL_RTX, target, unsignedp); gcc_assert (target); return target; case VEC_PACK_TRUNC_EXPR: case VEC_PACK_SAT_EXPR: case VEC_PACK_FIX_TRUNC_EXPR: mode = TYPE_MODE (TREE_TYPE (treeop0)); goto binop; case VEC_PERM_EXPR: { expand_operands (treeop0, treeop1, target, &op0, &op1, EXPAND_NORMAL); vec_perm_builder sel; if (TREE_CODE (treeop2) == VECTOR_CST && tree_to_vec_perm_builder (&sel, treeop2)) { machine_mode sel_mode = TYPE_MODE (TREE_TYPE (treeop2)); temp = expand_vec_perm_const (mode, op0, op1, sel, sel_mode, target); } else { op2 = expand_normal (treeop2); temp = expand_vec_perm_var (mode, op0, op1, op2, target); } gcc_assert (temp); return temp; } case DOT_PROD_EXPR: { tree oprnd0 = treeop0; tree oprnd1 = treeop1; tree oprnd2 = treeop2; rtx op2; expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL); op2 = expand_normal (oprnd2); target = expand_widen_pattern_expr (ops, op0, op1, op2, target, unsignedp); return target; } case SAD_EXPR: { tree oprnd0 = treeop0; tree oprnd1 = treeop1; tree oprnd2 = treeop2; rtx op2; expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL); op2 = expand_normal (oprnd2); target = expand_widen_pattern_expr (ops, op0, op1, op2, target, unsignedp); return target; } case REALIGN_LOAD_EXPR: { tree oprnd0 = treeop0; tree oprnd1 = treeop1; tree oprnd2 = treeop2; rtx op2; this_optab = optab_for_tree_code (code, type, optab_default); expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL); op2 = expand_normal (oprnd2); temp = expand_ternary_op (mode, this_optab, op0, op1, op2, target, unsignedp); gcc_assert (temp); return temp; } case COND_EXPR: { /* A COND_EXPR with its type being VOID_TYPE represents a conditional jump and is handled in expand_gimple_cond_expr. */ gcc_assert (!VOID_TYPE_P (type)); /* Note that COND_EXPRs whose type is a structure or union are required to be constructed to contain assignments of a temporary variable, so that we can evaluate them here for side effect only. If type is void, we must do likewise. */ gcc_assert (!TREE_ADDRESSABLE (type) && !ignore && TREE_TYPE (treeop1) != void_type_node && TREE_TYPE (treeop2) != void_type_node); temp = expand_cond_expr_using_cmove (treeop0, treeop1, treeop2); if (temp) return temp; /* If we are not to produce a result, we have no target. Otherwise, if a target was specified use it; it will not be used as an intermediate target unless it is safe. If no target, use a temporary. */ if (modifier != EXPAND_STACK_PARM && original_target && safe_from_p (original_target, treeop0, 1) && GET_MODE (original_target) == mode && !MEM_P (original_target)) temp = original_target; else temp = assign_temp (type, 0, 1); do_pending_stack_adjust (); NO_DEFER_POP; rtx_code_label *lab0 = gen_label_rtx (); rtx_code_label *lab1 = gen_label_rtx (); jumpifnot (treeop0, lab0, profile_probability::uninitialized ()); store_expr (treeop1, temp, modifier == EXPAND_STACK_PARM, false, false); emit_jump_insn (targetm.gen_jump (lab1)); emit_barrier (); emit_label (lab0); store_expr (treeop2, temp, modifier == EXPAND_STACK_PARM, false, false); emit_label (lab1); OK_DEFER_POP; return temp; } case VEC_COND_EXPR: target = expand_vec_cond_expr (type, treeop0, treeop1, treeop2, target); return target; case VEC_DUPLICATE_EXPR: op0 = expand_expr (treeop0, NULL_RTX, VOIDmode, modifier); target = expand_vector_broadcast (mode, op0); gcc_assert (target); return target; case VEC_SERIES_EXPR: expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1, modifier); return expand_vec_series_expr (mode, op0, op1, target); case BIT_INSERT_EXPR: { unsigned bitpos = tree_to_uhwi (treeop2); unsigned bitsize; if (INTEGRAL_TYPE_P (TREE_TYPE (treeop1))) bitsize = TYPE_PRECISION (TREE_TYPE (treeop1)); else bitsize = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (treeop1))); rtx op0 = expand_normal (treeop0); rtx op1 = expand_normal (treeop1); rtx dst = gen_reg_rtx (mode); emit_move_insn (dst, op0); store_bit_field (dst, bitsize, bitpos, 0, 0, TYPE_MODE (TREE_TYPE (treeop1)), op1, false); return dst; } default: gcc_unreachable (); } /* Here to do an ordinary binary operator. */ binop: expand_operands (treeop0, treeop1, subtarget, &op0, &op1, EXPAND_NORMAL); binop2: this_optab = optab_for_tree_code (code, type, optab_default); binop3: if (modifier == EXPAND_STACK_PARM) target = 0; temp = expand_binop (mode, this_optab, op0, op1, target, unsignedp, OPTAB_LIB_WIDEN); gcc_assert (temp); /* Bitwise operations do not need bitfield reduction as we expect their operands being properly truncated. */ if (code == BIT_XOR_EXPR || code == BIT_AND_EXPR || code == BIT_IOR_EXPR) return temp; return REDUCE_BIT_FIELD (temp); } #undef REDUCE_BIT_FIELD /* Return TRUE if expression STMT is suitable for replacement. Never consider memory loads as replaceable, because those don't ever lead into constant expressions. */ static bool stmt_is_replaceable_p (gimple *stmt) { if (ssa_is_replaceable_p (stmt)) { /* Don't move around loads. */ if (!gimple_assign_single_p (stmt) || is_gimple_val (gimple_assign_rhs1 (stmt))) return true; } return false; } rtx expand_expr_real_1 (tree exp, rtx target, machine_mode tmode, enum expand_modifier modifier, rtx *alt_rtl, bool inner_reference_p) { rtx op0, op1, temp, decl_rtl; tree type; int unsignedp; machine_mode mode, dmode; enum tree_code code = TREE_CODE (exp); rtx subtarget, original_target; int ignore; tree context; bool reduce_bit_field; location_t loc = EXPR_LOCATION (exp); struct separate_ops ops; tree treeop0, treeop1, treeop2; tree ssa_name = NULL_TREE; gimple *g; type = TREE_TYPE (exp); mode = TYPE_MODE (type); unsignedp = TYPE_UNSIGNED (type); treeop0 = treeop1 = treeop2 = NULL_TREE; if (!VL_EXP_CLASS_P (exp)) switch (TREE_CODE_LENGTH (code)) { default: case 3: treeop2 = TREE_OPERAND (exp, 2); /* FALLTHRU */ case 2: treeop1 = TREE_OPERAND (exp, 1); /* FALLTHRU */ case 1: treeop0 = TREE_OPERAND (exp, 0); /* FALLTHRU */ case 0: break; } ops.code = code; ops.type = type; ops.op0 = treeop0; ops.op1 = treeop1; ops.op2 = treeop2; ops.location = loc; ignore = (target == const0_rtx || ((CONVERT_EXPR_CODE_P (code) || code == COND_EXPR || code == VIEW_CONVERT_EXPR) && TREE_CODE (type) == VOID_TYPE)); /* An operation in what may be a bit-field type needs the result to be reduced to the precision of the bit-field type, which is narrower than that of the type's mode. */ reduce_bit_field = (!ignore && INTEGRAL_TYPE_P (type) && !type_has_mode_precision_p (type)); /* If we are going to ignore this result, we need only do something if there is a side-effect somewhere in the expression. If there is, short-circuit the most common cases here. Note that we must not call expand_expr with anything but const0_rtx in case this is an initial expansion of a size that contains a PLACEHOLDER_EXPR. */ if (ignore) { if (! TREE_SIDE_EFFECTS (exp)) return const0_rtx; /* Ensure we reference a volatile object even if value is ignored, but don't do this if all we are doing is taking its address. */ if (TREE_THIS_VOLATILE (exp) && TREE_CODE (exp) != FUNCTION_DECL && mode != VOIDmode && mode != BLKmode && modifier != EXPAND_CONST_ADDRESS) { temp = expand_expr (exp, NULL_RTX, VOIDmode, modifier); if (MEM_P (temp)) copy_to_reg (temp); return const0_rtx; } if (TREE_CODE_CLASS (code) == tcc_unary || code == BIT_FIELD_REF || code == COMPONENT_REF || code == INDIRECT_REF) return expand_expr (treeop0, const0_rtx, VOIDmode, modifier); else if (TREE_CODE_CLASS (code) == tcc_binary || TREE_CODE_CLASS (code) == tcc_comparison || code == ARRAY_REF || code == ARRAY_RANGE_REF) { expand_expr (treeop0, const0_rtx, VOIDmode, modifier); expand_expr (treeop1, const0_rtx, VOIDmode, modifier); return const0_rtx; } target = 0; } if (reduce_bit_field && modifier == EXPAND_STACK_PARM) target = 0; /* Use subtarget as the target for operand 0 of a binary operation. */ subtarget = get_subtarget (target); original_target = target; switch (code) { case LABEL_DECL: { tree function = decl_function_context (exp); temp = label_rtx (exp); temp = gen_rtx_LABEL_REF (Pmode, temp); if (function != current_function_decl && function != 0) LABEL_REF_NONLOCAL_P (temp) = 1; temp = gen_rtx_MEM (FUNCTION_MODE, temp); return temp; } case SSA_NAME: /* ??? ivopts calls expander, without any preparation from out-of-ssa. So fake instructions as if this was an access to the base variable. This unnecessarily allocates a pseudo, see how we can reuse it, if partition base vars have it set already. */ if (!currently_expanding_to_rtl) { tree var = SSA_NAME_VAR (exp); if (var && DECL_RTL_SET_P (var)) return DECL_RTL (var); return gen_raw_REG (TYPE_MODE (TREE_TYPE (exp)), LAST_VIRTUAL_REGISTER + 1); } g = get_gimple_for_ssa_name (exp); /* For EXPAND_INITIALIZER try harder to get something simpler. */ if (g == NULL && modifier == EXPAND_INITIALIZER && !SSA_NAME_IS_DEFAULT_DEF (exp) && (optimize || !SSA_NAME_VAR (exp) || DECL_IGNORED_P (SSA_NAME_VAR (exp))) && stmt_is_replaceable_p (SSA_NAME_DEF_STMT (exp))) g = SSA_NAME_DEF_STMT (exp); if (g) { rtx r; location_t saved_loc = curr_insn_location (); location_t loc = gimple_location (g); if (loc != UNKNOWN_LOCATION) set_curr_insn_location (loc); ops.code = gimple_assign_rhs_code (g); switch (get_gimple_rhs_class (ops.code)) { case GIMPLE_TERNARY_RHS: ops.op2 = gimple_assign_rhs3 (g); /* Fallthru */ case GIMPLE_BINARY_RHS: ops.op1 = gimple_assign_rhs2 (g); /* Try to expand conditonal compare. */ if (targetm.gen_ccmp_first) { gcc_checking_assert (targetm.gen_ccmp_next != NULL); r = expand_ccmp_expr (g, mode); if (r) break; } /* Fallthru */ case GIMPLE_UNARY_RHS: ops.op0 = gimple_assign_rhs1 (g); ops.type = TREE_TYPE (gimple_assign_lhs (g)); ops.location = loc; r = expand_expr_real_2 (&ops, target, tmode, modifier); break; case GIMPLE_SINGLE_RHS: { r = expand_expr_real (gimple_assign_rhs1 (g), target, tmode, modifier, alt_rtl, inner_reference_p); break; } default: gcc_unreachable (); } set_curr_insn_location (saved_loc); if (REG_P (r) && !REG_EXPR (r)) set_reg_attrs_for_decl_rtl (SSA_NAME_VAR (exp), r); return r; } ssa_name = exp; decl_rtl = get_rtx_for_ssa_name (ssa_name); exp = SSA_NAME_VAR (ssa_name); goto expand_decl_rtl; case PARM_DECL: case VAR_DECL: /* If a static var's type was incomplete when the decl was written, but the type is complete now, lay out the decl now. */ if (DECL_SIZE (exp) == 0 && COMPLETE_OR_UNBOUND_ARRAY_TYPE_P (TREE_TYPE (exp)) && (TREE_STATIC (exp) || DECL_EXTERNAL (exp))) layout_decl (exp, 0); /* fall through */ case FUNCTION_DECL: case RESULT_DECL: decl_rtl = DECL_RTL (exp); expand_decl_rtl: gcc_assert (decl_rtl); /* DECL_MODE might change when TYPE_MODE depends on attribute target settings for VECTOR_TYPE_P that might switch for the function. */ if (currently_expanding_to_rtl && code == VAR_DECL && MEM_P (decl_rtl) && VECTOR_TYPE_P (type) && exp && DECL_MODE (exp) != mode) decl_rtl = change_address (decl_rtl, TYPE_MODE (type), 0); else decl_rtl = copy_rtx (decl_rtl); /* Record writes to register variables. */ if (modifier == EXPAND_WRITE && REG_P (decl_rtl) && HARD_REGISTER_P (decl_rtl)) add_to_hard_reg_set (&crtl->asm_clobbers, GET_MODE (decl_rtl), REGNO (decl_rtl)); /* Ensure variable marked as used even if it doesn't go through a parser. If it hasn't be used yet, write out an external definition. */ if (exp) TREE_USED (exp) = 1; /* Show we haven't gotten RTL for this yet. */ temp = 0; /* Variables inherited from containing functions should have been lowered by this point. */ if (exp) context = decl_function_context (exp); gcc_assert (!exp || SCOPE_FILE_SCOPE_P (context) || context == current_function_decl || TREE_STATIC (exp) || DECL_EXTERNAL (exp) /* ??? C++ creates functions that are not TREE_STATIC. */ || TREE_CODE (exp) == FUNCTION_DECL); /* This is the case of an array whose size is to be determined from its initializer, while the initializer is still being parsed. ??? We aren't parsing while expanding anymore. */ if (MEM_P (decl_rtl) && REG_P (XEXP (decl_rtl, 0))) temp = validize_mem (decl_rtl); /* If DECL_RTL is memory, we are in the normal case and the address is not valid, get the address into a register. */ else if (MEM_P (decl_rtl) && modifier != EXPAND_INITIALIZER) { if (alt_rtl) *alt_rtl = decl_rtl; decl_rtl = use_anchored_address (decl_rtl); if (modifier != EXPAND_CONST_ADDRESS && modifier != EXPAND_SUM && !memory_address_addr_space_p (exp ? DECL_MODE (exp) : GET_MODE (decl_rtl), XEXP (decl_rtl, 0), MEM_ADDR_SPACE (decl_rtl))) temp = replace_equiv_address (decl_rtl, copy_rtx (XEXP (decl_rtl, 0))); } /* If we got something, return it. But first, set the alignment if the address is a register. */ if (temp != 0) { if (exp && MEM_P (temp) && REG_P (XEXP (temp, 0))) mark_reg_pointer (XEXP (temp, 0), DECL_ALIGN (exp)); return temp; } if (exp) dmode = DECL_MODE (exp); else dmode = TYPE_MODE (TREE_TYPE (ssa_name)); /* If the mode of DECL_RTL does not match that of the decl, there are two cases: we are dealing with a BLKmode value that is returned in a register, or we are dealing with a promoted value. In the latter case, return a SUBREG of the wanted mode, but mark it so that we know that it was already extended. */ if (REG_P (decl_rtl) && dmode != BLKmode && GET_MODE (decl_rtl) != dmode) { machine_mode pmode; /* Get the signedness to be used for this variable. Ensure we get the same mode we got when the variable was declared. */ if (code != SSA_NAME) pmode = promote_decl_mode (exp, &unsignedp); else if ((g = SSA_NAME_DEF_STMT (ssa_name)) && gimple_code (g) == GIMPLE_CALL && !gimple_call_internal_p (g)) pmode = promote_function_mode (type, mode, &unsignedp, gimple_call_fntype (g), 2); else pmode = promote_ssa_mode (ssa_name, &unsignedp); gcc_assert (GET_MODE (decl_rtl) == pmode); temp = gen_lowpart_SUBREG (mode, decl_rtl); SUBREG_PROMOTED_VAR_P (temp) = 1; SUBREG_PROMOTED_SET (temp, unsignedp); return temp; } return decl_rtl; case INTEGER_CST: { /* Given that TYPE_PRECISION (type) is not always equal to GET_MODE_PRECISION (TYPE_MODE (type)), we need to extend from the former to the latter according to the signedness of the type. */ scalar_int_mode mode = SCALAR_INT_TYPE_MODE (type); temp = immed_wide_int_const (wi::to_wide (exp, GET_MODE_PRECISION (mode)), mode); return temp; } case VECTOR_CST: { tree tmp = NULL_TREE; if (VECTOR_MODE_P (mode)) return const_vector_from_tree (exp); scalar_int_mode int_mode; if (is_int_mode (mode, &int_mode)) { if (VECTOR_BOOLEAN_TYPE_P (TREE_TYPE (exp))) return const_scalar_mask_from_tree (int_mode, exp); else { tree type_for_mode = lang_hooks.types.type_for_mode (int_mode, 1); if (type_for_mode) tmp = fold_unary_loc (loc, VIEW_CONVERT_EXPR, type_for_mode, exp); } } if (!tmp) { vec *v; /* Constructors need to be fixed-length. FIXME. */ unsigned int nunits = VECTOR_CST_NELTS (exp).to_constant (); vec_alloc (v, nunits); for (unsigned int i = 0; i < nunits; ++i) CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, VECTOR_CST_ELT (exp, i)); tmp = build_constructor (type, v); } return expand_expr (tmp, ignore ? const0_rtx : target, tmode, modifier); } case CONST_DECL: if (modifier == EXPAND_WRITE) { /* Writing into CONST_DECL is always invalid, but handle it gracefully. */ addr_space_t as = TYPE_ADDR_SPACE (TREE_TYPE (exp)); scalar_int_mode address_mode = targetm.addr_space.address_mode (as); op0 = expand_expr_addr_expr_1 (exp, NULL_RTX, address_mode, EXPAND_NORMAL, as); op0 = memory_address_addr_space (mode, op0, as); temp = gen_rtx_MEM (mode, op0); set_mem_addr_space (temp, as); return temp; } return expand_expr (DECL_INITIAL (exp), target, VOIDmode, modifier); case REAL_CST: /* If optimized, generate immediate CONST_DOUBLE which will be turned into memory by reload if necessary. We used to force a register so that loop.c could see it. But this does not allow gen_* patterns to perform optimizations with the constants. It also produces two insns in cases like "x = 1.0;". On most machines, floating-point constants are not permitted in many insns, so we'd end up copying it to a register in any case. Now, we do the copying in expand_binop, if appropriate. */ return const_double_from_real_value (TREE_REAL_CST (exp), TYPE_MODE (TREE_TYPE (exp))); case FIXED_CST: return CONST_FIXED_FROM_FIXED_VALUE (TREE_FIXED_CST (exp), TYPE_MODE (TREE_TYPE (exp))); case COMPLEX_CST: /* Handle evaluating a complex constant in a CONCAT target. */ if (original_target && GET_CODE (original_target) == CONCAT) { machine_mode mode = TYPE_MODE (TREE_TYPE (TREE_TYPE (exp))); rtx rtarg, itarg; rtarg = XEXP (original_target, 0); itarg = XEXP (original_target, 1); /* Move the real and imaginary parts separately. */ op0 = expand_expr (TREE_REALPART (exp), rtarg, mode, EXPAND_NORMAL); op1 = expand_expr (TREE_IMAGPART (exp), itarg, mode, EXPAND_NORMAL); if (op0 != rtarg) emit_move_insn (rtarg, op0); if (op1 != itarg) emit_move_insn (itarg, op1); return original_target; } /* fall through */ case STRING_CST: temp = expand_expr_constant (exp, 1, modifier); /* temp contains a constant address. On RISC machines where a constant address isn't valid, make some insns to get that address into a register. */ if (modifier != EXPAND_CONST_ADDRESS && modifier != EXPAND_INITIALIZER && modifier != EXPAND_SUM && ! memory_address_addr_space_p (mode, XEXP (temp, 0), MEM_ADDR_SPACE (temp))) return replace_equiv_address (temp, copy_rtx (XEXP (temp, 0))); return temp; case POLY_INT_CST: return immed_wide_int_const (poly_int_cst_value (exp), mode); case SAVE_EXPR: { tree val = treeop0; rtx ret = expand_expr_real_1 (val, target, tmode, modifier, alt_rtl, inner_reference_p); if (!SAVE_EXPR_RESOLVED_P (exp)) { /* We can indeed still hit this case, typically via builtin expanders calling save_expr immediately before expanding something. Assume this means that we only have to deal with non-BLKmode values. */ gcc_assert (GET_MODE (ret) != BLKmode); val = build_decl (curr_insn_location (), VAR_DECL, NULL, TREE_TYPE (exp)); DECL_ARTIFICIAL (val) = 1; DECL_IGNORED_P (val) = 1; treeop0 = val; TREE_OPERAND (exp, 0) = treeop0; SAVE_EXPR_RESOLVED_P (exp) = 1; if (!CONSTANT_P (ret)) ret = copy_to_reg (ret); SET_DECL_RTL (val, ret); } return ret; } case CONSTRUCTOR: /* If we don't need the result, just ensure we evaluate any subexpressions. */ if (ignore) { unsigned HOST_WIDE_INT idx; tree value; FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), idx, value) expand_expr (value, const0_rtx, VOIDmode, EXPAND_NORMAL); return const0_rtx; } return expand_constructor (exp, target, modifier, false); case TARGET_MEM_REF: { addr_space_t as = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0)))); enum insn_code icode; unsigned int align; op0 = addr_for_mem_ref (exp, as, true); op0 = memory_address_addr_space (mode, op0, as); temp = gen_rtx_MEM (mode, op0); set_mem_attributes (temp, exp, 0); set_mem_addr_space (temp, as); align = get_object_alignment (exp); if (modifier != EXPAND_WRITE && modifier != EXPAND_MEMORY && mode != BLKmode && align < GET_MODE_ALIGNMENT (mode) /* If the target does not have special handling for unaligned loads of mode then it can use regular moves for them. */ && ((icode = optab_handler (movmisalign_optab, mode)) != CODE_FOR_nothing)) { struct expand_operand ops[2]; /* We've already validated the memory, and we're creating a new pseudo destination. The predicates really can't fail, nor can the generator. */ create_output_operand (&ops[0], NULL_RTX, mode); create_fixed_operand (&ops[1], temp); expand_insn (icode, 2, ops); temp = ops[0].value; } return temp; } case MEM_REF: { const bool reverse = REF_REVERSE_STORAGE_ORDER (exp); addr_space_t as = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0)))); machine_mode address_mode; tree base = TREE_OPERAND (exp, 0); gimple *def_stmt; enum insn_code icode; unsigned align; /* Handle expansion of non-aliased memory with non-BLKmode. That might end up in a register. */ if (mem_ref_refers_to_non_mem_p (exp)) { poly_int64 offset = mem_ref_offset (exp).force_shwi (); base = TREE_OPERAND (base, 0); if (known_eq (offset, 0) && !reverse && tree_fits_uhwi_p (TYPE_SIZE (type)) && known_eq (GET_MODE_BITSIZE (DECL_MODE (base)), tree_to_uhwi (TYPE_SIZE (type)))) return expand_expr (build1 (VIEW_CONVERT_EXPR, type, base), target, tmode, modifier); if (TYPE_MODE (type) == BLKmode) { temp = assign_stack_temp (DECL_MODE (base), GET_MODE_SIZE (DECL_MODE (base))); store_expr (base, temp, 0, false, false); temp = adjust_address (temp, BLKmode, offset); set_mem_size (temp, int_size_in_bytes (type)); return temp; } exp = build3 (BIT_FIELD_REF, type, base, TYPE_SIZE (type), bitsize_int (offset * BITS_PER_UNIT)); REF_REVERSE_STORAGE_ORDER (exp) = reverse; return expand_expr (exp, target, tmode, modifier); } address_mode = targetm.addr_space.address_mode (as); base = TREE_OPERAND (exp, 0); if ((def_stmt = get_def_for_expr (base, BIT_AND_EXPR))) { tree mask = gimple_assign_rhs2 (def_stmt); base = build2 (BIT_AND_EXPR, TREE_TYPE (base), gimple_assign_rhs1 (def_stmt), mask); TREE_OPERAND (exp, 0) = base; } align = get_object_alignment (exp); op0 = expand_expr (base, NULL_RTX, VOIDmode, EXPAND_SUM); op0 = memory_address_addr_space (mode, op0, as); if (!integer_zerop (TREE_OPERAND (exp, 1))) { rtx off = immed_wide_int_const (mem_ref_offset (exp), address_mode); op0 = simplify_gen_binary (PLUS, address_mode, op0, off); op0 = memory_address_addr_space (mode, op0, as); } temp = gen_rtx_MEM (mode, op0); set_mem_attributes (temp, exp, 0); set_mem_addr_space (temp, as); if (TREE_THIS_VOLATILE (exp)) MEM_VOLATILE_P (temp) = 1; if (modifier != EXPAND_WRITE && modifier != EXPAND_MEMORY && !inner_reference_p && mode != BLKmode && align < GET_MODE_ALIGNMENT (mode)) { if ((icode = optab_handler (movmisalign_optab, mode)) != CODE_FOR_nothing) { struct expand_operand ops[2]; /* We've already validated the memory, and we're creating a new pseudo destination. The predicates really can't fail, nor can the generator. */ create_output_operand (&ops[0], NULL_RTX, mode); create_fixed_operand (&ops[1], temp); expand_insn (icode, 2, ops); temp = ops[0].value; } else if (targetm.slow_unaligned_access (mode, align)) temp = extract_bit_field (temp, GET_MODE_BITSIZE (mode), 0, TYPE_UNSIGNED (TREE_TYPE (exp)), (modifier == EXPAND_STACK_PARM ? NULL_RTX : target), mode, mode, false, alt_rtl); } if (reverse && modifier != EXPAND_MEMORY && modifier != EXPAND_WRITE) temp = flip_storage_order (mode, temp); return temp; } case ARRAY_REF: { tree array = treeop0; tree index = treeop1; tree init; /* Fold an expression like: "foo"[2]. This is not done in fold so it won't happen inside &. Don't fold if this is for wide characters since it's too difficult to do correctly and this is a very rare case. */ if (modifier != EXPAND_CONST_ADDRESS && modifier != EXPAND_INITIALIZER && modifier != EXPAND_MEMORY) { tree t = fold_read_from_constant_string (exp); if (t) return expand_expr (t, target, tmode, modifier); } /* If this is a constant index into a constant array, just get the value from the array. Handle both the cases when we have an explicit constructor and when our operand is a variable that was declared const. */ if (modifier != EXPAND_CONST_ADDRESS && modifier != EXPAND_INITIALIZER && modifier != EXPAND_MEMORY && TREE_CODE (array) == CONSTRUCTOR && ! TREE_SIDE_EFFECTS (array) && TREE_CODE (index) == INTEGER_CST) { unsigned HOST_WIDE_INT ix; tree field, value; FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (array), ix, field, value) if (tree_int_cst_equal (field, index)) { if (!TREE_SIDE_EFFECTS (value)) return expand_expr (fold (value), target, tmode, modifier); break; } } else if (optimize >= 1 && modifier != EXPAND_CONST_ADDRESS && modifier != EXPAND_INITIALIZER && modifier != EXPAND_MEMORY && TREE_READONLY (array) && ! TREE_SIDE_EFFECTS (array) && TREE_CODE (index) == INTEGER_CST && (VAR_P (array) || TREE_CODE (array) == CONST_DECL) && (init = ctor_for_folding (array)) != error_mark_node) { if (init == NULL_TREE) { tree value = build_zero_cst (type); if (TREE_CODE (value) == CONSTRUCTOR) { /* If VALUE is a CONSTRUCTOR, this optimization is only useful if this doesn't store the CONSTRUCTOR into memory. If it does, it is more efficient to just load the data from the array directly. */ rtx ret = expand_constructor (value, target, modifier, true); if (ret == NULL_RTX) value = NULL_TREE; } if (value) return expand_expr (value, target, tmode, modifier); } else if (TREE_CODE (init) == CONSTRUCTOR) { unsigned HOST_WIDE_INT ix; tree field, value; FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (init), ix, field, value) if (tree_int_cst_equal (field, index)) { if (TREE_SIDE_EFFECTS (value)) break; if (TREE_CODE (value) == CONSTRUCTOR) { /* If VALUE is a CONSTRUCTOR, this optimization is only useful if this doesn't store the CONSTRUCTOR into memory. If it does, it is more efficient to just load the data from the array directly. */ rtx ret = expand_constructor (value, target, modifier, true); if (ret == NULL_RTX) break; } return expand_expr (fold (value), target, tmode, modifier); } } else if (TREE_CODE (init) == STRING_CST) { tree low_bound = array_ref_low_bound (exp); tree index1 = fold_convert_loc (loc, sizetype, treeop1); /* Optimize the special case of a zero lower bound. We convert the lower bound to sizetype to avoid problems with constant folding. E.g. suppose the lower bound is 1 and its mode is QI. Without the conversion (ARRAY + (INDEX - (unsigned char)1)) becomes (ARRAY + (-(unsigned char)1) + INDEX) which becomes (ARRAY + 255 + INDEX). Oops! */ if (!integer_zerop (low_bound)) index1 = size_diffop_loc (loc, index1, fold_convert_loc (loc, sizetype, low_bound)); if (tree_fits_uhwi_p (index1) && compare_tree_int (index1, TREE_STRING_LENGTH (init)) < 0) { tree type = TREE_TYPE (TREE_TYPE (init)); scalar_int_mode mode; if (is_int_mode (TYPE_MODE (type), &mode) && GET_MODE_SIZE (mode) == 1) return gen_int_mode (TREE_STRING_POINTER (init) [TREE_INT_CST_LOW (index1)], mode); } } } } goto normal_inner_ref; case COMPONENT_REF: /* If the operand is a CONSTRUCTOR, we can just extract the appropriate field if it is present. */ if (TREE_CODE (treeop0) == CONSTRUCTOR) { unsigned HOST_WIDE_INT idx; tree field, value; scalar_int_mode field_mode; FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (treeop0), idx, field, value) if (field == treeop1 /* We can normally use the value of the field in the CONSTRUCTOR. However, if this is a bitfield in an integral mode that we can fit in a HOST_WIDE_INT, we must mask only the number of bits in the bitfield, since this is done implicitly by the constructor. If the bitfield does not meet either of those conditions, we can't do this optimization. */ && (! DECL_BIT_FIELD (field) || (is_int_mode (DECL_MODE (field), &field_mode) && (GET_MODE_PRECISION (field_mode) <= HOST_BITS_PER_WIDE_INT)))) { if (DECL_BIT_FIELD (field) && modifier == EXPAND_STACK_PARM) target = 0; op0 = expand_expr (value, target, tmode, modifier); if (DECL_BIT_FIELD (field)) { HOST_WIDE_INT bitsize = TREE_INT_CST_LOW (DECL_SIZE (field)); scalar_int_mode imode = SCALAR_INT_TYPE_MODE (TREE_TYPE (field)); if (TYPE_UNSIGNED (TREE_TYPE (field))) { op1 = gen_int_mode ((HOST_WIDE_INT_1 << bitsize) - 1, imode); op0 = expand_and (imode, op0, op1, target); } else { int count = GET_MODE_PRECISION (imode) - bitsize; op0 = expand_shift (LSHIFT_EXPR, imode, op0, count, target, 0); op0 = expand_shift (RSHIFT_EXPR, imode, op0, count, target, 0); } } return op0; } } goto normal_inner_ref; case BIT_FIELD_REF: case ARRAY_RANGE_REF: normal_inner_ref: { machine_mode mode1, mode2; poly_int64 bitsize, bitpos, bytepos; tree offset; int reversep, volatilep = 0, must_force_mem; tree tem = get_inner_reference (exp, &bitsize, &bitpos, &offset, &mode1, &unsignedp, &reversep, &volatilep); rtx orig_op0, memloc; bool clear_mem_expr = false; /* If we got back the original object, something is wrong. Perhaps we are evaluating an expression too early. In any event, don't infinitely recurse. */ gcc_assert (tem != exp); /* If TEM's type is a union of variable size, pass TARGET to the inner computation, since it will need a temporary and TARGET is known to have to do. This occurs in unchecked conversion in Ada. */ orig_op0 = op0 = expand_expr_real (tem, (TREE_CODE (TREE_TYPE (tem)) == UNION_TYPE && COMPLETE_TYPE_P (TREE_TYPE (tem)) && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem))) != INTEGER_CST) && modifier != EXPAND_STACK_PARM ? target : NULL_RTX), VOIDmode, modifier == EXPAND_SUM ? EXPAND_NORMAL : modifier, NULL, true); /* If the field has a mode, we want to access it in the field's mode, not the computed mode. If a MEM has VOIDmode (external with incomplete type), use BLKmode for it instead. */ if (MEM_P (op0)) { if (mode1 != VOIDmode) op0 = adjust_address (op0, mode1, 0); else if (GET_MODE (op0) == VOIDmode) op0 = adjust_address (op0, BLKmode, 0); } mode2 = CONSTANT_P (op0) ? TYPE_MODE (TREE_TYPE (tem)) : GET_MODE (op0); /* If we have either an offset, a BLKmode result, or a reference outside the underlying object, we must force it to memory. Such a case can occur in Ada if we have unchecked conversion of an expression from a scalar type to an aggregate type or for an ARRAY_RANGE_REF whose type is BLKmode, or if we were passed a partially uninitialized object or a view-conversion to a larger size. */ must_force_mem = (offset || mode1 == BLKmode || maybe_gt (bitpos + bitsize, GET_MODE_BITSIZE (mode2))); /* Handle CONCAT first. */ if (GET_CODE (op0) == CONCAT && !must_force_mem) { if (known_eq (bitpos, 0) && known_eq (bitsize, GET_MODE_BITSIZE (GET_MODE (op0))) && COMPLEX_MODE_P (mode1) && COMPLEX_MODE_P (GET_MODE (op0)) && (GET_MODE_PRECISION (GET_MODE_INNER (mode1)) == GET_MODE_PRECISION (GET_MODE_INNER (GET_MODE (op0))))) { if (reversep) op0 = flip_storage_order (GET_MODE (op0), op0); if (mode1 != GET_MODE (op0)) { rtx parts[2]; for (int i = 0; i < 2; i++) { rtx op = read_complex_part (op0, i != 0); if (GET_CODE (op) == SUBREG) op = force_reg (GET_MODE (op), op); rtx temp = gen_lowpart_common (GET_MODE_INNER (mode1), op); if (temp) op = temp; else { if (!REG_P (op) && !MEM_P (op)) op = force_reg (GET_MODE (op), op); op = gen_lowpart (GET_MODE_INNER (mode1), op); } parts[i] = op; } op0 = gen_rtx_CONCAT (mode1, parts[0], parts[1]); } return op0; } if (known_eq (bitpos, 0) && known_eq (bitsize, GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))) && maybe_ne (bitsize, 0)) { op0 = XEXP (op0, 0); mode2 = GET_MODE (op0); } else if (known_eq (bitpos, GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))) && known_eq (bitsize, GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 1)))) && maybe_ne (bitpos, 0) && maybe_ne (bitsize, 0)) { op0 = XEXP (op0, 1); bitpos = 0; mode2 = GET_MODE (op0); } else /* Otherwise force into memory. */ must_force_mem = 1; } /* If this is a constant, put it in a register if it is a legitimate constant and we don't need a memory reference. */ if (CONSTANT_P (op0) && mode2 != BLKmode && targetm.legitimate_constant_p (mode2, op0) && !must_force_mem) op0 = force_reg (mode2, op0); /* Otherwise, if this is a constant, try to force it to the constant pool. Note that back-ends, e.g. MIPS, may refuse to do so if it is a legitimate constant. */ else if (CONSTANT_P (op0) && (memloc = force_const_mem (mode2, op0))) op0 = validize_mem (memloc); /* Otherwise, if this is a constant or the object is not in memory and need be, put it there. */ else if (CONSTANT_P (op0) || (!MEM_P (op0) && must_force_mem)) { memloc = assign_temp (TREE_TYPE (tem), 1, 1); emit_move_insn (memloc, op0); op0 = memloc; clear_mem_expr = true; } if (offset) { machine_mode address_mode; rtx offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode, EXPAND_SUM); gcc_assert (MEM_P (op0)); address_mode = get_address_mode (op0); if (GET_MODE (offset_rtx) != address_mode) { /* We cannot be sure that the RTL in offset_rtx is valid outside of a memory address context, so force it into a register before attempting to convert it to the desired mode. */ offset_rtx = force_operand (offset_rtx, NULL_RTX); offset_rtx = convert_to_mode (address_mode, offset_rtx, 0); } /* See the comment in expand_assignment for the rationale. */ if (mode1 != VOIDmode && maybe_ne (bitpos, 0) && maybe_gt (bitsize, 0) && multiple_p (bitpos, BITS_PER_UNIT, &bytepos) && multiple_p (bitpos, bitsize) && multiple_p (bitsize, GET_MODE_ALIGNMENT (mode1)) && MEM_ALIGN (op0) >= GET_MODE_ALIGNMENT (mode1)) { op0 = adjust_address (op0, mode1, bytepos); bitpos = 0; } op0 = offset_address (op0, offset_rtx, highest_pow2_factor (offset)); } /* If OFFSET is making OP0 more aligned than BIGGEST_ALIGNMENT, record its alignment as BIGGEST_ALIGNMENT. */ if (MEM_P (op0) && known_eq (bitpos, 0) && offset != 0 && is_aligning_offset (offset, tem)) set_mem_align (op0, BIGGEST_ALIGNMENT); /* Don't forget about volatility even if this is a bitfield. */ if (MEM_P (op0) && volatilep && ! MEM_VOLATILE_P (op0)) { if (op0 == orig_op0) op0 = copy_rtx (op0); MEM_VOLATILE_P (op0) = 1; } /* In cases where an aligned union has an unaligned object as a field, we might be extracting a BLKmode value from an integer-mode (e.g., SImode) object. Handle this case by doing the extract into an object as wide as the field (which we know to be the width of a basic mode), then storing into memory, and changing the mode to BLKmode. */ if (mode1 == VOIDmode || REG_P (op0) || GET_CODE (op0) == SUBREG || (mode1 != BLKmode && ! direct_load[(int) mode1] && GET_MODE_CLASS (mode) != MODE_COMPLEX_INT && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT && modifier != EXPAND_CONST_ADDRESS && modifier != EXPAND_INITIALIZER && modifier != EXPAND_MEMORY) /* If the bitfield is volatile and the bitsize is narrower than the access size of the bitfield, we need to extract bitfields from the access. */ || (volatilep && TREE_CODE (exp) == COMPONENT_REF && DECL_BIT_FIELD_TYPE (TREE_OPERAND (exp, 1)) && mode1 != BLKmode && maybe_lt (bitsize, GET_MODE_SIZE (mode1) * BITS_PER_UNIT)) /* If the field isn't aligned enough to fetch as a memref, fetch it as a bit field. */ || (mode1 != BLKmode && (((MEM_P (op0) ? MEM_ALIGN (op0) < GET_MODE_ALIGNMENT (mode1) || !multiple_p (bitpos, GET_MODE_ALIGNMENT (mode1)) : TYPE_ALIGN (TREE_TYPE (tem)) < GET_MODE_ALIGNMENT (mode) || !multiple_p (bitpos, GET_MODE_ALIGNMENT (mode))) && modifier != EXPAND_MEMORY && ((modifier == EXPAND_CONST_ADDRESS || modifier == EXPAND_INITIALIZER) ? STRICT_ALIGNMENT : targetm.slow_unaligned_access (mode1, MEM_ALIGN (op0)))) || !multiple_p (bitpos, BITS_PER_UNIT))) /* If the type and the field are a constant size and the size of the type isn't the same size as the bitfield, we must use bitfield operations. */ || (known_size_p (bitsize) && TYPE_SIZE (TREE_TYPE (exp)) && poly_int_tree_p (TYPE_SIZE (TREE_TYPE (exp))) && maybe_ne (wi::to_poly_offset (TYPE_SIZE (TREE_TYPE (exp))), bitsize))) { machine_mode ext_mode = mode; if (ext_mode == BLKmode && ! (target != 0 && MEM_P (op0) && MEM_P (target) && multiple_p (bitpos, BITS_PER_UNIT))) ext_mode = int_mode_for_size (bitsize, 1).else_blk (); if (ext_mode == BLKmode) { if (target == 0) target = assign_temp (type, 1, 1); /* ??? Unlike the similar test a few lines below, this one is very likely obsolete. */ if (known_eq (bitsize, 0)) return target; /* In this case, BITPOS must start at a byte boundary and TARGET, if specified, must be a MEM. */ gcc_assert (MEM_P (op0) && (!target || MEM_P (target))); bytepos = exact_div (bitpos, BITS_PER_UNIT); poly_int64 bytesize = bits_to_bytes_round_up (bitsize); emit_block_move (target, adjust_address (op0, VOIDmode, bytepos), gen_int_mode (bytesize, Pmode), (modifier == EXPAND_STACK_PARM ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL)); return target; } /* If we have nothing to extract, the result will be 0 for targets with SHIFT_COUNT_TRUNCATED == 0 and garbage otherwise. Always return 0 for the sake of consistency, as reading a zero-sized bitfield is valid in Ada and the value is fully specified. */ if (known_eq (bitsize, 0)) return const0_rtx; op0 = validize_mem (op0); if (MEM_P (op0) && REG_P (XEXP (op0, 0))) mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0)); /* If the result has a record type and the extraction is done in an integral mode, then the field may be not aligned on a byte boundary; in this case, if it has reverse storage order, it needs to be extracted as a scalar field with reverse storage order and put back into memory order afterwards. */ if (TREE_CODE (type) == RECORD_TYPE && GET_MODE_CLASS (ext_mode) == MODE_INT) reversep = TYPE_REVERSE_STORAGE_ORDER (type); op0 = extract_bit_field (op0, bitsize, bitpos, unsignedp, (modifier == EXPAND_STACK_PARM ? NULL_RTX : target), ext_mode, ext_mode, reversep, alt_rtl); /* If the result has a record type and the mode of OP0 is an integral mode then, if BITSIZE is narrower than this mode and this is for big-endian data, we must put the field into the high-order bits. And we must also put it back into memory order if it has been previously reversed. */ scalar_int_mode op0_mode; if (TREE_CODE (type) == RECORD_TYPE && is_int_mode (GET_MODE (op0), &op0_mode)) { HOST_WIDE_INT size = GET_MODE_BITSIZE (op0_mode); gcc_checking_assert (known_le (bitsize, size)); if (maybe_lt (bitsize, size) && reversep ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN) op0 = expand_shift (LSHIFT_EXPR, op0_mode, op0, size - bitsize, op0, 1); if (reversep) op0 = flip_storage_order (op0_mode, op0); } /* If the result type is BLKmode, store the data into a temporary of the appropriate type, but with the mode corresponding to the mode for the data we have (op0's mode). */ if (mode == BLKmode) { rtx new_rtx = assign_stack_temp_for_type (ext_mode, GET_MODE_BITSIZE (ext_mode), type); emit_move_insn (new_rtx, op0); op0 = copy_rtx (new_rtx); PUT_MODE (op0, BLKmode); } return op0; } /* If the result is BLKmode, use that to access the object now as well. */ if (mode == BLKmode) mode1 = BLKmode; /* Get a reference to just this component. */ bytepos = bits_to_bytes_round_down (bitpos); if (modifier == EXPAND_CONST_ADDRESS || modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER) op0 = adjust_address_nv (op0, mode1, bytepos); else op0 = adjust_address (op0, mode1, bytepos); if (op0 == orig_op0) op0 = copy_rtx (op0); /* Don't set memory attributes if the base expression is SSA_NAME that got expanded as a MEM. In that case, we should just honor its original memory attributes. */ if (TREE_CODE (tem) != SSA_NAME || !MEM_P (orig_op0)) set_mem_attributes (op0, exp, 0); if (REG_P (XEXP (op0, 0))) mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0)); /* If op0 is a temporary because the original expressions was forced to memory, clear MEM_EXPR so that the original expression cannot be marked as addressable through MEM_EXPR of the temporary. */ if (clear_mem_expr) set_mem_expr (op0, NULL_TREE); MEM_VOLATILE_P (op0) |= volatilep; if (reversep && modifier != EXPAND_MEMORY && modifier != EXPAND_WRITE) op0 = flip_storage_order (mode1, op0); if (mode == mode1 || mode1 == BLKmode || mode1 == tmode || modifier == EXPAND_CONST_ADDRESS || modifier == EXPAND_INITIALIZER) return op0; if (target == 0) target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode); convert_move (target, op0, unsignedp); return target; } case OBJ_TYPE_REF: return expand_expr (OBJ_TYPE_REF_EXPR (exp), target, tmode, modifier); case CALL_EXPR: /* All valid uses of __builtin_va_arg_pack () are removed during inlining. */ if (CALL_EXPR_VA_ARG_PACK (exp)) error ("%Kinvalid use of %<__builtin_va_arg_pack ()%>", exp); { tree fndecl = get_callee_fndecl (exp), attr; if (fndecl /* Don't diagnose the error attribute in thunks, those are artificially created. */ && !CALL_FROM_THUNK_P (exp) && (attr = lookup_attribute ("error", DECL_ATTRIBUTES (fndecl))) != NULL) { const char *ident = lang_hooks.decl_printable_name (fndecl, 1); error ("%Kcall to %qs declared with attribute error: %s", exp, identifier_to_locale (ident), TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr)))); } if (fndecl /* Don't diagnose the warning attribute in thunks, those are artificially created. */ && !CALL_FROM_THUNK_P (exp) && (attr = lookup_attribute ("warning", DECL_ATTRIBUTES (fndecl))) != NULL) { const char *ident = lang_hooks.decl_printable_name (fndecl, 1); warning_at (tree_nonartificial_location (exp), 0, "%Kcall to %qs declared with attribute warning: %s", exp, identifier_to_locale (ident), TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr)))); } /* Check for a built-in function. */ if (fndecl && DECL_BUILT_IN (fndecl)) { gcc_assert (DECL_BUILT_IN_CLASS (fndecl) != BUILT_IN_FRONTEND); if (CALL_WITH_BOUNDS_P (exp)) return expand_builtin_with_bounds (exp, target, subtarget, tmode, ignore); else return expand_builtin (exp, target, subtarget, tmode, ignore); } } return expand_call (exp, target, ignore); case VIEW_CONVERT_EXPR: op0 = NULL_RTX; /* If we are converting to BLKmode, try to avoid an intermediate temporary by fetching an inner memory reference. */ if (mode == BLKmode && poly_int_tree_p (TYPE_SIZE (type)) && TYPE_MODE (TREE_TYPE (treeop0)) != BLKmode && handled_component_p (treeop0)) { machine_mode mode1; poly_int64 bitsize, bitpos, bytepos; tree offset; int unsignedp, reversep, volatilep = 0; tree tem = get_inner_reference (treeop0, &bitsize, &bitpos, &offset, &mode1, &unsignedp, &reversep, &volatilep); rtx orig_op0; /* ??? We should work harder and deal with non-zero offsets. */ if (!offset && multiple_p (bitpos, BITS_PER_UNIT, &bytepos) && !reversep && known_size_p (bitsize) && known_eq (wi::to_poly_offset (TYPE_SIZE (type)), bitsize)) { /* See the normal_inner_ref case for the rationale. */ orig_op0 = expand_expr_real (tem, (TREE_CODE (TREE_TYPE (tem)) == UNION_TYPE && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem))) != INTEGER_CST) && modifier != EXPAND_STACK_PARM ? target : NULL_RTX), VOIDmode, modifier == EXPAND_SUM ? EXPAND_NORMAL : modifier, NULL, true); if (MEM_P (orig_op0)) { op0 = orig_op0; /* Get a reference to just this component. */ if (modifier == EXPAND_CONST_ADDRESS || modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER) op0 = adjust_address_nv (op0, mode, bytepos); else op0 = adjust_address (op0, mode, bytepos); if (op0 == orig_op0) op0 = copy_rtx (op0); set_mem_attributes (op0, treeop0, 0); if (REG_P (XEXP (op0, 0))) mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0)); MEM_VOLATILE_P (op0) |= volatilep; } } } if (!op0) op0 = expand_expr_real (treeop0, NULL_RTX, VOIDmode, modifier, NULL, inner_reference_p); /* If the input and output modes are both the same, we are done. */ if (mode == GET_MODE (op0)) ; /* If neither mode is BLKmode, and both modes are the same size then we can use gen_lowpart. */ else if (mode != BLKmode && GET_MODE (op0) != BLKmode && known_eq (GET_MODE_PRECISION (mode), GET_MODE_PRECISION (GET_MODE (op0))) && !COMPLEX_MODE_P (GET_MODE (op0))) { if (GET_CODE (op0) == SUBREG) op0 = force_reg (GET_MODE (op0), op0); temp = gen_lowpart_common (mode, op0); if (temp) op0 = temp; else { if (!REG_P (op0) && !MEM_P (op0)) op0 = force_reg (GET_MODE (op0), op0); op0 = gen_lowpart (mode, op0); } } /* If both types are integral, convert from one mode to the other. */ else if (INTEGRAL_TYPE_P (type) && INTEGRAL_TYPE_P (TREE_TYPE (treeop0))) op0 = convert_modes (mode, GET_MODE (op0), op0, TYPE_UNSIGNED (TREE_TYPE (treeop0))); /* If the output type is a bit-field type, do an extraction. */ else if (reduce_bit_field) return extract_bit_field (op0, TYPE_PRECISION (type), 0, TYPE_UNSIGNED (type), NULL_RTX, mode, mode, false, NULL); /* As a last resort, spill op0 to memory, and reload it in a different mode. */ else if (!MEM_P (op0)) { /* If the operand is not a MEM, force it into memory. Since we are going to be changing the mode of the MEM, don't call force_const_mem for constants because we don't allow pool constants to change mode. */ tree inner_type = TREE_TYPE (treeop0); gcc_assert (!TREE_ADDRESSABLE (exp)); if (target == 0 || GET_MODE (target) != TYPE_MODE (inner_type)) target = assign_stack_temp_for_type (TYPE_MODE (inner_type), GET_MODE_SIZE (TYPE_MODE (inner_type)), inner_type); emit_move_insn (target, op0); op0 = target; } /* If OP0 is (now) a MEM, we need to deal with alignment issues. If the output type is such that the operand is known to be aligned, indicate that it is. Otherwise, we need only be concerned about alignment for non-BLKmode results. */ if (MEM_P (op0)) { enum insn_code icode; if (modifier != EXPAND_WRITE && modifier != EXPAND_MEMORY && !inner_reference_p && mode != BLKmode && MEM_ALIGN (op0) < GET_MODE_ALIGNMENT (mode)) { /* If the target does have special handling for unaligned loads of mode then use them. */ if ((icode = optab_handler (movmisalign_optab, mode)) != CODE_FOR_nothing) { rtx reg; op0 = adjust_address (op0, mode, 0); /* We've already validated the memory, and we're creating a new pseudo destination. The predicates really can't fail. */ reg = gen_reg_rtx (mode); /* Nor can the insn generator. */ rtx_insn *insn = GEN_FCN (icode) (reg, op0); emit_insn (insn); return reg; } else if (STRICT_ALIGNMENT) { poly_uint64 mode_size = GET_MODE_SIZE (mode); poly_uint64 temp_size = mode_size; if (GET_MODE (op0) != BLKmode) temp_size = upper_bound (temp_size, GET_MODE_SIZE (GET_MODE (op0))); rtx new_rtx = assign_stack_temp_for_type (mode, temp_size, type); rtx new_with_op0_mode = adjust_address (new_rtx, GET_MODE (op0), 0); gcc_assert (!TREE_ADDRESSABLE (exp)); if (GET_MODE (op0) == BLKmode) { rtx size_rtx = gen_int_mode (mode_size, Pmode); emit_block_move (new_with_op0_mode, op0, size_rtx, (modifier == EXPAND_STACK_PARM ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL)); } else emit_move_insn (new_with_op0_mode, op0); op0 = new_rtx; } } op0 = adjust_address (op0, mode, 0); } return op0; case MODIFY_EXPR: { tree lhs = treeop0; tree rhs = treeop1; gcc_assert (ignore); /* Check for |= or &= of a bitfield of size one into another bitfield of size 1. In this case, (unless we need the result of the assignment) we can do this more efficiently with a test followed by an assignment, if necessary. ??? At this point, we can't get a BIT_FIELD_REF here. But if things change so we do, this code should be enhanced to support it. */ if (TREE_CODE (lhs) == COMPONENT_REF && (TREE_CODE (rhs) == BIT_IOR_EXPR || TREE_CODE (rhs) == BIT_AND_EXPR) && TREE_OPERAND (rhs, 0) == lhs && TREE_CODE (TREE_OPERAND (rhs, 1)) == COMPONENT_REF && integer_onep (DECL_SIZE (TREE_OPERAND (lhs, 1))) && integer_onep (DECL_SIZE (TREE_OPERAND (TREE_OPERAND (rhs, 1), 1)))) { rtx_code_label *label = gen_label_rtx (); int value = TREE_CODE (rhs) == BIT_IOR_EXPR; do_jump (TREE_OPERAND (rhs, 1), value ? label : 0, value ? 0 : label, profile_probability::uninitialized ()); expand_assignment (lhs, build_int_cst (TREE_TYPE (rhs), value), false); do_pending_stack_adjust (); emit_label (label); return const0_rtx; } expand_assignment (lhs, rhs, false); return const0_rtx; } case ADDR_EXPR: return expand_expr_addr_expr (exp, target, tmode, modifier); case REALPART_EXPR: op0 = expand_normal (treeop0); return read_complex_part (op0, false); case IMAGPART_EXPR: op0 = expand_normal (treeop0); return read_complex_part (op0, true); case RETURN_EXPR: case LABEL_EXPR: case GOTO_EXPR: case SWITCH_EXPR: case ASM_EXPR: /* Expanded in cfgexpand.c. */ gcc_unreachable (); case TRY_CATCH_EXPR: case CATCH_EXPR: case EH_FILTER_EXPR: case TRY_FINALLY_EXPR: /* Lowered by tree-eh.c. */ gcc_unreachable (); case WITH_CLEANUP_EXPR: case CLEANUP_POINT_EXPR: case TARGET_EXPR: case CASE_LABEL_EXPR: case VA_ARG_EXPR: case BIND_EXPR: case INIT_EXPR: case CONJ_EXPR: case COMPOUND_EXPR: case PREINCREMENT_EXPR: case PREDECREMENT_EXPR: case POSTINCREMENT_EXPR: case POSTDECREMENT_EXPR: case LOOP_EXPR: case EXIT_EXPR: case COMPOUND_LITERAL_EXPR: /* Lowered by gimplify.c. */ gcc_unreachable (); case FDESC_EXPR: /* Function descriptors are not valid except for as initialization constants, and should not be expanded. */ gcc_unreachable (); case WITH_SIZE_EXPR: /* WITH_SIZE_EXPR expands to its first argument. The caller should have pulled out the size to use in whatever context it needed. */ return expand_expr_real (treeop0, original_target, tmode, modifier, alt_rtl, inner_reference_p); default: return expand_expr_real_2 (&ops, target, tmode, modifier); } } /* Subroutine of above: reduce EXP to the precision of TYPE (in the signedness of TYPE), possibly returning the result in TARGET. TYPE is known to be a partial integer type. */ static rtx reduce_to_bit_field_precision (rtx exp, rtx target, tree type) { HOST_WIDE_INT prec = TYPE_PRECISION (type); if (target && GET_MODE (target) != GET_MODE (exp)) target = 0; /* For constant values, reduce using build_int_cst_type. */ if (CONST_INT_P (exp)) { HOST_WIDE_INT value = INTVAL (exp); tree t = build_int_cst_type (type, value); return expand_expr (t, target, VOIDmode, EXPAND_NORMAL); } else if (TYPE_UNSIGNED (type)) { scalar_int_mode mode = as_a (GET_MODE (exp)); rtx mask = immed_wide_int_const (wi::mask (prec, false, GET_MODE_PRECISION (mode)), mode); return expand_and (mode, exp, mask, target); } else { scalar_int_mode mode = as_a (GET_MODE (exp)); int count = GET_MODE_PRECISION (mode) - prec; exp = expand_shift (LSHIFT_EXPR, mode, exp, count, target, 0); return expand_shift (RSHIFT_EXPR, mode, exp, count, target, 0); } } /* Subroutine of above: returns 1 if OFFSET corresponds to an offset that when applied to the address of EXP produces an address known to be aligned more than BIGGEST_ALIGNMENT. */ static int is_aligning_offset (const_tree offset, const_tree exp) { /* Strip off any conversions. */ while (CONVERT_EXPR_P (offset)) offset = TREE_OPERAND (offset, 0); /* We must now have a BIT_AND_EXPR with a constant that is one less than power of 2 and which is larger than BIGGEST_ALIGNMENT. */ if (TREE_CODE (offset) != BIT_AND_EXPR || !tree_fits_uhwi_p (TREE_OPERAND (offset, 1)) || compare_tree_int (TREE_OPERAND (offset, 1), BIGGEST_ALIGNMENT / BITS_PER_UNIT) <= 0 || !pow2p_hwi (tree_to_uhwi (TREE_OPERAND (offset, 1)) + 1)) return 0; /* Look at the first operand of BIT_AND_EXPR and strip any conversion. It must be NEGATE_EXPR. Then strip any more conversions. */ offset = TREE_OPERAND (offset, 0); while (CONVERT_EXPR_P (offset)) offset = TREE_OPERAND (offset, 0); if (TREE_CODE (offset) != NEGATE_EXPR) return 0; offset = TREE_OPERAND (offset, 0); while (CONVERT_EXPR_P (offset)) offset = TREE_OPERAND (offset, 0); /* This must now be the address of EXP. */ return TREE_CODE (offset) == ADDR_EXPR && TREE_OPERAND (offset, 0) == exp; } /* Return the tree node if an ARG corresponds to a string constant or zero if it doesn't. If we return nonzero, set *PTR_OFFSET to the offset in bytes within the string that ARG is accessing. The type of the offset will be `sizetype'. */ tree string_constant (tree arg, tree *ptr_offset) { tree array, offset, lower_bound; STRIP_NOPS (arg); if (TREE_CODE (arg) == ADDR_EXPR) { if (TREE_CODE (TREE_OPERAND (arg, 0)) == STRING_CST) { *ptr_offset = size_zero_node; return TREE_OPERAND (arg, 0); } else if (TREE_CODE (TREE_OPERAND (arg, 0)) == VAR_DECL) { array = TREE_OPERAND (arg, 0); offset = size_zero_node; } else if (TREE_CODE (TREE_OPERAND (arg, 0)) == ARRAY_REF) { array = TREE_OPERAND (TREE_OPERAND (arg, 0), 0); offset = TREE_OPERAND (TREE_OPERAND (arg, 0), 1); if (TREE_CODE (array) != STRING_CST && !VAR_P (array)) return 0; /* Check if the array has a nonzero lower bound. */ lower_bound = array_ref_low_bound (TREE_OPERAND (arg, 0)); if (!integer_zerop (lower_bound)) { /* If the offset and base aren't both constants, return 0. */ if (TREE_CODE (lower_bound) != INTEGER_CST) return 0; if (TREE_CODE (offset) != INTEGER_CST) return 0; /* Adjust offset by the lower bound. */ offset = size_diffop (fold_convert (sizetype, offset), fold_convert (sizetype, lower_bound)); } } else if (TREE_CODE (TREE_OPERAND (arg, 0)) == MEM_REF) { array = TREE_OPERAND (TREE_OPERAND (arg, 0), 0); offset = TREE_OPERAND (TREE_OPERAND (arg, 0), 1); if (TREE_CODE (array) != ADDR_EXPR) return 0; array = TREE_OPERAND (array, 0); if (TREE_CODE (array) != STRING_CST && !VAR_P (array)) return 0; } else return 0; } else if (TREE_CODE (arg) == PLUS_EXPR || TREE_CODE (arg) == POINTER_PLUS_EXPR) { tree arg0 = TREE_OPERAND (arg, 0); tree arg1 = TREE_OPERAND (arg, 1); STRIP_NOPS (arg0); STRIP_NOPS (arg1); if (TREE_CODE (arg0) == ADDR_EXPR && (TREE_CODE (TREE_OPERAND (arg0, 0)) == STRING_CST || TREE_CODE (TREE_OPERAND (arg0, 0)) == VAR_DECL)) { array = TREE_OPERAND (arg0, 0); offset = arg1; } else if (TREE_CODE (arg1) == ADDR_EXPR && (TREE_CODE (TREE_OPERAND (arg1, 0)) == STRING_CST || TREE_CODE (TREE_OPERAND (arg1, 0)) == VAR_DECL)) { array = TREE_OPERAND (arg1, 0); offset = arg0; } else return 0; } else return 0; if (TREE_CODE (array) == STRING_CST) { *ptr_offset = fold_convert (sizetype, offset); return array; } else if (VAR_P (array) || TREE_CODE (array) == CONST_DECL) { int length; tree init = ctor_for_folding (array); /* Variables initialized to string literals can be handled too. */ if (init == error_mark_node || !init || TREE_CODE (init) != STRING_CST) return 0; /* Avoid const char foo[4] = "abcde"; */ if (DECL_SIZE_UNIT (array) == NULL_TREE || TREE_CODE (DECL_SIZE_UNIT (array)) != INTEGER_CST || (length = TREE_STRING_LENGTH (init)) <= 0 || compare_tree_int (DECL_SIZE_UNIT (array), length) < 0) return 0; /* If variable is bigger than the string literal, OFFSET must be constant and inside of the bounds of the string literal. */ offset = fold_convert (sizetype, offset); if (compare_tree_int (DECL_SIZE_UNIT (array), length) > 0 && (! tree_fits_uhwi_p (offset) || compare_tree_int (offset, length) >= 0)) return 0; *ptr_offset = offset; return init; } return 0; } /* Generate code to calculate OPS, and exploded expression using a store-flag instruction and return an rtx for the result. OPS reflects a comparison. If TARGET is nonzero, store the result there if convenient. Return zero if there is no suitable set-flag instruction available on this machine. Once expand_expr has been called on the arguments of the comparison, we are committed to doing the store flag, since it is not safe to re-evaluate the expression. We emit the store-flag insn by calling emit_store_flag, but only expand the arguments if we have a reason to believe that emit_store_flag will be successful. If we think that it will, but it isn't, we have to simulate the store-flag with a set/jump/set sequence. */ static rtx do_store_flag (sepops ops, rtx target, machine_mode mode) { enum rtx_code code; tree arg0, arg1, type; machine_mode operand_mode; int unsignedp; rtx op0, op1; rtx subtarget = target; location_t loc = ops->location; arg0 = ops->op0; arg1 = ops->op1; /* Don't crash if the comparison was erroneous. */ if (arg0 == error_mark_node || arg1 == error_mark_node) return const0_rtx; type = TREE_TYPE (arg0); operand_mode = TYPE_MODE (type); unsignedp = TYPE_UNSIGNED (type); /* We won't bother with BLKmode store-flag operations because it would mean passing a lot of information to emit_store_flag. */ if (operand_mode == BLKmode) return 0; /* We won't bother with store-flag operations involving function pointers when function pointers must be canonicalized before comparisons. */ if (targetm.have_canonicalize_funcptr_for_compare () && ((POINTER_TYPE_P (TREE_TYPE (arg0)) && FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (arg0)))) || (POINTER_TYPE_P (TREE_TYPE (arg1)) && FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (arg1)))))) return 0; STRIP_NOPS (arg0); STRIP_NOPS (arg1); /* For vector typed comparisons emit code to generate the desired all-ones or all-zeros mask. Conveniently use the VEC_COND_EXPR expander for this. */ if (TREE_CODE (ops->type) == VECTOR_TYPE) { tree ifexp = build2 (ops->code, ops->type, arg0, arg1); if (VECTOR_BOOLEAN_TYPE_P (ops->type) && expand_vec_cmp_expr_p (TREE_TYPE (arg0), ops->type, ops->code)) return expand_vec_cmp_expr (ops->type, ifexp, target); else { tree if_true = constant_boolean_node (true, ops->type); tree if_false = constant_boolean_node (false, ops->type); return expand_vec_cond_expr (ops->type, ifexp, if_true, if_false, target); } } /* Get the rtx comparison code to use. We know that EXP is a comparison operation of some type. Some comparisons against 1 and -1 can be converted to comparisons with zero. Do so here so that the tests below will be aware that we have a comparison with zero. These tests will not catch constants in the first operand, but constants are rarely passed as the first operand. */ switch (ops->code) { case EQ_EXPR: code = EQ; break; case NE_EXPR: code = NE; break; case LT_EXPR: if (integer_onep (arg1)) arg1 = integer_zero_node, code = unsignedp ? LEU : LE; else code = unsignedp ? LTU : LT; break; case LE_EXPR: if (! unsignedp && integer_all_onesp (arg1)) arg1 = integer_zero_node, code = LT; else code = unsignedp ? LEU : LE; break; case GT_EXPR: if (! unsignedp && integer_all_onesp (arg1)) arg1 = integer_zero_node, code = GE; else code = unsignedp ? GTU : GT; break; case GE_EXPR: if (integer_onep (arg1)) arg1 = integer_zero_node, code = unsignedp ? GTU : GT; else code = unsignedp ? GEU : GE; break; case UNORDERED_EXPR: code = UNORDERED; break; case ORDERED_EXPR: code = ORDERED; break; case UNLT_EXPR: code = UNLT; break; case UNLE_EXPR: code = UNLE; break; case UNGT_EXPR: code = UNGT; break; case UNGE_EXPR: code = UNGE; break; case UNEQ_EXPR: code = UNEQ; break; case LTGT_EXPR: code = LTGT; break; default: gcc_unreachable (); } /* Put a constant second. */ if (TREE_CODE (arg0) == REAL_CST || TREE_CODE (arg0) == INTEGER_CST || TREE_CODE (arg0) == FIXED_CST) { std::swap (arg0, arg1); code = swap_condition (code); } /* If this is an equality or inequality test of a single bit, we can do this by shifting the bit being tested to the low-order bit and masking the result with the constant 1. If the condition was EQ, we xor it with 1. This does not require an scc insn and is faster than an scc insn even if we have it. The code to make this transformation was moved into fold_single_bit_test, so we just call into the folder and expand its result. */ if ((code == NE || code == EQ) && integer_zerop (arg1) && (TYPE_PRECISION (ops->type) != 1 || TYPE_UNSIGNED (ops->type))) { gimple *srcstmt = get_def_for_expr (arg0, BIT_AND_EXPR); if (srcstmt && integer_pow2p (gimple_assign_rhs2 (srcstmt))) { enum tree_code tcode = code == NE ? NE_EXPR : EQ_EXPR; tree type = lang_hooks.types.type_for_mode (mode, unsignedp); tree temp = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg1), gimple_assign_rhs1 (srcstmt), gimple_assign_rhs2 (srcstmt)); temp = fold_single_bit_test (loc, tcode, temp, arg1, type); if (temp) return expand_expr (temp, target, VOIDmode, EXPAND_NORMAL); } } if (! get_subtarget (target) || GET_MODE (subtarget) != operand_mode) subtarget = 0; expand_operands (arg0, arg1, subtarget, &op0, &op1, EXPAND_NORMAL); if (target == 0) target = gen_reg_rtx (mode); /* Try a cstore if possible. */ return emit_store_flag_force (target, code, op0, op1, operand_mode, unsignedp, (TYPE_PRECISION (ops->type) == 1 && !TYPE_UNSIGNED (ops->type)) ? -1 : 1); } /* Attempt to generate a casesi instruction. Returns 1 if successful, 0 otherwise (i.e. if there is no casesi instruction). DEFAULT_PROBABILITY is the probability of jumping to the default label. */ int try_casesi (tree index_type, tree index_expr, tree minval, tree range, rtx table_label, rtx default_label, rtx fallback_label, profile_probability default_probability) { struct expand_operand ops[5]; scalar_int_mode index_mode = SImode; rtx op1, op2, index; if (! targetm.have_casesi ()) return 0; /* The index must be some form of integer. Convert it to SImode. */ scalar_int_mode omode = SCALAR_INT_TYPE_MODE (index_type); if (GET_MODE_BITSIZE (omode) > GET_MODE_BITSIZE (index_mode)) { rtx rangertx = expand_normal (range); /* We must handle the endpoints in the original mode. */ index_expr = build2 (MINUS_EXPR, index_type, index_expr, minval); minval = integer_zero_node; index = expand_normal (index_expr); if (default_label) emit_cmp_and_jump_insns (rangertx, index, LTU, NULL_RTX, omode, 1, default_label, default_probability); /* Now we can safely truncate. */ index = convert_to_mode (index_mode, index, 0); } else { if (omode != index_mode) { index_type = lang_hooks.types.type_for_mode (index_mode, 0); index_expr = fold_convert (index_type, index_expr); } index = expand_normal (index_expr); } do_pending_stack_adjust (); op1 = expand_normal (minval); op2 = expand_normal (range); create_input_operand (&ops[0], index, index_mode); create_convert_operand_from_type (&ops[1], op1, TREE_TYPE (minval)); create_convert_operand_from_type (&ops[2], op2, TREE_TYPE (range)); create_fixed_operand (&ops[3], table_label); create_fixed_operand (&ops[4], (default_label ? default_label : fallback_label)); expand_jump_insn (targetm.code_for_casesi, 5, ops); return 1; } /* Attempt to generate a tablejump instruction; same concept. */ /* Subroutine of the next function. INDEX is the value being switched on, with the lowest value in the table already subtracted. MODE is its expected mode (needed if INDEX is constant). RANGE is the length of the jump table. TABLE_LABEL is a CODE_LABEL rtx for the table itself. DEFAULT_LABEL is a CODE_LABEL rtx to jump to if the index value is out of range. DEFAULT_PROBABILITY is the probability of jumping to the default label. */ static void do_tablejump (rtx index, machine_mode mode, rtx range, rtx table_label, rtx default_label, profile_probability default_probability) { rtx temp, vector; if (INTVAL (range) > cfun->cfg->max_jumptable_ents) cfun->cfg->max_jumptable_ents = INTVAL (range); /* Do an unsigned comparison (in the proper mode) between the index expression and the value which represents the length of the range. Since we just finished subtracting the lower bound of the range from the index expression, this comparison allows us to simultaneously check that the original index expression value is both greater than or equal to the minimum value of the range and less than or equal to the maximum value of the range. */ if (default_label) emit_cmp_and_jump_insns (index, range, GTU, NULL_RTX, mode, 1, default_label, default_probability); /* If index is in range, it must fit in Pmode. Convert to Pmode so we can index with it. */ if (mode != Pmode) index = convert_to_mode (Pmode, index, 1); /* Don't let a MEM slip through, because then INDEX that comes out of PIC_CASE_VECTOR_ADDRESS won't be a valid address, and break_out_memory_refs will go to work on it and mess it up. */ #ifdef PIC_CASE_VECTOR_ADDRESS if (flag_pic && !REG_P (index)) index = copy_to_mode_reg (Pmode, index); #endif /* ??? The only correct use of CASE_VECTOR_MODE is the one inside the GET_MODE_SIZE, because this indicates how large insns are. The other uses should all be Pmode, because they are addresses. This code could fail if addresses and insns are not the same size. */ index = simplify_gen_binary (MULT, Pmode, index, gen_int_mode (GET_MODE_SIZE (CASE_VECTOR_MODE), Pmode)); index = simplify_gen_binary (PLUS, Pmode, index, gen_rtx_LABEL_REF (Pmode, table_label)); #ifdef PIC_CASE_VECTOR_ADDRESS if (flag_pic) index = PIC_CASE_VECTOR_ADDRESS (index); else #endif index = memory_address (CASE_VECTOR_MODE, index); temp = gen_reg_rtx (CASE_VECTOR_MODE); vector = gen_const_mem (CASE_VECTOR_MODE, index); convert_move (temp, vector, 0); emit_jump_insn (targetm.gen_tablejump (temp, table_label)); /* If we are generating PIC code or if the table is PC-relative, the table and JUMP_INSN must be adjacent, so don't output a BARRIER. */ if (! CASE_VECTOR_PC_RELATIVE && ! flag_pic) emit_barrier (); } int try_tablejump (tree index_type, tree index_expr, tree minval, tree range, rtx table_label, rtx default_label, profile_probability default_probability) { rtx index; if (! targetm.have_tablejump ()) return 0; index_expr = fold_build2 (MINUS_EXPR, index_type, fold_convert (index_type, index_expr), fold_convert (index_type, minval)); index = expand_normal (index_expr); do_pending_stack_adjust (); do_tablejump (index, TYPE_MODE (index_type), convert_modes (TYPE_MODE (index_type), TYPE_MODE (TREE_TYPE (range)), expand_normal (range), TYPE_UNSIGNED (TREE_TYPE (range))), table_label, default_label, default_probability); return 1; } /* Return a CONST_VECTOR rtx representing vector mask for a VECTOR_CST of booleans. */ static rtx const_vector_mask_from_tree (tree exp) { machine_mode mode = TYPE_MODE (TREE_TYPE (exp)); machine_mode inner = GET_MODE_INNER (mode); rtx_vector_builder builder (mode, VECTOR_CST_NPATTERNS (exp), VECTOR_CST_NELTS_PER_PATTERN (exp)); unsigned int count = builder.encoded_nelts (); for (unsigned int i = 0; i < count; ++i) { tree elt = VECTOR_CST_ELT (exp, i); gcc_assert (TREE_CODE (elt) == INTEGER_CST); if (integer_zerop (elt)) builder.quick_push (CONST0_RTX (inner)); else if (integer_onep (elt) || integer_minus_onep (elt)) builder.quick_push (CONSTM1_RTX (inner)); else gcc_unreachable (); } return builder.build (); } /* EXP is a VECTOR_CST in which each element is either all-zeros or all-ones. Return a constant scalar rtx of mode MODE in which bit X is set if element X of EXP is nonzero. */ static rtx const_scalar_mask_from_tree (scalar_int_mode mode, tree exp) { wide_int res = wi::zero (GET_MODE_PRECISION (mode)); tree elt; /* The result has a fixed number of bits so the input must too. */ unsigned int nunits = VECTOR_CST_NELTS (exp).to_constant (); for (unsigned int i = 0; i < nunits; ++i) { elt = VECTOR_CST_ELT (exp, i); gcc_assert (TREE_CODE (elt) == INTEGER_CST); if (integer_all_onesp (elt)) res = wi::set_bit (res, i); else gcc_assert (integer_zerop (elt)); } return immed_wide_int_const (res, mode); } /* Return a CONST_VECTOR rtx for a VECTOR_CST tree. */ static rtx const_vector_from_tree (tree exp) { machine_mode mode = TYPE_MODE (TREE_TYPE (exp)); if (initializer_zerop (exp)) return CONST0_RTX (mode); if (VECTOR_BOOLEAN_TYPE_P (TREE_TYPE (exp))) return const_vector_mask_from_tree (exp); machine_mode inner = GET_MODE_INNER (mode); rtx_vector_builder builder (mode, VECTOR_CST_NPATTERNS (exp), VECTOR_CST_NELTS_PER_PATTERN (exp)); unsigned int count = builder.encoded_nelts (); for (unsigned int i = 0; i < count; ++i) { tree elt = VECTOR_CST_ELT (exp, i); if (TREE_CODE (elt) == REAL_CST) builder.quick_push (const_double_from_real_value (TREE_REAL_CST (elt), inner)); else if (TREE_CODE (elt) == FIXED_CST) builder.quick_push (CONST_FIXED_FROM_FIXED_VALUE (TREE_FIXED_CST (elt), inner)); else builder.quick_push (immed_wide_int_const (wi::to_poly_wide (elt), inner)); } return builder.build (); } /* Build a decl for a personality function given a language prefix. */ tree build_personality_function (const char *lang) { const char *unwind_and_version; tree decl, type; char *name; switch (targetm_common.except_unwind_info (&global_options)) { case UI_NONE: return NULL; case UI_SJLJ: unwind_and_version = "_sj0"; break; case UI_DWARF2: case UI_TARGET: unwind_and_version = "_v0"; break; case UI_SEH: unwind_and_version = "_seh0"; break; default: gcc_unreachable (); } name = ACONCAT (("__", lang, "_personality", unwind_and_version, NULL)); type = build_function_type_list (integer_type_node, integer_type_node, long_long_unsigned_type_node, ptr_type_node, ptr_type_node, NULL_TREE); decl = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL, get_identifier (name), type); DECL_ARTIFICIAL (decl) = 1; DECL_EXTERNAL (decl) = 1; TREE_PUBLIC (decl) = 1; /* Zap the nonsensical SYMBOL_REF_DECL for this. What we're left with are the flags assigned by targetm.encode_section_info. */ SET_SYMBOL_REF_DECL (XEXP (DECL_RTL (decl), 0), NULL); return decl; } /* Extracts the personality function of DECL and returns the corresponding libfunc. */ rtx get_personality_function (tree decl) { tree personality = DECL_FUNCTION_PERSONALITY (decl); enum eh_personality_kind pk; pk = function_needs_eh_personality (DECL_STRUCT_FUNCTION (decl)); if (pk == eh_personality_none) return NULL; if (!personality && pk == eh_personality_any) personality = lang_hooks.eh_personality (); if (pk == eh_personality_lang) gcc_assert (personality != NULL_TREE); return XEXP (DECL_RTL (personality), 0); } /* Returns a tree for the size of EXP in bytes. */ static tree tree_expr_size (const_tree exp) { if (DECL_P (exp) && DECL_SIZE_UNIT (exp) != 0) return DECL_SIZE_UNIT (exp); else return size_in_bytes (TREE_TYPE (exp)); } /* Return an rtx for the size in bytes of the value of EXP. */ rtx expr_size (tree exp) { tree size; if (TREE_CODE (exp) == WITH_SIZE_EXPR) size = TREE_OPERAND (exp, 1); else { size = tree_expr_size (exp); gcc_assert (size); gcc_assert (size == SUBSTITUTE_PLACEHOLDER_IN_EXPR (size, exp)); } return expand_expr (size, NULL_RTX, TYPE_MODE (sizetype), EXPAND_NORMAL); } /* Return a wide integer for the size in bytes of the value of EXP, or -1 if the size can vary or is larger than an integer. */ static HOST_WIDE_INT int_expr_size (tree exp) { tree size; if (TREE_CODE (exp) == WITH_SIZE_EXPR) size = TREE_OPERAND (exp, 1); else { size = tree_expr_size (exp); gcc_assert (size); } if (size == 0 || !tree_fits_shwi_p (size)) return -1; return tree_to_shwi (size); }