/* $KAME: altq_red.c,v 1.19 2004/04/17 10:54:49 kjc Exp $ */ /* $DragonFly: src/sys/net/altq/altq_red.c,v 1.1 2005/02/11 22:25:57 joerg Exp $ */ /* * Copyright (C) 1997-2003 * Sony Computer Science Laboratories Inc. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY SONY CSL AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL SONY CSL OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * */ /* * Copyright (c) 1990-1994 Regents of the University of California. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the Computer Systems * Engineering Group at Lawrence Berkeley Laboratory. * 4. Neither the name of the University nor of the Laboratory may be used * to endorse or promote products derived from this software without * specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include "opt_altq.h" #include "opt_inet.h" #include "opt_inet6.h" #ifdef ALTQ_RED /* red is enabled by ALTQ_RED option in opt_altq.h */ #include #include #include #include #include #include #include #include #include #include #ifdef INET6 #include #endif #include #include #include /* * ALTQ/RED (Random Early Detection) implementation using 32-bit * fixed-point calculation. * * written by kjc using the ns code as a reference. * you can learn more about red and ns from Sally's home page at * http://www-nrg.ee.lbl.gov/floyd/ * * most of the red parameter values are fixed in this implementation * to prevent fixed-point overflow/underflow. * if you change the parameters, watch out for overflow/underflow! * * the parameters used are recommended values by Sally. * the corresponding ns config looks: * q_weight=0.00195 * minthresh=5 maxthresh=15 queue-size=60 * linterm=30 * dropmech=drop-tail * bytes=false (can't be handled by 32-bit fixed-point) * doubleq=false dqthresh=false * wait=true */ /* * alternative red parameters for a slow link. * * assume the queue length becomes from zero to L and keeps L, it takes * N packets for q_avg to reach 63% of L. * when q_weight is 0.002, N is about 500 packets. * for a slow link like dial-up, 500 packets takes more than 1 minute! * when q_weight is 0.008, N is about 127 packets. * when q_weight is 0.016, N is about 63 packets. * bursts of 50 packets are allowed for 0.002, bursts of 25 packets * are allowed for 0.016. * see Sally's paper for more details. */ /* normal red parameters */ #define W_WEIGHT 512 /* inverse of weight of EWMA (511/512) */ /* q_weight = 0.00195 */ /* red parameters for a slow link */ #define W_WEIGHT_1 128 /* inverse of weight of EWMA (127/128) */ /* q_weight = 0.0078125 */ /* red parameters for a very slow link (e.g., dialup) */ #define W_WEIGHT_2 64 /* inverse of weight of EWMA (63/64) */ /* q_weight = 0.015625 */ /* fixed-point uses 12-bit decimal places */ #define FP_SHIFT 12 /* fixed-point shift */ /* red parameters for drop probability */ #define INV_P_MAX 10 /* inverse of max drop probability */ #define TH_MIN 5 /* min threshold */ #define TH_MAX 15 /* max threshold */ #define RED_LIMIT 60 /* default max queue lenght */ #define RED_STATS /* collect statistics */ /* * our default policy for forced-drop is drop-tail. * (in altq-1.1.2 or earlier, the default was random-drop. * but it makes more sense to punish the cause of the surge.) * to switch to the random-drop policy, define "RED_RANDOM_DROP". */ /* default red parameter values */ static int default_th_min = TH_MIN; static int default_th_max = TH_MAX; static int default_inv_pmax = INV_P_MAX; /* * red support routines */ red_t * red_alloc(int weight, int inv_pmax, int th_min, int th_max, int flags, int pkttime) { red_t *rp; int w, i; int npkts_per_sec; rp = malloc(sizeof(*rp), M_ALTQ, M_WAITOK | M_ZERO); rp->red_avg = 0; rp->red_idle = 1; if (weight == 0) rp->red_weight = W_WEIGHT; else rp->red_weight = weight; if (inv_pmax == 0) rp->red_inv_pmax = default_inv_pmax; else rp->red_inv_pmax = inv_pmax; if (th_min == 0) rp->red_thmin = default_th_min; else rp->red_thmin = th_min; if (th_max == 0) rp->red_thmax = default_th_max; else rp->red_thmax = th_max; rp->red_flags = flags; if (pkttime == 0) /* default packet time: 1000 bytes / 10Mbps * 8 * 1000000 */ rp->red_pkttime = 800; else rp->red_pkttime = pkttime; if (weight == 0) { /* when the link is very slow, adjust red parameters */ npkts_per_sec = 1000000 / rp->red_pkttime; if (npkts_per_sec < 50) { /* up to about 400Kbps */ rp->red_weight = W_WEIGHT_2; } else if (npkts_per_sec < 300) { /* up to about 2.4Mbps */ rp->red_weight = W_WEIGHT_1; } } /* calculate wshift. weight must be power of 2 */ w = rp->red_weight; for (i = 0; w > 1; i++) w = w >> 1; rp->red_wshift = i; w = 1 << rp->red_wshift; if (w != rp->red_weight) { printf("invalid weight value %d for red! use %d\n", rp->red_weight, w); rp->red_weight = w; } /* * thmin_s and thmax_s are scaled versions of th_min and th_max * to be compared with avg. */ rp->red_thmin_s = rp->red_thmin << (rp->red_wshift + FP_SHIFT); rp->red_thmax_s = rp->red_thmax << (rp->red_wshift + FP_SHIFT); /* * precompute probability denominator * probd = (2 * (TH_MAX-TH_MIN) / pmax) in fixed-point */ rp->red_probd = (2 * (rp->red_thmax - rp->red_thmin) * rp->red_inv_pmax) << FP_SHIFT; /* allocate weight table */ rp->red_wtab = wtab_alloc(rp->red_weight); microtime(&rp->red_last); return (rp); } void red_destroy(red_t *rp) { wtab_destroy(rp->red_wtab); free(rp, M_ALTQ); } void red_getstats(red_t *rp, struct redstats *sp) { sp->q_avg = rp->red_avg >> rp->red_wshift; sp->xmit_cnt = rp->red_stats.xmit_cnt; sp->drop_cnt = rp->red_stats.drop_cnt; sp->drop_forced = rp->red_stats.drop_forced; sp->drop_unforced = rp->red_stats.drop_unforced; sp->marked_packets = rp->red_stats.marked_packets; } int red_addq(red_t *rp, class_queue_t *q, struct mbuf *m, struct altq_pktattr *pktattr) { int avg, droptype; int n; avg = rp->red_avg; /* * if we were idle, we pretend that n packets arrived during * the idle period. */ if (rp->red_idle) { struct timeval now; int t; rp->red_idle = 0; microtime(&now); t = (now.tv_sec - rp->red_last.tv_sec); if (t > 60) { /* * being idle for more than 1 minute, set avg to zero. * this prevents t from overflow. */ avg = 0; } else { t = t * 1000000 + (now.tv_usec - rp->red_last.tv_usec); n = t / rp->red_pkttime - 1; /* the following line does (avg = (1 - Wq)^n * avg) */ if (n > 0) avg = (avg >> FP_SHIFT) * pow_w(rp->red_wtab, n); } } /* run estimator. (note: avg is scaled by WEIGHT in fixed-point) */ avg += (qlen(q) << FP_SHIFT) - (avg >> rp->red_wshift); rp->red_avg = avg; /* save the new value */ /* * red_count keeps a tally of arriving traffic that has not * been dropped. */ rp->red_count++; /* see if we drop early */ droptype = DTYPE_NODROP; if (avg >= rp->red_thmin_s && qlen(q) > 1) { if (avg >= rp->red_thmax_s) { /* avg >= th_max: forced drop */ droptype = DTYPE_FORCED; } else if (rp->red_old == 0) { /* first exceeds th_min */ rp->red_count = 1; rp->red_old = 1; } else if (drop_early((avg - rp->red_thmin_s) >> rp->red_wshift, rp->red_probd, rp->red_count)) { /* mark or drop by red */ if ((rp->red_flags & REDF_ECN) && mark_ecn(m, pktattr, rp->red_flags)) { /* successfully marked. do not drop. */ rp->red_count = 0; #ifdef RED_STATS rp->red_stats.marked_packets++; #endif } else { /* unforced drop by red */ droptype = DTYPE_EARLY; } } } else { /* avg < th_min */ rp->red_old = 0; } /* * if the queue length hits the hard limit, it's a forced drop. */ if (droptype == DTYPE_NODROP && qlen(q) >= qlimit(q)) droptype = DTYPE_FORCED; #ifdef RED_RANDOM_DROP /* if successful or forced drop, enqueue this packet. */ if (droptype != DTYPE_EARLY) _addq(q, m); #else /* if successful, enqueue this packet. */ if (droptype == DTYPE_NODROP) _addq(q, m); #endif if (droptype != DTYPE_NODROP) { if (droptype == DTYPE_EARLY) { /* drop the incoming packet */ #ifdef RED_STATS rp->red_stats.drop_unforced++; #endif } else { /* forced drop, select a victim packet in the queue. */ #ifdef RED_RANDOM_DROP m = _getq_random(q); #endif #ifdef RED_STATS rp->red_stats.drop_forced++; #endif } #ifdef RED_STATS PKTCNTR_ADD(&rp->red_stats.drop_cnt, m_pktlen(m)); #endif rp->red_count = 0; m_freem(m); return (-1); } /* successfully queued */ #ifdef RED_STATS PKTCNTR_ADD(&rp->red_stats.xmit_cnt, m_pktlen(m)); #endif return (0); } /* * early-drop probability is calculated as follows: * prob = p_max * (avg - th_min) / (th_max - th_min) * prob_a = prob / (2 - count*prob) * = (avg-th_min) / (2*(th_max-th_min)*inv_p_max - count*(avg-th_min)) * here prob_a increases as successive undrop count increases. * (prob_a starts from prob/2, becomes prob when (count == (1 / prob)), * becomes 1 when (count >= (2 / prob))). */ int drop_early(int fp_len, int fp_probd, int count) { int d; /* denominator of drop-probability */ d = fp_probd - count * fp_len; if (d <= 0) { /* count exceeds the hard limit: drop or mark */ return (1); } /* * now the range of d is [1..600] in fixed-point. (when * th_max-th_min=10 and p_max=1/30) * drop probability = (avg - TH_MIN) / d */ if ((arc4random() % d) < fp_len) { /* drop or mark */ return (1); } /* no drop/mark */ return (0); } /* * try to mark CE bit to the packet. * returns 1 if successfully marked, 0 otherwise. */ int mark_ecn(struct mbuf *m, struct altq_pktattr *pktattr, int flags) { struct mbuf *m0; void *hdr; int af; if ((m->m_pkthdr.fw_flags & ALTQ_MBUF_TAGGED) == 0) return (0); af = m->m_pkthdr.ecn_af; hdr = m->m_pkthdr.header; if (af != AF_INET && af != AF_INET6) return (0); /* verify that pattr_hdr is within the mbuf data */ for (m0 = m; m0 != NULL; m0 = m0->m_next) { if (((caddr_t)hdr >= m0->m_data) && ((caddr_t)hdr < m0->m_data + m0->m_len)) break; } if (m0 == NULL) { /* ick, tag info is stale */ return (0); } switch (af) { case AF_INET: if (flags & REDF_ECN4) { struct ip *ip = hdr; uint8_t otos; int sum; if (ip->ip_v != 4) return (0); /* version mismatch! */ if ((ip->ip_tos & IPTOS_ECN_MASK) == IPTOS_ECN_NOTECT) return (0); /* not-ECT */ if ((ip->ip_tos & IPTOS_ECN_MASK) == IPTOS_ECN_CE) return (1); /* already marked */ /* * ecn-capable but not marked, * mark CE and update checksum */ otos = ip->ip_tos; ip->ip_tos |= IPTOS_ECN_CE; /* * update checksum (from RFC1624) * HC' = ~(~HC + ~m + m') */ sum = ~ntohs(ip->ip_sum) & 0xffff; sum += (~otos & 0xffff) + ip->ip_tos; sum = (sum >> 16) + (sum & 0xffff); sum += (sum >> 16); /* add carry */ ip->ip_sum = htons(~sum & 0xffff); return (1); } break; #ifdef INET6 case AF_INET6: if (flags & REDF_ECN6) { struct ip6_hdr *ip6 = hdr; uint32_t flowlabel; flowlabel = ntohl(ip6->ip6_flow); if ((flowlabel >> 28) != 6) return (0); /* version mismatch! */ if ((flowlabel & (IPTOS_ECN_MASK << 20)) == (IPTOS_ECN_NOTECT << 20)) return (0); /* not-ECT */ if ((flowlabel & (IPTOS_ECN_MASK << 20)) == (IPTOS_ECN_CE << 20)) return (1); /* already marked */ /* * ecn-capable but not marked, mark CE */ flowlabel |= (IPTOS_ECN_CE << 20); ip6->ip6_flow = htonl(flowlabel); return (1); } break; #endif /* INET6 */ } /* not marked */ return (0); } struct mbuf * red_getq(red_t *rp, class_queue_t *q) { struct mbuf *m; if ((m = _getq(q)) == NULL) { if (rp->red_idle == 0) { rp->red_idle = 1; microtime(&rp->red_last); } return NULL; } rp->red_idle = 0; return (m); } /* * helper routine to calibrate avg during idle. * pow_w(wtab, n) returns (1 - Wq)^n in fixed-point * here Wq = 1/weight and the code assumes Wq is close to zero. * * w_tab[n] holds ((1 - Wq)^(2^n)) in fixed-point. */ static SLIST_HEAD(, wtab) wtab_list = SLIST_HEAD_INITIALIZER(&wtab_list); struct wtab * wtab_alloc(int weight) { struct wtab *w; int i; SLIST_FOREACH(w, &wtab_list, w_link) { if (w->w_weight == weight) { w->w_refcount++; return (w); } } w = malloc(sizeof(*w), M_ALTQ, M_WAITOK | M_ZERO); w->w_weight = weight; w->w_refcount = 1; SLIST_INSERT_HEAD(&wtab_list, w, w_link); /* initialize the weight table */ w->w_tab[0] = ((weight - 1) << FP_SHIFT) / weight; for (i = 1; i < 32; i++) { w->w_tab[i] = (w->w_tab[i-1] * w->w_tab[i-1]) >> FP_SHIFT; if (w->w_tab[i] == 0 && w->w_param_max == 0) w->w_param_max = 1 << i; } return (w); } int wtab_destroy(struct wtab *w) { if (--w->w_refcount > 0) return (0); SLIST_REMOVE(&wtab_list, w, wtab, w_link); free(w, M_ALTQ); return (0); } int32_t pow_w(struct wtab *w, int n) { int i, bit; int32_t val; if (n >= w->w_param_max) return (0); val = 1 << FP_SHIFT; if (n <= 0) return (val); bit = 1; i = 0; while (n) { if (n & bit) { val = (val * w->w_tab[i]) >> FP_SHIFT; n &= ~bit; } i++; bit <<= 1; } return (val); } #endif /* ALTQ_RED */