/* sta.c -- Implementation File (module.c template V1.0) Copyright (C) 1995-1997 Free Software Foundation, Inc. Contributed by James Craig Burley. This file is part of GNU Fortran. GNU Fortran is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. GNU Fortran is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GNU Fortran; see the file COPYING. If not, write to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. Related Modules: None Description: Analyzes the first two tokens, figures out what statements are possible, tries parsing the possible statements by calling on the ffestb functions. Modifications: */ /* Include files. */ #include "proj.h" #include "sta.h" #include "bad.h" #include "implic.h" #include "lex.h" #include "malloc.h" #include "stb.h" #include "stc.h" #include "std.h" #include "str.h" #include "storag.h" #include "symbol.h" /* Externals defined here. */ ffelexToken ffesta_tokens[FFESTA_tokensMAX]; /* For use by a possible. */ ffestrFirst ffesta_first_kw; /* First NAME(S) looked up. */ ffestrSecond ffesta_second_kw; /* Second NAME(S) looked up. */ mallocPool ffesta_output_pool; /* Pool for results of stmt handling. */ mallocPool ffesta_scratch_pool; /* Pool for stmt scratch handling. */ ffelexToken ffesta_construct_name; ffelexToken ffesta_label_token; /* Pending label stuff. */ bool ffesta_seen_first_exec; bool ffesta_is_entry_valid = FALSE; /* TRUE only in SUBROUTINE/FUNCTION. */ bool ffesta_line_has_semicolons = FALSE; /* Simple definitions and enumerations. */ #define FFESTA_ABORT_ON_CONFIRM_ 1 /* 0=slow, tested way; 1=faster way that might not always work. Here's the old description of what used to not work with ==1: (try "CONTINUE\10 FORMAT('hi',I11)\END"). Problem is that the "topology" of the confirmed stmt's tokens with regard to CHARACTER, HOLLERITH, NAME/NAMES/NUMBER tokens (like hex numbers), isn't traced if we abort early, then other stmts might get their grubby hands on those unprocessed tokens and commit them improperly. Ideal fix is to rerun the confirmed stmt and forget the rest. */ #define FFESTA_maxPOSSIBLES_ 8/* Never more than this # of possibles. */ /* Internal typedefs. */ typedef struct _ffesta_possible_ *ffestaPossible_; /* Private include files. */ /* Internal structure definitions. */ struct _ffesta_possible_ { ffestaPossible_ next; ffestaPossible_ previous; ffelexHandler handler; bool named; }; struct _ffesta_possible_root_ { ffestaPossible_ first; ffestaPossible_ last; ffelexHandler nil; }; /* Static objects accessed by functions in this module. */ static bool ffesta_is_inhibited_ = FALSE; static ffelexToken ffesta_token_0_; /* For use by ffest possibility handling. */ static ffestaPossible_ ffesta_possibles_[FFESTA_maxPOSSIBLES_]; static int ffesta_num_possibles_ = 0; /* Number of possibilities. */ static struct _ffesta_possible_root_ ffesta_possible_nonexecs_; static struct _ffesta_possible_root_ ffesta_possible_execs_; static ffestaPossible_ ffesta_current_possible_; static ffelexHandler ffesta_current_handler_; static bool ffesta_confirmed_current_ = FALSE; static bool ffesta_confirmed_other_ = FALSE; static ffestaPossible_ ffesta_confirmed_possible_; static bool ffesta_current_shutdown_ = FALSE; #if !FFESTA_ABORT_ON_CONFIRM_ static bool ffesta_is_two_into_statement_ = FALSE; /* For IF, WHERE stmts. */ static ffelexToken ffesta_twotokens_1_; /* For IF, WHERE stmts. */ static ffelexToken ffesta_twotokens_2_; /* For IF, WHERE stmts. */ #endif static ffestaPooldisp ffesta_outpooldisp_; /* After statement dealt with. */ static bool ffesta_inhibit_confirmation_ = FALSE; /* Static functions (internal). */ static void ffesta_add_possible_ (ffelexHandler fn, bool exec, bool named); static bool ffesta_inhibited_exec_transition_ (void); static void ffesta_reset_possibles_ (void); static ffelexHandler ffesta_save_ (ffelexToken t); static ffelexHandler ffesta_second_ (ffelexToken t); #if !FFESTA_ABORT_ON_CONFIRM_ static ffelexHandler ffesta_send_two_ (ffelexToken t); #endif /* Internal macros. */ #define ffesta_add_possible_exec_(fn) (ffesta_add_possible_ (fn, TRUE, TRUE)) #define ffesta_add_possible_nonexec_(fn) (ffesta_add_possible_ (fn, FALSE, TRUE)) #define ffesta_add_possible_unnamed_exec_(fn) (ffesta_add_possible_ (fn, TRUE, FALSE)) #define ffesta_add_possible_unnamed_nonexec_(fn) (ffesta_add_possible_ (fn, FALSE, FALSE)) /* Add possible statement to appropriate list. */ static void ffesta_add_possible_ (ffelexHandler fn, bool exec, bool named) { ffestaPossible_ p; assert (ffesta_num_possibles_ < FFESTA_maxPOSSIBLES_); p = ffesta_possibles_[ffesta_num_possibles_++]; if (exec) { p->next = (ffestaPossible_) &ffesta_possible_execs_.first; p->previous = ffesta_possible_execs_.last; } else { p->next = (ffestaPossible_) &ffesta_possible_nonexecs_.first; p->previous = ffesta_possible_nonexecs_.last; } p->next->previous = p; p->previous->next = p; p->handler = fn; p->named = named; } /* ffesta_inhibited_exec_transition_ -- Do exec transition while inhibited if (!ffesta_inhibited_exec_transition_()) // couldn't transition... Invokes ffestc_exec_transition, but first enables ffebad and ffesta and afterwards disables them again. Then returns the result of the invocation of ffestc_exec_transition. */ static bool ffesta_inhibited_exec_transition_ () { bool result; assert (ffebad_inhibit ()); assert (ffesta_is_inhibited_); ffebad_set_inhibit (FALSE); ffesta_is_inhibited_ = FALSE; result = ffestc_exec_transition (); ffebad_set_inhibit (TRUE); ffesta_is_inhibited_ = TRUE; return result; } /* ffesta_reset_possibles_ -- Reset (clear) lists of possible statements ffesta_reset_possibles_(); Clears the lists of executable and nonexecutable statements. */ static void ffesta_reset_possibles_ () { ffesta_num_possibles_ = 0; ffesta_possible_execs_.first = ffesta_possible_execs_.last = (ffestaPossible_) &ffesta_possible_execs_.first; ffesta_possible_nonexecs_.first = ffesta_possible_nonexecs_.last = (ffestaPossible_) &ffesta_possible_nonexecs_.first; } /* ffesta_save_ -- Save token on list, pass thru to current handler return ffesta_save_; // to lexer. Receives a token from the lexer. Saves it in the list of tokens. Calls the current handler with the token. If no shutdown error occurred (via ffest_ffebad_start), then if the token was EOS or SEMICOLON, mark the current possible as successful and confirmed but try the next possible anyway until ambiguities in the form handling are ironed out. */ static ffelexHandler ffesta_save_ (ffelexToken t) { static ffelexToken *saved_tokens = NULL; /* A variable-sized array. */ static unsigned int num_saved_tokens = 0; /* Number currently saved. */ static unsigned int max_saved_tokens = 0; /* Maximum to be saved. */ unsigned int toknum; /* Index into saved_tokens array. */ ffelexToken eos; /* EOS created on-the-fly for shutdown purposes. */ ffelexToken t2; /* Another temporary token (no intersect with eos, btw). */ /* Save the current token. */ if (saved_tokens == NULL) { saved_tokens = (ffelexToken *) malloc_new_ksr (malloc_pool_image (), "FFEST Saved Tokens", (max_saved_tokens = 8) * sizeof (ffelexToken)); /* Start off with 8. */ } else if (num_saved_tokens >= max_saved_tokens) { toknum = max_saved_tokens; max_saved_tokens <<= 1; /* Multiply by two. */ assert (max_saved_tokens > toknum); saved_tokens = (ffelexToken *) malloc_resize_ksr (malloc_pool_image (), saved_tokens, max_saved_tokens * sizeof (ffelexToken), toknum * sizeof (ffelexToken)); } *(saved_tokens + num_saved_tokens++) = ffelex_token_use (t); /* Transmit the current token to the current handler. */ ffesta_current_handler_ = (ffelexHandler) (*ffesta_current_handler_) (t); /* See if this possible has been shut down, or confirmed in which case we might as well shut it down anyway to save time. */ if ((ffesta_current_shutdown_ || (FFESTA_ABORT_ON_CONFIRM_ && ffesta_confirmed_current_)) && !ffelex_expecting_character ()) { switch (ffelex_token_type (t)) { case FFELEX_typeEOS: case FFELEX_typeSEMICOLON: break; default: eos = ffelex_token_new_eos (ffelex_token_where_line (t), ffelex_token_where_column (t)); ffesta_inhibit_confirmation_ = ffesta_current_shutdown_; (*ffesta_current_handler_) (eos); ffesta_inhibit_confirmation_ = FALSE; ffelex_token_kill (eos); break; } } else { /* If this is an EOS or SEMICOLON token, switch to next handler, else return self as next handler for lexer. */ switch (ffelex_token_type (t)) { case FFELEX_typeEOS: case FFELEX_typeSEMICOLON: break; default: return (ffelexHandler) ffesta_save_; } } next_handler: /* :::::::::::::::::::: */ /* Note that a shutdown also happens after seeing the first two tokens after "IF (expr)" or "WHERE (expr)" where a statement follows, even though there is no error. This causes the IF or WHERE form to be implemented first before ffest_first is called for the first token in the following statement. */ if (ffesta_current_shutdown_) ffesta_current_shutdown_ = FALSE; /* Only after sending EOS! */ else assert (ffesta_confirmed_current_); if (ffesta_confirmed_current_) { ffesta_confirmed_current_ = FALSE; ffesta_confirmed_other_ = TRUE; } /* Pick next handler. */ ffesta_current_possible_ = ffesta_current_possible_->next; ffesta_current_handler_ = ffesta_current_possible_->handler; if (ffesta_current_handler_ == NULL) { /* No handler in this list, try exec list if not tried yet. */ if (ffesta_current_possible_ == (ffestaPossible_) &ffesta_possible_nonexecs_) { ffesta_current_possible_ = ffesta_possible_execs_.first; ffesta_current_handler_ = ffesta_current_possible_->handler; } if ((ffesta_current_handler_ == NULL) || (!ffesta_seen_first_exec && ((ffesta_confirmed_possible_ != NULL) || !ffesta_inhibited_exec_transition_ ()))) /* Don't run execs if: (decoding the "if" ^^^ up here ^^^) - we have no exec handler available, or - we haven't seen the first executable statement yet, and - we've confirmed a nonexec (otherwise even a nonexec would cause a transition), or - a nonexec-to-exec transition can't be made at the statement context level (as in an executable statement in the middle of a STRUCTURE definition); if it can be made, ffestc_exec_transition makes the corresponding transition at the statement state level so specification statements are no longer accepted following an unrecognized statement. (Note: it is valid for f_e_t_ to decide to always return TRUE by "shrieking" away the statement state stack until a transitionable state is reached. Or it can leave the stack as is and return FALSE.) If we decide not to run execs, enter this block to rerun the confirmed statement, if any. */ { /* At end of both lists! Pick confirmed or first possible. */ ffebad_set_inhibit (FALSE); ffesta_is_inhibited_ = FALSE; ffesta_confirmed_other_ = FALSE; ffesta_tokens[0] = ffesta_token_0_; if (ffesta_confirmed_possible_ == NULL) { /* No confirmed success, just use first named possible, or first possible if no named possibles. */ ffestaPossible_ possible = ffesta_possible_nonexecs_.first; ffestaPossible_ first = NULL; ffestaPossible_ first_named = NULL; ffestaPossible_ first_exec = NULL; for (;;) { if (possible->handler == NULL) { if (possible == (ffestaPossible_) &ffesta_possible_nonexecs_) { possible = first_exec = ffesta_possible_execs_.first; continue; } else break; } if (first == NULL) first = possible; if (possible->named && (first_named == NULL)) first_named = possible; possible = possible->next; } if (first_named != NULL) ffesta_current_possible_ = first_named; else if (ffesta_seen_first_exec && (first_exec != NULL)) ffesta_current_possible_ = first_exec; else ffesta_current_possible_ = first; ffesta_current_handler_ = ffesta_current_possible_->handler; assert (ffesta_current_handler_ != NULL); } else { /* Confirmed success, use it. */ ffesta_current_possible_ = ffesta_confirmed_possible_; ffesta_current_handler_ = ffesta_confirmed_possible_->handler; } ffesta_reset_possibles_ (); } else { /* Switching from [empty?] list of nonexecs to nonempty list of execs at this point. */ ffesta_tokens[0] = ffelex_token_use (ffesta_token_0_); ffesymbol_set_retractable (ffesta_scratch_pool); } } else { ffesta_tokens[0] = ffelex_token_use (ffesta_token_0_); ffesymbol_set_retractable (ffesta_scratch_pool); } /* Send saved tokens to current handler until either shut down or all tokens sent. */ for (toknum = 0; toknum < num_saved_tokens; ++toknum) { t = *(saved_tokens + toknum); switch (ffelex_token_type (t)) { case FFELEX_typeCHARACTER: ffelex_set_expecting_hollerith (0, '\0', ffewhere_line_unknown (), ffewhere_column_unknown ()); ffesta_current_handler_ = (ffelexHandler) (*ffesta_current_handler_) (t); break; case FFELEX_typeNAMES: if (ffelex_is_names_expected ()) ffesta_current_handler_ = (ffelexHandler) (*ffesta_current_handler_) (t); else { t2 = ffelex_token_name_from_names (t, 0, 0); ffesta_current_handler_ = (ffelexHandler) (*ffesta_current_handler_) (t2); ffelex_token_kill (t2); } break; default: ffesta_current_handler_ = (ffelexHandler) (*ffesta_current_handler_) (t); break; } if (!ffesta_is_inhibited_) ffelex_token_kill (t); /* Won't need this any more. */ /* See if this possible has been shut down. */ else if ((ffesta_current_shutdown_ || (FFESTA_ABORT_ON_CONFIRM_ && ffesta_confirmed_current_)) && !ffelex_expecting_character ()) { switch (ffelex_token_type (t)) { case FFELEX_typeEOS: case FFELEX_typeSEMICOLON: break; default: eos = ffelex_token_new_eos (ffelex_token_where_line (t), ffelex_token_where_column (t)); ffesta_inhibit_confirmation_ = ffesta_current_shutdown_; (*ffesta_current_handler_) (eos); ffesta_inhibit_confirmation_ = FALSE; ffelex_token_kill (eos); break; } goto next_handler; /* :::::::::::::::::::: */ } } /* Finished sending all the tokens so far. If still trying possibilities, then if we've just sent an EOS or SEMICOLON token through, go to the next handler. Otherwise, return self so we can gather and process more tokens. */ if (ffesta_is_inhibited_) { switch (ffelex_token_type (t)) { case FFELEX_typeEOS: case FFELEX_typeSEMICOLON: goto next_handler; /* :::::::::::::::::::: */ default: #if FFESTA_ABORT_ON_CONFIRM_ assert (!ffesta_confirmed_other_); /* Catch ambiguities. */ #endif return (ffelexHandler) ffesta_save_; } } /* This was the one final possibility, uninhibited, so send the final handler it sent. */ num_saved_tokens = 0; #if !FFESTA_ABORT_ON_CONFIRM_ if (ffesta_is_two_into_statement_) { /* End of the line for the previous two tokens, resurrect them. */ ffelexHandler next; ffesta_is_two_into_statement_ = FALSE; next = (ffelexHandler) ffesta_first (ffesta_twotokens_1_); ffelex_token_kill (ffesta_twotokens_1_); next = (ffelexHandler) (*next) (ffesta_twotokens_2_); ffelex_token_kill (ffesta_twotokens_2_); return (ffelexHandler) next; } #endif assert (ffesta_current_handler_ != NULL); return (ffelexHandler) ffesta_current_handler_; } /* ffesta_second_ -- Parse the token after a NAME/NAMES in a statement return ffesta_second_; // to lexer. The second token cannot be a NAMES, since the first token is a NAME or NAMES. If the second token is a NAME, look up its name in the list of second names for use by whoever needs it. Then make a list of all the possible statements this could be, based on looking at the first two tokens. Two lists of possible statements are created, one consisting of nonexecutable statements, the other consisting of executable statements. If the total number of possibilities is one, just fire up that possibility by calling its handler function, passing the first two tokens through it and so on. Otherwise, start up a process whereby tokens are passed to the first possibility on the list until EOS or SEMICOLON is reached or an error is detected. But inhibit any actual reporting of errors; just record their existence in the list. If EOS or SEMICOLON is reached with no errors (other than non-form errors happening downstream, such as an overflowing value for an integer or a GOTO statement identifying a label on a FORMAT statement), then that is the only possible statement. Rerun the statement with error-reporting turned on if any non-form errors were generated, otherwise just use its results, then erase the list of tokens memorized during the search process. If a form error occurs, immediately cancel that possibility by sending EOS as the next token, remember the error code for that possibility, and try the next possibility on the list, first sending it the list of tokens memorized while handling the first possibility, then continuing on as before. Ultimately, either the end of the list of possibilities will be reached without any successful forms being detected, in which case we pick one based on hueristics (usually the first possibility) and rerun it with error reporting turned on using the list of memorized tokens so the user sees the error, or one of the possibilities will effectively succeed. */ static ffelexHandler ffesta_second_ (ffelexToken t) { ffelexHandler next; ffesymbol s; assert (ffelex_token_type (t) != FFELEX_typeNAMES); if (ffelex_token_type (t) == FFELEX_typeNAME) ffesta_second_kw = ffestr_second (t); /* Here we use switch on the first keyword name and handle each possible recognizable name by looking at the second token, and building the list of possible names accordingly. For now, just put every possible statement on the list for ambiguity checking. */ switch (ffesta_first_kw) { #if FFESTR_VXT case FFESTR_firstACCEPT: ffesta_add_possible_exec_ ((ffelexHandler) ffestb_V019); break; #endif #if FFESTR_F90 case FFESTR_firstALLOCATABLE: ffestb_args.dimlist.len = FFESTR_firstlALLOCATABLE; ffestb_args.dimlist.badname = "ALLOCATABLE"; ffesta_add_possible_nonexec_ ((ffelexHandler) ffestb_dimlist); break; #endif #if FFESTR_F90 case FFESTR_firstALLOCATE: ffestb_args.heap.len = FFESTR_firstlALLOCATE; ffestb_args.heap.badname = "ALLOCATE"; ffestb_args.heap.ctx = FFEEXPR_contextALLOCATE; ffesta_add_possible_exec_ ((ffelexHandler) ffestb_heap); break; #endif case FFESTR_firstASSIGN: ffesta_add_possible_exec_ ((ffelexHandler) ffestb_R838); break; case FFESTR_firstBACKSPACE: ffestb_args.beru.len = FFESTR_firstlBACKSPACE; ffestb_args.beru.badname = "BACKSPACE"; ffesta_add_possible_exec_ ((ffelexHandler) ffestb_beru); break; case FFESTR_firstBLOCK: ffesta_add_possible_nonexec_ ((ffelexHandler) ffestb_block); break; case FFESTR_firstBLOCKDATA: ffesta_add_possible_nonexec_ ((ffelexHandler) ffestb_blockdata); break; case FFESTR_firstBYTE: ffestb_args.decl.len = FFESTR_firstlBYTE; ffestb_args.decl.type = FFESTP_typeBYTE; ffesta_add_possible_nonexec_ ((ffelexHandler) ffestb_decl_gentype); break; case FFESTR_firstCALL: ffesta_add_possible_exec_ ((ffelexHandler) ffestb_R1212); break; case FFESTR_firstCASE: case FFESTR_firstCASEDEFAULT: ffesta_add_possible_exec_ ((ffelexHandler) ffestb_R810); break; case FFESTR_firstCHRCTR: ffesta_add_possible_nonexec_ ((ffelexHandler) ffestb_decl_chartype); break; case FFESTR_firstCLOSE: ffesta_add_possible_exec_ ((ffelexHandler) ffestb_R907); break; case FFESTR_firstCOMMON: ffesta_add_possible_nonexec_ ((ffelexHandler) ffestb_R547); break; case FFESTR_firstCMPLX: ffestb_args.decl.len = FFESTR_firstlCMPLX; ffestb_args.decl.type = FFESTP_typeCOMPLEX; ffesta_add_possible_nonexec_ ((ffelexHandler) ffestb_decl_gentype); break; #if FFESTR_F90 case FFESTR_firstCONTAINS: ffesta_add_possible_exec_ ((ffelexHandler) ffestb_R1228); break; #endif case FFESTR_firstCONTINUE: ffesta_add_possible_exec_ ((ffelexHandler) ffestb_R841); break; case FFESTR_firstCYCLE: ffesta_add_possible_exec_ ((ffelexHandler) ffestb_R834); break; case FFESTR_firstDATA: if (ffe_is_pedantic_not_90 ()) ffesta_add_possible_exec_ ((ffelexHandler) ffestb_R528); else ffesta_add_possible_nonexec_ ((ffelexHandler) ffestb_R528); break; #if FFESTR_F90 case FFESTR_firstDEALLOCATE: ffestb_args.heap.len = FFESTR_firstlDEALLOCATE; ffestb_args.heap.badname = "DEALLOCATE"; ffestb_args.heap.ctx = FFEEXPR_contextDEALLOCATE; ffesta_add_possible_exec_ ((ffelexHandler) ffestb_heap); break; #endif #if FFESTR_VXT case FFESTR_firstDECODE: ffestb_args.vxtcode.len = FFESTR_firstlDECODE; ffestb_args.vxtcode.badname = "DECODE"; ffesta_add_possible_exec_ ((ffelexHandler) ffestb_vxtcode); break; #endif #if FFESTR_VXT case FFESTR_firstDEFINEFILE: ffesta_add_possible_exec_ ((ffelexHandler) ffestb_V025); break; case FFESTR_firstDELETE: ffesta_add_possible_exec_ ((ffelexHandler) ffestb_V021); break; #endif case FFESTR_firstDIMENSION: ffestb_args.R524.len = FFESTR_firstlDIMENSION; ffestb_args.R524.badname = "DIMENSION"; ffesta_add_possible_nonexec_ ((ffelexHandler) ffestb_R524); break; case FFESTR_firstDO: ffesta_add_possible_exec_ ((ffelexHandler) ffestb_do); break; case FFESTR_firstDBL: ffesta_add_possible_nonexec_ ((ffelexHandler) ffestb_decl_double); break; case FFESTR_firstDBLCMPLX: ffestb_args.decl.len = FFESTR_firstlDBLCMPLX; ffestb_args.decl.type = FFESTP_typeDBLCMPLX; ffesta_add_possible_nonexec_ ((ffelexHandler) ffestb_decl_dbltype); break; case FFESTR_firstDBLPRCSN: ffestb_args.decl.len = FFESTR_firstlDBLPRCSN; ffestb_args.decl.type = FFESTP_typeDBLPRCSN; ffesta_add_possible_nonexec_ ((ffelexHandler) ffestb_decl_dbltype); break; case FFESTR_firstDOWHILE: ffesta_add_possible_exec_ ((ffelexHandler) ffestb_dowhile); break; case FFESTR_firstELSE: ffesta_add_possible_exec_ ((ffelexHandler) ffestb_else); break; case FFESTR_firstELSEIF: ffestb_args.elsexyz.second = FFESTR_secondIF; ffesta_add_possible_exec_ ((ffelexHandler) ffestb_elsexyz); break; #if FFESTR_F90 case FFESTR_firstELSEWHERE: ffestb_args.elsexyz.second = FFESTR_secondWHERE; ffesta_add_possible_exec_ ((ffelexHandler) ffestb_elsexyz); break; #endif #if FFESTR_VXT case FFESTR_firstENCODE: ffestb_args.vxtcode.len = FFESTR_firstlENCODE; ffestb_args.vxtcode.badname = "ENCODE"; ffesta_add_possible_exec_ ((ffelexHandler) ffestb_vxtcode); break; #endif case FFESTR_firstEND: if ((ffelex_token_type (ffesta_token_0_) == FFELEX_typeNAMES) || (ffelex_token_type (t) != FFELEX_typeNAME)) ffesta_add_possible_exec_ ((ffelexHandler) ffestb_end); else { switch (ffesta_second_kw) { case FFESTR_secondBLOCK: case FFESTR_secondBLOCKDATA: case FFESTR_secondDO: case FFESTR_secondFILE: case FFESTR_secondFUNCTION: case FFESTR_secondIF: #if FFESTR_F90 case FFESTR_secondMODULE: #endif case FFESTR_secondPROGRAM: case FFESTR_secondSELECT: case FFESTR_secondSUBROUTINE: #if FFESTR_F90 case FFESTR_secondWHERE: #endif ffesta_add_possible_exec_ ((ffelexHandler) ffestb_end); break; default: ffesta_add_possible_nonexec_ ((ffelexHandler) ffestb_end); break; } } break; case FFESTR_firstENDBLOCK: ffestb_args.endxyz.len = FFESTR_firstlENDBLOCK; ffestb_args.endxyz.second = FFESTR_secondBLOCK; ffesta_add_possible_exec_ ((ffelexHandler) ffestb_endxyz); break; case FFESTR_firstENDBLOCKDATA: ffestb_args.endxyz.len = FFESTR_firstlENDBLOCKDATA; ffestb_args.endxyz.second = FFESTR_secondBLOCKDATA; ffesta_add_possible_exec_ ((ffelexHandler) ffestb_endxyz); break; case FFESTR_firstENDDO: ffestb_args.endxyz.len = FFESTR_firstlENDDO; ffestb_args.endxyz.second = FFESTR_secondDO; ffesta_add_possible_exec_ ((ffelexHandler) ffestb_endxyz); break; case FFESTR_firstENDFILE: ffestb_args.beru.len = FFESTR_firstlENDFILE; ffestb_args.beru.badname = "ENDFILE"; ffesta_add_possible_exec_ ((ffelexHandler) ffestb_beru); break; case FFESTR_firstENDFUNCTION: ffestb_args.endxyz.len = FFESTR_firstlENDFUNCTION; ffestb_args.endxyz.second = FFESTR_secondFUNCTION; ffesta_add_possible_exec_ ((ffelexHandler) ffestb_endxyz); break; case FFESTR_firstENDIF: ffestb_args.endxyz.len = FFESTR_firstlENDIF; ffestb_args.endxyz.second = FFESTR_secondIF; ffesta_add_possible_exec_ ((ffelexHandler) ffestb_endxyz); break; #if FFESTR_F90 case FFESTR_firstENDINTERFACE: ffestb_args.endxyz.len = FFESTR_firstlENDINTERFACE; ffestb_args.endxyz.second = FFESTR_secondINTERFACE; ffesta_add_possible_nonexec_ ((ffelexHandler) ffestb_endxyz); break; #endif #if FFESTR_VXT case FFESTR_firstENDMAP: ffestb_args.endxyz.len = FFESTR_firstlENDMAP; ffestb_args.endxyz.second = FFESTR_secondMAP; ffesta_add_possible_nonexec_ ((ffelexHandler) ffestb_endxyz); break; #endif #if FFESTR_F90 case FFESTR_firstENDMODULE: ffestb_args.endxyz.len = FFESTR_firstlENDMODULE; ffestb_args.endxyz.second = FFESTR_secondMODULE; ffesta_add_possible_exec_ ((ffelexHandler) ffestb_endxyz); break; #endif case FFESTR_firstENDPROGRAM: ffestb_args.endxyz.len = FFESTR_firstlENDPROGRAM; ffestb_args.endxyz.second = FFESTR_secondPROGRAM; ffesta_add_possible_exec_ ((ffelexHandler) ffestb_endxyz); break; case FFESTR_firstENDSELECT: ffestb_args.endxyz.len = FFESTR_firstlENDSELECT; ffestb_args.endxyz.second = FFESTR_secondSELECT; ffesta_add_possible_exec_ ((ffelexHandler) ffestb_endxyz); break; #if FFESTR_VXT case FFESTR_firstENDSTRUCTURE: ffestb_args.endxyz.len = FFESTR_firstlENDSTRUCTURE; ffestb_args.endxyz.second = FFESTR_secondSTRUCTURE; ffesta_add_possible_nonexec_ ((ffelexHandler) ffestb_endxyz); break; #endif case FFESTR_firstENDSUBROUTINE: ffestb_args.endxyz.len = FFESTR_firstlENDSUBROUTINE; ffestb_args.endxyz.second = FFESTR_secondSUBROUTINE; ffesta_add_possible_exec_ ((ffelexHandler) ffestb_endxyz); break; #if FFESTR_F90 case FFESTR_firstENDTYPE: ffestb_args.endxyz.len = FFESTR_firstlENDTYPE; ffestb_args.endxyz.second = FFESTR_secondTYPE; ffesta_add_possible_nonexec_ ((ffelexHandler) ffestb_endxyz); break; #endif #if FFESTR_VXT case FFESTR_firstENDUNION: ffestb_args.endxyz.len = FFESTR_firstlENDUNION; ffestb_args.endxyz.second = FFESTR_secondUNION; ffesta_add_possible_nonexec_ ((ffelexHandler) ffestb_endxyz); break; #endif #if FFESTR_F90 case FFESTR_firstENDWHERE: ffestb_args.endxyz.len = FFESTR_firstlENDWHERE; ffestb_args.endxyz.second = FFESTR_secondWHERE; ffesta_add_possible_exec_ ((ffelexHandler) ffestb_endxyz); break; #endif case FFESTR_firstENTRY: ffestb_args.dummy.len = FFESTR_firstlENTRY; ffestb_args.dummy.badname = "ENTRY"; ffestb_args.dummy.is_subr = ffestc_is_entry_in_subr (); ffesta_add_possible_nonexec_ ((ffelexHandler) ffestb_dummy); break; case FFESTR_firstEQUIVALENCE: ffesta_add_possible_nonexec_ ((ffelexHandler) ffestb_R544); break; case FFESTR_firstEXIT: ffesta_add_possible_exec_ ((ffelexHandler) ffestb_R835); break; case FFESTR_firstEXTERNAL: ffestb_args.varlist.len = FFESTR_firstlEXTERNAL; ffestb_args.varlist.badname = "EXTERNAL"; ffesta_add_possible_nonexec_ ((ffelexHandler) ffestb_varlist); break; #if FFESTR_VXT case FFESTR_firstFIND: ffesta_add_possible_exec_ ((ffelexHandler) ffestb_V026); break; #endif /* WARNING: don't put anything that might cause an item to precede FORMAT in the list of possible statements (it's added below) without making sure FORMAT still is first. It has to run with ffelex_set_names_pure(TRUE), to make sure the lexer delivers NAMES tokens. */ case FFESTR_firstFORMAT: ffesta_add_possible_nonexec_ ((ffelexHandler) ffestb_R1001); break; case FFESTR_firstFUNCTION: ffestb_args.dummy.len = FFESTR_firstlFUNCTION; ffestb_args.dummy.badname = "FUNCTION"; ffestb_args.dummy.is_subr = FALSE; ffesta_add_possible_nonexec_ ((ffelexHandler) ffestb_dummy); break; case FFESTR_firstGOTO: ffesta_add_possible_exec_ ((ffelexHandler) ffestb_goto); break; case FFESTR_firstIF: ffesta_add_possible_exec_ ((ffelexHandler) ffestb_if); ffesta_add_possible_exec_ ((ffelexHandler) ffestb_R840); break; case FFESTR_firstIMPLICIT: ffesta_add_possible_nonexec_ ((ffelexHandler) ffestb_decl_R539); break; case FFESTR_firstINCLUDE: ffesta_add_possible_nonexec_ ((ffelexHandler) ffestb_S3P4); switch (ffelex_token_type (t)) { case FFELEX_typeNUMBER: case FFELEX_typeNAME: case FFELEX_typeAPOSTROPHE: case FFELEX_typeQUOTE: break; default: break; } break; case FFESTR_firstINQUIRE: ffesta_add_possible_exec_ ((ffelexHandler) ffestb_R923); break; case FFESTR_firstINTGR: ffestb_args.decl.len = FFESTR_firstlINTGR; ffestb_args.decl.type = FFESTP_typeINTEGER; ffesta_add_possible_nonexec_ ((ffelexHandler) ffestb_decl_gentype); break; #if FFESTR_F90 case FFESTR_firstINTENT: ffestb_args.varlist.len = FFESTR_firstlINTENT; ffestb_args.varlist.badname = "INTENT"; ffesta_add_possible_nonexec_ ((ffelexHandler) ffestb_varlist); break; #endif #if FFESTR_F90 case FFESTR_firstINTERFACE: ffesta_add_possible_nonexec_ ((ffelexHandler) ffestb_R1202); break; #endif case FFESTR_firstINTRINSIC: ffestb_args.varlist.len = FFESTR_firstlINTRINSIC; ffestb_args.varlist.badname = "INTRINSIC"; ffesta_add_possible_nonexec_ ((ffelexHandler) ffestb_varlist); break; case FFESTR_firstLGCL: ffestb_args.decl.len = FFESTR_firstlLGCL; ffestb_args.decl.type = FFESTP_typeLOGICAL; ffesta_add_possible_nonexec_ ((ffelexHandler) ffestb_decl_gentype); break; #if FFESTR_VXT case FFESTR_firstMAP: ffesta_add_possible_nonexec_ ((ffelexHandler) ffestb_V012); break; #endif #if FFESTR_F90 case FFESTR_firstMODULE: ffesta_add_possible_nonexec_ ((ffelexHandler) ffestb_module); break; #endif case FFESTR_firstNAMELIST: ffesta_add_possible_nonexec_ ((ffelexHandler) ffestb_R542); break; #if FFESTR_F90 case FFESTR_firstNULLIFY: ffesta_add_possible_exec_ ((ffelexHandler) ffestb_R624); break; #endif case FFESTR_firstOPEN: ffesta_add_possible_exec_ ((ffelexHandler) ffestb_R904); break; #if FFESTR_F90 case FFESTR_firstOPTIONAL: ffestb_args.varlist.len = FFESTR_firstlOPTIONAL; ffestb_args.varlist.badname = "OPTIONAL"; ffesta_add_possible_nonexec_ ((ffelexHandler) ffestb_varlist); break; #endif case FFESTR_firstPARAMETER: ffesta_add_possible_nonexec_ ((ffelexHandler) ffestb_R537); ffesta_add_possible_nonexec_ ((ffelexHandler) ffestb_V027); break; case FFESTR_firstPAUSE: ffestb_args.halt.len = FFESTR_firstlPAUSE; ffesta_add_possible_exec_ ((ffelexHandler) ffestb_halt); break; #if FFESTR_F90 case FFESTR_firstPOINTER: ffestb_args.dimlist.len = FFESTR_firstlPOINTER; ffestb_args.dimlist.badname = "POINTER"; ffesta_add_possible_nonexec_ ((ffelexHandler) ffestb_dimlist); break; #endif case FFESTR_firstPRINT: ffesta_add_possible_exec_ ((ffelexHandler) ffestb_R911); break; #if HARD_F90 case FFESTR_firstPRIVATE: ffestb_args.varlist.len = FFESTR_firstlPRIVATE; ffestb_args.varlist.badname = "ACCESS"; ffesta_add_possible_nonexec_ ((ffelexHandler) ffestb_varlist); break; #endif case FFESTR_firstPROGRAM: ffesta_add_possible_nonexec_ ((ffelexHandler) ffestb_R1102); break; #if HARD_F90 case FFESTR_firstPUBLIC: ffestb_args.varlist.len = FFESTR_firstlPUBLIC; ffestb_args.varlist.badname = "ACCESS"; ffesta_add_possible_nonexec_ ((ffelexHandler) ffestb_varlist); break; #endif case FFESTR_firstREAD: ffesta_add_possible_exec_ ((ffelexHandler) ffestb_R909); break; case FFESTR_firstREAL: ffestb_args.decl.len = FFESTR_firstlREAL; ffestb_args.decl.type = FFESTP_typeREAL; ffesta_add_possible_nonexec_ ((ffelexHandler) ffestb_decl_gentype); break; #if FFESTR_VXT case FFESTR_firstRECORD: ffesta_add_possible_nonexec_ ((ffelexHandler) ffestb_V016); break; #endif #if FFESTR_F90 case FFESTR_firstRECURSIVE: ffesta_add_possible_nonexec_ ((ffelexHandler) ffestb_decl_recursive); break; #endif case FFESTR_firstRETURN: ffesta_add_possible_exec_ ((ffelexHandler) ffestb_R1227); break; case FFESTR_firstREWIND: ffestb_args.beru.len = FFESTR_firstlREWIND; ffestb_args.beru.badname = "REWIND"; ffesta_add_possible_exec_ ((ffelexHandler) ffestb_beru); break; #if FFESTR_VXT case FFESTR_firstREWRITE: ffesta_add_possible_exec_ ((ffelexHandler) ffestb_V018); break; #endif case FFESTR_firstSAVE: ffesta_add_possible_nonexec_ ((ffelexHandler) ffestb_R522); break; case FFESTR_firstSELECT: ffesta_add_possible_exec_ ((ffelexHandler) ffestb_R809); break; case FFESTR_firstSELECTCASE: ffesta_add_possible_exec_ ((ffelexHandler) ffestb_R809); break; #if HARD_F90 case FFESTR_firstSEQUENCE: ffesta_add_possible_nonexec_ ((ffelexHandler) ffestb_R423B); break; #endif case FFESTR_firstSTOP: ffestb_args.halt.len = FFESTR_firstlSTOP; ffesta_add_possible_exec_ ((ffelexHandler) ffestb_halt); break; #if FFESTR_VXT case FFESTR_firstSTRUCTURE: ffesta_add_possible_nonexec_ ((ffelexHandler) ffestb_V003); break; #endif case FFESTR_firstSUBROUTINE: ffestb_args.dummy.len = FFESTR_firstlSUBROUTINE; ffestb_args.dummy.badname = "SUBROUTINE"; ffestb_args.dummy.is_subr = TRUE; ffesta_add_possible_nonexec_ ((ffelexHandler) ffestb_dummy); break; #if FFESTR_F90 case FFESTR_firstTARGET: ffestb_args.dimlist.len = FFESTR_firstlTARGET; ffestb_args.dimlist.badname = "TARGET"; ffesta_add_possible_nonexec_ ((ffelexHandler) ffestb_dimlist); break; #endif case FFESTR_firstTYPE: ffesta_add_possible_exec_ ((ffelexHandler) ffestb_V020); break; #if FFESTR_F90 case FFESTR_firstTYPE: ffesta_add_possible_nonexec_ ((ffelexHandler) ffestb_type); break; #endif #if HARD_F90 case FFESTR_firstTYPE: ffesta_add_possible_nonexec_ ((ffelexHandler) ffestb_decl_typetype); break; #endif #if FFESTR_VXT case FFESTR_firstUNLOCK: ffestb_args.beru.len = FFESTR_firstlUNLOCK; ffestb_args.beru.badname = "UNLOCK"; ffesta_add_possible_exec_ ((ffelexHandler) ffestb_beru); break; #endif #if FFESTR_VXT case FFESTR_firstUNION: ffesta_add_possible_nonexec_ ((ffelexHandler) ffestb_V009); break; #endif #if FFESTR_F90 case FFESTR_firstUSE: ffesta_add_possible_nonexec_ ((ffelexHandler) ffestb_R1107); break; #endif case FFESTR_firstVIRTUAL: ffestb_args.R524.len = FFESTR_firstlVIRTUAL; ffestb_args.R524.badname = "VIRTUAL"; ffesta_add_possible_nonexec_ ((ffelexHandler) ffestb_R524); break; case FFESTR_firstVOLATILE: ffesta_add_possible_nonexec_ ((ffelexHandler) ffestb_V014); break; #if HARD_F90 case FFESTR_firstWHERE: ffesta_add_possible_exec_ ((ffelexHandler) ffestb_where); break; #endif case FFESTR_firstWORD: ffestb_args.decl.len = FFESTR_firstlWORD; ffestb_args.decl.type = FFESTP_typeWORD; ffesta_add_possible_nonexec_ ((ffelexHandler) ffestb_decl_gentype); break; case FFESTR_firstWRITE: ffesta_add_possible_exec_ ((ffelexHandler) ffestb_R910); break; default: break; } /* Now check the default cases, which are always "live" (meaning that no other possibility can override them). These are where the second token is OPEN_PAREN, PERCENT, EQUALS, POINTS, or COLON. */ switch (ffelex_token_type (t)) { case FFELEX_typeOPEN_PAREN: s = ffesymbol_lookup_local (ffesta_token_0_); if (((s == NULL) || (ffesymbol_dims (s) == NULL)) && !ffesta_seen_first_exec) { /* Not known as array; may be stmt function. */ ffesta_add_possible_unnamed_nonexec_ ((ffelexHandler) ffestb_R1229); /* If the symbol is (or will be due to implicit typing) of CHARACTER type, then the statement might be an assignment statement. If so, since it can't be a function invocation nor an array element reference, the open paren following the symbol name must be followed by an expression and a colon. Without the colon (which cannot appear in a stmt function definition), the let stmt rejects. So CHARACTER_NAME(...)=expr, unlike any other type, is not ambiguous alone. */ if (ffeimplic_peek_symbol_type (s, ffelex_token_text (ffesta_token_0_)) == FFEINFO_basictypeCHARACTER) ffesta_add_possible_unnamed_exec_ ((ffelexHandler) ffestb_let); } else /* Not statement function if known as an array. */ ffesta_add_possible_unnamed_exec_ ((ffelexHandler) ffestb_let); break; #if FFESTR_F90 case FFELEX_typePERCENT: #endif case FFELEX_typeEQUALS: #if FFESTR_F90 case FFELEX_typePOINTS: #endif ffesta_add_possible_unnamed_exec_ ((ffelexHandler) ffestb_let); break; case FFELEX_typeCOLON: ffesta_add_possible_exec_ ((ffelexHandler) ffestb_construct); break; default: ; } /* Now see how many possibilities are on the list. */ switch (ffesta_num_possibles_) { case 0: /* None, so invalid statement. */ no_stmts: /* :::::::::::::::::::: */ ffesta_tokens[0] = ffesta_token_0_; ffesta_ffebad_2t (FFEBAD_UNREC_STMT, ffesta_token_0_, t); next = (ffelexHandler) ffelex_swallow_tokens (NULL, (ffelexHandler) ffesta_zero); break; case 1: /* One, so just do it! */ ffesta_tokens[0] = ffesta_token_0_; next = ffesta_possible_execs_.first->handler; if (next == NULL) { /* Have a nonexec stmt. */ next = ffesta_possible_nonexecs_.first->handler; assert (next != NULL); } else if (ffesta_seen_first_exec) ; /* Have an exec stmt after exec transition. */ else if (!ffestc_exec_transition ()) /* 1 exec stmt only, but not valid in context, so pretend as though statement is unrecognized. */ goto no_stmts; /* :::::::::::::::::::: */ break; default: /* More than one, so try them in order. */ ffesta_confirmed_possible_ = NULL; ffesta_current_possible_ = ffesta_possible_nonexecs_.first; ffesta_current_handler_ = ffesta_current_possible_->handler; if (ffesta_current_handler_ == NULL) { ffesta_current_possible_ = ffesta_possible_execs_.first; ffesta_current_handler_ = ffesta_current_possible_->handler; assert (ffesta_current_handler_ != NULL); if (!ffesta_seen_first_exec) { /* Need to do exec transition now. */ ffesta_tokens[0] = ffesta_token_0_; if (!ffestc_exec_transition ()) goto no_stmts; /* :::::::::::::::::::: */ } } ffesta_tokens[0] = ffelex_token_use (ffesta_token_0_); next = (ffelexHandler) ffesta_save_; ffebad_set_inhibit (TRUE); ffesta_is_inhibited_ = TRUE; break; } ffesta_output_pool = malloc_pool_new ("Statement Output", ffe_pool_program_unit (), 1024); ffesta_scratch_pool = malloc_pool_new ("Statement Scratch", ffe_pool_program_unit (), 1024); ffesta_outpooldisp_ = FFESTA_pooldispDISCARD; if (ffesta_is_inhibited_) ffesymbol_set_retractable (ffesta_scratch_pool); ffelex_set_names (FALSE); /* Most handlers will want this. If not, they have to set it TRUE again (its value at the beginning of a statement). */ return (ffelexHandler) (*next) (t); } /* ffesta_send_two_ -- Send the two tokens saved by ffesta_two after all return ffesta_send_two_; // to lexer. Currently, if this function gets called, it means that the two tokens saved by ffesta_two did not have their handlers derailed by ffesta_save_, which probably means they weren't sent by ffesta_save_ but directly by the lexer, which probably means the original statement (which should be IF (expr) or WHERE (expr)) somehow evaluated to only one possibility in ffesta_second_ or somebody optimized FFEST to immediately revert to one possibility upon confirmation but forgot to change this function (and thus perhaps the entire resubmission mechanism). */ #if !FFESTA_ABORT_ON_CONFIRM_ static ffelexHandler ffesta_send_two_ (ffelexToken t) { assert ("what am I doing here?" == NULL); return NULL; } #endif /* ffesta_confirmed -- Confirm current possibility as only one ffesta_confirmed(); Sets the confirmation flag. During debugging for ambiguous constructs, asserts that the confirmation flag for a previous possibility has not yet been set. */ void ffesta_confirmed () { if (ffesta_inhibit_confirmation_) return; ffesta_confirmed_current_ = TRUE; assert (!ffesta_confirmed_other_ || (ffesta_confirmed_possible_ == ffesta_current_possible_)); ffesta_confirmed_possible_ = ffesta_current_possible_; } /* ffesta_eof -- End of (non-INCLUDEd) source file ffesta_eof(); Call after piping tokens through ffest_first, where the most recent token sent through must be EOS. 20-Feb-91 JCB 1.1 Put new EOF token in ffesta_tokens[0], not NULL, because too much code expects something there for error reporting and the like. Also, do basically the same things ffest_second and ffesta_zero do for processing a statement (make and destroy pools, et cetera). */ void ffesta_eof () { ffesta_tokens[0] = ffelex_token_new_eof (); ffesta_output_pool = malloc_pool_new ("Statement Output", ffe_pool_program_unit (), 1024); ffesta_scratch_pool = malloc_pool_new ("Statement Scratch", ffe_pool_program_unit (), 1024); ffesta_outpooldisp_ = FFESTA_pooldispDISCARD; ffestc_eof (); if (ffesta_tokens[0] != NULL) ffelex_token_kill (ffesta_tokens[0]); if (ffesta_output_pool != NULL) { if (ffesta_outpooldisp_ == FFESTA_pooldispDISCARD) malloc_pool_kill (ffesta_output_pool); ffesta_output_pool = NULL; } if (ffesta_scratch_pool != NULL) { malloc_pool_kill (ffesta_scratch_pool); ffesta_scratch_pool = NULL; } if (ffesta_label_token != NULL) { ffelex_token_kill (ffesta_label_token); ffesta_label_token = NULL; } if (ffe_is_ffedebug ()) { ffestorag_report (); #if FFECOM_targetCURRENT == FFECOM_targetFFE ffesymbol_report_all (); #endif } } /* ffesta_ffebad_here_current_stmt -- ffebad_here with ptr to current stmt ffesta_ffebad_here_current_stmt(0); Outsiders can call this fn if they have no more convenient place to point to (via a token or pair of ffewhere objects) and they know a current, useful statement is being evaluted by ffest (i.e. they are being called from ffestb, ffestc, ffestd, ... functions). */ void ffesta_ffebad_here_current_stmt (ffebadIndex i) { assert (ffesta_tokens[0] != NULL); ffebad_here (i, ffelex_token_where_line (ffesta_tokens[0]), ffelex_token_where_column (ffesta_tokens[0])); } /* ffesta_ffebad_start -- Start a possibly inhibited error report if (ffesta_ffebad_start(FFEBAD_SOME_ERROR)) { ffebad_here, ffebad_string ...; ffebad_finish(); } Call if the error might indicate that ffest is evaluating the wrong statement form, instead of calling ffebad_start directly. If ffest is choosing between forms, it will return FALSE, send an EOS/SEMICOLON token through as the next token (if the current one isn't already one of those), and try another possible form. Otherwise, ffebad_start is called with the argument and TRUE returned. */ bool ffesta_ffebad_start (ffebad errnum) { if (!ffesta_is_inhibited_) { ffebad_start (errnum); return TRUE; } if (!ffesta_confirmed_current_) ffesta_current_shutdown_ = TRUE; return FALSE; } /* ffesta_first -- Parse the first token in a statement return ffesta_first; // to lexer. */ ffelexHandler ffesta_first (ffelexToken t) { switch (ffelex_token_type (t)) { case FFELEX_typeSEMICOLON: case FFELEX_typeEOS: ffesta_tokens[0] = ffelex_token_use (t); if (ffesta_label_token != NULL) { ffebad_start (FFEBAD_LABEL_WITHOUT_STMT); ffebad_here (0, ffelex_token_where_line (ffesta_label_token), ffelex_token_where_column (ffesta_label_token)); ffebad_string (ffelex_token_text (ffesta_label_token)); ffebad_here (1, ffelex_token_where_line (t), ffelex_token_where_column (t)); ffebad_finish (); } return (ffelexHandler) ffesta_zero (t); case FFELEX_typeNAME: case FFELEX_typeNAMES: ffesta_token_0_ = ffelex_token_use (t); ffesta_first_kw = ffestr_first (t); return (ffelexHandler) ffesta_second_; case FFELEX_typeNUMBER: if (ffesta_line_has_semicolons && !ffe_is_free_form () && ffe_is_pedantic ()) { ffebad_start (FFEBAD_LABEL_WRONG_PLACE); ffebad_here (0, ffelex_token_where_line (t), ffelex_token_where_column (t)); ffebad_string (ffelex_token_text (t)); ffebad_finish (); } if (ffesta_label_token == NULL) { ffesta_label_token = ffelex_token_use (t); return (ffelexHandler) ffesta_first; } else { ffebad_start (FFEBAD_EXTRA_LABEL_DEF); ffebad_here (0, ffelex_token_where_line (t), ffelex_token_where_column (t)); ffebad_string (ffelex_token_text (t)); ffebad_here (1, ffelex_token_where_line (ffesta_label_token), ffelex_token_where_column (ffesta_label_token)); ffebad_string (ffelex_token_text (ffesta_label_token)); ffebad_finish (); return (ffelexHandler) ffesta_first; } default: /* Invalid first token. */ ffesta_tokens[0] = ffelex_token_use (t); ffebad_start (FFEBAD_STMT_BEGINS_BAD); ffebad_here (0, ffelex_token_where_line (t), ffelex_token_where_column (t)); ffebad_finish (); return (ffelexHandler) ffelex_swallow_tokens (t, (ffelexHandler) ffesta_zero); } } /* ffesta_init_0 -- Initialize for entire image invocation ffesta_init_0(); Call just once per invocation of the compiler (not once per invocation of the front end). Gets memory for the list of possibles once and for all, since this list never gets larger than a certain size (FFESTA_maxPOSSIBLES_) and is not particularly large. Initializes the array of pointers to this list. Initializes the executable and nonexecutable lists. */ void ffesta_init_0 () { ffestaPossible_ ptr; int i; ptr = (ffestaPossible_) malloc_new_kp (malloc_pool_image (), "FFEST possibles", FFESTA_maxPOSSIBLES_ * sizeof (*ptr)); for (i = 0; i < FFESTA_maxPOSSIBLES_; ++i) ffesta_possibles_[i] = ptr++; ffesta_possible_execs_.first = ffesta_possible_execs_.last = (ffestaPossible_) &ffesta_possible_execs_.first; ffesta_possible_nonexecs_.first = ffesta_possible_nonexecs_.last = (ffestaPossible_) &ffesta_possible_nonexecs_.first; ffesta_possible_execs_.nil = ffesta_possible_nonexecs_.nil = NULL; } /* ffesta_init_3 -- Initialize for any program unit ffesta_init_3(); */ void ffesta_init_3 () { ffesta_output_pool = NULL; /* May be doing this just before reaching */ ffesta_scratch_pool = NULL; /* ffesta_zero or ffesta_two. */ /* NOTE: we let the ffe_terminate_2 action of killing the program_unit pool handle the killing of the output and scratch pools for us, which is why we don't have a terminate_3 action to do so. */ ffesta_construct_name = NULL; ffesta_label_token = NULL; ffesta_seen_first_exec = FALSE; } /* ffesta_is_inhibited -- Test whether the current possibility is inhibited if (!ffesta_is_inhibited()) // implement the statement. Just make sure the current possibility has been confirmed. If anyone really needs to test whether the current possibility is inhibited prior to confirming it, that indicates a need to begin statement processing before it is certain that the given possibility is indeed the statement to be processed. As of this writing, there does not appear to be such a need. If there is, then when confirming a statement would normally immediately disable the inhibition (whereas currently we leave the confirmed statement disabled until we've tried the other possibilities, to check for ambiguities), we must check to see if the possibility has already tested for inhibition prior to confirmation and, if so, maintain inhibition until the end of the statement (which may be forced right away) and then rerun the entire statement from the beginning. Otherwise, initial calls to ffestb functions won't have been made, but subsequent calls (after confirmation) will, which is wrong. Of course, this all applies only to those statements implemented via multiple calls to ffestb, although if a statement requiring only a single ffestb call tested for inhibition prior to confirmation, it would likely mean that the ffestb call would be completely dropped without this mechanism. */ bool ffesta_is_inhibited () { assert (ffesta_confirmed_current_ || ffesta_inhibit_confirmation_); return ffesta_is_inhibited_; } /* ffesta_ffebad_1p -- Issue diagnostic with one source character ffelexToken names_token; ffeTokenLength index; ffelexToken next_token; ffesta_ffebad_1p(FFEBAD_SOME_ERROR,names_token,index,next_token); Equivalent to "if (ffest_ffebad_start(FFEBAD_SOME_ERROR))" followed by sending one argument, the location of index with names_token, if TRUE is returned. If index is equal to the length of names_token, meaning it points to the end of the token, then uses the location in next_token (which should be the token sent by the lexer after it sent names_token) instead. */ void ffesta_ffebad_1p (ffebad errnum, ffelexToken names_token, ffeTokenLength index, ffelexToken next_token) { ffewhereLine line; ffewhereColumn col; assert (index <= ffelex_token_length (names_token)); if (ffesta_ffebad_start (errnum)) { if (index == ffelex_token_length (names_token)) { assert (next_token != NULL); line = ffelex_token_where_line (next_token); col = ffelex_token_where_column (next_token); ffebad_here (0, line, col); } else { ffewhere_set_from_track (&line, &col, ffelex_token_where_line (names_token), ffelex_token_where_column (names_token), ffelex_token_wheretrack (names_token), index); ffebad_here (0, line, col); ffewhere_line_kill (line); ffewhere_column_kill (col); } ffebad_finish (); } } void ffesta_ffebad_1sp (ffebad errnum, const char *s, ffelexToken names_token, ffeTokenLength index, ffelexToken next_token) { ffewhereLine line; ffewhereColumn col; assert (index <= ffelex_token_length (names_token)); if (ffesta_ffebad_start (errnum)) { ffebad_string (s); if (index == ffelex_token_length (names_token)) { assert (next_token != NULL); line = ffelex_token_where_line (next_token); col = ffelex_token_where_column (next_token); ffebad_here (0, line, col); } else { ffewhere_set_from_track (&line, &col, ffelex_token_where_line (names_token), ffelex_token_where_column (names_token), ffelex_token_wheretrack (names_token), index); ffebad_here (0, line, col); ffewhere_line_kill (line); ffewhere_column_kill (col); } ffebad_finish (); } } void ffesta_ffebad_1st (ffebad errnum, const char *s, ffelexToken t) { if (ffesta_ffebad_start (errnum)) { ffebad_string (s); ffebad_here (0, ffelex_token_where_line (t), ffelex_token_where_column (t)); ffebad_finish (); } } /* ffesta_ffebad_1t -- Issue diagnostic with one source token ffelexToken t; ffesta_ffebad_1t(FFEBAD_SOME_ERROR,t); Equivalent to "if (ffesta_ffebad_start(FFEBAD_SOME_ERROR))" followed by sending one argument, the location of the token t, if TRUE is returned. */ void ffesta_ffebad_1t (ffebad errnum, ffelexToken t) { if (ffesta_ffebad_start (errnum)) { ffebad_here (0, ffelex_token_where_line (t), ffelex_token_where_column (t)); ffebad_finish (); } } void ffesta_ffebad_2st (ffebad errnum, const char *s, ffelexToken t1, ffelexToken t2) { if (ffesta_ffebad_start (errnum)) { ffebad_string (s); ffebad_here (0, ffelex_token_where_line (t1), ffelex_token_where_column (t1)); ffebad_here (1, ffelex_token_where_line (t2), ffelex_token_where_column (t2)); ffebad_finish (); } } /* ffesta_ffebad_2t -- Issue diagnostic with two source tokens ffelexToken t1, t2; ffesta_ffebad_2t(FFEBAD_SOME_ERROR,t1,t2); Equivalent to "if (ffesta_ffebad_start(FFEBAD_SOME_ERROR))" followed by sending two argument, the locations of the tokens t1 and t2, if TRUE is returned. */ void ffesta_ffebad_2t (ffebad errnum, ffelexToken t1, ffelexToken t2) { if (ffesta_ffebad_start (errnum)) { ffebad_here (0, ffelex_token_where_line (t1), ffelex_token_where_column (t1)); ffebad_here (1, ffelex_token_where_line (t2), ffelex_token_where_column (t2)); ffebad_finish (); } } ffestaPooldisp ffesta_outpooldisp () { return ffesta_outpooldisp_; } void ffesta_set_outpooldisp (ffestaPooldisp d) { ffesta_outpooldisp_ = d; } /* Shut down current parsing possibility, but without bothering the user with a diagnostic if we're not inhibited. */ void ffesta_shutdown () { if (ffesta_is_inhibited_) ffesta_current_shutdown_ = TRUE; } /* ffesta_two -- Deal with the first two tokens after a swallowed statement return ffesta_two(first_token,second_token); // to lexer. Like ffesta_zero, except instead of expecting an EOS or SEMICOLON, it expects the first two tokens of a statement that is part of another statement: the first two tokens of statement in "IF (expr) statement" or "WHERE (expr) statement", in particular. The first token must be a NAME or NAMES, the second can be basically anything. The statement type MUST be confirmed by now. If we're not inhibited, just handle things as if we were ffesta_zero and saw an EOS just before the two tokens. If we're inhibited, set ffesta_current_shutdown_ to shut down the current statement and continue with other possibilities, then (presumably) come back to this one for real when not inhibited. */ ffelexHandler ffesta_two (ffelexToken first, ffelexToken second) { #if FFESTA_ABORT_ON_CONFIRM_ ffelexHandler next; #endif assert ((ffelex_token_type (first) == FFELEX_typeNAME) || (ffelex_token_type (first) == FFELEX_typeNAMES)); assert (ffesta_tokens[0] != NULL); if (ffesta_is_inhibited_) /* Oh, not really done with statement. */ { ffesta_current_shutdown_ = TRUE; /* To catch the EOS on shutdown. */ return (ffelexHandler) ffelex_swallow_tokens (second, (ffelexHandler) ffesta_zero); } ffestw_display_state (); ffelex_token_kill (ffesta_tokens[0]); if (ffesta_output_pool != NULL) { if (ffesta_outpooldisp_ == FFESTA_pooldispDISCARD) malloc_pool_kill (ffesta_output_pool); ffesta_output_pool = NULL; } if (ffesta_scratch_pool != NULL) { malloc_pool_kill (ffesta_scratch_pool); ffesta_scratch_pool = NULL; } ffesta_reset_possibles_ (); ffesta_confirmed_current_ = FALSE; /* What happens here is somewhat interesting. We effectively derail the line of handlers for these two tokens, the first two in a statement, by setting a flag to TRUE. This flag tells ffesta_save_ (or, conceivably, the lexer via ffesta_second_'s case 1:, where it has only one possible kind of statement -- someday this will be more likely, i.e. after confirmation causes an immediate switch to only the one context rather than just setting a flag and running through the remaining possibles to look for ambiguities) that the last two tokens it sent did not reach the truly desired targets (ffest_first and ffesta_second_) since that would otherwise attempt to recursively invoke ffesta_save_ in most cases, while the existing ffesta_save_ was still alive and making use of static (nonrecursive) variables. Instead, ffesta_save_, upon seeing this flag set TRUE, sets it to FALSE and resubmits the two tokens copied here to ffest_first and, presumably, ffesta_second_, kills them, and returns the handler returned by the handler for the second token. Thus, even though ffesta_save_ is still (likely to be) recursively invoked, the former invocation is past the use of any static variables possibly changed during the first-two-token invocation of the latter invocation. */ #if FFESTA_ABORT_ON_CONFIRM_ /* Shouldn't be in ffesta_save_ at all here. */ next = (ffelexHandler) ffesta_first (first); return (ffelexHandler) (*next) (second); #else ffesta_twotokens_1_ = ffelex_token_use (first); ffesta_twotokens_2_ = ffelex_token_use (second); ffesta_is_two_into_statement_ = TRUE; return (ffelexHandler) ffesta_send_two_; /* Shouldn't get called. */ #endif } /* ffesta_zero -- Deal with the end of a swallowed statement return ffesta_zero; // to lexer. NOTICE that this code is COPIED, largely, into a similar function named ffesta_two that gets invoked in place of _zero_ when the end of the statement happens before EOS or SEMICOLON and to tokens into the next statement have been read (as is the case with the logical-IF and WHERE-stmt statements). So any changes made here should probably be made in _two_ at the same time. */ ffelexHandler ffesta_zero (ffelexToken t) { assert ((ffelex_token_type (t) == FFELEX_typeEOS) || (ffelex_token_type (t) == FFELEX_typeSEMICOLON)); assert (ffesta_tokens[0] != NULL); if (ffesta_is_inhibited_) ffesymbol_retract (TRUE); else ffestw_display_state (); /* Do CONTINUE if nothing else. This is done specifically so that "IF (...) BLAH" causes the same things to happen as if "IF (...) CONTINUE" was done, so that tracking of labels and such works. (Try a small program like "DO 10 ...", "IF (...) BLAH", "10 CONTINUE", "END".) But it turns out that just testing "!ffesta_confirmed_current_" isn't enough, because then typing "GOTO" instead of "BLAH" above doesn't work -- the statement is confirmed (we know the user attempted a GOTO) but ffestc hasn't seen it. So, instead, just always tell ffestc to do "any" statement it needs to reset. */ if (!ffesta_is_inhibited_ && ffesta_seen_first_exec) { ffestc_any (); } ffelex_token_kill (ffesta_tokens[0]); if (ffesta_is_inhibited_) /* Oh, not really done with statement. */ return (ffelexHandler) ffesta_zero; /* Call me again when done! */ if (ffesta_output_pool != NULL) { if (ffesta_outpooldisp_ == FFESTA_pooldispDISCARD) malloc_pool_kill (ffesta_output_pool); ffesta_output_pool = NULL; } if (ffesta_scratch_pool != NULL) { malloc_pool_kill (ffesta_scratch_pool); ffesta_scratch_pool = NULL; } ffesta_reset_possibles_ (); ffesta_confirmed_current_ = FALSE; if (ffelex_token_type (t) == FFELEX_typeSEMICOLON) { ffesta_line_has_semicolons = TRUE; if (ffe_is_pedantic_not_90 ()) { ffebad_start (FFEBAD_SEMICOLON); ffebad_here (0, ffelex_token_where_line (t), ffelex_token_where_column (t)); ffebad_finish (); } } else ffesta_line_has_semicolons = FALSE; if (ffesta_label_token != NULL) { ffelex_token_kill (ffesta_label_token); ffesta_label_token = NULL; } if (ffe_is_ffedebug ()) { ffestorag_report (); #if FFECOM_targetCURRENT == FFECOM_targetFFE ffesymbol_report_all (); #endif } ffelex_set_names (TRUE); return (ffelexHandler) ffesta_first; }