/* * top - a top users display for Unix * * SYNOPSIS: For DragonFly 2.x and later * * DESCRIPTION: * Originally written for BSD4.4 system by Christos Zoulas. * Ported to FreeBSD 2.x by Steven Wallace && Wolfram Schneider * Order support hacked in from top-3.5beta6/machine/m_aix41.c * by Monte Mitzelfelt (for latest top see http://www.groupsys.com/topinfo/) * * This is the machine-dependent module for DragonFly 2.5.1 * Should work for: * DragonFly 2.x and above * * LIBS: -lkvm * * AUTHOR: Jan Lentfer * This module has been put together from different sources and is based on the * work of many other people, e.g. Matthew Dillon, Simon Schubert, Jordan Gordeev. * * $FreeBSD: src/usr.bin/top/machine.c,v 1.29.2.2 2001/07/31 20:27:05 tmm Exp $ * $DragonFly: src/usr.bin/top/machine.c,v 1.26 2008/10/16 01:52:33 swildner Exp $ */ #include #include #include #include #include "os.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* Swap */ #include #include #include #include /* for changes in kernel structures */ #include #include #include "top.h" #include "display.h" #include "machine.h" #include "screen.h" #include "utils.h" #if 0 static int check_nlist(struct nlist *); static int getkval(unsigned long, int *, int, char *); #endif int swapmode(int *retavail, int *retfree); static int smpmode; static int namelength; static int cmdlength; int n_cpus = 0; /* * needs to be a global symbol, so wrapper can be * modified accordingly. */ static int show_threads = 0; /* get_process_info passes back a handle. This is what it looks like: */ struct handle { struct kinfo_proc **next_proc; /* points to next valid proc pointer */ int remaining; /* number of pointers remaining */ }; /* declarations for load_avg */ #include "loadavg.h" #define PP(pp, field) ((pp)->kp_ ## field) #define LP(pp, field) ((pp)->kp_lwp.kl_ ## field) #define VP(pp, field) ((pp)->kp_vm_ ## field) /* define what weighted cpu is. */ #define weighted_cpu(pct, pp) (PP((pp), swtime) == 0 ? 0.0 : \ ((pct) / (1.0 - exp(PP((pp), swtime) * logcpu)))) /* what we consider to be process size: */ #define PROCSIZE(pp) (VP((pp), map_size) / 1024) /* * These definitions control the format of the per-process area */ static char smp_header[] = " PID %-*.*s PRI NICE SIZE RES STATE C TIME WCPU CPU COMMAND"; #define smp_Proc_format \ "%5d %-*.*s %3d %3d%7s %6s %-6.6s %1x%7s %5.2f%% %5.2f%% %.*s" static char up_header[] = " PID %-*.*s PRI NICE SIZE RES STATE TIME WCPU CPU COMMAND"; #define up_Proc_format \ "%5d %-*.*s %3d %3d%7s %6s %-6.6s%.0d%7s %5.2f%% %5.2f%% %.*s" /* process state names for the "STATE" column of the display */ /* the extra nulls in the string "run" are for adding a slash and the processor number when needed */ const char *state_abbrev[] = { "", "RUN\0\0\0", "STOP", "SLEEP", }; static kvm_t *kd; /* values that we stash away in _init and use in later routines */ static double logcpu; static long lastpid; static int ccpu; /* these are for calculating cpu state percentages */ static struct kinfo_cputime *cp_time, *cp_old; /* these are for detailing the process states */ int process_states[6]; char *procstatenames[] = { "", " starting, ", " running, ", " sleeping, ", " stopped, ", " zombie, ", NULL }; /* these are for detailing the cpu states */ #define CPU_STATES 5 int *cpu_states; char *cpustatenames[CPU_STATES + 1] = { "user", "nice", "system", "interrupt", "idle", NULL }; /* these are for detailing the memory statistics */ long memory_stats[7]; char *memorynames[] = { "K Active, ", "K Inact, ", "K Wired, ", "K Cache, ", "K Buf, ", "K Free", NULL }; long swap_stats[7]; char *swapnames[] = { /* 0 1 2 3 4 5 */ "K Total, ", "K Used, ", "K Free, ", "% Inuse, ", "K In, ", "K Out", NULL }; /* these are for keeping track of the proc array */ static int nproc; static int onproc = -1; static int pref_len; static struct kinfo_proc *pbase; static struct kinfo_proc **pref; /* these are for getting the memory statistics */ static int pageshift; /* log base 2 of the pagesize */ /* define pagetok in terms of pageshift */ #define pagetok(size) ((size) << pageshift) /* sorting orders. first is default */ char *ordernames[] = { "cpu", "size", "res", "time", "pri", "thr", NULL }; /* compare routines */ int proc_compare(), compare_size(), compare_res(), compare_time(), compare_prio(), compare_thr(); int (*proc_compares[])() = { proc_compare, compare_size, compare_res, compare_time, compare_prio, NULL }; static void cputime_percentages(int out[CPU_STATES], struct kinfo_cputime *new, struct kinfo_cputime *old) { struct kinfo_cputime diffs; uint64_t total_change, half_total; /* initialization */ total_change = 0; diffs.cp_user = new->cp_user - old->cp_user; diffs.cp_nice = new->cp_nice - old->cp_nice; diffs.cp_sys = new->cp_sys - old->cp_sys; diffs.cp_intr = new->cp_intr - old->cp_intr; diffs.cp_idle = new->cp_idle - old->cp_idle; total_change = diffs.cp_user + diffs.cp_nice + diffs.cp_sys + diffs.cp_intr + diffs.cp_idle; old->cp_user = new->cp_user; old->cp_nice = new->cp_nice; old->cp_sys = new->cp_sys; old->cp_intr = new->cp_intr; old->cp_idle = new->cp_idle; /* avoid divide by zero potential */ if (total_change == 0) total_change = 1; /* calculate percentages based on overall change, rounding up */ half_total = total_change >> 1; out[0] = ((diffs.cp_user * 1000LL + half_total) / total_change); out[1] = ((diffs.cp_nice * 1000LL + half_total) / total_change); out[2] = ((diffs.cp_sys * 1000LL + half_total) / total_change); out[3] = ((diffs.cp_intr * 1000LL + half_total) / total_change); out[4] = ((diffs.cp_idle * 1000LL + half_total) / total_change); } int machine_init(struct statics *statics) { int pagesize; size_t modelen; struct passwd *pw; struct timeval boottime; if (n_cpus < 1) { if (kinfo_get_cpus(&n_cpus)) err(1, "kinfo_get_cpus failed"); } /* get boot time */ modelen = sizeof(boottime); if (sysctlbyname("kern.boottime", &boottime, &modelen, NULL, 0) == -1) { /* we have no boottime to report */ boottime.tv_sec = -1; } modelen = sizeof(smpmode); if ((sysctlbyname("machdep.smp_active", &smpmode, &modelen, NULL, 0) < 0 && sysctlbyname("smp.smp_active", &smpmode, &modelen, NULL, 0) < 0) || modelen != sizeof(smpmode)) smpmode = 0; while ((pw = getpwent()) != NULL) { if ((int)strlen(pw->pw_name) > namelength) namelength = strlen(pw->pw_name); } if (namelength < 8) namelength = 8; if (smpmode && namelength > 13) namelength = 13; else if (namelength > 15) namelength = 15; if ((kd = kvm_open(NULL, NULL, NULL, O_RDONLY, "kvm_open")) == NULL) return -1; if (kinfo_get_sched_ccpu(&ccpu)) { fprintf(stderr, "top: kinfo_get_sched_ccpu failed\n"); return(-1); } /* this is used in calculating WCPU -- calculate it ahead of time */ logcpu = log(loaddouble(ccpu)); pbase = NULL; pref = NULL; nproc = 0; onproc = -1; /* get the page size with "getpagesize" and calculate pageshift from it */ pagesize = getpagesize(); pageshift = 0; while (pagesize > 1) { pageshift++; pagesize >>= 1; } /* we only need the amount of log(2)1024 for our conversion */ pageshift -= LOG1024; /* fill in the statics information */ statics->procstate_names = procstatenames; statics->cpustate_names = cpustatenames; statics->memory_names = memorynames; statics->boottime = boottime.tv_sec; statics->swap_names = swapnames; statics->order_names = ordernames; /* all done! */ return(0); } char * format_header(char *uname_field) { static char Header[128]; snprintf(Header, sizeof(Header), smpmode ? smp_header : up_header, namelength, namelength, uname_field); if (screen_width <= 79) cmdlength = 80; else cmdlength = 89; cmdlength = cmdlength - strlen(Header) + 6; return Header; } static int swappgsin = -1; static int swappgsout = -1; extern struct timeval timeout; void get_system_info(struct system_info *si) { size_t len; int cpu; if (cpu_states == NULL) { cpu_states = malloc(sizeof(*cpu_states) * CPU_STATES * n_cpus); if (cpu_states == NULL) err(1, "malloc"); bzero(cpu_states, sizeof(*cpu_states) * CPU_STATES * n_cpus); } if (cp_time == NULL) { cp_time = malloc(2 * n_cpus * sizeof(cp_time[0])); if (cp_time == NULL) err(1, "cp_time"); cp_old = cp_time + n_cpus; len = n_cpus * sizeof(cp_old[0]); bzero(cp_time, len); if (sysctlbyname("kern.cputime", cp_old, &len, NULL, 0)) err(1, "kern.cputime"); } len = n_cpus * sizeof(cp_time[0]); bzero(cp_time, len); if (sysctlbyname("kern.cputime", cp_time, &len, NULL, 0)) err(1, "kern.cputime"); getloadavg(si->load_avg, 3); lastpid = 0; /* convert cp_time counts to percentages */ for (cpu = 0; cpu < n_cpus; ++cpu) { cputime_percentages(cpu_states + cpu * CPU_STATES, &cp_time[cpu], &cp_old[cpu]); } /* sum memory & swap statistics */ { struct vmmeter vmm; struct vmstats vms; size_t vms_size = sizeof(vms); size_t vmm_size = sizeof(vmm); static unsigned int swap_delay = 0; static int swapavail = 0; static int swapfree = 0; static int bufspace = 0; if (sysctlbyname("vm.vmstats", &vms, &vms_size, NULL, 0)) err(1, "sysctlbyname: vm.vmstats"); if (sysctlbyname("vm.vmmeter", &vmm, &vmm_size, NULL, 0)) err(1, "sysctlbyname: vm.vmmeter"); if (kinfo_get_vfs_bufspace(&bufspace)) err(1, "kinfo_get_vfs_bufspace"); /* convert memory stats to Kbytes */ memory_stats[0] = pagetok(vms.v_active_count); memory_stats[1] = pagetok(vms.v_inactive_count); memory_stats[2] = pagetok(vms.v_wire_count); memory_stats[3] = pagetok(vms.v_cache_count); memory_stats[4] = bufspace / 1024; memory_stats[5] = pagetok(vms.v_free_count); memory_stats[6] = -1; /* first interval */ if (swappgsin < 0) { swap_stats[4] = 0; swap_stats[5] = 0; } /* compute differences between old and new swap statistic */ else { swap_stats[4] = pagetok(((vmm.v_swappgsin - swappgsin))); swap_stats[5] = pagetok(((vmm.v_swappgsout - swappgsout))); } swappgsin = vmm.v_swappgsin; swappgsout = vmm.v_swappgsout; /* call CPU heavy swapmode() only for changes */ if (swap_stats[4] > 0 || swap_stats[5] > 0 || swap_delay == 0) { swap_stats[3] = swapmode(&swapavail, &swapfree); swap_stats[0] = swapavail; swap_stats[1] = swapavail - swapfree; swap_stats[2] = swapfree; } swap_delay = 1; swap_stats[6] = -1; } /* set arrays and strings */ si->cpustates = cpu_states; si->memory = memory_stats; si->swap = swap_stats; if(lastpid > 0) { si->last_pid = lastpid; } else { si->last_pid = -1; } } static struct handle handle; caddr_t get_process_info(struct system_info *si, struct process_select *sel, int compare_index) { int i; int total_procs; int active_procs; struct kinfo_proc **prefp; struct kinfo_proc *pp; /* these are copied out of sel for speed */ int show_idle; int show_system; int show_uid; pbase = kvm_getprocs(kd, KERN_PROC_ALL, 0, &nproc); if (nproc > onproc) pref = (struct kinfo_proc **) realloc(pref, sizeof(struct kinfo_proc *) * (onproc = nproc)); if (pref == NULL || pbase == NULL) { (void) fprintf(stderr, "top: Out of memory.\n"); quit(23); } /* get a pointer to the states summary array */ si->procstates = process_states; /* set up flags which define what we are going to select */ show_idle = sel->idle; show_system = sel->system; show_uid = sel->uid != -1; /* count up process states and get pointers to interesting procs */ total_procs = 0; active_procs = 0; memset((char *)process_states, 0, sizeof(process_states)); prefp = pref; for (pp = pbase, i = 0; i < nproc; pp++, i++) { /* * Place pointers to each valid proc structure in pref[]. * Process slots that are actually in use have a non-zero * status field. Processes with P_SYSTEM set are system * processes---these get ignored unless show_sysprocs is set. */ if ((show_threads && (LP(pp, pid) == -1)) || (show_system || ((PP(pp, flags) & P_SYSTEM) == 0))) { total_procs++; process_states[(unsigned char) PP(pp, stat)]++; if ((show_threads && (LP(pp, pid) == -1)) || (show_idle || (LP(pp, pctcpu) != 0) || (LP(pp, stat) == LSRUN)) && (!show_uid || PP(pp, ruid) == (uid_t)sel->uid)) { *prefp++ = pp; active_procs++; } } } qsort((char *)pref, active_procs, sizeof(struct kinfo_proc *), proc_compares[compare_index]); /* remember active and total counts */ si->p_total = total_procs; si->p_active = pref_len = active_procs; /* pass back a handle */ handle.next_proc = pref; handle.remaining = active_procs; return((caddr_t)&handle); } char fmt[128]; /* static area where result is built */ char * format_next_process(caddr_t xhandle, char *(*get_userid)(int)) { struct kinfo_proc *pp; long cputime; double pct; struct handle *hp; char status[16]; char const *wrapper; int state; int xnice; /* find and remember the next proc structure */ hp = (struct handle *)xhandle; pp = *(hp->next_proc++); hp->remaining--; /* set the wrapper for the process/thread name */ if ((PP(pp, flags) & P_SWAPPEDOUT)) wrapper = "[]"; /* swapped process [pname] */ else if (((PP(pp, flags) & P_SYSTEM) != 0) && (LP(pp, pid) > 0)) wrapper = "()"; /* system process (pname) */ else if (show_threads && (LP(pp, pid) == -1)) wrapper = "<>"; /* pure kernel threads */ else wrapper = NULL; /* get the process's command name */ if (wrapper != NULL) { char *comm = PP(pp, comm); #define COMSIZ sizeof(PP(pp, comm)) char buf[COMSIZ]; (void) strncpy(buf, comm, COMSIZ); comm[0] = wrapper[0]; (void) strncpy(&comm[1], buf, COMSIZ - 2); comm[COMSIZ - 2] = '\0'; (void) strncat(comm, &wrapper[1], COMSIZ - 1); comm[COMSIZ - 1] = '\0'; } /* * Convert the process's runtime from microseconds to seconds. This * time includes the interrupt time although that is not wanted here. * ps(1) is similarly sloppy. */ cputime = (LP(pp, uticks) + LP(pp, sticks)) / 1000000; /* calculate the base for cpu percentages */ pct = pctdouble(LP(pp, pctcpu)); /* generate "STATE" field */ switch (state = LP(pp, stat)) { case LSRUN: if (smpmode && LP(pp, tdflags) & TDF_RUNNING) sprintf(status, "CPU%d", LP(pp, cpuid)); else strcpy(status, "RUN"); break; case LSSLEEP: if (LP(pp, wmesg) != NULL) { sprintf(status, "%.6s", LP(pp, wmesg)); break; } /* fall through */ default: if (state >= 0 && (unsigned)state < sizeof(state_abbrev) / sizeof(*state_abbrev)) sprintf(status, "%.6s", state_abbrev[(unsigned char) state]); else sprintf(status, "?%5d", state); break; } if (PP(pp, stat) == SZOMB) strcpy(status, "ZOMB"); /* * idle time 0 - 31 -> nice value +21 - +52 * normal time -> nice value -20 - +20 * real time 0 - 31 -> nice value -52 - -21 * thread 0 - 31 -> nice value -53 - */ switch(LP(pp, rtprio.type)) { case RTP_PRIO_REALTIME: xnice = PRIO_MIN - 1 - RTP_PRIO_MAX + LP(pp, rtprio.prio); break; case RTP_PRIO_IDLE: xnice = PRIO_MAX + 1 + LP(pp, rtprio.prio); break; case RTP_PRIO_THREAD: xnice = PRIO_MIN - 1 - RTP_PRIO_MAX - LP(pp, rtprio.prio); break; default: xnice = PP(pp, nice); break; } /* format this entry */ snprintf(fmt, sizeof(fmt), smpmode ? smp_Proc_format : up_Proc_format, (int)PP(pp, pid), namelength, namelength, get_userid(PP(pp, ruid)), (int)((show_threads && (LP(pp, pid) == -1)) ? LP(pp, tdprio) : LP(pp, prio)), (int)xnice, format_k(PROCSIZE(pp)), format_k(pagetok(VP(pp, rssize))), status, (int)(smpmode ? LP(pp, cpuid) : 0), format_time(cputime), 100.0 * weighted_cpu(pct, pp), 100.0 * pct, cmdlength, printable(PP(pp, comm))); /* return the result */ return(fmt); } #if 0 /* * check_nlist(nlst) - checks the nlist to see if any symbols were not * found. For every symbol that was not found, a one-line * message is printed to stderr. The routine returns the * number of symbols NOT found. */ static int check_nlist(struct nlist *nlst) { int i; /* check to see if we got ALL the symbols we requested */ /* this will write one line to stderr for every symbol not found */ i = 0; while (nlst->n_name != NULL) { if (nlst->n_type == 0) { /* this one wasn't found */ (void) fprintf(stderr, "kernel: no symbol named `%s'\n", nlst->n_name); i = 1; } nlst++; } return(i); } #endif /* comparison routines for qsort */ /* * proc_compare - comparison function for "qsort" * Compares the resource consumption of two processes using five * distinct keys. The keys (in descending order of importance) are: * percent cpu, cpu ticks, state, resident set size, total virtual * memory usage. The process states are ordered as follows (from least * to most important): WAIT, zombie, sleep, stop, start, run. The * array declaration below maps a process state index into a number * that reflects this ordering. */ static unsigned char sorted_state[] = { 0, /* not used */ 3, /* sleep */ 1, /* ABANDONED (WAIT) */ 6, /* run */ 5, /* start */ 2, /* zombie */ 4 /* stop */ }; #define ORDERKEY_PCTCPU \ if (lresult = (long) LP(p2, pctcpu) - (long) LP(p1, pctcpu), \ (result = lresult > 0 ? 1 : lresult < 0 ? -1 : 0) == 0) #define CPTICKS(p) (LP(p, uticks) + LP(p, sticks)) #define ORDERKEY_CPTICKS \ if ((result = CPTICKS(p2) > CPTICKS(p1) ? 1 : \ CPTICKS(p2) < CPTICKS(p1) ? -1 : 0) == 0) #define ORDERKEY_STATE \ if ((result = sorted_state[(unsigned char) PP(p2, stat)] - \ sorted_state[(unsigned char) PP(p1, stat)]) == 0) #define ORDERKEY_PRIO \ if ((result = LP(p2, prio) - LP(p1, prio)) == 0) #define ORDERKEY_KTHREADS \ if ((result = (LP(p1, pid) == 0) - (LP(p2, pid) == 0)) == 0) #define ORDERKEY_KTHREADS_PRIO \ if ((result = LP(p2, tdprio) - LP(p1, tdprio)) == 0) #define ORDERKEY_RSSIZE \ if ((result = VP(p2, rssize) - VP(p1, rssize)) == 0) #define ORDERKEY_MEM \ if ( (result = PROCSIZE(p2) - PROCSIZE(p1)) == 0 ) /* compare_cpu - the comparison function for sorting by cpu percentage */ int proc_compare(const void *arg1, const void *arg2) { const struct proc *const*pp1 = arg1; const struct proc *const*pp2 = arg2; const struct kinfo_proc *p1; const struct kinfo_proc *p2; int result; pctcpu lresult; /* remove one level of indirection */ p1 = *(const struct kinfo_proc *const *) pp1; p2 = *(const struct kinfo_proc *const *) pp2; ORDERKEY_PCTCPU ORDERKEY_CPTICKS ORDERKEY_STATE ORDERKEY_PRIO ORDERKEY_RSSIZE ORDERKEY_MEM {} return(result); } /* compare_size - the comparison function for sorting by total memory usage */ int compare_size(const void *arg1, const void *arg2) { struct proc *const *pp1 = arg1; struct proc *const *pp2 = arg2; struct kinfo_proc *p1; struct kinfo_proc *p2; int result; pctcpu lresult; /* remove one level of indirection */ p1 = *(struct kinfo_proc *const*) pp1; p2 = *(struct kinfo_proc *const*) pp2; ORDERKEY_MEM ORDERKEY_RSSIZE ORDERKEY_PCTCPU ORDERKEY_CPTICKS ORDERKEY_STATE ORDERKEY_PRIO {} return(result); } /* compare_res - the comparison function for sorting by resident set size */ int compare_res(const void *arg1, const void *arg2) { struct proc *const *pp1 = arg1; struct proc *const *pp2 = arg2; struct kinfo_proc *p1; struct kinfo_proc *p2; int result; pctcpu lresult; /* remove one level of indirection */ p1 = *(struct kinfo_proc *const*) pp1; p2 = *(struct kinfo_proc *const*) pp2; ORDERKEY_RSSIZE ORDERKEY_MEM ORDERKEY_PCTCPU ORDERKEY_CPTICKS ORDERKEY_STATE ORDERKEY_PRIO {} return(result); } /* compare_time - the comparison function for sorting by total cpu time */ int compare_time(const void *arg1, const void *arg2) { struct proc *const *pp1 = arg1; struct proc *const *pp2 = arg2; const struct kinfo_proc *p1; const struct kinfo_proc *p2; int result; pctcpu lresult; /* remove one level of indirection */ p1 = *(struct kinfo_proc *const*) pp1; p2 = *(struct kinfo_proc *const*) pp2; ORDERKEY_CPTICKS ORDERKEY_PCTCPU ORDERKEY_KTHREADS ORDERKEY_KTHREADS_PRIO ORDERKEY_STATE ORDERKEY_PRIO ORDERKEY_RSSIZE ORDERKEY_MEM {} return(result); } /* compare_prio - the comparison function for sorting by cpu percentage */ int compare_prio(const void *arg1, const void *arg2) { struct proc *const *pp1 = arg1; struct proc *const *pp2 = arg2; const struct kinfo_proc *p1; const struct kinfo_proc *p2; int result; pctcpu lresult; /* remove one level of indirection */ p1 = *(struct kinfo_proc *const*) pp1; p2 = *(struct kinfo_proc *const*) pp2; ORDERKEY_KTHREADS ORDERKEY_KTHREADS_PRIO ORDERKEY_PRIO ORDERKEY_CPTICKS ORDERKEY_PCTCPU ORDERKEY_STATE ORDERKEY_RSSIZE ORDERKEY_MEM {} return(result); } int compare_thr(const void *arg1, const void *arg2) { struct proc *const *pp1 = arg1; struct proc *const *pp2 = arg2; const struct kinfo_proc *p1; const struct kinfo_proc *p2; int result; pctcpu lresult; /* remove one level of indirection */ p1 = *(struct kinfo_proc *const*) pp1; p2 = *(struct kinfo_proc *const*) pp2; ORDERKEY_KTHREADS ORDERKEY_KTHREADS_PRIO ORDERKEY_CPTICKS ORDERKEY_PCTCPU ORDERKEY_STATE ORDERKEY_RSSIZE ORDERKEY_MEM {} return(result); } /* * proc_owner(pid) - returns the uid that owns process "pid", or -1 if * the process does not exist. * It is EXTREMLY IMPORTANT that this function work correctly. * If top runs setuid root (as in SVR4), then this function * is the only thing that stands in the way of a serious * security problem. It validates requests for the "kill" * and "renice" commands. */ int proc_owner(int pid) { int xcnt; struct kinfo_proc **prefp; struct kinfo_proc *pp; prefp = pref; xcnt = pref_len; while (--xcnt >= 0) { pp = *prefp++; if (PP(pp, pid) == (pid_t)pid) { return((int)PP(pp, ruid)); } } return(-1); } /* * swapmode is based on a program called swapinfo written * by Kevin Lahey . */ int swapmode(int *retavail, int *retfree) { int n; int pagesize = getpagesize(); struct kvm_swap swapary[1]; *retavail = 0; *retfree = 0; #define CONVERT(v) ((quad_t)(v) * pagesize / 1024) n = kvm_getswapinfo(kd, swapary, 1, 0); if (n < 0 || swapary[0].ksw_total == 0) return(0); *retavail = CONVERT(swapary[0].ksw_total); *retfree = CONVERT(swapary[0].ksw_total - swapary[0].ksw_used); n = (int)((double)swapary[0].ksw_used * 100.0 / (double)swapary[0].ksw_total); return(n); }