/* * Copyright (c) 1982, 1986, 1989, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)ffs_alloc.c 8.18 (Berkeley) 5/26/95 * $FreeBSD: src/sys/ufs/ffs/ffs_alloc.c,v 1.64.2.2 2001/09/21 19:15:21 dillon Exp $ * $DragonFly: src/sys/vfs/ufs/ffs_alloc.c,v 1.24 2006/09/03 18:52:30 dillon Exp $ */ #include "opt_quota.h" #include #include #include #include #include #include #include #include #include #include #include #include "quota.h" #include "inode.h" #include "ufs_extern.h" #include "ufsmount.h" #include "fs.h" #include "ffs_extern.h" typedef ufs_daddr_t allocfcn_t (struct inode *ip, int cg, ufs_daddr_t bpref, int size); static ufs_daddr_t ffs_alloccg (struct inode *, int, ufs_daddr_t, int); static ufs_daddr_t ffs_alloccgblk (struct inode *, struct buf *, ufs_daddr_t); #ifdef DIAGNOSTIC static int ffs_checkblk (struct inode *, ufs_daddr_t, long); #endif static void ffs_clusteracct (struct fs *, struct cg *, ufs_daddr_t, int); static ufs_daddr_t ffs_clusteralloc (struct inode *, int, ufs_daddr_t, int); static ino_t ffs_dirpref (struct inode *); static ufs_daddr_t ffs_fragextend (struct inode *, int, long, int, int); static void ffs_fserr (struct fs *, uint, char *); static u_long ffs_hashalloc (struct inode *, int, long, int, allocfcn_t *); static ino_t ffs_nodealloccg (struct inode *, int, ufs_daddr_t, int); static ufs_daddr_t ffs_mapsearch (struct fs *, struct cg *, ufs_daddr_t, int); /* * Allocate a block in the filesystem. * * The size of the requested block is given, which must be some * multiple of fs_fsize and <= fs_bsize. * A preference may be optionally specified. If a preference is given * the following hierarchy is used to allocate a block: * 1) allocate the requested block. * 2) allocate a rotationally optimal block in the same cylinder. * 3) allocate a block in the same cylinder group. * 4) quadradically rehash into other cylinder groups, until an * available block is located. * If no block preference is given the following heirarchy is used * to allocate a block: * 1) allocate a block in the cylinder group that contains the * inode for the file. * 2) quadradically rehash into other cylinder groups, until an * available block is located. */ int ffs_alloc(struct inode *ip, ufs_daddr_t lbn, ufs_daddr_t bpref, int size, struct ucred *cred, ufs_daddr_t *bnp) { struct fs *fs; ufs_daddr_t bno; int cg; #ifdef QUOTA int error; #endif *bnp = 0; fs = ip->i_fs; #ifdef DIAGNOSTIC if ((uint)size > fs->fs_bsize || fragoff(fs, size) != 0) { printf("dev = %s, bsize = %ld, size = %d, fs = %s\n", devtoname(ip->i_dev), (long)fs->fs_bsize, size, fs->fs_fsmnt); panic("ffs_alloc: bad size"); } if (cred == NOCRED) panic("ffs_alloc: missing credential"); #endif /* DIAGNOSTIC */ if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0) goto nospace; if (cred->cr_uid != 0 && freespace(fs, fs->fs_minfree) - numfrags(fs, size) < 0) goto nospace; #ifdef QUOTA error = ufs_chkdq(ip, (long)btodb(size), cred, 0); if (error) return (error); #endif if (bpref >= fs->fs_size) bpref = 0; if (bpref == 0) cg = ino_to_cg(fs, ip->i_number); else cg = dtog(fs, bpref); bno = (ufs_daddr_t)ffs_hashalloc(ip, cg, (long)bpref, size, ffs_alloccg); if (bno > 0) { ip->i_blocks += btodb(size); ip->i_flag |= IN_CHANGE | IN_UPDATE; *bnp = bno; return (0); } #ifdef QUOTA /* * Restore user's disk quota because allocation failed. */ (void) ufs_chkdq(ip, (long)-btodb(size), cred, FORCE); #endif nospace: ffs_fserr(fs, cred->cr_uid, "filesystem full"); uprintf("\n%s: write failed, filesystem is full\n", fs->fs_fsmnt); return (ENOSPC); } /* * Reallocate a fragment to a bigger size * * The number and size of the old block is given, and a preference * and new size is also specified. The allocator attempts to extend * the original block. Failing that, the regular block allocator is * invoked to get an appropriate block. */ int ffs_realloccg(struct inode *ip, ufs_daddr_t lbprev, ufs_daddr_t bpref, int osize, int nsize, struct ucred *cred, struct buf **bpp) { struct fs *fs; struct buf *bp; int cg, request, error; ufs_daddr_t bprev, bno; *bpp = 0; fs = ip->i_fs; #ifdef DIAGNOSTIC if ((uint)osize > fs->fs_bsize || fragoff(fs, osize) != 0 || (uint)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) { printf( "dev = %s, bsize = %ld, osize = %d, nsize = %d, fs = %s\n", devtoname(ip->i_dev), (long)fs->fs_bsize, osize, nsize, fs->fs_fsmnt); panic("ffs_realloccg: bad size"); } if (cred == NOCRED) panic("ffs_realloccg: missing credential"); #endif /* DIAGNOSTIC */ if (cred->cr_uid != 0 && freespace(fs, fs->fs_minfree) - numfrags(fs, nsize - osize) < 0) goto nospace; if ((bprev = ip->i_db[lbprev]) == 0) { printf("dev = %s, bsize = %ld, bprev = %ld, fs = %s\n", devtoname(ip->i_dev), (long)fs->fs_bsize, (long)bprev, fs->fs_fsmnt); panic("ffs_realloccg: bad bprev"); } /* * Allocate the extra space in the buffer. */ error = bread(ITOV(ip), lblktodoff(fs, lbprev), osize, &bp); if (error) { brelse(bp); return (error); } if(bp->b_bio2.bio_offset == NOOFFSET) { if( lbprev >= NDADDR) panic("ffs_realloccg: lbprev out of range"); bp->b_bio2.bio_offset = fsbtodoff(fs, bprev); } #ifdef QUOTA error = ufs_chkdq(ip, (long)btodb(nsize - osize), cred, 0); if (error) { brelse(bp); return (error); } #endif /* * Check for extension in the existing location. */ cg = dtog(fs, bprev); bno = ffs_fragextend(ip, cg, (long)bprev, osize, nsize); if (bno) { if (bp->b_bio2.bio_offset != fsbtodoff(fs, bno)) panic("ffs_realloccg: bad blockno"); ip->i_blocks += btodb(nsize - osize); ip->i_flag |= IN_CHANGE | IN_UPDATE; allocbuf(bp, nsize); bzero((char *)bp->b_data + osize, (uint)nsize - osize); *bpp = bp; return (0); } /* * Allocate a new disk location. */ if (bpref >= fs->fs_size) bpref = 0; switch ((int)fs->fs_optim) { case FS_OPTSPACE: /* * Allocate an exact sized fragment. Although this makes * best use of space, we will waste time relocating it if * the file continues to grow. If the fragmentation is * less than half of the minimum free reserve, we choose * to begin optimizing for time. */ request = nsize; if (fs->fs_minfree <= 5 || fs->fs_cstotal.cs_nffree > (off_t)fs->fs_dsize * fs->fs_minfree / (2 * 100)) break; log(LOG_NOTICE, "%s: optimization changed from SPACE to TIME\n", fs->fs_fsmnt); fs->fs_optim = FS_OPTTIME; break; case FS_OPTTIME: /* * At this point we have discovered a file that is trying to * grow a small fragment to a larger fragment. To save time, * we allocate a full sized block, then free the unused portion. * If the file continues to grow, the `ffs_fragextend' call * above will be able to grow it in place without further * copying. If aberrant programs cause disk fragmentation to * grow within 2% of the free reserve, we choose to begin * optimizing for space. */ request = fs->fs_bsize; if (fs->fs_cstotal.cs_nffree < (off_t)fs->fs_dsize * (fs->fs_minfree - 2) / 100) break; log(LOG_NOTICE, "%s: optimization changed from TIME to SPACE\n", fs->fs_fsmnt); fs->fs_optim = FS_OPTSPACE; break; default: printf("dev = %s, optim = %ld, fs = %s\n", devtoname(ip->i_dev), (long)fs->fs_optim, fs->fs_fsmnt); panic("ffs_realloccg: bad optim"); /* NOTREACHED */ } bno = (ufs_daddr_t)ffs_hashalloc(ip, cg, (long)bpref, request, ffs_alloccg); if (bno > 0) { bp->b_bio2.bio_offset = fsbtodoff(fs, bno); if (!DOINGSOFTDEP(ITOV(ip))) ffs_blkfree(ip, bprev, (long)osize); if (nsize < request) ffs_blkfree(ip, bno + numfrags(fs, nsize), (long)(request - nsize)); ip->i_blocks += btodb(nsize - osize); ip->i_flag |= IN_CHANGE | IN_UPDATE; allocbuf(bp, nsize); bzero((char *)bp->b_data + osize, (uint)nsize - osize); *bpp = bp; return (0); } #ifdef QUOTA /* * Restore user's disk quota because allocation failed. */ (void) ufs_chkdq(ip, (long)-btodb(nsize - osize), cred, FORCE); #endif brelse(bp); nospace: /* * no space available */ ffs_fserr(fs, cred->cr_uid, "filesystem full"); uprintf("\n%s: write failed, filesystem is full\n", fs->fs_fsmnt); return (ENOSPC); } SYSCTL_NODE(_vfs, OID_AUTO, ffs, CTLFLAG_RW, 0, "FFS filesystem"); /* * Reallocate a sequence of blocks into a contiguous sequence of blocks. * * The vnode and an array of buffer pointers for a range of sequential * logical blocks to be made contiguous is given. The allocator attempts * to find a range of sequential blocks starting as close as possible to * an fs_rotdelay offset from the end of the allocation for the logical * block immediately preceeding the current range. If successful, the * physical block numbers in the buffer pointers and in the inode are * changed to reflect the new allocation. If unsuccessful, the allocation * is left unchanged. The success in doing the reallocation is returned. * Note that the error return is not reflected back to the user. Rather * the previous block allocation will be used. */ static int doasyncfree = 1; SYSCTL_INT(_vfs_ffs, FFS_ASYNCFREE, doasyncfree, CTLFLAG_RW, &doasyncfree, 0, ""); static int doreallocblks = 1; SYSCTL_INT(_vfs_ffs, FFS_REALLOCBLKS, doreallocblks, CTLFLAG_RW, &doreallocblks, 0, ""); #ifdef DEBUG static volatile int prtrealloc = 0; #endif /* * ffs_reallocblks(struct vnode *a_vp, struct cluster_save *a_buflist) */ int ffs_reallocblks(struct vop_reallocblks_args *ap) { struct fs *fs; struct inode *ip; struct vnode *vp; struct buf *sbp, *ebp; ufs_daddr_t *bap, *sbap, *ebap = 0; struct cluster_save *buflist; ufs_daddr_t start_lbn, end_lbn, soff, newblk, blkno; #ifdef DIAGNOSTIC off_t boffset; #endif struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp; int i, len, slen, start_lvl, end_lvl, pref, ssize; if (doreallocblks == 0) return (ENOSPC); vp = ap->a_vp; ip = VTOI(vp); fs = ip->i_fs; if (fs->fs_contigsumsize <= 0) return (ENOSPC); buflist = ap->a_buflist; len = buflist->bs_nchildren; start_lbn = lblkno(fs, buflist->bs_children[0]->b_loffset); end_lbn = start_lbn + len - 1; #ifdef DIAGNOSTIC for (i = 0; i < len; i++) if (!ffs_checkblk(ip, dofftofsb(fs, buflist->bs_children[i]->b_bio2.bio_offset), fs->fs_bsize)) panic("ffs_reallocblks: unallocated block 1"); for (i = 1; i < len; i++) { if (buflist->bs_children[i]->b_loffset != lblktodoff(fs, start_lbn) + lblktodoff(fs, i)) panic("ffs_reallocblks: non-logical cluster"); } boffset = buflist->bs_children[0]->b_bio2.bio_offset; ssize = (int)fsbtodoff(fs, fs->fs_frag); for (i = 1; i < len - 1; i++) if (buflist->bs_children[i]->b_bio2.bio_offset != boffset + (i * ssize)) panic("ffs_reallocblks: non-physical cluster %d", i); #endif /* * If the latest allocation is in a new cylinder group, assume that * the filesystem has decided to move and do not force it back to * the previous cylinder group. */ if (dtog(fs, dofftofsb(fs, buflist->bs_children[0]->b_bio2.bio_offset)) != dtog(fs, dofftofsb(fs, buflist->bs_children[len - 1]->b_bio2.bio_offset))) return (ENOSPC); if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) || ufs_getlbns(vp, end_lbn, end_ap, &end_lvl)) return (ENOSPC); /* * Get the starting offset and block map for the first block and * the number of blocks that will fit into sbap starting at soff. */ if (start_lvl == 0) { sbap = &ip->i_db[0]; soff = start_lbn; slen = NDADDR - soff; } else { idp = &start_ap[start_lvl - 1]; if (bread(vp, lblktodoff(fs, idp->in_lbn), (int)fs->fs_bsize, &sbp)) { brelse(sbp); return (ENOSPC); } sbap = (ufs_daddr_t *)sbp->b_data; soff = idp->in_off; slen = fs->fs_nindir - soff; } /* * Find the preferred location for the cluster. */ pref = ffs_blkpref(ip, start_lbn, soff, sbap); /* * If the block range spans two block maps, get the second map. */ if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) { ssize = len; } else { #ifdef DIAGNOSTIC if (start_ap[start_lvl-1].in_lbn == idp->in_lbn) panic("ffs_reallocblk: start == end"); #endif ssize = len - (idp->in_off + 1); if (bread(vp, lblktodoff(fs, idp->in_lbn), (int)fs->fs_bsize, &ebp)) goto fail; ebap = (ufs_daddr_t *)ebp->b_data; } /* * Make sure we aren't spanning more then two blockmaps. ssize is * our calculation of the span we have to scan in the first blockmap, * while slen is our calculation of the number of entries available * in the first blockmap (from soff). */ if (ssize > slen) { panic("ffs_reallocblks: range spans more then two blockmaps!" " start_lbn %ld len %d (%d/%d)", (long)start_lbn, len, slen, ssize); } /* * Search the block map looking for an allocation of the desired size. */ if ((newblk = (ufs_daddr_t)ffs_hashalloc(ip, dtog(fs, pref), (long)pref, len, ffs_clusteralloc)) == 0) goto fail; /* * We have found a new contiguous block. * * First we have to replace the old block pointers with the new * block pointers in the inode and indirect blocks associated * with the file. */ #ifdef DEBUG if (prtrealloc) printf("realloc: ino %d, lbns %d-%d\n\told:", ip->i_number, start_lbn, end_lbn); #endif blkno = newblk; for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) { if (i == ssize) { bap = ebap; soff = -i; } #ifdef DIAGNOSTIC if (!ffs_checkblk(ip, dofftofsb(fs, buflist->bs_children[i]->b_bio2.bio_offset), fs->fs_bsize)) panic("ffs_reallocblks: unallocated block 2"); if (dofftofsb(fs, buflist->bs_children[i]->b_bio2.bio_offset) != *bap) panic("ffs_reallocblks: alloc mismatch"); #endif #ifdef DEBUG if (prtrealloc) printf(" %d,", *bap); #endif if (DOINGSOFTDEP(vp)) { if (sbap == &ip->i_db[0] && i < ssize) softdep_setup_allocdirect(ip, start_lbn + i, blkno, *bap, fs->fs_bsize, fs->fs_bsize, buflist->bs_children[i]); else softdep_setup_allocindir_page(ip, start_lbn + i, i < ssize ? sbp : ebp, soff + i, blkno, *bap, buflist->bs_children[i]); } *bap++ = blkno; } /* * Next we must write out the modified inode and indirect blocks. * For strict correctness, the writes should be synchronous since * the old block values may have been written to disk. In practise * they are almost never written, but if we are concerned about * strict correctness, the `doasyncfree' flag should be set to zero. * * The test on `doasyncfree' should be changed to test a flag * that shows whether the associated buffers and inodes have * been written. The flag should be set when the cluster is * started and cleared whenever the buffer or inode is flushed. * We can then check below to see if it is set, and do the * synchronous write only when it has been cleared. */ if (sbap != &ip->i_db[0]) { if (doasyncfree) bdwrite(sbp); else bwrite(sbp); } else { ip->i_flag |= IN_CHANGE | IN_UPDATE; if (!doasyncfree) ffs_update(vp, 1); } if (ssize < len) { if (doasyncfree) bdwrite(ebp); else bwrite(ebp); } /* * Last, free the old blocks and assign the new blocks to the buffers. */ #ifdef DEBUG if (prtrealloc) printf("\n\tnew:"); #endif for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) { if (!DOINGSOFTDEP(vp)) ffs_blkfree(ip, dofftofsb(fs, buflist->bs_children[i]->b_bio2.bio_offset), fs->fs_bsize); buflist->bs_children[i]->b_bio2.bio_offset = fsbtodoff(fs, blkno); #ifdef DIAGNOSTIC if (!ffs_checkblk(ip, dofftofsb(fs, buflist->bs_children[i]->b_bio2.bio_offset), fs->fs_bsize)) panic("ffs_reallocblks: unallocated block 3"); #endif #ifdef DEBUG if (prtrealloc) printf(" %d,", blkno); #endif } #ifdef DEBUG if (prtrealloc) { prtrealloc--; printf("\n"); } #endif return (0); fail: if (ssize < len) brelse(ebp); if (sbap != &ip->i_db[0]) brelse(sbp); return (ENOSPC); } /* * Allocate an inode in the filesystem. * * If allocating a directory, use ffs_dirpref to select the inode. * If allocating in a directory, the following hierarchy is followed: * 1) allocate the preferred inode. * 2) allocate an inode in the same cylinder group. * 3) quadradically rehash into other cylinder groups, until an * available inode is located. * If no inode preference is given the following heirarchy is used * to allocate an inode: * 1) allocate an inode in cylinder group 0. * 2) quadradically rehash into other cylinder groups, until an * available inode is located. */ int ffs_valloc(struct vnode *pvp, int mode, struct ucred *cred, struct vnode **vpp) { struct inode *pip; struct fs *fs; struct inode *ip; ino_t ino, ipref; int cg, error; *vpp = NULL; pip = VTOI(pvp); fs = pip->i_fs; if (fs->fs_cstotal.cs_nifree == 0) goto noinodes; if ((mode & IFMT) == IFDIR) ipref = ffs_dirpref(pip); else ipref = pip->i_number; if (ipref >= fs->fs_ncg * fs->fs_ipg) ipref = 0; cg = ino_to_cg(fs, ipref); /* * Track number of dirs created one after another * in a same cg without intervening by files. */ if ((mode & IFMT) == IFDIR) { if (fs->fs_contigdirs[cg] < 255) fs->fs_contigdirs[cg]++; } else { if (fs->fs_contigdirs[cg] > 0) fs->fs_contigdirs[cg]--; } ino = (ino_t)ffs_hashalloc(pip, cg, (long)ipref, mode, (allocfcn_t *)ffs_nodealloccg); if (ino == 0) goto noinodes; error = VFS_VGET(pvp->v_mount, ino, vpp); if (error) { ffs_vfree(pvp, ino, mode); return (error); } ip = VTOI(*vpp); if (ip->i_mode) { printf("mode = 0%o, inum = %lu, fs = %s\n", ip->i_mode, (u_long)ip->i_number, fs->fs_fsmnt); panic("ffs_valloc: dup alloc"); } if (ip->i_blocks) { /* XXX */ printf("free inode %s/%lu had %ld blocks\n", fs->fs_fsmnt, (u_long)ino, (long)ip->i_blocks); ip->i_blocks = 0; } ip->i_flags = 0; /* * Set up a new generation number for this inode. */ if (ip->i_gen == 0 || ++ip->i_gen == 0) ip->i_gen = krandom() / 2 + 1; return (0); noinodes: ffs_fserr(fs, cred->cr_uid, "out of inodes"); uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt); return (ENOSPC); } /* * Find a cylinder group to place a directory. * * The policy implemented by this algorithm is to allocate a * directory inode in the same cylinder group as its parent * directory, but also to reserve space for its files inodes * and data. Restrict the number of directories which may be * allocated one after another in the same cylinder group * without intervening allocation of files. * * If we allocate a first level directory then force allocation * in another cylinder group. */ static ino_t ffs_dirpref(struct inode *pip) { struct fs *fs; int cg, prefcg, dirsize, cgsize; int64_t dirsize64; int avgifree, avgbfree, avgndir, curdirsize; int minifree, minbfree, maxndir; int mincg, minndir; int maxcontigdirs; fs = pip->i_fs; avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg; avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg; avgndir = fs->fs_cstotal.cs_ndir / fs->fs_ncg; /* * Force allocation in another cg if creating a first level dir. */ if (ITOV(pip)->v_flag & VROOT) { prefcg = karc4random() % fs->fs_ncg; mincg = prefcg; minndir = fs->fs_ipg; for (cg = prefcg; cg < fs->fs_ncg; cg++) if (fs->fs_cs(fs, cg).cs_ndir < minndir && fs->fs_cs(fs, cg).cs_nifree >= avgifree && fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { mincg = cg; minndir = fs->fs_cs(fs, cg).cs_ndir; } for (cg = 0; cg < prefcg; cg++) if (fs->fs_cs(fs, cg).cs_ndir < minndir && fs->fs_cs(fs, cg).cs_nifree >= avgifree && fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { mincg = cg; minndir = fs->fs_cs(fs, cg).cs_ndir; } return ((ino_t)(fs->fs_ipg * mincg)); } /* * Count various limits which used for * optimal allocation of a directory inode. */ maxndir = min(avgndir + fs->fs_ipg / 16, fs->fs_ipg); minifree = avgifree - avgifree / 4; if (minifree < 1) minifree = 1; minbfree = avgbfree - avgbfree / 4; if (minbfree < 1) minbfree = 1; cgsize = fs->fs_fsize * fs->fs_fpg; /* * fs_avgfilesize and fs_avgfpdir are user-settable entities and * multiplying them may overflow a 32 bit integer. */ dirsize64 = fs->fs_avgfilesize * (int64_t)fs->fs_avgfpdir; if (dirsize64 > 0x7fffffff) { maxcontigdirs = 1; } else { dirsize = (int)dirsize64; curdirsize = avgndir ? (cgsize - avgbfree * fs->fs_bsize) / avgndir : 0; if (dirsize < curdirsize) dirsize = curdirsize; maxcontigdirs = min((avgbfree * fs->fs_bsize) / dirsize, 255); if (fs->fs_avgfpdir > 0) maxcontigdirs = min(maxcontigdirs, fs->fs_ipg / fs->fs_avgfpdir); if (maxcontigdirs == 0) maxcontigdirs = 1; } /* * Limit number of dirs in one cg and reserve space for * regular files, but only if we have no deficit in * inodes or space. */ prefcg = ino_to_cg(fs, pip->i_number); for (cg = prefcg; cg < fs->fs_ncg; cg++) if (fs->fs_cs(fs, cg).cs_ndir < maxndir && fs->fs_cs(fs, cg).cs_nifree >= minifree && fs->fs_cs(fs, cg).cs_nbfree >= minbfree) { if (fs->fs_contigdirs[cg] < maxcontigdirs) return ((ino_t)(fs->fs_ipg * cg)); } for (cg = 0; cg < prefcg; cg++) if (fs->fs_cs(fs, cg).cs_ndir < maxndir && fs->fs_cs(fs, cg).cs_nifree >= minifree && fs->fs_cs(fs, cg).cs_nbfree >= minbfree) { if (fs->fs_contigdirs[cg] < maxcontigdirs) return ((ino_t)(fs->fs_ipg * cg)); } /* * This is a backstop when we have deficit in space. */ for (cg = prefcg; cg < fs->fs_ncg; cg++) if (fs->fs_cs(fs, cg).cs_nifree >= avgifree) return ((ino_t)(fs->fs_ipg * cg)); for (cg = 0; cg < prefcg; cg++) if (fs->fs_cs(fs, cg).cs_nifree >= avgifree) break; return ((ino_t)(fs->fs_ipg * cg)); } /* * Select the desired position for the next block in a file. The file is * logically divided into sections. The first section is composed of the * direct blocks. Each additional section contains fs_maxbpg blocks. * * If no blocks have been allocated in the first section, the policy is to * request a block in the same cylinder group as the inode that describes * the file. If no blocks have been allocated in any other section, the * policy is to place the section in a cylinder group with a greater than * average number of free blocks. An appropriate cylinder group is found * by using a rotor that sweeps the cylinder groups. When a new group of * blocks is needed, the sweep begins in the cylinder group following the * cylinder group from which the previous allocation was made. The sweep * continues until a cylinder group with greater than the average number * of free blocks is found. If the allocation is for the first block in an * indirect block, the information on the previous allocation is unavailable; * here a best guess is made based upon the logical block number being * allocated. * * If a section is already partially allocated, the policy is to * contiguously allocate fs_maxcontig blocks. The end of one of these * contiguous blocks and the beginning of the next is physically separated * so that the disk head will be in transit between them for at least * fs_rotdelay milliseconds. This is to allow time for the processor to * schedule another I/O transfer. */ ufs_daddr_t ffs_blkpref(struct inode *ip, ufs_daddr_t lbn, int indx, ufs_daddr_t *bap) { struct fs *fs; int cg; int avgbfree, startcg; ufs_daddr_t nextblk; fs = ip->i_fs; if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) { if (lbn < NDADDR + NINDIR(fs)) { cg = ino_to_cg(fs, ip->i_number); return (fs->fs_fpg * cg + fs->fs_frag); } /* * Find a cylinder with greater than average number of * unused data blocks. */ if (indx == 0 || bap[indx - 1] == 0) startcg = ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg; else startcg = dtog(fs, bap[indx - 1]) + 1; startcg %= fs->fs_ncg; avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg; for (cg = startcg; cg < fs->fs_ncg; cg++) if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { fs->fs_cgrotor = cg; return (fs->fs_fpg * cg + fs->fs_frag); } for (cg = 0; cg <= startcg; cg++) if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { fs->fs_cgrotor = cg; return (fs->fs_fpg * cg + fs->fs_frag); } return (0); } /* * One or more previous blocks have been laid out. If less * than fs_maxcontig previous blocks are contiguous, the * next block is requested contiguously, otherwise it is * requested rotationally delayed by fs_rotdelay milliseconds. */ nextblk = bap[indx - 1] + fs->fs_frag; if (fs->fs_rotdelay == 0 || indx < fs->fs_maxcontig || bap[indx - fs->fs_maxcontig] + blkstofrags(fs, fs->fs_maxcontig) != nextblk) return (nextblk); /* * Here we convert ms of delay to frags as: * (frags) = (ms) * (rev/sec) * (sect/rev) / * ((sect/frag) * (ms/sec)) * then round up to the next block. */ nextblk += roundup(fs->fs_rotdelay * fs->fs_rps * fs->fs_nsect / (NSPF(fs) * 1000), fs->fs_frag); return (nextblk); } /* * Implement the cylinder overflow algorithm. * * The policy implemented by this algorithm is: * 1) allocate the block in its requested cylinder group. * 2) quadradically rehash on the cylinder group number. * 3) brute force search for a free block. */ /*VARARGS5*/ static u_long ffs_hashalloc(struct inode *ip, int cg, long pref, int size, /* size for data blocks, mode for inodes */ allocfcn_t *allocator) { struct fs *fs; long result; /* XXX why not same type as we return? */ int i, icg = cg; fs = ip->i_fs; /* * 1: preferred cylinder group */ result = (*allocator)(ip, cg, pref, size); if (result) return (result); /* * 2: quadratic rehash */ for (i = 1; i < fs->fs_ncg; i *= 2) { cg += i; if (cg >= fs->fs_ncg) cg -= fs->fs_ncg; result = (*allocator)(ip, cg, 0, size); if (result) return (result); } /* * 3: brute force search * Note that we start at i == 2, since 0 was checked initially, * and 1 is always checked in the quadratic rehash. */ cg = (icg + 2) % fs->fs_ncg; for (i = 2; i < fs->fs_ncg; i++) { result = (*allocator)(ip, cg, 0, size); if (result) return (result); cg++; if (cg == fs->fs_ncg) cg = 0; } return (0); } /* * Determine whether a fragment can be extended. * * Check to see if the necessary fragments are available, and * if they are, allocate them. */ static ufs_daddr_t ffs_fragextend(struct inode *ip, int cg, long bprev, int osize, int nsize) { struct fs *fs; struct cg *cgp; struct buf *bp; long bno; int frags, bbase; int i, error; uint8_t *blksfree; fs = ip->i_fs; if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize)) return (0); frags = numfrags(fs, nsize); bbase = fragnum(fs, bprev); if (bbase > fragnum(fs, (bprev + frags - 1))) { /* cannot extend across a block boundary */ return (0); } KKASSERT(blknum(fs, bprev) == blknum(fs, bprev + frags - 1)); error = bread(ip->i_devvp, fsbtodoff(fs, cgtod(fs, cg)), (int)fs->fs_cgsize, &bp); if (error) { brelse(bp); return (0); } cgp = (struct cg *)bp->b_data; if (!cg_chkmagic(cgp)) { brelse(bp); return (0); } cgp->cg_time = time_second; bno = dtogd(fs, bprev); blksfree = cg_blksfree(cgp); for (i = numfrags(fs, osize); i < frags; i++) { if (isclr(blksfree, bno + i)) { brelse(bp); return (0); } } /* * the current fragment can be extended * deduct the count on fragment being extended into * increase the count on the remaining fragment (if any) * allocate the extended piece * * ---oooooooooonnnnnnn111---- * [-----frags-----] * ^ ^ * bbase fs_frag */ for (i = frags; i < fs->fs_frag - bbase; i++) { if (isclr(blksfree, bno + i)) break; } /* * Size of original free frag is [i - numfrags(fs, osize)] * Size of remaining free frag is [i - frags] */ cgp->cg_frsum[i - numfrags(fs, osize)]--; if (i != frags) cgp->cg_frsum[i - frags]++; for (i = numfrags(fs, osize); i < frags; i++) { clrbit(blksfree, bno + i); cgp->cg_cs.cs_nffree--; fs->fs_cstotal.cs_nffree--; fs->fs_cs(fs, cg).cs_nffree--; } fs->fs_fmod = 1; if (DOINGSOFTDEP(ITOV(ip))) softdep_setup_blkmapdep(bp, fs, bprev); bdwrite(bp); return (bprev); } /* * Determine whether a block can be allocated. * * Check to see if a block of the appropriate size is available, * and if it is, allocate it. */ static ufs_daddr_t ffs_alloccg(struct inode *ip, int cg, ufs_daddr_t bpref, int size) { struct fs *fs; struct cg *cgp; struct buf *bp; int i; ufs_daddr_t bno, blkno; int allocsiz, error, frags; uint8_t *blksfree; fs = ip->i_fs; if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize) return (0); error = bread(ip->i_devvp, fsbtodoff(fs, cgtod(fs, cg)), (int)fs->fs_cgsize, &bp); if (error) { brelse(bp); return (0); } cgp = (struct cg *)bp->b_data; if (!cg_chkmagic(cgp) || (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) { brelse(bp); return (0); } cgp->cg_time = time_second; if (size == fs->fs_bsize) { bno = ffs_alloccgblk(ip, bp, bpref); bdwrite(bp); return (bno); } /* * Check to see if any fragments of sufficient size are already * available. Fit the data into a larger fragment if necessary, * before allocating a whole new block. */ blksfree = cg_blksfree(cgp); frags = numfrags(fs, size); for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++) { if (cgp->cg_frsum[allocsiz] != 0) break; } if (allocsiz == fs->fs_frag) { /* * No fragments were available, allocate a whole block and * cut the requested fragment (of size frags) out of it. */ if (cgp->cg_cs.cs_nbfree == 0) { brelse(bp); return (0); } bno = ffs_alloccgblk(ip, bp, bpref); bpref = dtogd(fs, bno); for (i = frags; i < fs->fs_frag; i++) setbit(blksfree, bpref + i); /* * Calculate the number of free frags still remaining after * we have cut out the requested allocation. Indicate that * a fragment of that size is now available for future * allocation. */ i = fs->fs_frag - frags; cgp->cg_cs.cs_nffree += i; fs->fs_cstotal.cs_nffree += i; fs->fs_cs(fs, cg).cs_nffree += i; fs->fs_fmod = 1; cgp->cg_frsum[i]++; bdwrite(bp); return (bno); } /* * cg_frsum[] has told us that a free fragment of allocsiz size is * available. Find it, then clear the bitmap bits associated with * the size we want. */ bno = ffs_mapsearch(fs, cgp, bpref, allocsiz); if (bno < 0) { brelse(bp); return (0); } for (i = 0; i < frags; i++) clrbit(blksfree, bno + i); cgp->cg_cs.cs_nffree -= frags; fs->fs_cstotal.cs_nffree -= frags; fs->fs_cs(fs, cg).cs_nffree -= frags; fs->fs_fmod = 1; /* * Account for the allocation. The original searched size that we * found is no longer available. If we cut out a smaller piece then * a smaller fragment is now available. */ cgp->cg_frsum[allocsiz]--; if (frags != allocsiz) cgp->cg_frsum[allocsiz - frags]++; blkno = cg * fs->fs_fpg + bno; if (DOINGSOFTDEP(ITOV(ip))) softdep_setup_blkmapdep(bp, fs, blkno); bdwrite(bp); return ((u_long)blkno); } /* * Allocate a block in a cylinder group. * * This algorithm implements the following policy: * 1) allocate the requested block. * 2) allocate a rotationally optimal block in the same cylinder. * 3) allocate the next available block on the block rotor for the * specified cylinder group. * Note that this routine only allocates fs_bsize blocks; these * blocks may be fragmented by the routine that allocates them. */ static ufs_daddr_t ffs_alloccgblk(struct inode *ip, struct buf *bp, ufs_daddr_t bpref) { struct fs *fs; struct cg *cgp; ufs_daddr_t bno, blkno; int cylno, pos, delta; short *cylbp; int i; uint8_t *blksfree; fs = ip->i_fs; cgp = (struct cg *)bp->b_data; blksfree = cg_blksfree(cgp); if (bpref == 0 || dtog(fs, bpref) != cgp->cg_cgx) { bpref = cgp->cg_rotor; goto norot; } bpref = blknum(fs, bpref); bpref = dtogd(fs, bpref); /* * if the requested block is available, use it */ if (ffs_isblock(fs, blksfree, fragstoblks(fs, bpref))) { bno = bpref; goto gotit; } if (fs->fs_nrpos <= 1 || fs->fs_cpc == 0) { /* * Block layout information is not available. * Leaving bpref unchanged means we take the * next available free block following the one * we just allocated. Hopefully this will at * least hit a track cache on drives of unknown * geometry (e.g. SCSI). */ goto norot; } /* * check for a block available on the same cylinder */ cylno = cbtocylno(fs, bpref); if (cg_blktot(cgp)[cylno] == 0) goto norot; /* * check the summary information to see if a block is * available in the requested cylinder starting at the * requested rotational position and proceeding around. */ cylbp = cg_blks(fs, cgp, cylno); pos = cbtorpos(fs, bpref); for (i = pos; i < fs->fs_nrpos; i++) if (cylbp[i] > 0) break; if (i == fs->fs_nrpos) for (i = 0; i < pos; i++) if (cylbp[i] > 0) break; if (cylbp[i] > 0) { /* * found a rotational position, now find the actual * block. A panic if none is actually there. */ pos = cylno % fs->fs_cpc; bno = (cylno - pos) * fs->fs_spc / NSPB(fs); if (fs_postbl(fs, pos)[i] == -1) { printf("pos = %d, i = %d, fs = %s\n", pos, i, fs->fs_fsmnt); panic("ffs_alloccgblk: cyl groups corrupted"); } for (i = fs_postbl(fs, pos)[i];; ) { if (ffs_isblock(fs, blksfree, bno + i)) { bno = blkstofrags(fs, (bno + i)); goto gotit; } delta = fs_rotbl(fs)[i]; if (delta <= 0 || delta + i > fragstoblks(fs, fs->fs_fpg)) break; i += delta; } printf("pos = %d, i = %d, fs = %s\n", pos, i, fs->fs_fsmnt); panic("ffs_alloccgblk: can't find blk in cyl"); } norot: /* * no blocks in the requested cylinder, so take next * available one in this cylinder group. */ bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag); if (bno < 0) return (0); cgp->cg_rotor = bno; gotit: blkno = fragstoblks(fs, bno); ffs_clrblock(fs, blksfree, (long)blkno); ffs_clusteracct(fs, cgp, blkno, -1); cgp->cg_cs.cs_nbfree--; fs->fs_cstotal.cs_nbfree--; fs->fs_cs(fs, cgp->cg_cgx).cs_nbfree--; cylno = cbtocylno(fs, bno); cg_blks(fs, cgp, cylno)[cbtorpos(fs, bno)]--; cg_blktot(cgp)[cylno]--; fs->fs_fmod = 1; blkno = cgp->cg_cgx * fs->fs_fpg + bno; if (DOINGSOFTDEP(ITOV(ip))) softdep_setup_blkmapdep(bp, fs, blkno); return (blkno); } /* * Determine whether a cluster can be allocated. * * We do not currently check for optimal rotational layout if there * are multiple choices in the same cylinder group. Instead we just * take the first one that we find following bpref. */ static ufs_daddr_t ffs_clusteralloc(struct inode *ip, int cg, ufs_daddr_t bpref, int len) { struct fs *fs; struct cg *cgp; struct buf *bp; int i, got, run, bno, bit, map; u_char *mapp; int32_t *lp; uint8_t *blksfree; fs = ip->i_fs; if (fs->fs_maxcluster[cg] < len) return (0); if (bread(ip->i_devvp, fsbtodoff(fs, cgtod(fs, cg)), (int)fs->fs_cgsize, &bp)) { goto fail; } cgp = (struct cg *)bp->b_data; if (!cg_chkmagic(cgp)) goto fail; /* * Check to see if a cluster of the needed size (or bigger) is * available in this cylinder group. */ lp = &cg_clustersum(cgp)[len]; for (i = len; i <= fs->fs_contigsumsize; i++) if (*lp++ > 0) break; if (i > fs->fs_contigsumsize) { /* * This is the first time looking for a cluster in this * cylinder group. Update the cluster summary information * to reflect the true maximum sized cluster so that * future cluster allocation requests can avoid reading * the cylinder group map only to find no clusters. */ lp = &cg_clustersum(cgp)[len - 1]; for (i = len - 1; i > 0; i--) if (*lp-- > 0) break; fs->fs_maxcluster[cg] = i; goto fail; } /* * Search the cluster map to find a big enough cluster. * We take the first one that we find, even if it is larger * than we need as we prefer to get one close to the previous * block allocation. We do not search before the current * preference point as we do not want to allocate a block * that is allocated before the previous one (as we will * then have to wait for another pass of the elevator * algorithm before it will be read). We prefer to fail and * be recalled to try an allocation in the next cylinder group. */ if (dtog(fs, bpref) != cg) bpref = 0; else bpref = fragstoblks(fs, dtogd(fs, blknum(fs, bpref))); mapp = &cg_clustersfree(cgp)[bpref / NBBY]; map = *mapp++; bit = 1 << (bpref % NBBY); for (run = 0, got = bpref; got < cgp->cg_nclusterblks; got++) { if ((map & bit) == 0) { run = 0; } else { run++; if (run == len) break; } if ((got & (NBBY - 1)) != (NBBY - 1)) { bit <<= 1; } else { map = *mapp++; bit = 1; } } if (got >= cgp->cg_nclusterblks) goto fail; /* * Allocate the cluster that we have found. */ blksfree = cg_blksfree(cgp); for (i = 1; i <= len; i++) { if (!ffs_isblock(fs, blksfree, got - run + i)) panic("ffs_clusteralloc: map mismatch"); } bno = cg * fs->fs_fpg + blkstofrags(fs, got - run + 1); if (dtog(fs, bno) != cg) panic("ffs_clusteralloc: allocated out of group"); len = blkstofrags(fs, len); for (i = 0; i < len; i += fs->fs_frag) { if ((got = ffs_alloccgblk(ip, bp, bno + i)) != bno + i) panic("ffs_clusteralloc: lost block"); } bdwrite(bp); return (bno); fail: brelse(bp); return (0); } /* * Determine whether an inode can be allocated. * * Check to see if an inode is available, and if it is, * allocate it using the following policy: * 1) allocate the requested inode. * 2) allocate the next available inode after the requested * inode in the specified cylinder group. * 3) the inode must not already be in the inode hash table. We * can encounter such a case because the vnode reclamation sequence * frees the bit * 3) the inode must not already be in the inode hash, otherwise it * may be in the process of being deallocated. This can occur * because the bitmap is updated before the inode is removed from * hash. If we were to reallocate the inode the caller could wind * up returning a vnode/inode combination which is in an indeterminate * state. */ static ino_t ffs_nodealloccg(struct inode *ip, int cg, ufs_daddr_t ipref, int mode) { struct fs *fs; struct cg *cgp; struct buf *bp; uint8_t *inosused; uint8_t map; int error, len, arraysize, i; int icheckmiss; ufs_daddr_t ibase; fs = ip->i_fs; if (fs->fs_cs(fs, cg).cs_nifree == 0) return (0); error = bread(ip->i_devvp, fsbtodoff(fs, cgtod(fs, cg)), (int)fs->fs_cgsize, &bp); if (error) { brelse(bp); return (0); } cgp = (struct cg *)bp->b_data; if (!cg_chkmagic(cgp) || cgp->cg_cs.cs_nifree == 0) { brelse(bp); return (0); } inosused = cg_inosused(cgp); icheckmiss = 0; /* * Quick check, reuse the most recently free inode or continue * a scan from where we left off the last time. */ ibase = cg * fs->fs_ipg; if (ipref) { ipref %= fs->fs_ipg; if (isclr(inosused, ipref)) { if (ufs_ihashcheck(ip->i_dev, ibase + ipref) == 0) goto gotit; } } /* * Scan the inode bitmap starting at irotor, be sure to handle * the edge case by going back to the beginning of the array. * * If the number of inodes is not byte-aligned, the unused bits * should be set to 1. This will be sanity checked in gotit. Note * that we have to be sure not to overlap the beginning and end * when irotor is in the middle of a byte as this will cause the * same bitmap byte to be checked twice. To solve this problem we * just convert everything to a byte index for the loop. */ ipref = (cgp->cg_irotor % fs->fs_ipg) >> 3; /* byte index */ len = (fs->fs_ipg + 7) >> 3; /* byte size */ arraysize = len; while (len > 0) { map = inosused[ipref]; if (map != 255) { for (i = 0; i < NBBY; ++i) { /* * If we find a free bit we have to make sure * that the inode is not in the middle of * being destroyed. The inode should not exist * in the inode hash. * * Adjust the rotor to try to hit the * quick-check up above. */ if ((map & (1 << i)) == 0) { if (ufs_ihashcheck(ip->i_dev, ibase + (ipref << 3) + i) == 0) { ipref = (ipref << 3) + i; cgp->cg_irotor = (ipref + 1) % fs->fs_ipg; goto gotit; } ++icheckmiss; } } } /* * Setup for the next byte, start at the beginning again if * we hit the end of the array. */ if (++ipref == arraysize) ipref = 0; --len; } if (icheckmiss == cgp->cg_cs.cs_nifree) { brelse(bp); return(0); } printf("fs = %s\n", fs->fs_fsmnt); panic("ffs_nodealloccg: block not in map, icheckmiss/nfree %d/%d", icheckmiss, cgp->cg_cs.cs_nifree); /* NOTREACHED */ /* * ipref is a bit index as of the gotit label. */ gotit: KKASSERT(ipref >= 0 && ipref < fs->fs_ipg); if (icheckmiss) { printf("Warning: inode free race avoided %d times\n", icheckmiss); } cgp->cg_time = time_second; if (DOINGSOFTDEP(ITOV(ip))) softdep_setup_inomapdep(bp, ip, ibase + ipref); setbit(inosused, ipref); cgp->cg_cs.cs_nifree--; fs->fs_cstotal.cs_nifree--; fs->fs_cs(fs, cg).cs_nifree--; fs->fs_fmod = 1; if ((mode & IFMT) == IFDIR) { cgp->cg_cs.cs_ndir++; fs->fs_cstotal.cs_ndir++; fs->fs_cs(fs, cg).cs_ndir++; } bdwrite(bp); return (ibase + ipref); } /* * Free a block or fragment. * * The specified block or fragment is placed back in the * free map. If a fragment is deallocated, a possible * block reassembly is checked. */ void ffs_blkfree(struct inode *ip, ufs_daddr_t bno, long size) { struct fs *fs; struct cg *cgp; struct buf *bp; ufs_daddr_t blkno; int i, error, cg, blk, frags, bbase; uint8_t *blksfree; fs = ip->i_fs; VOP_FREEBLKS(ip->i_devvp, fsbtodoff(fs, bno), size); if ((uint)size > fs->fs_bsize || fragoff(fs, size) != 0 || fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) { printf("dev=%s, bno = %ld, bsize = %ld, size = %ld, fs = %s\n", devtoname(ip->i_dev), (long)bno, (long)fs->fs_bsize, size, fs->fs_fsmnt); panic("ffs_blkfree: bad size"); } cg = dtog(fs, bno); if ((uint)bno >= fs->fs_size) { printf("bad block %ld, ino %lu\n", (long)bno, (u_long)ip->i_number); ffs_fserr(fs, ip->i_uid, "bad block"); return; } /* * Load the cylinder group */ error = bread(ip->i_devvp, fsbtodoff(fs, cgtod(fs, cg)), (int)fs->fs_cgsize, &bp); if (error) { brelse(bp); return; } cgp = (struct cg *)bp->b_data; if (!cg_chkmagic(cgp)) { brelse(bp); return; } cgp->cg_time = time_second; bno = dtogd(fs, bno); blksfree = cg_blksfree(cgp); if (size == fs->fs_bsize) { /* * Free a whole block */ blkno = fragstoblks(fs, bno); if (!ffs_isfreeblock(fs, blksfree, blkno)) { printf("dev = %s, block = %ld, fs = %s\n", devtoname(ip->i_dev), (long)bno, fs->fs_fsmnt); panic("ffs_blkfree: freeing free block"); } ffs_setblock(fs, blksfree, blkno); ffs_clusteracct(fs, cgp, blkno, 1); cgp->cg_cs.cs_nbfree++; fs->fs_cstotal.cs_nbfree++; fs->fs_cs(fs, cg).cs_nbfree++; i = cbtocylno(fs, bno); cg_blks(fs, cgp, i)[cbtorpos(fs, bno)]++; cg_blktot(cgp)[i]++; } else { /* * Free a fragment within a block. * * bno is the starting block number of the fragment being * freed. * * bbase is the starting block number for the filesystem * block containing the fragment. * * blk is the current bitmap for the fragments within the * filesystem block containing the fragment. * * frags is the number of fragments being freed * * Call ffs_fragacct() to account for the removal of all * current fragments, then adjust the bitmap to free the * requested fragment, and finally call ffs_fragacct() again * to regenerate the accounting. */ bbase = bno - fragnum(fs, bno); blk = blkmap(fs, blksfree, bbase); ffs_fragacct(fs, blk, cgp->cg_frsum, -1); frags = numfrags(fs, size); for (i = 0; i < frags; i++) { if (isset(blksfree, bno + i)) { printf("dev = %s, block = %ld, fs = %s\n", devtoname(ip->i_dev), (long)(bno + i), fs->fs_fsmnt); panic("ffs_blkfree: freeing free frag"); } setbit(blksfree, bno + i); } cgp->cg_cs.cs_nffree += i; fs->fs_cstotal.cs_nffree += i; fs->fs_cs(fs, cg).cs_nffree += i; /* * Add back in counts associated with the new frags */ blk = blkmap(fs, blksfree, bbase); ffs_fragacct(fs, blk, cgp->cg_frsum, 1); /* * If a complete block has been reassembled, account for it */ blkno = fragstoblks(fs, bbase); if (ffs_isblock(fs, blksfree, blkno)) { cgp->cg_cs.cs_nffree -= fs->fs_frag; fs->fs_cstotal.cs_nffree -= fs->fs_frag; fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag; ffs_clusteracct(fs, cgp, blkno, 1); cgp->cg_cs.cs_nbfree++; fs->fs_cstotal.cs_nbfree++; fs->fs_cs(fs, cg).cs_nbfree++; i = cbtocylno(fs, bbase); cg_blks(fs, cgp, i)[cbtorpos(fs, bbase)]++; cg_blktot(cgp)[i]++; } } fs->fs_fmod = 1; bdwrite(bp); } #ifdef DIAGNOSTIC /* * Verify allocation of a block or fragment. Returns true if block or * fragment is allocated, false if it is free. */ static int ffs_checkblk(struct inode *ip, ufs_daddr_t bno, long size) { struct fs *fs; struct cg *cgp; struct buf *bp; int i, error, frags, free; uint8_t *blksfree; fs = ip->i_fs; if ((uint)size > fs->fs_bsize || fragoff(fs, size) != 0) { printf("bsize = %ld, size = %ld, fs = %s\n", (long)fs->fs_bsize, size, fs->fs_fsmnt); panic("ffs_checkblk: bad size"); } if ((uint)bno >= fs->fs_size) panic("ffs_checkblk: bad block %d", bno); error = bread(ip->i_devvp, fsbtodoff(fs, cgtod(fs, dtog(fs, bno))), (int)fs->fs_cgsize, &bp); if (error) panic("ffs_checkblk: cg bread failed"); cgp = (struct cg *)bp->b_data; if (!cg_chkmagic(cgp)) panic("ffs_checkblk: cg magic mismatch"); blksfree = cg_blksfree(cgp); bno = dtogd(fs, bno); if (size == fs->fs_bsize) { free = ffs_isblock(fs, blksfree, fragstoblks(fs, bno)); } else { frags = numfrags(fs, size); for (free = 0, i = 0; i < frags; i++) if (isset(blksfree, bno + i)) free++; if (free != 0 && free != frags) panic("ffs_checkblk: partially free fragment"); } brelse(bp); return (!free); } #endif /* DIAGNOSTIC */ /* * Free an inode. */ int ffs_vfree(struct vnode *pvp, ino_t ino, int mode) { if (DOINGSOFTDEP(pvp)) { softdep_freefile(pvp, ino, mode); return (0); } return (ffs_freefile(pvp, ino, mode)); } /* * Do the actual free operation. * The specified inode is placed back in the free map. */ int ffs_freefile(struct vnode *pvp, ino_t ino, int mode) { struct fs *fs; struct cg *cgp; struct inode *pip; struct buf *bp; int error, cg; uint8_t *inosused; pip = VTOI(pvp); fs = pip->i_fs; if ((uint)ino >= fs->fs_ipg * fs->fs_ncg) panic("ffs_vfree: range: dev = (%d,%d), ino = %"PRId64", fs = %s", major(pip->i_dev), minor(pip->i_dev), ino, fs->fs_fsmnt); cg = ino_to_cg(fs, ino); error = bread(pip->i_devvp, fsbtodoff(fs, cgtod(fs, cg)), (int)fs->fs_cgsize, &bp); if (error) { brelse(bp); return (error); } cgp = (struct cg *)bp->b_data; if (!cg_chkmagic(cgp)) { brelse(bp); return (0); } cgp->cg_time = time_second; inosused = cg_inosused(cgp); ino %= fs->fs_ipg; if (isclr(inosused, ino)) { printf("dev = %s, ino = %lu, fs = %s\n", devtoname(pip->i_dev), (u_long)ino, fs->fs_fsmnt); if (fs->fs_ronly == 0) panic("ffs_vfree: freeing free inode"); } clrbit(inosused, ino); if (ino < cgp->cg_irotor) cgp->cg_irotor = ino; cgp->cg_cs.cs_nifree++; fs->fs_cstotal.cs_nifree++; fs->fs_cs(fs, cg).cs_nifree++; if ((mode & IFMT) == IFDIR) { cgp->cg_cs.cs_ndir--; fs->fs_cstotal.cs_ndir--; fs->fs_cs(fs, cg).cs_ndir--; } fs->fs_fmod = 1; bdwrite(bp); return (0); } /* * Find a block of the specified size in the specified cylinder group. * * It is a panic if a request is made to find a block if none are * available. */ static ufs_daddr_t ffs_mapsearch(struct fs *fs, struct cg *cgp, ufs_daddr_t bpref, int allocsiz) { ufs_daddr_t bno; int start, len, loc, i; int blk, field, subfield, pos; uint8_t *blksfree; /* * find the fragment by searching through the free block * map for an appropriate bit pattern. */ if (bpref) start = dtogd(fs, bpref) / NBBY; else start = cgp->cg_frotor / NBBY; blksfree = cg_blksfree(cgp); len = howmany(fs->fs_fpg, NBBY) - start; loc = scanc((uint)len, (u_char *)&blksfree[start], (u_char *)fragtbl[fs->fs_frag], (u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY)))); if (loc == 0) { len = start + 1; /* XXX why overlap here? */ start = 0; loc = scanc((uint)len, (u_char *)&blksfree[0], (u_char *)fragtbl[fs->fs_frag], (u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY)))); if (loc == 0) { printf("start = %d, len = %d, fs = %s\n", start, len, fs->fs_fsmnt); panic("ffs_alloccg: map corrupted"); /* NOTREACHED */ } } bno = (start + len - loc) * NBBY; cgp->cg_frotor = bno; /* * found the byte in the map * sift through the bits to find the selected frag */ for (i = bno + NBBY; bno < i; bno += fs->fs_frag) { blk = blkmap(fs, blksfree, bno); blk <<= 1; field = around[allocsiz]; subfield = inside[allocsiz]; for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) { if ((blk & field) == subfield) return (bno + pos); field <<= 1; subfield <<= 1; } } printf("bno = %lu, fs = %s\n", (u_long)bno, fs->fs_fsmnt); panic("ffs_alloccg: block not in map"); return (-1); } /* * Update the cluster map because of an allocation or free. * * Cnt == 1 means free; cnt == -1 means allocating. */ static void ffs_clusteracct(struct fs *fs, struct cg *cgp, ufs_daddr_t blkno, int cnt) { int32_t *sump; int32_t *lp; u_char *freemapp, *mapp; int i, start, end, forw, back, map, bit; if (fs->fs_contigsumsize <= 0) return; freemapp = cg_clustersfree(cgp); sump = cg_clustersum(cgp); /* * Allocate or clear the actual block. */ if (cnt > 0) setbit(freemapp, blkno); else clrbit(freemapp, blkno); /* * Find the size of the cluster going forward. */ start = blkno + 1; end = start + fs->fs_contigsumsize; if (end >= cgp->cg_nclusterblks) end = cgp->cg_nclusterblks; mapp = &freemapp[start / NBBY]; map = *mapp++; bit = 1 << (start % NBBY); for (i = start; i < end; i++) { if ((map & bit) == 0) break; if ((i & (NBBY - 1)) != (NBBY - 1)) { bit <<= 1; } else { map = *mapp++; bit = 1; } } forw = i - start; /* * Find the size of the cluster going backward. */ start = blkno - 1; end = start - fs->fs_contigsumsize; if (end < 0) end = -1; mapp = &freemapp[start / NBBY]; map = *mapp--; bit = 1 << (start % NBBY); for (i = start; i > end; i--) { if ((map & bit) == 0) break; if ((i & (NBBY - 1)) != 0) { bit >>= 1; } else { map = *mapp--; bit = 1 << (NBBY - 1); } } back = start - i; /* * Account for old cluster and the possibly new forward and * back clusters. */ i = back + forw + 1; if (i > fs->fs_contigsumsize) i = fs->fs_contigsumsize; sump[i] += cnt; if (back > 0) sump[back] -= cnt; if (forw > 0) sump[forw] -= cnt; /* * Update cluster summary information. */ lp = &sump[fs->fs_contigsumsize]; for (i = fs->fs_contigsumsize; i > 0; i--) if (*lp-- > 0) break; fs->fs_maxcluster[cgp->cg_cgx] = i; } /* * Fserr prints the name of a filesystem with an error diagnostic. * * The form of the error message is: * fs: error message */ static void ffs_fserr(struct fs *fs, uint uid, char *cp) { struct thread *td = curthread; struct proc *p; if ((p = td->td_proc) != NULL) { log(LOG_ERR, "pid %d (%s), uid %d on %s: %s\n", p ? p->p_pid : -1, p ? p->p_comm : "-", uid, fs->fs_fsmnt, cp); } else { log(LOG_ERR, "system thread %p, uid %d on %s: %s\n", td, uid, fs->fs_fsmnt, cp); } }