/****************************************************************************** * * Module Name: aslopt- Compiler optimizations * $Revision: 12 $ * *****************************************************************************/ /****************************************************************************** * * 1. Copyright Notice * * Some or all of this work - Copyright (c) 1999 - 2003, Intel Corp. * All rights reserved. * * 2. License * * 2.1. This is your license from Intel Corp. under its intellectual property * rights. You may have additional license terms from the party that provided * you this software, covering your right to use that party's intellectual * property rights. * * 2.2. Intel grants, free of charge, to any person ("Licensee") obtaining a * copy of the source code appearing in this file ("Covered Code") an * irrevocable, perpetual, worldwide license under Intel's copyrights in the * base code distributed originally by Intel ("Original Intel Code") to copy, * make derivatives, distribute, use and display any portion of the Covered * Code in any form, with the right to sublicense such rights; and * * 2.3. Intel grants Licensee a non-exclusive and non-transferable patent * license (with the right to sublicense), under only those claims of Intel * patents that are infringed by the Original Intel Code, to make, use, sell, * offer to sell, and import the Covered Code and derivative works thereof * solely to the minimum extent necessary to exercise the above copyright * license, and in no event shall the patent license extend to any additions * to or modifications of the Original Intel Code. No other license or right * is granted directly or by implication, estoppel or otherwise; * * The above copyright and patent license is granted only if the following * conditions are met: * * 3. Conditions * * 3.1. Redistribution of Source with Rights to Further Distribute Source. * Redistribution of source code of any substantial portion of the Covered * Code or modification with rights to further distribute source must include * the above Copyright Notice, the above License, this list of Conditions, * and the following Disclaimer and Export Compliance provision. In addition, * Licensee must cause all Covered Code to which Licensee contributes to * contain a file documenting the changes Licensee made to create that Covered * Code and the date of any change. Licensee must include in that file the * documentation of any changes made by any predecessor Licensee. Licensee * must include a prominent statement that the modification is derived, * directly or indirectly, from Original Intel Code. * * 3.2. Redistribution of Source with no Rights to Further Distribute Source. * Redistribution of source code of any substantial portion of the Covered * Code or modification without rights to further distribute source must * include the following Disclaimer and Export Compliance provision in the * documentation and/or other materials provided with distribution. In * addition, Licensee may not authorize further sublicense of source of any * portion of the Covered Code, and must include terms to the effect that the * license from Licensee to its licensee is limited to the intellectual * property embodied in the software Licensee provides to its licensee, and * not to intellectual property embodied in modifications its licensee may * make. * * 3.3. Redistribution of Executable. Redistribution in executable form of any * substantial portion of the Covered Code or modification must reproduce the * above Copyright Notice, and the following Disclaimer and Export Compliance * provision in the documentation and/or other materials provided with the * distribution. * * 3.4. Intel retains all right, title, and interest in and to the Original * Intel Code. * * 3.5. Neither the name Intel nor any other trademark owned or controlled by * Intel shall be used in advertising or otherwise to promote the sale, use or * other dealings in products derived from or relating to the Covered Code * without prior written authorization from Intel. * * 4. Disclaimer and Export Compliance * * 4.1. INTEL MAKES NO WARRANTY OF ANY KIND REGARDING ANY SOFTWARE PROVIDED * HERE. ANY SOFTWARE ORIGINATING FROM INTEL OR DERIVED FROM INTEL SOFTWARE * IS PROVIDED "AS IS," AND INTEL WILL NOT PROVIDE ANY SUPPORT, ASSISTANCE, * INSTALLATION, TRAINING OR OTHER SERVICES. INTEL WILL NOT PROVIDE ANY * UPDATES, ENHANCEMENTS OR EXTENSIONS. INTEL SPECIFICALLY DISCLAIMS ANY * IMPLIED WARRANTIES OF MERCHANTABILITY, NONINFRINGEMENT AND FITNESS FOR A * PARTICULAR PURPOSE. * * 4.2. IN NO EVENT SHALL INTEL HAVE ANY LIABILITY TO LICENSEE, ITS LICENSEES * OR ANY OTHER THIRD PARTY, FOR ANY LOST PROFITS, LOST DATA, LOSS OF USE OR * COSTS OF PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES, OR FOR ANY INDIRECT, * SPECIAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THIS AGREEMENT, UNDER ANY * CAUSE OF ACTION OR THEORY OF LIABILITY, AND IRRESPECTIVE OF WHETHER INTEL * HAS ADVANCE NOTICE OF THE POSSIBILITY OF SUCH DAMAGES. THESE LIMITATIONS * SHALL APPLY NOTWITHSTANDING THE FAILURE OF THE ESSENTIAL PURPOSE OF ANY * LIMITED REMEDY. * * 4.3. Licensee shall not export, either directly or indirectly, any of this * software or system incorporating such software without first obtaining any * required license or other approval from the U. S. Department of Commerce or * any other agency or department of the United States Government. In the * event Licensee exports any such software from the United States or * re-exports any such software from a foreign destination, Licensee shall * ensure that the distribution and export/re-export of the software is in * compliance with all laws, regulations, orders, or other restrictions of the * U.S. Export Administration Regulations. Licensee agrees that neither it nor * any of its subsidiaries will export/re-export any technical data, process, * software, or service, directly or indirectly, to any country for which the * United States government or any agency thereof requires an export license, * other governmental approval, or letter of assurance, without first obtaining * such license, approval or letter. * *****************************************************************************/ #include "aslcompiler.h" #include "aslcompiler.y.h" #include "acparser.h" #include "amlcode.h" #include "acnamesp.h" #define _COMPONENT ACPI_COMPILER ACPI_MODULE_NAME ("aslopt") UINT32 OptTotal = 0; /******************************************************************************* * * FUNCTION: OptSearchToRoot * * PARAMETERS: Op - Current parser op * WalkState - Current state * CurrentNode - Where we are in the namespace * TargetNode - Node to which we are referring * TargetPath - External full path to the target node * NewPath - Where the optimized path is returned * * RETURN: Status * * DESCRIPTION: Attempt to optimize a reference to a single 4-character ACPI * name utilizing the search-to-root name resolution algorithm * that is used by AML interpreters. * ******************************************************************************/ ACPI_STATUS OptSearchToRoot ( ACPI_PARSE_OBJECT *Op, ACPI_WALK_STATE *WalkState, ACPI_NAMESPACE_NODE *CurrentNode, ACPI_NAMESPACE_NODE *TargetNode, ACPI_BUFFER *TargetPath, char **NewPath) { ACPI_NAMESPACE_NODE *Node; ACPI_GENERIC_STATE ScopeInfo; ACPI_STATUS Status; char *Path; ACPI_FUNCTION_NAME ("OptSearchToRoot"); /* * Check if search-to-root can be utilized. Use the last NameSeg of * the NamePath and 1) See if can be found and 2) If found, make * sure that it is the same node that we want. If there is another * name in the search path before the one we want, the nodes will * not match, and we cannot use this optimization. */ Path = &(((char *) TargetPath->Pointer)[TargetPath->Length - ACPI_NAME_SIZE]), ScopeInfo.Scope.Node = CurrentNode; /* Lookup the NameSeg using SEARCH_PARENT (search-to-root) */ Status = AcpiNsLookup (&ScopeInfo, Path, ACPI_TYPE_ANY, ACPI_IMODE_EXECUTE, ACPI_NS_SEARCH_PARENT | ACPI_NS_DONT_OPEN_SCOPE, WalkState, &(Node)); if (ACPI_FAILURE (Status)) { return (Status); } /* * We found the name, but we must check to make sure that the node * matches. Otherwise, there is another identical name in the search * path that precludes the use of this optimization. */ if (Node != TargetNode) { /* * This means that another object with the same name was found first, * and we cannot use this optimization. */ return (AE_NOT_FOUND); } /* Found the node, we can use this optimization */ ACPI_DEBUG_PRINT_RAW ((ACPI_DB_OPTIMIZATIONS, "NAMESEG: %-24s", Path)); /* We must allocate a new string for the name (TargetPath gets deleted) */ *NewPath = ACPI_MEM_CALLOCATE (ACPI_NAME_SIZE + 1); ACPI_STRCPY (*NewPath, Path); AslError (ASL_OPTIMIZATION, ASL_MSG_SINGLE_NAME_OPTIMIZATION, Op, *NewPath); return (AE_OK); } /******************************************************************************* * * FUNCTION: OptBuildShortestPath * * PARAMETERS: Op - Current parser op * WalkState - Current state * CurrentNode - Where we are in the namespace * TargetNode - Node to which we are referring * CurrentPath - External full path to the current node * TargetPath - External full path to the target node * AmlNameStringLength - Length of the original namepath * IsDeclaration - TRUE for declaration, FALSE for reference * ReturnNewPath - Where the optimized path is returned * * RETURN: Status * * DESCRIPTION: Build an optimal NamePath using carats * ******************************************************************************/ ACPI_STATUS OptBuildShortestPath ( ACPI_PARSE_OBJECT *Op, ACPI_WALK_STATE *WalkState, ACPI_NAMESPACE_NODE *CurrentNode, ACPI_NAMESPACE_NODE *TargetNode, ACPI_BUFFER *CurrentPath, ACPI_BUFFER *TargetPath, ACPI_SIZE AmlNameStringLength, UINT8 IsDeclaration, char **ReturnNewPath) { UINT32 NumCommonSegments; UINT32 MaxCommonSegments; ACPI_NATIVE_UINT Index; UINT32 NumCarats; ACPI_NATIVE_UINT i; char *NewPath; char *NewPathExternal; ACPI_NAMESPACE_NODE *Node; ACPI_GENERIC_STATE ScopeInfo; ACPI_STATUS Status; BOOLEAN SubPath = FALSE; ACPI_FUNCTION_NAME ("OptBuildShortestPath"); ScopeInfo.Scope.Node = CurrentNode; /* * Determine the maximum number of NameSegs that the Target and Current paths * can possibly have in common. (To optimize, we have to have at least 1) * * Note: The external NamePath string lengths are always a multiple of 5 * (ACPI_NAME_SIZE + separator) */ MaxCommonSegments = TargetPath->Length / ACPI_PATH_SEGMENT_LENGTH; if (CurrentPath->Length < TargetPath->Length) { MaxCommonSegments = CurrentPath->Length / ACPI_PATH_SEGMENT_LENGTH; } /* * Determine how many NameSegs the two paths have in common. * (Starting from the root) */ for (NumCommonSegments = 0; NumCommonSegments < MaxCommonSegments; NumCommonSegments++) { /* Compare two single NameSegs */ if (ACPI_STRNCMP ( &((char *) TargetPath->Pointer)[(NumCommonSegments * ACPI_PATH_SEGMENT_LENGTH) + 1], &((char *) CurrentPath->Pointer)[(NumCommonSegments * ACPI_PATH_SEGMENT_LENGTH) + 1], ACPI_NAME_SIZE)) { /* Mismatch */ break; } } ACPI_DEBUG_PRINT_RAW ((ACPI_DB_OPTIMIZATIONS, " COMMON: %d", NumCommonSegments)); /* There must be at least 1 common NameSeg in order to optimize */ if (NumCommonSegments == 0) { return (AE_NOT_FOUND); } if (NumCommonSegments == MaxCommonSegments) { if (CurrentPath->Length == TargetPath->Length) { ACPI_DEBUG_PRINT_RAW ((ACPI_DB_OPTIMIZATIONS, " SAME PATH")); return (AE_NOT_FOUND); } else { ACPI_DEBUG_PRINT_RAW ((ACPI_DB_OPTIMIZATIONS, " SUBPATH")); SubPath = TRUE; } } /* Determine how many prefix Carats are required */ NumCarats = (CurrentPath->Length / ACPI_PATH_SEGMENT_LENGTH) - NumCommonSegments; /* * Construct a new target string */ NewPathExternal = ACPI_MEM_CALLOCATE (TargetPath->Length + NumCarats); /* Insert the Carats into the Target string */ for (i = 0; i < NumCarats; i++) { NewPathExternal[i] = '^'; } /* Copy only the necessary (optimal) segments from the original target string */ Index = (NumCommonSegments * ACPI_PATH_SEGMENT_LENGTH) + 1; /* Special handling for exact subpath in a name declaration */ if (IsDeclaration && SubPath && (CurrentPath->Length > TargetPath->Length)) { /* * The current path is longer than the target, and the target is a subpath * of the current path. We must include one more NameSeg of the target path */ Index -= ACPI_PATH_SEGMENT_LENGTH; } ACPI_STRCPY (&NewPathExternal[i], &((char *) TargetPath->Pointer)[Index]); ACPI_DEBUG_PRINT_RAW ((ACPI_DB_OPTIMIZATIONS, " %-24s", NewPathExternal)); /* * Internalize the new target string and check it against the original string * to make sure that this is in fact an optimization. If the original string * is already optimal, there is no point in continuing. */ Status = AcpiNsInternalizeName (NewPathExternal, &NewPath); if (ACPI_FAILURE (Status)) { AslCoreSubsystemError (Op, Status, "Internalizing new NamePath", ASL_NO_ABORT); ACPI_MEM_FREE (NewPathExternal); return (Status); } if (ACPI_STRLEN (NewPath) >= AmlNameStringLength) { ACPI_DEBUG_PRINT_RAW ((ACPI_DB_OPTIMIZATIONS, " NOT SHORTER (New %d old %d)", ACPI_STRLEN (NewPath), AmlNameStringLength)); ACPI_MEM_FREE (NewPathExternal); return (AE_NOT_FOUND); } /* * Check to make sure that the optimization finds the node we are * looking for. This is simply a sanity check on the new * path that has been created. */ Status = AcpiNsLookup (&ScopeInfo, NewPath, ACPI_TYPE_ANY, ACPI_IMODE_EXECUTE, ACPI_NS_DONT_OPEN_SCOPE, WalkState, &(Node)); if (ACPI_SUCCESS (Status)) { /* Found the namepath, but make sure the node is correct */ if (Node == TargetNode) { /* The lookup matched the node, accept this optimization */ AslError (ASL_OPTIMIZATION, ASL_MSG_NAME_OPTIMIZATION, Op, NewPathExternal); *ReturnNewPath = NewPath; } else { /* Node is not correct, do not use this optimization */ Status = AE_NOT_FOUND; ACPI_DEBUG_PRINT_RAW ((ACPI_DB_OPTIMIZATIONS, " ***** WRONG NODE")); AslError (ASL_WARNING, ASL_MSG_COMPILER_INTERNAL, Op, "Not using optimized name - found wrong node"); } } else { /* The lookup failed, we obviously cannot use this optimization */ ACPI_DEBUG_PRINT_RAW ((ACPI_DB_OPTIMIZATIONS, " ***** NOT FOUND")); AslError (ASL_WARNING, ASL_MSG_COMPILER_INTERNAL, Op, "Not using optimized name - did not find node"); } ACPI_MEM_FREE (NewPathExternal); return (Status); } /******************************************************************************* * * FUNCTION: OptOptimizeNameDeclaration * * PARAMETERS: Op - Current parser op * WalkState - Current state * CurrentNode - Where we are in the namespace * AmlNameString - Unoptimized namepath * NewPath - Where the optimized path is returned * * RETURN: Status. AE_OK If path is optimized * * DESCRIPTION: Perform a simple optimization of removing an extraneous * backslash prefix if we are already at the root scope. * ******************************************************************************/ ACPI_STATUS OptOptimizeNameDeclaration ( ACPI_PARSE_OBJECT *Op, ACPI_WALK_STATE *WalkState, ACPI_NAMESPACE_NODE *CurrentNode, ACPI_NAMESPACE_NODE *TargetNode, char *AmlNameString, char **NewPath) { ACPI_STATUS Status; char *NewPathExternal; ACPI_GENERIC_STATE ScopeInfo; ACPI_NAMESPACE_NODE *Node; ACPI_FUNCTION_TRACE ("OptOptimizeNameDeclaration"); if (((CurrentNode == AcpiGbl_RootNode) || (Op->Common.Parent->Asl.ParseOpcode == PARSEOP_DEFINITIONBLOCK)) && (AmlNameString[0] == '\\')) { /* * The current scope is the root, and the namepath has a root prefix * that is therefore extraneous. Remove it. */ *NewPath = &AmlNameString[1]; /* Debug output */ Status = AcpiNsExternalizeName (ACPI_UINT32_MAX, *NewPath, NULL, &NewPathExternal); if (ACPI_FAILURE (Status)) { AslCoreSubsystemError (Op, Status, "Externalizing NamePath", ASL_NO_ABORT); return (Status); } /* * Check to make sure that the optimization finds the node we are * looking for. This is simply a sanity check on the new * path that has been created. */ ScopeInfo.Scope.Node = CurrentNode; Status = AcpiNsLookup (&ScopeInfo, *NewPath, ACPI_TYPE_ANY, ACPI_IMODE_EXECUTE, ACPI_NS_DONT_OPEN_SCOPE, WalkState, &(Node)); if (ACPI_SUCCESS (Status)) { /* Found the namepath, but make sure the node is correct */ if (Node == TargetNode) { /* The lookup matched the node, accept this optimization */ AslError (ASL_OPTIMIZATION, ASL_MSG_NAME_OPTIMIZATION, Op, NewPathExternal); ACPI_DEBUG_PRINT_RAW ((ACPI_DB_OPTIMIZATIONS, "AT ROOT: %-24s", NewPathExternal)); } else { /* Node is not correct, do not use this optimization */ Status = AE_NOT_FOUND; ACPI_DEBUG_PRINT_RAW ((ACPI_DB_OPTIMIZATIONS, " ***** WRONG NODE")); AslError (ASL_WARNING, ASL_MSG_COMPILER_INTERNAL, Op, "Not using optimized name - found wrong node"); } } else { /* The lookup failed, we obviously cannot use this optimization */ ACPI_DEBUG_PRINT_RAW ((ACPI_DB_OPTIMIZATIONS, " ***** NOT FOUND")); AslError (ASL_WARNING, ASL_MSG_COMPILER_INTERNAL, Op, "Not using optimized name - did not find node"); } ACPI_MEM_FREE (NewPathExternal); return (Status); } /* Could not optimize */ return (AE_NOT_FOUND); } /******************************************************************************* * * FUNCTION: OptOptimizeNamePath * * PARAMETERS: Op - Current parser op * Flags - Opcode info flags * WalkState - Current state * AmlNameString - Unoptimized namepath * TargetNode - Node to which AmlNameString refers * * RETURN: None. If path is optimized, the Op is updated with new path * * DESCRIPTION: Optimize a Named Declaration or Reference to the minimal length. * Must take into account both the current location in the * namespace and the actual reference path. * ******************************************************************************/ void OptOptimizeNamePath ( ACPI_PARSE_OBJECT *Op, UINT32 Flags, ACPI_WALK_STATE *WalkState, char *AmlNameString, ACPI_NAMESPACE_NODE *TargetNode) { ACPI_STATUS Status; ACPI_BUFFER TargetPath; ACPI_BUFFER CurrentPath; ACPI_SIZE AmlNameStringLength; ACPI_NAMESPACE_NODE *CurrentNode; char *ExternalNameString; char *NewPath = NULL; ACPI_SIZE HowMuchShorter; ACPI_PARSE_OBJECT *NextOp; ACPI_FUNCTION_TRACE ("OptOptimizeNamePath"); /* This is an optional optimization */ if (!Gbl_ReferenceOptimizationFlag) { return_VOID; } /* Various required items */ if (!TargetNode || !WalkState || !Op->Common.Parent) { return_VOID; } ACPI_DEBUG_PRINT_RAW ((ACPI_DB_OPTIMIZATIONS, "%5d [%12.12s] [%12.12s] ", Op->Asl.LogicalLineNumber, AcpiPsGetOpcodeName (Op->Common.Parent->Common.AmlOpcode), AcpiPsGetOpcodeName (Op->Common.AmlOpcode))); if (!(Flags & (AML_NAMED | AML_CREATE))) { if (Op->Asl.CompileFlags & NODE_IS_NAME_DECLARATION) { /* We don't want to fuss with actual name declaration nodes here */ ACPI_DEBUG_PRINT_RAW ((ACPI_DB_OPTIMIZATIONS, "******* NAME DECLARATION\n")); return_VOID; } } /* * The original path must be longer than one NameSeg (4 chars) for there * to be any possibility that it can be optimized to a shorter string */ AmlNameStringLength = ACPI_STRLEN (AmlNameString); if (AmlNameStringLength <= ACPI_NAME_SIZE) { ACPI_DEBUG_PRINT_RAW ((ACPI_DB_OPTIMIZATIONS, "NAMESEG %4.4s\n", AmlNameString)); return_VOID; } /* * We need to obtain the node that represents the current scope -- where * we are right now in the namespace. We will compare this path * against the Namepath, looking for commonality. */ CurrentNode = AcpiGbl_RootNode; if (WalkState->ScopeInfo) { CurrentNode = WalkState->ScopeInfo->Scope.Node; } if (Flags & (AML_NAMED | AML_CREATE)) { /* This is the declaration of a new name */ ACPI_DEBUG_PRINT_RAW ((ACPI_DB_OPTIMIZATIONS, "NAME")); /* The node of interest is the parent of this node (the containing scope) */ CurrentNode = Op->Asl.Parent->Asl.Node; if (!CurrentNode) { CurrentNode = AcpiGbl_RootNode; } } else { /* This is a reference to an existing named object */ ACPI_DEBUG_PRINT_RAW ((ACPI_DB_OPTIMIZATIONS, "REF ")); } /* * Obtain the full paths to the two nodes that we are interested in * (Target and current namespace location) in external * format -- something we can easily manipulate */ TargetPath.Length = ACPI_ALLOCATE_LOCAL_BUFFER; Status = AcpiNsHandleToPathname (TargetNode, &TargetPath); if (ACPI_FAILURE (Status)) { AslCoreSubsystemError (Op, Status, "Getting Target NamePath", ASL_NO_ABORT); return_VOID; } TargetPath.Length--; /* Subtract one for null terminator */ /* CurrentPath is the path to this scope (where we are in the namespace) */ CurrentPath.Length = ACPI_ALLOCATE_LOCAL_BUFFER; Status = AcpiNsHandleToPathname (CurrentNode, &CurrentPath); if (ACPI_FAILURE (Status)) { AslCoreSubsystemError (Op, Status, "Getting Current NamePath", ASL_NO_ABORT); return_VOID; } CurrentPath.Length--; /* Subtract one for null terminator */ /* Debug output only */ Status = AcpiNsExternalizeName (ACPI_UINT32_MAX, AmlNameString, NULL, &ExternalNameString); if (ACPI_FAILURE (Status)) { AslCoreSubsystemError (Op, Status, "Externalizing NamePath", ASL_NO_ABORT); return_VOID; } ACPI_DEBUG_PRINT_RAW ((ACPI_DB_OPTIMIZATIONS, "%37s (%2d) ==> %-32s(%2d) %-32s", (char *) CurrentPath.Pointer, CurrentPath.Length, (char *) TargetPath.Pointer, TargetPath.Length, ExternalNameString)); ACPI_MEM_FREE (ExternalNameString); /* * Attempt an optmization depending on the type of namepath */ if (Flags & (AML_NAMED | AML_CREATE)) { /* * This is a named opcode and the namepath is a name declaration, not * a reference. */ Status = OptOptimizeNameDeclaration (Op, WalkState, CurrentNode, TargetNode, AmlNameString, &NewPath); if (ACPI_FAILURE (Status)) { /* * 2) now attempt to * optimize the namestring with carats (up-arrow) */ Status = OptBuildShortestPath (Op, WalkState, CurrentNode, TargetNode, &CurrentPath, &TargetPath, AmlNameStringLength, 1, &NewPath); } } else { /* * This is a reference to an existing named object * * 1) Check if search-to-root can be utilized using the last * NameSeg of the NamePath */ Status = OptSearchToRoot (Op, WalkState, CurrentNode, TargetNode, &TargetPath, &NewPath); if (ACPI_FAILURE (Status)) { /* * 2) Search-to-root could not be used, now attempt to * optimize the namestring with carats (up-arrow) */ Status = OptBuildShortestPath (Op, WalkState, CurrentNode, TargetNode, &CurrentPath, &TargetPath, AmlNameStringLength, 0, &NewPath); } } /* * Success from above indicates that the NamePath was successfully * optimized. We need to update the parse op with the new name */ if (ACPI_SUCCESS (Status)) { HowMuchShorter = (AmlNameStringLength - ACPI_STRLEN (NewPath)); OptTotal += HowMuchShorter; ACPI_DEBUG_PRINT_RAW ((ACPI_DB_OPTIMIZATIONS, " REDUCED %2d (%d)", HowMuchShorter, OptTotal)); if (Flags & AML_NAMED) { if (Op->Asl.AmlOpcode == AML_ALIAS_OP) { /* * ALIAS is the only oddball opcode, the name declaration * (alias name) is the second operand */ Op->Asl.Child->Asl.Next->Asl.Value.String = NewPath; Op->Asl.Child->Asl.Next->Asl.AmlLength = ACPI_STRLEN (NewPath); } else { Op->Asl.Child->Asl.Value.String = NewPath; Op->Asl.Child->Asl.AmlLength = ACPI_STRLEN (NewPath); } } else if (Flags & AML_CREATE) { /* Name must appear as the last parameter */ NextOp = Op->Asl.Child; while (!(NextOp->Asl.CompileFlags & NODE_IS_NAME_DECLARATION)) { NextOp = NextOp->Asl.Next; } /* Update the parse node with the new NamePath */ NextOp->Asl.Value.String = NewPath; NextOp->Asl.AmlLength = ACPI_STRLEN (NewPath); } else { /* Update the parse node with the new NamePath */ Op->Asl.Value.String = NewPath; Op->Asl.AmlLength = ACPI_STRLEN (NewPath); } } else { ACPI_DEBUG_PRINT_RAW ((ACPI_DB_OPTIMIZATIONS, " ALREADY OPTIMAL")); } /* Cleanup path buffers */ ACPI_MEM_FREE (TargetPath.Pointer); ACPI_MEM_FREE (CurrentPath.Pointer); ACPI_DEBUG_PRINT_RAW ((ACPI_DB_OPTIMIZATIONS, "\n")); return_VOID; }