/*- * Copyright (c) 2011, Bryan Venteicher * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice unmodified, this list of conditions, and the following * disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* Driver for VirtIO network devices. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "virtio_if.h" MALLOC_DEFINE(M_VTNET, "VTNET_TX", "Outgoing VTNET TX frame header"); static int vtnet_probe(device_t); static int vtnet_attach(device_t); static int vtnet_detach(device_t); static int vtnet_suspend(device_t); static int vtnet_resume(device_t); static int vtnet_shutdown(device_t); static int vtnet_config_change(device_t); static void vtnet_negotiate_features(struct vtnet_softc *); static int vtnet_alloc_virtqueues(struct vtnet_softc *); static void vtnet_get_hwaddr(struct vtnet_softc *); static void vtnet_set_hwaddr(struct vtnet_softc *); static int vtnet_is_link_up(struct vtnet_softc *); static void vtnet_update_link_status(struct vtnet_softc *); #if 0 static void vtnet_watchdog(struct vtnet_softc *); #endif static void vtnet_config_change_task(void *, int); static int vtnet_setup_interface(struct vtnet_softc *); static int vtnet_change_mtu(struct vtnet_softc *, int); static int vtnet_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *); static int vtnet_init_rx_vq(struct vtnet_softc *); static void vtnet_free_rx_mbufs(struct vtnet_softc *); static void vtnet_free_tx_mbufs(struct vtnet_softc *); static void vtnet_free_ctrl_vq(struct vtnet_softc *); static struct mbuf * vtnet_alloc_rxbuf(struct vtnet_softc *, int, struct mbuf **); static int vtnet_replace_rxbuf(struct vtnet_softc *, struct mbuf *, int); static int vtnet_newbuf(struct vtnet_softc *); static void vtnet_discard_merged_rxbuf(struct vtnet_softc *, int); static void vtnet_discard_rxbuf(struct vtnet_softc *, struct mbuf *); static int vtnet_enqueue_rxbuf(struct vtnet_softc *, struct mbuf *); static void vtnet_vlan_tag_remove(struct mbuf *); static int vtnet_rx_csum(struct vtnet_softc *, struct mbuf *, struct virtio_net_hdr *); static int vtnet_rxeof_merged(struct vtnet_softc *, struct mbuf *, int); static int vtnet_rxeof(struct vtnet_softc *, int, int *); static void vtnet_rx_intr_task(void *); static int vtnet_rx_vq_intr(void *); static void vtnet_enqueue_txhdr(struct vtnet_softc *, struct vtnet_tx_header *); static void vtnet_txeof(struct vtnet_softc *); static struct mbuf * vtnet_tx_offload(struct vtnet_softc *, struct mbuf *, struct virtio_net_hdr *); static int vtnet_enqueue_txbuf(struct vtnet_softc *, struct mbuf **, struct vtnet_tx_header *); static int vtnet_encap(struct vtnet_softc *, struct mbuf **); static void vtnet_start_locked(struct ifnet *, struct ifaltq_subque *); static void vtnet_start(struct ifnet *, struct ifaltq_subque *); static void vtnet_tick(void *); static void vtnet_tx_intr_task(void *); static int vtnet_tx_vq_intr(void *); static void vtnet_stop(struct vtnet_softc *); static int vtnet_virtio_reinit(struct vtnet_softc *); static void vtnet_init_locked(struct vtnet_softc *); static void vtnet_init(void *); static void vtnet_exec_ctrl_cmd(struct vtnet_softc *, void *, struct sglist *, int, int); static int vtnet_ctrl_mac_cmd(struct vtnet_softc *, uint8_t *); static int vtnet_ctrl_rx_cmd(struct vtnet_softc *, int, int); static int vtnet_set_promisc(struct vtnet_softc *, int); static int vtnet_set_allmulti(struct vtnet_softc *, int); static void vtnet_rx_filter(struct vtnet_softc *sc); static void vtnet_rx_filter_mac(struct vtnet_softc *); static int vtnet_exec_vlan_filter(struct vtnet_softc *, int, uint16_t); static void vtnet_rx_filter_vlan(struct vtnet_softc *); static void vtnet_update_vlan_filter(struct vtnet_softc *, int, uint16_t); static void vtnet_register_vlan(void *, struct ifnet *, uint16_t); static void vtnet_unregister_vlan(void *, struct ifnet *, uint16_t); static int vtnet_ifmedia_upd(struct ifnet *); static void vtnet_ifmedia_sts(struct ifnet *, struct ifmediareq *); static void vtnet_add_statistics(struct vtnet_softc *); static int vtnet_enable_rx_intr(struct vtnet_softc *); static int vtnet_enable_tx_intr(struct vtnet_softc *); static void vtnet_disable_rx_intr(struct vtnet_softc *); static void vtnet_disable_tx_intr(struct vtnet_softc *); /* Tunables. */ static int vtnet_csum_disable = 0; TUNABLE_INT("hw.vtnet.csum_disable", &vtnet_csum_disable); static int vtnet_tso_disable = 1; TUNABLE_INT("hw.vtnet.tso_disable", &vtnet_tso_disable); static int vtnet_lro_disable = 0; TUNABLE_INT("hw.vtnet.lro_disable", &vtnet_lro_disable); /* * Reducing the number of transmit completed interrupts can * improve performance. To do so, the define below keeps the * Tx vq interrupt disabled and adds calls to vtnet_txeof() * in the start and watchdog paths. The price to pay for this * is the m_free'ing of transmitted mbufs may be delayed until * the watchdog fires. */ #define VTNET_TX_INTR_MODERATION static struct virtio_feature_desc vtnet_feature_desc[] = { { VIRTIO_NET_F_CSUM, "TxChecksum" }, { VIRTIO_NET_F_GUEST_CSUM, "RxChecksum" }, { VIRTIO_NET_F_CTRL_GUEST_OFFLOADS, "DynOffload" }, { VIRTIO_NET_F_MAC, "MacAddress" }, { VIRTIO_NET_F_GSO, "TxAllGSO" }, { VIRTIO_NET_F_GUEST_TSO4, "RxTSOv4" }, { VIRTIO_NET_F_GUEST_TSO6, "RxTSOv6" }, { VIRTIO_NET_F_GUEST_ECN, "RxECN" }, { VIRTIO_NET_F_GUEST_UFO, "RxUFO" }, { VIRTIO_NET_F_HOST_TSO4, "TxTSOv4" }, { VIRTIO_NET_F_HOST_TSO6, "TxTSOv6" }, { VIRTIO_NET_F_HOST_ECN, "TxTSOECN" }, { VIRTIO_NET_F_HOST_UFO, "TxUFO" }, { VIRTIO_NET_F_MRG_RXBUF, "MrgRxBuf" }, { VIRTIO_NET_F_STATUS, "Status" }, { VIRTIO_NET_F_CTRL_VQ, "ControlVq" }, { VIRTIO_NET_F_CTRL_RX, "RxMode" }, { VIRTIO_NET_F_CTRL_VLAN, "VLanFilter" }, { VIRTIO_NET_F_CTRL_RX_EXTRA, "RxModeExtra" }, { VIRTIO_NET_F_GUEST_ANNOUNCE, "GuestAnnounce" }, { VIRTIO_NET_F_MQ, "RFS" }, { VIRTIO_NET_F_CTRL_MAC_ADDR, "SetMacAddress" }, { 0, NULL } }; static device_method_t vtnet_methods[] = { /* Device methods. */ DEVMETHOD(device_probe, vtnet_probe), DEVMETHOD(device_attach, vtnet_attach), DEVMETHOD(device_detach, vtnet_detach), DEVMETHOD(device_suspend, vtnet_suspend), DEVMETHOD(device_resume, vtnet_resume), DEVMETHOD(device_shutdown, vtnet_shutdown), /* VirtIO methods. */ DEVMETHOD(virtio_config_change, vtnet_config_change), DEVMETHOD_END }; static driver_t vtnet_driver = { "vtnet", vtnet_methods, sizeof(struct vtnet_softc) }; static devclass_t vtnet_devclass; DRIVER_MODULE(vtnet, virtio_pci, vtnet_driver, vtnet_devclass, NULL, NULL); MODULE_VERSION(vtnet, 1); MODULE_DEPEND(vtnet, virtio, 1, 1, 1); static int vtnet_probe(device_t dev) { if (virtio_get_device_type(dev) != VIRTIO_ID_NETWORK) return (ENXIO); device_set_desc(dev, "VirtIO Networking Adapter"); return (BUS_PROBE_DEFAULT); } static int vtnet_attach(device_t dev) { struct vtnet_softc *sc; int error; sc = device_get_softc(dev); sc->vtnet_dev = dev; lwkt_serialize_init(&sc->vtnet_slz); callout_init(&sc->vtnet_tick_ch); ifmedia_init(&sc->vtnet_media, IFM_IMASK, vtnet_ifmedia_upd, vtnet_ifmedia_sts); ifmedia_add(&sc->vtnet_media, VTNET_MEDIATYPE, 0, NULL); ifmedia_set(&sc->vtnet_media, VTNET_MEDIATYPE); vtnet_add_statistics(sc); SLIST_INIT(&sc->vtnet_txhdr_free); /* Register our feature descriptions. */ virtio_set_feature_desc(dev, vtnet_feature_desc); vtnet_negotiate_features(sc); if (virtio_with_feature(dev, VIRTIO_RING_F_INDIRECT_DESC)) sc->vtnet_flags |= VTNET_FLAG_INDIRECT; if (virtio_with_feature(dev, VIRTIO_NET_F_MAC)) { /* This feature should always be negotiated. */ sc->vtnet_flags |= VTNET_FLAG_MAC; } if (virtio_with_feature(dev, VIRTIO_NET_F_MRG_RXBUF)) { sc->vtnet_flags |= VTNET_FLAG_MRG_RXBUFS; sc->vtnet_hdr_size = sizeof(struct virtio_net_hdr_mrg_rxbuf); } else { sc->vtnet_hdr_size = sizeof(struct virtio_net_hdr); } sc->vtnet_rx_mbuf_size = MCLBYTES; sc->vtnet_rx_mbuf_count = VTNET_NEEDED_RX_MBUFS(sc); if (virtio_with_feature(dev, VIRTIO_NET_F_CTRL_VQ)) { sc->vtnet_flags |= VTNET_FLAG_CTRL_VQ; if (virtio_with_feature(dev, VIRTIO_NET_F_CTRL_RX)) sc->vtnet_flags |= VTNET_FLAG_CTRL_RX; if (virtio_with_feature(dev, VIRTIO_NET_F_CTRL_VLAN)) sc->vtnet_flags |= VTNET_FLAG_VLAN_FILTER; if (virtio_with_feature(dev, VIRTIO_NET_F_CTRL_MAC_ADDR) && virtio_with_feature(dev, VIRTIO_NET_F_CTRL_RX)) sc->vtnet_flags |= VTNET_FLAG_CTRL_MAC; } /* Read (or generate) the MAC address for the adapter. */ vtnet_get_hwaddr(sc); error = vtnet_alloc_virtqueues(sc); if (error) { device_printf(dev, "cannot allocate virtqueues\n"); goto fail; } error = vtnet_setup_interface(sc); if (error) { device_printf(dev, "cannot setup interface\n"); goto fail; } TASK_INIT(&sc->vtnet_cfgchg_task, 0, vtnet_config_change_task, sc); error = virtio_setup_intr(dev, &sc->vtnet_slz); if (error) { device_printf(dev, "cannot setup virtqueue interrupts\n"); ether_ifdetach(sc->vtnet_ifp); goto fail; } /* * Device defaults to promiscuous mode for backwards * compatibility. Turn it off if possible. */ if (sc->vtnet_flags & VTNET_FLAG_CTRL_RX) { lwkt_serialize_enter(&sc->vtnet_slz); if (vtnet_set_promisc(sc, 0) != 0) { sc->vtnet_ifp->if_flags |= IFF_PROMISC; device_printf(dev, "cannot disable promiscuous mode\n"); } lwkt_serialize_exit(&sc->vtnet_slz); } else sc->vtnet_ifp->if_flags |= IFF_PROMISC; fail: if (error) vtnet_detach(dev); return (error); } static int vtnet_detach(device_t dev) { struct vtnet_softc *sc; struct ifnet *ifp; sc = device_get_softc(dev); ifp = sc->vtnet_ifp; if (device_is_attached(dev)) { lwkt_serialize_enter(&sc->vtnet_slz); vtnet_stop(sc); lwkt_serialize_exit(&sc->vtnet_slz); callout_stop(&sc->vtnet_tick_ch); taskqueue_drain(taskqueue_swi, &sc->vtnet_cfgchg_task); ether_ifdetach(ifp); } if (sc->vtnet_vlan_attach != NULL) { EVENTHANDLER_DEREGISTER(vlan_config, sc->vtnet_vlan_attach); sc->vtnet_vlan_attach = NULL; } if (sc->vtnet_vlan_detach != NULL) { EVENTHANDLER_DEREGISTER(vlan_unconfig, sc->vtnet_vlan_detach); sc->vtnet_vlan_detach = NULL; } if (ifp) { if_free(ifp); sc->vtnet_ifp = NULL; } if (sc->vtnet_rx_vq != NULL) vtnet_free_rx_mbufs(sc); if (sc->vtnet_tx_vq != NULL) vtnet_free_tx_mbufs(sc); if (sc->vtnet_ctrl_vq != NULL) vtnet_free_ctrl_vq(sc); if (sc->vtnet_txhdrarea != NULL) { contigfree(sc->vtnet_txhdrarea, sc->vtnet_txhdrcount * sizeof(struct vtnet_tx_header), M_VTNET); sc->vtnet_txhdrarea = NULL; } SLIST_INIT(&sc->vtnet_txhdr_free); if (sc->vtnet_macfilter != NULL) { contigfree(sc->vtnet_macfilter, sizeof(struct vtnet_mac_filter), M_DEVBUF); sc->vtnet_macfilter = NULL; } ifmedia_removeall(&sc->vtnet_media); return (0); } static int vtnet_suspend(device_t dev) { struct vtnet_softc *sc; sc = device_get_softc(dev); lwkt_serialize_enter(&sc->vtnet_slz); vtnet_stop(sc); sc->vtnet_flags |= VTNET_FLAG_SUSPENDED; lwkt_serialize_exit(&sc->vtnet_slz); return (0); } static int vtnet_resume(device_t dev) { struct vtnet_softc *sc; struct ifnet *ifp; sc = device_get_softc(dev); ifp = sc->vtnet_ifp; lwkt_serialize_enter(&sc->vtnet_slz); if (ifp->if_flags & IFF_UP) vtnet_init_locked(sc); sc->vtnet_flags &= ~VTNET_FLAG_SUSPENDED; lwkt_serialize_exit(&sc->vtnet_slz); return (0); } static int vtnet_shutdown(device_t dev) { /* * Suspend already does all of what we need to * do here; we just never expect to be resumed. */ return (vtnet_suspend(dev)); } static int vtnet_config_change(device_t dev) { struct vtnet_softc *sc; sc = device_get_softc(dev); taskqueue_enqueue(taskqueue_thread[mycpuid], &sc->vtnet_cfgchg_task); return (1); } static void vtnet_negotiate_features(struct vtnet_softc *sc) { device_t dev; uint64_t mask, features; dev = sc->vtnet_dev; mask = 0; if (vtnet_csum_disable) mask |= VIRTIO_NET_F_CSUM | VIRTIO_NET_F_GUEST_CSUM; /* * TSO and LRO are only available when their corresponding checksum * offload feature is also negotiated. */ if (vtnet_csum_disable || vtnet_tso_disable) mask |= VIRTIO_NET_F_HOST_TSO4 | VIRTIO_NET_F_HOST_TSO6 | VIRTIO_NET_F_HOST_ECN; if (vtnet_csum_disable || vtnet_lro_disable) mask |= VTNET_LRO_FEATURES; features = VTNET_FEATURES & ~mask; features |= VIRTIO_F_NOTIFY_ON_EMPTY; features |= VIRTIO_F_ANY_LAYOUT; sc->vtnet_features = virtio_negotiate_features(dev, features); if (virtio_with_feature(dev, VTNET_LRO_FEATURES) && virtio_with_feature(dev, VIRTIO_NET_F_MRG_RXBUF) == 0) { /* * LRO without mergeable buffers requires special care. This * is not ideal because every receive buffer must be large * enough to hold the maximum TCP packet, the Ethernet header, * and the header. This requires up to 34 descriptors with * MCLBYTES clusters. If we do not have indirect descriptors, * LRO is disabled since the virtqueue will not contain very * many receive buffers. */ if (!virtio_with_feature(dev, VIRTIO_RING_F_INDIRECT_DESC)) { device_printf(dev, "LRO disabled due to both mergeable buffers and " "indirect descriptors not negotiated\n"); features &= ~VTNET_LRO_FEATURES; sc->vtnet_features = virtio_negotiate_features(dev, features); } else sc->vtnet_flags |= VTNET_FLAG_LRO_NOMRG; } } static int vtnet_alloc_virtqueues(struct vtnet_softc *sc) { device_t dev; struct vq_alloc_info vq_info[3]; int nvqs; dev = sc->vtnet_dev; nvqs = 2; /* * Indirect descriptors are not needed for the Rx * virtqueue when mergeable buffers are negotiated. * The header is placed inline with the data, not * in a separate descriptor, and mbuf clusters are * always physically contiguous. */ if ((sc->vtnet_flags & VTNET_FLAG_MRG_RXBUFS) == 0) { sc->vtnet_rx_nsegs = (sc->vtnet_flags & VTNET_FLAG_LRO_NOMRG) ? VTNET_MAX_RX_SEGS : VTNET_MIN_RX_SEGS; } else sc->vtnet_rx_nsegs = VTNET_MRG_RX_SEGS; if (virtio_with_feature(dev, VIRTIO_NET_F_HOST_TSO4) || virtio_with_feature(dev, VIRTIO_NET_F_HOST_TSO6)) sc->vtnet_tx_nsegs = VTNET_MAX_TX_SEGS; else sc->vtnet_tx_nsegs = VTNET_MIN_TX_SEGS; VQ_ALLOC_INFO_INIT(&vq_info[0], sc->vtnet_rx_nsegs, vtnet_rx_vq_intr, sc, &sc->vtnet_rx_vq, "%s receive", device_get_nameunit(dev)); VQ_ALLOC_INFO_INIT(&vq_info[1], sc->vtnet_tx_nsegs, vtnet_tx_vq_intr, sc, &sc->vtnet_tx_vq, "%s transmit", device_get_nameunit(dev)); if (sc->vtnet_flags & VTNET_FLAG_CTRL_VQ) { nvqs++; VQ_ALLOC_INFO_INIT(&vq_info[2], 0, NULL, NULL, &sc->vtnet_ctrl_vq, "%s control", device_get_nameunit(dev)); } return (virtio_alloc_virtqueues(dev, 0, nvqs, vq_info)); } static int vtnet_setup_interface(struct vtnet_softc *sc) { device_t dev; struct ifnet *ifp; int i, tx_size; dev = sc->vtnet_dev; ifp = sc->vtnet_ifp = if_alloc(IFT_ETHER); if (ifp == NULL) { device_printf(dev, "cannot allocate ifnet structure\n"); return (ENOSPC); } ifp->if_softc = sc; if_initname(ifp, device_get_name(dev), device_get_unit(dev)); ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_init = vtnet_init; ifp->if_start = vtnet_start; ifp->if_ioctl = vtnet_ioctl; sc->vtnet_rx_process_limit = virtqueue_size(sc->vtnet_rx_vq); tx_size = virtqueue_size(sc->vtnet_tx_vq); if (sc->vtnet_flags & VTNET_FLAG_INDIRECT) sc->vtnet_txhdrcount = tx_size; else sc->vtnet_txhdrcount = (tx_size / 2) + 1; sc->vtnet_txhdrarea = contigmalloc( sc->vtnet_txhdrcount * sizeof(struct vtnet_tx_header), M_VTNET, M_WAITOK, 0, BUS_SPACE_MAXADDR, 4, 0); if (sc->vtnet_txhdrarea == NULL) { device_printf(dev, "cannot contigmalloc the tx headers\n"); return (ENOMEM); } for (i = 0; i < sc->vtnet_txhdrcount; i++) vtnet_enqueue_txhdr(sc, &sc->vtnet_txhdrarea[i]); sc->vtnet_macfilter = contigmalloc( sizeof(struct vtnet_mac_filter), M_DEVBUF, M_WAITOK, 0, BUS_SPACE_MAXADDR, 4, 0); if (sc->vtnet_macfilter == NULL) { device_printf(dev, "cannot contigmalloc the mac filter table\n"); return (ENOMEM); } ifq_set_maxlen(&ifp->if_snd, tx_size - 1); ifq_set_ready(&ifp->if_snd); ether_ifattach(ifp, sc->vtnet_hwaddr, NULL); /* Tell the upper layer(s) we support long frames. */ ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header); ifp->if_capabilities |= IFCAP_JUMBO_MTU | IFCAP_VLAN_MTU; if (virtio_with_feature(dev, VIRTIO_NET_F_CSUM)) { ifp->if_capabilities |= IFCAP_TXCSUM; if (virtio_with_feature(dev, VIRTIO_NET_F_HOST_TSO4)) ifp->if_capabilities |= IFCAP_TSO4; if (virtio_with_feature(dev, VIRTIO_NET_F_HOST_TSO6)) ifp->if_capabilities |= IFCAP_TSO6; if (ifp->if_capabilities & IFCAP_TSO) ifp->if_capabilities |= IFCAP_VLAN_HWTSO; if (virtio_with_feature(dev, VIRTIO_NET_F_HOST_ECN)) sc->vtnet_flags |= VTNET_FLAG_TSO_ECN; } if (virtio_with_feature(dev, VIRTIO_NET_F_GUEST_CSUM)) { ifp->if_capabilities |= IFCAP_RXCSUM; if (virtio_with_feature(dev, VIRTIO_NET_F_GUEST_TSO4) || virtio_with_feature(dev, VIRTIO_NET_F_GUEST_TSO6)) ifp->if_capabilities |= IFCAP_LRO; } if (ifp->if_capabilities & IFCAP_HWCSUM) { /* * VirtIO does not support VLAN tagging, but we can fake * it by inserting and removing the 802.1Q header during * transmit and receive. We are then able to do checksum * offloading of VLAN frames. */ ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_HWCSUM; } ifp->if_capenable = ifp->if_capabilities; /* * Capabilities after here are not enabled by default. */ if (sc->vtnet_flags & VTNET_FLAG_VLAN_FILTER) { ifp->if_capabilities |= IFCAP_VLAN_HWFILTER; sc->vtnet_vlan_attach = EVENTHANDLER_REGISTER(vlan_config, vtnet_register_vlan, sc, EVENTHANDLER_PRI_FIRST); sc->vtnet_vlan_detach = EVENTHANDLER_REGISTER(vlan_unconfig, vtnet_unregister_vlan, sc, EVENTHANDLER_PRI_FIRST); } return (0); } static void vtnet_set_hwaddr(struct vtnet_softc *sc) { device_t dev; dev = sc->vtnet_dev; if ((sc->vtnet_flags & VTNET_FLAG_CTRL_MAC) && (sc->vtnet_flags & VTNET_FLAG_CTRL_RX)) { if (vtnet_ctrl_mac_cmd(sc, sc->vtnet_hwaddr) != 0) device_printf(dev, "unable to set MAC address\n"); } else if (sc->vtnet_flags & VTNET_FLAG_MAC) { virtio_write_device_config(dev, offsetof(struct virtio_net_config, mac), sc->vtnet_hwaddr, ETHER_ADDR_LEN); } } static void vtnet_get_hwaddr(struct vtnet_softc *sc) { device_t dev; dev = sc->vtnet_dev; if ((sc->vtnet_flags & VTNET_FLAG_MAC) == 0) { /* * Generate a random locally administered unicast address. * * It would be nice to generate the same MAC address across * reboots, but it seems all the hosts currently available * support the MAC feature, so this isn't too important. */ sc->vtnet_hwaddr[0] = 0xB2; karc4rand(&sc->vtnet_hwaddr[1], ETHER_ADDR_LEN - 1); vtnet_set_hwaddr(sc); return; } virtio_read_device_config(dev, offsetof(struct virtio_net_config, mac), sc->vtnet_hwaddr, ETHER_ADDR_LEN); } static int vtnet_is_link_up(struct vtnet_softc *sc) { device_t dev; struct ifnet *ifp; uint16_t status; dev = sc->vtnet_dev; ifp = sc->vtnet_ifp; ASSERT_SERIALIZED(&sc->vtnet_slz); if (virtio_with_feature(dev, VIRTIO_NET_F_STATUS)) { status = virtio_read_dev_config_2(dev, offsetof(struct virtio_net_config, status)); } else { status = VIRTIO_NET_S_LINK_UP; } return ((status & VIRTIO_NET_S_LINK_UP) != 0); } static void vtnet_update_link_status(struct vtnet_softc *sc) { device_t dev; struct ifnet *ifp; struct ifaltq_subque *ifsq; int link; dev = sc->vtnet_dev; ifp = sc->vtnet_ifp; ifsq = ifq_get_subq_default(&ifp->if_snd); link = vtnet_is_link_up(sc); if (link && ((sc->vtnet_flags & VTNET_FLAG_LINK) == 0)) { sc->vtnet_flags |= VTNET_FLAG_LINK; if (bootverbose) device_printf(dev, "Link is up\n"); ifp->if_link_state = LINK_STATE_UP; if_link_state_change(ifp); if (!ifsq_is_empty(ifsq)) vtnet_start_locked(ifp, ifsq); } else if (!link && (sc->vtnet_flags & VTNET_FLAG_LINK)) { sc->vtnet_flags &= ~VTNET_FLAG_LINK; if (bootverbose) device_printf(dev, "Link is down\n"); ifp->if_link_state = LINK_STATE_DOWN; if_link_state_change(ifp); } } #if 0 static void vtnet_watchdog(struct vtnet_softc *sc) { struct ifnet *ifp; ifp = sc->vtnet_ifp; #ifdef VTNET_TX_INTR_MODERATION vtnet_txeof(sc); #endif if (sc->vtnet_watchdog_timer == 0 || --sc->vtnet_watchdog_timer) return; if_printf(ifp, "watchdog timeout -- resetting\n"); #ifdef VTNET_DEBUG virtqueue_dump(sc->vtnet_tx_vq); #endif ifp->if_oerrors++; ifp->if_flags &= ~IFF_RUNNING; vtnet_init_locked(sc); } #endif static void vtnet_config_change_task(void *arg, int pending) { struct vtnet_softc *sc; sc = arg; lwkt_serialize_enter(&sc->vtnet_slz); vtnet_update_link_status(sc); lwkt_serialize_exit(&sc->vtnet_slz); } static int vtnet_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data,struct ucred *cr) { struct vtnet_softc *sc; struct ifreq *ifr; int reinit, mask, error; sc = ifp->if_softc; ifr = (struct ifreq *) data; reinit = 0; error = 0; switch (cmd) { case SIOCSIFMTU: if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > VTNET_MAX_MTU) error = EINVAL; else if (ifp->if_mtu != ifr->ifr_mtu) { lwkt_serialize_enter(&sc->vtnet_slz); error = vtnet_change_mtu(sc, ifr->ifr_mtu); lwkt_serialize_exit(&sc->vtnet_slz); } break; case SIOCSIFFLAGS: lwkt_serialize_enter(&sc->vtnet_slz); if ((ifp->if_flags & IFF_UP) == 0) { if (ifp->if_flags & IFF_RUNNING) vtnet_stop(sc); } else if (ifp->if_flags & IFF_RUNNING) { if ((ifp->if_flags ^ sc->vtnet_if_flags) & (IFF_PROMISC | IFF_ALLMULTI)) { if (sc->vtnet_flags & VTNET_FLAG_CTRL_RX) vtnet_rx_filter(sc); else error = ENOTSUP; } } else vtnet_init_locked(sc); if (error == 0) sc->vtnet_if_flags = ifp->if_flags; lwkt_serialize_exit(&sc->vtnet_slz); break; case SIOCADDMULTI: case SIOCDELMULTI: lwkt_serialize_enter(&sc->vtnet_slz); if ((sc->vtnet_flags & VTNET_FLAG_CTRL_RX) && (ifp->if_flags & IFF_RUNNING)) vtnet_rx_filter_mac(sc); lwkt_serialize_exit(&sc->vtnet_slz); break; case SIOCSIFMEDIA: case SIOCGIFMEDIA: error = ifmedia_ioctl(ifp, ifr, &sc->vtnet_media, cmd); break; case SIOCSIFCAP: mask = ifr->ifr_reqcap ^ ifp->if_capenable; lwkt_serialize_enter(&sc->vtnet_slz); if (mask & IFCAP_TXCSUM) { ifp->if_capenable ^= IFCAP_TXCSUM; if (ifp->if_capenable & IFCAP_TXCSUM) ifp->if_hwassist |= VTNET_CSUM_OFFLOAD; else ifp->if_hwassist &= ~VTNET_CSUM_OFFLOAD; } if (mask & IFCAP_TSO4) { ifp->if_capenable ^= IFCAP_TSO4; if (ifp->if_capenable & IFCAP_TSO4) ifp->if_hwassist |= CSUM_TSO; else ifp->if_hwassist &= ~CSUM_TSO; } if (mask & IFCAP_RXCSUM) { ifp->if_capenable ^= IFCAP_RXCSUM; reinit = 1; } if (mask & IFCAP_LRO) { ifp->if_capenable ^= IFCAP_LRO; reinit = 1; } if (mask & IFCAP_VLAN_HWFILTER) { ifp->if_capenable ^= IFCAP_VLAN_HWFILTER; reinit = 1; } if (mask & IFCAP_VLAN_HWTSO) ifp->if_capenable ^= IFCAP_VLAN_HWTSO; if (mask & IFCAP_VLAN_HWTAGGING) ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING; if (reinit && (ifp->if_flags & IFF_RUNNING)) { ifp->if_flags &= ~IFF_RUNNING; vtnet_init_locked(sc); } //VLAN_CAPABILITIES(ifp); lwkt_serialize_exit(&sc->vtnet_slz); break; default: error = ether_ioctl(ifp, cmd, data); break; } return (error); } static int vtnet_change_mtu(struct vtnet_softc *sc, int new_mtu) { struct ifnet *ifp; int new_frame_size, clsize; ifp = sc->vtnet_ifp; if ((sc->vtnet_flags & VTNET_FLAG_MRG_RXBUFS) == 0) { new_frame_size = sizeof(struct vtnet_rx_header) + sizeof(struct ether_vlan_header) + new_mtu; if (new_frame_size > MJUM9BYTES) return (EINVAL); if (new_frame_size <= MCLBYTES) clsize = MCLBYTES; else clsize = MJUM9BYTES; } else { new_frame_size = sizeof(struct virtio_net_hdr_mrg_rxbuf) + sizeof(struct ether_vlan_header) + new_mtu; if (new_frame_size <= MCLBYTES) clsize = MCLBYTES; else clsize = MJUMPAGESIZE; } sc->vtnet_rx_mbuf_size = clsize; sc->vtnet_rx_mbuf_count = VTNET_NEEDED_RX_MBUFS(sc); KASSERT(sc->vtnet_rx_mbuf_count < VTNET_MAX_RX_SEGS, ("too many rx mbufs: %d", sc->vtnet_rx_mbuf_count)); ifp->if_mtu = new_mtu; if (ifp->if_flags & IFF_RUNNING) { ifp->if_flags &= ~IFF_RUNNING; vtnet_init_locked(sc); } return (0); } static int vtnet_init_rx_vq(struct vtnet_softc *sc) { struct virtqueue *vq; int nbufs, error; vq = sc->vtnet_rx_vq; nbufs = 0; error = ENOSPC; while (!virtqueue_full(vq)) { if ((error = vtnet_newbuf(sc)) != 0) break; nbufs++; } if (nbufs > 0) { virtqueue_notify(vq, &sc->vtnet_slz); /* * EMSGSIZE signifies the virtqueue did not have enough * entries available to hold the last mbuf. This is not * an error. We should not get ENOSPC since we check if * the virtqueue is full before attempting to add a * buffer. */ if (error == EMSGSIZE) error = 0; } return (error); } static void vtnet_free_rx_mbufs(struct vtnet_softc *sc) { struct virtqueue *vq; struct mbuf *m; int last; vq = sc->vtnet_rx_vq; last = 0; while ((m = virtqueue_drain(vq, &last)) != NULL) m_freem(m); KASSERT(virtqueue_empty(vq), ("mbufs remaining in Rx Vq")); } static void vtnet_free_tx_mbufs(struct vtnet_softc *sc) { struct virtqueue *vq; struct vtnet_tx_header *txhdr; int last; vq = sc->vtnet_tx_vq; last = 0; while ((txhdr = virtqueue_drain(vq, &last)) != NULL) { m_freem(txhdr->vth_mbuf); vtnet_enqueue_txhdr(sc, txhdr); } KASSERT(virtqueue_empty(vq), ("mbufs remaining in Tx Vq")); } static void vtnet_free_ctrl_vq(struct vtnet_softc *sc) { /* * The control virtqueue is only polled, therefore * it should already be empty. */ KASSERT(virtqueue_empty(sc->vtnet_ctrl_vq), ("Ctrl Vq not empty")); } static struct mbuf * vtnet_alloc_rxbuf(struct vtnet_softc *sc, int nbufs, struct mbuf **m_tailp) { struct mbuf *m_head, *m_tail, *m; int i, clsize; clsize = sc->vtnet_rx_mbuf_size; /*use getcl instead of getjcl. see if_mxge.c comment line 2398*/ //m_head = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, clsize); m_head = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR ); if (m_head == NULL) goto fail; m_head->m_len = clsize; m_tail = m_head; if (nbufs > 1) { KASSERT(sc->vtnet_flags & VTNET_FLAG_LRO_NOMRG, ("chained Rx mbuf requested without LRO_NOMRG")); for (i = 0; i < nbufs - 1; i++) { //m = m_getjcl(M_DONTWAIT, MT_DATA, 0, clsize); m = m_getcl(M_NOWAIT, MT_DATA, 0); if (m == NULL) goto fail; m->m_len = clsize; m_tail->m_next = m; m_tail = m; } } if (m_tailp != NULL) *m_tailp = m_tail; return (m_head); fail: sc->vtnet_stats.mbuf_alloc_failed++; m_freem(m_head); return (NULL); } static int vtnet_replace_rxbuf(struct vtnet_softc *sc, struct mbuf *m0, int len0) { struct mbuf *m, *m_prev; struct mbuf *m_new, *m_tail; int len, clsize, nreplace, error; m = m0; m_prev = NULL; len = len0; m_tail = NULL; clsize = sc->vtnet_rx_mbuf_size; nreplace = 0; if (m->m_next != NULL) KASSERT(sc->vtnet_flags & VTNET_FLAG_LRO_NOMRG, ("chained Rx mbuf without LRO_NOMRG")); /* * Since LRO_NOMRG mbuf chains are so large, we want to avoid * allocating an entire chain for each received frame. When * the received frame's length is less than that of the chain, * the unused mbufs are reassigned to the new chain. */ while (len > 0) { /* * Something is seriously wrong if we received * a frame larger than the mbuf chain. Drop it. */ if (m == NULL) { sc->vtnet_stats.rx_frame_too_large++; return (EMSGSIZE); } KASSERT(m->m_len == clsize, ("mbuf length not expected cluster size: %d", m->m_len)); m->m_len = MIN(m->m_len, len); len -= m->m_len; m_prev = m; m = m->m_next; nreplace++; } KASSERT(m_prev != NULL, ("m_prev == NULL")); KASSERT(nreplace <= sc->vtnet_rx_mbuf_count, ("too many replacement mbufs: %d/%d", nreplace, sc->vtnet_rx_mbuf_count)); m_new = vtnet_alloc_rxbuf(sc, nreplace, &m_tail); if (m_new == NULL) { m_prev->m_len = clsize; return (ENOBUFS); } /* * Move unused mbufs, if any, from the original chain * onto the end of the new chain. */ if (m_prev->m_next != NULL) { m_tail->m_next = m_prev->m_next; m_prev->m_next = NULL; } error = vtnet_enqueue_rxbuf(sc, m_new); if (error) { /* * BAD! We could not enqueue the replacement mbuf chain. We * must restore the m0 chain to the original state if it was * modified so we can subsequently discard it. * * NOTE: The replacement is suppose to be an identical copy * to the one just dequeued so this is an unexpected error. */ sc->vtnet_stats.rx_enq_replacement_failed++; if (m_tail->m_next != NULL) { m_prev->m_next = m_tail->m_next; m_tail->m_next = NULL; } m_prev->m_len = clsize; m_freem(m_new); } return (error); } static int vtnet_newbuf(struct vtnet_softc *sc) { struct mbuf *m; int error; m = vtnet_alloc_rxbuf(sc, sc->vtnet_rx_mbuf_count, NULL); if (m == NULL) return (ENOBUFS); error = vtnet_enqueue_rxbuf(sc, m); if (error) m_freem(m); return (error); } static void vtnet_discard_merged_rxbuf(struct vtnet_softc *sc, int nbufs) { struct virtqueue *vq; struct mbuf *m; vq = sc->vtnet_rx_vq; while (--nbufs > 0) { if ((m = virtqueue_dequeue(vq, NULL)) == NULL) break; vtnet_discard_rxbuf(sc, m); } } static void vtnet_discard_rxbuf(struct vtnet_softc *sc, struct mbuf *m) { int error; /* * Requeue the discarded mbuf. This should always be * successful since it was just dequeued. */ error = vtnet_enqueue_rxbuf(sc, m); KASSERT(error == 0, ("cannot requeue discarded mbuf")); } static int vtnet_enqueue_rxbuf(struct vtnet_softc *sc, struct mbuf *m) { struct sglist sg; struct sglist_seg segs[VTNET_MAX_RX_SEGS]; struct vtnet_rx_header *rxhdr; struct virtio_net_hdr *hdr; uint8_t *mdata; int offset, error; ASSERT_SERIALIZED(&sc->vtnet_slz); if ((sc->vtnet_flags & VTNET_FLAG_LRO_NOMRG) == 0) KASSERT(m->m_next == NULL, ("chained Rx mbuf")); sglist_init(&sg, sc->vtnet_rx_nsegs, segs); mdata = mtod(m, uint8_t *); offset = 0; if ((sc->vtnet_flags & VTNET_FLAG_MRG_RXBUFS) == 0) { rxhdr = (struct vtnet_rx_header *) mdata; hdr = &rxhdr->vrh_hdr; offset += sizeof(struct vtnet_rx_header); error = sglist_append(&sg, hdr, sc->vtnet_hdr_size); KASSERT(error == 0, ("cannot add header to sglist")); } error = sglist_append(&sg, mdata + offset, m->m_len - offset); if (error) return (error); if (m->m_next != NULL) { error = sglist_append_mbuf(&sg, m->m_next); if (error) return (error); } return (virtqueue_enqueue(sc->vtnet_rx_vq, m, &sg, 0, sg.sg_nseg)); } static void vtnet_vlan_tag_remove(struct mbuf *m) { struct ether_vlan_header *evl; evl = mtod(m, struct ether_vlan_header *); m->m_pkthdr.ether_vlantag = ntohs(evl->evl_tag); m->m_flags |= M_VLANTAG; /* Strip the 802.1Q header. */ bcopy((char *) evl, (char *) evl + ETHER_VLAN_ENCAP_LEN, ETHER_HDR_LEN - ETHER_TYPE_LEN); m_adj(m, ETHER_VLAN_ENCAP_LEN); } /* * Alternative method of doing receive checksum offloading. Rather * than parsing the received frame down to the IP header, use the * csum_offset to determine which CSUM_* flags are appropriate. We * can get by with doing this only because the checksum offsets are * unique for the things we care about. */ static int vtnet_rx_csum(struct vtnet_softc *sc, struct mbuf *m, struct virtio_net_hdr *hdr) { struct ether_header *eh; struct ether_vlan_header *evh; struct udphdr *udp; int csum_len; uint16_t eth_type; csum_len = hdr->csum_start + hdr->csum_offset; if (csum_len < sizeof(struct ether_header) + sizeof(struct ip)) return (1); if (m->m_len < csum_len) return (1); eh = mtod(m, struct ether_header *); eth_type = ntohs(eh->ether_type); if (eth_type == ETHERTYPE_VLAN) { evh = mtod(m, struct ether_vlan_header *); eth_type = ntohs(evh->evl_proto); } if (eth_type != ETHERTYPE_IP && eth_type != ETHERTYPE_IPV6) { sc->vtnet_stats.rx_csum_bad_ethtype++; return (1); } /* Use the offset to determine the appropriate CSUM_* flags. */ switch (hdr->csum_offset) { case offsetof(struct udphdr, uh_sum): if (m->m_len < hdr->csum_start + sizeof(struct udphdr)) return (1); udp = (struct udphdr *)(mtod(m, uint8_t *) + hdr->csum_start); if (udp->uh_sum == 0) return (0); /* FALLTHROUGH */ case offsetof(struct tcphdr, th_sum): m->m_pkthdr.csum_flags |= CSUM_DATA_VALID | CSUM_PSEUDO_HDR; m->m_pkthdr.csum_data = 0xFFFF; break; default: sc->vtnet_stats.rx_csum_bad_offset++; return (1); } sc->vtnet_stats.rx_csum_offloaded++; return (0); } static int vtnet_rxeof_merged(struct vtnet_softc *sc, struct mbuf *m_head, int nbufs) { struct ifnet *ifp; struct virtqueue *vq; struct mbuf *m, *m_tail; int len; ifp = sc->vtnet_ifp; vq = sc->vtnet_rx_vq; m_tail = m_head; while (--nbufs > 0) { m = virtqueue_dequeue(vq, &len); if (m == NULL) { ifp->if_ierrors++; goto fail; } if (vtnet_newbuf(sc) != 0) { ifp->if_iqdrops++; vtnet_discard_rxbuf(sc, m); if (nbufs > 1) vtnet_discard_merged_rxbuf(sc, nbufs); goto fail; } if (m->m_len < len) len = m->m_len; m->m_len = len; m->m_flags &= ~M_PKTHDR; m_head->m_pkthdr.len += len; m_tail->m_next = m; m_tail = m; } return (0); fail: sc->vtnet_stats.rx_mergeable_failed++; m_freem(m_head); return (1); } static int vtnet_rxeof(struct vtnet_softc *sc, int count, int *rx_npktsp) { struct virtio_net_hdr lhdr; struct ifnet *ifp; struct virtqueue *vq; struct mbuf *m; struct ether_header *eh; struct virtio_net_hdr *hdr; struct virtio_net_hdr_mrg_rxbuf *mhdr; int len, deq, nbufs, adjsz, rx_npkts; ifp = sc->vtnet_ifp; vq = sc->vtnet_rx_vq; hdr = &lhdr; deq = 0; rx_npkts = 0; ASSERT_SERIALIZED(&sc->vtnet_slz); while (--count >= 0) { m = virtqueue_dequeue(vq, &len); if (m == NULL) break; deq++; if (len < sc->vtnet_hdr_size + ETHER_HDR_LEN) { ifp->if_ierrors++; vtnet_discard_rxbuf(sc, m); continue; } if ((sc->vtnet_flags & VTNET_FLAG_MRG_RXBUFS) == 0) { nbufs = 1; adjsz = sizeof(struct vtnet_rx_header); /* * Account for our pad between the header and * the actual start of the frame. */ len += VTNET_RX_HEADER_PAD; } else { mhdr = mtod(m, struct virtio_net_hdr_mrg_rxbuf *); nbufs = mhdr->num_buffers; adjsz = sizeof(struct virtio_net_hdr_mrg_rxbuf); } if (vtnet_replace_rxbuf(sc, m, len) != 0) { ifp->if_iqdrops++; vtnet_discard_rxbuf(sc, m); if (nbufs > 1) vtnet_discard_merged_rxbuf(sc, nbufs); continue; } m->m_pkthdr.len = len; m->m_pkthdr.rcvif = ifp; m->m_pkthdr.csum_flags = 0; if (nbufs > 1) { if (vtnet_rxeof_merged(sc, m, nbufs) != 0) continue; } ifp->if_ipackets++; /* * Save copy of header before we strip it. For both mergeable * and non-mergeable, the VirtIO header is placed first in the * mbuf's data. We no longer need num_buffers, so always use a * virtio_net_hdr. */ memcpy(hdr, mtod(m, void *), sizeof(struct virtio_net_hdr)); m_adj(m, adjsz); if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) { eh = mtod(m, struct ether_header *); if (eh->ether_type == htons(ETHERTYPE_VLAN)) { vtnet_vlan_tag_remove(m); /* * With the 802.1Q header removed, update the * checksum starting location accordingly. */ if (hdr->flags & VIRTIO_NET_HDR_F_NEEDS_CSUM) hdr->csum_start -= ETHER_VLAN_ENCAP_LEN; } } if (ifp->if_capenable & IFCAP_RXCSUM && hdr->flags & VIRTIO_NET_HDR_F_NEEDS_CSUM) { if (vtnet_rx_csum(sc, m, hdr) != 0) sc->vtnet_stats.rx_csum_failed++; } lwkt_serialize_exit(&sc->vtnet_slz); rx_npkts++; ifp->if_input(ifp, m, NULL, -1); lwkt_serialize_enter(&sc->vtnet_slz); /* * The interface may have been stopped while we were * passing the packet up the network stack. */ if ((ifp->if_flags & IFF_RUNNING) == 0) break; } virtqueue_notify(vq, &sc->vtnet_slz); if (rx_npktsp != NULL) *rx_npktsp = rx_npkts; return (count > 0 ? 0 : EAGAIN); } static void vtnet_rx_intr_task(void *arg) { struct vtnet_softc *sc; struct ifnet *ifp; int more; sc = arg; ifp = sc->vtnet_ifp; next: // lwkt_serialize_enter(&sc->vtnet_slz); if ((ifp->if_flags & IFF_RUNNING) == 0) { vtnet_enable_rx_intr(sc); // lwkt_serialize_exit(&sc->vtnet_slz); return; } more = vtnet_rxeof(sc, sc->vtnet_rx_process_limit, NULL); if (!more && vtnet_enable_rx_intr(sc) != 0) { vtnet_disable_rx_intr(sc); more = 1; } // lwkt_serialize_exit(&sc->vtnet_slz); if (more) { sc->vtnet_stats.rx_task_rescheduled++; goto next; } } static int vtnet_rx_vq_intr(void *xsc) { struct vtnet_softc *sc; sc = xsc; vtnet_disable_rx_intr(sc); vtnet_rx_intr_task(sc); return (1); } static void vtnet_enqueue_txhdr(struct vtnet_softc *sc, struct vtnet_tx_header *txhdr) { bzero(txhdr, sizeof(*txhdr)); SLIST_INSERT_HEAD(&sc->vtnet_txhdr_free, txhdr, link); } static void vtnet_txeof(struct vtnet_softc *sc) { struct virtqueue *vq; struct ifnet *ifp; struct vtnet_tx_header *txhdr; int deq; vq = sc->vtnet_tx_vq; ifp = sc->vtnet_ifp; deq = 0; ASSERT_SERIALIZED(&sc->vtnet_slz); while ((txhdr = virtqueue_dequeue(vq, NULL)) != NULL) { deq++; ifp->if_opackets++; m_freem(txhdr->vth_mbuf); vtnet_enqueue_txhdr(sc, txhdr); } if (deq > 0) { ifq_clr_oactive(&ifp->if_snd); if (virtqueue_empty(vq)) sc->vtnet_watchdog_timer = 0; } } static struct mbuf * vtnet_tx_offload(struct vtnet_softc *sc, struct mbuf *m, struct virtio_net_hdr *hdr) { struct ifnet *ifp; struct ether_header *eh; struct ether_vlan_header *evh; struct ip *ip; struct ip6_hdr *ip6; struct tcphdr *tcp; int ip_offset; uint16_t eth_type, csum_start; uint8_t ip_proto, gso_type; ifp = sc->vtnet_ifp; M_ASSERTPKTHDR(m); ip_offset = sizeof(struct ether_header); if (m->m_len < ip_offset) { if ((m = m_pullup(m, ip_offset)) == NULL) return (NULL); } eh = mtod(m, struct ether_header *); eth_type = ntohs(eh->ether_type); if (eth_type == ETHERTYPE_VLAN) { ip_offset = sizeof(struct ether_vlan_header); if (m->m_len < ip_offset) { if ((m = m_pullup(m, ip_offset)) == NULL) return (NULL); } evh = mtod(m, struct ether_vlan_header *); eth_type = ntohs(evh->evl_proto); } switch (eth_type) { case ETHERTYPE_IP: if (m->m_len < ip_offset + sizeof(struct ip)) { m = m_pullup(m, ip_offset + sizeof(struct ip)); if (m == NULL) return (NULL); } ip = (struct ip *)(mtod(m, uint8_t *) + ip_offset); ip_proto = ip->ip_p; csum_start = ip_offset + (ip->ip_hl << 2); gso_type = VIRTIO_NET_HDR_GSO_TCPV4; break; case ETHERTYPE_IPV6: if (m->m_len < ip_offset + sizeof(struct ip6_hdr)) { m = m_pullup(m, ip_offset + sizeof(struct ip6_hdr)); if (m == NULL) return (NULL); } ip6 = (struct ip6_hdr *)(mtod(m, uint8_t *) + ip_offset); /* * XXX Assume no extension headers are present. Presently, * this will always be true in the case of TSO, and FreeBSD * does not perform checksum offloading of IPv6 yet. */ ip_proto = ip6->ip6_nxt; csum_start = ip_offset + sizeof(struct ip6_hdr); gso_type = VIRTIO_NET_HDR_GSO_TCPV6; break; default: return (m); } if (m->m_pkthdr.csum_flags & VTNET_CSUM_OFFLOAD) { hdr->flags |= VIRTIO_NET_HDR_F_NEEDS_CSUM; hdr->csum_start = csum_start; hdr->csum_offset = m->m_pkthdr.csum_data; sc->vtnet_stats.tx_csum_offloaded++; } if (m->m_pkthdr.csum_flags & CSUM_TSO) { if (ip_proto != IPPROTO_TCP) return (m); if (m->m_len < csum_start + sizeof(struct tcphdr)) { m = m_pullup(m, csum_start + sizeof(struct tcphdr)); if (m == NULL) return (NULL); } tcp = (struct tcphdr *)(mtod(m, uint8_t *) + csum_start); hdr->gso_type = gso_type; hdr->hdr_len = csum_start + (tcp->th_off << 2); hdr->gso_size = m->m_pkthdr.tso_segsz; if (tcp->th_flags & TH_CWR) { /* * Drop if we did not negotiate VIRTIO_NET_F_HOST_ECN. * ECN support is only configurable globally with the * net.inet.tcp.ecn.enable sysctl knob. */ if ((sc->vtnet_flags & VTNET_FLAG_TSO_ECN) == 0) { if_printf(ifp, "TSO with ECN not supported " "by host\n"); m_freem(m); return (NULL); } hdr->gso_type |= VIRTIO_NET_HDR_GSO_ECN; } sc->vtnet_stats.tx_tso_offloaded++; } return (m); } static int vtnet_enqueue_txbuf(struct vtnet_softc *sc, struct mbuf **m_head, struct vtnet_tx_header *txhdr) { struct sglist sg; struct sglist_seg segs[VTNET_MAX_TX_SEGS]; struct virtqueue *vq; struct mbuf *m; int error; vq = sc->vtnet_tx_vq; m = *m_head; sglist_init(&sg, sc->vtnet_tx_nsegs, segs); error = sglist_append(&sg, &txhdr->vth_uhdr, sc->vtnet_hdr_size); KASSERT(error == 0 && sg.sg_nseg == 1, ("%s: error %d adding header to sglist", __func__, error)); error = sglist_append_mbuf(&sg, m); if (error) { m = m_defrag(m, M_NOWAIT); if (m == NULL) goto fail; *m_head = m; sc->vtnet_stats.tx_defragged++; error = sglist_append_mbuf(&sg, m); if (error) goto fail; } txhdr->vth_mbuf = m; error = virtqueue_enqueue(vq, txhdr, &sg, sg.sg_nseg, 0); return (error); fail: sc->vtnet_stats.tx_defrag_failed++; m_freem(*m_head); *m_head = NULL; return (ENOBUFS); } static struct mbuf * vtnet_vlan_tag_insert(struct mbuf *m) { struct mbuf *n; struct ether_vlan_header *evl; if (M_WRITABLE(m) == 0) { n = m_dup(m, M_NOWAIT); m_freem(m); if ((m = n) == NULL) return (NULL); } M_PREPEND(m, ETHER_VLAN_ENCAP_LEN, M_NOWAIT); if (m == NULL) return (NULL); if (m->m_len < sizeof(struct ether_vlan_header)) { m = m_pullup(m, sizeof(struct ether_vlan_header)); if (m == NULL) return (NULL); } /* Insert 802.1Q header into the existing Ethernet header. */ evl = mtod(m, struct ether_vlan_header *); bcopy((char *) evl + ETHER_VLAN_ENCAP_LEN, (char *) evl, ETHER_HDR_LEN - ETHER_TYPE_LEN); evl->evl_encap_proto = htons(ETHERTYPE_VLAN); evl->evl_tag = htons(m->m_pkthdr.ether_vlantag); m->m_flags &= ~M_VLANTAG; return (m); } static int vtnet_encap(struct vtnet_softc *sc, struct mbuf **m_head) { struct vtnet_tx_header *txhdr; struct virtio_net_hdr *hdr; struct mbuf *m; int error; txhdr = SLIST_FIRST(&sc->vtnet_txhdr_free); if (txhdr == NULL) return (ENOBUFS); SLIST_REMOVE_HEAD(&sc->vtnet_txhdr_free, link); /* * Always use the non-mergeable header to simplify things. When * the mergeable feature is negotiated, the num_buffers field * must be set to zero. We use vtnet_hdr_size later to enqueue * the correct header size to the host. */ hdr = &txhdr->vth_uhdr.hdr; m = *m_head; error = ENOBUFS; if (m->m_flags & M_VLANTAG) { //m = ether_vlanencap(m, m->m_pkthdr.ether_vtag); m = vtnet_vlan_tag_insert(m); if ((*m_head = m) == NULL) goto fail; m->m_flags &= ~M_VLANTAG; } if (m->m_pkthdr.csum_flags != 0) { m = vtnet_tx_offload(sc, m, hdr); if ((*m_head = m) == NULL) goto fail; } error = vtnet_enqueue_txbuf(sc, m_head, txhdr); fail: if (error != 0) vtnet_enqueue_txhdr(sc, txhdr); return (error); } static void vtnet_start(struct ifnet *ifp, struct ifaltq_subque *ifsq) { struct vtnet_softc *sc; sc = ifp->if_softc; ASSERT_ALTQ_SQ_DEFAULT(ifp, ifsq); lwkt_serialize_enter(&sc->vtnet_slz); vtnet_start_locked(ifp, ifsq); lwkt_serialize_exit(&sc->vtnet_slz); } static void vtnet_start_locked(struct ifnet *ifp, struct ifaltq_subque *ifsq) { struct vtnet_softc *sc; struct virtqueue *vq; struct mbuf *m0; int enq; sc = ifp->if_softc; vq = sc->vtnet_tx_vq; enq = 0; ASSERT_SERIALIZED(&sc->vtnet_slz); if ((ifp->if_flags & (IFF_RUNNING)) != IFF_RUNNING || ((sc->vtnet_flags & VTNET_FLAG_LINK) == 0)) return; #ifdef VTNET_TX_INTR_MODERATION if (virtqueue_nused(vq) >= sc->vtnet_tx_size / 2) vtnet_txeof(sc); #endif while (!ifsq_is_empty(ifsq)) { if (virtqueue_full(vq)) { ifq_set_oactive(&ifp->if_snd); break; } m0 = ifq_dequeue(&ifp->if_snd); if (m0 == NULL) break; if (vtnet_encap(sc, &m0) != 0) { if (m0 == NULL) break; ifq_prepend(&ifp->if_snd, m0); ifq_set_oactive(&ifp->if_snd); break; } enq++; ETHER_BPF_MTAP(ifp, m0); } if (enq > 0) { virtqueue_notify(vq, &sc->vtnet_slz); sc->vtnet_watchdog_timer = VTNET_WATCHDOG_TIMEOUT; } } static void vtnet_tick(void *xsc) { struct vtnet_softc *sc; sc = xsc; #if 0 ASSERT_SERIALIZED(&sc->vtnet_slz); #ifdef VTNET_DEBUG virtqueue_dump(sc->vtnet_rx_vq); virtqueue_dump(sc->vtnet_tx_vq); #endif vtnet_watchdog(sc); callout_reset(&sc->vtnet_tick_ch, hz, vtnet_tick, sc); #endif } static void vtnet_tx_intr_task(void *arg) { struct vtnet_softc *sc; struct ifnet *ifp; struct ifaltq_subque *ifsq; sc = arg; ifp = sc->vtnet_ifp; ifsq = ifq_get_subq_default(&ifp->if_snd); next: // lwkt_serialize_enter(&sc->vtnet_slz); if ((ifp->if_flags & IFF_RUNNING) == 0) { vtnet_enable_tx_intr(sc); // lwkt_serialize_exit(&sc->vtnet_slz); return; } vtnet_txeof(sc); if (!ifsq_is_empty(ifsq)) vtnet_start_locked(ifp, ifsq); if (vtnet_enable_tx_intr(sc) != 0) { vtnet_disable_tx_intr(sc); sc->vtnet_stats.tx_task_rescheduled++; // lwkt_serialize_exit(&sc->vtnet_slz); goto next; } // lwkt_serialize_exit(&sc->vtnet_slz); } static int vtnet_tx_vq_intr(void *xsc) { struct vtnet_softc *sc; sc = xsc; vtnet_disable_tx_intr(sc); vtnet_tx_intr_task(sc); return (1); } static void vtnet_stop(struct vtnet_softc *sc) { device_t dev; struct ifnet *ifp; dev = sc->vtnet_dev; ifp = sc->vtnet_ifp; ASSERT_SERIALIZED(&sc->vtnet_slz); sc->vtnet_watchdog_timer = 0; callout_stop(&sc->vtnet_tick_ch); ifq_clr_oactive(&ifp->if_snd); ifp->if_flags &= ~(IFF_RUNNING); vtnet_disable_rx_intr(sc); vtnet_disable_tx_intr(sc); /* * Stop the host VirtIO adapter. Note this will reset the host * adapter's state back to the pre-initialized state, so in * order to make the device usable again, we must drive it * through virtio_reinit() and virtio_reinit_complete(). */ virtio_stop(dev); sc->vtnet_flags &= ~VTNET_FLAG_LINK; vtnet_free_rx_mbufs(sc); vtnet_free_tx_mbufs(sc); } static int vtnet_virtio_reinit(struct vtnet_softc *sc) { device_t dev; struct ifnet *ifp; uint64_t features; int error; dev = sc->vtnet_dev; ifp = sc->vtnet_ifp; features = sc->vtnet_features; /* * Re-negotiate with the host, removing any disabled receive * features. Transmit features are disabled only on our side * via if_capenable and if_hwassist. */ if (ifp->if_capabilities & IFCAP_RXCSUM) { if ((ifp->if_capenable & IFCAP_RXCSUM) == 0) features &= ~VIRTIO_NET_F_GUEST_CSUM; } if (ifp->if_capabilities & IFCAP_LRO) { if ((ifp->if_capenable & IFCAP_LRO) == 0) features &= ~VTNET_LRO_FEATURES; } if (ifp->if_capabilities & IFCAP_VLAN_HWFILTER) { if ((ifp->if_capenable & IFCAP_VLAN_HWFILTER) == 0) features &= ~VIRTIO_NET_F_CTRL_VLAN; } error = virtio_reinit(dev, features); if (error) device_printf(dev, "virtio reinit error %d\n", error); return (error); } static void vtnet_init_locked(struct vtnet_softc *sc) { device_t dev; struct ifnet *ifp; int error; dev = sc->vtnet_dev; ifp = sc->vtnet_ifp; ASSERT_SERIALIZED(&sc->vtnet_slz); if (ifp->if_flags & IFF_RUNNING) return; /* Stop host's adapter, cancel any pending I/O. */ vtnet_stop(sc); /* Reinitialize the host device. */ error = vtnet_virtio_reinit(sc); if (error) { device_printf(dev, "reinitialization failed, stopping device...\n"); vtnet_stop(sc); return; } /* Update host with assigned MAC address. */ bcopy(IF_LLADDR(ifp), sc->vtnet_hwaddr, ETHER_ADDR_LEN); vtnet_set_hwaddr(sc); ifp->if_hwassist = 0; if (ifp->if_capenable & IFCAP_TXCSUM) ifp->if_hwassist |= VTNET_CSUM_OFFLOAD; if (ifp->if_capenable & IFCAP_TSO4) ifp->if_hwassist |= CSUM_TSO; error = vtnet_init_rx_vq(sc); if (error) { device_printf(dev, "cannot allocate mbufs for Rx virtqueue\n"); vtnet_stop(sc); return; } if (sc->vtnet_flags & VTNET_FLAG_CTRL_VQ) { if (sc->vtnet_flags & VTNET_FLAG_CTRL_RX) { /* Restore promiscuous and all-multicast modes. */ vtnet_rx_filter(sc); /* Restore filtered MAC addresses. */ vtnet_rx_filter_mac(sc); } /* Restore VLAN filters. */ if (ifp->if_capenable & IFCAP_VLAN_HWFILTER) vtnet_rx_filter_vlan(sc); } { vtnet_enable_rx_intr(sc); vtnet_enable_tx_intr(sc); } ifp->if_flags |= IFF_RUNNING; ifq_clr_oactive(&ifp->if_snd); virtio_reinit_complete(dev); vtnet_update_link_status(sc); callout_reset(&sc->vtnet_tick_ch, hz, vtnet_tick, sc); } static void vtnet_init(void *xsc) { struct vtnet_softc *sc; sc = xsc; lwkt_serialize_enter(&sc->vtnet_slz); vtnet_init_locked(sc); lwkt_serialize_exit(&sc->vtnet_slz); } static void vtnet_exec_ctrl_cmd(struct vtnet_softc *sc, void *cookie, struct sglist *sg, int readable, int writable) { struct virtqueue *vq; void *c; vq = sc->vtnet_ctrl_vq; ASSERT_SERIALIZED(&sc->vtnet_slz); KASSERT(sc->vtnet_flags & VTNET_FLAG_CTRL_VQ, ("no control virtqueue")); KASSERT(virtqueue_empty(vq), ("control command already enqueued")); if (virtqueue_enqueue(vq, cookie, sg, readable, writable) != 0) return; virtqueue_notify(vq, &sc->vtnet_slz); /* * Poll until the command is complete. Previously, we would * sleep until the control virtqueue interrupt handler woke * us up, but dropping the VTNET_MTX leads to serialization * difficulties. * * Furthermore, it appears QEMU/KVM only allocates three MSIX * vectors. Two of those vectors are needed for the Rx and Tx * virtqueues. We do not support sharing both a Vq and config * changed notification on the same MSIX vector. */ c = virtqueue_poll(vq, NULL); KASSERT(c == cookie, ("unexpected control command response")); } static int vtnet_ctrl_mac_cmd(struct vtnet_softc *sc, uint8_t *hwaddr) { struct { struct virtio_net_ctrl_hdr hdr __aligned(2); uint8_t pad1; char aligned_hwaddr[ETHER_ADDR_LEN] __aligned(8); uint8_t pad2; uint8_t ack; } s; struct sglist_seg segs[3]; struct sglist sg; int error; s.hdr.class = VIRTIO_NET_CTRL_MAC; s.hdr.cmd = VIRTIO_NET_CTRL_MAC_ADDR_SET; s.ack = VIRTIO_NET_ERR; /* Copy the mac address into physically contiguous memory */ memcpy(s.aligned_hwaddr, hwaddr, ETHER_ADDR_LEN); sglist_init(&sg, 3, segs); error = 0; error |= sglist_append(&sg, &s.hdr, sizeof(struct virtio_net_ctrl_hdr)); error |= sglist_append(&sg, s.aligned_hwaddr, ETHER_ADDR_LEN); error |= sglist_append(&sg, &s.ack, sizeof(uint8_t)); KASSERT(error == 0 && sg.sg_nseg == 3, ("%s: error %d adding set MAC msg to sglist", __func__, error)); vtnet_exec_ctrl_cmd(sc, &s.ack, &sg, sg.sg_nseg - 1, 1); return (s.ack == VIRTIO_NET_OK ? 0 : EIO); } static void vtnet_rx_filter(struct vtnet_softc *sc) { device_t dev; struct ifnet *ifp; dev = sc->vtnet_dev; ifp = sc->vtnet_ifp; ASSERT_SERIALIZED(&sc->vtnet_slz); KASSERT(sc->vtnet_flags & VTNET_FLAG_CTRL_RX, ("CTRL_RX feature not negotiated")); if (vtnet_set_promisc(sc, ifp->if_flags & IFF_PROMISC) != 0) device_printf(dev, "cannot %s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ? "enable" : "disable"); if (vtnet_set_allmulti(sc, ifp->if_flags & IFF_ALLMULTI) != 0) device_printf(dev, "cannot %s all-multicast mode\n", (ifp->if_flags & IFF_ALLMULTI) ? "enable" : "disable"); } static int vtnet_ctrl_rx_cmd(struct vtnet_softc *sc, int cmd, int on) { struct sglist_seg segs[3]; struct sglist sg; struct { struct virtio_net_ctrl_hdr hdr __aligned(2); uint8_t pad1; uint8_t onoff; uint8_t pad2; uint8_t ack; } s; int error; KASSERT(sc->vtnet_flags & VTNET_FLAG_CTRL_RX, ("%s: CTRL_RX feature not negotiated", __func__)); s.hdr.class = VIRTIO_NET_CTRL_RX; s.hdr.cmd = cmd; s.onoff = !!on; s.ack = VIRTIO_NET_ERR; sglist_init(&sg, 3, segs); error = 0; error |= sglist_append(&sg, &s.hdr, sizeof(struct virtio_net_ctrl_hdr)); error |= sglist_append(&sg, &s.onoff, sizeof(uint8_t)); error |= sglist_append(&sg, &s.ack, sizeof(uint8_t)); KASSERT(error == 0 && sg.sg_nseg == 3, ("%s: error %d adding Rx message to sglist", __func__, error)); vtnet_exec_ctrl_cmd(sc, &s.ack, &sg, sg.sg_nseg - 1, 1); return (s.ack == VIRTIO_NET_OK ? 0 : EIO); } static int vtnet_set_promisc(struct vtnet_softc *sc, int on) { return (vtnet_ctrl_rx_cmd(sc, VIRTIO_NET_CTRL_RX_PROMISC, on)); } static int vtnet_set_allmulti(struct vtnet_softc *sc, int on) { return (vtnet_ctrl_rx_cmd(sc, VIRTIO_NET_CTRL_RX_ALLMULTI, on)); } static void vtnet_rx_filter_mac(struct vtnet_softc *sc) { struct virtio_net_ctrl_hdr hdr __aligned(2); struct vtnet_mac_filter *filter; struct sglist_seg segs[4]; struct sglist sg; struct ifnet *ifp; struct ifaddr *ifa; struct ifaddr_container *ifac; struct ifmultiaddr *ifma; int ucnt, mcnt, promisc, allmulti, error; uint8_t ack; ifp = sc->vtnet_ifp; ucnt = 0; mcnt = 0; promisc = 0; allmulti = 0; ASSERT_SERIALIZED(&sc->vtnet_slz); KASSERT(sc->vtnet_flags & VTNET_FLAG_CTRL_RX, ("%s: CTRL_RX feature not negotiated", __func__)); /* Use the MAC filtering table allocated in vtnet_attach. */ filter = sc->vtnet_macfilter; memset(filter, 0, sizeof(struct vtnet_mac_filter)); /* Unicast MAC addresses: */ //if_addr_rlock(ifp); TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) { ifa = ifac->ifa; if (ifa->ifa_addr->sa_family != AF_LINK) continue; else if (memcmp(LLADDR((struct sockaddr_dl *)ifa->ifa_addr), sc->vtnet_hwaddr, ETHER_ADDR_LEN) == 0) continue; else if (ucnt == VTNET_MAX_MAC_ENTRIES) { promisc = 1; break; } bcopy(LLADDR((struct sockaddr_dl *)ifa->ifa_addr), &filter->vmf_unicast.macs[ucnt], ETHER_ADDR_LEN); ucnt++; } //if_addr_runlock(ifp); if (promisc != 0) { filter->vmf_unicast.nentries = 0; if_printf(ifp, "more than %d MAC addresses assigned, " "falling back to promiscuous mode\n", VTNET_MAX_MAC_ENTRIES); } else filter->vmf_unicast.nentries = ucnt; /* Multicast MAC addresses: */ //if_maddr_rlock(ifp); TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { if (ifma->ifma_addr->sa_family != AF_LINK) continue; else if (mcnt == VTNET_MAX_MAC_ENTRIES) { allmulti = 1; break; } bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr), &filter->vmf_multicast.macs[mcnt], ETHER_ADDR_LEN); mcnt++; } //if_maddr_runlock(ifp); if (allmulti != 0) { filter->vmf_multicast.nentries = 0; if_printf(ifp, "more than %d multicast MAC addresses " "assigned, falling back to all-multicast mode\n", VTNET_MAX_MAC_ENTRIES); } else filter->vmf_multicast.nentries = mcnt; if (promisc != 0 && allmulti != 0) goto out; hdr.class = VIRTIO_NET_CTRL_MAC; hdr.cmd = VIRTIO_NET_CTRL_MAC_TABLE_SET; ack = VIRTIO_NET_ERR; sglist_init(&sg, 4, segs); error = 0; error |= sglist_append(&sg, &hdr, sizeof(struct virtio_net_ctrl_hdr)); error |= sglist_append(&sg, &filter->vmf_unicast, sizeof(uint32_t) + filter->vmf_unicast.nentries * ETHER_ADDR_LEN); error |= sglist_append(&sg, &filter->vmf_multicast, sizeof(uint32_t) + filter->vmf_multicast.nentries * ETHER_ADDR_LEN); error |= sglist_append(&sg, &ack, sizeof(uint8_t)); KASSERT(error == 0 && sg.sg_nseg == 4, ("%s: error %d adding MAC filter msg to sglist", __func__, error)); vtnet_exec_ctrl_cmd(sc, &ack, &sg, sg.sg_nseg - 1, 1); if (ack != VIRTIO_NET_OK) if_printf(ifp, "error setting host MAC filter table\n"); out: if (promisc != 0 && vtnet_set_promisc(sc, 1) != 0) if_printf(ifp, "cannot enable promiscuous mode\n"); if (allmulti != 0 && vtnet_set_allmulti(sc, 1) != 0) if_printf(ifp, "cannot enable all-multicast mode\n"); } static int vtnet_exec_vlan_filter(struct vtnet_softc *sc, int add, uint16_t tag) { struct sglist_seg segs[3]; struct sglist sg; struct { struct virtio_net_ctrl_hdr hdr __aligned(2); uint8_t pad1; uint16_t tag; uint8_t pad2; uint8_t ack; } s; int error; s.hdr.class = VIRTIO_NET_CTRL_VLAN; s.hdr.cmd = add ? VIRTIO_NET_CTRL_VLAN_ADD : VIRTIO_NET_CTRL_VLAN_DEL; s.tag = tag; s.ack = VIRTIO_NET_ERR; sglist_init(&sg, 3, segs); error = 0; error |= sglist_append(&sg, &s.hdr, sizeof(struct virtio_net_ctrl_hdr)); error |= sglist_append(&sg, &s.tag, sizeof(uint16_t)); error |= sglist_append(&sg, &s.ack, sizeof(uint8_t)); KASSERT(error == 0 && sg.sg_nseg == 3, ("%s: error %d adding VLAN message to sglist", __func__, error)); vtnet_exec_ctrl_cmd(sc, &s.ack, &sg, sg.sg_nseg - 1, 1); return (s.ack == VIRTIO_NET_OK ? 0 : EIO); } static void vtnet_rx_filter_vlan(struct vtnet_softc *sc) { uint32_t w; uint16_t tag; int i, bit, nvlans; ASSERT_SERIALIZED(&sc->vtnet_slz); KASSERT(sc->vtnet_flags & VTNET_FLAG_VLAN_FILTER, ("%s: VLAN_FILTER feature not negotiated", __func__)); nvlans = sc->vtnet_nvlans; /* Enable the filter for each configured VLAN. */ for (i = 0; i < VTNET_VLAN_SHADOW_SIZE && nvlans > 0; i++) { w = sc->vtnet_vlan_shadow[i]; while ((bit = ffs(w) - 1) != -1) { w &= ~(1 << bit); tag = sizeof(w) * CHAR_BIT * i + bit; nvlans--; if (vtnet_exec_vlan_filter(sc, 1, tag) != 0) { device_printf(sc->vtnet_dev, "cannot enable VLAN %d filter\n", tag); } } } KASSERT(nvlans == 0, ("VLAN count incorrect")); } static void vtnet_update_vlan_filter(struct vtnet_softc *sc, int add, uint16_t tag) { struct ifnet *ifp; int idx, bit; ifp = sc->vtnet_ifp; idx = (tag >> 5) & 0x7F; bit = tag & 0x1F; if (tag == 0 || tag > 4095) return; lwkt_serialize_enter(&sc->vtnet_slz); /* Update shadow VLAN table. */ if (add) { sc->vtnet_nvlans++; sc->vtnet_vlan_shadow[idx] |= (1 << bit); } else { sc->vtnet_nvlans--; sc->vtnet_vlan_shadow[idx] &= ~(1 << bit); } if (ifp->if_capenable & IFCAP_VLAN_HWFILTER && vtnet_exec_vlan_filter(sc, add, tag) != 0) { device_printf(sc->vtnet_dev, "cannot %s VLAN %d %s the host filter table\n", add ? "add" : "remove", tag, add ? "to" : "from"); } lwkt_serialize_exit(&sc->vtnet_slz); } static void vtnet_register_vlan(void *arg, struct ifnet *ifp, uint16_t tag) { if (ifp->if_softc != arg) return; vtnet_update_vlan_filter(arg, 1, tag); } static void vtnet_unregister_vlan(void *arg, struct ifnet *ifp, uint16_t tag) { if (ifp->if_softc != arg) return; vtnet_update_vlan_filter(arg, 0, tag); } static int vtnet_ifmedia_upd(struct ifnet *ifp) { struct vtnet_softc *sc; struct ifmedia *ifm; sc = ifp->if_softc; ifm = &sc->vtnet_media; if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER) return (EINVAL); return (0); } static void vtnet_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr) { struct vtnet_softc *sc; sc = ifp->if_softc; ifmr->ifm_status = IFM_AVALID; ifmr->ifm_active = IFM_ETHER; lwkt_serialize_enter(&sc->vtnet_slz); if (vtnet_is_link_up(sc) != 0) { ifmr->ifm_status |= IFM_ACTIVE; ifmr->ifm_active |= VTNET_MEDIATYPE; } else ifmr->ifm_active |= IFM_NONE; lwkt_serialize_exit(&sc->vtnet_slz); } static void vtnet_add_statistics(struct vtnet_softc *sc) { device_t dev; struct vtnet_statistics *stats; struct sysctl_ctx_list *ctx; struct sysctl_oid *tree; struct sysctl_oid_list *child; dev = sc->vtnet_dev; stats = &sc->vtnet_stats; ctx = device_get_sysctl_ctx(dev); tree = device_get_sysctl_tree(dev); child = SYSCTL_CHILDREN(tree); SYSCTL_ADD_UQUAD(ctx, child, OID_AUTO, "mbuf_alloc_failed", CTLFLAG_RD, &stats->mbuf_alloc_failed, 0, "Mbuf cluster allocation failures"); SYSCTL_ADD_UQUAD(ctx, child, OID_AUTO, "rx_frame_too_large", CTLFLAG_RD, &stats->rx_frame_too_large, 0, "Received frame larger than the mbuf chain"); SYSCTL_ADD_UQUAD(ctx, child, OID_AUTO, "rx_enq_replacement_failed", CTLFLAG_RD, &stats->rx_enq_replacement_failed, 0, "Enqueuing the replacement receive mbuf failed"); SYSCTL_ADD_UQUAD(ctx, child, OID_AUTO, "rx_mergeable_failed", CTLFLAG_RD, &stats->rx_mergeable_failed, 0, "Mergeable buffers receive failures"); SYSCTL_ADD_UQUAD(ctx, child, OID_AUTO, "rx_csum_bad_ethtype", CTLFLAG_RD, &stats->rx_csum_bad_ethtype, 0, "Received checksum offloaded buffer with unsupported " "Ethernet type"); SYSCTL_ADD_UQUAD(ctx, child, OID_AUTO, "rx_csum_bad_ipproto", CTLFLAG_RD, &stats->rx_csum_bad_ipproto, 0, "Received checksum offloaded buffer with incorrect IP protocol"); SYSCTL_ADD_UQUAD(ctx, child, OID_AUTO, "rx_csum_bad_offset", CTLFLAG_RD, &stats->rx_csum_bad_offset, 0, "Received checksum offloaded buffer with incorrect offset"); SYSCTL_ADD_UQUAD(ctx, child, OID_AUTO, "rx_csum_failed", CTLFLAG_RD, &stats->rx_csum_failed, 0, "Received buffer checksum offload failed"); SYSCTL_ADD_UQUAD(ctx, child, OID_AUTO, "rx_csum_offloaded", CTLFLAG_RD, &stats->rx_csum_offloaded, 0, "Received buffer checksum offload succeeded"); SYSCTL_ADD_UQUAD(ctx, child, OID_AUTO, "rx_task_rescheduled", CTLFLAG_RD, &stats->rx_task_rescheduled, 0, "Times the receive interrupt task rescheduled itself"); SYSCTL_ADD_UQUAD(ctx, child, OID_AUTO, "tx_csum_bad_ethtype", CTLFLAG_RD, &stats->tx_csum_bad_ethtype, 0, "Aborted transmit of checksum offloaded buffer with unknown " "Ethernet type"); SYSCTL_ADD_UQUAD(ctx, child, OID_AUTO, "tx_tso_bad_ethtype", CTLFLAG_RD, &stats->tx_tso_bad_ethtype, 0, "Aborted transmit of TSO buffer with unknown Ethernet type"); SYSCTL_ADD_UQUAD(ctx, child, OID_AUTO, "tx_defragged", CTLFLAG_RD, &stats->tx_defragged, 0, "Transmit mbufs defragged"); SYSCTL_ADD_UQUAD(ctx, child, OID_AUTO, "tx_defrag_failed", CTLFLAG_RD, &stats->tx_defrag_failed, 0, "Aborted transmit of buffer because defrag failed"); SYSCTL_ADD_UQUAD(ctx, child, OID_AUTO, "tx_csum_offloaded", CTLFLAG_RD, &stats->tx_csum_offloaded, 0, "Offloaded checksum of transmitted buffer"); SYSCTL_ADD_UQUAD(ctx, child, OID_AUTO, "tx_tso_offloaded", CTLFLAG_RD, &stats->tx_tso_offloaded, 0, "Segmentation offload of transmitted buffer"); SYSCTL_ADD_UQUAD(ctx, child, OID_AUTO, "tx_task_rescheduled", CTLFLAG_RD, &stats->tx_task_rescheduled, 0, "Times the transmit interrupt task rescheduled itself"); } static int vtnet_enable_rx_intr(struct vtnet_softc *sc) { return (virtqueue_enable_intr(sc->vtnet_rx_vq)); } static void vtnet_disable_rx_intr(struct vtnet_softc *sc) { virtqueue_disable_intr(sc->vtnet_rx_vq); } static int vtnet_enable_tx_intr(struct vtnet_softc *sc) { #ifdef VTNET_TX_INTR_MODERATION return (0); #else return (virtqueue_enable_intr(sc->vtnet_tx_vq)); #endif } static void vtnet_disable_tx_intr(struct vtnet_softc *sc) { virtqueue_disable_intr(sc->vtnet_tx_vq); }