/* * Copyright (c) 1988, 1991, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)rtsock.c 8.7 (Berkeley) 10/12/95 * $FreeBSD: src/sys/net/rtsock.c,v 1.44.2.11 2002/12/04 14:05:41 ru Exp $ * $DragonFly: src/sys/net/rtsock.c,v 1.17 2004/12/21 02:54:14 hsu Exp $ */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include MALLOC_DEFINE(M_RTABLE, "routetbl", "routing tables"); static struct route_cb { int ip_count; int ip6_count; int ipx_count; int ns_count; int any_count; } route_cb; static struct sockaddr route_dst = { 2, PF_ROUTE, }; static struct sockaddr route_src = { 2, PF_ROUTE, }; static struct sockaddr sa_zero = { sizeof(sa_zero), AF_INET, }; static struct sockproto route_proto = { PF_ROUTE, }; struct walkarg { int w_tmemsize; int w_op, w_arg; caddr_t w_tmem; struct sysctl_req *w_req; }; static struct mbuf * rt_msg1 (int, struct rt_addrinfo *); static int rt_msg2 (int, struct rt_addrinfo *, caddr_t, struct walkarg *); static int rt_xaddrs (char *, char *, struct rt_addrinfo *); static int sysctl_dumpentry (struct radix_node *rn, void *vw); static int sysctl_iflist (int af, struct walkarg *w); static int route_output(struct mbuf *, struct socket *, ...); static void rt_setmetrics (u_long, struct rt_metrics *, struct rt_metrics *); /* * It really doesn't make any sense at all for this code to share much * with raw_usrreq.c, since its functionality is so restricted. XXX */ static int rts_abort(struct socket *so) { int s, error; s = splnet(); error = raw_usrreqs.pru_abort(so); splx(s); return error; } /* pru_accept is EOPNOTSUPP */ static int rts_attach(struct socket *so, int proto, struct pru_attach_info *ai) { struct rawcb *rp; int s, error; if (sotorawcb(so) != NULL) return EISCONN; /* XXX panic? */ MALLOC(rp, struct rawcb *, sizeof *rp, M_PCB, M_WAITOK|M_ZERO); if (rp == NULL) return ENOBUFS; /* * The splnet() is necessary to block protocols from sending * error notifications (like RTM_REDIRECT or RTM_LOSING) while * this PCB is extant but incompletely initialized. * Probably we should try to do more of this work beforehand and * eliminate the spl. */ s = splnet(); so->so_pcb = rp; error = raw_attach(so, proto, ai->sb_rlimit); rp = sotorawcb(so); if (error) { splx(s); free(rp, M_PCB); return error; } switch(rp->rcb_proto.sp_protocol) { case AF_INET: route_cb.ip_count++; break; case AF_INET6: route_cb.ip6_count++; break; case AF_IPX: route_cb.ipx_count++; break; case AF_NS: route_cb.ns_count++; break; } rp->rcb_faddr = &route_src; route_cb.any_count++; soisconnected(so); so->so_options |= SO_USELOOPBACK; splx(s); return 0; } static int rts_bind(struct socket *so, struct sockaddr *nam, struct thread *td) { int s, error; s = splnet(); error = raw_usrreqs.pru_bind(so, nam, td); /* xxx just EINVAL */ splx(s); return error; } static int rts_connect(struct socket *so, struct sockaddr *nam, struct thread *td) { int s, error; s = splnet(); error = raw_usrreqs.pru_connect(so, nam, td); /* XXX just EINVAL */ splx(s); return error; } /* pru_connect2 is EOPNOTSUPP */ /* pru_control is EOPNOTSUPP */ static int rts_detach(struct socket *so) { struct rawcb *rp = sotorawcb(so); int s, error; s = splnet(); if (rp != NULL) { switch(rp->rcb_proto.sp_protocol) { case AF_INET: route_cb.ip_count--; break; case AF_INET6: route_cb.ip6_count--; break; case AF_IPX: route_cb.ipx_count--; break; case AF_NS: route_cb.ns_count--; break; } route_cb.any_count--; } error = raw_usrreqs.pru_detach(so); splx(s); return error; } static int rts_disconnect(struct socket *so) { int s, error; s = splnet(); error = raw_usrreqs.pru_disconnect(so); splx(s); return error; } /* pru_listen is EOPNOTSUPP */ static int rts_peeraddr(struct socket *so, struct sockaddr **nam) { int s, error; s = splnet(); error = raw_usrreqs.pru_peeraddr(so, nam); splx(s); return error; } /* pru_rcvd is EOPNOTSUPP */ /* pru_rcvoob is EOPNOTSUPP */ static int rts_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam, struct mbuf *control, struct thread *td) { int s, error; s = splnet(); error = raw_usrreqs.pru_send(so, flags, m, nam, control, td); splx(s); return error; } /* pru_sense is null */ static int rts_shutdown(struct socket *so) { int s, error; s = splnet(); error = raw_usrreqs.pru_shutdown(so); splx(s); return error; } static int rts_sockaddr(struct socket *so, struct sockaddr **nam) { int s, error; s = splnet(); error = raw_usrreqs.pru_sockaddr(so, nam); splx(s); return error; } static struct pr_usrreqs route_usrreqs = { rts_abort, pru_accept_notsupp, rts_attach, rts_bind, rts_connect, pru_connect2_notsupp, pru_control_notsupp, rts_detach, rts_disconnect, pru_listen_notsupp, rts_peeraddr, pru_rcvd_notsupp, pru_rcvoob_notsupp, rts_send, pru_sense_null, rts_shutdown, rts_sockaddr, sosend, soreceive, sopoll }; /*ARGSUSED*/ static int route_output(struct mbuf *m, struct socket *so, ...) { struct rt_msghdr *rtm = NULL; struct rtentry *rt = NULL; struct rtentry *saved_nrt = NULL; struct radix_node_head *rnh; struct ifnet *ifp = NULL; struct ifaddr *ifa = NULL; struct rawcb *rp = NULL; struct pr_output_info *oi; struct rt_addrinfo info; int len, error = 0; __va_list ap; __va_start(ap, so); oi = __va_arg(ap, struct pr_output_info *); __va_end(ap); #define gotoerr(e) { error = e; goto flush;} if (m == NULL || ((m->m_len < sizeof(long)) && (m = m_pullup(m, sizeof(long))) == NULL)) return (ENOBUFS); if (!(m->m_flags & M_PKTHDR)) panic("route_output"); len = m->m_pkthdr.len; if (len < sizeof(*rtm) || len != mtod(m, struct rt_msghdr *)->rtm_msglen) { info.sa_dst = NULL; gotoerr(EINVAL); } R_Malloc(rtm, struct rt_msghdr *, len); if (rtm == NULL) { info.sa_dst = NULL; gotoerr(ENOBUFS); } m_copydata(m, 0, len, (caddr_t)rtm); if (rtm->rtm_version != RTM_VERSION) { info.sa_dst = NULL; gotoerr(EPROTONOSUPPORT); } rtm->rtm_pid = oi->p_pid; bzero(&info, sizeof(info)); info.rti_addrs = rtm->rtm_addrs; if (rt_xaddrs((char *)(rtm + 1), len + (char *)rtm, &info)) { info.sa_dst = NULL; gotoerr(EINVAL); } info.rti_flags = rtm->rtm_flags; if (info.sa_dst == NULL || info.sa_dst->sa_family >= AF_MAX || (info.sa_gateway != NULL && (info.sa_gateway->sa_family >= AF_MAX))) gotoerr(EINVAL); if (info.sa_genmask != NULL) { struct radix_node *t; int klen; t = rn_addmask((char *)info.sa_genmask, TRUE, 1); if (t != NULL && info.sa_genmask->sa_len >= (klen = *(u_char *)t->rn_key) && bcmp((char *)info.sa_genmask + 1, (char *)t->rn_key + 1, klen - 1) == 0) info.sa_genmask = (struct sockaddr *)(t->rn_key); else gotoerr(ENOBUFS); } /* * Verify that the caller has the appropriate privilege; RTM_GET * is the only operation the non-superuser is allowed. */ if (rtm->rtm_type != RTM_GET && suser_cred(so->so_cred, 0) != 0) gotoerr(EPERM); switch (rtm->rtm_type) { case RTM_ADD: if (info.sa_gateway == NULL) gotoerr(EINVAL); error = rtrequest1(RTM_ADD, &info, &saved_nrt); if (error == 0 && saved_nrt != NULL) { rt_setmetrics(rtm->rtm_inits, &rtm->rtm_rmx, &saved_nrt->rt_rmx); saved_nrt->rt_rmx.rmx_locks &= ~(rtm->rtm_inits); saved_nrt->rt_rmx.rmx_locks |= (rtm->rtm_inits & rtm->rtm_rmx.rmx_locks); saved_nrt->rt_refcnt--; saved_nrt->rt_genmask = info.sa_genmask; } break; case RTM_DELETE: error = rtrequest1(RTM_DELETE, &info, &saved_nrt); if (error == 0) { if ((rt = saved_nrt)) rt->rt_refcnt++; goto report; } break; case RTM_GET: case RTM_CHANGE: case RTM_LOCK: if ((rnh = rt_tables[info.sa_dst->sa_family]) == NULL) { gotoerr(EAFNOSUPPORT); } else if ((rt = (struct rtentry *) rnh->rnh_lookup( (char *)info.sa_dst, (char *)info.sa_netmask, rnh)) != NULL) rt->rt_refcnt++; else gotoerr(ESRCH); switch(rtm->rtm_type) { case RTM_GET: report: info.sa_dst = rt_key(rt); info.sa_gateway = rt->rt_gateway; info.sa_netmask = rt_mask(rt); info.sa_genmask = rt->rt_genmask; if (rtm->rtm_addrs & (RTA_IFP | RTA_IFA)) { ifp = rt->rt_ifp; if (ifp) { info.sa_ifpaddr = TAILQ_FIRST(&ifp->if_addrhead)-> ifa_addr; info.sa_ifaaddr = rt->rt_ifa->ifa_addr; if (ifp->if_flags & IFF_POINTOPOINT) info.sa_bcastaddr = rt->rt_ifa->ifa_dstaddr; rtm->rtm_index = ifp->if_index; } else { info.sa_ifpaddr = NULL; info.sa_ifaaddr = NULL; } } len = rt_msg2(rtm->rtm_type, &info, NULL, NULL); if (len > rtm->rtm_msglen) { struct rt_msghdr *new_rtm; R_Malloc(new_rtm, struct rt_msghdr *, len); if (new_rtm == NULL) gotoerr(ENOBUFS); bcopy(rtm, new_rtm, rtm->rtm_msglen); Free(rtm); rtm = new_rtm; } rt_msg2(rtm->rtm_type, &info, (caddr_t)rtm, NULL); rtm->rtm_flags = rt->rt_flags; rtm->rtm_rmx = rt->rt_rmx; rtm->rtm_addrs = info.rti_addrs; break; case RTM_CHANGE: /* * new gateway could require new ifaddr, ifp; * flags may also be different; ifp may be specified * by ll sockaddr when protocol address is ambiguous */ if (((rt->rt_flags & RTF_GATEWAY) && info.sa_gateway != NULL) || info.sa_ifpaddr != NULL || (info.sa_ifaaddr != NULL && bcmp(info.sa_ifaaddr, rt->rt_ifa->ifa_addr, info.sa_ifaaddr->sa_len) == 0)) { if ((error = rt_getifa(&info)) != 0) gotoerr(error); } if (info.sa_gateway != NULL && (error = rt_setgate(rt, rt_key(rt), info.sa_gateway)) != 0) gotoerr(error); if ((ifa = info.rti_ifa) != NULL) { struct ifaddr *oifa = rt->rt_ifa; if (oifa != ifa) { if (oifa && oifa->ifa_rtrequest) oifa->ifa_rtrequest(RTM_DELETE, rt, &info); IFAFREE(rt->rt_ifa); rt->rt_ifa = ifa; IFAREF(ifa); rt->rt_ifp = info.rti_ifp; } } rt_setmetrics(rtm->rtm_inits, &rtm->rtm_rmx, &rt->rt_rmx); if (rt->rt_ifa && rt->rt_ifa->ifa_rtrequest) rt->rt_ifa->ifa_rtrequest(RTM_ADD, rt, &info); if (info.sa_genmask != NULL) rt->rt_genmask = info.sa_genmask; /* * Fall into */ case RTM_LOCK: rt->rt_rmx.rmx_locks &= ~(rtm->rtm_inits); rt->rt_rmx.rmx_locks |= (rtm->rtm_inits & rtm->rtm_rmx.rmx_locks); break; } break; default: gotoerr(EOPNOTSUPP); } flush: if (rtm) { if (error) rtm->rtm_errno = error; else rtm->rtm_flags |= RTF_DONE; } if (rt) rtfree(rt); /* * Check to see if we don't want our own messages. */ if (!(so->so_options & SO_USELOOPBACK)) { if (route_cb.any_count <= 1) { if (rtm) Free(rtm); m_freem(m); return (error); } /* There is another listener, so construct message */ rp = sotorawcb(so); } if (rtm) { m_copyback(m, 0, rtm->rtm_msglen, (caddr_t)rtm); if (m->m_pkthdr.len < rtm->rtm_msglen) { m_freem(m); m = NULL; } else if (m->m_pkthdr.len > rtm->rtm_msglen) m_adj(m, rtm->rtm_msglen - m->m_pkthdr.len); Free(rtm); } if (rp != NULL) rp->rcb_proto.sp_family = 0; /* Avoid us */ if (info.sa_dst != NULL) route_proto.sp_protocol = info.sa_dst->sa_family; if (m != NULL) raw_input(m, &route_proto, &route_src, &route_dst); if (rp != NULL) rp->rcb_proto.sp_family = PF_ROUTE; return (error); } static void rt_setmetrics(u_long which, struct rt_metrics *in, struct rt_metrics *out) { #define setmetric(flag, elt) if (which & (flag)) out->elt = in->elt; setmetric(RTV_RPIPE, rmx_recvpipe); setmetric(RTV_SPIPE, rmx_sendpipe); setmetric(RTV_SSTHRESH, rmx_ssthresh); setmetric(RTV_RTT, rmx_rtt); setmetric(RTV_RTTVAR, rmx_rttvar); setmetric(RTV_HOPCOUNT, rmx_hopcount); setmetric(RTV_MTU, rmx_mtu); setmetric(RTV_EXPIRE, rmx_expire); #undef setmetric } #define ROUNDUP(a) \ ((a) > 0 ? (1 + (((a) - 1) | (sizeof(long) - 1))) : sizeof(long)) #define ADVANCE(x, n) (x += ROUNDUP((n)->sa_len)) /* * Extract the addresses of the passed sockaddrs. * Do a little sanity checking so as to avoid bad memory references. * This data is derived straight from userland. */ static int rt_xaddrs(char *cp, char *cplim, struct rt_addrinfo *rtinfo) { struct sockaddr *sa; int i; for (i = 0; (i < RTAX_MAX) && (cp < cplim); i++) { if ((rtinfo->rti_addrs & (1 << i)) == 0) continue; sa = (struct sockaddr *)cp; /* * It won't fit. */ if ( (cp + sa->sa_len) > cplim ) { return (EINVAL); } /* * There are no more... Quit now. * If there are more bits, they are in error. * I've seen this. route(1) can evidently generate these. * This causes kernel to core dump. * For compatibility, if we see this, point to a safe address. */ if (sa->sa_len == 0) { rtinfo->rti_info[i] = &sa_zero; return (0); /* should be EINVAL but for compat */ } /* Accept the sockaddr. */ rtinfo->rti_info[i] = sa; ADVANCE(cp, sa); } return (0); } static struct mbuf * rt_msg1(type, rtinfo) int type; struct rt_addrinfo *rtinfo; { struct rt_msghdr *rtm; struct mbuf *m; int i; struct sockaddr *sa; int len, dlen; switch (type) { case RTM_DELADDR: case RTM_NEWADDR: len = sizeof(struct ifa_msghdr); break; case RTM_DELMADDR: case RTM_NEWMADDR: len = sizeof(struct ifma_msghdr); break; case RTM_IFINFO: len = sizeof(struct if_msghdr); break; case RTM_IFANNOUNCE: len = sizeof(struct if_announcemsghdr); break; default: len = sizeof(struct rt_msghdr); } if (len > MCLBYTES) panic("rt_msg1"); m = m_gethdr(MB_DONTWAIT, MT_DATA); if (m && len > MHLEN) { MCLGET(m, MB_DONTWAIT); if (!(m->m_flags & M_EXT)) { m_free(m); m = NULL; } } if (m == NULL) return (m); m->m_pkthdr.len = m->m_len = len; m->m_pkthdr.rcvif = NULL; rtm = mtod(m, struct rt_msghdr *); bzero(rtm, len); for (i = 0; i < RTAX_MAX; i++) { if ((sa = rtinfo->rti_info[i]) == NULL) continue; rtinfo->rti_addrs |= (1 << i); dlen = ROUNDUP(sa->sa_len); m_copyback(m, len, dlen, (caddr_t)sa); len += dlen; } if (m->m_pkthdr.len != len) { m_freem(m); return (NULL); } rtm->rtm_msglen = len; rtm->rtm_version = RTM_VERSION; rtm->rtm_type = type; return (m); } static int rt_msg2(int type, struct rt_addrinfo *rtinfo, caddr_t cp, struct walkarg *w) { int i; int len, dlen; boolean_t second_time = FALSE; caddr_t cp0; rtinfo->rti_addrs = NULL; again: switch (type) { case RTM_DELADDR: case RTM_NEWADDR: len = sizeof(struct ifa_msghdr); break; case RTM_IFINFO: len = sizeof(struct if_msghdr); break; default: len = sizeof(struct rt_msghdr); } cp0 = cp; if (cp != NULL) cp += len; for (i = 0; i < RTAX_MAX; i++) { struct sockaddr *sa; if ((sa = rtinfo->rti_info[i]) == NULL) continue; rtinfo->rti_addrs |= (1 << i); dlen = ROUNDUP(sa->sa_len); if (cp != NULL) { bcopy(sa, cp, dlen); cp += dlen; } len += dlen; } len = ALIGN(len); if (cp == NULL && w != NULL && !second_time) { struct walkarg *rw = w; if (rw->w_req != NULL) { if (rw->w_tmemsize < len) { if (rw->w_tmem) free(rw->w_tmem, M_RTABLE); rw->w_tmem = malloc(len, M_RTABLE, M_INTWAIT | M_NULLOK); if (rw->w_tmem) rw->w_tmemsize = len; } if (rw->w_tmem != NULL) { cp = rw->w_tmem; second_time = TRUE; goto again; } } } if (cp != NULL) { struct rt_msghdr *rtm = (struct rt_msghdr *)cp0; rtm->rtm_version = RTM_VERSION; rtm->rtm_type = type; rtm->rtm_msglen = len; } return (len); } /* * This routine is called to generate a message from the routing * socket indicating that a redirect has occurred, a routing lookup * has failed, or that a protocol has detected timeouts to a particular * destination. */ void rt_missmsg(int type, struct rt_addrinfo *rtinfo, int flags, int error) { struct sockaddr *sa = rtinfo->rti_info[RTAX_DST]; struct rt_msghdr *rtm; struct mbuf *m; if (route_cb.any_count == 0) return; m = rt_msg1(type, rtinfo); if (m == NULL) return; rtm = mtod(m, struct rt_msghdr *); rtm->rtm_flags = RTF_DONE | flags; rtm->rtm_errno = error; rtm->rtm_addrs = rtinfo->rti_addrs; route_proto.sp_protocol = sa ? sa->sa_family : 0; raw_input(m, &route_proto, &route_src, &route_dst); } /* * This routine is called to generate a message from the routing * socket indicating that the status of a network interface has changed. */ void rt_ifmsg(ifp) struct ifnet *ifp; { struct if_msghdr *ifm; struct mbuf *m; struct rt_addrinfo info; if (route_cb.any_count == 0) return; bzero(&info, sizeof(info)); m = rt_msg1(RTM_IFINFO, &info); if (m == NULL) return; ifm = mtod(m, struct if_msghdr *); ifm->ifm_index = ifp->if_index; ifm->ifm_flags = (u_short)ifp->if_flags; ifm->ifm_data = ifp->if_data; ifm->ifm_addrs = NULL; route_proto.sp_protocol = 0; raw_input(m, &route_proto, &route_src, &route_dst); } static void rt_ifamsg(int cmd, struct ifaddr *ifa) { struct ifa_msghdr *ifam; struct rt_addrinfo info; struct mbuf *m; struct sockaddr *sa; struct ifnet *ifp = ifa->ifa_ifp; bzero(&info, sizeof(info)); info.sa_ifaaddr = sa = ifa->ifa_addr; info.sa_ifpaddr = TAILQ_FIRST(&ifp->if_addrhead)->ifa_addr; info.sa_netmask = ifa->ifa_netmask; info.sa_bcastaddr = ifa->ifa_dstaddr; m = rt_msg1(cmd, &info); if (m == NULL) return; ifam = mtod(m, struct ifa_msghdr *); ifam->ifam_index = ifp->if_index; ifam->ifam_metric = ifa->ifa_metric; ifam->ifam_flags = ifa->ifa_flags; ifam->ifam_addrs = info.rti_addrs; route_proto.sp_protocol = sa ? sa->sa_family : 0; raw_input(m, &route_proto, &route_src, &route_dst); } static void rt_rtmsg(int cmd, struct ifaddr *ifa, int error, struct rtentry *rt) { struct rt_msghdr *rtm; struct rt_addrinfo info; struct mbuf *m; struct sockaddr *sa; struct ifnet *ifp = ifa->ifa_ifp; if (rt == NULL) return; bzero(&info, sizeof(info)); info.sa_netmask = rt_mask(rt); info.sa_dst = sa = rt_key(rt); info.sa_gateway = rt->rt_gateway; m = rt_msg1(cmd, &info); if (m == NULL) return; rtm = mtod(m, struct rt_msghdr *); rtm->rtm_index = ifp->if_index; rtm->rtm_flags |= rt->rt_flags; rtm->rtm_errno = error; rtm->rtm_addrs = info.rti_addrs; route_proto.sp_protocol = sa ? sa->sa_family : 0; raw_input(m, &route_proto, &route_src, &route_dst); } /* * This is called to generate messages from the routing socket * indicating a network interface has had addresses associated with it. * if we ever reverse the logic and replace messages TO the routing * socket indicate a request to configure interfaces, then it will * be unnecessary as the routing socket will automatically generate * copies of it. */ void rt_newaddrmsg(cmd, ifa, error, rt) int cmd, error; struct ifaddr *ifa; struct rtentry *rt; { if (route_cb.any_count == 0) return; if (cmd == RTM_ADD) { rt_ifamsg(RTM_NEWADDR, ifa); rt_rtmsg(RTM_ADD, ifa, error, rt); } else { KASSERT((cmd == RTM_DELETE), ("unknown cmd %d", cmd)); rt_rtmsg(RTM_DELETE, ifa, error, rt); rt_ifamsg(RTM_DELADDR, ifa); } } /* * This is the analogue to the rt_newaddrmsg which performs the same * function but for multicast group memberhips. This is easier since * there is no route state to worry about. */ void rt_newmaddrmsg(cmd, ifma) int cmd; struct ifmultiaddr *ifma; { struct rt_addrinfo info; struct mbuf *m = NULL; struct ifnet *ifp = ifma->ifma_ifp; struct ifma_msghdr *ifmam; if (route_cb.any_count == 0) return; bzero(&info, sizeof(info)); info.sa_ifaaddr = ifma->ifma_addr; if (ifp != NULL && TAILQ_FIRST(&ifp->if_addrhead) != NULL) info.sa_ifpaddr = TAILQ_FIRST(&ifp->if_addrhead)->ifa_addr; else info.sa_ifpaddr = NULL; /* * If a link-layer address is present, present it as a ``gateway'' * (similarly to how ARP entries, e.g., are presented). */ info.sa_gateway = ifma->ifma_lladdr; m = rt_msg1(cmd, &info); if (m == NULL) return; ifmam = mtod(m, struct ifma_msghdr *); ifmam->ifmam_index = ifp->if_index; ifmam->ifmam_addrs = info.rti_addrs; route_proto.sp_protocol = ifma->ifma_addr->sa_family; raw_input(m, &route_proto, &route_src, &route_dst); } /* * This is called to generate routing socket messages indicating * network interface arrival and departure. */ void rt_ifannouncemsg(ifp, what) struct ifnet *ifp; int what; { struct if_announcemsghdr *ifan; struct mbuf *m; struct rt_addrinfo info; if (route_cb.any_count == 0) return; bzero(&info, sizeof(info)); m = rt_msg1(RTM_IFANNOUNCE, &info); if (m == NULL) return; ifan = mtod(m, struct if_announcemsghdr *); ifan->ifan_index = ifp->if_index; strlcpy(ifan->ifan_name, ifp->if_xname, sizeof(ifan->ifan_name)); ifan->ifan_what = what; route_proto.sp_protocol = 0; raw_input(m, &route_proto, &route_src, &route_dst); } /* * This is used in dumping the kernel table via sysctl(). */ int sysctl_dumpentry(rn, vw) struct radix_node *rn; void *vw; { struct walkarg *w = vw; struct rtentry *rt = (struct rtentry *)rn; int error = 0, size; struct rt_addrinfo info; if (w->w_op == NET_RT_FLAGS && !(rt->rt_flags & w->w_arg)) return 0; bzero(&info, sizeof(info)); info.sa_dst = rt_key(rt); info.sa_gateway = rt->rt_gateway; info.sa_netmask = rt_mask(rt); info.sa_genmask = rt->rt_genmask; if (rt->rt_ifp != NULL) { info.sa_ifpaddr = TAILQ_FIRST(&rt->rt_ifp->if_addrhead)->ifa_addr; info.sa_ifaaddr = rt->rt_ifa->ifa_addr; if (rt->rt_ifp->if_flags & IFF_POINTOPOINT) info.sa_bcastaddr = rt->rt_ifa->ifa_dstaddr; } size = rt_msg2(RTM_GET, &info, NULL, w); if (w->w_req != NULL && w->w_tmem != NULL) { struct rt_msghdr *rtm = (struct rt_msghdr *)w->w_tmem; rtm->rtm_flags = rt->rt_flags; rtm->rtm_use = rt->rt_use; rtm->rtm_rmx = rt->rt_rmx; rtm->rtm_index = rt->rt_ifp->if_index; rtm->rtm_errno = rtm->rtm_pid = rtm->rtm_seq = 0; rtm->rtm_addrs = info.rti_addrs; error = SYSCTL_OUT(w->w_req, (caddr_t)rtm, size); return (error); } return (error); } int sysctl_iflist(af, w) int af; struct walkarg *w; { struct ifnet *ifp; struct ifaddr *ifa; struct rt_addrinfo info; int len, error = 0; bzero(&info, sizeof(info)); TAILQ_FOREACH(ifp, &ifnet, if_link) { if (w->w_arg && w->w_arg != ifp->if_index) continue; ifa = TAILQ_FIRST(&ifp->if_addrhead); info.sa_ifpaddr = ifa->ifa_addr; len = rt_msg2(RTM_IFINFO, &info, NULL, w); info.sa_ifpaddr = NULL; if (w->w_req != NULL && w->w_tmem != NULL) { struct if_msghdr *ifm; ifm = (struct if_msghdr *)w->w_tmem; ifm->ifm_index = ifp->if_index; ifm->ifm_flags = (u_short)ifp->if_flags; ifm->ifm_data = ifp->if_data; ifm->ifm_addrs = info.rti_addrs; error = SYSCTL_OUT(w->w_req,(caddr_t)ifm, len); if (error) return (error); } while ((ifa = TAILQ_NEXT(ifa, ifa_link)) != NULL) { if (af && af != ifa->ifa_addr->sa_family) continue; if (curproc->p_ucred->cr_prison && prison_if(curthread, ifa->ifa_addr)) continue; info.sa_ifaaddr = ifa->ifa_addr; info.sa_netmask = ifa->ifa_netmask; info.sa_bcastaddr = ifa->ifa_dstaddr; len = rt_msg2(RTM_NEWADDR, &info, NULL, w); if (w->w_req && w->w_tmem) { struct ifa_msghdr *ifam; ifam = (struct ifa_msghdr *)w->w_tmem; ifam->ifam_index = ifa->ifa_ifp->if_index; ifam->ifam_flags = ifa->ifa_flags; ifam->ifam_metric = ifa->ifa_metric; ifam->ifam_addrs = info.rti_addrs; error = SYSCTL_OUT(w->w_req, w->w_tmem, len); if (error) return (error); } } info.sa_netmask = info.sa_ifaaddr = info.sa_bcastaddr = NULL; } return (0); } static int sysctl_rtsock(SYSCTL_HANDLER_ARGS) { int *name = (int *)arg1; u_int namelen = arg2; struct radix_node_head *rnh; int i, s, error = EINVAL; u_char af; struct walkarg w; name ++; namelen--; if (req->newptr) return (EPERM); if (namelen != 3) return (EINVAL); af = name[0]; bzero(&w, sizeof(w)); w.w_op = name[1]; w.w_arg = name[2]; w.w_req = req; s = splnet(); switch (w.w_op) { case NET_RT_DUMP: case NET_RT_FLAGS: for (i = 1; i <= AF_MAX; i++) if ((rnh = rt_tables[i]) && (af == 0 || af == i) && (error = rnh->rnh_walktree(rnh, sysctl_dumpentry, &w))) break; break; case NET_RT_IFLIST: error = sysctl_iflist(af, &w); } splx(s); if (w.w_tmem) free(w.w_tmem, M_RTABLE); return (error); } SYSCTL_NODE(_net, PF_ROUTE, routetable, CTLFLAG_RD, sysctl_rtsock, ""); /* * Definitions of protocols supported in the ROUTE domain. */ extern struct domain routedomain; /* or at least forward */ static struct protosw routesw[] = { { SOCK_RAW, &routedomain, 0, PR_ATOMIC|PR_ADDR, 0, route_output, raw_ctlinput, 0, cpu0_soport, raw_init, 0, 0, 0, &route_usrreqs } }; static struct domain routedomain = { PF_ROUTE, "route", 0, 0, 0, routesw, &routesw[sizeof(routesw)/sizeof(routesw[0])] }; DOMAIN_SET(route);