/* * Copyright (c) 2011-2018 The DragonFly Project. All rights reserved. * * This code is derived from software contributed to The DragonFly Project * by Matthew Dillon * by Venkatesh Srinivas * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * 3. Neither the name of The DragonFly Project nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific, prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include #include #include #include #include #include #include #include #include #include #include "hammer2.h" #define FREEMAP_DEBUG 0 struct hammer2_fiterate { hammer2_off_t bpref; hammer2_off_t bnext; int loops; int relaxed; }; typedef struct hammer2_fiterate hammer2_fiterate_t; static int hammer2_freemap_try_alloc(hammer2_chain_t **parentp, hammer2_blockref_t *bref, int radix, hammer2_fiterate_t *iter, hammer2_tid_t mtid); static void hammer2_freemap_init(hammer2_dev_t *hmp, hammer2_key_t key, hammer2_chain_t *chain); static int hammer2_bmap_alloc(hammer2_dev_t *hmp, hammer2_bmap_data_t *bmap, uint16_t class, int n, int sub_key, int radix, hammer2_key_t *basep); static int hammer2_freemap_iterate(hammer2_chain_t **parentp, hammer2_chain_t **chainp, hammer2_fiterate_t *iter); /* * Calculate the device offset for the specified FREEMAP_NODE or FREEMAP_LEAF * bref. Return a combined media offset and physical size radix. Freemap * chains use fixed storage offsets in the 4MB reserved area at the * beginning of each 2GB zone * * Rotate between four possibilities. Theoretically this means we have three * good freemaps in case of a crash which we can use as a base for the fixup * scan at mount-time. */ static int hammer2_freemap_reserve(hammer2_chain_t *chain, int radix) { hammer2_blockref_t *bref = &chain->bref; hammer2_off_t off; int index; int index_inc; size_t bytes; /* * Physical allocation size. */ bytes = (size_t)1 << radix; /* * Calculate block selection index 0..7 of current block. If this * is the first allocation of the block (verses a modification of an * existing block), we use index 0, otherwise we use the next rotating * index. */ if ((bref->data_off & ~HAMMER2_OFF_MASK_RADIX) == 0) { index = 0; } else { off = bref->data_off & ~HAMMER2_OFF_MASK_RADIX & HAMMER2_FREEMAP_LEVEL1_MASK; off = off / HAMMER2_PBUFSIZE; KKASSERT(off >= HAMMER2_ZONE_FREEMAP_00 && off < HAMMER2_ZONE_FREEMAP_END); index = (int)(off - HAMMER2_ZONE_FREEMAP_00) / HAMMER2_ZONE_FREEMAP_INC; KKASSERT(index >= 0 && index < HAMMER2_NFREEMAPS); if (++index == HAMMER2_NFREEMAPS) index = 0; } /* * Calculate the block offset of the reserved block. This will * point into the 4MB reserved area at the base of the appropriate * 2GB zone, once added to the FREEMAP_x selection above. */ index_inc = index * HAMMER2_ZONE_FREEMAP_INC; switch(bref->keybits) { /* case HAMMER2_FREEMAP_LEVEL6_RADIX: not applicable */ case HAMMER2_FREEMAP_LEVEL5_RADIX: /* 4EB */ KKASSERT(bref->type == HAMMER2_BREF_TYPE_FREEMAP_NODE); KKASSERT(bytes == HAMMER2_FREEMAP_LEVELN_PSIZE); off = H2FMBASE(bref->key, HAMMER2_FREEMAP_LEVEL5_RADIX) + (index_inc + HAMMER2_ZONE_FREEMAP_00 + HAMMER2_ZONEFM_LEVEL5) * HAMMER2_PBUFSIZE; break; case HAMMER2_FREEMAP_LEVEL4_RADIX: /* 16PB */ KKASSERT(bref->type == HAMMER2_BREF_TYPE_FREEMAP_NODE); KKASSERT(bytes == HAMMER2_FREEMAP_LEVELN_PSIZE); off = H2FMBASE(bref->key, HAMMER2_FREEMAP_LEVEL4_RADIX) + (index_inc + HAMMER2_ZONE_FREEMAP_00 + HAMMER2_ZONEFM_LEVEL4) * HAMMER2_PBUFSIZE; break; case HAMMER2_FREEMAP_LEVEL3_RADIX: /* 64TB */ KKASSERT(bref->type == HAMMER2_BREF_TYPE_FREEMAP_NODE); KKASSERT(bytes == HAMMER2_FREEMAP_LEVELN_PSIZE); off = H2FMBASE(bref->key, HAMMER2_FREEMAP_LEVEL3_RADIX) + (index_inc + HAMMER2_ZONE_FREEMAP_00 + HAMMER2_ZONEFM_LEVEL3) * HAMMER2_PBUFSIZE; break; case HAMMER2_FREEMAP_LEVEL2_RADIX: /* 256GB */ KKASSERT(bref->type == HAMMER2_BREF_TYPE_FREEMAP_NODE); KKASSERT(bytes == HAMMER2_FREEMAP_LEVELN_PSIZE); off = H2FMBASE(bref->key, HAMMER2_FREEMAP_LEVEL2_RADIX) + (index_inc + HAMMER2_ZONE_FREEMAP_00 + HAMMER2_ZONEFM_LEVEL2) * HAMMER2_PBUFSIZE; break; case HAMMER2_FREEMAP_LEVEL1_RADIX: /* 1GB */ KKASSERT(bref->type == HAMMER2_BREF_TYPE_FREEMAP_LEAF); KKASSERT(bytes == HAMMER2_FREEMAP_LEVELN_PSIZE); off = H2FMBASE(bref->key, HAMMER2_FREEMAP_LEVEL1_RADIX) + (index_inc + HAMMER2_ZONE_FREEMAP_00 + HAMMER2_ZONEFM_LEVEL1) * HAMMER2_PBUFSIZE; break; default: panic("freemap: bad radix(2) %p %d\n", bref, bref->keybits); /* NOT REACHED */ off = (hammer2_off_t)-1; break; } bref->data_off = off | radix; #if FREEMAP_DEBUG kprintf("FREEMAP BLOCK TYPE %d %016jx/%d DATA_OFF=%016jx\n", bref->type, bref->key, bref->keybits, bref->data_off); #endif return (0); } /* * Normal freemap allocator * * Use available hints to allocate space using the freemap. Create missing * freemap infrastructure on-the-fly as needed (including marking initial * allocations using the iterator as allocated, instantiating new 2GB zones, * and dealing with the end-of-media edge case). * * ip and bpref are only used as a heuristic to determine locality of * reference. bref->key may also be used heuristically. * * This function is a NOP if bytes is 0. */ int hammer2_freemap_alloc(hammer2_chain_t *chain, size_t bytes) { hammer2_dev_t *hmp = chain->hmp; hammer2_blockref_t *bref = &chain->bref; hammer2_chain_t *parent; hammer2_tid_t mtid; int radix; int error; unsigned int hindex; hammer2_fiterate_t iter; /* * If allocating or downsizing to zero we just get rid of whatever * data_off we had. */ if (bytes == 0) { chain->bref.data_off = 0; return 0; } KKASSERT(hmp->spmp); mtid = hammer2_trans_sub(hmp->spmp); /* * Validate the allocation size. It must be a power of 2. * * For now require that the caller be aware of the minimum * allocation (1K). */ radix = hammer2_getradix(bytes); KKASSERT((size_t)1 << radix == bytes); if (bref->type == HAMMER2_BREF_TYPE_FREEMAP_NODE || bref->type == HAMMER2_BREF_TYPE_FREEMAP_LEAF) { /* * Freemap blocks themselves are assigned from the reserve * area, not allocated from the freemap. */ error = hammer2_freemap_reserve(chain, radix); return error; } KKASSERT(bytes >= HAMMER2_ALLOC_MIN && bytes <= HAMMER2_ALLOC_MAX); /* * Calculate the starting point for our allocation search. * * Each freemap leaf is dedicated to a specific freemap_radix. * The freemap_radix can be more fine-grained than the device buffer * radix which results in inodes being grouped together in their * own segment, terminal-data (16K or less) and initial indirect * block being grouped together, and then full-indirect and full-data * blocks (64K) being grouped together. * * The single most important aspect of this is the inode grouping * because that is what allows 'find' and 'ls' and other filesystem * topology operations to run fast. */ #if 0 if (bref->data_off & ~HAMMER2_OFF_MASK_RADIX) bpref = bref->data_off & ~HAMMER2_OFF_MASK_RADIX; else if (trans->tmp_bpref) bpref = trans->tmp_bpref; else if (trans->tmp_ip) bpref = trans->tmp_ip->chain->bref.data_off; else #endif /* * Heuristic tracking index. We would like one for each distinct * bref type if possible. heur_freemap[] has room for two classes * for each type. At a minimum we have to break-up our heuristic * by device block sizes. */ hindex = hammer2_devblkradix(radix) - HAMMER2_MINIORADIX; KKASSERT(hindex < HAMMER2_FREEMAP_HEUR_NRADIX); hindex += bref->type * HAMMER2_FREEMAP_HEUR_NRADIX; hindex &= HAMMER2_FREEMAP_HEUR_TYPES * HAMMER2_FREEMAP_HEUR_NRADIX - 1; KKASSERT(hindex < HAMMER2_FREEMAP_HEUR_SIZE); iter.bpref = hmp->heur_freemap[hindex]; iter.relaxed = hmp->freemap_relaxed; /* * Make sure bpref is in-bounds. It's ok if bpref covers a zone's * reserved area, the try code will iterate past it. */ if (iter.bpref > hmp->voldata.volu_size) iter.bpref = hmp->voldata.volu_size - 1; /* * Iterate the freemap looking for free space before and after. */ parent = &hmp->fchain; hammer2_chain_ref(parent); hammer2_chain_lock(parent, HAMMER2_RESOLVE_ALWAYS); error = HAMMER2_ERROR_EAGAIN; iter.bnext = iter.bpref; iter.loops = 0; while (error == HAMMER2_ERROR_EAGAIN) { error = hammer2_freemap_try_alloc(&parent, bref, radix, &iter, mtid); } hmp->freemap_relaxed |= iter.relaxed; /* heuristical, SMP race ok */ hmp->heur_freemap[hindex] = iter.bnext; hammer2_chain_unlock(parent); hammer2_chain_drop(parent); return (error); } static int hammer2_freemap_try_alloc(hammer2_chain_t **parentp, hammer2_blockref_t *bref, int radix, hammer2_fiterate_t *iter, hammer2_tid_t mtid) { hammer2_dev_t *hmp = (*parentp)->hmp; hammer2_off_t l0size; hammer2_off_t l1size; hammer2_off_t l1mask; hammer2_key_t key_dummy; hammer2_chain_t *chain; hammer2_off_t key; size_t bytes; uint16_t class; int error; /* * Calculate the number of bytes being allocated, the number * of contiguous bits of bitmap being allocated, and the bitmap * mask. * * WARNING! cpu hardware may mask bits == 64 -> 0 and blow up the * mask calculation. */ bytes = (size_t)1 << radix; class = (bref->type << 8) | hammer2_devblkradix(radix); /* * Lookup the level1 freemap chain, creating and initializing one * if necessary. Intermediate levels will be created automatically * when necessary by hammer2_chain_create(). */ key = H2FMBASE(iter->bnext, HAMMER2_FREEMAP_LEVEL1_RADIX); l0size = HAMMER2_FREEMAP_LEVEL0_SIZE; l1size = HAMMER2_FREEMAP_LEVEL1_SIZE; l1mask = l1size - 1; chain = hammer2_chain_lookup(parentp, &key_dummy, key, key + l1mask, &error, HAMMER2_LOOKUP_ALWAYS | HAMMER2_LOOKUP_MATCHIND); if (chain == NULL) { /* * Create the missing leaf, be sure to initialize * the auxillary freemap tracking information in * the bref.check.freemap structure. */ #if 0 kprintf("freemap create L1 @ %016jx bpref %016jx\n", key, iter->bpref); #endif error = hammer2_chain_create(parentp, &chain, NULL, hmp->spmp, HAMMER2_METH_DEFAULT, key, HAMMER2_FREEMAP_LEVEL1_RADIX, HAMMER2_BREF_TYPE_FREEMAP_LEAF, HAMMER2_FREEMAP_LEVELN_PSIZE, mtid, 0, 0); KKASSERT(error == 0); if (error == 0) { hammer2_chain_modify(chain, mtid, 0, 0); bzero(&chain->data->bmdata[0], HAMMER2_FREEMAP_LEVELN_PSIZE); chain->bref.check.freemap.bigmask = (uint32_t)-1; chain->bref.check.freemap.avail = l1size; /* bref.methods should already be inherited */ hammer2_freemap_init(hmp, key, chain); } } else if (chain->error) { /* * Error during lookup. */ kprintf("hammer2_freemap_try_alloc: %016jx: error %s\n", (intmax_t)bref->data_off, hammer2_error_str(chain->error)); error = HAMMER2_ERROR_EIO; } else if ((chain->bref.check.freemap.bigmask & ((size_t)1 << radix)) == 0) { /* * Already flagged as not having enough space */ error = HAMMER2_ERROR_ENOSPC; } else { /* * Modify existing chain to setup for adjustment. */ hammer2_chain_modify(chain, mtid, 0, 0); } /* * Scan 4MB entries. */ if (error == 0) { hammer2_bmap_data_t *bmap; hammer2_key_t base_key; int count; int start; int n; KKASSERT(chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP_LEAF); start = (int)((iter->bnext - key) >> HAMMER2_FREEMAP_LEVEL0_RADIX); KKASSERT(start >= 0 && start < HAMMER2_FREEMAP_COUNT); hammer2_chain_modify(chain, mtid, 0, 0); error = HAMMER2_ERROR_ENOSPC; for (count = 0; count < HAMMER2_FREEMAP_COUNT; ++count) { int availchk; if (start + count >= HAMMER2_FREEMAP_COUNT && start - count < 0) { break; } /* * Calculate bmap pointer from thart starting index * forwards. * * NOTE: bmap pointer is invalid if n >= FREEMAP_COUNT. */ n = start + count; bmap = &chain->data->bmdata[n]; if (n >= HAMMER2_FREEMAP_COUNT) { availchk = 0; } else if (bmap->avail) { availchk = 1; } else if (radix < HAMMER2_FREEMAP_BLOCK_RADIX && (bmap->linear & HAMMER2_FREEMAP_BLOCK_MASK)) { availchk = 1; } else { availchk = 0; } /* * Try to allocate from a matching freemap class * superblock. If we are in relaxed mode we allocate * from any freemap class superblock. */ if (availchk && (bmap->class == 0 || bmap->class == class || iter->relaxed)) { base_key = key + n * l0size; error = hammer2_bmap_alloc(hmp, bmap, class, n, (int)bref->key, radix, &base_key); if (error != HAMMER2_ERROR_ENOSPC) { key = base_key; break; } } /* * Calculate bmap pointer from thart starting index * backwards (locality). * * Must recalculate after potentially having called * hammer2_bmap_alloc() above in case chain was * reallocated. * * NOTE: bmap pointer is invalid if n < 0. */ n = start - count; bmap = &chain->data->bmdata[n]; if (n < 0) { availchk = 0; } else if (bmap->avail) { availchk = 1; } else if (radix < HAMMER2_FREEMAP_BLOCK_RADIX && (bmap->linear & HAMMER2_FREEMAP_BLOCK_MASK)) { availchk = 1; } else { availchk = 0; } /* * Try to allocate from a matching freemap class * superblock. If we are in relaxed mode we allocate * from any freemap class superblock. */ if (availchk && (bmap->class == 0 || bmap->class == class || iter->relaxed)) { base_key = key + n * l0size; error = hammer2_bmap_alloc(hmp, bmap, class, n, (int)bref->key, radix, &base_key); if (error != HAMMER2_ERROR_ENOSPC) { key = base_key; break; } } } /* * We only know for sure that we can clear the bitmap bit * if we scanned the entire array (start == 0). */ if (error == HAMMER2_ERROR_ENOSPC && start == 0) { chain->bref.check.freemap.bigmask &= (uint32_t)~((size_t)1 << radix); } /* XXX also scan down from original count */ } if (error == 0) { /* * Assert validity. Must be beyond the static allocator used * by newfs_hammer2 (and thus also beyond the aux area), * not go past the volume size, and must not be in the * reserved segment area for a zone. */ KKASSERT(key >= hmp->voldata.allocator_beg && key + bytes <= hmp->voldata.volu_size); KKASSERT((key & HAMMER2_ZONE_MASK64) >= HAMMER2_ZONE_SEG); bref->data_off = key | radix; /* * Record dedupability. The dedup bits are cleared * when bulkfree transitions the freemap from 11->10, * and asserted to be clear on the 10->00 transition. * * We must record the bitmask with the chain locked * at the time we set the allocation bits to avoid * racing a bulkfree. */ if (bref->type == HAMMER2_BREF_TYPE_DATA) hammer2_io_dedup_set(hmp, bref); #if 0 kprintf("alloc cp=%p %016jx %016jx using %016jx\n", chain, bref->key, bref->data_off, chain->bref.data_off); #endif } else if (error == HAMMER2_ERROR_ENOSPC) { /* * Return EAGAIN with next iteration in iter->bnext, or * return ENOSPC if the allocation map has been exhausted. */ error = hammer2_freemap_iterate(parentp, &chain, iter); } /* * Cleanup */ if (chain) { hammer2_chain_unlock(chain); hammer2_chain_drop(chain); } return (error); } /* * Allocate (1<bref.key for the chain whos * bref is being allocated. If the radix represents an allocation >= 16KB * (aka HAMMER2_FREEMAP_BLOCK_RADIX) we try to use this key to select the * blocks directly out of the bmap. */ static int hammer2_bmap_alloc(hammer2_dev_t *hmp, hammer2_bmap_data_t *bmap, uint16_t class, int n, int sub_key, int radix, hammer2_key_t *basep) { size_t size; size_t bgsize; int bmradix; hammer2_bitmap_t bmmask; int offset; int i; int j; /* * Take into account 2-bits per block when calculating bmradix. */ size = (size_t)1 << radix; if (radix <= HAMMER2_FREEMAP_BLOCK_RADIX) { bmradix = 2; /* (16K) 2 bits per allocation block */ } else { bmradix = (hammer2_bitmap_t)2 << (radix - HAMMER2_FREEMAP_BLOCK_RADIX); /* (32K-256K) 4, 8, 16, 32 bits per allocation block */ } /* * Use the linear iterator to pack small allocations, otherwise * fall-back to finding a free 16KB chunk. The linear iterator * is only valid when *NOT* on a freemap chunking boundary (16KB). * If it is the bitmap must be scanned. It can become invalid * once we pack to the boundary. We adjust it after a bitmap * allocation only for sub-16KB allocations (so the perfectly good * previous value can still be used for fragments when 16KB+ * allocations are made inbetween fragmentary allocations). * * Beware of hardware artifacts when bmradix == 64 (intermediate * result can wind up being '1' instead of '0' if hardware masks * bit-count & 63). * * NOTE: j needs to be even in the j= calculation. As an artifact * of the /2 division, our bitmask has to clear bit 0. * * NOTE: TODO this can leave little unallocatable fragments lying * around. */ if (((uint32_t)bmap->linear & HAMMER2_FREEMAP_BLOCK_MASK) + size <= HAMMER2_FREEMAP_BLOCK_SIZE && (bmap->linear & HAMMER2_FREEMAP_BLOCK_MASK) && bmap->linear < HAMMER2_SEGSIZE) { /* * Use linear iterator if it is not block-aligned to avoid * wasting space. * * Calculate the bitmapq[] index (i) and calculate the * shift count within the 64-bit bitmapq[] entry. * * The freemap block size is 16KB, but each bitmap * entry is two bits so use a little trick to get * a (j) shift of 0, 2, 4, ... 62 in 16KB chunks. */ KKASSERT(bmap->linear >= 0 && bmap->linear + size <= HAMMER2_SEGSIZE && (bmap->linear & (HAMMER2_ALLOC_MIN - 1)) == 0); offset = bmap->linear; i = offset / (HAMMER2_SEGSIZE / HAMMER2_BMAP_ELEMENTS); j = (offset / (HAMMER2_FREEMAP_BLOCK_SIZE / 2)) & 62; bmmask = (bmradix == HAMMER2_BMAP_BITS_PER_ELEMENT) ? HAMMER2_BMAP_ALLONES : ((hammer2_bitmap_t)1 << bmradix) - 1; bmmask <<= j; bmap->linear = offset + size; } else { /* * Try to index a starting point based on sub_key. This * attempts to restore sequential block ordering on-disk * whenever possible, even if data is committed out of * order. * * i - Index bitmapq[], full data range represented is * HAMMER2_BMAP_SIZE. * * j - Index within bitmapq[i], full data range represented is * HAMMER2_BMAP_INDEX_SIZE. * * WARNING! */ i = -1; j = -1; switch(class >> 8) { case HAMMER2_BREF_TYPE_DATA: if (radix >= HAMMER2_FREEMAP_BLOCK_RADIX) { i = (sub_key & HAMMER2_BMAP_MASK) / (HAMMER2_BMAP_SIZE / HAMMER2_BMAP_ELEMENTS); j = (sub_key & HAMMER2_BMAP_INDEX_MASK) / (HAMMER2_BMAP_INDEX_SIZE / HAMMER2_BMAP_BLOCKS_PER_ELEMENT); j = j * 2; } break; case HAMMER2_BREF_TYPE_INODE: break; default: break; } if (i >= 0) { KKASSERT(i < HAMMER2_BMAP_ELEMENTS && j < 2 * HAMMER2_BMAP_BLOCKS_PER_ELEMENT); KKASSERT(j + bmradix <= HAMMER2_BMAP_BITS_PER_ELEMENT); bmmask = (bmradix == HAMMER2_BMAP_BITS_PER_ELEMENT) ? HAMMER2_BMAP_ALLONES : ((hammer2_bitmap_t)1 << bmradix) - 1; bmmask <<= j; if ((bmap->bitmapq[i] & bmmask) == 0) goto success; } /* * General element scan. * * WARNING: (j) is iterating a bit index (by 2's) */ for (i = 0; i < HAMMER2_BMAP_ELEMENTS; ++i) { bmmask = (bmradix == HAMMER2_BMAP_BITS_PER_ELEMENT) ? HAMMER2_BMAP_ALLONES : ((hammer2_bitmap_t)1 << bmradix) - 1; for (j = 0; j < HAMMER2_BMAP_BITS_PER_ELEMENT; j += bmradix) { if ((bmap->bitmapq[i] & bmmask) == 0) goto success; bmmask <<= bmradix; } } /*fragments might remain*/ /*KKASSERT(bmap->avail == 0);*/ return (HAMMER2_ERROR_ENOSPC); success: offset = i * (HAMMER2_SEGSIZE / HAMMER2_BMAP_ELEMENTS) + (j * (HAMMER2_FREEMAP_BLOCK_SIZE / 2)); if (size & HAMMER2_FREEMAP_BLOCK_MASK) bmap->linear = offset + size; } /* 8 x (64/2) -> 256 x 16K -> 4MB */ KKASSERT(i >= 0 && i < HAMMER2_BMAP_ELEMENTS); /* * Optimize the buffer cache to avoid unnecessary read-before-write * operations. * * The device block size could be larger than the allocation size * so the actual bitmap test is somewhat more involved. We have * to use a compatible buffer size for this operation. */ if ((bmap->bitmapq[i] & bmmask) == 0 && hammer2_devblksize(size) != size) { size_t psize = hammer2_devblksize(size); hammer2_off_t pmask = (hammer2_off_t)psize - 1; int pbmradix = (hammer2_bitmap_t)2 << (hammer2_devblkradix(radix) - HAMMER2_FREEMAP_BLOCK_RADIX); hammer2_bitmap_t pbmmask; int pradix = hammer2_getradix(psize); pbmmask = (pbmradix == HAMMER2_BMAP_BITS_PER_ELEMENT) ? HAMMER2_BMAP_ALLONES : ((hammer2_bitmap_t)1 << pbmradix) - 1; while ((pbmmask & bmmask) == 0) pbmmask <<= pbmradix; #if 0 kprintf("%016jx mask %016jx %016jx %016jx (%zd/%zd)\n", *basep + offset, bmap->bitmapq[i], pbmmask, bmmask, size, psize); #endif if ((bmap->bitmapq[i] & pbmmask) == 0) { hammer2_io_t *dio; hammer2_io_newnz(hmp, class >> 8, (*basep + (offset & ~pmask)) | pradix, psize, &dio); hammer2_io_putblk(&dio); } } #if 0 /* * When initializing a new inode segment also attempt to initialize * an adjacent segment. Be careful not to index beyond the array * bounds. * * We do this to try to localize inode accesses to improve * directory scan rates. XXX doesn't improve scan rates. */ if (size == HAMMER2_INODE_BYTES) { if (n & 1) { if (bmap[-1].radix == 0 && bmap[-1].avail) bmap[-1].radix = radix; } else { if (bmap[1].radix == 0 && bmap[1].avail) bmap[1].radix = radix; } } #endif /* * Calculate the bitmap-granular change in bgsize for the volume * header. We cannot use the fine-grained change here because * the bulkfree code can't undo it. If the bitmap element is already * marked allocated it has already been accounted for. */ if (radix < HAMMER2_FREEMAP_BLOCK_RADIX) { if (bmap->bitmapq[i] & bmmask) bgsize = 0; else bgsize = HAMMER2_FREEMAP_BLOCK_SIZE; } else { bgsize = size; } /* * Adjust the bitmap, set the class (it might have been 0), * and available bytes, update the allocation offset (*basep) * from the L0 base to the actual offset. * * Do not override the class if doing a relaxed class allocation. * * avail must reflect the bitmap-granular availability. The allocator * tests will also check the linear iterator. */ bmap->bitmapq[i] |= bmmask; if (bmap->class == 0) bmap->class = class; bmap->avail -= bgsize; *basep += offset; /* * Adjust the volume header's allocator_free parameter. This * parameter has to be fixed up by bulkfree which has no way to * figure out sub-16K chunking, so it must be adjusted by the * bitmap-granular size. */ if (bgsize) { hammer2_voldata_lock(hmp); hammer2_voldata_modify(hmp); hmp->voldata.allocator_free -= bgsize; hammer2_voldata_unlock(hmp); } return(0); } /* * Initialize a freemap for the storage area (in bytes) that begins at (key). */ static void hammer2_freemap_init(hammer2_dev_t *hmp, hammer2_key_t key, hammer2_chain_t *chain) { hammer2_off_t l1size; hammer2_off_t lokey; hammer2_off_t hikey; hammer2_bmap_data_t *bmap; int count; /* * LEVEL1 is 1GB, there are two level1 1GB freemaps per 2GB zone. */ l1size = HAMMER2_FREEMAP_LEVEL1_SIZE; /* * Calculate the portion of the 1GB map that should be initialized * as free. Portions below or after will be initialized as allocated. * SEGMASK-align the areas so we don't have to worry about sub-scans * or endianess when using memset. * * WARNING! It is possible for lokey to be larger than hikey if the * entire 2GB segment is within the static allocation. */ /* * (1) Ensure that all statically allocated space from newfs_hammer2 * is marked allocated, and take it up to the level1 base for * this key. */ lokey = (hmp->voldata.allocator_beg + HAMMER2_SEGMASK64) & ~HAMMER2_SEGMASK64; if (lokey < H2FMBASE(key, HAMMER2_FREEMAP_LEVEL1_RADIX)) lokey = H2FMBASE(key, HAMMER2_FREEMAP_LEVEL1_RADIX); /* * (2) Ensure that the reserved area is marked allocated (typically * the first 4MB of each 2GB area being represented). Since * each LEAF represents 1GB of storage and the zone is 2GB, we * have to adjust lowkey upward every other LEAF sequentially. */ if (lokey < H2FMZONEBASE(key) + HAMMER2_ZONE_SEG64) lokey = H2FMZONEBASE(key) + HAMMER2_ZONE_SEG64; /* * (3) Ensure that any trailing space at the end-of-volume is marked * allocated. */ hikey = key + HAMMER2_FREEMAP_LEVEL1_SIZE; if (hikey > hmp->voldata.volu_size) { hikey = hmp->voldata.volu_size & ~HAMMER2_SEGMASK64; } /* * Heuristic highest possible value */ chain->bref.check.freemap.avail = HAMMER2_FREEMAP_LEVEL1_SIZE; bmap = &chain->data->bmdata[0]; /* * Initialize bitmap (bzero'd by caller) */ for (count = 0; count < HAMMER2_FREEMAP_COUNT; ++count) { if (key < lokey || key >= hikey) { memset(bmap->bitmapq, -1, sizeof(bmap->bitmapq)); bmap->avail = 0; bmap->linear = HAMMER2_SEGSIZE; chain->bref.check.freemap.avail -= HAMMER2_FREEMAP_LEVEL0_SIZE; } else { bmap->avail = HAMMER2_FREEMAP_LEVEL0_SIZE; } key += HAMMER2_FREEMAP_LEVEL0_SIZE; ++bmap; } } /* * The current Level 1 freemap has been exhausted, iterate to the next * one, return ENOSPC if no freemaps remain. * * At least two loops are required. If we are not in relaxed mode and * we run out of storage we enter relaxed mode and do a third loop. * The relaxed mode is recorded back in the hmp so once we enter the mode * we remain relaxed until stuff begins to get freed and only do 2 loops. * * XXX this should rotate back to the beginning to handle freed-up space * XXX or use intermediate entries to locate free space. TODO */ static int hammer2_freemap_iterate(hammer2_chain_t **parentp, hammer2_chain_t **chainp, hammer2_fiterate_t *iter) { hammer2_dev_t *hmp = (*parentp)->hmp; iter->bnext &= ~HAMMER2_FREEMAP_LEVEL1_MASK; iter->bnext += HAMMER2_FREEMAP_LEVEL1_SIZE; if (iter->bnext >= hmp->voldata.volu_size) { iter->bnext = 0; if (++iter->loops >= 2) { if (iter->relaxed == 0) iter->relaxed = 1; else return (HAMMER2_ERROR_ENOSPC); } } return(HAMMER2_ERROR_EAGAIN); } /* * Adjust the bit-pattern for data in the freemap bitmap according to * (how). This code is called from on-mount recovery to fixup (mark * as allocated) blocks whos freemap upates might not have been committed * in the last crash and is used by the bulk freemap scan to stage frees. * * WARNING! Cannot be called with a empty-data bref (radix == 0). * * XXX currently disabled when how == 0 (the normal real-time case). At * the moment we depend on the bulk freescan to actually free blocks. It * will still call this routine with a non-zero how to stage possible frees * and to do the actual free. */ void hammer2_freemap_adjust(hammer2_dev_t *hmp, hammer2_blockref_t *bref, int how) { hammer2_off_t data_off = bref->data_off; hammer2_chain_t *chain; hammer2_chain_t *parent; hammer2_bmap_data_t *bmap; hammer2_key_t key; hammer2_key_t key_dummy; hammer2_off_t l0size; hammer2_off_t l1size; hammer2_off_t l1mask; hammer2_tid_t mtid; hammer2_bitmap_t *bitmap; const hammer2_bitmap_t bmmask00 = 0; hammer2_bitmap_t bmmask01; hammer2_bitmap_t bmmask10; hammer2_bitmap_t bmmask11; size_t bytes; uint16_t class; int radix; int start; int count; int modified = 0; int error; size_t bgsize = 0; KKASSERT(how == HAMMER2_FREEMAP_DORECOVER); KKASSERT(hmp->spmp); mtid = hammer2_trans_sub(hmp->spmp); radix = (int)data_off & HAMMER2_OFF_MASK_RADIX; KKASSERT(radix != 0); data_off &= ~HAMMER2_OFF_MASK_RADIX; KKASSERT(radix <= HAMMER2_RADIX_MAX); if (radix) bytes = (size_t)1 << radix; else bytes = 0; class = (bref->type << 8) | hammer2_devblkradix(radix); /* * We can't adjust the freemap for data allocations made by * newfs_hammer2. */ if (data_off < hmp->voldata.allocator_beg) return; KKASSERT((data_off & HAMMER2_ZONE_MASK64) >= HAMMER2_ZONE_SEG); /* * Lookup the level1 freemap chain. The chain must exist. */ key = H2FMBASE(data_off, HAMMER2_FREEMAP_LEVEL1_RADIX); l0size = HAMMER2_FREEMAP_LEVEL0_SIZE; l1size = HAMMER2_FREEMAP_LEVEL1_SIZE; l1mask = l1size - 1; parent = &hmp->fchain; hammer2_chain_ref(parent); hammer2_chain_lock(parent, HAMMER2_RESOLVE_ALWAYS); chain = hammer2_chain_lookup(&parent, &key_dummy, key, key + l1mask, &error, HAMMER2_LOOKUP_ALWAYS | HAMMER2_LOOKUP_MATCHIND); /* * Stop early if we are trying to free something but no leaf exists. */ if (chain == NULL && how != HAMMER2_FREEMAP_DORECOVER) { kprintf("hammer2_freemap_adjust: %016jx: no chain\n", (intmax_t)bref->data_off); goto done; } if (chain->error) { kprintf("hammer2_freemap_adjust: %016jx: error %s\n", (intmax_t)bref->data_off, hammer2_error_str(chain->error)); hammer2_chain_unlock(chain); hammer2_chain_drop(chain); chain = NULL; goto done; } /* * Create any missing leaf(s) if we are doing a recovery (marking * the block(s) as being allocated instead of being freed). Be sure * to initialize the auxillary freemap tracking info in the * bref.check.freemap structure. */ if (chain == NULL && how == HAMMER2_FREEMAP_DORECOVER) { error = hammer2_chain_create(&parent, &chain, NULL, hmp->spmp, HAMMER2_METH_DEFAULT, key, HAMMER2_FREEMAP_LEVEL1_RADIX, HAMMER2_BREF_TYPE_FREEMAP_LEAF, HAMMER2_FREEMAP_LEVELN_PSIZE, mtid, 0, 0); if (hammer2_debug & 0x0040) { kprintf("fixup create chain %p %016jx:%d\n", chain, chain->bref.key, chain->bref.keybits); } if (error == 0) { error = hammer2_chain_modify(chain, mtid, 0, 0); KKASSERT(error == 0); bzero(&chain->data->bmdata[0], HAMMER2_FREEMAP_LEVELN_PSIZE); chain->bref.check.freemap.bigmask = (uint32_t)-1; chain->bref.check.freemap.avail = l1size; /* bref.methods should already be inherited */ hammer2_freemap_init(hmp, key, chain); } /* XXX handle error */ } #if FREEMAP_DEBUG kprintf("FREEMAP ADJUST TYPE %d %016jx/%d DATA_OFF=%016jx\n", chain->bref.type, chain->bref.key, chain->bref.keybits, chain->bref.data_off); #endif /* * Calculate the bitmask (runs in 2-bit pairs). */ start = ((int)(data_off >> HAMMER2_FREEMAP_BLOCK_RADIX) & 15) * 2; bmmask01 = (hammer2_bitmap_t)1 << start; bmmask10 = (hammer2_bitmap_t)2 << start; bmmask11 = (hammer2_bitmap_t)3 << start; /* * Fixup the bitmap. Partial blocks cannot be fully freed unless * a bulk scan is able to roll them up. */ if (radix < HAMMER2_FREEMAP_BLOCK_RADIX) { count = 1; if (how == HAMMER2_FREEMAP_DOREALFREE) how = HAMMER2_FREEMAP_DOMAYFREE; } else { count = 1 << (radix - HAMMER2_FREEMAP_BLOCK_RADIX); } /* * [re]load the bmap and bitmap pointers. Each bmap entry covers * a 4MB swath. The bmap itself (LEVEL1) covers 2GB. * * Be sure to reset the linear iterator to ensure that the adjustment * is not ignored. */ again: bmap = &chain->data->bmdata[(int)(data_off >> HAMMER2_SEGRADIX) & (HAMMER2_FREEMAP_COUNT - 1)]; bitmap = &bmap->bitmapq[(int)(data_off >> (HAMMER2_SEGRADIX - 3)) & 7]; if (modified) bmap->linear = 0; while (count) { KKASSERT(bmmask11); if (how == HAMMER2_FREEMAP_DORECOVER) { /* * Recovery request, mark as allocated. */ if ((*bitmap & bmmask11) != bmmask11) { if (modified == 0) { hammer2_chain_modify(chain, mtid, 0, 0); modified = 1; goto again; } if ((*bitmap & bmmask11) == bmmask00) { bmap->avail -= HAMMER2_FREEMAP_BLOCK_SIZE; bgsize += HAMMER2_FREEMAP_BLOCK_SIZE; } if (bmap->class == 0) bmap->class = class; *bitmap |= bmmask11; if (hammer2_debug & 0x0040) { kprintf("hammer2_freemap_recover: " "fixup type=%02x " "block=%016jx/%zd\n", bref->type, data_off, bytes); } } else { /* kprintf("hammer2_freemap_recover: good " "type=%02x block=%016jx/%zd\n", bref->type, data_off, bytes); */ } } #if 0 /* * XXX this stuff doesn't work, avail is miscalculated and * code 10 means something else now. */ else if ((*bitmap & bmmask11) == bmmask11) { /* * Mayfree/Realfree request and bitmap is currently * marked as being fully allocated. */ if (!modified) { hammer2_chain_modify(chain, 0); modified = 1; goto again; } if (how == HAMMER2_FREEMAP_DOREALFREE) *bitmap &= ~bmmask11; else *bitmap = (*bitmap & ~bmmask11) | bmmask10; } else if ((*bitmap & bmmask11) == bmmask10) { /* * Mayfree/Realfree request and bitmap is currently * marked as being possibly freeable. */ if (how == HAMMER2_FREEMAP_DOREALFREE) { if (!modified) { hammer2_chain_modify(chain, 0); modified = 1; goto again; } *bitmap &= ~bmmask11; } } else { /* * 01 - Not implemented, currently illegal state * 00 - Not allocated at all, illegal free. */ panic("hammer2_freemap_adjust: " "Illegal state %08x(%08x)", *bitmap, *bitmap & bmmask11); } #endif --count; bmmask01 <<= 2; bmmask10 <<= 2; bmmask11 <<= 2; } #if HAMMER2_BMAP_ELEMENTS != 8 #error "hammer2_freemap.c: HAMMER2_BMAP_ELEMENTS expected to be 8" #endif if (how == HAMMER2_FREEMAP_DOREALFREE && modified) { bmap->avail += 1 << radix; KKASSERT(bmap->avail <= HAMMER2_SEGSIZE); if (bmap->avail == HAMMER2_SEGSIZE && bmap->bitmapq[0] == 0 && bmap->bitmapq[1] == 0 && bmap->bitmapq[2] == 0 && bmap->bitmapq[3] == 0 && bmap->bitmapq[4] == 0 && bmap->bitmapq[5] == 0 && bmap->bitmapq[6] == 0 && bmap->bitmapq[7] == 0) { key = H2FMBASE(data_off, HAMMER2_FREEMAP_LEVEL0_RADIX); kprintf("Freeseg %016jx\n", (intmax_t)key); bmap->class = 0; } } /* * chain->bref.check.freemap.bigmask (XXX) * * Setting bigmask is a hint to the allocation code that there might * be something allocatable. We also set this in recovery... it * doesn't hurt and we might want to use the hint for other validation * operations later on. * * We could calculate the largest possible allocation and set the * radii that could fit, but its easier just to set bigmask to -1. */ if (modified) { chain->bref.check.freemap.bigmask = -1; hmp->freemap_relaxed = 0; /* reset heuristic */ } hammer2_chain_unlock(chain); hammer2_chain_drop(chain); done: hammer2_chain_unlock(parent); hammer2_chain_drop(parent); if (bgsize) { hammer2_voldata_lock(hmp); hammer2_voldata_modify(hmp); hmp->voldata.allocator_free -= bgsize; hammer2_voldata_unlock(hmp); } } /* * Validate the freemap, in three stages. * * stage-1 ALLOCATED -> POSSIBLY FREE * POSSIBLY FREE -> POSSIBLY FREE (type corrected) * * This transitions bitmap entries from ALLOCATED to POSSIBLY FREE. * The POSSIBLY FREE state does not mean that a block is actually free * and may be transitioned back to ALLOCATED in stage-2. * * This is typically done during normal filesystem operations when * something is deleted or a block is replaced. * * This is done by bulkfree in-bulk after a memory-bounded meta-data * scan to try to determine what might be freeable. * * This can be done unconditionally through a freemap scan when the * intention is to brute-force recover the proper state of the freemap. * * stage-2 POSSIBLY FREE -> ALLOCATED (scan metadata topology) * * This is done by bulkfree during a meta-data scan to ensure that * all blocks still actually allocated by the filesystem are marked * as such. * * NOTE! Live filesystem transitions to POSSIBLY FREE can occur while * the bulkfree stage-2 and stage-3 is running. The live filesystem * will use the alternative POSSIBLY FREE type (2) to prevent * stage-3 from improperly transitioning unvetted possibly-free * blocks to FREE. * * stage-3 POSSIBLY FREE (type 1) -> FREE (scan freemap) * * This is done by bulkfree to finalize POSSIBLY FREE states. * */