/* mpfr_li2 -- Dilogarithm. Copyright 2007, 2008, 2009 Free Software Foundation, Inc. Contributed by the Arenaire and Cacao projects, INRIA. This file is part of the GNU MPFR Library. The GNU MPFR Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. The GNU MPFR Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the GNU MPFR Library; see the file COPYING.LIB. If not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */ #define MPFR_NEED_LONGLONG_H #include "mpfr-impl.h" /* assuming B[0]...B[2(n-1)] are computed, computes and stores B[2n]*(2n+1)! t/(exp(t)-1) = sum(B[j]*t^j/j!, j=0..infinity) thus t = (exp(t)-1) * sum(B[j]*t^j/j!, n=0..infinity). Taking the coefficient of degree n+1 > 1, we get: 0 = sum(1/(n+1-k)!*B[k]/k!, k=0..n) which gives: B[n] = -sum(binomial(n+1,k)*B[k], k=0..n-1)/(n+1). Let C[n] = B[n]*(n+1)!. Then C[n] = -sum(binomial(n+1,k)*C[k]*n!/(k+1)!, k=0..n-1), which proves that the C[n] are integers. */ static mpz_t * bernoulli (mpz_t * b, unsigned long n) { if (n == 0) { b = (mpz_t *) (*__gmp_allocate_func) (sizeof (mpz_t)); mpz_init_set_ui (b[0], 1); } else { mpz_t t; unsigned long k; b = (mpz_t *) (*__gmp_reallocate_func) (b, n * sizeof (mpz_t), (n + 1) * sizeof (mpz_t)); mpz_init (b[n]); /* b[n] = -sum(binomial(2n+1,2k)*C[k]*(2n)!/(2k+1)!, k=0..n-1) */ mpz_init_set_ui (t, 2 * n + 1); mpz_mul_ui (t, t, 2 * n - 1); mpz_mul_ui (t, t, 2 * n); mpz_mul_ui (t, t, n); mpz_div_ui (t, t, 3); /* exact: t=binomial(2*n+1,2*k)*(2*n)!/(2*k+1)! for k=n-1 */ mpz_mul (b[n], t, b[n - 1]); for (k = n - 1; k-- > 0;) { mpz_mul_ui (t, t, 2 * k + 1); mpz_mul_ui (t, t, 2 * k + 2); mpz_mul_ui (t, t, 2 * k + 2); mpz_mul_ui (t, t, 2 * k + 3); mpz_div_ui (t, t, 2 * (n - k) + 1); mpz_div_ui (t, t, 2 * (n - k)); mpz_addmul (b[n], t, b[k]); } /* take into account C[1] */ mpz_mul_ui (t, t, 2 * n + 1); mpz_div_2exp (t, t, 1); mpz_sub (b[n], b[n], t); mpz_neg (b[n], b[n]); mpz_clear (t); } return b; } /* Compute the alternating series s = S(z) = \sum_{k=0}^infty B_{2k} (z))^{2k+1} / (2k+1)! with 0 < z <= log(2) to the precision of s rounded in the direction rnd_mode. Return the maximum index of the truncature which is useful for determinating the relative error. */ static int li2_series (mpfr_t sum, mpfr_srcptr z, mpfr_rnd_t rnd_mode) { int i, Bm, Bmax; mpfr_t s, u, v, w; mpfr_prec_t sump, p; mp_exp_t se, err; mpz_t *B; MPFR_ZIV_DECL (loop); /* The series converges for |z| < 2 pi, but in mpfr_li2 the argument is reduced so that 0 < z <= log(2). Here is additionnal check that z is (nearly) correct */ MPFR_ASSERTD (MPFR_IS_STRICTPOS (z)); MPFR_ASSERTD (mpfr_cmp_d (z, 0.6953125) <= 0); sump = MPFR_PREC (sum); /* target precision */ p = sump + MPFR_INT_CEIL_LOG2 (sump) + 4; /* the working precision */ mpfr_init2 (s, p); mpfr_init2 (u, p); mpfr_init2 (v, p); mpfr_init2 (w, p); B = bernoulli ((mpz_t *) 0, 0); Bm = Bmax = 1; MPFR_ZIV_INIT (loop, p); for (;;) { mpfr_sqr (u, z, GMP_RNDU); mpfr_set (v, z, GMP_RNDU); mpfr_set (s, z, GMP_RNDU); se = MPFR_GET_EXP (s); err = 0; for (i = 1;; i++) { if (i >= Bmax) B = bernoulli (B, Bmax++); /* B_2i * (2i+1)!, exact */ mpfr_mul (v, u, v, GMP_RNDU); mpfr_div_ui (v, v, 2 * i, GMP_RNDU); mpfr_div_ui (v, v, 2 * i, GMP_RNDU); mpfr_div_ui (v, v, 2 * i + 1, GMP_RNDU); mpfr_div_ui (v, v, 2 * i + 1, GMP_RNDU); /* here, v_2i = v_{2i-2} / (2i * (2i+1))^2 */ mpfr_mul_z (w, v, B[i], GMP_RNDN); /* here, w_2i = v_2i * B_2i * (2i+1)! with error(w_2i) < 2^(5 * i + 8) ulp(w_2i) (see algorithms.tex) */ mpfr_add (s, s, w, GMP_RNDN); err = MAX (err + se, 5 * i + 8 + MPFR_GET_EXP (w)) - MPFR_GET_EXP (s); err = 2 + MAX (-1, err); se = MPFR_GET_EXP (s); if (MPFR_GET_EXP (w) <= se - (mp_exp_t) p) break; } /* the previous value of err is the rounding error, the truncation error is less than EXP(z) - 6 * i - 5 (see algorithms.tex) */ err = MAX (err, MPFR_GET_EXP (z) - 6 * i - 5) + 1; if (MPFR_CAN_ROUND (s, (mp_exp_t) p - err, sump, rnd_mode)) break; MPFR_ZIV_NEXT (loop, p); mpfr_set_prec (s, p); mpfr_set_prec (u, p); mpfr_set_prec (v, p); mpfr_set_prec (w, p); } MPFR_ZIV_FREE (loop); mpfr_set (sum, s, rnd_mode); Bm = Bmax; while (Bm--) mpz_clear (B[Bm]); (*__gmp_free_func) (B, Bmax * sizeof (mpz_t)); mpfr_clears (s, u, v, w, (mpfr_ptr) 0); /* Let K be the returned value. 1. As we compute an alternating series, the truncation error has the same sign as the next term w_{K+2} which is positive iff K%4 == 0. 2. Assume that error(z) <= (1+t) z', where z' is the actual value, then error(s) <= 2 * (K+1) * t (see algorithms.tex). */ return 2 * i; } /* try asymptotic expansion when x is large and positive: Li2(x) = -log(x)^2/2 + Pi^2/3 - 1/x + O(1/x^2). More precisely for x >= 2 we have for g(x) = -log(x)^2/2 + Pi^2/3: -2 <= x * (Li2(x) - g(x)) <= -1 thus |Li2(x) - g(x)| <= 2/x. Assumes x >= 38, which ensures log(x)^2/2 >= 2*Pi^2/3, and g(x) <= -3.3. Return 0 if asymptotic expansion failed (unable to round), otherwise returns correct ternary value. */ static int mpfr_li2_asympt_pos (mpfr_ptr y, mpfr_srcptr x, mpfr_rnd_t rnd_mode) { mpfr_t g, h; mp_prec_t w = MPFR_PREC (y) + 20; int inex = 0; MPFR_ASSERTN (mpfr_cmp_ui (x, 38) >= 0); mpfr_init2 (g, w); mpfr_init2 (h, w); mpfr_log (g, x, GMP_RNDN); /* rel. error <= |(1 + theta) - 1| */ mpfr_sqr (g, g, GMP_RNDN); /* rel. error <= |(1 + theta)^3 - 1| <= 2^(2-w) */ mpfr_div_2ui (g, g, 1, GMP_RNDN); /* rel. error <= 2^(2-w) */ mpfr_const_pi (h, GMP_RNDN); /* error <= 2^(1-w) */ mpfr_sqr (h, h, GMP_RNDN); /* rel. error <= 2^(2-w) */ mpfr_div_ui (h, h, 3, GMP_RNDN); /* rel. error <= |(1 + theta)^4 - 1| <= 5 * 2^(-w) */ /* since x is chosen such that log(x)^2/2 >= 2 * (Pi^2/3), we should have g >= 2*h, thus |g-h| >= |h|, and the relative error on g is at most multiplied by 2 in the difference, and that by h is unchanged. */ MPFR_ASSERTN (MPFR_EXP (g) > MPFR_EXP (h)); mpfr_sub (g, h, g, GMP_RNDN); /* err <= ulp(g)/2 + g*2^(3-w) + g*5*2^(-w) <= ulp(g) * (1/2 + 8 + 5) < 14 ulp(g). If in addition 2/x <= 2 ulp(g), i.e., 1/x <= ulp(g), then the total error is bounded by 16 ulp(g). */ if ((MPFR_EXP (x) >= (mp_exp_t) w - MPFR_EXP (g)) && MPFR_CAN_ROUND (g, w - 4, MPFR_PREC (y), rnd_mode)) inex = mpfr_set (y, g, rnd_mode); mpfr_clear (g); mpfr_clear (h); return inex; } /* try asymptotic expansion when x is large and negative: Li2(x) = -log(-x)^2/2 - Pi^2/6 - 1/x + O(1/x^2). More precisely for x <= -2 we have for g(x) = -log(-x)^2/2 - Pi^2/6: |Li2(x) - g(x)| <= 1/|x|. Assumes x <= -7, which ensures |log(-x)^2/2| >= Pi^2/6, and g(x) <= -3.5. Return 0 if asymptotic expansion failed (unable to round), otherwise returns correct ternary value. */ static int mpfr_li2_asympt_neg (mpfr_ptr y, mpfr_srcptr x, mpfr_rnd_t rnd_mode) { mpfr_t g, h; mp_prec_t w = MPFR_PREC (y) + 20; int inex = 0; MPFR_ASSERTN (mpfr_cmp_si (x, -7) <= 0); mpfr_init2 (g, w); mpfr_init2 (h, w); mpfr_neg (g, x, GMP_RNDN); mpfr_log (g, g, GMP_RNDN); /* rel. error <= |(1 + theta) - 1| */ mpfr_sqr (g, g, GMP_RNDN); /* rel. error <= |(1 + theta)^3 - 1| <= 2^(2-w) */ mpfr_div_2ui (g, g, 1, GMP_RNDN); /* rel. error <= 2^(2-w) */ mpfr_const_pi (h, GMP_RNDN); /* error <= 2^(1-w) */ mpfr_sqr (h, h, GMP_RNDN); /* rel. error <= 2^(2-w) */ mpfr_div_ui (h, h, 6, GMP_RNDN); /* rel. error <= |(1 + theta)^4 - 1| <= 5 * 2^(-w) */ MPFR_ASSERTN (MPFR_EXP (g) >= MPFR_EXP (h)); mpfr_add (g, g, h, GMP_RNDN); /* err <= ulp(g)/2 + g*2^(2-w) + g*5*2^(-w) <= ulp(g) * (1/2 + 4 + 5) < 10 ulp(g). If in addition |1/x| <= 4 ulp(g), then the total error is bounded by 16 ulp(g). */ if ((MPFR_EXP (x) >= (mp_exp_t) (w - 2) - MPFR_EXP (g)) && MPFR_CAN_ROUND (g, w - 4, MPFR_PREC (y), rnd_mode)) inex = mpfr_neg (y, g, rnd_mode); mpfr_clear (g); mpfr_clear (h); return inex; } /* Compute the real part of the dilogarithm defined by Li2(x) = -\Int_{t=0}^x log(1-t)/t dt */ int mpfr_li2 (mpfr_ptr y, mpfr_srcptr x, mpfr_rnd_t rnd_mode) { int inexact; mp_exp_t err; mpfr_prec_t yp, m; MPFR_ZIV_DECL (loop); MPFR_SAVE_EXPO_DECL (expo); MPFR_LOG_FUNC (("x[%#R]=%R rnd=%d", x, x, rnd_mode), ("y[%#R]=%R", y)); if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (x))) { if (MPFR_IS_NAN (x)) { MPFR_SET_NAN (y); MPFR_RET_NAN; } else if (MPFR_IS_INF (x)) { MPFR_SET_NEG (y); MPFR_SET_INF (y); MPFR_RET (0); } else /* x is zero */ { MPFR_ASSERTD (MPFR_IS_ZERO (x)); MPFR_SET_SAME_SIGN (y, x); MPFR_SET_ZERO (y); MPFR_RET (0); } } /* Li2(x) = x + x^2/4 + x^3/9 + ..., more precisely for 0 < x <= 1/2 we have |Li2(x) - x| < x^2/2 <= 2^(2EXP(x)-1) and for -1/2 <= x < 0 we have |Li2(x) - x| < x^2/4 <= 2^(2EXP(x)-2) */ if (MPFR_IS_POS (x)) MPFR_FAST_COMPUTE_IF_SMALL_INPUT (y, x, -MPFR_GET_EXP (x), 1, 1, rnd_mode, {}); else MPFR_FAST_COMPUTE_IF_SMALL_INPUT (y, x, -MPFR_GET_EXP (x), 2, 0, rnd_mode, {}); MPFR_SAVE_EXPO_MARK (expo); yp = MPFR_PREC (y); m = yp + MPFR_INT_CEIL_LOG2 (yp) + 13; if (MPFR_LIKELY ((mpfr_cmp_ui (x, 0) > 0) && (mpfr_cmp_d (x, 0.5) <= 0))) /* 0 < x <= 1/2: Li2(x) = S(-log(1-x))-log^2(1-x)/4 */ { mpfr_t s, u; mp_exp_t expo_l; int k; mpfr_init2 (u, m); mpfr_init2 (s, m); MPFR_ZIV_INIT (loop, m); for (;;) { mpfr_ui_sub (u, 1, x, GMP_RNDN); mpfr_log (u, u, GMP_RNDU); if (MPFR_IS_ZERO(u)) goto next_m; mpfr_neg (u, u, GMP_RNDN); /* u = -log(1-x) */ expo_l = MPFR_GET_EXP (u); k = li2_series (s, u, GMP_RNDU); err = 1 + MPFR_INT_CEIL_LOG2 (k + 1); mpfr_sqr (u, u, GMP_RNDU); mpfr_div_2ui (u, u, 2, GMP_RNDU); /* u = log^2(1-x) / 4 */ mpfr_sub (s, s, u, GMP_RNDN); /* error(s) <= (0.5 + 2^(d-EXP(s)) + 2^(3 + MAX(1, - expo_l) - EXP(s))) ulp(s) */ err = MAX (err, MAX (1, - expo_l) - 1) - MPFR_GET_EXP (s); err = 2 + MAX (-1, err); if (MPFR_CAN_ROUND (s, (mp_exp_t) m - err, yp, rnd_mode)) break; next_m: MPFR_ZIV_NEXT (loop, m); mpfr_set_prec (u, m); mpfr_set_prec (s, m); } MPFR_ZIV_FREE (loop); inexact = mpfr_set (y, s, rnd_mode); mpfr_clear (u); mpfr_clear (s); MPFR_SAVE_EXPO_FREE (expo); return mpfr_check_range (y, inexact, rnd_mode); } else if (!mpfr_cmp_ui (x, 1)) /* Li2(1)= pi^2 / 6 */ { mpfr_t u; mpfr_init2 (u, m); MPFR_ZIV_INIT (loop, m); for (;;) { mpfr_const_pi (u, GMP_RNDU); mpfr_sqr (u, u, GMP_RNDN); mpfr_div_ui (u, u, 6, GMP_RNDN); err = m - 4; /* error(u) <= 19/2 ulp(u) */ if (MPFR_CAN_ROUND (u, err, yp, rnd_mode)) break; MPFR_ZIV_NEXT (loop, m); mpfr_set_prec (u, m); } MPFR_ZIV_FREE (loop); inexact = mpfr_set (y, u, rnd_mode); mpfr_clear (u); MPFR_SAVE_EXPO_FREE (expo); return mpfr_check_range (y, inexact, rnd_mode); } else if (mpfr_cmp_ui (x, 2) >= 0) /* x >= 2: Li2(x) = -S(-log(1-1/x))-log^2(x)/2+log^2(1-1/x)/4+pi^2/3 */ { int k; mp_exp_t expo_l; mpfr_t s, u, xx; if (mpfr_cmp_ui (x, 38) >= 0) { inexact = mpfr_li2_asympt_pos (y, x, rnd_mode); if (inexact != 0) goto end_of_case_gt2; } mpfr_init2 (u, m); mpfr_init2 (s, m); mpfr_init2 (xx, m); MPFR_ZIV_INIT (loop, m); for (;;) { mpfr_ui_div (xx, 1, x, GMP_RNDN); mpfr_neg (xx, xx, GMP_RNDN); mpfr_log1p (u, xx, GMP_RNDD); mpfr_neg (u, u, GMP_RNDU); /* u = -log(1-1/x) */ expo_l = MPFR_GET_EXP (u); k = li2_series (s, u, GMP_RNDN); mpfr_neg (s, s, GMP_RNDN); err = MPFR_INT_CEIL_LOG2 (k + 1) + 1; /* error(s) <= 2^err ulp(s) */ mpfr_sqr (u, u, GMP_RNDN); mpfr_div_2ui (u, u, 2, GMP_RNDN); /* u= log^2(1-1/x)/4 */ mpfr_add (s, s, u, GMP_RNDN); err = MAX (err, 3 + MAX (1, -expo_l) + MPFR_GET_EXP (u)) - MPFR_GET_EXP (s); err = 2 + MAX (-1, err); /* error(s) <= 2^err ulp(s) */ err += MPFR_GET_EXP (s); mpfr_log (u, x, GMP_RNDU); mpfr_sqr (u, u, GMP_RNDN); mpfr_div_2ui (u, u, 1, GMP_RNDN); /* u = log^2(x)/2 */ mpfr_sub (s, s, u, GMP_RNDN); err = MAX (err, 3 + MPFR_GET_EXP (u)) - MPFR_GET_EXP (s); err = 2 + MAX (-1, err); /* error(s) <= 2^err ulp(s) */ err += MPFR_GET_EXP (s); mpfr_const_pi (u, GMP_RNDU); mpfr_sqr (u, u, GMP_RNDN); mpfr_div_ui (u, u, 3, GMP_RNDN); /* u = pi^2/3 */ mpfr_add (s, s, u, GMP_RNDN); err = MAX (err, 2) - MPFR_GET_EXP (s); err = 2 + MAX (-1, err); /* error(s) <= 2^err ulp(s) */ if (MPFR_CAN_ROUND (s, (mp_exp_t) m - err, yp, rnd_mode)) break; MPFR_ZIV_NEXT (loop, m); mpfr_set_prec (u, m); mpfr_set_prec (s, m); mpfr_set_prec (xx, m); } MPFR_ZIV_FREE (loop); inexact = mpfr_set (y, s, rnd_mode); mpfr_clears (s, u, xx, (mpfr_ptr) 0); end_of_case_gt2: MPFR_SAVE_EXPO_FREE (expo); return mpfr_check_range (y, inexact, rnd_mode); } else if (mpfr_cmp_ui (x, 1) > 0) /* 2 > x > 1: Li2(x) = S(log(x))+log^2(x)/4-log(x)log(x-1)+pi^2/6 */ { int k; mp_exp_t e1, e2; mpfr_t s, u, v, xx; mpfr_init2 (s, m); mpfr_init2 (u, m); mpfr_init2 (v, m); mpfr_init2 (xx, m); MPFR_ZIV_INIT (loop, m); for (;;) { mpfr_log (v, x, GMP_RNDU); k = li2_series (s, v, GMP_RNDN); e1 = MPFR_GET_EXP (s); mpfr_sqr (u, v, GMP_RNDN); mpfr_div_2ui (u, u, 2, GMP_RNDN); /* u = log^2(x)/4 */ mpfr_add (s, s, u, GMP_RNDN); mpfr_sub_ui (xx, x, 1, GMP_RNDN); mpfr_log (u, xx, GMP_RNDU); e2 = MPFR_GET_EXP (u); mpfr_mul (u, v, u, GMP_RNDN); /* u = log(x) * log(x-1) */ mpfr_sub (s, s, u, GMP_RNDN); mpfr_const_pi (u, GMP_RNDU); mpfr_sqr (u, u, GMP_RNDN); mpfr_div_ui (u, u, 6, GMP_RNDN); /* u = pi^2/6 */ mpfr_add (s, s, u, GMP_RNDN); /* error(s) <= (31 + (k+1) * 2^(1-e1) + 2^(1-e2)) ulp(s) see algorithms.tex */ err = MAX (MPFR_INT_CEIL_LOG2 (k + 1) + 1 - e1, 1 - e2); err = 2 + MAX (5, err); if (MPFR_CAN_ROUND (s, (mp_exp_t) m - err, yp, rnd_mode)) break; MPFR_ZIV_NEXT (loop, m); mpfr_set_prec (s, m); mpfr_set_prec (u, m); mpfr_set_prec (v, m); mpfr_set_prec (xx, m); } MPFR_ZIV_FREE (loop); inexact = mpfr_set (y, s, rnd_mode); mpfr_clears (s, u, v, xx, (mpfr_ptr) 0); MPFR_SAVE_EXPO_FREE (expo); return mpfr_check_range (y, inexact, rnd_mode); } else if (mpfr_cmp_ui_2exp (x, 1, -1) > 0) /* 1/2 < x < 1 */ /* 1 > x > 1/2: Li2(x) = -S(-log(x))+log^2(x)/4-log(x)log(1-x)+pi^2/6 */ { int k; mpfr_t s, u, v, xx; mpfr_init2 (s, m); mpfr_init2 (u, m); mpfr_init2 (v, m); mpfr_init2 (xx, m); MPFR_ZIV_INIT (loop, m); for (;;) { mpfr_log (u, x, GMP_RNDD); mpfr_neg (u, u, GMP_RNDN); k = li2_series (s, u, GMP_RNDN); mpfr_neg (s, s, GMP_RNDN); err = 1 + MPFR_INT_CEIL_LOG2 (k + 1) - MPFR_GET_EXP (s); mpfr_ui_sub (xx, 1, x, GMP_RNDN); mpfr_log (v, xx, GMP_RNDU); mpfr_mul (v, v, u, GMP_RNDN); /* v = - log(x) * log(1-x) */ mpfr_add (s, s, v, GMP_RNDN); err = MAX (err, 1 - MPFR_GET_EXP (v)); err = 2 + MAX (3, err) - MPFR_GET_EXP (s); mpfr_sqr (u, u, GMP_RNDN); mpfr_div_2ui (u, u, 2, GMP_RNDN); /* u = log^2(x)/4 */ mpfr_add (s, s, u, GMP_RNDN); err = MAX (err, 2 + MPFR_GET_EXP (u)) - MPFR_GET_EXP (s); err = 2 + MAX (-1, err) + MPFR_GET_EXP (s); mpfr_const_pi (u, GMP_RNDU); mpfr_sqr (u, u, GMP_RNDN); mpfr_div_ui (u, u, 6, GMP_RNDN); /* u = pi^2/6 */ mpfr_add (s, s, u, GMP_RNDN); err = MAX (err, 3) - MPFR_GET_EXP (s); err = 2 + MAX (-1, err); if (MPFR_CAN_ROUND (s, (mp_exp_t) m - err, yp, rnd_mode)) break; MPFR_ZIV_NEXT (loop, m); mpfr_set_prec (s, m); mpfr_set_prec (u, m); mpfr_set_prec (v, m); mpfr_set_prec (xx, m); } MPFR_ZIV_FREE (loop); inexact = mpfr_set (y, s, rnd_mode); mpfr_clears (s, u, v, xx, (mpfr_ptr) 0); MPFR_SAVE_EXPO_FREE (expo); return mpfr_check_range (y, inexact, rnd_mode); } else if (mpfr_cmp_si (x, -1) >= 0) /* 0 > x >= -1: Li2(x) = -S(log(1-x))-log^2(1-x)/4 */ { int k; mp_exp_t expo_l; mpfr_t s, u, xx; mpfr_init2 (s, m); mpfr_init2 (u, m); mpfr_init2 (xx, m); MPFR_ZIV_INIT (loop, m); for (;;) { mpfr_neg (xx, x, GMP_RNDN); mpfr_log1p (u, xx, GMP_RNDN); k = li2_series (s, u, GMP_RNDN); mpfr_neg (s, s, GMP_RNDN); expo_l = MPFR_GET_EXP (u); err = 1 + MPFR_INT_CEIL_LOG2 (k + 1) - MPFR_GET_EXP (s); mpfr_sqr (u, u, GMP_RNDN); mpfr_div_2ui (u, u, 2, GMP_RNDN); /* u = log^2(1-x)/4 */ mpfr_sub (s, s, u, GMP_RNDN); err = MAX (err, - expo_l); err = 2 + MAX (err, 3); if (MPFR_CAN_ROUND (s, (mp_exp_t) m - err, yp, rnd_mode)) break; MPFR_ZIV_NEXT (loop, m); mpfr_set_prec (s, m); mpfr_set_prec (u, m); mpfr_set_prec (xx, m); } MPFR_ZIV_FREE (loop); inexact = mpfr_set (y, s, rnd_mode); mpfr_clears (s, u, xx, (mpfr_ptr) 0); MPFR_SAVE_EXPO_FREE (expo); return mpfr_check_range (y, inexact, rnd_mode); } else /* x < -1: Li2(x) = S(log(1-1/x))-log^2(-x)/4-log(1-x)log(-x)/2+log^2(1-x)/4-pi^2/6 */ { int k; mpfr_t s, u, v, w, xx; if (mpfr_cmp_si (x, -7) <= 0) { inexact = mpfr_li2_asympt_neg (y, x, rnd_mode); if (inexact != 0) goto end_of_case_ltm1; } mpfr_init2 (s, m); mpfr_init2 (u, m); mpfr_init2 (v, m); mpfr_init2 (w, m); mpfr_init2 (xx, m); MPFR_ZIV_INIT (loop, m); for (;;) { mpfr_ui_div (xx, 1, x, GMP_RNDN); mpfr_neg (xx, xx, GMP_RNDN); mpfr_log1p (u, xx, GMP_RNDN); k = li2_series (s, u, GMP_RNDN); mpfr_ui_sub (xx, 1, x, GMP_RNDN); mpfr_log (u, xx, GMP_RNDU); mpfr_neg (xx, x, GMP_RNDN); mpfr_log (v, xx, GMP_RNDU); mpfr_mul (w, v, u, GMP_RNDN); mpfr_div_2ui (w, w, 1, GMP_RNDN); /* w = log(-x) * log(1-x) / 2 */ mpfr_sub (s, s, w, GMP_RNDN); err = 1 + MAX (3, MPFR_INT_CEIL_LOG2 (k+1) + 1 - MPFR_GET_EXP (s)) + MPFR_GET_EXP (s); mpfr_sqr (w, v, GMP_RNDN); mpfr_div_2ui (w, w, 2, GMP_RNDN); /* w = log^2(-x) / 4 */ mpfr_sub (s, s, w, GMP_RNDN); err = MAX (err, 3 + MPFR_GET_EXP(w)) - MPFR_GET_EXP (s); err = 2 + MAX (-1, err) + MPFR_GET_EXP (s); mpfr_sqr (w, u, GMP_RNDN); mpfr_div_2ui (w, w, 2, GMP_RNDN); /* w = log^2(1-x) / 4 */ mpfr_add (s, s, w, GMP_RNDN); err = MAX (err, 3 + MPFR_GET_EXP (w)) - MPFR_GET_EXP (s); err = 2 + MAX (-1, err) + MPFR_GET_EXP (s); mpfr_const_pi (w, GMP_RNDU); mpfr_sqr (w, w, GMP_RNDN); mpfr_div_ui (w, w, 6, GMP_RNDN); /* w = pi^2 / 6 */ mpfr_sub (s, s, w, GMP_RNDN); err = MAX (err, 3) - MPFR_GET_EXP (s); err = 2 + MAX (-1, err) + MPFR_GET_EXP (s); if (MPFR_CAN_ROUND (s, (mp_exp_t) m - err, yp, rnd_mode)) break; MPFR_ZIV_NEXT (loop, m); mpfr_set_prec (s, m); mpfr_set_prec (u, m); mpfr_set_prec (v, m); mpfr_set_prec (w, m); mpfr_set_prec (xx, m); } MPFR_ZIV_FREE (loop); inexact = mpfr_set (y, s, rnd_mode); mpfr_clears (s, u, v, w, xx, (mpfr_ptr) 0); end_of_case_ltm1: MPFR_SAVE_EXPO_FREE (expo); return mpfr_check_range (y, inexact, rnd_mode); } MPFR_ASSERTN (0); /* should never reach this point */ }