XZ Utils Release Notes ====================== 5.2.4 (2018-04-29) * liblzma: - Allow 0 as memory usage limit instead of returning LZMA_PROG_ERROR. Now 0 is treated as if 1 byte was specified, which effectively is the same as 0. - Use "noexcept" keyword instead of "throw()" in the public headers when a C++11 (or newer standard) compiler is used. - Added a portability fix for recent Intel C Compilers. - Microsoft Visual Studio build files have been moved under windows/vs2013 and windows/vs2017. * xz: - Fix "xz --list --robot missing_or_bad_file.xz" which would try to print an unitialized string and thus produce garbage output. Since the exit status is non-zero, most uses of such a command won't try to interpret the garbage output. - "xz --list foo.xz" could print "Internal error (bug)" in a corner case where a specific memory usage limit had been set. 5.2.3 (2016-12-30) * xz: - Always close a file before trying to delete it to avoid problems on some operating system and file system combinations. - Fixed copying of file timestamps on Windows. - Added experimental (disabled by default) sandbox support using Capsicum (FreeBSD >= 10). See --enable-sandbox in INSTALL. * C99/C11 conformance fixes to liblzma. The issues affected at least some builds using link-time optimizations. * Fixed bugs in the rarely-used function lzma_index_dup(). * Use of external SHA-256 code is now disabled by default. It can still be enabled by passing --enable-external-sha256 to configure. The reasons to disable it by default (see INSTALL for more details): - Some OS-specific SHA-256 implementations conflict with OpenSSL and cause problems in programs that link against both liblzma and libcrypto. At least FreeBSD 10 and MINIX 3.3.0 are affected. - The internal SHA-256 is faster than the SHA-256 code in some operating systems. * Changed CPU core count detection to use sched_getaffinity() on GNU/Linux and GNU/kFreeBSD. * Fixes to the build-system and xz to make xz buildable even when encoders, decoders, or threading have been disabled from libilzma using configure options. These fixes added two new #defines to config.h: HAVE_ENCODERS and HAVE_DECODERS. 5.2.2 (2015-09-29) * Fixed bugs in QNX-specific code. * Omitted the use of pipe2() even if it is available to avoid portability issues with some old Linux and glibc combinations. * Updated German translation. * Added project files to build static and shared liblzma (not the whole XZ Utils) with Visual Studio 2013 update 2 or later. * Documented that threaded decompression hasn't been implemented yet. A 5.2.0 NEWS entry describing multi-threading support had incorrectly said "decompression" when it should have said "compression". 5.2.1 (2015-02-26) * Fixed a compression-ratio regression in fast mode of LZMA1 and LZMA2. The bug is present in 5.1.4beta and 5.2.0 releases. * Fixed a portability problem in xz that affected at least OpenBSD. * Fixed xzdiff to be compatible with FreeBSD's mktemp which differs from most other mktemp implementations. * Changed CPU core count detection to use cpuset_getaffinity() on FreeBSD. 5.2.0 (2014-12-21) Since 5.1.4beta: * All fixes from 5.0.8 * liblzma: Fixed lzma_stream_encoder_mt_memusage() when a preset was used. * xzdiff: If mktemp isn't installed, mkdir will be used as a fallback to create a temporary directory. Installing mktemp is still recommended. * Updated French, German, Italian, Polish, and Vietnamese translations. Summary of fixes and new features added in the 5.1.x development releases: * liblzma: - Added support for multi-threaded compression. See the lzma_mt structure, lzma_stream_encoder_mt(), and lzma_stream_encoder_mt_memusage() in , lzma_get_progress() in , and lzma_cputhreads() in for details. - Made the uses of lzma_allocator const correct. - Added lzma_block_uncomp_encode() to create uncompressed .xz Blocks using LZMA2 uncompressed chunks. - Added support for LZMA_IGNORE_CHECK. - A few speed optimizations were made. - Added support for symbol versioning. It is enabled by default on GNU/Linux, other GNU-based systems, and FreeBSD. - liblzma (not the whole XZ Utils) should now be buildable with MSVC 2013 update 2 or later using windows/config.h. * xz: - Fixed a race condition in the signal handling. It was possible that e.g. the first SIGINT didn't make xz exit if reading or writing blocked and one had bad luck. The fix is non-trivial, so as of writing it is unknown if it will be backported to the v5.0 branch. - Multi-threaded compression can be enabled with the --threads (-T) option. [Fixed: This originally said "decompression".] - New command line options in xz: --single-stream, --block-size=SIZE, --block-list=SIZES, --flush-timeout=TIMEOUT, and --ignore-check. - xz -lvv now shows the minimum xz version that is required to decompress the file. Currently it is 5.0.0 for all supported .xz files except files with empty LZMA2 streams require 5.0.2. * xzdiff and xzgrep now support .lzo files if lzop is installed. The .tzo suffix is also recognized as a shorthand for .tar.lzo. 5.1.4beta (2014-09-14) * All fixes from 5.0.6 * liblzma: Fixed the use of presets in threaded encoder initialization. * xz --block-list and --block-size can now be used together in single-threaded mode. Previously the combination only worked in multi-threaded mode. * Added support for LZMA_IGNORE_CHECK to liblzma and made it available in xz as --ignore-check. * liblzma speed optimizations: - Initialization of a new LZMA1 or LZMA2 encoder has been optimized. (The speed of reinitializing an already-allocated encoder isn't affected.) This helps when compressing many small buffers with lzma_stream_buffer_encode() and other similar situations where an already-allocated encoder state isn't reused. This speed-up is visible in xz too if one compresses many small files one at a time instead running xz once and giving all files as command-line arguments. - Buffer comparisons are now much faster when unaligned access is allowed (configured with --enable-unaligned-access). This speeds up encoding significantly. There is arch-specific code for 32-bit and 64-bit x86 (32-bit needs SSE2 for the best results and there's no run-time CPU detection for now). For other archs there is only generic code which probably isn't as optimal as arch-specific solutions could be. - A few speed optimizations were made to the SHA-256 code. (Note that the builtin SHA-256 code isn't used on all operating systems.) * liblzma can now be built with MSVC 2013 update 2 or later using windows/config.h. * Vietnamese translation was added. 5.1.3alpha (2013-10-26) * All fixes from 5.0.5 * liblzma: - Fixed a deadlock in the threaded encoder. - Made the uses of lzma_allocator const correct. - Added lzma_block_uncomp_encode() to create uncompressed .xz Blocks using LZMA2 uncompressed chunks. - Added support for native threads on Windows and the ability to detect the number of CPU cores. * xz: - Fixed a race condition in the signal handling. It was possible that e.g. the first SIGINT didn't make xz exit if reading or writing blocked and one had bad luck. The fix is non-trivial, so as of writing it is unknown if it will be backported to the v5.0 branch. - Made the progress indicator work correctly in threaded mode. - Threaded encoder now works together with --block-list=SIZES. - Added preliminary support for --flush-timeout=TIMEOUT. It can be useful for (somewhat) real-time streaming. For now the decompression side has to be done with something else than the xz tool due to how xz does buffering, but this should be fixed. 5.1.2alpha (2012-07-04) * All fixes from 5.0.3 and 5.0.4 * liblzma: - Fixed a deadlock and an invalid free() in the threaded encoder. - Added support for symbol versioning. It is enabled by default on GNU/Linux, other GNU-based systems, and FreeBSD. - Use SHA-256 implementation from the operating system if one is available in libc, libmd, or libutil. liblzma won't use e.g. OpenSSL or libgcrypt to avoid introducing new dependencies. - Fixed liblzma.pc for static linking. - Fixed a few portability bugs. * xz --decompress --single-stream now fixes the input position after successful decompression. Now the following works: echo foo | xz > foo.xz echo bar | xz >> foo.xz ( xz -dc --single-stream ; xz -dc --single-stream ) < foo.xz Note that it doesn't work if the input is not seekable or if there is Stream Padding between the concatenated .xz Streams. * xz -lvv now shows the minimum xz version that is required to decompress the file. Currently it is 5.0.0 for all supported .xz files except files with empty LZMA2 streams require 5.0.2. * Added an *incomplete* implementation of --block-list=SIZES to xz. It only works correctly in single-threaded mode and when --block-size isn't used at the same time. --block-list allows specifying the sizes of Blocks which can be useful e.g. when creating files for random-access reading. 5.1.1alpha (2011-04-12) * All fixes from 5.0.2 * liblzma fixes that will also be included in 5.0.3: - A memory leak was fixed. - lzma_stream_buffer_encode() no longer creates an empty .xz Block if encoding an empty buffer. Such an empty Block with LZMA2 data would trigger a bug in 5.0.1 and older (see the first bullet point in 5.0.2 notes). When releasing 5.0.2, I thought that no encoder creates this kind of files but I was wrong. - Validate function arguments better in a few functions. Most importantly, specifying an unsupported integrity check to lzma_stream_buffer_encode() no longer creates a corrupt .xz file. Probably no application tries to do that, so this shouldn't be a big problem in practice. - Document that lzma_block_buffer_encode(), lzma_easy_buffer_encode(), lzma_stream_encoder(), and lzma_stream_buffer_encode() may return LZMA_UNSUPPORTED_CHECK. - The return values of the _memusage() functions are now documented better. * Support for multithreaded compression was added using the simplest method, which splits the input data into blocks and compresses them independently. Other methods will be added in the future. The current method has room for improvement, e.g. it is possible to reduce the memory usage. * Added the options --single-stream and --block-size=SIZE to xz. * xzdiff and xzgrep now support .lzo files if lzop is installed. The .tzo suffix is also recognized as a shorthand for .tar.lzo. * Support for short 8.3 filenames under DOS was added to xz. It is experimental and may change before it gets into a stable release. 5.0.8 (2014-12-21) * Fixed an old bug in xzgrep that affected OpenBSD and probably a few other operating systems too. * Updated French and German translations. * Added support for detecting the amount of RAM on AmigaOS/AROS. * Minor build system updates. 5.0.7 (2014-09-20) * Fix regressions introduced in 5.0.6: - Fix building with non-GNU make. - Fix invalid Libs.private value in liblzma.pc which broke static linking against liblzma if the linker flags were taken from pkg-config. 5.0.6 (2014-09-14) * xzgrep now exits with status 0 if at least one file matched. * A few minor portability and build system fixes 5.0.5 (2013-06-30) * lzmadec and liblzma's lzma_alone_decoder(): Support decompressing .lzma files that have less common settings in the headers (dictionary size other than 2^n or 2^n + 2^(n-1), or uncompressed size greater than 256 GiB). The limitations existed to avoid false positives when detecting .lzma files. The lc + lp <= 4 limitation still remains since liblzma's LZMA decoder has that limitation. NOTE: xz's .lzma support or liblzma's lzma_auto_decoder() are NOT affected by this change. They still consider uncommon .lzma headers as not being in the .lzma format. Changing this would give way too many false positives. * xz: - Interaction of preset and custom filter chain options was made less illogical. This affects only certain less typical uses cases so few people are expected to notice this change. Now when a custom filter chain option (e.g. --lzma2) is specified, all preset options (-0 ... -9, -e) earlier are on the command line are completely forgotten. Similarly, when a preset option is specified, all custom filter chain options earlier on the command line are completely forgotten. Example 1: "xz -9 --lzma2=preset=5 -e" is equivalent to "xz -e" which is equivalent to "xz -6e". Earlier -e didn't put xz back into preset mode and thus the example command was equivalent to "xz --lzma2=preset=5". Example 2: "xz -9e --lzma2=preset=5 -7" is equivalent to "xz -7". Earlier a custom filter chain option didn't make xz forget the -e option so the example was equivalent to "xz -7e". - Fixes and improvements to error handling. - Various fixes to the man page. * xzless: Fixed to work with "less" versions 448 and later. * xzgrep: Made -h an alias for --no-filename. * Include the previously missing debug/translation.bash which can be useful for translators. * Include a build script for Mac OS X. This has been in the Git repository since 2010 but due to a mistake in Makefile.am the script hasn't been included in a release tarball before. 5.0.4 (2012-06-22) * liblzma: - Fix lzma_index_init(). It could crash if memory allocation failed. - Fix the possibility of an incorrect LZMA_BUF_ERROR when a BCJ filter is used and the application only provides exactly as much output space as is the uncompressed size of the file. - Fix a bug in doc/examples_old/xz_pipe_decompress.c. It didn't check if the last call to lzma_code() really returned LZMA_STREAM_END, which made the program think that truncated files are valid. - New example programs in doc/examples (old programs are now in doc/examples_old). These have more comments and more detailed error handling. * Fix "xz -lvv foo.xz". It could crash on some corrupted files. * Fix output of "xz --robot -lv" and "xz --robot -lvv" which incorrectly printed the filename also in the "foo (x/x)" format. * Fix exit status of "xzdiff foo.xz bar.xz". * Fix exit status of "xzgrep foo binary_file". * Fix portability to EBCDIC systems. * Fix a configure issue on AIX with the XL C compiler. See INSTALL for details. * Update French, German, Italian, and Polish translations. 5.0.3 (2011-05-21) * liblzma fixes: - A memory leak was fixed. - lzma_stream_buffer_encode() no longer creates an empty .xz Block if encoding an empty buffer. Such an empty Block with LZMA2 data would trigger a bug in 5.0.1 and older (see the first bullet point in 5.0.2 notes). When releasing 5.0.2, I thought that no encoder creates this kind of files but I was wrong. - Validate function arguments better in a few functions. Most importantly, specifying an unsupported integrity check to lzma_stream_buffer_encode() no longer creates a corrupt .xz file. Probably no application tries to do that, so this shouldn't be a big problem in practice. - Document that lzma_block_buffer_encode(), lzma_easy_buffer_encode(), lzma_stream_encoder(), and lzma_stream_buffer_encode() may return LZMA_UNSUPPORTED_CHECK. - The return values of the _memusage() functions are now documented better. * Fix command name detection in xzgrep. xzegrep and xzfgrep now correctly use egrep and fgrep instead of grep. * French translation was added. 5.0.2 (2011-04-01) * LZMA2 decompressor now correctly accepts LZMA2 streams with no uncompressed data. Previously it considered them corrupt. The bug can affect applications that use raw LZMA2 streams. It is very unlikely to affect .xz files because no compressor creates .xz files with empty LZMA2 streams. (Empty .xz files are a different thing than empty LZMA2 streams.) * "xz --suffix=.foo filename.foo" now refuses to compress the file due to it already having the suffix .foo. It was already documented on the man page, but the code lacked the test. * "xzgrep -l foo bar.xz" works now. * Polish translation was added. 5.0.1 (2011-01-29) * xz --force now (de)compresses files that have setuid, setgid, or sticky bit set and files that have multiple hard links. The man page had it documented this way already, but the code had a bug. * gzip and bzip2 support in xzdiff was fixed. * Portability fixes * Minor fix to Czech translation 5.0.0 (2010-10-23) Only the most important changes compared to 4.999.9beta are listed here. One change is especially important: * The memory usage limit is now disabled by default. Some scripts written before this change may have used --memory=max on xz command line or in XZ_OPT. THESE USES OF --memory=max SHOULD BE REMOVED NOW, because they interfere with user's ability to set the memory usage limit himself. If user-specified limit causes problems to your script, blame the user. Other significant changes: * Added support for XZ_DEFAULTS environment variable. This variable allows users to set default options for xz, e.g. default memory usage limit or default compression level. Scripts that use xz must never set or unset XZ_DEFAULTS. Scripts should use XZ_OPT instead if they need a way to pass options to xz via an environment variable. * The compression settings associated with the preset levels -0 ... -9 have been changed. --extreme was changed a little too. It is now less likely to make compression worse, but with some files the new --extreme may compress slightly worse than the old --extreme. * If a preset level (-0 ... -9) is specified after a custom filter chain options have been used (e.g. --lzma2), the custom filter chain will be forgotten. Earlier the preset options were completely ignored after custom filter chain options had been seen. * xz will create sparse files when decompressing if the uncompressed data contains long sequences of binary zeros. This is done even when writing to standard output that is connected to a regular file and certain additional conditions are met to make it safe. * Support for "xz --list" was added. Combine with --verbose or --verbose --verbose (-vv) for detailed output. * I had hoped that liblzma API would have been stable after 4.999.9beta, but there have been a couple of changes in the advanced features, which don't affect most applications: - Index handling code was revised. If you were using the old API, you will get a compiler error (so it's easy to notice). - A subtle but important change was made to the Block handling API. lzma_block.version has to be initialized even for lzma_block_header_decode(). Code that doesn't do it will work for now, but might break in the future, which makes this API change easy to miss. * The major soname has been bumped to 5.0.0. liblzma API and ABI are now stable, so the need to recompile programs linking against liblzma shouldn't arise soon.