/*- * Copyright (c) 1998,1999,2000,2001,2002 Søren Schmidt * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer, * without modification, immediately at the beginning of the file. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * $FreeBSD: src/sys/dev/ata/atapi-cd.c,v 1.48.2.20 2002/11/25 05:30:31 njl Exp $ * $DragonFly: src/sys/dev/disk/ata/atapi-cd.c,v 1.18 2004/07/06 19:06:16 dillon Exp $ */ #include "opt_ata.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "ata-all.h" #include "atapi-all.h" #include "atapi-cd.h" /* device structures */ static d_open_t acdopen; static d_close_t acdclose; static d_ioctl_t acdioctl; static d_strategy_t acdstrategy; static struct cdevsw acd_cdevsw = { /* name */ "acd", /* maj */ 117, /* flags */ D_DISK | D_TRACKCLOSE, /* port */ NULL, /* clone */ NULL, /* open */ acdopen, /* close */ acdclose, /* read */ physread, /* write */ physwrite, /* ioctl */ acdioctl, /* poll */ nopoll, /* mmap */ nommap, /* strategy */ acdstrategy, /* dump */ nodump, /* psize */ nopsize }; /* prototypes */ static struct acd_softc *acd_init_lun(struct ata_device *); static void acd_make_dev(struct acd_softc *); static void acd_set_ioparm(struct acd_softc *); static void acd_describe(struct acd_softc *); static void lba2msf(u_int32_t, u_int8_t *, u_int8_t *, u_int8_t *); static u_int32_t msf2lba(u_int8_t, u_int8_t, u_int8_t); static int acd_done(struct atapi_request *); static void acd_read_toc(struct acd_softc *); static int acd_play(struct acd_softc *, int, int); static int acd_setchan(struct acd_softc *, u_int8_t, u_int8_t, u_int8_t, u_int8_t); static void acd_select_slot(struct acd_softc *); static int acd_init_writer(struct acd_softc *, int); static int acd_fixate(struct acd_softc *, int); static int acd_init_track(struct acd_softc *, struct cdr_track *); static int acd_flush(struct acd_softc *); static int acd_read_track_info(struct acd_softc *, int32_t, struct acd_track_info *); static int acd_get_progress(struct acd_softc *, int *); static int acd_send_cue(struct acd_softc *, struct cdr_cuesheet *); static int acd_report_key(struct acd_softc *, struct dvd_authinfo *); static int acd_send_key(struct acd_softc *, struct dvd_authinfo *); static int acd_read_structure(struct acd_softc *, struct dvd_struct *); static int acd_eject(struct acd_softc *, int); static int acd_blank(struct acd_softc *, int); static int acd_prevent_allow(struct acd_softc *, int); static int acd_start_stop(struct acd_softc *, int); static int acd_pause_resume(struct acd_softc *, int); static int acd_mode_sense(struct acd_softc *, int, caddr_t, int); static int acd_mode_select(struct acd_softc *, caddr_t, int); static int acd_set_speed(struct acd_softc *, int, int); static void acd_get_cap(struct acd_softc *); /* internal vars */ static u_int32_t acd_lun_map = 0; static MALLOC_DEFINE(M_ACD, "ACD driver", "ATAPI CD driver buffers"); int acdattach(struct ata_device *atadev) { struct acd_softc *cdp; struct changer *chp; if ((cdp = acd_init_lun(atadev)) == NULL) { ata_prtdev(atadev, "acd: out of memory\n"); return 0; } ata_set_name(atadev, "acd", cdp->lun); ata_command(atadev, ATA_C_ATAPI_RESET, 0, 0, 0, ATA_IMMEDIATE); acd_get_cap(cdp); /* if this is a changer device, allocate the neeeded lun's */ if (cdp->cap.mech == MST_MECH_CHANGER) { int8_t ccb[16] = { ATAPI_MECH_STATUS, 0, 0, 0, 0, 0, 0, 0, sizeof(struct changer)>>8, sizeof(struct changer), 0, 0, 0, 0, 0, 0 }; chp = malloc(sizeof(struct changer), M_ACD, M_WAITOK | M_ZERO); if (!atapi_queue_cmd(cdp->device, ccb, (caddr_t)chp, sizeof(struct changer), ATPR_F_READ, 60, NULL, NULL)) { struct acd_softc *tmpcdp = cdp; struct acd_softc **cdparr; char *name; int count; chp->table_length = htons(chp->table_length); cdparr = malloc(sizeof(struct acd_softc) * chp->slots, M_ACD, M_WAITOK); for (count = 0; count < chp->slots; count++) { if (count > 0) { tmpcdp = acd_init_lun(atadev); if (!tmpcdp) { ata_prtdev(atadev, "out of memory\n"); break; } } cdparr[count] = tmpcdp; tmpcdp->driver = cdparr; tmpcdp->slot = count; tmpcdp->changer_info = chp; acd_make_dev(tmpcdp); devstat_add_entry(tmpcdp->stats, "acd", tmpcdp->lun, DEV_BSIZE, DEVSTAT_NO_ORDERED_TAGS, DEVSTAT_TYPE_CDROM | DEVSTAT_TYPE_IF_IDE, DEVSTAT_PRIORITY_CD); } name = malloc(strlen(atadev->name) + 2, M_ACD, M_WAITOK); strcpy(name, atadev->name); strcat(name, "-"); ata_free_name(atadev); ata_set_name(atadev, name, cdp->lun + cdp->changer_info->slots - 1); free(name, M_ACD); } } else { acd_make_dev(cdp); devstat_add_entry(cdp->stats, "acd", cdp->lun, DEV_BSIZE, DEVSTAT_NO_ORDERED_TAGS, DEVSTAT_TYPE_CDROM | DEVSTAT_TYPE_IF_IDE, DEVSTAT_PRIORITY_CD); } acd_describe(cdp); atadev->driver = cdp; return 1; } void acddetach(struct ata_device *atadev) { struct acd_softc *cdp = atadev->driver; struct acd_devlist *entry; struct buf *bp; int subdev; if (cdp->changer_info) { for (subdev = 0; subdev < cdp->changer_info->slots; subdev++) { if (cdp->driver[subdev] == cdp) continue; while ((bp = bufq_first(&cdp->driver[subdev]->queue))) { bufq_remove(&cdp->driver[subdev]->queue, bp); bp->b_flags |= B_ERROR; bp->b_error = ENXIO; biodone(bp); } release_dev(cdp->driver[subdev]->dev); while ((entry = TAILQ_FIRST(&cdp->driver[subdev]->dev_list))) { release_dev(entry->dev); TAILQ_REMOVE(&cdp->driver[subdev]->dev_list, entry, chain); free(entry, M_ACD); } devstat_remove_entry(cdp->driver[subdev]->stats); free(cdp->driver[subdev]->stats, M_ACD); ata_free_lun(&acd_lun_map, cdp->driver[subdev]->lun); free(cdp->driver[subdev], M_ACD); } free(cdp->driver, M_ACD); free(cdp->changer_info, M_ACD); } while ((bp = bufq_first(&cdp->queue))) { bp->b_flags |= B_ERROR; bp->b_error = ENXIO; biodone(bp); } while ((entry = TAILQ_FIRST(&cdp->dev_list))) { release_dev(entry->dev); TAILQ_REMOVE(&cdp->dev_list, entry, chain); free(entry, M_ACD); } release_dev(cdp->dev); devstat_remove_entry(cdp->stats); cdevsw_remove(&acd_cdevsw, dkunitmask(), dkmakeunit(cdp->lun)); free(cdp->stats, M_ACD); ata_free_name(atadev); ata_free_lun(&acd_lun_map, cdp->lun); free(cdp, M_ACD); atadev->driver = NULL; } static struct acd_softc * acd_init_lun(struct ata_device *atadev) { struct acd_softc *cdp; cdp = malloc(sizeof(struct acd_softc), M_ACD, M_WAITOK | M_ZERO); TAILQ_INIT(&cdp->dev_list); bufq_init(&cdp->queue); cdp->device = atadev; cdp->lun = ata_get_lun(&acd_lun_map); cdp->block_size = 2048; cdp->slot = -1; cdp->changer_info = NULL; cdp->stats = malloc(sizeof(struct devstat), M_ACD, M_WAITOK | M_ZERO); return cdp; } static void acd_make_dev(struct acd_softc *cdp) { dev_t dev; cdevsw_add(&acd_cdevsw, dkunitmask(), dkmakeunit(cdp->lun)); dev = make_dev(&acd_cdevsw, dkmakeminor(cdp->lun, 0, 0), UID_ROOT, GID_OPERATOR, 0644, "acd%d", cdp->lun); reference_dev(dev); dev->si_drv1 = cdp; cdp->dev = dev; cdp->device->flags |= ATA_D_MEDIA_CHANGED; acd_set_ioparm(cdp); } static void acd_set_ioparm(struct acd_softc *cdp) { cdp->dev->si_iosize_max = ((256*DEV_BSIZE)/cdp->block_size)*cdp->block_size; cdp->dev->si_bsize_phys = cdp->block_size; } static void acd_describe(struct acd_softc *cdp) { int comma = 0; char *mechanism; if (bootverbose) { ata_prtdev(cdp->device, "<%.40s/%.8s> %s drive at ata%d as %s\n", cdp->device->param->model, cdp->device->param->revision, (cdp->cap.write_dvdr) ? "DVD-R" : (cdp->cap.write_dvdram) ? "DVD-RAM" : (cdp->cap.write_cdrw) ? "CD-RW" : (cdp->cap.write_cdr) ? "CD-R" : (cdp->cap.read_dvdrom) ? "DVD-ROM" : "CDROM", device_get_unit(cdp->device->channel->dev), (cdp->device->unit == ATA_MASTER) ? "master" : "slave"); ata_prtdev(cdp->device, "%s", ""); if (cdp->cap.cur_read_speed) { printf("read %dKB/s", cdp->cap.cur_read_speed * 1000 / 1024); if (cdp->cap.max_read_speed) printf(" (%dKB/s)", cdp->cap.max_read_speed * 1000 / 1024); if ((cdp->cap.cur_write_speed) && (cdp->cap.write_cdr || cdp->cap.write_cdrw || cdp->cap.write_dvdr || cdp->cap.write_dvdram)) { printf(" write %dKB/s", cdp->cap.cur_write_speed * 1000 / 1024); if (cdp->cap.max_write_speed) printf(" (%dKB/s)", cdp->cap.max_write_speed * 1000 / 1024); } comma = 1; } if (cdp->cap.buf_size) { printf("%s %dKB buffer", comma ? "," : "", cdp->cap.buf_size); comma = 1; } printf("%s %s\n", comma ? "," : "", ata_mode2str(cdp->device->mode)); ata_prtdev(cdp->device, "Reads:"); comma = 0; if (cdp->cap.read_cdr) { printf(" CD-R"); comma = 1; } if (cdp->cap.read_cdrw) { printf("%s CD-RW", comma ? "," : ""); comma = 1; } if (cdp->cap.cd_da) { if (cdp->cap.cd_da_stream) printf("%s CD-DA stream", comma ? "," : ""); else printf("%s CD-DA", comma ? "," : ""); comma = 1; } if (cdp->cap.read_dvdrom) { printf("%s DVD-ROM", comma ? "," : ""); comma = 1; } if (cdp->cap.read_dvdr) { printf("%s DVD-R", comma ? "," : ""); comma = 1; } if (cdp->cap.read_dvdram) { printf("%s DVD-RAM", comma ? "," : ""); comma = 1; } if (cdp->cap.read_packet) printf("%s packet", comma ? "," : ""); printf("\n"); ata_prtdev(cdp->device, "Writes:"); if (cdp->cap.write_cdr || cdp->cap.write_cdrw || cdp->cap.write_dvdr || cdp->cap.write_dvdram) { comma = 0; if (cdp->cap.write_cdr) { printf(" CD-R" ); comma = 1; } if (cdp->cap.write_cdrw) { printf("%s CD-RW", comma ? "," : ""); comma = 1; } if (cdp->cap.write_dvdr) { printf("%s DVD-R", comma ? "," : ""); comma = 1; } if (cdp->cap.write_dvdram) { printf("%s DVD-RAM", comma ? "," : ""); comma = 1; } if (cdp->cap.test_write) { printf("%s test write", comma ? "," : ""); comma = 1; } if (cdp->cap.burnproof) printf("%s burnproof", comma ? "," : ""); } printf("\n"); if (cdp->cap.audio_play) { ata_prtdev(cdp->device, "Audio: "); if (cdp->cap.audio_play) printf("play"); if (cdp->cap.max_vol_levels) printf(", %d volume levels", cdp->cap.max_vol_levels); printf("\n"); } ata_prtdev(cdp->device, "Mechanism: "); switch (cdp->cap.mech) { case MST_MECH_CADDY: mechanism = "caddy"; break; case MST_MECH_TRAY: mechanism = "tray"; break; case MST_MECH_POPUP: mechanism = "popup"; break; case MST_MECH_CHANGER: mechanism = "changer"; break; case MST_MECH_CARTRIDGE: mechanism = "cartridge"; break; default: mechanism = 0; break; } if (mechanism) printf("%s%s", cdp->cap.eject ? "ejectable " : "", mechanism); else if (cdp->cap.eject) printf("ejectable"); if (cdp->cap.lock) printf(cdp->cap.locked ? ", locked" : ", unlocked"); if (cdp->cap.prevent) printf(", lock protected"); printf("\n"); if (cdp->cap.mech != MST_MECH_CHANGER) { ata_prtdev(cdp->device, "Medium: "); switch (cdp->cap.medium_type & MST_TYPE_MASK_HIGH) { case MST_CDROM: printf("CD-ROM "); break; case MST_CDR: printf("CD-R "); break; case MST_CDRW: printf("CD-RW "); break; case MST_DOOR_OPEN: printf("door open"); break; case MST_NO_DISC: printf("no/blank disc"); break; case MST_FMT_ERROR: printf("medium format error"); break; } if ((cdp->cap.medium_type & MST_TYPE_MASK_HIGH)cap.medium_type & MST_TYPE_MASK_LOW) { case MST_DATA_120: printf("120mm data disc"); break; case MST_AUDIO_120: printf("120mm audio disc"); break; case MST_COMB_120: printf("120mm data/audio disc"); break; case MST_PHOTO_120: printf("120mm photo disc"); break; case MST_DATA_80: printf("80mm data disc"); break; case MST_AUDIO_80: printf("80mm audio disc"); break; case MST_COMB_80: printf("80mm data/audio disc"); break; case MST_PHOTO_80: printf("80mm photo disc"); break; case MST_FMT_NONE: switch (cdp->cap.medium_type & MST_TYPE_MASK_HIGH) { case MST_CDROM: printf("unknown"); break; case MST_CDR: case MST_CDRW: printf("blank"); break; } break; default: printf("unknown (0x%x)", cdp->cap.medium_type); break; } } printf("\n"); } } else { ata_prtdev(cdp->device, "%s ", (cdp->cap.write_dvdr) ? "DVD-R" : (cdp->cap.write_dvdram) ? "DVD-RAM" : (cdp->cap.write_cdrw) ? "CD-RW" : (cdp->cap.write_cdr) ? "CD-R" : (cdp->cap.read_dvdrom) ? "DVD-ROM" : "CDROM"); if (cdp->changer_info) printf("with %d CD changer ", cdp->changer_info->slots); printf("<%.40s> at ata%d-%s %s\n", cdp->device->param->model, device_get_unit(cdp->device->channel->dev), (cdp->device->unit == ATA_MASTER) ? "master" : "slave", ata_mode2str(cdp->device->mode) ); } } static __inline void lba2msf(u_int32_t lba, u_int8_t *m, u_int8_t *s, u_int8_t *f) { lba += 150; lba &= 0xffffff; *m = lba / (60 * 75); lba %= (60 * 75); *s = lba / 75; *f = lba % 75; } static __inline u_int32_t msf2lba(u_int8_t m, u_int8_t s, u_int8_t f) { return (m * 60 + s) * 75 + f - 150; } static int acdopen(dev_t dev, int flags, int fmt, struct thread *td) { struct acd_softc *cdp = dev->si_drv1; int timeout = 60; if (!cdp) return ENXIO; if (flags & FWRITE) { if (count_dev(dev) > 1) return EBUSY; } /* wait if drive is not finished loading the medium */ while (timeout--) { struct atapi_reqsense *sense = cdp->device->result; if (!atapi_test_ready(cdp->device)) break; if (sense->sense_key == 2 && sense->asc == 4 && sense->ascq == 1) tsleep(&timeout, 0, "acdld", hz / 2); else break; } if (count_dev(dev) == 1) { if (cdp->changer_info && cdp->slot != cdp->changer_info->current_slot) { acd_select_slot(cdp); tsleep(&cdp->changer_info, 0, "acdopn", 0); } acd_prevent_allow(cdp, 1); cdp->flags |= F_LOCKED; acd_read_toc(cdp); } return 0; } static int acdclose(dev_t dev, int flags, int fmt, struct thread *td) { struct acd_softc *cdp = dev->si_drv1; if (!cdp) return ENXIO; if (count_dev(dev) == 1) { if (cdp->changer_info && cdp->slot != cdp->changer_info->current_slot) { acd_select_slot(cdp); tsleep(&cdp->changer_info, 0, "acdclo", 0); } acd_prevent_allow(cdp, 0); cdp->flags &= ~F_LOCKED; } return 0; } static int acdioctl(dev_t dev, u_long cmd, caddr_t addr, int flags, struct thread *td) { struct acd_softc *cdp = dev->si_drv1; int error = 0; if (!cdp) return ENXIO; if (cdp->changer_info && cdp->slot != cdp->changer_info->current_slot) { acd_select_slot(cdp); tsleep(&cdp->changer_info, 0, "acdctl", 0); } if (cdp->device->flags & ATA_D_MEDIA_CHANGED) switch (cmd) { case CDIOCRESET: atapi_test_ready(cdp->device); break; default: acd_read_toc(cdp); acd_prevent_allow(cdp, 1); cdp->flags |= F_LOCKED; break; } switch (cmd) { case CDIOCRESUME: error = acd_pause_resume(cdp, 1); break; case CDIOCPAUSE: error = acd_pause_resume(cdp, 0); break; case CDIOCSTART: error = acd_start_stop(cdp, 1); break; case CDIOCSTOP: error = acd_start_stop(cdp, 0); break; case CDIOCALLOW: error = acd_prevent_allow(cdp, 0); cdp->flags &= ~F_LOCKED; break; case CDIOCPREVENT: error = acd_prevent_allow(cdp, 1); cdp->flags |= F_LOCKED; break; case CDIOCRESET: error = suser(td); /* note: if no proc EPERM will be returned */ if (error) break; error = atapi_test_ready(cdp->device); break; case CDIOCEJECT: if (count_dev(dev) > 1) { error = EBUSY; break; } error = acd_eject(cdp, 0); break; case CDIOCCLOSE: if (count_dev(dev) > 1) break; error = acd_eject(cdp, 1); break; case CDIOREADTOCHEADER: if (!cdp->toc.hdr.ending_track) { error = EIO; break; } bcopy(&cdp->toc.hdr, addr, sizeof(cdp->toc.hdr)); break; case CDIOREADTOCENTRYS: { struct ioc_read_toc_entry *te = (struct ioc_read_toc_entry *)addr; struct toc *toc = &cdp->toc; int starting_track = te->starting_track; int len; if (!toc->hdr.ending_track) { error = EIO; break; } if (te->data_len < sizeof(toc->tab[0]) || (te->data_len % sizeof(toc->tab[0])) != 0 || (te->address_format != CD_MSF_FORMAT && te->address_format != CD_LBA_FORMAT)) { error = EINVAL; break; } if (!starting_track) starting_track = toc->hdr.starting_track; else if (starting_track == 170) starting_track = toc->hdr.ending_track + 1; else if (starting_track < toc->hdr.starting_track || starting_track > toc->hdr.ending_track + 1) { error = EINVAL; break; } len = ((toc->hdr.ending_track + 1 - starting_track) + 1) * sizeof(toc->tab[0]); if (te->data_len < len) len = te->data_len; if (len > sizeof(toc->tab)) { error = EINVAL; break; } if (te->address_format == CD_MSF_FORMAT) { struct cd_toc_entry *entry; toc = malloc(sizeof(struct toc), M_ACD, M_WAITOK | M_ZERO); bcopy(&cdp->toc, toc, sizeof(struct toc)); entry = toc->tab + (toc->hdr.ending_track + 1 - toc->hdr.starting_track) + 1; while (--entry >= toc->tab) lba2msf(ntohl(entry->addr.lba), &entry->addr.msf.minute, &entry->addr.msf.second, &entry->addr.msf.frame); } error = copyout(toc->tab + starting_track - toc->hdr.starting_track, te->data, len); if (te->address_format == CD_MSF_FORMAT) free(toc, M_ACD); break; } case CDIOREADTOCENTRY: { struct ioc_read_toc_single_entry *te = (struct ioc_read_toc_single_entry *)addr; struct toc *toc = &cdp->toc; u_char track = te->track; if (!toc->hdr.ending_track) { error = EIO; break; } if (te->address_format != CD_MSF_FORMAT && te->address_format != CD_LBA_FORMAT) { error = EINVAL; break; } if (!track) track = toc->hdr.starting_track; else if (track == 170) track = toc->hdr.ending_track + 1; else if (track < toc->hdr.starting_track || track > toc->hdr.ending_track + 1) { error = EINVAL; break; } if (te->address_format == CD_MSF_FORMAT) { struct cd_toc_entry *entry; toc = malloc(sizeof(struct toc), M_ACD, M_WAITOK | M_ZERO); bcopy(&cdp->toc, toc, sizeof(struct toc)); entry = toc->tab + (track - toc->hdr.starting_track); lba2msf(ntohl(entry->addr.lba), &entry->addr.msf.minute, &entry->addr.msf.second, &entry->addr.msf.frame); } bcopy(toc->tab + track - toc->hdr.starting_track, &te->entry, sizeof(struct cd_toc_entry)); if (te->address_format == CD_MSF_FORMAT) free(toc, M_ACD); } break; case CDIOCREADSUBCHANNEL: { struct ioc_read_subchannel *args = (struct ioc_read_subchannel *)addr; u_int8_t format; int8_t ccb[16] = { ATAPI_READ_SUBCHANNEL, 0, 0x40, 1, 0, 0, 0, sizeof(cdp->subchan)>>8, sizeof(cdp->subchan), 0, 0, 0, 0, 0, 0, 0 }; if (args->data_len > sizeof(struct cd_sub_channel_info) || args->data_len < sizeof(struct cd_sub_channel_header)) { error = EINVAL; break; } format=args->data_format; if ((format != CD_CURRENT_POSITION) && (format != CD_MEDIA_CATALOG) && (format != CD_TRACK_INFO)) { error = EINVAL; break; } ccb[1] = args->address_format & CD_MSF_FORMAT; if ((error = atapi_queue_cmd(cdp->device,ccb,(caddr_t)&cdp->subchan, sizeof(cdp->subchan), ATPR_F_READ, 10, NULL, NULL))) break; if ((format == CD_MEDIA_CATALOG) || (format == CD_TRACK_INFO)) { if (cdp->subchan.header.audio_status == 0x11) { error = EINVAL; break; } ccb[3] = format; if (format == CD_TRACK_INFO) ccb[6] = args->track; if ((error = atapi_queue_cmd(cdp->device, ccb, (caddr_t)&cdp->subchan, sizeof(cdp->subchan), ATPR_F_READ, 10, NULL, NULL))) { break; } } error = copyout(&cdp->subchan, args->data, args->data_len); break; } case CDIOCPLAYMSF: { struct ioc_play_msf *args = (struct ioc_play_msf *)addr; error = acd_play(cdp, msf2lba(args->start_m, args->start_s, args->start_f), msf2lba(args->end_m, args->end_s, args->end_f)); break; } case CDIOCPLAYBLOCKS: { struct ioc_play_blocks *args = (struct ioc_play_blocks *)addr; error = acd_play(cdp, args->blk, args->blk + args->len); break; } case CDIOCPLAYTRACKS: { struct ioc_play_track *args = (struct ioc_play_track *)addr; int t1, t2; if (!cdp->toc.hdr.ending_track) { error = EIO; break; } if (args->end_track < cdp->toc.hdr.ending_track + 1) ++args->end_track; if (args->end_track > cdp->toc.hdr.ending_track + 1) args->end_track = cdp->toc.hdr.ending_track + 1; t1 = args->start_track - cdp->toc.hdr.starting_track; t2 = args->end_track - cdp->toc.hdr.starting_track; if (t1 < 0 || t2 < 0 || t1 > (cdp->toc.hdr.ending_track-cdp->toc.hdr.starting_track)) { error = EINVAL; break; } error = acd_play(cdp, ntohl(cdp->toc.tab[t1].addr.lba), ntohl(cdp->toc.tab[t2].addr.lba)); break; } case CDIOCREADAUDIO: { struct ioc_read_audio *args = (struct ioc_read_audio *)addr; int32_t lba; caddr_t buffer, ubuf = args->buffer; int8_t ccb[16]; int frames; if (!cdp->toc.hdr.ending_track) { error = EIO; break; } if ((frames = args->nframes) < 0) { error = EINVAL; break; } if (args->address_format == CD_LBA_FORMAT) lba = args->address.lba; else if (args->address_format == CD_MSF_FORMAT) lba = msf2lba(args->address.msf.minute, args->address.msf.second, args->address.msf.frame); else { error = EINVAL; break; } #ifndef CD_BUFFER_BLOCKS #define CD_BUFFER_BLOCKS 13 #endif if (!(buffer = malloc(CD_BUFFER_BLOCKS * 2352, M_ACD, M_WAITOK))){ error = ENOMEM; break; } bzero(ccb, sizeof(ccb)); while (frames > 0) { int8_t blocks; int size; blocks = (frames>CD_BUFFER_BLOCKS) ? CD_BUFFER_BLOCKS : frames; size = blocks * 2352; ccb[0] = ATAPI_READ_CD; ccb[1] = 4; ccb[2] = lba>>24; ccb[3] = lba>>16; ccb[4] = lba>>8; ccb[5] = lba; ccb[8] = blocks; ccb[9] = 0xf0; if ((error = atapi_queue_cmd(cdp->device, ccb, buffer, size, ATPR_F_READ, 30, NULL,NULL))) break; if ((error = copyout(buffer, ubuf, size))) break; ubuf += size; frames -= blocks; lba += blocks; } free(buffer, M_ACD); if (args->address_format == CD_LBA_FORMAT) args->address.lba = lba; else if (args->address_format == CD_MSF_FORMAT) lba2msf(lba, &args->address.msf.minute, &args->address.msf.second, &args->address.msf.frame); break; } case CDIOCGETVOL: { struct ioc_vol *arg = (struct ioc_vol *)addr; if ((error = acd_mode_sense(cdp, ATAPI_CDROM_AUDIO_PAGE, (caddr_t)&cdp->au, sizeof(cdp->au)))) break; if (cdp->au.page_code != ATAPI_CDROM_AUDIO_PAGE) { error = EIO; break; } arg->vol[0] = cdp->au.port[0].volume; arg->vol[1] = cdp->au.port[1].volume; arg->vol[2] = cdp->au.port[2].volume; arg->vol[3] = cdp->au.port[3].volume; break; } case CDIOCSETVOL: { struct ioc_vol *arg = (struct ioc_vol *)addr; if ((error = acd_mode_sense(cdp, ATAPI_CDROM_AUDIO_PAGE, (caddr_t)&cdp->au, sizeof(cdp->au)))) break; if (cdp->au.page_code != ATAPI_CDROM_AUDIO_PAGE) { error = EIO; break; } if ((error = acd_mode_sense(cdp, ATAPI_CDROM_AUDIO_PAGE_MASK, (caddr_t)&cdp->aumask, sizeof(cdp->aumask)))) break; cdp->au.data_length = 0; cdp->au.port[0].channels = CHANNEL_0; cdp->au.port[1].channels = CHANNEL_1; cdp->au.port[0].volume = arg->vol[0] & cdp->aumask.port[0].volume; cdp->au.port[1].volume = arg->vol[1] & cdp->aumask.port[1].volume; cdp->au.port[2].volume = arg->vol[2] & cdp->aumask.port[2].volume; cdp->au.port[3].volume = arg->vol[3] & cdp->aumask.port[3].volume; error = acd_mode_select(cdp, (caddr_t)&cdp->au, sizeof(cdp->au)); break; } case CDIOCSETPATCH: { struct ioc_patch *arg = (struct ioc_patch *)addr; error = acd_setchan(cdp, arg->patch[0], arg->patch[1], arg->patch[2], arg->patch[3]); break; } case CDIOCSETMONO: error = acd_setchan(cdp, CHANNEL_0|CHANNEL_1, CHANNEL_0|CHANNEL_1, 0,0); break; case CDIOCSETSTEREO: error = acd_setchan(cdp, CHANNEL_0, CHANNEL_1, 0, 0); break; case CDIOCSETMUTE: error = acd_setchan(cdp, 0, 0, 0, 0); break; case CDIOCSETLEFT: error = acd_setchan(cdp, CHANNEL_0, CHANNEL_0, 0, 0); break; case CDIOCSETRIGHT: error = acd_setchan(cdp, CHANNEL_1, CHANNEL_1, 0, 0); break; case CDRIOCBLANK: error = acd_blank(cdp, (*(int *)addr)); break; case CDRIOCNEXTWRITEABLEADDR: { struct acd_track_info track_info; if ((error = acd_read_track_info(cdp, 0xff, &track_info))) break; if (!track_info.nwa_valid) { error = EINVAL; break; } *(int*)addr = track_info.next_writeable_addr; } break; case CDRIOCINITWRITER: error = acd_init_writer(cdp, (*(int *)addr)); break; case CDRIOCINITTRACK: error = acd_init_track(cdp, (struct cdr_track *)addr); break; case CDRIOCFLUSH: error = acd_flush(cdp); break; case CDRIOCFIXATE: error = acd_fixate(cdp, (*(int *)addr)); break; case CDRIOCREADSPEED: { int speed = *(int *)addr; /* Preserve old behavior: units in multiples of CDROM speed */ if (speed < 177) speed *= 177; error = acd_set_speed(cdp, speed, CDR_MAX_SPEED); } break; case CDRIOCWRITESPEED: { int speed = *(int *)addr; if (speed < 177) speed *= 177; error = acd_set_speed(cdp, CDR_MAX_SPEED, speed); } break; case CDRIOCGETBLOCKSIZE: *(int *)addr = cdp->block_size; break; case CDRIOCSETBLOCKSIZE: cdp->block_size = *(int *)addr; acd_set_ioparm(cdp); break; case CDRIOCGETPROGRESS: error = acd_get_progress(cdp, (int *)addr); break; case CDRIOCSENDCUE: error = acd_send_cue(cdp, (struct cdr_cuesheet *)addr); break; case DVDIOCREPORTKEY: if (!cdp->cap.read_dvdrom) error = EINVAL; else error = acd_report_key(cdp, (struct dvd_authinfo *)addr); break; case DVDIOCSENDKEY: if (!cdp->cap.read_dvdrom) error = EINVAL; else error = acd_send_key(cdp, (struct dvd_authinfo *)addr); break; case DVDIOCREADSTRUCTURE: if (!cdp->cap.read_dvdrom) error = EINVAL; else error = acd_read_structure(cdp, (struct dvd_struct *)addr); break; case DIOCGDINFO: *(struct disklabel *)addr = cdp->disklabel; break; case DIOCWDINFO: case DIOCSDINFO: if ((flags & FWRITE) == 0) error = EBADF; else error = setdisklabel(&cdp->disklabel, (struct disklabel *)addr, 0); break; case DIOCWLABEL: error = EBADF; break; case DIOCGPART: ((struct partinfo *)addr)->disklab = &cdp->disklabel; ((struct partinfo *)addr)->part = &cdp->disklabel.d_partitions[0]; break; default: error = ENOTTY; } return error; } static void acdstrategy(struct buf *bp) { struct acd_softc *cdp = bp->b_dev->si_drv1; int s; if (cdp->device->flags & ATA_D_DETACHING) { bp->b_flags |= B_ERROR; bp->b_error = ENXIO; biodone(bp); return; } /* if it's a null transfer, return immediatly. */ if (bp->b_bcount == 0) { bp->b_resid = 0; biodone(bp); return; } bp->b_pblkno = bp->b_blkno; bp->b_resid = bp->b_bcount; s = splbio(); bufqdisksort(&cdp->queue, bp); splx(s); ata_start(cdp->device->channel); } void acd_start(struct ata_device *atadev) { struct acd_softc *cdp = atadev->driver; struct buf *bp = bufq_first(&cdp->queue); u_int32_t lba, lastlba, count; int8_t ccb[16]; int track, blocksize; if (cdp->changer_info) { int i; cdp = cdp->driver[cdp->changer_info->current_slot]; bp = bufq_first(&cdp->queue); /* check for work pending on any other slot */ for (i = 0; i < cdp->changer_info->slots; i++) { if (i == cdp->changer_info->current_slot) continue; if (bufq_first(&(cdp->driver[i]->queue))) { if (!bp || time_second > (cdp->timestamp + 10)) { acd_select_slot(cdp->driver[i]); return; } } } } if (!bp) return; bufq_remove(&cdp->queue, bp); /* reject all queued entries if media changed */ if (cdp->device->flags & ATA_D_MEDIA_CHANGED) { bp->b_flags |= B_ERROR; bp->b_error = EIO; biodone(bp); return; } bzero(ccb, sizeof(ccb)); track = (bp->b_dev->si_udev & 0x00ff0000) >> 16; if (track) { blocksize = (cdp->toc.tab[track - 1].control & 4) ? 2048 : 2352; lastlba = ntohl(cdp->toc.tab[track].addr.lba); if (bp->b_flags & B_PHYS) lba = bp->b_offset / blocksize; else lba = bp->b_blkno / (blocksize / DEV_BSIZE); lba += ntohl(cdp->toc.tab[track - 1].addr.lba); } else { blocksize = cdp->block_size; lastlba = cdp->disk_size; if (bp->b_flags & B_PHYS) lba = bp->b_offset / blocksize; else lba = bp->b_blkno / (blocksize / DEV_BSIZE); } if (bp->b_bcount % blocksize != 0) { bp->b_flags |= B_ERROR; bp->b_error = EINVAL; biodone(bp); return; } count = bp->b_bcount / blocksize; if (bp->b_flags & B_READ) { /* if transfer goes beyond range adjust it to be within limits */ if (lba + count > lastlba) { /* if we are entirely beyond EOM return EOF */ if (lastlba <= lba) { bp->b_resid = bp->b_bcount; biodone(bp); return; } count = lastlba - lba; } switch (blocksize) { case 2048: ccb[0] = ATAPI_READ_BIG; break; case 2352: ccb[0] = ATAPI_READ_CD; ccb[9] = 0xf8; break; default: ccb[0] = ATAPI_READ_CD; ccb[9] = 0x10; } } else ccb[0] = ATAPI_WRITE_BIG; ccb[1] = 0; ccb[2] = lba>>24; ccb[3] = lba>>16; ccb[4] = lba>>8; ccb[5] = lba; ccb[6] = count>>16; ccb[7] = count>>8; ccb[8] = count; devstat_start_transaction(cdp->stats); bp->b_caller1 = cdp; atapi_queue_cmd(cdp->device, ccb, bp->b_data, count * blocksize, bp->b_flags & B_READ ? ATPR_F_READ : 0, (ccb[0] == ATAPI_WRITE_BIG) ? 60 : 30, acd_done, bp); } static int acd_done(struct atapi_request *request) { struct buf *bp = request->driver; struct acd_softc *cdp = bp->b_caller1; if (request->error) { bp->b_error = request->error; bp->b_flags |= B_ERROR; } else bp->b_resid = bp->b_bcount - request->donecount; devstat_end_transaction_buf(cdp->stats, bp); biodone(bp); return 0; } static void acd_read_toc(struct acd_softc *cdp) { struct acd_devlist *entry; int track, ntracks, len; u_int32_t sizes[2]; int8_t ccb[16]; bzero(&cdp->toc, sizeof(cdp->toc)); bzero(ccb, sizeof(ccb)); if (atapi_test_ready(cdp->device) != 0) return; cdp->device->flags &= ~ATA_D_MEDIA_CHANGED; len = sizeof(struct ioc_toc_header) + sizeof(struct cd_toc_entry); ccb[0] = ATAPI_READ_TOC; ccb[7] = len>>8; ccb[8] = len; if (atapi_queue_cmd(cdp->device, ccb, (caddr_t)&cdp->toc, len, ATPR_F_READ | ATPR_F_QUIET, 30, NULL, NULL)) { bzero(&cdp->toc, sizeof(cdp->toc)); return; } ntracks = cdp->toc.hdr.ending_track - cdp->toc.hdr.starting_track + 1; if (ntracks <= 0 || ntracks > MAXTRK) { bzero(&cdp->toc, sizeof(cdp->toc)); return; } len = sizeof(struct ioc_toc_header)+(ntracks+1)*sizeof(struct cd_toc_entry); bzero(ccb, sizeof(ccb)); ccb[0] = ATAPI_READ_TOC; ccb[7] = len>>8; ccb[8] = len; if (atapi_queue_cmd(cdp->device, ccb, (caddr_t)&cdp->toc, len, ATPR_F_READ | ATPR_F_QUIET, 30, NULL, NULL)) { bzero(&cdp->toc, sizeof(cdp->toc)); return; } cdp->toc.hdr.len = ntohs(cdp->toc.hdr.len); cdp->block_size = (cdp->toc.tab[0].control & 4) ? 2048 : 2352; acd_set_ioparm(cdp); bzero(ccb, sizeof(ccb)); ccb[0] = ATAPI_READ_CAPACITY; if (atapi_queue_cmd(cdp->device, ccb, (caddr_t)sizes, sizeof(sizes), ATPR_F_READ | ATPR_F_QUIET, 30, NULL, NULL)) { bzero(&cdp->toc, sizeof(cdp->toc)); return; } cdp->disk_size = ntohl(sizes[0]) + 1; bzero(&cdp->disklabel, sizeof(struct disklabel)); strncpy(cdp->disklabel.d_typename, " ", sizeof(cdp->disklabel.d_typename)); strncpy(cdp->disklabel.d_typename, cdp->device->name, min(strlen(cdp->device->name),sizeof(cdp->disklabel.d_typename)-1)); strncpy(cdp->disklabel.d_packname, "unknown ", sizeof(cdp->disklabel.d_packname)); cdp->disklabel.d_secsize = cdp->block_size; cdp->disklabel.d_nsectors = 100; cdp->disklabel.d_ntracks = 1; cdp->disklabel.d_ncylinders = (cdp->disk_size / 100) + 1; cdp->disklabel.d_secpercyl = 100; cdp->disklabel.d_secperunit = cdp->disk_size; cdp->disklabel.d_rpm = 300; cdp->disklabel.d_interleave = 1; cdp->disklabel.d_flags = D_REMOVABLE; cdp->disklabel.d_npartitions = 1; cdp->disklabel.d_partitions[0].p_offset = 0; cdp->disklabel.d_partitions[0].p_size = cdp->disk_size; cdp->disklabel.d_partitions[0].p_fstype = FS_BSDFFS; cdp->disklabel.d_magic = DISKMAGIC; cdp->disklabel.d_magic2 = DISKMAGIC; cdp->disklabel.d_checksum = dkcksum(&cdp->disklabel); while ((entry = TAILQ_FIRST(&cdp->dev_list))) { destroy_dev(entry->dev); TAILQ_REMOVE(&cdp->dev_list, entry, chain); free(entry, M_ACD); } for (track = 1; track <= ntracks; track ++) { char name[16]; sprintf(name, "acd%dt%d", cdp->lun, track); entry = malloc(sizeof(struct acd_devlist), M_ACD, M_WAITOK | M_ZERO); entry->dev = make_dev(&acd_cdevsw, (cdp->lun << 3) | (track << 16), 0, 0, 0644, name, NULL); entry->dev->si_drv1 = cdp->dev->si_drv1; reference_dev(entry->dev); TAILQ_INSERT_TAIL(&cdp->dev_list, entry, chain); } #ifdef ACD_DEBUG if (cdp->disk_size && cdp->toc.hdr.ending_track) { ata_prtdev(cdp->device, "(%d sectors (%d bytes)), %d tracks ", cdp->disk_size, cdp->block_size, cdp->toc.hdr.ending_track - cdp->toc.hdr.starting_track + 1); if (cdp->toc.tab[0].control & 4) printf("%dMB\n", cdp->disk_size / 512); else printf("%d:%d audio\n", cdp->disk_size / 75 / 60, cdp->disk_size / 75 % 60); } #endif } static int acd_play(struct acd_softc *cdp, int start, int end) { int8_t ccb[16]; bzero(ccb, sizeof(ccb)); ccb[0] = ATAPI_PLAY_MSF; lba2msf(start, &ccb[3], &ccb[4], &ccb[5]); lba2msf(end, &ccb[6], &ccb[7], &ccb[8]); return atapi_queue_cmd(cdp->device, ccb, NULL, 0, 0, 10, NULL, NULL); } static int acd_setchan(struct acd_softc *cdp, u_int8_t c0, u_int8_t c1, u_int8_t c2, u_int8_t c3) { int error; if ((error = acd_mode_sense(cdp, ATAPI_CDROM_AUDIO_PAGE, (caddr_t)&cdp->au, sizeof(cdp->au)))) return error; if (cdp->au.page_code != ATAPI_CDROM_AUDIO_PAGE) return EIO; cdp->au.data_length = 0; cdp->au.port[0].channels = c0; cdp->au.port[1].channels = c1; cdp->au.port[2].channels = c2; cdp->au.port[3].channels = c3; return acd_mode_select(cdp, (caddr_t)&cdp->au, sizeof(cdp->au)); } static int acd_select_done1(struct atapi_request *request) { struct acd_softc *cdp = request->driver; cdp->changer_info->current_slot = cdp->slot; cdp->driver[cdp->changer_info->current_slot]->timestamp = time_second; wakeup(&cdp->changer_info); return 0; } static int acd_select_done(struct atapi_request *request) { struct acd_softc *cdp = request->driver; int8_t ccb[16] = { ATAPI_LOAD_UNLOAD, 0, 0, 0, 3, 0, 0, 0, cdp->slot, 0, 0, 0, 0, 0, 0, 0 }; /* load the wanted slot */ atapi_queue_cmd(cdp->device, ccb, NULL, 0, ATPR_F_AT_HEAD, 30, acd_select_done1, cdp); return 0; } static void acd_select_slot(struct acd_softc *cdp) { int8_t ccb[16] = { ATAPI_LOAD_UNLOAD, 0, 0, 0, 2, 0, 0, 0, cdp->changer_info->current_slot, 0, 0, 0, 0, 0, 0, 0 }; /* unload the current media from player */ atapi_queue_cmd(cdp->device, ccb, NULL, 0, ATPR_F_AT_HEAD, 30, acd_select_done, cdp); } static int acd_init_writer(struct acd_softc *cdp, int test_write) { int8_t ccb[16]; bzero(ccb, sizeof(ccb)); ccb[0] = ATAPI_REZERO; atapi_queue_cmd(cdp->device, ccb, NULL, 0, ATPR_F_QUIET, 60, NULL, NULL); ccb[0] = ATAPI_SEND_OPC_INFO; ccb[1] = 0x01; atapi_queue_cmd(cdp->device, ccb, NULL, 0, ATPR_F_QUIET, 30, NULL, NULL); return 0; } static int acd_fixate(struct acd_softc *cdp, int multisession) { int8_t ccb[16] = { ATAPI_CLOSE_TRACK, 0x01, 0x02, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; int timeout = 5*60*2; int error; struct write_param param; if ((error = acd_mode_sense(cdp, ATAPI_CDROM_WRITE_PARAMETERS_PAGE, (caddr_t)¶m, sizeof(param)))) return error; param.data_length = 0; if (multisession) param.session_type = CDR_SESS_MULTI; else param.session_type = CDR_SESS_NONE; if ((error = acd_mode_select(cdp, (caddr_t)¶m, param.page_length + 10))) return error; error = atapi_queue_cmd(cdp->device, ccb, NULL, 0, 0, 30, NULL, NULL); if (error) return error; /* some drives just return ready, wait for the expected fixate time */ if ((error = atapi_test_ready(cdp->device)) != EBUSY) { timeout = timeout / (cdp->cap.cur_write_speed / 177); tsleep(&error, 0, "acdfix", timeout * hz / 2); return atapi_test_ready(cdp->device); } while (timeout-- > 0) { if ((error = atapi_test_ready(cdp->device)) != EBUSY) return error; tsleep(&error, 0, "acdcld", hz/2); } return EIO; } static int acd_init_track(struct acd_softc *cdp, struct cdr_track *track) { struct write_param param; int error; if ((error = acd_mode_sense(cdp, ATAPI_CDROM_WRITE_PARAMETERS_PAGE, (caddr_t)¶m, sizeof(param)))) return error; param.data_length = 0; param.page_code = ATAPI_CDROM_WRITE_PARAMETERS_PAGE; param.page_length = 0x32; param.test_write = track->test_write ? 1 : 0; param.write_type = CDR_WTYPE_TRACK; param.session_type = CDR_SESS_NONE; param.fp = 0; param.packet_size = 0; if (cdp->cap.burnproof) param.burnproof = 1; switch (track->datablock_type) { case CDR_DB_RAW: if (track->preemp) param.track_mode = CDR_TMODE_AUDIO_PREEMP; else param.track_mode = CDR_TMODE_AUDIO; cdp->block_size = 2352; param.datablock_type = CDR_DB_RAW; param.session_format = CDR_SESS_CDROM; break; case CDR_DB_ROM_MODE1: cdp->block_size = 2048; param.track_mode = CDR_TMODE_DATA; param.datablock_type = CDR_DB_ROM_MODE1; param.session_format = CDR_SESS_CDROM; break; case CDR_DB_ROM_MODE2: cdp->block_size = 2336; param.track_mode = CDR_TMODE_DATA; param.datablock_type = CDR_DB_ROM_MODE2; param.session_format = CDR_SESS_CDROM; break; case CDR_DB_XA_MODE1: cdp->block_size = 2048; param.track_mode = CDR_TMODE_DATA; param.datablock_type = CDR_DB_XA_MODE1; param.session_format = CDR_SESS_CDROM_XA; break; case CDR_DB_XA_MODE2_F1: cdp->block_size = 2056; param.track_mode = CDR_TMODE_DATA; param.datablock_type = CDR_DB_XA_MODE2_F1; param.session_format = CDR_SESS_CDROM_XA; break; case CDR_DB_XA_MODE2_F2: cdp->block_size = 2324; param.track_mode = CDR_TMODE_DATA; param.datablock_type = CDR_DB_XA_MODE2_F2; param.session_format = CDR_SESS_CDROM_XA; break; case CDR_DB_XA_MODE2_MIX: cdp->block_size = 2332; param.track_mode = CDR_TMODE_DATA; param.datablock_type = CDR_DB_XA_MODE2_MIX; param.session_format = CDR_SESS_CDROM_XA; break; } acd_set_ioparm(cdp); return acd_mode_select(cdp, (caddr_t)¶m, param.page_length + 10); } static int acd_flush(struct acd_softc *cdp) { int8_t ccb[16] = { ATAPI_SYNCHRONIZE_CACHE, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; return atapi_queue_cmd(cdp->device, ccb, NULL, 0, ATPR_F_QUIET, 60, NULL, NULL); } static int acd_read_track_info(struct acd_softc *cdp, int32_t lba, struct acd_track_info *info) { int8_t ccb[16] = { ATAPI_READ_TRACK_INFO, 1, lba>>24, lba>>16, lba>>8, lba, 0, sizeof(*info)>>8, sizeof(*info), 0, 0, 0, 0, 0, 0, 0 }; int error; if ((error = atapi_queue_cmd(cdp->device, ccb, (caddr_t)info, sizeof(*info), ATPR_F_READ, 30, NULL, NULL))) return error; info->track_start_addr = ntohl(info->track_start_addr); info->next_writeable_addr = ntohl(info->next_writeable_addr); info->free_blocks = ntohl(info->free_blocks); info->fixed_packet_size = ntohl(info->fixed_packet_size); info->track_length = ntohl(info->track_length); return 0; } static int acd_get_progress(struct acd_softc *cdp, int *finished) { int8_t ccb[16] = { ATAPI_READ_CAPACITY, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; struct atapi_reqsense *sense = cdp->device->result; char tmp[8]; if (atapi_test_ready(cdp->device) != EBUSY) { if (atapi_queue_cmd(cdp->device, ccb, tmp, sizeof(tmp), ATPR_F_READ, 30, NULL, NULL) != EBUSY) { *finished = 100; return 0; } } if (sense->sksv) *finished = ((sense->sk_specific2 | (sense->sk_specific1 << 8)) * 100) / 65535; else *finished = 0; return 0; } static int acd_send_cue(struct acd_softc *cdp, struct cdr_cuesheet *cuesheet) { struct write_param param; int8_t ccb[16] = { ATAPI_SEND_CUE_SHEET, 0, 0, 0, 0, 0, cuesheet->len>>16, cuesheet->len>>8, cuesheet->len, 0, 0, 0, 0, 0, 0, 0 }; int8_t *buffer; int32_t error; #ifdef ACD_DEBUG int i; #endif if ((error = acd_mode_sense(cdp, ATAPI_CDROM_WRITE_PARAMETERS_PAGE, (caddr_t)¶m, sizeof(param)))) return error; param.data_length = 0; param.page_code = ATAPI_CDROM_WRITE_PARAMETERS_PAGE; param.page_length = 0x32; param.test_write = cuesheet->test_write ? 1 : 0; param.write_type = CDR_WTYPE_SESSION; param.session_type = cuesheet->session_type; param.fp = 0; param.packet_size = 0; param.track_mode = CDR_TMODE_AUDIO; param.datablock_type = CDR_DB_RAW; param.session_format = cuesheet->session_format; if (cdp->cap.burnproof) param.burnproof = 1; if ((error = acd_mode_select(cdp, (caddr_t)¶m, param.page_length + 10))) return error; buffer = malloc(cuesheet->len, M_ACD, M_WAITOK); if (!buffer) return ENOMEM; if ((error = copyin(cuesheet->entries, buffer, cuesheet->len))) return error; #ifdef ACD_DEBUG printf("acd: cuesheet lenght = %d\n", cuesheet->len); for (i=0; ilen; i++) if (i%8) printf(" %02x", buffer[i]); else printf("\n%02x", buffer[i]); printf("\n"); #endif error = atapi_queue_cmd(cdp->device, ccb, buffer, cuesheet->len, 0, 30, NULL, NULL); free(buffer, M_ACD); return error; } static int acd_report_key(struct acd_softc *cdp, struct dvd_authinfo *ai) { struct dvd_miscauth *d; u_int32_t lba = 0; int16_t length; int8_t ccb[16]; int error; /* this is common even for ai->format == DVD_INVALIDATE_AGID */ bzero(ccb, sizeof(ccb)); ccb[0] = ATAPI_REPORT_KEY; ccb[2] = (lba >> 24) & 0xff; ccb[3] = (lba >> 16) & 0xff; ccb[4] = (lba >> 8) & 0xff; ccb[5] = lba & 0xff; ccb[10] = (ai->agid << 6) | ai->format; switch (ai->format) { case DVD_REPORT_AGID: case DVD_REPORT_ASF: case DVD_REPORT_RPC: length = 8; break; case DVD_REPORT_KEY1: length = 12; break; case DVD_REPORT_TITLE_KEY: length = 12; lba = ai->lba; break; case DVD_REPORT_CHALLENGE: length = 16; break; case DVD_INVALIDATE_AGID: return(atapi_queue_cmd(cdp->device, ccb, NULL, 0, 0, 10, NULL, NULL)); default: return EINVAL; } ccb[8] = (length >> 8) & 0xff; ccb[9] = length & 0xff; d = malloc(length, M_ACD, M_WAITOK | M_ZERO); d->length = htons(length - 2); error = atapi_queue_cmd(cdp->device, ccb, (caddr_t)d, length, ATPR_F_READ, 10, NULL, NULL); if (error) { free(d, M_ACD); return(error); } switch (ai->format) { case DVD_REPORT_AGID: ai->agid = d->data[3] >> 6; break; case DVD_REPORT_CHALLENGE: bcopy(&d->data[0], &ai->keychal[0], 10); break; case DVD_REPORT_KEY1: bcopy(&d->data[0], &ai->keychal[0], 5); break; case DVD_REPORT_TITLE_KEY: ai->cpm = (d->data[0] >> 7); ai->cp_sec = (d->data[0] >> 6) & 0x1; ai->cgms = (d->data[0] >> 4) & 0x3; bcopy(&d->data[1], &ai->keychal[0], 5); break; case DVD_REPORT_ASF: ai->asf = d->data[3] & 1; break; case DVD_REPORT_RPC: ai->reg_type = (d->data[0] >> 6); ai->vend_rsts = (d->data[0] >> 3) & 0x7; ai->user_rsts = d->data[0] & 0x7; ai->region = d->data[1]; ai->rpc_scheme = d->data[2]; break; case DVD_INVALIDATE_AGID: /* not reached */ break; default: error = EINVAL; } free(d, M_ACD); return error; } static int acd_send_key(struct acd_softc *cdp, struct dvd_authinfo *ai) { struct dvd_miscauth *d; int16_t length; int8_t ccb[16]; int error; switch (ai->format) { case DVD_SEND_CHALLENGE: length = 16; d = malloc(length, M_ACD, M_WAITOK | M_ZERO); bcopy(ai->keychal, &d->data[0], 10); break; case DVD_SEND_KEY2: length = 12; d = malloc(length, M_ACD, M_WAITOK | M_ZERO); bcopy(&ai->keychal[0], &d->data[0], 5); break; case DVD_SEND_RPC: length = 8; d = malloc(length, M_ACD, M_WAITOK | M_ZERO); d->data[0] = ai->region; break; default: return EINVAL; } bzero(ccb, sizeof(ccb)); ccb[0] = ATAPI_SEND_KEY; ccb[8] = (length >> 8) & 0xff; ccb[9] = length & 0xff; ccb[10] = (ai->agid << 6) | ai->format; d->length = htons(length - 2); error = atapi_queue_cmd(cdp->device, ccb, (caddr_t)d, length, 0, 10, NULL, NULL); free(d, M_ACD); return error; } static int acd_read_structure(struct acd_softc *cdp, struct dvd_struct *s) { struct dvd_miscauth *d; u_int16_t length; int8_t ccb[16]; int error = 0; switch(s->format) { case DVD_STRUCT_PHYSICAL: length = 21; break; case DVD_STRUCT_COPYRIGHT: length = 8; break; case DVD_STRUCT_DISCKEY: length = 2052; break; case DVD_STRUCT_BCA: length = 192; break; case DVD_STRUCT_MANUFACT: length = 2052; break; case DVD_STRUCT_DDS: case DVD_STRUCT_PRERECORDED: case DVD_STRUCT_UNIQUEID: case DVD_STRUCT_LIST: case DVD_STRUCT_CMI: case DVD_STRUCT_RMD_LAST: case DVD_STRUCT_RMD_RMA: case DVD_STRUCT_DCB: return ENOSYS; default: return EINVAL; } d = malloc(length, M_ACD, M_WAITOK | M_ZERO); d->length = htons(length - 2); bzero(ccb, sizeof(ccb)); ccb[0] = ATAPI_READ_STRUCTURE; ccb[6] = s->layer_num; ccb[7] = s->format; ccb[8] = (length >> 8) & 0xff; ccb[9] = length & 0xff; ccb[10] = s->agid << 6; error = atapi_queue_cmd(cdp->device, ccb, (caddr_t)d, length, ATPR_F_READ, 30, NULL, NULL); if (error) { free(d, M_ACD); return error; } switch (s->format) { case DVD_STRUCT_PHYSICAL: { struct dvd_layer *layer = (struct dvd_layer *)&s->data[0]; layer->book_type = d->data[0] >> 4; layer->book_version = d->data[0] & 0xf; layer->disc_size = d->data[1] >> 4; layer->max_rate = d->data[1] & 0xf; layer->nlayers = (d->data[2] >> 5) & 3; layer->track_path = (d->data[2] >> 4) & 1; layer->layer_type = d->data[2] & 0xf; layer->linear_density = d->data[3] >> 4; layer->track_density = d->data[3] & 0xf; layer->start_sector = d->data[5] << 16 | d->data[6] << 8 | d->data[7]; layer->end_sector = d->data[9] << 16 | d->data[10] << 8 | d->data[11]; layer->end_sector_l0 = d->data[13] << 16 | d->data[14] << 8|d->data[15]; layer->bca = d->data[16] >> 7; break; } case DVD_STRUCT_COPYRIGHT: s->cpst = d->data[0]; s->rmi = d->data[0]; break; case DVD_STRUCT_DISCKEY: bcopy(&d->data[0], &s->data[0], 2048); break; case DVD_STRUCT_BCA: s->length = ntohs(d->length); bcopy(&d->data[0], &s->data[0], s->length); break; case DVD_STRUCT_MANUFACT: s->length = ntohs(d->length); bcopy(&d->data[0], &s->data[0], s->length); break; default: error = EINVAL; } free(d, M_ACD); return error; } static int acd_eject(struct acd_softc *cdp, int close) { int error; if ((error = acd_start_stop(cdp, 0)) == EBUSY) { if (!close) return 0; if ((error = acd_start_stop(cdp, 3))) return error; acd_read_toc(cdp); acd_prevent_allow(cdp, 1); cdp->flags |= F_LOCKED; return 0; } if (error) return error; if (close) return 0; acd_prevent_allow(cdp, 0); cdp->flags &= ~F_LOCKED; cdp->device->flags |= ATA_D_MEDIA_CHANGED; return acd_start_stop(cdp, 2); } static int acd_blank(struct acd_softc *cdp, int blanktype) { int8_t ccb[16] = { ATAPI_BLANK, 0x10 | (blanktype & 0x7), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; cdp->device->flags |= ATA_D_MEDIA_CHANGED; return atapi_queue_cmd(cdp->device, ccb, NULL, 0, 0, 30, NULL, NULL); } static int acd_prevent_allow(struct acd_softc *cdp, int lock) { int8_t ccb[16] = { ATAPI_PREVENT_ALLOW, 0, 0, 0, lock, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; return atapi_queue_cmd(cdp->device, ccb, NULL, 0, 0, 30, NULL, NULL); } static int acd_start_stop(struct acd_softc *cdp, int start) { int8_t ccb[16] = { ATAPI_START_STOP, 0, 0, 0, start, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; return atapi_queue_cmd(cdp->device, ccb, NULL, 0, 0, 30, NULL, NULL); } static int acd_pause_resume(struct acd_softc *cdp, int pause) { int8_t ccb[16] = { ATAPI_PAUSE, 0, 0, 0, 0, 0, 0, 0, pause, 0, 0, 0, 0, 0, 0, 0 }; return atapi_queue_cmd(cdp->device, ccb, NULL, 0, 0, 30, NULL, NULL); } static int acd_mode_sense(struct acd_softc *cdp, int page, caddr_t pagebuf, int pagesize) { int8_t ccb[16] = { ATAPI_MODE_SENSE_BIG, 0, page, 0, 0, 0, 0, pagesize>>8, pagesize, 0, 0, 0, 0, 0, 0, 0 }; int error; error = atapi_queue_cmd(cdp->device, ccb, pagebuf, pagesize, ATPR_F_READ, 10, NULL, NULL); #ifdef ACD_DEBUG atapi_dump("acd: mode sense ", pagebuf, pagesize); #endif return error; } static int acd_mode_select(struct acd_softc *cdp, caddr_t pagebuf, int pagesize) { int8_t ccb[16] = { ATAPI_MODE_SELECT_BIG, 0x10, 0, 0, 0, 0, 0, pagesize>>8, pagesize, 0, 0, 0, 0, 0, 0, 0 }; #ifdef ACD_DEBUG ata_prtdev(cdp->device, "modeselect pagesize=%d\n", pagesize); atapi_dump("mode select ", pagebuf, pagesize); #endif return atapi_queue_cmd(cdp->device, ccb, pagebuf, pagesize, 0, 30, NULL, NULL); } static int acd_set_speed(struct acd_softc *cdp, int rdspeed, int wrspeed) { int8_t ccb[16] = { ATAPI_SET_SPEED, 0, rdspeed >> 8, rdspeed, wrspeed >> 8, wrspeed, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; int error; error = atapi_queue_cmd(cdp->device, ccb, NULL, 0, 0, 30, NULL, NULL); if (!error) acd_get_cap(cdp); return error; } static void acd_get_cap(struct acd_softc *cdp) { int retry = 5; /* get drive capabilities, some drives needs this repeated */ while (retry-- && acd_mode_sense(cdp, ATAPI_CDROM_CAP_PAGE, (caddr_t)&cdp->cap, sizeof(cdp->cap))) cdp->cap.max_read_speed = ntohs(cdp->cap.max_read_speed); cdp->cap.cur_read_speed = ntohs(cdp->cap.cur_read_speed); cdp->cap.max_write_speed = ntohs(cdp->cap.max_write_speed); cdp->cap.cur_write_speed = max(ntohs(cdp->cap.cur_write_speed), 177); cdp->cap.max_vol_levels = ntohs(cdp->cap.max_vol_levels); cdp->cap.buf_size = ntohs(cdp->cap.buf_size); }