/* * Copyright (c) 1994 Adam Glass and Charles Hannum. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Adam Glass and Charles * Hannum. * 4. The names of the authors may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "opt_sysvipc.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static MALLOC_DEFINE(M_SHM, "shm", "SVID compatible shared memory segments"); static int shmget_allocate_segment (struct proc *p, struct shmget_args *uap, int mode); static int shmget_existing (struct proc *p, struct shmget_args *uap, int mode, int segnum); #define SHMSEG_FREE 0x0200 #define SHMSEG_REMOVED 0x0400 #define SHMSEG_ALLOCATED 0x0800 #define SHMSEG_WANTED 0x1000 static int shm_last_free, shm_committed, shmalloced; int shm_nused; static struct shmid_ds *shmsegs; static struct lwkt_token shm_token = LWKT_TOKEN_INITIALIZER(shm_token); struct shm_handle { /* vm_offset_t kva; */ vm_object_t shm_object; }; struct shmmap_state { vm_offset_t va; int shmid; }; static void shm_deallocate_segment (struct shmid_ds *); static int shm_find_segment_by_key (key_t); static struct shmid_ds *shm_find_segment_by_shmid (int); static int shm_delete_mapping (struct vmspace *vm, struct shmmap_state *); static void shmrealloc (void); static void shminit (void *); /* * Tuneable values */ #ifndef SHMMIN #define SHMMIN 1 #endif #ifndef SHMMNI #define SHMMNI 512 #endif #ifndef SHMSEG #define SHMSEG 1024 #endif struct shminfo shminfo = { 0, SHMMIN, SHMMNI, SHMSEG, 0 }; /* * allow-removed Allow a shared memory segment to be attached by its shmid * even after it has been deleted, as long as it was still * being referenced by someone. This is a trick used by * chrome and other applications to avoid leaving shm * segments hanging around after the application is killed * or seg-faults unexpectedly. * * use-phys Shared memory segments are to use physical memory by * default, which allows the kernel to optimize (remove) * pv_entry management structures for the related PTEs and * prevents paging. This has distinctly different and * usually desireable characteristics verses mmap()ing * anonymous memory. */ static int shm_allow_removed = 1; static int shm_use_phys = 1; TUNABLE_LONG("kern.ipc.shmmin", &shminfo.shmmin); TUNABLE_LONG("kern.ipc.shmmni", &shminfo.shmmni); TUNABLE_LONG("kern.ipc.shmseg", &shminfo.shmseg); TUNABLE_LONG("kern.ipc.shmmaxpgs", &shminfo.shmall); TUNABLE_INT("kern.ipc.shm_use_phys", &shm_use_phys); SYSCTL_LONG(_kern_ipc, OID_AUTO, shmmax, CTLFLAG_RW, &shminfo.shmmax, 0, "Max shared memory segment size"); SYSCTL_LONG(_kern_ipc, OID_AUTO, shmmin, CTLFLAG_RW, &shminfo.shmmin, 0, "Min shared memory segment size"); SYSCTL_LONG(_kern_ipc, OID_AUTO, shmmni, CTLFLAG_RD, &shminfo.shmmni, 0, "Max number of shared memory identifiers"); SYSCTL_LONG(_kern_ipc, OID_AUTO, shmseg, CTLFLAG_RW, &shminfo.shmseg, 0, "Max shared memory segments per process"); SYSCTL_LONG(_kern_ipc, OID_AUTO, shmall, CTLFLAG_RW, &shminfo.shmall, 0, "Max pages of shared memory"); SYSCTL_INT(_kern_ipc, OID_AUTO, shm_use_phys, CTLFLAG_RW, &shm_use_phys, 0, "Use phys pager allocation instead of swap pager allocation"); SYSCTL_INT(_kern_ipc, OID_AUTO, shm_allow_removed, CTLFLAG_RW, &shm_allow_removed, 0, "Enable/Disable attachment to attached segments marked for removal"); static int shm_find_segment_by_key(key_t key) { int i; for (i = 0; i < shmalloced; i++) { if ((shmsegs[i].shm_perm.mode & SHMSEG_ALLOCATED) && shmsegs[i].shm_perm.key == key) return i; } return -1; } static struct shmid_ds * shm_find_segment_by_shmid(int shmid) { int segnum; struct shmid_ds *shmseg; segnum = IPCID_TO_IX(shmid); if (segnum < 0 || segnum >= shmalloced) return NULL; shmseg = &shmsegs[segnum]; if ((shmseg->shm_perm.mode & SHMSEG_ALLOCATED) == 0 || (!shm_allow_removed && (shmseg->shm_perm.mode & SHMSEG_REMOVED) != 0) || shmseg->shm_perm.seq != IPCID_TO_SEQ(shmid)) { return NULL; } return shmseg; } static void shm_deallocate_segment(struct shmid_ds *shmseg) { struct shm_handle *shm_handle; size_t size; shm_handle = shmseg->shm_internal; vm_object_deallocate(shm_handle->shm_object); kfree((caddr_t)shm_handle, M_SHM); shmseg->shm_internal = NULL; size = round_page(shmseg->shm_segsz); shm_committed -= btoc(size); shm_nused--; shmseg->shm_perm.mode = SHMSEG_FREE; } static int shm_delete_mapping(struct vmspace *vm, struct shmmap_state *shmmap_s) { struct shmid_ds *shmseg; int segnum, result; size_t size; segnum = IPCID_TO_IX(shmmap_s->shmid); shmseg = &shmsegs[segnum]; size = round_page(shmseg->shm_segsz); result = vm_map_remove(&vm->vm_map, shmmap_s->va, shmmap_s->va + size); if (result != KERN_SUCCESS) return EINVAL; shmmap_s->shmid = -1; shmseg->shm_dtime = time_second; if ((--shmseg->shm_nattch <= 0) && (shmseg->shm_perm.mode & SHMSEG_REMOVED)) { shm_deallocate_segment(shmseg); shm_last_free = segnum; } return 0; } /* * MPALMOSTSAFE */ int sys_shmdt(struct shmdt_args *uap) { struct thread *td = curthread; struct proc *p = td->td_proc; struct shmmap_state *shmmap_s; long i; int error; if (!jail_sysvipc_allowed && td->td_ucred->cr_prison != NULL) return (ENOSYS); lwkt_gettoken(&shm_token); shmmap_s = (struct shmmap_state *)p->p_vmspace->vm_shm; if (shmmap_s == NULL) { error = EINVAL; goto done; } for (i = 0; i < shminfo.shmseg; i++, shmmap_s++) { if (shmmap_s->shmid != -1 && shmmap_s->va == (vm_offset_t)uap->shmaddr) break; } if (i == shminfo.shmseg) error = EINVAL; else error = shm_delete_mapping(p->p_vmspace, shmmap_s); done: lwkt_reltoken(&shm_token); return (error); } /* * MPALMOSTSAFE */ int sys_shmat(struct shmat_args *uap) { struct thread *td = curthread; struct proc *p = td->td_proc; int error, flags; long i; struct shmid_ds *shmseg; struct shmmap_state *shmmap_s = NULL; struct shm_handle *shm_handle; vm_offset_t attach_va; vm_prot_t prot; vm_size_t size; vm_size_t align; int rv; if (!jail_sysvipc_allowed && td->td_ucred->cr_prison != NULL) return (ENOSYS); lwkt_gettoken(&shm_token); again: shmmap_s = (struct shmmap_state *)p->p_vmspace->vm_shm; if (shmmap_s == NULL) { size = shminfo.shmseg * sizeof(struct shmmap_state); shmmap_s = kmalloc(size, M_SHM, M_WAITOK); for (i = 0; i < shminfo.shmseg; i++) shmmap_s[i].shmid = -1; if (p->p_vmspace->vm_shm != NULL) { kfree(shmmap_s, M_SHM); goto again; } p->p_vmspace->vm_shm = (caddr_t)shmmap_s; } shmseg = shm_find_segment_by_shmid(uap->shmid); if (shmseg == NULL) { error = EINVAL; goto done; } error = ipcperm(p, &shmseg->shm_perm, (uap->shmflg & SHM_RDONLY) ? IPC_R : IPC_R|IPC_W); if (error) goto done; for (i = 0; i < shminfo.shmseg; i++) { if (shmmap_s->shmid == -1) break; shmmap_s++; } if (i >= shminfo.shmseg) { error = EMFILE; goto done; } size = round_page(shmseg->shm_segsz); #ifdef VM_PROT_READ_IS_EXEC prot = VM_PROT_READ | VM_PROT_EXECUTE; #else prot = VM_PROT_READ; #endif if ((uap->shmflg & SHM_RDONLY) == 0) prot |= VM_PROT_WRITE; flags = MAP_ANON | MAP_SHARED; if (uap->shmaddr) { flags |= MAP_FIXED; if (uap->shmflg & SHM_RND) { attach_va = (vm_offset_t)uap->shmaddr & ~(SHMLBA-1); } else if (((vm_offset_t)uap->shmaddr & (SHMLBA-1)) == 0) { attach_va = (vm_offset_t)uap->shmaddr; } else { error = EINVAL; goto done; } } else { /* * This is just a hint to vm_map_find() about where to put it. */ attach_va = round_page((vm_offset_t)p->p_vmspace->vm_taddr + maxtsiz + maxdsiz); } /* * Handle alignment. For large memory maps it is possible * that the MMU can optimize the page table so align anything * that is a multiple of SEG_SIZE to SEG_SIZE. */ if ((flags & MAP_FIXED) == 0 && (size & SEG_MASK) == 0) align = SEG_SIZE; else align = PAGE_SIZE; shm_handle = shmseg->shm_internal; vm_object_hold(shm_handle->shm_object); vm_object_chain_wait(shm_handle->shm_object, 0); vm_object_reference_locked(shm_handle->shm_object); rv = vm_map_find(&p->p_vmspace->vm_map, shm_handle->shm_object, NULL, 0, &attach_va, size, align, ((flags & MAP_FIXED) ? 0 : 1), VM_MAPTYPE_NORMAL, VM_SUBSYS_SHMEM, prot, prot, 0); vm_object_drop(shm_handle->shm_object); if (rv != KERN_SUCCESS) { vm_object_deallocate(shm_handle->shm_object); error = ENOMEM; goto done; } vm_map_inherit(&p->p_vmspace->vm_map, attach_va, attach_va + size, VM_INHERIT_SHARE); KKASSERT(shmmap_s->shmid == -1); shmmap_s->va = attach_va; shmmap_s->shmid = uap->shmid; shmseg->shm_lpid = p->p_pid; shmseg->shm_atime = time_second; shmseg->shm_nattch++; uap->sysmsg_resultp = (void *)attach_va; error = 0; done: lwkt_reltoken(&shm_token); return error; } /* * MPALMOSTSAFE */ int sys_shmctl(struct shmctl_args *uap) { struct thread *td = curthread; struct proc *p = td->td_proc; int error; struct shmid_ds inbuf; struct shmid_ds *shmseg; if (!jail_sysvipc_allowed && td->td_ucred->cr_prison != NULL) return (ENOSYS); lwkt_gettoken(&shm_token); shmseg = shm_find_segment_by_shmid(uap->shmid); if (shmseg == NULL) { error = EINVAL; goto done; } switch (uap->cmd) { case IPC_STAT: error = ipcperm(p, &shmseg->shm_perm, IPC_R); if (error == 0) error = copyout(shmseg, uap->buf, sizeof(inbuf)); break; case IPC_SET: error = ipcperm(p, &shmseg->shm_perm, IPC_M); if (error == 0) error = copyin(uap->buf, &inbuf, sizeof(inbuf)); if (error == 0) { shmseg->shm_perm.uid = inbuf.shm_perm.uid; shmseg->shm_perm.gid = inbuf.shm_perm.gid; shmseg->shm_perm.mode = (shmseg->shm_perm.mode & ~ACCESSPERMS) | (inbuf.shm_perm.mode & ACCESSPERMS); shmseg->shm_ctime = time_second; } break; case IPC_RMID: error = ipcperm(p, &shmseg->shm_perm, IPC_M); if (error == 0) { shmseg->shm_perm.key = IPC_PRIVATE; shmseg->shm_perm.mode |= SHMSEG_REMOVED; if (shmseg->shm_nattch <= 0) { shm_deallocate_segment(shmseg); shm_last_free = IPCID_TO_IX(uap->shmid); } } break; #if 0 case SHM_LOCK: case SHM_UNLOCK: #endif default: error = EINVAL; break; } done: lwkt_reltoken(&shm_token); return error; } static int shmget_existing(struct proc *p, struct shmget_args *uap, int mode, int segnum) { struct shmid_ds *shmseg; int error; shmseg = &shmsegs[segnum]; if (shmseg->shm_perm.mode & SHMSEG_REMOVED) { /* * This segment is in the process of being allocated. Wait * until it's done, and look the key up again (in case the * allocation failed or it was freed). */ shmseg->shm_perm.mode |= SHMSEG_WANTED; error = tsleep((caddr_t)shmseg, PCATCH, "shmget", 0); if (error) return error; return EAGAIN; } if ((uap->shmflg & (IPC_CREAT | IPC_EXCL)) == (IPC_CREAT | IPC_EXCL)) return EEXIST; error = ipcperm(p, &shmseg->shm_perm, mode); if (error) return error; if (uap->size && uap->size > shmseg->shm_segsz) return EINVAL; uap->sysmsg_result = IXSEQ_TO_IPCID(segnum, shmseg->shm_perm); return 0; } static int shmget_allocate_segment(struct proc *p, struct shmget_args *uap, int mode) { int i, segnum, shmid; size_t size; struct ucred *cred = p->p_ucred; struct shmid_ds *shmseg; struct shm_handle *shm_handle; if (uap->size < shminfo.shmmin || uap->size > shminfo.shmmax) return EINVAL; if (shm_nused >= shminfo.shmmni) /* any shmids left? */ return ENOSPC; size = round_page(uap->size); if (shm_committed + btoc(size) > shminfo.shmall) return ENOMEM; if (shm_last_free < 0) { shmrealloc(); /* maybe expand the shmsegs[] array */ for (i = 0; i < shmalloced; i++) { if (shmsegs[i].shm_perm.mode & SHMSEG_FREE) break; } if (i == shmalloced) return ENOSPC; segnum = i; } else { segnum = shm_last_free; shm_last_free = -1; } shmseg = &shmsegs[segnum]; /* * In case we sleep in malloc(), mark the segment present but deleted * so that noone else tries to create the same key. */ shmseg->shm_perm.mode = SHMSEG_ALLOCATED | SHMSEG_REMOVED; shmseg->shm_perm.key = uap->key; shmseg->shm_perm.seq = (shmseg->shm_perm.seq + 1) & 0x7fff; shm_handle = kmalloc(sizeof(struct shm_handle), M_SHM, M_WAITOK); shmid = IXSEQ_TO_IPCID(segnum, shmseg->shm_perm); /* * We make sure that we have allocated a pager before we need * to. */ if (shm_use_phys) { shm_handle->shm_object = phys_pager_alloc(NULL, size, VM_PROT_DEFAULT, 0); } else { shm_handle->shm_object = swap_pager_alloc(NULL, size, VM_PROT_DEFAULT, 0); } vm_object_clear_flag(shm_handle->shm_object, OBJ_ONEMAPPING); vm_object_set_flag(shm_handle->shm_object, OBJ_NOSPLIT); shmseg->shm_internal = shm_handle; shmseg->shm_perm.cuid = shmseg->shm_perm.uid = cred->cr_uid; shmseg->shm_perm.cgid = shmseg->shm_perm.gid = cred->cr_gid; shmseg->shm_perm.mode = (shmseg->shm_perm.mode & SHMSEG_WANTED) | (mode & ACCESSPERMS) | SHMSEG_ALLOCATED; shmseg->shm_segsz = uap->size; shmseg->shm_cpid = p->p_pid; shmseg->shm_lpid = shmseg->shm_nattch = 0; shmseg->shm_atime = shmseg->shm_dtime = 0; shmseg->shm_ctime = time_second; shm_committed += btoc(size); shm_nused++; /* * If a physical mapping is desired and we have a ton of free pages * we pre-allocate the pages here in order to avoid on-the-fly * allocation later. This has a big effect on database warm-up * times since DFly supports concurrent page faults coming from the * same VM object for pages which already exist. * * This can hang the kernel for a while so only do it if shm_use_phys * is set to 2 or higher. */ if (shm_use_phys > 1) { vm_pindex_t pi, pmax; vm_page_t m; pmax = round_page(shmseg->shm_segsz) >> PAGE_SHIFT; vm_object_hold(shm_handle->shm_object); if (pmax > vmstats.v_free_count) pmax = vmstats.v_free_count; for (pi = 0; pi < pmax; ++pi) { m = vm_page_grab(shm_handle->shm_object, pi, VM_ALLOC_SYSTEM | VM_ALLOC_NULL_OK | VM_ALLOC_ZERO); if (m == NULL) break; vm_pager_get_page(shm_handle->shm_object, &m, 1); vm_page_activate(m); vm_page_wakeup(m); lwkt_yield(); } vm_object_drop(shm_handle->shm_object); } if (shmseg->shm_perm.mode & SHMSEG_WANTED) { /* * Somebody else wanted this key while we were asleep. Wake * them up now. */ shmseg->shm_perm.mode &= ~SHMSEG_WANTED; wakeup((caddr_t)shmseg); } uap->sysmsg_result = shmid; return 0; } /* * MPALMOSTSAFE */ int sys_shmget(struct shmget_args *uap) { struct thread *td = curthread; struct proc *p = td->td_proc; int segnum, mode, error; if (!jail_sysvipc_allowed && td->td_ucred->cr_prison != NULL) return (ENOSYS); mode = uap->shmflg & ACCESSPERMS; lwkt_gettoken(&shm_token); if (uap->key != IPC_PRIVATE) { again: segnum = shm_find_segment_by_key(uap->key); if (segnum >= 0) { error = shmget_existing(p, uap, mode, segnum); if (error == EAGAIN) goto again; goto done; } if ((uap->shmflg & IPC_CREAT) == 0) { error = ENOENT; goto done; } } error = shmget_allocate_segment(p, uap, mode); done: lwkt_reltoken(&shm_token); return (error); } void shmfork(struct proc *p1, struct proc *p2) { struct shmmap_state *shmmap_s; size_t size; int i; lwkt_gettoken(&shm_token); size = shminfo.shmseg * sizeof(struct shmmap_state); shmmap_s = kmalloc(size, M_SHM, M_WAITOK); bcopy((caddr_t)p1->p_vmspace->vm_shm, (caddr_t)shmmap_s, size); p2->p_vmspace->vm_shm = (caddr_t)shmmap_s; for (i = 0; i < shminfo.shmseg; i++, shmmap_s++) { if (shmmap_s->shmid != -1) shmsegs[IPCID_TO_IX(shmmap_s->shmid)].shm_nattch++; } lwkt_reltoken(&shm_token); } void shmexit(struct vmspace *vm) { struct shmmap_state *base, *shm; int i; if ((base = (struct shmmap_state *)vm->vm_shm) != NULL) { vm->vm_shm = NULL; lwkt_gettoken(&shm_token); for (i = 0, shm = base; i < shminfo.shmseg; i++, shm++) { if (shm->shmid != -1) shm_delete_mapping(vm, shm); } kfree(base, M_SHM); lwkt_reltoken(&shm_token); } } static void shmrealloc(void) { int i; struct shmid_ds *newsegs; if (shmalloced >= shminfo.shmmni) return; newsegs = kmalloc(shminfo.shmmni * sizeof(*newsegs), M_SHM, M_WAITOK); for (i = 0; i < shmalloced; i++) bcopy(&shmsegs[i], &newsegs[i], sizeof(newsegs[0])); for (; i < shminfo.shmmni; i++) { shmsegs[i].shm_perm.mode = SHMSEG_FREE; shmsegs[i].shm_perm.seq = 0; } kfree(shmsegs, M_SHM); shmsegs = newsegs; shmalloced = shminfo.shmmni; } static void shminit(void *dummy) { int i; /* * If not overridden by a tunable set the maximum shm to * 2/3 of main memory. */ if (shminfo.shmall == 0) shminfo.shmall = (size_t)vmstats.v_page_count * 2 / 3; shminfo.shmmax = shminfo.shmall * PAGE_SIZE; shmalloced = shminfo.shmmni; shmsegs = kmalloc(shmalloced * sizeof(shmsegs[0]), M_SHM, M_WAITOK); for (i = 0; i < shmalloced; i++) { shmsegs[i].shm_perm.mode = SHMSEG_FREE; shmsegs[i].shm_perm.seq = 0; } shm_last_free = 0; shm_nused = 0; shm_committed = 0; } SYSINIT(sysv_shm, SI_SUB_SYSV_SHM, SI_ORDER_FIRST, shminit, NULL);