/* * Copyright (c) 1989, 1993 * The Regents of the University of California. All rights reserved. * (c) UNIX System Laboratories, Inc. * All or some portions of this file are derived from material licensed * to the University of California by American Telephone and Telegraph * Co. or Unix System Laboratories, Inc. and are reproduced herein with * the permission of UNIX System Laboratories, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)vfs_subr.c 8.31 (Berkeley) 5/26/95 * $FreeBSD: src/sys/kern/vfs_subr.c,v 1.249.2.30 2003/04/04 20:35:57 tegge Exp $ */ /* * External virtual filesystem routines */ #include "opt_ddb.h" #include "opt_inet.h" #include "opt_inet6.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static MALLOC_DEFINE(M_NETCRED, "Export Host", "Export host address structure"); int numvnodes; SYSCTL_INT(_debug, OID_AUTO, numvnodes, CTLFLAG_RD, &numvnodes, 0, "Number of vnodes allocated"); int verbose_reclaims; SYSCTL_INT(_debug, OID_AUTO, verbose_reclaims, CTLFLAG_RD, &verbose_reclaims, 0, "Output filename of reclaimed vnode(s)"); enum vtype iftovt_tab[16] = { VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON, VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VBAD, }; int vttoif_tab[9] = { 0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK, S_IFSOCK, S_IFIFO, S_IFMT, }; static int reassignbufcalls; SYSCTL_INT(_vfs, OID_AUTO, reassignbufcalls, CTLFLAG_RW, &reassignbufcalls, 0, "Number of times buffers have been reassigned to the proper list"); static int check_buf_overlap = 2; /* invasive check */ SYSCTL_INT(_vfs, OID_AUTO, check_buf_overlap, CTLFLAG_RW, &check_buf_overlap, 0, "Enable overlapping buffer checks"); int nfs_mount_type = -1; static struct lwkt_token spechash_token; struct nfs_public nfs_pub; /* publicly exported FS */ int maxvnodes; SYSCTL_INT(_kern, KERN_MAXVNODES, maxvnodes, CTLFLAG_RW, &maxvnodes, 0, "Maximum number of vnodes"); static struct radix_node_head *vfs_create_addrlist_af(int af, struct netexport *nep); static void vfs_free_addrlist (struct netexport *nep); static int vfs_free_netcred (struct radix_node *rn, void *w); static void vfs_free_addrlist_af (struct radix_node_head **prnh); static int vfs_hang_addrlist (struct mount *mp, struct netexport *nep, const struct export_args *argp); int prtactive = 0; /* 1 => print out reclaim of active vnodes */ /* * Red black tree functions */ static int rb_buf_compare(struct buf *b1, struct buf *b2); RB_GENERATE2(buf_rb_tree, buf, b_rbnode, rb_buf_compare, off_t, b_loffset); RB_GENERATE2(buf_rb_hash, buf, b_rbhash, rb_buf_compare, off_t, b_loffset); static int rb_buf_compare(struct buf *b1, struct buf *b2) { if (b1->b_loffset < b2->b_loffset) return(-1); if (b1->b_loffset > b2->b_loffset) return(1); return(0); } /* * Initialize the vnode management data structures. * * Called from vfsinit() */ void vfs_subr_init(void) { int factor1; int factor2; /* * Desiredvnodes is kern.maxvnodes. We want to scale it * according to available system memory but we may also have * to limit it based on available KVM. * * WARNING! For machines with 64-256M of ram we have to be sure * that the default limit scales down well due to HAMMER * taking up significantly more memory per-vnode vs UFS. * We want around ~5800 on a 128M machine. * * WARNING! Now that KVM is substantially larger (e.g. 8TB+), * also limit maxvnodes based on a 128GB metric. This * gives us something like ~3 millon vnodes. sysctl * can be used to increase it further if desired. * * For disk cachhing purposes, filesystems like HAMMER1 * and HAMMER2 will or can be told to cache file data * via the block device instead of excessively in vnodes. */ factor1 = 25 * (sizeof(struct vm_object) + sizeof(struct vnode)); factor2 = 30 * (sizeof(struct vm_object) + sizeof(struct vnode)); maxvnodes = imin((int64_t)vmstats.v_page_count * PAGE_SIZE / factor1, KvaSize / factor2); maxvnodes = imax(maxvnodes, maxproc * 8); maxvnodes = imin(maxvnodes, 64LL*1024*1024*1024 / factor2); lwkt_token_init(&spechash_token, "spechash"); } /* * Knob to control the precision of file timestamps: * * 0 = seconds only; nanoseconds zeroed. * 1 = seconds and nanoseconds, accurate within 1/HZ. * 2 = seconds and nanoseconds, truncated to microseconds. * >=3 = seconds and nanoseconds, maximum precision. */ enum { TSP_SEC, TSP_HZ, TSP_USEC, TSP_NSEC }; static int timestamp_precision = TSP_SEC; SYSCTL_INT(_vfs, OID_AUTO, timestamp_precision, CTLFLAG_RW, ×tamp_precision, 0, "Precision of file timestamps"); /* * Get a current timestamp. * * MPSAFE */ void vfs_timestamp(struct timespec *tsp) { struct timeval tv; switch (timestamp_precision) { case TSP_SEC: tsp->tv_sec = time_second; tsp->tv_nsec = 0; break; case TSP_HZ: getnanotime(tsp); break; case TSP_USEC: microtime(&tv); TIMEVAL_TO_TIMESPEC(&tv, tsp); break; case TSP_NSEC: default: nanotime(tsp); break; } } /* * Set vnode attributes to VNOVAL */ void vattr_null(struct vattr *vap) { vap->va_type = VNON; vap->va_size = VNOVAL; vap->va_bytes = VNOVAL; vap->va_mode = VNOVAL; vap->va_nlink = VNOVAL; vap->va_uid = VNOVAL; vap->va_gid = VNOVAL; vap->va_fsid = VNOVAL; vap->va_fileid = VNOVAL; vap->va_blocksize = VNOVAL; vap->va_rmajor = VNOVAL; vap->va_rminor = VNOVAL; vap->va_atime.tv_sec = VNOVAL; vap->va_atime.tv_nsec = VNOVAL; vap->va_mtime.tv_sec = VNOVAL; vap->va_mtime.tv_nsec = VNOVAL; vap->va_ctime.tv_sec = VNOVAL; vap->va_ctime.tv_nsec = VNOVAL; vap->va_flags = VNOVAL; vap->va_gen = VNOVAL; vap->va_vaflags = 0; /* va_*_uuid fields are only valid if related flags are set */ } /* * Flush out and invalidate all buffers associated with a vnode. * * vp must be locked. */ static int vinvalbuf_bp(struct buf *bp, void *data); struct vinvalbuf_bp_info { struct vnode *vp; int slptimeo; int lkflags; int flags; int clean; }; int vinvalbuf(struct vnode *vp, int flags, int slpflag, int slptimeo) { struct vinvalbuf_bp_info info; vm_object_t object; int error; lwkt_gettoken(&vp->v_token); /* * If we are being asked to save, call fsync to ensure that the inode * is updated. */ if (flags & V_SAVE) { error = bio_track_wait(&vp->v_track_write, slpflag, slptimeo); if (error) goto done; if (!RB_EMPTY(&vp->v_rbdirty_tree)) { if ((error = VOP_FSYNC(vp, MNT_WAIT, 0)) != 0) goto done; #if 0 /* * Dirty bufs may be left or generated via races * in circumstances where vinvalbuf() is called on * a vnode not undergoing reclamation. Only * panic if we are trying to reclaim the vnode. */ if ((vp->v_flag & VRECLAIMED) && (bio_track_active(&vp->v_track_write) || !RB_EMPTY(&vp->v_rbdirty_tree))) { panic("vinvalbuf: dirty bufs"); } #endif } } info.slptimeo = slptimeo; info.lkflags = LK_EXCLUSIVE | LK_SLEEPFAIL; if (slpflag & PCATCH) info.lkflags |= LK_PCATCH; info.flags = flags; info.vp = vp; /* * Flush the buffer cache until nothing is left, wait for all I/O * to complete. At least one pass is required. We might block * in the pip code so we have to re-check. Order is important. */ do { /* * Flush buffer cache */ if (!RB_EMPTY(&vp->v_rbclean_tree)) { info.clean = 1; error = RB_SCAN(buf_rb_tree, &vp->v_rbclean_tree, NULL, vinvalbuf_bp, &info); } if (!RB_EMPTY(&vp->v_rbdirty_tree)) { info.clean = 0; error = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL, vinvalbuf_bp, &info); } /* * Wait for I/O completion. */ bio_track_wait(&vp->v_track_write, 0, 0); if ((object = vp->v_object) != NULL) refcount_wait(&object->paging_in_progress, "vnvlbx"); } while (bio_track_active(&vp->v_track_write) || !RB_EMPTY(&vp->v_rbclean_tree) || !RB_EMPTY(&vp->v_rbdirty_tree)); /* * Destroy the copy in the VM cache, too. */ if ((object = vp->v_object) != NULL) { vm_object_page_remove(object, 0, 0, (flags & V_SAVE) ? TRUE : FALSE); } if (!RB_EMPTY(&vp->v_rbdirty_tree) || !RB_EMPTY(&vp->v_rbclean_tree)) panic("vinvalbuf: flush failed"); if (!RB_EMPTY(&vp->v_rbhash_tree)) panic("vinvalbuf: flush failed, buffers still present"); error = 0; done: lwkt_reltoken(&vp->v_token); return (error); } static int vinvalbuf_bp(struct buf *bp, void *data) { struct vinvalbuf_bp_info *info = data; int error; if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) { atomic_add_int(&bp->b_refs, 1); error = BUF_TIMELOCK(bp, info->lkflags, "vinvalbuf", info->slptimeo); atomic_subtract_int(&bp->b_refs, 1); if (error == 0) { BUF_UNLOCK(bp); error = ENOLCK; } if (error == ENOLCK) return(0); return (-error); } KKASSERT(bp->b_vp == info->vp); /* * Must check clean/dirty status after successfully locking as * it may race. */ if ((info->clean && (bp->b_flags & B_DELWRI)) || (info->clean == 0 && (bp->b_flags & B_DELWRI) == 0)) { BUF_UNLOCK(bp); return(0); } /* * NOTE: NO B_LOCKED CHECK. Also no buf_checkwrite() * check. This code will write out the buffer, period. */ bremfree(bp); if (((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) && (info->flags & V_SAVE)) { cluster_awrite(bp); } else if (info->flags & V_SAVE) { /* * Cannot set B_NOCACHE on a clean buffer as this will * destroy the VM backing store which might actually * be dirty (and unsynchronized). */ bp->b_flags |= (B_INVAL | B_RELBUF); brelse(bp); } else { bp->b_flags |= (B_INVAL | B_NOCACHE | B_RELBUF); brelse(bp); } return(0); } /* * Truncate a file's buffer and pages to a specified length. This * is in lieu of the old vinvalbuf mechanism, which performed unneeded * sync activity. * * The vnode must be locked. */ static int vtruncbuf_bp_trunc_cmp(struct buf *bp, void *data); static int vtruncbuf_bp_trunc(struct buf *bp, void *data); static int vtruncbuf_bp_metasync_cmp(struct buf *bp, void *data); static int vtruncbuf_bp_metasync(struct buf *bp, void *data); struct vtruncbuf_info { struct vnode *vp; off_t truncloffset; int clean; }; int vtruncbuf(struct vnode *vp, off_t length, int blksize) { struct vtruncbuf_info info; const char *filename; int count; /* * Round up to the *next* block, then destroy the buffers in question. * Since we are only removing some of the buffers we must rely on the * scan count to determine whether a loop is necessary. */ if ((count = (int)(length % blksize)) != 0) info.truncloffset = length + (blksize - count); else info.truncloffset = length; info.vp = vp; lwkt_gettoken(&vp->v_token); do { info.clean = 1; count = RB_SCAN(buf_rb_tree, &vp->v_rbclean_tree, vtruncbuf_bp_trunc_cmp, vtruncbuf_bp_trunc, &info); info.clean = 0; count += RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, vtruncbuf_bp_trunc_cmp, vtruncbuf_bp_trunc, &info); } while(count); /* * For safety, fsync any remaining metadata if the file is not being * truncated to 0. Since the metadata does not represent the entire * dirty list we have to rely on the hit count to ensure that we get * all of it. */ if (length > 0) { do { count = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, vtruncbuf_bp_metasync_cmp, vtruncbuf_bp_metasync, &info); } while (count); } /* * Clean out any left over VM backing store. * * It is possible to have in-progress I/O from buffers that were * not part of the truncation. This should not happen if we * are truncating to 0-length. */ vnode_pager_setsize(vp, length); bio_track_wait(&vp->v_track_write, 0, 0); /* * Debugging only */ spin_lock(&vp->v_spin); filename = TAILQ_FIRST(&vp->v_namecache) ? TAILQ_FIRST(&vp->v_namecache)->nc_name : "?"; spin_unlock(&vp->v_spin); /* * Make sure no buffers were instantiated while we were trying * to clean out the remaining VM pages. This could occur due * to busy dirty VM pages being flushed out to disk. */ do { info.clean = 1; count = RB_SCAN(buf_rb_tree, &vp->v_rbclean_tree, vtruncbuf_bp_trunc_cmp, vtruncbuf_bp_trunc, &info); info.clean = 0; count += RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, vtruncbuf_bp_trunc_cmp, vtruncbuf_bp_trunc, &info); if (count) { kprintf("Warning: vtruncbuf(): Had to re-clean %d " "left over buffers in %s\n", count, filename); } } while(count); lwkt_reltoken(&vp->v_token); return (0); } /* * The callback buffer is beyond the new file EOF and must be destroyed. * Note that the compare function must conform to the RB_SCAN's requirements. */ static int vtruncbuf_bp_trunc_cmp(struct buf *bp, void *data) { struct vtruncbuf_info *info = data; if (bp->b_loffset >= info->truncloffset) return(0); return(-1); } static int vtruncbuf_bp_trunc(struct buf *bp, void *data) { struct vtruncbuf_info *info = data; /* * Do not try to use a buffer we cannot immediately lock, but sleep * anyway to prevent a livelock. The code will loop until all buffers * can be acted upon. * * We must always revalidate the buffer after locking it to deal * with MP races. */ if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) { atomic_add_int(&bp->b_refs, 1); if (BUF_LOCK(bp, LK_EXCLUSIVE|LK_SLEEPFAIL) == 0) BUF_UNLOCK(bp); atomic_subtract_int(&bp->b_refs, 1); } else if ((info->clean && (bp->b_flags & B_DELWRI)) || (info->clean == 0 && (bp->b_flags & B_DELWRI) == 0) || bp->b_vp != info->vp || vtruncbuf_bp_trunc_cmp(bp, data)) { BUF_UNLOCK(bp); } else { bremfree(bp); bp->b_flags |= (B_INVAL | B_RELBUF | B_NOCACHE); brelse(bp); } return(1); } /* * Fsync all meta-data after truncating a file to be non-zero. Only metadata * blocks (with a negative loffset) are scanned. * Note that the compare function must conform to the RB_SCAN's requirements. */ static int vtruncbuf_bp_metasync_cmp(struct buf *bp, void *data __unused) { if (bp->b_loffset < 0) return(0); return(1); } static int vtruncbuf_bp_metasync(struct buf *bp, void *data) { struct vtruncbuf_info *info = data; if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) { atomic_add_int(&bp->b_refs, 1); if (BUF_LOCK(bp, LK_EXCLUSIVE|LK_SLEEPFAIL) == 0) BUF_UNLOCK(bp); atomic_subtract_int(&bp->b_refs, 1); } else if ((bp->b_flags & B_DELWRI) == 0 || bp->b_vp != info->vp || vtruncbuf_bp_metasync_cmp(bp, data)) { BUF_UNLOCK(bp); } else { bremfree(bp); if (bp->b_vp == info->vp) bawrite(bp); else bwrite(bp); } return(1); } /* * vfsync - implements a multipass fsync on a file which understands * dependancies and meta-data. The passed vnode must be locked. The * waitfor argument may be MNT_WAIT or MNT_NOWAIT, or MNT_LAZY. * * When fsyncing data asynchronously just do one consolidated pass starting * with the most negative block number. This may not get all the data due * to dependancies. * * When fsyncing data synchronously do a data pass, then a metadata pass, * then do additional data+metadata passes to try to get all the data out. * * Caller must ref the vnode but does not have to lock it. */ static int vfsync_wait_output(struct vnode *vp, int (*waitoutput)(struct vnode *, struct thread *)); static int vfsync_dummy_cmp(struct buf *bp __unused, void *data __unused); static int vfsync_data_only_cmp(struct buf *bp, void *data); static int vfsync_meta_only_cmp(struct buf *bp, void *data); static int vfsync_lazy_range_cmp(struct buf *bp, void *data); static int vfsync_bp(struct buf *bp, void *data); struct vfsync_info { struct vnode *vp; int fastpass; int synchronous; int syncdeps; int lazycount; int lazylimit; int skippedbufs; int (*checkdef)(struct buf *); int (*cmpfunc)(struct buf *, void *); }; int vfsync(struct vnode *vp, int waitfor, int passes, int (*checkdef)(struct buf *), int (*waitoutput)(struct vnode *, struct thread *)) { struct vfsync_info info; int error; bzero(&info, sizeof(info)); info.vp = vp; if ((info.checkdef = checkdef) == NULL) info.syncdeps = 1; lwkt_gettoken(&vp->v_token); switch(waitfor) { case MNT_LAZY | MNT_NOWAIT: case MNT_LAZY: /* * Lazy (filesystem syncer typ) Asynchronous plus limit the * number of data (not meta) pages we try to flush to 1MB. * A non-zero return means that lazy limit was reached. */ info.lazylimit = 1024 * 1024; info.syncdeps = 1; info.cmpfunc = vfsync_lazy_range_cmp; error = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, vfsync_lazy_range_cmp, vfsync_bp, &info); info.cmpfunc = vfsync_meta_only_cmp; RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, vfsync_meta_only_cmp, vfsync_bp, &info); if (error == 0) vp->v_lazyw = 0; else if (!RB_EMPTY(&vp->v_rbdirty_tree)) vn_syncer_add(vp, 1); error = 0; break; case MNT_NOWAIT: /* * Asynchronous. Do a data-only pass and a meta-only pass. */ info.syncdeps = 1; info.cmpfunc = vfsync_data_only_cmp; RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, vfsync_data_only_cmp, vfsync_bp, &info); info.cmpfunc = vfsync_meta_only_cmp; RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, vfsync_meta_only_cmp, vfsync_bp, &info); error = 0; break; default: /* * Synchronous. Do a data-only pass, then a meta-data+data * pass, then additional integrated passes to try to get * all the dependancies flushed. */ info.cmpfunc = vfsync_data_only_cmp; info.fastpass = 1; RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, vfsync_data_only_cmp, vfsync_bp, &info); info.fastpass = 0; error = vfsync_wait_output(vp, waitoutput); if (error == 0) { info.skippedbufs = 0; info.cmpfunc = vfsync_dummy_cmp; RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL, vfsync_bp, &info); error = vfsync_wait_output(vp, waitoutput); if (info.skippedbufs) { kprintf("Warning: vfsync skipped %d dirty " "buf%s in pass2!\n", info.skippedbufs, ((info.skippedbufs > 1) ? "s" : "")); } } while (error == 0 && passes > 0 && !RB_EMPTY(&vp->v_rbdirty_tree) ) { info.skippedbufs = 0; if (--passes == 0) { info.synchronous = 1; info.syncdeps = 1; } info.cmpfunc = vfsync_dummy_cmp; error = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL, vfsync_bp, &info); if (error < 0) error = -error; info.syncdeps = 1; if (error == 0) error = vfsync_wait_output(vp, waitoutput); if (info.skippedbufs && passes == 0) { kprintf("Warning: vfsync skipped %d dirty " "buf%s in final pass!\n", info.skippedbufs, ((info.skippedbufs > 1) ? "s" : "")); } } #if 0 /* * This case can occur normally because vnode lock might * not be held. */ if (!RB_EMPTY(&vp->v_rbdirty_tree)) kprintf("dirty bufs left after final pass\n"); #endif break; } lwkt_reltoken(&vp->v_token); return(error); } static int vfsync_wait_output(struct vnode *vp, int (*waitoutput)(struct vnode *, struct thread *)) { int error; error = bio_track_wait(&vp->v_track_write, 0, 0); if (waitoutput) error = waitoutput(vp, curthread); return(error); } static int vfsync_dummy_cmp(struct buf *bp __unused, void *data __unused) { return(0); } static int vfsync_data_only_cmp(struct buf *bp, void *data) { if (bp->b_loffset < 0) return(-1); return(0); } static int vfsync_meta_only_cmp(struct buf *bp, void *data) { if (bp->b_loffset < 0) return(0); return(1); } static int vfsync_lazy_range_cmp(struct buf *bp, void *data) { struct vfsync_info *info = data; if (bp->b_loffset < info->vp->v_lazyw) return(-1); return(0); } static int vfsync_bp(struct buf *bp, void *data) { struct vfsync_info *info = data; struct vnode *vp = info->vp; int error; if (info->fastpass) { /* * Ignore buffers that we cannot immediately lock. */ if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) { /* * Removed BUF_TIMELOCK(..., 1), even a 1-tick * delay can mess up performance * * Another reason is that during a dirty-buffer * scan a clustered write can start I/O on buffers * ahead of the scan, causing the scan to not * get a lock here. Usually this means the write * is already in progress so, in fact, we *want* * to skip the buffer. */ ++info->skippedbufs; return(0); } } else if (info->synchronous == 0) { /* * Normal pass, give the buffer a little time to become * available to us. */ if (BUF_TIMELOCK(bp, LK_EXCLUSIVE, "bflst2", hz / 10)) { ++info->skippedbufs; return(0); } } else { /* * Synchronous pass, give the buffer a lot of time before * giving up. */ if (BUF_TIMELOCK(bp, LK_EXCLUSIVE, "bflst3", hz * 10)) { ++info->skippedbufs; return(0); } } /* * We must revalidate the buffer after locking. */ if ((bp->b_flags & B_DELWRI) == 0 || bp->b_vp != info->vp || info->cmpfunc(bp, data)) { BUF_UNLOCK(bp); return(0); } /* * If syncdeps is not set we do not try to write buffers which have * dependancies. */ if (!info->synchronous && info->syncdeps == 0 && info->checkdef(bp)) { BUF_UNLOCK(bp); return(0); } /* * B_NEEDCOMMIT (primarily used by NFS) is a state where the buffer * has been written but an additional handshake with the device * is required before we can dispose of the buffer. We have no idea * how to do this so we have to skip these buffers. */ if (bp->b_flags & B_NEEDCOMMIT) { BUF_UNLOCK(bp); return(0); } /* * Ask bioops if it is ok to sync. If not the VFS may have * set B_LOCKED so we have to cycle the buffer. */ if (LIST_FIRST(&bp->b_dep) != NULL && buf_checkwrite(bp)) { bremfree(bp); brelse(bp); return(0); } if (info->synchronous) { /* * Synchronous flush. An error may be returned and will * stop the scan. */ bremfree(bp); error = bwrite(bp); } else { /* * Asynchronous flush. We use the error return to support * MNT_LAZY flushes. * * In low-memory situations we revert to synchronous * operation. This should theoretically prevent the I/O * path from exhausting memory in a non-recoverable way. */ vp->v_lazyw = bp->b_loffset; bremfree(bp); if (vm_page_count_min(0)) { /* low memory */ info->lazycount += bp->b_bufsize; bwrite(bp); } else { /* normal */ info->lazycount += cluster_awrite(bp); waitrunningbufspace(); /*vm_wait_nominal();*/ } if (info->lazylimit && info->lazycount >= info->lazylimit) error = 1; else error = 0; } return(-error); } /* * Associate a buffer with a vnode. * * MPSAFE */ int bgetvp(struct vnode *vp, struct buf *bp, int testsize) { KASSERT(bp->b_vp == NULL, ("bgetvp: not free")); KKASSERT((bp->b_flags & (B_HASHED|B_DELWRI|B_VNCLEAN|B_VNDIRTY)) == 0); /* * Insert onto list for new vnode. */ lwkt_gettoken(&vp->v_token); if (buf_rb_hash_RB_INSERT(&vp->v_rbhash_tree, bp)) { lwkt_reltoken(&vp->v_token); return (EEXIST); } /* * Diagnostics (mainly for HAMMER debugging). Check for * overlapping buffers. */ if (check_buf_overlap) { struct buf *bx; bx = buf_rb_hash_RB_PREV(bp); if (bx) { if (bx->b_loffset + bx->b_bufsize > bp->b_loffset) { kprintf("bgetvp: overlapl %016jx/%d %016jx " "bx %p bp %p\n", (intmax_t)bx->b_loffset, bx->b_bufsize, (intmax_t)bp->b_loffset, bx, bp); if (check_buf_overlap > 1) panic("bgetvp - overlapping buffer"); } } bx = buf_rb_hash_RB_NEXT(bp); if (bx) { if (bp->b_loffset + testsize > bx->b_loffset) { kprintf("bgetvp: overlapr %016jx/%d %016jx " "bp %p bx %p\n", (intmax_t)bp->b_loffset, testsize, (intmax_t)bx->b_loffset, bp, bx); if (check_buf_overlap > 1) panic("bgetvp - overlapping buffer"); } } } bp->b_vp = vp; bp->b_flags |= B_HASHED; bp->b_flags |= B_VNCLEAN; if (buf_rb_tree_RB_INSERT(&vp->v_rbclean_tree, bp)) panic("reassignbuf: dup lblk/clean vp %p bp %p", vp, bp); /*vhold(vp);*/ lwkt_reltoken(&vp->v_token); return(0); } /* * Disassociate a buffer from a vnode. * * MPSAFE */ void brelvp(struct buf *bp) { struct vnode *vp; KASSERT(bp->b_vp != NULL, ("brelvp: NULL")); /* * Delete from old vnode list, if on one. */ vp = bp->b_vp; lwkt_gettoken(&vp->v_token); if (bp->b_flags & (B_VNDIRTY | B_VNCLEAN)) { if (bp->b_flags & B_VNDIRTY) buf_rb_tree_RB_REMOVE(&vp->v_rbdirty_tree, bp); else buf_rb_tree_RB_REMOVE(&vp->v_rbclean_tree, bp); bp->b_flags &= ~(B_VNDIRTY | B_VNCLEAN); } if (bp->b_flags & B_HASHED) { buf_rb_hash_RB_REMOVE(&vp->v_rbhash_tree, bp); bp->b_flags &= ~B_HASHED; } /* * Only remove from synclist when no dirty buffers are left AND * the VFS has not flagged the vnode's inode as being dirty. */ if ((vp->v_flag & (VONWORKLST | VISDIRTY | VOBJDIRTY)) == VONWORKLST && RB_EMPTY(&vp->v_rbdirty_tree)) { vn_syncer_remove(vp, 0); } bp->b_vp = NULL; lwkt_reltoken(&vp->v_token); /*vdrop(vp);*/ } /* * Reassign the buffer to the proper clean/dirty list based on B_DELWRI. * This routine is called when the state of the B_DELWRI bit is changed. * * Must be called with vp->v_token held. * MPSAFE */ void reassignbuf(struct buf *bp) { struct vnode *vp = bp->b_vp; int delay; ASSERT_LWKT_TOKEN_HELD(&vp->v_token); ++reassignbufcalls; /* * B_PAGING flagged buffers cannot be reassigned because their vp * is not fully linked in. */ if (bp->b_flags & B_PAGING) panic("cannot reassign paging buffer"); if (bp->b_flags & B_DELWRI) { /* * Move to the dirty list, add the vnode to the worklist */ if (bp->b_flags & B_VNCLEAN) { buf_rb_tree_RB_REMOVE(&vp->v_rbclean_tree, bp); bp->b_flags &= ~B_VNCLEAN; } if ((bp->b_flags & B_VNDIRTY) == 0) { if (buf_rb_tree_RB_INSERT(&vp->v_rbdirty_tree, bp)) { panic("reassignbuf: dup lblk vp %p bp %p", vp, bp); } bp->b_flags |= B_VNDIRTY; } if ((vp->v_flag & VONWORKLST) == 0) { switch (vp->v_type) { case VDIR: delay = dirdelay; break; case VCHR: case VBLK: if (vp->v_rdev && vp->v_rdev->si_mountpoint != NULL) { delay = metadelay; break; } /* fall through */ default: delay = filedelay; } vn_syncer_add(vp, delay); } } else { /* * Move to the clean list, remove the vnode from the worklist * if no dirty blocks remain. */ if (bp->b_flags & B_VNDIRTY) { buf_rb_tree_RB_REMOVE(&vp->v_rbdirty_tree, bp); bp->b_flags &= ~B_VNDIRTY; } if ((bp->b_flags & B_VNCLEAN) == 0) { if (buf_rb_tree_RB_INSERT(&vp->v_rbclean_tree, bp)) { panic("reassignbuf: dup lblk vp %p bp %p", vp, bp); } bp->b_flags |= B_VNCLEAN; } /* * Only remove from synclist when no dirty buffers are left * AND the VFS has not flagged the vnode's inode as being * dirty. */ if ((vp->v_flag & (VONWORKLST | VISDIRTY | VOBJDIRTY)) == VONWORKLST && RB_EMPTY(&vp->v_rbdirty_tree)) { vn_syncer_remove(vp, 0); } } } /* * Create a vnode for a block device. Used for mounting the root file * system. * * A vref()'d vnode is returned. */ extern struct vop_ops *devfs_vnode_dev_vops_p; int bdevvp(cdev_t dev, struct vnode **vpp) { struct vnode *vp; struct vnode *nvp; int error; if (dev == NULL) { *vpp = NULLVP; return (ENXIO); } error = getspecialvnode(VT_NON, NULL, &devfs_vnode_dev_vops_p, &nvp, 0, 0); if (error) { *vpp = NULLVP; return (error); } vp = nvp; vp->v_type = VCHR; #if 0 vp->v_rdev = dev; #endif v_associate_rdev(vp, dev); vp->v_umajor = dev->si_umajor; vp->v_uminor = dev->si_uminor; vx_unlock(vp); *vpp = vp; return (0); } int v_associate_rdev(struct vnode *vp, cdev_t dev) { if (dev == NULL) return(ENXIO); if (dev_is_good(dev) == 0) return(ENXIO); KKASSERT(vp->v_rdev == NULL); vp->v_rdev = reference_dev(dev); lwkt_gettoken(&spechash_token); SLIST_INSERT_HEAD(&dev->si_hlist, vp, v_cdevnext); lwkt_reltoken(&spechash_token); return(0); } void v_release_rdev(struct vnode *vp) { cdev_t dev; if ((dev = vp->v_rdev) != NULL) { lwkt_gettoken(&spechash_token); SLIST_REMOVE(&dev->si_hlist, vp, vnode, v_cdevnext); vp->v_rdev = NULL; release_dev(dev); lwkt_reltoken(&spechash_token); } } /* * Add a vnode to the alias list hung off the cdev_t. We only associate * the device number with the vnode. The actual device is not associated * until the vnode is opened (usually in spec_open()), and will be * disassociated on last close. */ void addaliasu(struct vnode *nvp, int x, int y) { if (nvp->v_type != VBLK && nvp->v_type != VCHR) panic("addaliasu on non-special vnode"); nvp->v_umajor = x; nvp->v_uminor = y; } /* * Simple call that a filesystem can make to try to get rid of a * vnode. It will fail if anyone is referencing the vnode (including * the caller). * * The filesystem can check whether its in-memory inode structure still * references the vp on return. * * May only be called if the vnode is in a known state (i.e. being prevented * from being deallocated by some other condition such as a vfs inode hold). */ void vclean_unlocked(struct vnode *vp) { vx_get(vp); if (VREFCNT(vp) <= 1) vgone_vxlocked(vp); vx_put(vp); } /* * Disassociate a vnode from its underlying filesystem. * * The vnode must be VX locked and referenced. In all normal situations * there are no active references. If vclean_vxlocked() is called while * there are active references, the vnode is being ripped out and we have * to call VOP_CLOSE() as appropriate before we can reclaim it. */ void vclean_vxlocked(struct vnode *vp, int flags) { int active; int n; vm_object_t object; struct namecache *ncp; /* * If the vnode has already been reclaimed we have nothing to do. */ if (vp->v_flag & VRECLAIMED) return; /* * Set flag to interlock operation, flag finalization to ensure * that the vnode winds up on the inactive list, and set v_act to 0. */ vsetflags(vp, VRECLAIMED); atomic_set_int(&vp->v_refcnt, VREF_FINALIZE); vp->v_act = 0; if (verbose_reclaims) { if ((ncp = TAILQ_FIRST(&vp->v_namecache)) != NULL) kprintf("Debug: reclaim %p %s\n", vp, ncp->nc_name); } /* * Scrap the vfs cache */ while (cache_inval_vp(vp, 0) != 0) { kprintf("Warning: vnode %p clean/cache_resolution " "race detected\n", vp); tsleep(vp, 0, "vclninv", 2); } /* * Check to see if the vnode is in use. If so we have to reference it * before we clean it out so that its count cannot fall to zero and * generate a race against ourselves to recycle it. */ active = (VREFCNT(vp) > 0); /* * Clean out any buffers associated with the vnode and destroy its * object, if it has one. */ vinvalbuf(vp, V_SAVE, 0, 0); /* * If purging an active vnode (typically during a forced unmount * or reboot), it must be closed and deactivated before being * reclaimed. This isn't really all that safe, but what can * we do? XXX. * * Note that neither of these routines unlocks the vnode. */ if (active && (flags & DOCLOSE)) { while ((n = vp->v_opencount) != 0) { if (vp->v_writecount) VOP_CLOSE(vp, FWRITE|FNONBLOCK, NULL); else VOP_CLOSE(vp, FNONBLOCK, NULL); if (vp->v_opencount == n) { kprintf("Warning: unable to force-close" " vnode %p\n", vp); break; } } } /* * If the vnode has not been deactivated, deactivated it. Deactivation * can create new buffers and VM pages so we have to call vinvalbuf() * again to make sure they all get flushed. * * This can occur if a file with a link count of 0 needs to be * truncated. * * If the vnode is already dead don't try to deactivate it. */ if ((vp->v_flag & VINACTIVE) == 0) { vsetflags(vp, VINACTIVE); if (vp->v_mount) VOP_INACTIVE(vp); vinvalbuf(vp, V_SAVE, 0, 0); } /* * If the vnode has an object, destroy it. */ while ((object = vp->v_object) != NULL) { vm_object_hold(object); if (object == vp->v_object) break; vm_object_drop(object); } if (object != NULL) { if (object->ref_count == 0) { if ((object->flags & OBJ_DEAD) == 0) vm_object_terminate(object); vm_object_drop(object); vclrflags(vp, VOBJBUF); } else { vm_pager_deallocate(object); vclrflags(vp, VOBJBUF); vm_object_drop(object); } } KKASSERT((vp->v_flag & VOBJBUF) == 0); if (vp->v_flag & VOBJDIRTY) vclrobjdirty(vp); /* * Reclaim the vnode if not already dead. */ if (vp->v_mount && VOP_RECLAIM(vp)) panic("vclean: cannot reclaim"); /* * Done with purge, notify sleepers of the grim news. */ vp->v_ops = &dead_vnode_vops_p; vn_gone(vp); vp->v_tag = VT_NON; /* * If we are destroying an active vnode, reactivate it now that * we have reassociated it with deadfs. This prevents the system * from crashing on the vnode due to it being unexpectedly marked * as inactive or reclaimed. */ if (active && (flags & DOCLOSE)) { vclrflags(vp, VINACTIVE | VRECLAIMED); } } /* * Eliminate all activity associated with the requested vnode * and with all vnodes aliased to the requested vnode. * * The vnode must be referenced but should not be locked. */ int vrevoke(struct vnode *vp, struct ucred *cred) { struct vnode *vq; struct vnode *vqn; cdev_t dev; int error; /* * If the vnode has a device association, scrap all vnodes associated * with the device. Don't let the device disappear on us while we * are scrapping the vnodes. * * The passed vp will probably show up in the list, do not VX lock * it twice! * * Releasing the vnode's rdev here can mess up specfs's call to * device close, so don't do it. The vnode has been disassociated * and the device will be closed after the last ref on the related * fp goes away (if not still open by e.g. the kernel). */ if (vp->v_type != VCHR) { error = fdrevoke(vp, DTYPE_VNODE, cred); return (error); } if ((dev = vp->v_rdev) == NULL) { return(0); } reference_dev(dev); lwkt_gettoken(&spechash_token); restart: vqn = SLIST_FIRST(&dev->si_hlist); if (vqn) vhold(vqn); while ((vq = vqn) != NULL) { if (VREFCNT(vq) > 0) { vref(vq); fdrevoke(vq, DTYPE_VNODE, cred); /*v_release_rdev(vq);*/ vrele(vq); if (vq->v_rdev != dev) { vdrop(vq); goto restart; } } vqn = SLIST_NEXT(vq, v_cdevnext); if (vqn) vhold(vqn); vdrop(vq); } lwkt_reltoken(&spechash_token); dev_drevoke(dev); release_dev(dev); return (0); } /* * This is called when the object underlying a vnode is being destroyed, * such as in a remove(). Try to recycle the vnode immediately if the * only active reference is our reference. * * Directory vnodes in the namecache with children cannot be immediately * recycled because numerous VOP_N*() ops require them to be stable. * * To avoid recursive recycling from VOP_INACTIVE implemenetations this * function is a NOP if VRECLAIMED is already set. */ int vrecycle(struct vnode *vp) { if (VREFCNT(vp) <= 1 && (vp->v_flag & VRECLAIMED) == 0) { if (cache_inval_vp_nonblock(vp)) return(0); vgone_vxlocked(vp); return (1); } return (0); } /* * Return the maximum I/O size allowed for strategy calls on VP. * * If vp is VCHR or VBLK we dive the device, otherwise we use * the vp's mount info. * * The returned value is clamped at MAXPHYS as most callers cannot use * buffers larger than that size. */ int vmaxiosize(struct vnode *vp) { int maxiosize; if (vp->v_type == VBLK || vp->v_type == VCHR) maxiosize = vp->v_rdev->si_iosize_max; else maxiosize = vp->v_mount->mnt_iosize_max; if (maxiosize > MAXPHYS) maxiosize = MAXPHYS; return (maxiosize); } /* * Eliminate all activity associated with a vnode in preparation for * destruction. * * The vnode must be VX locked and refd and will remain VX locked and refd * on return. This routine may be called with the vnode in any state, as * long as it is VX locked. The vnode will be cleaned out and marked * VRECLAIMED but will not actually be reused until all existing refs and * holds go away. * * NOTE: This routine may be called on a vnode which has not yet been * already been deactivated (VOP_INACTIVE), or on a vnode which has * already been reclaimed. * * This routine is not responsible for placing us back on the freelist. * Instead, it happens automatically when the caller releases the VX lock * (assuming there aren't any other references). */ void vgone_vxlocked(struct vnode *vp) { /* * assert that the VX lock is held. This is an absolute requirement * now for vgone_vxlocked() to be called. */ KKASSERT(lockinuse(&vp->v_lock)); /* * Clean out the filesystem specific data and set the VRECLAIMED * bit. Also deactivate the vnode if necessary. * * The vnode should have automatically been removed from the syncer * list as syncer/dirty flags cleared during the cleaning. */ vclean_vxlocked(vp, DOCLOSE); /* * Normally panic if the vnode is still dirty, unless we are doing * a forced unmount (tmpfs typically). */ if (vp->v_flag & VONWORKLST) { if (vp->v_mount->mnt_kern_flag & MNTK_UNMOUNTF) { /* force removal */ vn_syncer_remove(vp, 1); } else { panic("vp %p still dirty in vgone after flush", vp); } } /* * Delete from old mount point vnode list, if on one. */ if (vp->v_mount != NULL) { KKASSERT(vp->v_data == NULL); insmntque(vp, NULL); } /* * If special device, remove it from special device alias list * if it is on one. This should normally only occur if a vnode is * being revoked as the device should otherwise have been released * naturally. */ if ((vp->v_type == VBLK || vp->v_type == VCHR) && vp->v_rdev != NULL) { v_release_rdev(vp); } /* * Set us to VBAD */ vp->v_type = VBAD; } /* * Lookup a vnode by device number. * * Returns non-zero and *vpp set to a vref'd vnode on success. * Returns zero on failure. */ int vfinddev(cdev_t dev, enum vtype type, struct vnode **vpp) { struct vnode *vp; lwkt_gettoken(&spechash_token); SLIST_FOREACH(vp, &dev->si_hlist, v_cdevnext) { if (type == vp->v_type) { *vpp = vp; vref(vp); lwkt_reltoken(&spechash_token); return (1); } } lwkt_reltoken(&spechash_token); return (0); } /* * Calculate the total number of references to a special device. This * routine may only be called for VBLK and VCHR vnodes since v_rdev is * an overloaded field. Since udev2dev can now return NULL, we have * to check for a NULL v_rdev. */ int count_dev(cdev_t dev) { struct vnode *vp; int count = 0; if (SLIST_FIRST(&dev->si_hlist)) { lwkt_gettoken(&spechash_token); SLIST_FOREACH(vp, &dev->si_hlist, v_cdevnext) { count += vp->v_opencount; } lwkt_reltoken(&spechash_token); } return(count); } int vcount(struct vnode *vp) { if (vp->v_rdev == NULL) return(0); return(count_dev(vp->v_rdev)); } /* * Initialize VMIO for a vnode. This routine MUST be called before a * VFS can issue buffer cache ops on a vnode. It is typically called * when a vnode is initialized from its inode. */ int vinitvmio(struct vnode *vp, off_t filesize, int blksize, int boff) { vm_object_t object; int error = 0; object = vp->v_object; if (object) { vm_object_hold(object); KKASSERT(vp->v_object == object); } if (object == NULL) { object = vnode_pager_alloc(vp, filesize, 0, 0, blksize, boff); /* * Dereference the reference we just created. This assumes * that the object is associated with the vp. Allow it to * have zero refs. It cannot be destroyed as long as it * is associated with the vnode. */ vm_object_hold(object); atomic_add_int(&object->ref_count, -1); vrele(vp); } else { KKASSERT((object->flags & OBJ_DEAD) == 0); } KASSERT(vp->v_object != NULL, ("vinitvmio: NULL object")); vsetflags(vp, VOBJBUF); vm_object_drop(object); return (error); } /* * Print out a description of a vnode. */ static char *typename[] = {"VNON", "VREG", "VDIR", "VBLK", "VCHR", "VLNK", "VSOCK", "VFIFO", "VBAD"}; void vprint(char *label, struct vnode *vp) { char buf[96]; if (label != NULL) kprintf("%s: %p: ", label, (void *)vp); else kprintf("%p: ", (void *)vp); kprintf("type %s, refcnt %08x, writecount %d, holdcnt %d,", typename[vp->v_type], vp->v_refcnt, vp->v_writecount, vp->v_auxrefs); buf[0] = '\0'; if (vp->v_flag & VROOT) strcat(buf, "|VROOT"); if (vp->v_flag & VPFSROOT) strcat(buf, "|VPFSROOT"); if (vp->v_flag & VTEXT) strcat(buf, "|VTEXT"); if (vp->v_flag & VSYSTEM) strcat(buf, "|VSYSTEM"); if (vp->v_flag & VOBJBUF) strcat(buf, "|VOBJBUF"); if (buf[0] != '\0') kprintf(" flags (%s)", &buf[1]); if (vp->v_data == NULL) { kprintf("\n"); } else { kprintf("\n\t"); VOP_PRINT(vp); } } /* * Do the usual access checking. * file_mode, uid and gid are from the vnode in question, * while acc_mode and cred are from the VOP_ACCESS parameter list */ int vaccess(enum vtype type, mode_t file_mode, uid_t uid, gid_t gid, mode_t acc_mode, struct ucred *cred) { mode_t mask; int ismember; /* * Super-user always gets read/write access, but execute access depends * on at least one execute bit being set. */ if (priv_check_cred(cred, PRIV_ROOT, 0) == 0) { if ((acc_mode & VEXEC) && type != VDIR && (file_mode & (S_IXUSR|S_IXGRP|S_IXOTH)) == 0) return (EACCES); return (0); } mask = 0; /* Otherwise, check the owner. */ if (cred->cr_uid == uid) { if (acc_mode & VEXEC) mask |= S_IXUSR; if (acc_mode & VREAD) mask |= S_IRUSR; if (acc_mode & VWRITE) mask |= S_IWUSR; return ((file_mode & mask) == mask ? 0 : EACCES); } /* Otherwise, check the groups. */ ismember = groupmember(gid, cred); if (cred->cr_svgid == gid || ismember) { if (acc_mode & VEXEC) mask |= S_IXGRP; if (acc_mode & VREAD) mask |= S_IRGRP; if (acc_mode & VWRITE) mask |= S_IWGRP; return ((file_mode & mask) == mask ? 0 : EACCES); } /* Otherwise, check everyone else. */ if (acc_mode & VEXEC) mask |= S_IXOTH; if (acc_mode & VREAD) mask |= S_IROTH; if (acc_mode & VWRITE) mask |= S_IWOTH; return ((file_mode & mask) == mask ? 0 : EACCES); } #ifdef DDB #include static int db_show_locked_vnodes(struct mount *mp, void *data); /* * List all of the locked vnodes in the system. * Called when debugging the kernel. */ DB_SHOW_COMMAND(lockedvnodes, lockedvnodes) { kprintf("Locked vnodes\n"); mountlist_scan(db_show_locked_vnodes, NULL, MNTSCAN_FORWARD|MNTSCAN_NOBUSY); } static int db_show_locked_vnodes(struct mount *mp, void *data __unused) { struct vnode *vp; TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) { if (vn_islocked(vp)) vprint(NULL, vp); } return(0); } #endif /* * Top level filesystem related information gathering. */ static int sysctl_ovfs_conf (SYSCTL_HANDLER_ARGS); static int vfs_sysctl(SYSCTL_HANDLER_ARGS) { int *name = (int *)arg1 - 1; /* XXX */ u_int namelen = arg2 + 1; /* XXX */ struct vfsconf *vfsp; int maxtypenum; #if 1 || defined(COMPAT_PRELITE2) /* Resolve ambiguity between VFS_VFSCONF and VFS_GENERIC. */ if (namelen == 1) return (sysctl_ovfs_conf(oidp, arg1, arg2, req)); #endif #ifdef notyet /* all sysctl names at this level are at least name and field */ if (namelen < 2) return (ENOTDIR); /* overloaded */ if (name[0] != VFS_GENERIC) { vfsp = vfsconf_find_by_typenum(name[0]); if (vfsp == NULL) return (EOPNOTSUPP); return ((*vfsp->vfc_vfsops->vfs_sysctl)(&name[1], namelen - 1, oldp, oldlenp, newp, newlen, p)); } #endif switch (name[1]) { case VFS_MAXTYPENUM: if (namelen != 2) return (ENOTDIR); maxtypenum = vfsconf_get_maxtypenum(); return (SYSCTL_OUT(req, &maxtypenum, sizeof(maxtypenum))); case VFS_CONF: if (namelen != 3) return (ENOTDIR); /* overloaded */ vfsp = vfsconf_find_by_typenum(name[2]); if (vfsp == NULL) return (EOPNOTSUPP); return (SYSCTL_OUT(req, vfsp, sizeof *vfsp)); } return (EOPNOTSUPP); } SYSCTL_NODE(_vfs, VFS_GENERIC, generic, CTLFLAG_RD, vfs_sysctl, "Generic filesystem"); #if 1 || defined(COMPAT_PRELITE2) static int sysctl_ovfs_conf_iter(struct vfsconf *vfsp, void *data) { int error; struct ovfsconf ovfs; struct sysctl_req *req = (struct sysctl_req*) data; bzero(&ovfs, sizeof(ovfs)); ovfs.vfc_vfsops = vfsp->vfc_vfsops; /* XXX used as flag */ strcpy(ovfs.vfc_name, vfsp->vfc_name); ovfs.vfc_index = vfsp->vfc_typenum; ovfs.vfc_refcount = vfsp->vfc_refcount; ovfs.vfc_flags = vfsp->vfc_flags; error = SYSCTL_OUT(req, &ovfs, sizeof ovfs); if (error) return error; /* abort iteration with error code */ else return 0; /* continue iterating with next element */ } static int sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS) { return vfsconf_each(sysctl_ovfs_conf_iter, (void*)req); } #endif /* 1 || COMPAT_PRELITE2 */ /* * Check to see if a filesystem is mounted on a block device. */ int vfs_mountedon(struct vnode *vp) { cdev_t dev; if ((dev = vp->v_rdev) == NULL) { /* if (vp->v_type != VBLK) dev = get_dev(vp->v_uminor, vp->v_umajor); */ } if (dev != NULL && dev->si_mountpoint) return (EBUSY); return (0); } /* * Unmount all filesystems. The list is traversed in reverse order * of mounting to avoid dependencies. * * We want the umountall to be able to break out of its loop if a * failure occurs, after scanning all possible mounts, so the callback * returns 0 on error. * * NOTE: Do not call mountlist_remove(mp) on error any more, this will * confuse mountlist_scan()'s unbusy check. */ static int vfs_umountall_callback(struct mount *mp, void *data); void vfs_unmountall(int halting) { int count; do { count = mountlist_scan(vfs_umountall_callback, &halting, MNTSCAN_REVERSE|MNTSCAN_NOBUSY); } while (count); } static int vfs_umountall_callback(struct mount *mp, void *data) { int error; int halting = *(int *)data; /* * NOTE: When halting, dounmount will disconnect but leave * certain mount points intact. e.g. devfs. */ error = dounmount(mp, MNT_FORCE, halting); if (error) { kprintf("unmount of filesystem mounted from %s failed (", mp->mnt_stat.f_mntfromname); if (error == EBUSY) kprintf("BUSY)\n"); else kprintf("%d)\n", error); return 0; } else { return 1; } } /* * Checks the mount flags for parameter mp and put the names comma-separated * into a string buffer buf with a size limit specified by len. * * It returns the number of bytes written into buf, and (*errorp) will be * set to 0, EINVAL (if passed length is 0), or ENOSPC (supplied buffer was * not large enough). The buffer will be 0-terminated if len was not 0. */ size_t vfs_flagstostr(int flags, const struct mountctl_opt *optp, char *buf, size_t len, int *errorp) { static const struct mountctl_opt optnames[] = { { MNT_RDONLY, "read-only" }, { MNT_SYNCHRONOUS, "synchronous" }, { MNT_NOEXEC, "noexec" }, { MNT_NOSUID, "nosuid" }, { MNT_NODEV, "nodev" }, { MNT_AUTOMOUNTED, "automounted" }, { MNT_ASYNC, "asynchronous" }, { MNT_SUIDDIR, "suiddir" }, { MNT_SOFTDEP, "soft-updates" }, { MNT_NOSYMFOLLOW, "nosymfollow" }, { MNT_TRIM, "trim" }, { MNT_NOATIME, "noatime" }, { MNT_NOCLUSTERR, "noclusterr" }, { MNT_NOCLUSTERW, "noclusterw" }, { MNT_EXRDONLY, "NFS read-only" }, { MNT_EXPORTED, "NFS exported" }, /* Remaining NFS flags could come here */ { MNT_LOCAL, "local" }, { MNT_QUOTA, "with-quotas" }, /* { MNT_ROOTFS, "rootfs" }, */ /* { MNT_IGNORE, "ignore" }, */ { 0, NULL} }; int bwritten; int bleft; int optlen; int actsize; *errorp = 0; bwritten = 0; bleft = len - 1; /* leave room for trailing \0 */ /* * Checks the size of the string. If it contains * any data, then we will append the new flags to * it. */ actsize = strlen(buf); if (actsize > 0) buf += actsize; /* Default flags if no flags passed */ if (optp == NULL) optp = optnames; if (bleft < 0) { /* degenerate case, 0-length buffer */ *errorp = EINVAL; return(0); } for (; flags && optp->o_opt; ++optp) { if ((flags & optp->o_opt) == 0) continue; optlen = strlen(optp->o_name); if (bwritten || actsize > 0) { if (bleft < 2) { *errorp = ENOSPC; break; } buf[bwritten++] = ','; buf[bwritten++] = ' '; bleft -= 2; } if (bleft < optlen) { *errorp = ENOSPC; break; } bcopy(optp->o_name, buf + bwritten, optlen); bwritten += optlen; bleft -= optlen; flags &= ~optp->o_opt; } /* * Space already reserved for trailing \0 */ buf[bwritten] = 0; return (bwritten); } /* * Build hash lists of net addresses and hang them off the mount point. * Called by ufs_mount() to set up the lists of export addresses. */ static int vfs_hang_addrlist(struct mount *mp, struct netexport *nep, const struct export_args *argp) { struct netcred *np; struct radix_node_head *rnh; int i; struct radix_node *rn; struct sockaddr *saddr, *smask = NULL; int error; if (argp->ex_addrlen == 0) { if (mp->mnt_flag & MNT_DEFEXPORTED) return (EPERM); np = &nep->ne_defexported; np->netc_exflags = argp->ex_flags; np->netc_anon = argp->ex_anon; np->netc_anon.cr_ref = 1; mp->mnt_flag |= MNT_DEFEXPORTED; return (0); } if (argp->ex_addrlen < 0 || argp->ex_addrlen > MLEN) return (EINVAL); if (argp->ex_masklen < 0 || argp->ex_masklen > MLEN) return (EINVAL); i = sizeof(struct netcred) + argp->ex_addrlen + argp->ex_masklen; np = (struct netcred *)kmalloc(i, M_NETCRED, M_WAITOK | M_ZERO); saddr = (struct sockaddr *) (np + 1); if ((error = copyin(argp->ex_addr, (caddr_t) saddr, argp->ex_addrlen))) goto out; if (saddr->sa_len > argp->ex_addrlen) saddr->sa_len = argp->ex_addrlen; if (argp->ex_masklen) { smask = (struct sockaddr *)((caddr_t)saddr + argp->ex_addrlen); error = copyin(argp->ex_mask, (caddr_t)smask, argp->ex_masklen); if (error) goto out; if (smask->sa_len > argp->ex_masklen) smask->sa_len = argp->ex_masklen; } NE_LOCK(nep); if (nep->ne_maskhead == NULL) { if (!rn_inithead((void **)&nep->ne_maskhead, NULL, 0)) { error = ENOBUFS; goto out; } } if ((rnh = vfs_create_addrlist_af(saddr->sa_family, nep)) == NULL) { error = ENOBUFS; goto out; } rn = (*rnh->rnh_addaddr)((char *)saddr, (char *)smask, rnh, np->netc_rnodes); NE_UNLOCK(nep); if (rn == NULL || np != (struct netcred *)rn) { /* already exists */ error = EPERM; goto out; } np->netc_exflags = argp->ex_flags; np->netc_anon = argp->ex_anon; np->netc_anon.cr_ref = 1; return (0); out: kfree(np, M_NETCRED); return (error); } /* * Free netcred structures installed in the netexport */ static int vfs_free_netcred(struct radix_node *rn, void *w) { struct radix_node_head *rnh = (struct radix_node_head *)w; (*rnh->rnh_deladdr) (rn->rn_key, rn->rn_mask, rnh); kfree(rn, M_NETCRED); return (0); } /* * callback to free an element of the mask table installed in the * netexport. These may be created indirectly and are not netcred * structures. */ static int vfs_free_netcred_mask(struct radix_node *rn, void *w) { struct radix_node_head *rnh = (struct radix_node_head *)w; (*rnh->rnh_deladdr) (rn->rn_key, rn->rn_mask, rnh); kfree(rn, M_RTABLE); return (0); } static struct radix_node_head * vfs_create_addrlist_af(int af, struct netexport *nep) { struct radix_node_head *rnh = NULL; #if defined(INET) || defined(INET6) struct radix_node_head *maskhead = nep->ne_maskhead; int off; #endif NE_ASSERT_LOCKED(nep); KKASSERT(maskhead != NULL); switch (af) { #ifdef INET case AF_INET: if ((rnh = nep->ne_inethead) == NULL) { off = offsetof(struct sockaddr_in, sin_addr) << 3; if (!rn_inithead((void **)&rnh, maskhead, off)) return (NULL); nep->ne_inethead = rnh; } break; #endif #ifdef INET6 case AF_INET6: if ((rnh = nep->ne_inet6head) == NULL) { off = offsetof(struct sockaddr_in6, sin6_addr) << 3; if (!rn_inithead((void **)&rnh, maskhead, off)) return (NULL); nep->ne_inet6head = rnh; } break; #endif } return (rnh); } /* * helper function for freeing netcred elements */ static void vfs_free_addrlist_af(struct radix_node_head **prnh) { struct radix_node_head *rnh = *prnh; (*rnh->rnh_walktree) (rnh, vfs_free_netcred, rnh); kfree(rnh, M_RTABLE); *prnh = NULL; } /* * helper function for freeing mask elements */ static void vfs_free_addrlist_masks(struct radix_node_head **prnh) { struct radix_node_head *rnh = *prnh; (*rnh->rnh_walktree) (rnh, vfs_free_netcred_mask, rnh); kfree(rnh, M_RTABLE); *prnh = NULL; } /* * Free the net address hash lists that are hanging off the mount points. */ static void vfs_free_addrlist(struct netexport *nep) { NE_LOCK(nep); if (nep->ne_inethead != NULL) vfs_free_addrlist_af(&nep->ne_inethead); if (nep->ne_inet6head != NULL) vfs_free_addrlist_af(&nep->ne_inet6head); if (nep->ne_maskhead) vfs_free_addrlist_masks(&nep->ne_maskhead); NE_UNLOCK(nep); } int vfs_export(struct mount *mp, struct netexport *nep, const struct export_args *argp) { int error; if (argp->ex_flags & MNT_DELEXPORT) { if (mp->mnt_flag & MNT_EXPUBLIC) { vfs_setpublicfs(NULL, NULL, NULL); mp->mnt_flag &= ~MNT_EXPUBLIC; } vfs_free_addrlist(nep); mp->mnt_flag &= ~(MNT_EXPORTED | MNT_DEFEXPORTED); } if (argp->ex_flags & MNT_EXPORTED) { if (argp->ex_flags & MNT_EXPUBLIC) { if ((error = vfs_setpublicfs(mp, nep, argp)) != 0) return (error); mp->mnt_flag |= MNT_EXPUBLIC; } if ((error = vfs_hang_addrlist(mp, nep, argp))) return (error); mp->mnt_flag |= MNT_EXPORTED; } return (0); } /* * Set the publicly exported filesystem (WebNFS). Currently, only * one public filesystem is possible in the spec (RFC 2054 and 2055) */ int vfs_setpublicfs(struct mount *mp, struct netexport *nep, const struct export_args *argp) { int error; struct vnode *rvp; char *cp; /* * mp == NULL -> invalidate the current info, the FS is * no longer exported. May be called from either vfs_export * or unmount, so check if it hasn't already been done. */ if (mp == NULL) { if (nfs_pub.np_valid) { nfs_pub.np_valid = 0; if (nfs_pub.np_index != NULL) { kfree(nfs_pub.np_index, M_TEMP); nfs_pub.np_index = NULL; } } return (0); } /* * Only one allowed at a time. */ if (nfs_pub.np_valid != 0 && mp != nfs_pub.np_mount) return (EBUSY); /* * Get real filehandle for root of exported FS. */ bzero((caddr_t)&nfs_pub.np_handle, sizeof(nfs_pub.np_handle)); nfs_pub.np_handle.fh_fsid = mp->mnt_stat.f_fsid; if ((error = VFS_ROOT(mp, &rvp))) return (error); if ((error = VFS_VPTOFH(rvp, &nfs_pub.np_handle.fh_fid))) return (error); vput(rvp); /* * If an indexfile was specified, pull it in. */ if (argp->ex_indexfile != NULL) { int namelen; error = vn_get_namelen(rvp, &namelen); if (error) return (error); nfs_pub.np_index = kmalloc(namelen, M_TEMP, M_WAITOK); error = copyinstr(argp->ex_indexfile, nfs_pub.np_index, namelen, NULL); if (!error) { /* * Check for illegal filenames. */ for (cp = nfs_pub.np_index; *cp; cp++) { if (*cp == '/') { error = EINVAL; break; } } } if (error) { kfree(nfs_pub.np_index, M_TEMP); return (error); } } nfs_pub.np_mount = mp; nfs_pub.np_valid = 1; return (0); } struct netcred * vfs_export_lookup(struct mount *mp, struct netexport *nep, struct sockaddr *nam) { struct netcred *np; struct radix_node_head *rnh; struct sockaddr *saddr; np = NULL; if (mp->mnt_flag & MNT_EXPORTED) { /* * Lookup in the export list first. */ NE_LOCK(nep); if (nam != NULL) { saddr = nam; switch (saddr->sa_family) { #ifdef INET case AF_INET: rnh = nep->ne_inethead; break; #endif #ifdef INET6 case AF_INET6: rnh = nep->ne_inet6head; break; #endif default: rnh = NULL; } if (rnh != NULL) { np = (struct netcred *) (*rnh->rnh_matchaddr)((char *)saddr, rnh); if (np && np->netc_rnodes->rn_flags & RNF_ROOT) np = NULL; } } NE_UNLOCK(nep); /* * If no address match, use the default if it exists. */ if (np == NULL && mp->mnt_flag & MNT_DEFEXPORTED) np = &nep->ne_defexported; } return (np); } /* * perform msync on all vnodes under a mount point. The mount point must * be locked. This code is also responsible for lazy-freeing unreferenced * vnodes whos VM objects no longer contain pages. * * NOTE: MNT_WAIT still skips vnodes in the VXLOCK state. * * NOTE: XXX VOP_PUTPAGES and friends requires that the vnode be locked, * but vnode_pager_putpages() doesn't lock the vnode. We have to do it * way up in this high level function. */ static int vfs_msync_scan1(struct mount *mp, struct vnode *vp, void *data); static int vfs_msync_scan2(struct mount *mp, struct vnode *vp, void *data); void vfs_msync(struct mount *mp, int flags) { int vmsc_flags; /* * tmpfs sets this flag to prevent msync(), sync, and the * filesystem periodic syncer from trying to flush VM pages * to swap. Only pure memory pressure flushes tmpfs VM pages * to swap. */ if (mp->mnt_kern_flag & MNTK_NOMSYNC) return; /* * Ok, scan the vnodes for work. If the filesystem is using the * syncer thread feature we can use vsyncscan() instead of * vmntvnodescan(), which is much faster. */ vmsc_flags = VMSC_GETVP; if (flags != MNT_WAIT) vmsc_flags |= VMSC_NOWAIT; if (mp->mnt_kern_flag & MNTK_THR_SYNC) { vsyncscan(mp, vmsc_flags, vfs_msync_scan2, (void *)(intptr_t)flags); } else { vmntvnodescan(mp, vmsc_flags, vfs_msync_scan1, vfs_msync_scan2, (void *)(intptr_t)flags); } } /* * scan1 is a fast pre-check. There could be hundreds of thousands of * vnodes, we cannot afford to do anything heavy weight until we have a * fairly good indication that there is work to do. */ static int vfs_msync_scan1(struct mount *mp, struct vnode *vp, void *data) { int flags = (int)(intptr_t)data; if ((vp->v_flag & VRECLAIMED) == 0) { if (vp->v_auxrefs == 0 && VREFCNT(vp) <= 0 && vp->v_object) { return(0); /* call scan2 */ } if ((mp->mnt_flag & MNT_RDONLY) == 0 && (vp->v_flag & VOBJDIRTY) && (flags == MNT_WAIT || vn_islocked(vp) == 0)) { return(0); /* call scan2 */ } } /* * do not call scan2, continue the loop */ return(-1); } /* * This callback is handed a locked vnode. */ static int vfs_msync_scan2(struct mount *mp, struct vnode *vp, void *data) { vm_object_t obj; int flags = (int)(intptr_t)data; if (vp->v_flag & VRECLAIMED) return(0); if ((mp->mnt_flag & MNT_RDONLY) == 0 && (vp->v_flag & VOBJDIRTY)) { if ((obj = vp->v_object) != NULL) { vm_object_page_clean(obj, 0, 0, flags == MNT_WAIT ? OBJPC_SYNC : OBJPC_NOSYNC); } } return(0); } /* * Wake up anyone interested in vp because it is being revoked. */ void vn_gone(struct vnode *vp) { lwkt_gettoken(&vp->v_token); KNOTE(&vp->v_pollinfo.vpi_kqinfo.ki_note, NOTE_REVOKE); lwkt_reltoken(&vp->v_token); } /* * extract the cdev_t from a VBLK or VCHR. The vnode must have been opened * (or v_rdev might be NULL). */ cdev_t vn_todev(struct vnode *vp) { if (vp->v_type != VBLK && vp->v_type != VCHR) return (NULL); KKASSERT(vp->v_rdev != NULL); return (vp->v_rdev); } /* * Check if vnode represents a disk device. The vnode does not need to be * opened. * * MPALMOSTSAFE */ int vn_isdisk(struct vnode *vp, int *errp) { cdev_t dev; if (vp->v_type != VCHR) { if (errp != NULL) *errp = ENOTBLK; return (0); } dev = vp->v_rdev; if (dev == NULL) { if (errp != NULL) *errp = ENXIO; return (0); } if (dev_is_good(dev) == 0) { if (errp != NULL) *errp = ENXIO; return (0); } if ((dev_dflags(dev) & D_DISK) == 0) { if (errp != NULL) *errp = ENOTBLK; return (0); } if (errp != NULL) *errp = 0; return (1); } int vn_get_namelen(struct vnode *vp, int *namelen) { int error; register_t retval[2]; error = VOP_PATHCONF(vp, _PC_NAME_MAX, retval); if (error) return (error); *namelen = (int)retval[0]; return (0); } int vop_write_dirent(int *error, struct uio *uio, ino_t d_ino, uint8_t d_type, uint16_t d_namlen, const char *d_name) { struct dirent *dp; size_t len; len = _DIRENT_RECLEN(d_namlen); if (len > uio->uio_resid) return(1); dp = kmalloc(len, M_TEMP, M_WAITOK | M_ZERO); dp->d_ino = d_ino; dp->d_namlen = d_namlen; dp->d_type = d_type; bcopy(d_name, dp->d_name, d_namlen); *error = uiomove((caddr_t)dp, len, uio); kfree(dp, M_TEMP); return(0); } void vn_mark_atime(struct vnode *vp, struct thread *td) { struct proc *p = td->td_proc; struct ucred *cred = p ? p->p_ucred : proc0.p_ucred; if ((vp->v_mount->mnt_flag & (MNT_NOATIME | MNT_RDONLY)) == 0) { VOP_MARKATIME(vp, cred); } } /* * Calculate the number of entries in an inode-related chained hash table. * With today's memory sizes, maxvnodes can wind up being a very large * number. There is no reason to waste memory, so tolerate some stacking. */ int vfs_inodehashsize(void) { int hsize; hsize = 32; while (hsize < maxvnodes) hsize <<= 1; while (hsize > maxvnodes * 2) hsize >>= 1; /* nominal 2x stacking */ if (maxvnodes > 1024 * 1024) hsize >>= 1; /* nominal 8x stacking */ if (maxvnodes > 128 * 1024) hsize >>= 1; /* nominal 4x stacking */ if (hsize < 16) hsize = 16; return hsize; }