/* $NetBSD: tree.h,v 1.8 2004/03/28 19:38:30 provos Exp $ */ /* $OpenBSD: tree.h,v 1.7 2002/10/17 21:51:54 art Exp $ */ /* * Copyright 2002 Niels Provos * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifndef _SYS_TREE_H_ #define _SYS_TREE_H_ #ifndef _SYS_SPINLOCK_H_ #include #endif void rb_spin_lock(struct spinlock *spin); void rb_spin_unlock(struct spinlock *spin); /* * This file defines data structures for different types of trees: * splay trees and red-black trees. * * A splay tree is a self-organizing data structure. Every operation * on the tree causes a splay to happen. The splay moves the requested * node to the root of the tree and partly rebalances it. * * This has the benefit that request locality causes faster lookups as * the requested nodes move to the top of the tree. On the other hand, * every lookup causes memory writes. * * The Balance Theorem bounds the total access time for m operations * and n inserts on an initially empty tree as O((m + n)lg n). The * amortized cost for a sequence of m accesses to a splay tree is O(lg n); * * A red-black tree is a binary search tree with the node color as an * extra attribute. It fulfills a set of conditions: * - every search path from the root to a leaf consists of the * same number of black nodes, * - each red node (except for the root) has a black parent, * - each leaf node is black. * * Every operation on a red-black tree is bounded as O(lg n). * The maximum height of a red-black tree is 2lg (n+1). */ #define SPLAY_HEAD(name, type) \ struct name { \ struct type *sph_root; /* root of the tree */ \ } #define SPLAY_INITIALIZER(root) \ { NULL } #define SPLAY_INIT(root) do { \ (root)->sph_root = NULL; \ } while (/*CONSTCOND*/ 0) #define SPLAY_ENTRY(type) \ struct { \ struct type *spe_left; /* left element */ \ struct type *spe_right; /* right element */ \ } #define SPLAY_LEFT(elm, field) (elm)->field.spe_left #define SPLAY_RIGHT(elm, field) (elm)->field.spe_right #define SPLAY_ROOT(head) (head)->sph_root #define SPLAY_EMPTY(head) (SPLAY_ROOT(head) == NULL) /* SPLAY_ROTATE_{LEFT,RIGHT} expect that tmp hold SPLAY_{RIGHT,LEFT} */ #define SPLAY_ROTATE_RIGHT(head, tmp, field) do { \ SPLAY_LEFT((head)->sph_root, field) = SPLAY_RIGHT(tmp, field); \ SPLAY_RIGHT(tmp, field) = (head)->sph_root; \ (head)->sph_root = tmp; \ } while (/*CONSTCOND*/ 0) #define SPLAY_ROTATE_LEFT(head, tmp, field) do { \ SPLAY_RIGHT((head)->sph_root, field) = SPLAY_LEFT(tmp, field); \ SPLAY_LEFT(tmp, field) = (head)->sph_root; \ (head)->sph_root = tmp; \ } while (/*CONSTCOND*/ 0) #define SPLAY_LINKLEFT(head, tmp, field) do { \ SPLAY_LEFT(tmp, field) = (head)->sph_root; \ tmp = (head)->sph_root; \ (head)->sph_root = SPLAY_LEFT((head)->sph_root, field); \ } while (/*CONSTCOND*/ 0) #define SPLAY_LINKRIGHT(head, tmp, field) do { \ SPLAY_RIGHT(tmp, field) = (head)->sph_root; \ tmp = (head)->sph_root; \ (head)->sph_root = SPLAY_RIGHT((head)->sph_root, field); \ } while (/*CONSTCOND*/ 0) #define SPLAY_ASSEMBLE(head, node, left, right, field) do { \ SPLAY_RIGHT(left, field) = SPLAY_LEFT((head)->sph_root, field); \ SPLAY_LEFT(right, field) = SPLAY_RIGHT((head)->sph_root, field);\ SPLAY_LEFT((head)->sph_root, field) = SPLAY_RIGHT(node, field); \ SPLAY_RIGHT((head)->sph_root, field) = SPLAY_LEFT(node, field); \ } while (/*CONSTCOND*/ 0) /* Generates prototypes and inline functions */ #define SPLAY_PROTOTYPE(name, type, field, cmp) \ void name##_SPLAY(struct name *, struct type *); \ void name##_SPLAY_MINMAX(struct name *, int); \ struct type *name##_SPLAY_INSERT(struct name *, struct type *); \ struct type *name##_SPLAY_REMOVE(struct name *, struct type *); \ \ /* Finds the node with the same key as elm */ \ static __inline struct type * \ name##_SPLAY_FIND(struct name *head, struct type *elm) \ { \ if (SPLAY_EMPTY(head)) \ return(NULL); \ name##_SPLAY(head, elm); \ if ((cmp)(elm, (head)->sph_root) == 0) \ return (head->sph_root); \ return (NULL); \ } \ \ static __inline struct type * \ name##_SPLAY_NEXT(struct name *head, struct type *elm) \ { \ name##_SPLAY(head, elm); \ if (SPLAY_RIGHT(elm, field) != NULL) { \ elm = SPLAY_RIGHT(elm, field); \ while (SPLAY_LEFT(elm, field) != NULL) { \ elm = SPLAY_LEFT(elm, field); \ } \ } else \ elm = NULL; \ return (elm); \ } \ \ static __inline struct type * \ name##_SPLAY_MIN_MAX(struct name *head, int val) \ { \ name##_SPLAY_MINMAX(head, val); \ return (SPLAY_ROOT(head)); \ } /* Main splay operation. * Moves node close to the key of elm to top */ #define SPLAY_GENERATE(name, type, field, cmp) \ struct type * \ name##_SPLAY_INSERT(struct name *head, struct type *elm) \ { \ if (SPLAY_EMPTY(head)) { \ SPLAY_LEFT(elm, field) = SPLAY_RIGHT(elm, field) = NULL; \ } else { \ int __comp; \ name##_SPLAY(head, elm); \ __comp = (cmp)(elm, (head)->sph_root); \ if(__comp < 0) { \ SPLAY_LEFT(elm, field) = SPLAY_LEFT((head)->sph_root, field);\ SPLAY_RIGHT(elm, field) = (head)->sph_root; \ SPLAY_LEFT((head)->sph_root, field) = NULL; \ } else if (__comp > 0) { \ SPLAY_RIGHT(elm, field) = SPLAY_RIGHT((head)->sph_root, field);\ SPLAY_LEFT(elm, field) = (head)->sph_root; \ SPLAY_RIGHT((head)->sph_root, field) = NULL; \ } else \ return ((head)->sph_root); \ } \ (head)->sph_root = (elm); \ return (NULL); \ } \ \ struct type * \ name##_SPLAY_REMOVE(struct name *head, struct type *elm) \ { \ struct type *__tmp; \ if (SPLAY_EMPTY(head)) \ return (NULL); \ name##_SPLAY(head, elm); \ if ((cmp)(elm, (head)->sph_root) == 0) { \ if (SPLAY_LEFT((head)->sph_root, field) == NULL) { \ (head)->sph_root = SPLAY_RIGHT((head)->sph_root, field);\ } else { \ __tmp = SPLAY_RIGHT((head)->sph_root, field); \ (head)->sph_root = SPLAY_LEFT((head)->sph_root, field);\ name##_SPLAY(head, elm); \ SPLAY_RIGHT((head)->sph_root, field) = __tmp; \ } \ return (elm); \ } \ return (NULL); \ } \ \ void \ name##_SPLAY(struct name *head, struct type *elm) \ { \ struct type __node, *__left, *__right, *__tmp; \ int __comp; \ \ SPLAY_LEFT(&__node, field) = SPLAY_RIGHT(&__node, field) = NULL;\ __left = __right = &__node; \ \ while ((__comp = (cmp)(elm, (head)->sph_root)) != 0) { \ if (__comp < 0) { \ __tmp = SPLAY_LEFT((head)->sph_root, field); \ if (__tmp == NULL) \ break; \ if ((cmp)(elm, __tmp) < 0){ \ SPLAY_ROTATE_RIGHT(head, __tmp, field); \ if (SPLAY_LEFT((head)->sph_root, field) == NULL)\ break; \ } \ SPLAY_LINKLEFT(head, __right, field); \ } else if (__comp > 0) { \ __tmp = SPLAY_RIGHT((head)->sph_root, field); \ if (__tmp == NULL) \ break; \ if ((cmp)(elm, __tmp) > 0){ \ SPLAY_ROTATE_LEFT(head, __tmp, field); \ if (SPLAY_RIGHT((head)->sph_root, field) == NULL)\ break; \ } \ SPLAY_LINKRIGHT(head, __left, field); \ } \ } \ SPLAY_ASSEMBLE(head, &__node, __left, __right, field); \ } \ \ /* Splay with either the minimum or the maximum element \ * Used to find minimum or maximum element in tree. \ */ \ void name##_SPLAY_MINMAX(struct name *head, int __comp) \ { \ struct type __node, *__left, *__right, *__tmp; \ \ SPLAY_LEFT(&__node, field) = SPLAY_RIGHT(&__node, field) = NULL;\ __left = __right = &__node; \ \ while (1) { \ if (__comp < 0) { \ __tmp = SPLAY_LEFT((head)->sph_root, field); \ if (__tmp == NULL) \ break; \ if (__comp < 0){ \ SPLAY_ROTATE_RIGHT(head, __tmp, field); \ if (SPLAY_LEFT((head)->sph_root, field) == NULL)\ break; \ } \ SPLAY_LINKLEFT(head, __right, field); \ } else if (__comp > 0) { \ __tmp = SPLAY_RIGHT((head)->sph_root, field); \ if (__tmp == NULL) \ break; \ if (__comp > 0) { \ SPLAY_ROTATE_LEFT(head, __tmp, field); \ if (SPLAY_RIGHT((head)->sph_root, field) == NULL)\ break; \ } \ SPLAY_LINKRIGHT(head, __left, field); \ } \ } \ SPLAY_ASSEMBLE(head, &__node, __left, __right, field); \ } #define SPLAY_NEGINF -1 #define SPLAY_INF 1 #define SPLAY_INSERT(name, x, y) name##_SPLAY_INSERT(x, y) #define SPLAY_REMOVE(name, x, y) name##_SPLAY_REMOVE(x, y) #define SPLAY_FIND(name, x, y) name##_SPLAY_FIND(x, y) #define SPLAY_NEXT(name, x, y) name##_SPLAY_NEXT(x, y) #define SPLAY_MIN(name, x) (SPLAY_EMPTY(x) ? NULL \ : name##_SPLAY_MIN_MAX(x, SPLAY_NEGINF)) #define SPLAY_MAX(name, x) (SPLAY_EMPTY(x) ? NULL \ : name##_SPLAY_MIN_MAX(x, SPLAY_INF)) #define SPLAY_FOREACH(x, name, head) \ for ((x) = SPLAY_MIN(name, head); \ (x) != NULL; \ (x) = SPLAY_NEXT(name, head, x)) /* * Macros that define a red-black tree */ #define RB_SCAN_INFO(name, type) \ struct name##_scan_info { \ struct name##_scan_info *link; \ struct type *node; \ } #define RB_HEAD(name, type) \ struct name { \ struct type *rbh_root; /* root of the tree */ \ struct name##_scan_info *rbh_inprog; /* scans in progress */ \ struct spinlock rbh_spin; \ } #define RB_INITIALIZER(root) \ { NULL, NULL, SPINLOCK_INITIALIZER(root.spin, "root.spin") } #define RB_INIT(root) do { \ (root)->rbh_root = NULL; \ (root)->rbh_inprog = NULL; \ } while (/*CONSTCOND*/ 0) #ifdef _KERNEL #define RB_SCAN_LOCK(spin) rb_spin_lock(spin) #define RB_SCAN_UNLOCK(spin) rb_spin_unlock(spin) #else #define RB_SCAN_LOCK(spin) #define RB_SCAN_UNLOCK(spin) #endif #define RB_BLACK 0 #define RB_RED 1 #define RB_ENTRY(type) \ struct { \ struct type *rbe_left; /* left element */ \ struct type *rbe_right; /* right element */ \ struct type *rbe_parent; /* parent element */ \ int rbe_color; /* node color */ \ } #define RB_LEFT(elm, field) (elm)->field.rbe_left #define RB_RIGHT(elm, field) (elm)->field.rbe_right #define RB_PARENT(elm, field) (elm)->field.rbe_parent #define RB_COLOR(elm, field) (elm)->field.rbe_color #define RB_ROOT(head) (head)->rbh_root #define RB_INPROG(head) (head)->rbh_inprog #define RB_EMPTY(head) (RB_ROOT(head) == NULL) #define RB_SET(elm, parent, field) do { \ RB_PARENT(elm, field) = parent; \ RB_LEFT(elm, field) = RB_RIGHT(elm, field) = NULL; \ RB_COLOR(elm, field) = RB_RED; \ } while (/*CONSTCOND*/ 0) #define RB_SET_BLACKRED(black, red, field) do { \ RB_COLOR(black, field) = RB_BLACK; \ RB_COLOR(red, field) = RB_RED; \ } while (/*CONSTCOND*/ 0) #ifndef RB_AUGMENT #define RB_AUGMENT(x) do {} while (0) #endif #define RB_ROTATE_LEFT(head, elm, tmp, field) do { \ (tmp) = RB_RIGHT(elm, field); \ if ((RB_RIGHT(elm, field) = RB_LEFT(tmp, field)) != NULL) { \ RB_PARENT(RB_LEFT(tmp, field), field) = (elm); \ } \ RB_AUGMENT(elm); \ if ((RB_PARENT(tmp, field) = RB_PARENT(elm, field)) != NULL) { \ if ((elm) == RB_LEFT(RB_PARENT(elm, field), field)) \ RB_LEFT(RB_PARENT(elm, field), field) = (tmp); \ else \ RB_RIGHT(RB_PARENT(elm, field), field) = (tmp); \ } else \ (head)->rbh_root = (tmp); \ RB_LEFT(tmp, field) = (elm); \ RB_PARENT(elm, field) = (tmp); \ RB_AUGMENT(tmp); \ if ((RB_PARENT(tmp, field))) \ RB_AUGMENT(RB_PARENT(tmp, field)); \ } while (/*CONSTCOND*/ 0) #define RB_ROTATE_RIGHT(head, elm, tmp, field) do { \ (tmp) = RB_LEFT(elm, field); \ if ((RB_LEFT(elm, field) = RB_RIGHT(tmp, field)) != NULL) { \ RB_PARENT(RB_RIGHT(tmp, field), field) = (elm); \ } \ RB_AUGMENT(elm); \ if ((RB_PARENT(tmp, field) = RB_PARENT(elm, field)) != NULL) { \ if ((elm) == RB_LEFT(RB_PARENT(elm, field), field)) \ RB_LEFT(RB_PARENT(elm, field), field) = (tmp); \ else \ RB_RIGHT(RB_PARENT(elm, field), field) = (tmp); \ } else \ (head)->rbh_root = (tmp); \ RB_RIGHT(tmp, field) = (elm); \ RB_PARENT(elm, field) = (tmp); \ RB_AUGMENT(tmp); \ if ((RB_PARENT(tmp, field))) \ RB_AUGMENT(RB_PARENT(tmp, field)); \ } while (/*CONSTCOND*/ 0) /* Generates prototypes and inline functions */ #define RB_PROTOTYPE(name, type, field, cmp) \ _RB_PROTOTYPE(name, type, field, cmp,) #define RB_PROTOTYPE_STATIC(name, type, field, cmp) \ _RB_PROTOTYPE(name, type, field, cmp, __unused static) #define _RB_PROTOTYPE(name, type, field, cmp, STORQUAL) \ STORQUAL void name##_RB_INSERT_COLOR(struct name *, struct type *); \ STORQUAL void name##_RB_REMOVE_COLOR(struct name *, struct type *, struct type *);\ STORQUAL struct type *name##_RB_REMOVE(struct name *, struct type *); \ STORQUAL struct type *name##_RB_INSERT(struct name *, struct type *); \ STORQUAL struct type *name##_RB_FIND(struct name *, struct type *); \ STORQUAL int name##_RB_SCAN(struct name *, int (*)(struct type *, void *),\ int (*)(struct type *, void *), void *); \ STORQUAL int name##_RB_SCAN_NOLK(struct name *, int (*)(struct type *, void *),\ int (*)(struct type *, void *), void *); \ STORQUAL struct type *name##_RB_NEXT(struct type *); \ STORQUAL struct type *name##_RB_PREV(struct type *); \ STORQUAL struct type *name##_RB_MINMAX(struct name *, int); \ RB_SCAN_INFO(name, type) \ /* * A version which supplies a fast lookup routine for an exact match * on a numeric field. */ #define RB_PROTOTYPE2(name, type, field, cmp, datatype) \ RB_PROTOTYPE(name, type, field, cmp); \ struct type *name##_RB_LOOKUP(struct name *, datatype); \ struct type *name##_RB_LOOKUP_REL(struct name *, datatype, struct type *) \ /* * A version which supplies a fast lookup routine for a numeric * field which resides within a ranged object, either using (begin,end), * or using (begin,size). */ #define RB_PROTOTYPE3(name, type, field, cmp, datatype) \ RB_PROTOTYPE2(name, type, field, cmp, datatype); \ struct type *name##_RB_RLOOKUP(struct name *, datatype) \ #define RB_PROTOTYPE4(name, type, field, cmp, datatype) \ RB_PROTOTYPE2(name, type, field, cmp, datatype); \ struct type *name##_RB_RLOOKUP(struct name *, datatype) \ #define RB_PROTOTYPEX(name, ext, type, field, cmp, datatype) \ RB_PROTOTYPE(name, type, field, cmp); \ struct type *name##_RB_LOOKUP_##ext (struct name *, datatype) \ /* Main rb operation. * Moves node close to the key of elm to top */ #define RB_GENERATE(name, type, field, cmp) \ _RB_GENERATE(name, type, field, cmp,) #define RB_GENERATE_STATIC(name, type, field, cmp) \ _RB_GENERATE(name, type, field, cmp, __unused static) #define _RB_GENERATE(name, type, field, cmp, STORQUAL) \ STORQUAL void \ name##_RB_INSERT_COLOR(struct name *head, struct type *elm) \ { \ struct type *parent, *gparent, *tmp; \ while ((parent = RB_PARENT(elm, field)) != NULL && \ RB_COLOR(parent, field) == RB_RED) { \ gparent = RB_PARENT(parent, field); \ if (parent == RB_LEFT(gparent, field)) { \ tmp = RB_RIGHT(gparent, field); \ if (tmp && RB_COLOR(tmp, field) == RB_RED) { \ RB_COLOR(tmp, field) = RB_BLACK; \ RB_SET_BLACKRED(parent, gparent, field);\ elm = gparent; \ continue; \ } \ if (RB_RIGHT(parent, field) == elm) { \ RB_ROTATE_LEFT(head, parent, tmp, field);\ tmp = parent; \ parent = elm; \ elm = tmp; \ } \ RB_SET_BLACKRED(parent, gparent, field); \ RB_ROTATE_RIGHT(head, gparent, tmp, field); \ } else { \ tmp = RB_LEFT(gparent, field); \ if (tmp && RB_COLOR(tmp, field) == RB_RED) { \ RB_COLOR(tmp, field) = RB_BLACK; \ RB_SET_BLACKRED(parent, gparent, field);\ elm = gparent; \ continue; \ } \ if (RB_LEFT(parent, field) == elm) { \ RB_ROTATE_RIGHT(head, parent, tmp, field);\ tmp = parent; \ parent = elm; \ elm = tmp; \ } \ RB_SET_BLACKRED(parent, gparent, field); \ RB_ROTATE_LEFT(head, gparent, tmp, field); \ } \ } \ RB_COLOR(head->rbh_root, field) = RB_BLACK; \ } \ \ STORQUAL void \ name##_RB_REMOVE_COLOR(struct name *head, struct type *parent, \ struct type *elm) \ { \ struct type *tmp; \ while ((elm == NULL || RB_COLOR(elm, field) == RB_BLACK) && \ elm != RB_ROOT(head)) { \ if (RB_LEFT(parent, field) == elm) { \ tmp = RB_RIGHT(parent, field); \ if (RB_COLOR(tmp, field) == RB_RED) { \ RB_SET_BLACKRED(tmp, parent, field); \ RB_ROTATE_LEFT(head, parent, tmp, field);\ tmp = RB_RIGHT(parent, field); \ } \ if ((RB_LEFT(tmp, field) == NULL || \ RB_COLOR(RB_LEFT(tmp, field), field) == RB_BLACK) &&\ (RB_RIGHT(tmp, field) == NULL || \ RB_COLOR(RB_RIGHT(tmp, field), field) == RB_BLACK)) {\ RB_COLOR(tmp, field) = RB_RED; \ elm = parent; \ parent = RB_PARENT(elm, field); \ } else { \ if (RB_RIGHT(tmp, field) == NULL || \ RB_COLOR(RB_RIGHT(tmp, field), field) == RB_BLACK) {\ struct type *oleft; \ if ((oleft = RB_LEFT(tmp, field)) \ != NULL) \ RB_COLOR(oleft, field) = RB_BLACK;\ RB_COLOR(tmp, field) = RB_RED; \ RB_ROTATE_RIGHT(head, tmp, oleft, field);\ tmp = RB_RIGHT(parent, field); \ } \ RB_COLOR(tmp, field) = RB_COLOR(parent, field);\ RB_COLOR(parent, field) = RB_BLACK; \ if (RB_RIGHT(tmp, field)) \ RB_COLOR(RB_RIGHT(tmp, field), field) = RB_BLACK;\ RB_ROTATE_LEFT(head, parent, tmp, field);\ elm = RB_ROOT(head); \ break; \ } \ } else { \ tmp = RB_LEFT(parent, field); \ if (RB_COLOR(tmp, field) == RB_RED) { \ RB_SET_BLACKRED(tmp, parent, field); \ RB_ROTATE_RIGHT(head, parent, tmp, field);\ tmp = RB_LEFT(parent, field); \ } \ if ((RB_LEFT(tmp, field) == NULL || \ RB_COLOR(RB_LEFT(tmp, field), field) == RB_BLACK) &&\ (RB_RIGHT(tmp, field) == NULL || \ RB_COLOR(RB_RIGHT(tmp, field), field) == RB_BLACK)) {\ RB_COLOR(tmp, field) = RB_RED; \ elm = parent; \ parent = RB_PARENT(elm, field); \ } else { \ if (RB_LEFT(tmp, field) == NULL || \ RB_COLOR(RB_LEFT(tmp, field), field) == RB_BLACK) {\ struct type *oright; \ if ((oright = RB_RIGHT(tmp, field)) \ != NULL) \ RB_COLOR(oright, field) = RB_BLACK;\ RB_COLOR(tmp, field) = RB_RED; \ RB_ROTATE_LEFT(head, tmp, oright, field);\ tmp = RB_LEFT(parent, field); \ } \ RB_COLOR(tmp, field) = RB_COLOR(parent, field);\ RB_COLOR(parent, field) = RB_BLACK; \ if (RB_LEFT(tmp, field)) \ RB_COLOR(RB_LEFT(tmp, field), field) = RB_BLACK;\ RB_ROTATE_RIGHT(head, parent, tmp, field);\ elm = RB_ROOT(head); \ break; \ } \ } \ } \ if (elm) \ RB_COLOR(elm, field) = RB_BLACK; \ } \ \ STORQUAL struct type * \ name##_RB_REMOVE(struct name *head, struct type *elm) \ { \ struct type *child, *parent, *old; \ struct name##_scan_info *inprog; \ int color; \ \ for (inprog = RB_INPROG(head); inprog; inprog = inprog->link) { \ if (inprog->node == elm) \ inprog->node = RB_NEXT(name, head, elm); \ } \ \ old = elm; \ if (RB_LEFT(elm, field) == NULL) \ child = RB_RIGHT(elm, field); \ else if (RB_RIGHT(elm, field) == NULL) \ child = RB_LEFT(elm, field); \ else { \ struct type *left; \ elm = RB_RIGHT(elm, field); \ while ((left = RB_LEFT(elm, field)) != NULL) \ elm = left; \ child = RB_RIGHT(elm, field); \ parent = RB_PARENT(elm, field); \ color = RB_COLOR(elm, field); \ if (child) \ RB_PARENT(child, field) = parent; \ if (parent) { \ if (RB_LEFT(parent, field) == elm) \ RB_LEFT(parent, field) = child; \ else \ RB_RIGHT(parent, field) = child; \ RB_AUGMENT(parent); \ } else \ RB_ROOT(head) = child; \ if (RB_PARENT(elm, field) == old) \ parent = elm; \ (elm)->field = (old)->field; \ if (RB_PARENT(old, field)) { \ if (RB_LEFT(RB_PARENT(old, field), field) == old)\ RB_LEFT(RB_PARENT(old, field), field) = elm;\ else \ RB_RIGHT(RB_PARENT(old, field), field) = elm;\ RB_AUGMENT(RB_PARENT(old, field)); \ } else \ RB_ROOT(head) = elm; \ RB_PARENT(RB_LEFT(old, field), field) = elm; \ if (RB_RIGHT(old, field)) \ RB_PARENT(RB_RIGHT(old, field), field) = elm; \ if (parent) { \ left = parent; \ do { \ RB_AUGMENT(left); \ } while ((left = RB_PARENT(left, field)) != NULL); \ } \ goto color; \ } \ parent = RB_PARENT(elm, field); \ color = RB_COLOR(elm, field); \ if (child) \ RB_PARENT(child, field) = parent; \ if (parent) { \ if (RB_LEFT(parent, field) == elm) \ RB_LEFT(parent, field) = child; \ else \ RB_RIGHT(parent, field) = child; \ RB_AUGMENT(parent); \ } else \ RB_ROOT(head) = child; \ color: \ if (color == RB_BLACK) \ name##_RB_REMOVE_COLOR(head, parent, child); \ return (old); \ } \ \ /* Inserts a node into the RB tree */ \ STORQUAL struct type * \ name##_RB_INSERT(struct name *head, struct type *elm) \ { \ struct type *tmp; \ struct type *parent = NULL; \ int comp = 0; \ tmp = RB_ROOT(head); \ while (tmp) { \ parent = tmp; \ comp = (cmp)(elm, parent); \ if (comp < 0) \ tmp = RB_LEFT(tmp, field); \ else if (comp > 0) \ tmp = RB_RIGHT(tmp, field); \ else \ return(tmp); \ } \ RB_SET(elm, parent, field); \ if (parent != NULL) { \ if (comp < 0) \ RB_LEFT(parent, field) = elm; \ else \ RB_RIGHT(parent, field) = elm; \ RB_AUGMENT(parent); \ } else \ RB_ROOT(head) = elm; \ name##_RB_INSERT_COLOR(head, elm); \ return (NULL); \ } \ \ /* Finds the node with the same key as elm */ \ STORQUAL struct type * \ name##_RB_FIND(struct name *head, struct type *elm) \ { \ struct type *tmp = RB_ROOT(head); \ int comp; \ while (tmp) { \ comp = cmp(elm, tmp); \ if (comp < 0) \ tmp = RB_LEFT(tmp, field); \ else if (comp > 0) \ tmp = RB_RIGHT(tmp, field); \ else \ return (tmp); \ } \ return (NULL); \ } \ \ /* \ * Issue a callback for all matching items. The scan function must \ * return < 0 for items below the desired range, 0 for items within \ * the range, and > 0 for items beyond the range. Any item may be \ * deleted while the scan is in progress. \ */ \ static int \ name##_SCANCMP_ALL(struct type *type __unused, void *data __unused) \ { \ return(0); \ } \ \ static __inline void \ name##_scan_info_link(struct name##_scan_info *scan, struct name *head) \ { \ RB_SCAN_LOCK(&head->rbh_spin); \ scan->link = RB_INPROG(head); \ RB_INPROG(head) = scan; \ RB_SCAN_UNLOCK(&head->rbh_spin); \ } \ \ static __inline void \ name##_scan_info_done(struct name##_scan_info *scan, struct name *head) \ { \ struct name##_scan_info **infopp; \ \ RB_SCAN_LOCK(&head->rbh_spin); \ infopp = &RB_INPROG(head); \ while (*infopp != scan) \ infopp = &(*infopp)->link; \ *infopp = scan->link; \ RB_SCAN_UNLOCK(&head->rbh_spin); \ } \ \ static __inline int \ _##name##_RB_SCAN(struct name *head, \ int (*scancmp)(struct type *, void *), \ int (*callback)(struct type *, void *), \ void *data, int uselock) \ { \ struct name##_scan_info info; \ struct type *best; \ struct type *tmp; \ int count; \ int comp; \ \ if (scancmp == NULL) \ scancmp = name##_SCANCMP_ALL; \ \ /* \ * Locate the first element. \ */ \ tmp = RB_ROOT(head); \ best = NULL; \ while (tmp) { \ comp = scancmp(tmp, data); \ if (comp < 0) { \ tmp = RB_RIGHT(tmp, field); \ } else if (comp > 0) { \ tmp = RB_LEFT(tmp, field); \ } else { \ best = tmp; \ if (RB_LEFT(tmp, field) == NULL) \ break; \ tmp = RB_LEFT(tmp, field); \ } \ } \ count = 0; \ if (best) { \ info.node = RB_NEXT(name, head, best); \ if (uselock) \ name##_scan_info_link(&info, head); \ while ((comp = callback(best, data)) >= 0) { \ count += comp; \ best = info.node; \ if (best == NULL || scancmp(best, data) != 0) \ break; \ info.node = RB_NEXT(name, head, best); \ } \ if (uselock) \ name##_scan_info_done(&info, head); \ if (comp < 0) /* error or termination */ \ count = comp; \ } \ return(count); \ } \ \ STORQUAL int \ name##_RB_SCAN(struct name *head, \ int (*scancmp)(struct type *, void *), \ int (*callback)(struct type *, void *), \ void *data) \ { \ return _##name##_RB_SCAN(head, scancmp, callback, data, 1); \ } \ \ STORQUAL int \ name##_RB_SCAN_NOLK(struct name *head, \ int (*scancmp)(struct type *, void *), \ int (*callback)(struct type *, void *), \ void *data) \ { \ return _##name##_RB_SCAN(head, scancmp, callback, data, 0); \ } \ \ /* ARGSUSED */ \ STORQUAL struct type * \ name##_RB_NEXT(struct type *elm) \ { \ if (RB_RIGHT(elm, field)) { \ elm = RB_RIGHT(elm, field); \ while (RB_LEFT(elm, field)) \ elm = RB_LEFT(elm, field); \ } else { \ if (RB_PARENT(elm, field) && \ (elm == RB_LEFT(RB_PARENT(elm, field), field))) \ elm = RB_PARENT(elm, field); \ else { \ while (RB_PARENT(elm, field) && \ (elm == RB_RIGHT(RB_PARENT(elm, field), field)))\ elm = RB_PARENT(elm, field); \ elm = RB_PARENT(elm, field); \ } \ } \ return (elm); \ } \ \ /* ARGSUSED */ \ STORQUAL struct type * \ name##_RB_PREV(struct type *elm) \ { \ if (RB_LEFT(elm, field)) { \ elm = RB_LEFT(elm, field); \ while (RB_RIGHT(elm, field)) \ elm = RB_RIGHT(elm, field); \ } else { \ if (RB_PARENT(elm, field) && \ (elm == RB_RIGHT(RB_PARENT(elm, field), field))) \ elm = RB_PARENT(elm, field); \ else { \ while (RB_PARENT(elm, field) && \ (elm == RB_LEFT(RB_PARENT(elm, field), field)))\ elm = RB_PARENT(elm, field); \ elm = RB_PARENT(elm, field); \ } \ } \ return (elm); \ } \ \ STORQUAL struct type * \ name##_RB_MINMAX(struct name *head, int val) \ { \ struct type *tmp = RB_ROOT(head); \ struct type *parent = NULL; \ while (tmp) { \ parent = tmp; \ if (val < 0) \ tmp = RB_LEFT(tmp, field); \ else \ tmp = RB_RIGHT(tmp, field); \ } \ return (parent); \ } /* * This extended version implements a fast LOOKUP function given * a numeric data type. * * The element whos index/offset field is exactly the specified value * will be returned, or NULL. */ #define RB_GENERATE2(name, type, field, cmp, datatype, indexfield) \ RB_GENERATE(name, type, field, cmp) \ \ struct type * \ name##_RB_LOOKUP(struct name *head, datatype value) \ { \ struct type *tmp; \ \ tmp = RB_ROOT(head); \ while (tmp) { \ if (value > tmp->indexfield) \ tmp = RB_RIGHT(tmp, field); \ else if (value < tmp->indexfield) \ tmp = RB_LEFT(tmp, field); \ else \ return(tmp); \ } \ return(NULL); \ } \ \ struct type * \ name##_RB_LOOKUP_REL(struct name *head, datatype value, struct type *rel)\ { \ struct type *tmp; \ \ if (value == rel->indexfield - 1) { \ tmp = name##_RB_PREV(rel); \ if (tmp && value != tmp->indexfield) \ tmp = NULL; \ return tmp; \ } \ if (value == rel->indexfield + 1) { \ tmp = name##_RB_NEXT(rel); \ if (tmp && value != tmp->indexfield) \ tmp = NULL; \ return tmp; \ } \ \ tmp = RB_ROOT(head); \ while (tmp) { \ if (value > tmp->indexfield) \ tmp = RB_RIGHT(tmp, field); \ else if (value < tmp->indexfield) \ tmp = RB_LEFT(tmp, field); \ else \ return(tmp); \ } \ return(NULL); \ } \ /* * This extended version implements a fast ranged-based LOOKUP function * given a numeric data type, for data types with a beginning and end * (end is inclusive). * * The element whos range contains the specified value is returned, or NULL */ #define RB_GENERATE3(name, type, field, cmp, datatype, begfield, endfield) \ RB_GENERATE2(name, type, field, cmp, datatype, begfield) \ \ struct type * \ name##_RB_RLOOKUP(struct name *head, datatype value) \ { \ struct type *tmp; \ \ tmp = RB_ROOT(head); \ while (tmp) { \ if (value >= tmp->begfield && value <= tmp->endfield) \ return(tmp); \ if (value > tmp->begfield) \ tmp = RB_RIGHT(tmp, field); \ else \ tmp = RB_LEFT(tmp, field); \ } \ return(NULL); \ } \ /* * This extended version implements a fast ranged-based LOOKUP function * given a numeric data type, for data types with a beginning and size. * * WARNING: The full range of the data type is not supported due to a * boundary condition at the end, where (beginning + size) might overflow. * * The element whos range contains the specified value is returned, or NULL */ #define RB_GENERATE4(name, type, field, cmp, datatype, begfield, sizefield) \ RB_GENERATE2(name, type, field, cmp, datatype, begfield) \ \ struct type * \ name##_RB_RLOOKUP(struct name *head, datatype value) \ { \ struct type *tmp; \ \ tmp = RB_ROOT(head); \ while (tmp) { \ if (value >= tmp->begfield && \ value < tmp->begfield + tmp->sizefield) { \ return(tmp); \ } \ if (value > tmp->begfield) \ tmp = RB_RIGHT(tmp, field); \ else \ tmp = RB_LEFT(tmp, field); \ } \ return(NULL); \ } \ /* * This generates a custom lookup function for a red-black tree. * Note that the macro may be used with a storage qualifier. */ #define RB_GENERATE_XLOOKUP(name, ext, type, field, xcmp, datatype) \ _RB_GENERATE_XLOOKUP(name, ext, type, field, xcmp, datatype,) #define RB_GENERATE_XLOOKUP_STATIC(name, ext, type, field, xcmp, datatype) \ _RB_GENERATE_XLOOKUP(name, ext, type, field, xcmp, datatype, __unused static) #define _RB_GENERATE_XLOOKUP(name, ext, type, field, xcmp, datatype, STORQUAL)\ \ STORQUAL struct type * \ name##_RB_LOOKUP_##ext (struct name *head, datatype value) \ { \ struct type *tmp; \ int r; \ \ tmp = RB_ROOT(head); \ while (tmp) { \ r = xcmp(value, tmp); \ if (r == 0) \ return(tmp); \ if (r > 0) \ tmp = RB_RIGHT(tmp, field); \ else \ tmp = RB_LEFT(tmp, field); \ } \ return(NULL); \ } \ #define RB_NEGINF -1 #define RB_INF 1 #define RB_INSERT(name, root, elm) name##_RB_INSERT(root, elm) #define RB_REMOVE(name, root, elm) name##_RB_REMOVE(root, elm) #define RB_FIND(name, root, elm) name##_RB_FIND(root, elm) #define RB_LOOKUP(name, root, value) name##_RB_LOOKUP(root, value) #define RB_RLOOKUP(name, root, value) name##_RB_RLOOKUP(root, value) #define RB_SCAN(name, root, cmp, callback, data) \ name##_RB_SCAN(root, cmp, callback, data) #define RB_SCAN_NOLK(name, root, cmp, callback, data) \ name##_RB_SCAN_NOLK(root, cmp, callback, data) #define RB_FIRST(name, root) name##_RB_MINMAX(root, RB_NEGINF) #define RB_NEXT(name, root, elm) name##_RB_NEXT(elm) #define RB_PREV(name, root, elm) name##_RB_PREV(elm) #define RB_MIN(name, root) name##_RB_MINMAX(root, RB_NEGINF) #define RB_MAX(name, root) name##_RB_MINMAX(root, RB_INF) #define RB_FOREACH(x, name, head) \ for ((x) = RB_MIN(name, head); \ (x) != NULL; \ (x) = name##_RB_NEXT(x)) #define RB_FOREACH_FROM(x, name, y) \ for ((x) = (y); \ ((x) != NULL) && ((y) = name##_RB_NEXT(x), (x) != NULL); \ (x) = (y)) #define RB_FOREACH_SAFE(x, name, head, y) \ for ((x) = RB_MIN(name, head); \ ((x) != NULL) && ((y) = name##_RB_NEXT(x), (x) != NULL); \ (x) = (y)) #define RB_FOREACH_REVERSE(x, name, head) \ for ((x) = RB_MAX(name, head); \ (x) != NULL; \ (x) = name##_RB_PREV(x)) #define RB_FOREACH_REVERSE_FROM(x, name, y) \ for ((x) = (y); \ ((x) != NULL) && ((y) = name##_RB_PREV(x), (x) != NULL); \ (x) = (y)) #define RB_FOREACH_REVERSE_SAFE(x, name, head, y) \ for ((x) = RB_MAX(name, head); \ ((x) != NULL) && ((y) = name##_RB_PREV(x), (x) != NULL); \ (x) = (y)) #endif /* _SYS_TREE_H_ */