/*- * Written by Corinne Dive-Reclus(cdive@baltimore.com) * * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * 3. All advertising materials mentioning features or use of this * software must display the following acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)" * * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to * endorse or promote products derived from this software without * prior written permission. For written permission, please contact * licensing@OpenSSL.org. * * 5. Products derived from this software may not be called "OpenSSL" * nor may "OpenSSL" appear in their names without prior written * permission of the OpenSSL Project. * * 6. Redistributions of any form whatsoever must retain the following * acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)" * * Written by Corinne Dive-Reclus(cdive@baltimore.com) * * Copyright@2001 Baltimore Technologies Ltd. * All right Reserved. * * * THIS FILE IS PROVIDED BY BALTIMORE TECHNOLOGIES ``AS IS'' AND * * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * * ARE DISCLAIMED. IN NO EVENT SHALL BALTIMORE TECHNOLOGIES BE LIABLE * * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * * SUCH DAMAGE. * ====================================================================*/ #include #include #include #include #include #include #include #ifndef OPENSSL_NO_RSA # include #endif #ifndef OPENSSL_NO_DSA # include #endif #ifndef OPENSSL_NO_DH # include #endif #include #ifndef OPENSSL_NO_HW # ifndef OPENSSL_NO_HW_SUREWARE # ifdef FLAT_INC # include "sureware.h" # else # include "vendor_defns/sureware.h" # endif # define SUREWARE_LIB_NAME "sureware engine" # include "e_sureware_err.c" static int surewarehk_ctrl(ENGINE *e, int cmd, long i, void *p, void (*f) (void)); static int surewarehk_destroy(ENGINE *e); static int surewarehk_init(ENGINE *e); static int surewarehk_finish(ENGINE *e); static int surewarehk_modexp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, const BIGNUM *m, BN_CTX *ctx); /* RSA stuff */ # ifndef OPENSSL_NO_RSA static int surewarehk_rsa_priv_dec(int flen, const unsigned char *from, unsigned char *to, RSA *rsa, int padding); static int surewarehk_rsa_sign(int flen, const unsigned char *from, unsigned char *to, RSA *rsa, int padding); # endif /* RAND stuff */ static int surewarehk_rand_bytes(unsigned char *buf, int num); static void surewarehk_rand_seed(const void *buf, int num); static void surewarehk_rand_add(const void *buf, int num, double entropy); /* KM stuff */ static EVP_PKEY *surewarehk_load_privkey(ENGINE *e, const char *key_id, UI_METHOD *ui_method, void *callback_data); static EVP_PKEY *surewarehk_load_pubkey(ENGINE *e, const char *key_id, UI_METHOD *ui_method, void *callback_data); static void surewarehk_ex_free(void *obj, void *item, CRYPTO_EX_DATA *ad, int idx, long argl, void *argp); # if 0 static void surewarehk_dh_ex_free(void *obj, void *item, CRYPTO_EX_DATA *ad, int idx, long argl, void *argp); # endif # ifndef OPENSSL_NO_RSA /* This function is aliased to mod_exp (with the mont stuff dropped). */ static int surewarehk_mod_exp_mont(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *m_ctx) { return surewarehk_modexp(r, a, p, m, ctx); } /* Our internal RSA_METHOD that we provide pointers to */ static RSA_METHOD surewarehk_rsa = { "SureWare RSA method", NULL, /* pub_enc */ NULL, /* pub_dec */ surewarehk_rsa_sign, /* our rsa_sign is OpenSSL priv_enc */ surewarehk_rsa_priv_dec, /* priv_dec */ NULL, /* mod_exp */ surewarehk_mod_exp_mont, /* mod_exp_mongomery */ NULL, /* init */ NULL, /* finish */ 0, /* RSA flag */ NULL, NULL, /* OpenSSL sign */ NULL, /* OpenSSL verify */ NULL /* keygen */ }; # endif # ifndef OPENSSL_NO_DH /* Our internal DH_METHOD that we provide pointers to */ /* This function is aliased to mod_exp (with the dh and mont dropped). */ static int surewarehk_modexp_dh(const DH *dh, BIGNUM *r, const BIGNUM *a, const BIGNUM *p, const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *m_ctx) { return surewarehk_modexp(r, a, p, m, ctx); } static DH_METHOD surewarehk_dh = { "SureWare DH method", NULL, /* gen_key */ NULL, /* agree, */ surewarehk_modexp_dh, /* dh mod exp */ NULL, /* init */ NULL, /* finish */ 0, /* flags */ NULL, NULL }; # endif static RAND_METHOD surewarehk_rand = { /* "SureWare RAND method", */ surewarehk_rand_seed, surewarehk_rand_bytes, NULL, /* cleanup */ surewarehk_rand_add, surewarehk_rand_bytes, NULL, /* rand_status */ }; # ifndef OPENSSL_NO_DSA /* DSA stuff */ static DSA_SIG *surewarehk_dsa_do_sign(const unsigned char *dgst, int dlen, DSA *dsa); static int surewarehk_dsa_mod_exp(DSA *dsa, BIGNUM *rr, BIGNUM *a1, BIGNUM *p1, BIGNUM *a2, BIGNUM *p2, BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *in_mont) { BIGNUM t; int to_return = 0; BN_init(&t); /* let rr = a1 ^ p1 mod m */ if (!surewarehk_modexp(rr, a1, p1, m, ctx)) goto end; /* let t = a2 ^ p2 mod m */ if (!surewarehk_modexp(&t, a2, p2, m, ctx)) goto end; /* let rr = rr * t mod m */ if (!BN_mod_mul(rr, rr, &t, m, ctx)) goto end; to_return = 1; end: BN_free(&t); return to_return; } static DSA_METHOD surewarehk_dsa = { "SureWare DSA method", surewarehk_dsa_do_sign, NULL, /* sign setup */ NULL, /* verify, */ surewarehk_dsa_mod_exp, /* mod exp */ NULL, /* bn mod exp */ NULL, /* init */ NULL, /* finish */ 0, NULL, NULL, NULL }; # endif static const char *engine_sureware_id = "sureware"; static const char *engine_sureware_name = "SureWare hardware engine support"; /* Now, to our own code */ /* * As this is only ever called once, there's no need for locking (indeed - * the lock will already be held by our caller!!!) */ static int bind_sureware(ENGINE *e) { # ifndef OPENSSL_NO_RSA const RSA_METHOD *meth1; # endif # ifndef OPENSSL_NO_DSA const DSA_METHOD *meth2; # endif # ifndef OPENSSL_NO_DH const DH_METHOD *meth3; # endif if (!ENGINE_set_id(e, engine_sureware_id) || !ENGINE_set_name(e, engine_sureware_name) || # ifndef OPENSSL_NO_RSA !ENGINE_set_RSA(e, &surewarehk_rsa) || # endif # ifndef OPENSSL_NO_DSA !ENGINE_set_DSA(e, &surewarehk_dsa) || # endif # ifndef OPENSSL_NO_DH !ENGINE_set_DH(e, &surewarehk_dh) || # endif !ENGINE_set_RAND(e, &surewarehk_rand) || !ENGINE_set_destroy_function(e, surewarehk_destroy) || !ENGINE_set_init_function(e, surewarehk_init) || !ENGINE_set_finish_function(e, surewarehk_finish) || !ENGINE_set_ctrl_function(e, surewarehk_ctrl) || !ENGINE_set_load_privkey_function(e, surewarehk_load_privkey) || !ENGINE_set_load_pubkey_function(e, surewarehk_load_pubkey)) return 0; # ifndef OPENSSL_NO_RSA /* * We know that the "PKCS1_SSLeay()" functions hook properly to the * cswift-specific mod_exp and mod_exp_crt so we use those functions. NB: * We don't use ENGINE_openssl() or anything "more generic" because * something like the RSAref code may not hook properly, and if you own * one of these cards then you have the right to do RSA operations on it * anyway! */ meth1 = RSA_PKCS1_SSLeay(); if (meth1) { surewarehk_rsa.rsa_pub_enc = meth1->rsa_pub_enc; surewarehk_rsa.rsa_pub_dec = meth1->rsa_pub_dec; } # endif # ifndef OPENSSL_NO_DSA /* * Use the DSA_OpenSSL() method and just hook the mod_exp-ish bits. */ meth2 = DSA_OpenSSL(); if (meth2) { surewarehk_dsa.dsa_do_verify = meth2->dsa_do_verify; } # endif # ifndef OPENSSL_NO_DH /* Much the same for Diffie-Hellman */ meth3 = DH_OpenSSL(); if (meth3) { surewarehk_dh.generate_key = meth3->generate_key; surewarehk_dh.compute_key = meth3->compute_key; } # endif /* Ensure the sureware error handling is set up */ ERR_load_SUREWARE_strings(); return 1; } # ifndef OPENSSL_NO_DYNAMIC_ENGINE static int bind_helper(ENGINE *e, const char *id) { if (id && (strcmp(id, engine_sureware_id) != 0)) return 0; if (!bind_sureware(e)) return 0; return 1; } IMPLEMENT_DYNAMIC_CHECK_FN() IMPLEMENT_DYNAMIC_BIND_FN(bind_helper) # else static ENGINE *engine_sureware(void) { ENGINE *ret = ENGINE_new(); if (!ret) return NULL; if (!bind_sureware(ret)) { ENGINE_free(ret); return NULL; } return ret; } void ENGINE_load_sureware(void) { /* Copied from eng_[openssl|dyn].c */ ENGINE *toadd = engine_sureware(); if (!toadd) return; ENGINE_add(toadd); ENGINE_free(toadd); ERR_clear_error(); } # endif /* * This is a process-global DSO handle used for loading and unloading the * SureWareHook library. NB: This is only set (or unset) during an init() or * finish() call (reference counts permitting) and they're operating with * global locks, so this should be thread-safe implicitly. */ static DSO *surewarehk_dso = NULL; # ifndef OPENSSL_NO_RSA /* Index for KM handle. Not really used yet. */ static int rsaHndidx = -1; # endif # ifndef OPENSSL_NO_DSA /* Index for KM handle. Not really used yet. */ static int dsaHndidx = -1; # endif /* * These are the function pointers that are (un)set when the library has * successfully (un)loaded. */ static SureWareHook_Init_t *p_surewarehk_Init = NULL; static SureWareHook_Finish_t *p_surewarehk_Finish = NULL; static SureWareHook_Rand_Bytes_t *p_surewarehk_Rand_Bytes = NULL; static SureWareHook_Rand_Seed_t *p_surewarehk_Rand_Seed = NULL; static SureWareHook_Load_Privkey_t *p_surewarehk_Load_Privkey = NULL; static SureWareHook_Info_Pubkey_t *p_surewarehk_Info_Pubkey = NULL; static SureWareHook_Load_Rsa_Pubkey_t *p_surewarehk_Load_Rsa_Pubkey = NULL; static SureWareHook_Load_Dsa_Pubkey_t *p_surewarehk_Load_Dsa_Pubkey = NULL; static SureWareHook_Free_t *p_surewarehk_Free = NULL; static SureWareHook_Rsa_Priv_Dec_t *p_surewarehk_Rsa_Priv_Dec = NULL; static SureWareHook_Rsa_Sign_t *p_surewarehk_Rsa_Sign = NULL; static SureWareHook_Dsa_Sign_t *p_surewarehk_Dsa_Sign = NULL; static SureWareHook_Mod_Exp_t *p_surewarehk_Mod_Exp = NULL; /* Used in the DSO operations. */ static const char *surewarehk_LIBNAME = "SureWareHook"; static const char *n_surewarehk_Init = "SureWareHook_Init"; static const char *n_surewarehk_Finish = "SureWareHook_Finish"; static const char *n_surewarehk_Rand_Bytes = "SureWareHook_Rand_Bytes"; static const char *n_surewarehk_Rand_Seed = "SureWareHook_Rand_Seed"; static const char *n_surewarehk_Load_Privkey = "SureWareHook_Load_Privkey"; static const char *n_surewarehk_Info_Pubkey = "SureWareHook_Info_Pubkey"; static const char *n_surewarehk_Load_Rsa_Pubkey = "SureWareHook_Load_Rsa_Pubkey"; static const char *n_surewarehk_Load_Dsa_Pubkey = "SureWareHook_Load_Dsa_Pubkey"; static const char *n_surewarehk_Free = "SureWareHook_Free"; static const char *n_surewarehk_Rsa_Priv_Dec = "SureWareHook_Rsa_Priv_Dec"; static const char *n_surewarehk_Rsa_Sign = "SureWareHook_Rsa_Sign"; static const char *n_surewarehk_Dsa_Sign = "SureWareHook_Dsa_Sign"; static const char *n_surewarehk_Mod_Exp = "SureWareHook_Mod_Exp"; static BIO *logstream = NULL; /* * SureWareHook library functions and mechanics - these are used by the * higher-level functions further down. NB: As and where there's no error * checking, take a look lower down where these functions are called, the * checking and error handling is probably down there. */ static int threadsafe = 1; static int surewarehk_ctrl(ENGINE *e, int cmd, long i, void *p, void (*f) (void)) { int to_return = 1; switch (cmd) { case ENGINE_CTRL_SET_LOGSTREAM: { BIO *bio = (BIO *)p; CRYPTO_w_lock(CRYPTO_LOCK_ENGINE); if (logstream) { BIO_free(logstream); logstream = NULL; } if (CRYPTO_add(&bio->references, 1, CRYPTO_LOCK_BIO) > 1) logstream = bio; else SUREWAREerr(SUREWARE_F_SUREWAREHK_CTRL, SUREWARE_R_BIO_WAS_FREED); } CRYPTO_w_unlock(CRYPTO_LOCK_ENGINE); break; /* * This will prevent the initialisation function from "installing" * the mutex-handling callbacks, even if they are available from * within the library (or were provided to the library from the * calling application). This is to remove any baggage for * applications not using multithreading. */ case ENGINE_CTRL_CHIL_NO_LOCKING: CRYPTO_w_lock(CRYPTO_LOCK_ENGINE); threadsafe = 0; CRYPTO_w_unlock(CRYPTO_LOCK_ENGINE); break; /* The command isn't understood by this engine */ default: SUREWAREerr(SUREWARE_F_SUREWAREHK_CTRL, ENGINE_R_CTRL_COMMAND_NOT_IMPLEMENTED); to_return = 0; break; } return to_return; } /* Destructor (complements the "ENGINE_surewarehk()" constructor) */ static int surewarehk_destroy(ENGINE *e) { ERR_unload_SUREWARE_strings(); return 1; } /* (de)initialisation functions. */ static int surewarehk_init(ENGINE *e) { char msg[64] = "ENGINE_init"; SureWareHook_Init_t *p1 = NULL; SureWareHook_Finish_t *p2 = NULL; SureWareHook_Rand_Bytes_t *p3 = NULL; SureWareHook_Rand_Seed_t *p4 = NULL; SureWareHook_Load_Privkey_t *p5 = NULL; SureWareHook_Load_Rsa_Pubkey_t *p6 = NULL; SureWareHook_Free_t *p7 = NULL; SureWareHook_Rsa_Priv_Dec_t *p8 = NULL; SureWareHook_Rsa_Sign_t *p9 = NULL; SureWareHook_Dsa_Sign_t *p12 = NULL; SureWareHook_Info_Pubkey_t *p13 = NULL; SureWareHook_Load_Dsa_Pubkey_t *p14 = NULL; SureWareHook_Mod_Exp_t *p15 = NULL; if (surewarehk_dso != NULL) { SUREWAREerr(SUREWARE_F_SUREWAREHK_INIT, ENGINE_R_ALREADY_LOADED); goto err; } /* Attempt to load libsurewarehk.so/surewarehk.dll/whatever. */ surewarehk_dso = DSO_load(NULL, surewarehk_LIBNAME, NULL, 0); if (surewarehk_dso == NULL) { SUREWAREerr(SUREWARE_F_SUREWAREHK_INIT, ENGINE_R_DSO_FAILURE); goto err; } if (! (p1 = (SureWareHook_Init_t *) DSO_bind_func(surewarehk_dso, n_surewarehk_Init)) || !(p2 = (SureWareHook_Finish_t *) DSO_bind_func(surewarehk_dso, n_surewarehk_Finish)) || !(p3 = (SureWareHook_Rand_Bytes_t *) DSO_bind_func(surewarehk_dso, n_surewarehk_Rand_Bytes)) || !(p4 = (SureWareHook_Rand_Seed_t *) DSO_bind_func(surewarehk_dso, n_surewarehk_Rand_Seed)) || !(p5 = (SureWareHook_Load_Privkey_t *) DSO_bind_func(surewarehk_dso, n_surewarehk_Load_Privkey)) || !(p6 = (SureWareHook_Load_Rsa_Pubkey_t *) DSO_bind_func(surewarehk_dso, n_surewarehk_Load_Rsa_Pubkey)) || !(p7 = (SureWareHook_Free_t *) DSO_bind_func(surewarehk_dso, n_surewarehk_Free)) || !(p8 = (SureWareHook_Rsa_Priv_Dec_t *) DSO_bind_func(surewarehk_dso, n_surewarehk_Rsa_Priv_Dec)) || !(p9 = (SureWareHook_Rsa_Sign_t *) DSO_bind_func(surewarehk_dso, n_surewarehk_Rsa_Sign)) || !(p12 = (SureWareHook_Dsa_Sign_t *) DSO_bind_func(surewarehk_dso, n_surewarehk_Dsa_Sign)) || !(p13 = (SureWareHook_Info_Pubkey_t *) DSO_bind_func(surewarehk_dso, n_surewarehk_Info_Pubkey)) || !(p14 = (SureWareHook_Load_Dsa_Pubkey_t *) DSO_bind_func(surewarehk_dso, n_surewarehk_Load_Dsa_Pubkey)) || !(p15 = (SureWareHook_Mod_Exp_t *) DSO_bind_func(surewarehk_dso, n_surewarehk_Mod_Exp))) { SUREWAREerr(SUREWARE_F_SUREWAREHK_INIT, ENGINE_R_DSO_FAILURE); goto err; } /* Copy the pointers */ p_surewarehk_Init = p1; p_surewarehk_Finish = p2; p_surewarehk_Rand_Bytes = p3; p_surewarehk_Rand_Seed = p4; p_surewarehk_Load_Privkey = p5; p_surewarehk_Load_Rsa_Pubkey = p6; p_surewarehk_Free = p7; p_surewarehk_Rsa_Priv_Dec = p8; p_surewarehk_Rsa_Sign = p9; p_surewarehk_Dsa_Sign = p12; p_surewarehk_Info_Pubkey = p13; p_surewarehk_Load_Dsa_Pubkey = p14; p_surewarehk_Mod_Exp = p15; /* Contact the hardware and initialises it. */ if (p_surewarehk_Init(msg, threadsafe) == SUREWAREHOOK_ERROR_UNIT_FAILURE) { SUREWAREerr(SUREWARE_F_SUREWAREHK_INIT, SUREWARE_R_UNIT_FAILURE); goto err; } if (p_surewarehk_Init(msg, threadsafe) == SUREWAREHOOK_ERROR_UNIT_FAILURE) { SUREWAREerr(SUREWARE_F_SUREWAREHK_INIT, SUREWARE_R_UNIT_FAILURE); goto err; } /* * try to load the default private key, if failed does not return a * failure but wait for an explicit ENGINE_load_privakey */ surewarehk_load_privkey(e, NULL, NULL, NULL); /* Everything's fine. */ # ifndef OPENSSL_NO_RSA if (rsaHndidx == -1) rsaHndidx = RSA_get_ex_new_index(0, "SureWareHook RSA key handle", NULL, NULL, surewarehk_ex_free); # endif # ifndef OPENSSL_NO_DSA if (dsaHndidx == -1) dsaHndidx = DSA_get_ex_new_index(0, "SureWareHook DSA key handle", NULL, NULL, surewarehk_ex_free); # endif return 1; err: if (surewarehk_dso) DSO_free(surewarehk_dso); surewarehk_dso = NULL; p_surewarehk_Init = NULL; p_surewarehk_Finish = NULL; p_surewarehk_Rand_Bytes = NULL; p_surewarehk_Rand_Seed = NULL; p_surewarehk_Load_Privkey = NULL; p_surewarehk_Load_Rsa_Pubkey = NULL; p_surewarehk_Free = NULL; p_surewarehk_Rsa_Priv_Dec = NULL; p_surewarehk_Rsa_Sign = NULL; p_surewarehk_Dsa_Sign = NULL; p_surewarehk_Info_Pubkey = NULL; p_surewarehk_Load_Dsa_Pubkey = NULL; p_surewarehk_Mod_Exp = NULL; return 0; } static int surewarehk_finish(ENGINE *e) { int to_return = 1; if (surewarehk_dso == NULL) { SUREWAREerr(SUREWARE_F_SUREWAREHK_FINISH, ENGINE_R_NOT_LOADED); to_return = 0; goto err; } p_surewarehk_Finish(); if (!DSO_free(surewarehk_dso)) { SUREWAREerr(SUREWARE_F_SUREWAREHK_FINISH, ENGINE_R_DSO_FAILURE); to_return = 0; goto err; } err: if (logstream) BIO_free(logstream); surewarehk_dso = NULL; p_surewarehk_Init = NULL; p_surewarehk_Finish = NULL; p_surewarehk_Rand_Bytes = NULL; p_surewarehk_Rand_Seed = NULL; p_surewarehk_Load_Privkey = NULL; p_surewarehk_Load_Rsa_Pubkey = NULL; p_surewarehk_Free = NULL; p_surewarehk_Rsa_Priv_Dec = NULL; p_surewarehk_Rsa_Sign = NULL; p_surewarehk_Dsa_Sign = NULL; p_surewarehk_Info_Pubkey = NULL; p_surewarehk_Load_Dsa_Pubkey = NULL; p_surewarehk_Mod_Exp = NULL; return to_return; } static void surewarehk_error_handling(char *const msg, int func, int ret) { switch (ret) { case SUREWAREHOOK_ERROR_UNIT_FAILURE: ENGINEerr(func, SUREWARE_R_UNIT_FAILURE); break; case SUREWAREHOOK_ERROR_FALLBACK: ENGINEerr(func, SUREWARE_R_REQUEST_FALLBACK); break; case SUREWAREHOOK_ERROR_DATA_SIZE: ENGINEerr(func, SUREWARE_R_SIZE_TOO_LARGE_OR_TOO_SMALL); break; case SUREWAREHOOK_ERROR_INVALID_PAD: ENGINEerr(func, SUREWARE_R_PADDING_CHECK_FAILED); break; default: ENGINEerr(func, SUREWARE_R_REQUEST_FAILED); break; case 1: /* nothing */ msg[0] = '\0'; } if (*msg) { ERR_add_error_data(1, msg); if (logstream) { CRYPTO_w_lock(CRYPTO_LOCK_BIO); BIO_write(logstream, msg, strlen(msg)); CRYPTO_w_unlock(CRYPTO_LOCK_BIO); } } } static int surewarehk_rand_bytes(unsigned char *buf, int num) { int ret = 0; char msg[64] = "ENGINE_rand_bytes"; if (!p_surewarehk_Rand_Bytes) { SUREWAREerr(SUREWARE_F_SUREWAREHK_RAND_BYTES, ENGINE_R_NOT_INITIALISED); } else { ret = p_surewarehk_Rand_Bytes(msg, buf, num); surewarehk_error_handling(msg, SUREWARE_F_SUREWAREHK_RAND_BYTES, ret); } return ret == 1 ? 1 : 0; } static void surewarehk_rand_seed(const void *buf, int num) { int ret = 0; char msg[64] = "ENGINE_rand_seed"; if (!p_surewarehk_Rand_Seed) { SUREWAREerr(SUREWARE_F_SUREWAREHK_RAND_SEED, ENGINE_R_NOT_INITIALISED); } else { ret = p_surewarehk_Rand_Seed(msg, buf, num); surewarehk_error_handling(msg, SUREWARE_F_SUREWAREHK_RAND_SEED, ret); } } static void surewarehk_rand_add(const void *buf, int num, double entropy) { surewarehk_rand_seed(buf, num); } static EVP_PKEY *sureware_load_public(ENGINE *e, const char *key_id, char *hptr, unsigned long el, char keytype) { EVP_PKEY *res = NULL; # ifndef OPENSSL_NO_RSA RSA *rsatmp = NULL; # endif # ifndef OPENSSL_NO_DSA DSA *dsatmp = NULL; # endif char msg[64] = "sureware_load_public"; int ret = 0; if (!p_surewarehk_Load_Rsa_Pubkey || !p_surewarehk_Load_Dsa_Pubkey) { SUREWAREerr(SUREWARE_F_SUREWARE_LOAD_PUBLIC, ENGINE_R_NOT_INITIALISED); goto err; } switch (keytype) { # ifndef OPENSSL_NO_RSA case 1: /*RSA*/ /* set private external reference */ rsatmp = RSA_new_method(e); RSA_set_ex_data(rsatmp, rsaHndidx, hptr); rsatmp->flags |= RSA_FLAG_EXT_PKEY; /* set public big nums */ rsatmp->e = BN_new(); rsatmp->n = BN_new(); bn_expand2(rsatmp->e, el / sizeof(BN_ULONG)); bn_expand2(rsatmp->n, el / sizeof(BN_ULONG)); if (!rsatmp->e || rsatmp->e->dmax != (int)(el / sizeof(BN_ULONG)) || !rsatmp->n || rsatmp->n->dmax != (int)(el / sizeof(BN_ULONG))) goto err; ret = p_surewarehk_Load_Rsa_Pubkey(msg, key_id, el, (unsigned long *)rsatmp->n->d, (unsigned long *)rsatmp->e->d); surewarehk_error_handling(msg, SUREWARE_F_SUREWARE_LOAD_PUBLIC, ret); if (ret != 1) { SUREWAREerr(SUREWARE_F_SUREWARE_LOAD_PUBLIC, ENGINE_R_FAILED_LOADING_PUBLIC_KEY); goto err; } /* normalise pub e and pub n */ rsatmp->e->top = el / sizeof(BN_ULONG); bn_fix_top(rsatmp->e); rsatmp->n->top = el / sizeof(BN_ULONG); bn_fix_top(rsatmp->n); /* create an EVP object: engine + rsa key */ res = EVP_PKEY_new(); EVP_PKEY_assign_RSA(res, rsatmp); break; # endif # ifndef OPENSSL_NO_DSA case 2: /*DSA*/ /* set private/public external reference */ dsatmp = DSA_new_method(e); DSA_set_ex_data(dsatmp, dsaHndidx, hptr); /* * dsatmp->flags |= DSA_FLAG_EXT_PKEY; */ /* set public key */ dsatmp->pub_key = BN_new(); dsatmp->p = BN_new(); dsatmp->q = BN_new(); dsatmp->g = BN_new(); bn_expand2(dsatmp->pub_key, el / sizeof(BN_ULONG)); bn_expand2(dsatmp->p, el / sizeof(BN_ULONG)); bn_expand2(dsatmp->q, 20 / sizeof(BN_ULONG)); bn_expand2(dsatmp->g, el / sizeof(BN_ULONG)); if (!dsatmp->pub_key || dsatmp->pub_key->dmax != (int)(el / sizeof(BN_ULONG)) || !dsatmp->p || dsatmp->p->dmax != (int)(el / sizeof(BN_ULONG)) || !dsatmp->q || dsatmp->q->dmax != 20 / sizeof(BN_ULONG) || !dsatmp->g || dsatmp->g->dmax != (int)(el / sizeof(BN_ULONG))) goto err; ret = p_surewarehk_Load_Dsa_Pubkey(msg, key_id, el, (unsigned long *)dsatmp-> pub_key->d, (unsigned long *)dsatmp->p->d, (unsigned long *)dsatmp->q->d, (unsigned long *)dsatmp->g->d); surewarehk_error_handling(msg, SUREWARE_F_SUREWARE_LOAD_PUBLIC, ret); if (ret != 1) { SUREWAREerr(SUREWARE_F_SUREWARE_LOAD_PUBLIC, ENGINE_R_FAILED_LOADING_PUBLIC_KEY); goto err; } /* set parameters */ /* normalise pubkey and parameters in case of */ dsatmp->pub_key->top = el / sizeof(BN_ULONG); bn_fix_top(dsatmp->pub_key); dsatmp->p->top = el / sizeof(BN_ULONG); bn_fix_top(dsatmp->p); dsatmp->q->top = 20 / sizeof(BN_ULONG); bn_fix_top(dsatmp->q); dsatmp->g->top = el / sizeof(BN_ULONG); bn_fix_top(dsatmp->g); /* create an EVP object: engine + rsa key */ res = EVP_PKEY_new(); EVP_PKEY_assign_DSA(res, dsatmp); break; # endif default: SUREWAREerr(SUREWARE_F_SUREWARE_LOAD_PUBLIC, ENGINE_R_FAILED_LOADING_PRIVATE_KEY); goto err; } return res; err: # ifndef OPENSSL_NO_RSA if (rsatmp) RSA_free(rsatmp); # endif # ifndef OPENSSL_NO_DSA if (dsatmp) DSA_free(dsatmp); # endif return NULL; } static EVP_PKEY *surewarehk_load_privkey(ENGINE *e, const char *key_id, UI_METHOD *ui_method, void *callback_data) { EVP_PKEY *res = NULL; int ret = 0; unsigned long el = 0; char *hptr = NULL; char keytype = 0; char msg[64] = "ENGINE_load_privkey"; if (!p_surewarehk_Load_Privkey) { SUREWAREerr(SUREWARE_F_SUREWAREHK_LOAD_PRIVKEY, ENGINE_R_NOT_INITIALISED); } else { ret = p_surewarehk_Load_Privkey(msg, key_id, &hptr, &el, &keytype); if (ret != 1) { SUREWAREerr(SUREWARE_F_SUREWAREHK_LOAD_PRIVKEY, ENGINE_R_FAILED_LOADING_PRIVATE_KEY); ERR_add_error_data(1, msg); } else res = sureware_load_public(e, key_id, hptr, el, keytype); } return res; } static EVP_PKEY *surewarehk_load_pubkey(ENGINE *e, const char *key_id, UI_METHOD *ui_method, void *callback_data) { EVP_PKEY *res = NULL; int ret = 0; unsigned long el = 0; char *hptr = NULL; char keytype = 0; char msg[64] = "ENGINE_load_pubkey"; if (!p_surewarehk_Info_Pubkey) { SUREWAREerr(SUREWARE_F_SUREWAREHK_LOAD_PUBKEY, ENGINE_R_NOT_INITIALISED); } else { /* call once to identify if DSA or RSA */ ret = p_surewarehk_Info_Pubkey(msg, key_id, &el, &keytype); if (ret != 1) { SUREWAREerr(SUREWARE_F_SUREWAREHK_LOAD_PUBKEY, ENGINE_R_FAILED_LOADING_PUBLIC_KEY); ERR_add_error_data(1, msg); } else res = sureware_load_public(e, key_id, hptr, el, keytype); } return res; } /* * This cleans up an RSA/DSA KM key(do not destroy the key into the hardware) * , called when ex_data is freed */ static void surewarehk_ex_free(void *obj, void *item, CRYPTO_EX_DATA *ad, int idx, long argl, void *argp) { if (!p_surewarehk_Free) { SUREWAREerr(SUREWARE_F_SUREWAREHK_EX_FREE, ENGINE_R_NOT_INITIALISED); } else p_surewarehk_Free((char *)item, 0); } # if 0 /* not currently used (bug?) */ /* * This cleans up an DH KM key (destroys the key into hardware), called when * ex_data is freed */ static void surewarehk_dh_ex_free(void *obj, void *item, CRYPTO_EX_DATA *ad, int idx, long argl, void *argp) { if (!p_surewarehk_Free) { SUREWAREerr(SUREWARE_F_SUREWAREHK_DH_EX_FREE, ENGINE_R_NOT_INITIALISED); } else p_surewarehk_Free((char *)item, 1); } # endif /* * return number of decrypted bytes */ # ifndef OPENSSL_NO_RSA static int surewarehk_rsa_priv_dec(int flen, const unsigned char *from, unsigned char *to, RSA *rsa, int padding) { int ret = 0, tlen; char *buf = NULL, *hptr = NULL; char msg[64] = "ENGINE_rsa_priv_dec"; if (!p_surewarehk_Rsa_Priv_Dec) { SUREWAREerr(SUREWARE_F_SUREWAREHK_RSA_PRIV_DEC, ENGINE_R_NOT_INITIALISED); } /* extract ref to private key */ else if (!(hptr = RSA_get_ex_data(rsa, rsaHndidx))) { SUREWAREerr(SUREWARE_F_SUREWAREHK_RSA_PRIV_DEC, SUREWARE_R_MISSING_KEY_COMPONENTS); goto err; } /* analyse what padding we can do into the hardware */ if (padding == RSA_PKCS1_PADDING) { /* do it one shot */ ret = p_surewarehk_Rsa_Priv_Dec(msg, flen, (unsigned char *)from, &tlen, to, hptr, SUREWARE_PKCS1_PAD); surewarehk_error_handling(msg, SUREWARE_F_SUREWAREHK_RSA_PRIV_DEC, ret); if (ret != 1) goto err; ret = tlen; } else { /* do with no padding into hardware */ ret = p_surewarehk_Rsa_Priv_Dec(msg, flen, (unsigned char *)from, &tlen, to, hptr, SUREWARE_NO_PAD); surewarehk_error_handling(msg, SUREWARE_F_SUREWAREHK_RSA_PRIV_DEC, ret); if (ret != 1) goto err; /* intermediate buffer for padding */ if ((buf = OPENSSL_malloc(tlen)) == NULL) { SUREWAREerr(SUREWARE_F_SUREWAREHK_RSA_PRIV_DEC, ERR_R_MALLOC_FAILURE); goto err; } memcpy(buf, to, tlen); /* transfert to into buf */ switch (padding) { /* check padding in software */ # ifndef OPENSSL_NO_SHA case RSA_PKCS1_OAEP_PADDING: ret = RSA_padding_check_PKCS1_OAEP(to, tlen, (unsigned char *)buf, tlen, tlen, NULL, 0); break; # endif case RSA_SSLV23_PADDING: ret = RSA_padding_check_SSLv23(to, tlen, (unsigned char *)buf, flen, tlen); break; case RSA_NO_PADDING: ret = RSA_padding_check_none(to, tlen, (unsigned char *)buf, flen, tlen); break; default: SUREWAREerr(SUREWARE_F_SUREWAREHK_RSA_PRIV_DEC, SUREWARE_R_UNKNOWN_PADDING_TYPE); goto err; } if (ret < 0) SUREWAREerr(SUREWARE_F_SUREWAREHK_RSA_PRIV_DEC, SUREWARE_R_PADDING_CHECK_FAILED); } err: if (buf) { OPENSSL_cleanse(buf, tlen); OPENSSL_free(buf); } return ret; } /* * Does what OpenSSL rsa_priv_enc does. */ static int surewarehk_rsa_sign(int flen, const unsigned char *from, unsigned char *to, RSA *rsa, int padding) { int ret = 0, tlen; char *hptr = NULL; char msg[64] = "ENGINE_rsa_sign"; if (!p_surewarehk_Rsa_Sign) { SUREWAREerr(SUREWARE_F_SUREWAREHK_RSA_SIGN, ENGINE_R_NOT_INITIALISED); } /* extract ref to private key */ else if (!(hptr = RSA_get_ex_data(rsa, rsaHndidx))) { SUREWAREerr(SUREWARE_F_SUREWAREHK_RSA_SIGN, SUREWARE_R_MISSING_KEY_COMPONENTS); } else { switch (padding) { case RSA_PKCS1_PADDING: /* do it in one shot */ ret = p_surewarehk_Rsa_Sign(msg, flen, (unsigned char *)from, &tlen, to, hptr, SUREWARE_PKCS1_PAD); surewarehk_error_handling(msg, SUREWARE_F_SUREWAREHK_RSA_SIGN, ret); break; case RSA_NO_PADDING: default: SUREWAREerr(SUREWARE_F_SUREWAREHK_RSA_SIGN, SUREWARE_R_UNKNOWN_PADDING_TYPE); } } return ret == 1 ? tlen : ret; } # endif # ifndef OPENSSL_NO_DSA /* DSA sign and verify */ static DSA_SIG *surewarehk_dsa_do_sign(const unsigned char *from, int flen, DSA *dsa) { int ret = 0; char *hptr = NULL; DSA_SIG *psign = NULL; char msg[64] = "ENGINE_dsa_do_sign"; if (!p_surewarehk_Dsa_Sign) { SUREWAREerr(SUREWARE_F_SUREWAREHK_DSA_DO_SIGN, ENGINE_R_NOT_INITIALISED); goto err; } /* extract ref to private key */ else if (!(hptr = DSA_get_ex_data(dsa, dsaHndidx))) { SUREWAREerr(SUREWARE_F_SUREWAREHK_DSA_DO_SIGN, SUREWARE_R_MISSING_KEY_COMPONENTS); goto err; } else { if ((psign = DSA_SIG_new()) == NULL) { SUREWAREerr(SUREWARE_F_SUREWAREHK_DSA_DO_SIGN, ERR_R_MALLOC_FAILURE); goto err; } psign->r = BN_new(); psign->s = BN_new(); bn_expand2(psign->r, 20 / sizeof(BN_ULONG)); bn_expand2(psign->s, 20 / sizeof(BN_ULONG)); if (!psign->r || psign->r->dmax != 20 / sizeof(BN_ULONG) || !psign->s || psign->s->dmax != 20 / sizeof(BN_ULONG)) goto err; ret = p_surewarehk_Dsa_Sign(msg, flen, from, (unsigned long *)psign->r->d, (unsigned long *)psign->s->d, hptr); surewarehk_error_handling(msg, SUREWARE_F_SUREWAREHK_DSA_DO_SIGN, ret); } psign->r->top = 20 / sizeof(BN_ULONG); bn_fix_top(psign->r); psign->s->top = 20 / sizeof(BN_ULONG); bn_fix_top(psign->s); err: if (psign) { DSA_SIG_free(psign); psign = NULL; } return psign; } # endif static int surewarehk_modexp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, const BIGNUM *m, BN_CTX *ctx) { int ret = 0; char msg[64] = "ENGINE_modexp"; if (!p_surewarehk_Mod_Exp) { SUREWAREerr(SUREWARE_F_SUREWAREHK_MODEXP, ENGINE_R_NOT_INITIALISED); } else { bn_expand2(r, m->top); if (r && r->dmax == m->top) { /* do it */ ret = p_surewarehk_Mod_Exp(msg, m->top * sizeof(BN_ULONG), (unsigned long *)m->d, p->top * sizeof(BN_ULONG), (unsigned long *)p->d, a->top * sizeof(BN_ULONG), (unsigned long *)a->d, (unsigned long *)r->d); surewarehk_error_handling(msg, SUREWARE_F_SUREWAREHK_MODEXP, ret); if (ret == 1) { /* normalise result */ r->top = m->top; bn_fix_top(r); } } } return ret; } # endif /* !OPENSSL_NO_HW_SureWare */ #endif /* !OPENSSL_NO_HW */